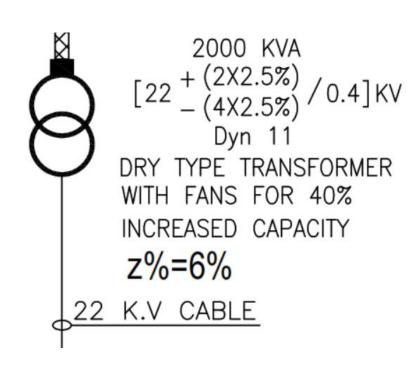
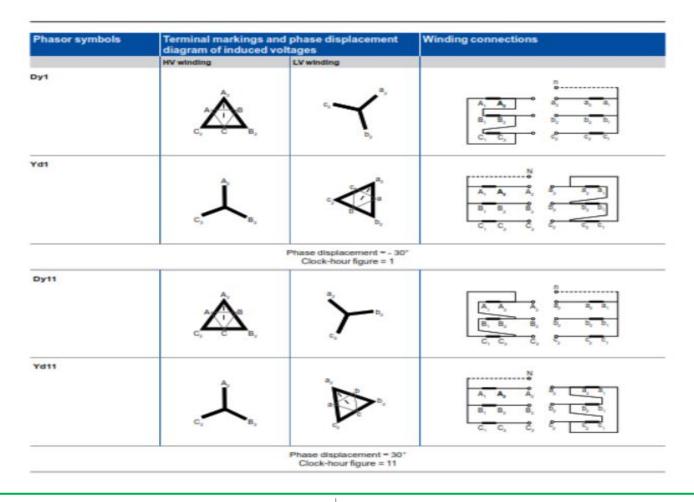


MV/LV TRANSFORMER

Outlines


- 1. Characteristic parameters of a transformer
- 2. Technology and utilization of the transformers
- 3. Transformer sizing
- 4. Space allocation (space program)
- 5. Room Ventilation

1-Characteristic parameters of a transformer


- 1. Rated Power
- 2. Frequency
- 3. Rated primary voltage
- 4. Rated secondary voltage
- 5. Off-load tap-changer
- 6. Winding configurations

Transformer Vector Groups

2-Technology and utilization of the transformers

- Liquid filled (oil-immersed) transformer.
- Dry type (cast resin encapsulated) transformer

Ambient Temperature

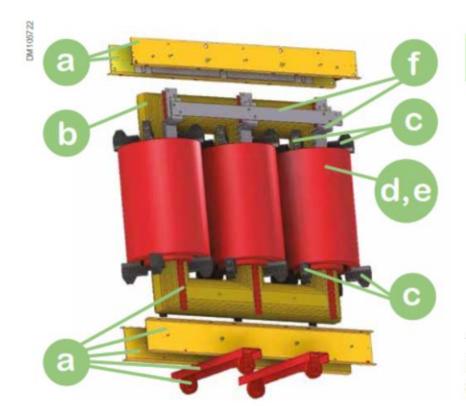
The rated power of the transformer is typically calculated for the following conditions:

- maximum ambient temperature of 40°C
- average daily ambient temperature of 30°C
- average annual ambient temperature of 20°C.

Oil Distribution Transformers

Rated power	3.15 MVA
Rated voltage	36 kV
Phases	Three-phase unit
Rated frequency	50 Hz or 60 Hz
Type of cooling	ONAN, ONAF (other on request)
Voltage regulation	Off-circuit tap changer (DETC) or on load tap changer (OLTC)
Other (optional)	Breathing or sealed type, standard or low noise levels, a wide variety of accessories

Oil ---insulating & cooling material


Outdoor applications

Cast Resin Transformers

Recommendation	Drawing Ref	Components	Weight (in kg)	Comment
	а	Steel parts	100~5000	Clampings, rollers
	b	Core	300~25000	Magnetic steel
Dismantling	С	Plastic parts	30~250	Support wedges
Dismantling	d	Resin	100~3500	Coil insulation
	е	Conductors	30~5000	Aluminium or copper
	f	Bars	20~100	Aluminium or copper

In Trihal transformers, there is no component which may effect on human health or environmental pollution during dismantling process.

Cast Resin Transformers

Trihal with Enclosure

Trihal Dry-Type Transformer

Rated power	Up to 15 MVA
Rated voltage	Up to 36 kV
Rated frequency	50 Hz or 60 Hz
Type of cooling	AN, AF (other on request)
Other	Thermal protection system
On request	Enclosure, fans, anti-vibration pads, plug-in bushing, monobloc bushing, automatic voltage regulator panel, surge arrestors, etc.

Safety and Reliability

To ensure total compliance with relevant national and international standards, Trihal transformers have been put through the most stringent series of tests. Trihal is one of few transformers having successfully passed these tests and is characterised by the following features:

- C3 Climate Test Operation and Storage to -50°C
- E3 Environment Test Nearly total condensation or heavy pollution or both
 Abnormal level of humidity up to 95% to IEC 60076-16
- F1 Fire Behaviour reduced flammability and self extinguishing Excellent classification to IEC 60076-11 standard
- ≤ 5pC Special test for Partial Discharge based on IEC 60076-11; Tested at 1.3 Un with ≤ 5pC result.

Overloading

Overloading

The rated overloading of transformer depends on the transformer's previous load or the corresponding oil temperature at the beginning of the overloading. Examples of the permissible duration and the respective levels of the acceptable overloadings are shown below.

For example, if the transformer is loaded with 50% of its rated power continuously, then the transformer can be overloaded to 150% of its rated power for 15 minutes or to 120% of its rated power for 90 minutes.

Previous continuous loading	Oil temperature	Duration (min.) of overloading for specific levels of overloading (% of rated power)							
% of rated power	°C	10% min.	20% min.	30% min.	40% min.	50% min.			
50	55	180	90	60	30	15			
75	68	120	60	30	15	8			
90	78	60	30	15	8	4			

Permissible duration and level of acceptable overloading.

3-Transformer sizing

Does my facility need a transformer ?!!!

As per elec. company: from 450k watts to above

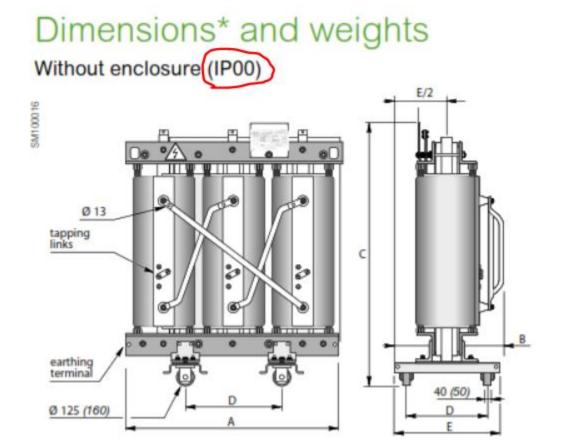
3-Transformer sizing

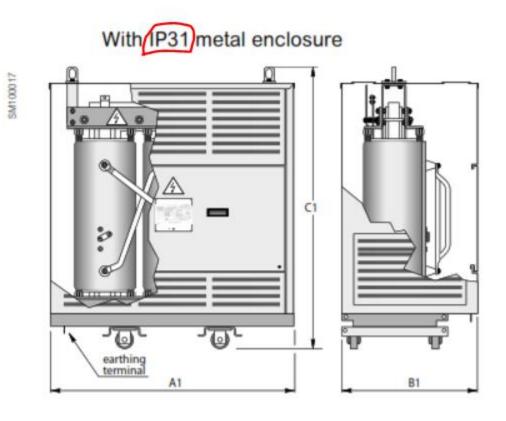
الدليل الارشادي لتطبيق الكود المصري لأسس تصميم وشروط تنفيذ التوصيلات والتركيبات الكهربائية في المباتي (المجلد الأول: أعمال التصميم)

يــتم تحديــد سعة محول التوزيع اللازم لتغذية المنشأة بناءً على أقصى طلب كهربي متوقع لهذه المنشأة وذلك طبقاً لما يلي:

سعة المحول=١,٢٥× أقصى طلب كهربي (ك.ف.أ) (بمعنى أن المحول يحمل فقط بـ ٨٠٪ من سعته)

4- Space allocation


Trihal - Cast Resin Transformer Up to 3150 kVA - 17.5 to 24 kV


Main electrical characteristics

Power kVA	250	400	630	800	1000	1250	1600	2000	2500	3150
Primary voltage Secondary voltage	28.5 to 34.5 k 400V between		1V phase to r	neutral (at no	o oad)					
HV insulation level	36kV									
HV tapping range	± 2.5 % and/o	or ± 5 %								
Vector group	Dyn 11, Dyn 5	5. Dyn 1 (othe	er vector gro	ups upon re	quest)					
No-load losses (w) Load losses at 75°C (w) Load losses at 120°C (w)	1280 3500 4000	1650 5000 5700	2200 7000 8000	2700 8400 9600	3100 10000 11500	3600 12200 14000	4200 14800 17000	5000 18300 21000	5800 21800 25000	6700 26100 30000
Impedance voltage (%)	6	6	6	6	6	6	6	6	6	6
Acoustic Level dB(A): - power L _{WA} - pressure L _{PA} (1m)	67 55	69 56	71 57	72 58	73 59	75 61	76 61	78 63	81 61	83 61

Rated power (kVA)		100	160	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
Without enclosure IPC	00														
Dimensions (mm)	-A -B -C -D -E	1290 720 1370 520 715	1260 720 1370 520 715	1330 720 1430 520 715	1350 800 1580 670 795	1410 800 1600 670 795	1430 800 1620 670 795	1500 800 1640 670 795	1660 800 1810 670 795	1660 950 1950 820 945	1710 950 2100 820 945	1790 950 2340 820 945	1880 1200 2420 1070 1195	2070 1200 2480 1070 1195	2280 1200 2660 1070 1195
Total weight (kg)		940	930	1200	1360	1580	1660	1920	2550	2790	3200	4000	4950	6160	8370
With IP31 metal enclo	sure														
Dimensions (mm)	-A1 -B1 -C1	1650 950 1750	1650 950 1750	1650 950 1750	1700 1020 1900	1700 1020 1900	1800 1020 2050	1800 1020 2050	2000 1170 2400	2000 1170 2400	2150 1170 2480	2330 1240 2650	2330 1270 2650	2470 1240 2880	2680 1310 3060
Weight enclosure (kg) Total weight (kg)		180 1120	180 1110	180 1380	190 1550	190 1770	210 1870	210 2130	245 2795	245 3035	320 3520	370 4370	370 5320	350 6510	360 8730

Schneider Electric

5-Room Ventilation

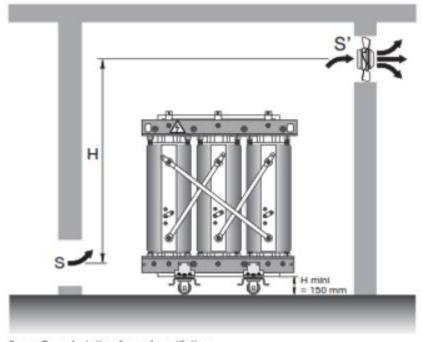
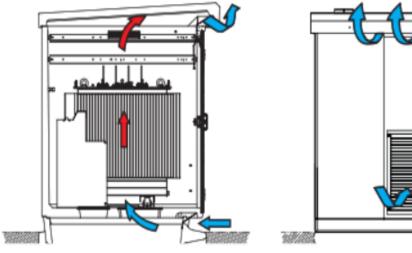
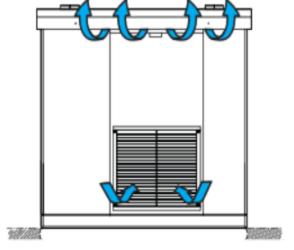




figure 2 - substation forced ventilation


الدليل الارشادي لتطبيق الكود المصري لأسس تصميم وشروط تنفيذ التوصيلات والتركيبات الكهربانية في المباني (المجلد الثاني: تنفيذ الأعمال)

يراعي ان تكون فتحات دخول الهواء لغرفة المحول في الحائط المقابل مقابلة للجرزء السفلي من المحول وأن تكون فتحات خروج الهواء في الحائط المجاور للمحول وفي مستوى أعلى من المحول.

Standby Diesel generator set

Shall the facility need a standby generator set?

(الجزء الثاني)

المعايير التعميمية للمستشفيات والمنشآت العحية

الباب الرابع: متطلبات نظم البناء والشبكات الخدمية - المعايير الفنية

٢/٤ المعايير الفنية للتركيبات الكهربائية

١/٢/٤ التغذية الكهربائية

يجب أن تتم التغذية الكهربائية فى المستشفيات من خلال مصدرين على الأقل، أحدهما مصدر التغذية الرئيسي لتغذية الأحمال غير الهامة Non-essential من خلال محولات التوزيع والآخر من مصدر احتياطي (مولدات الطوارئ) لتغذية الأحمال الهامة Essential.

ويجب أن يكون نظام التغذية الكهربائية في المواقع الطبية مصمماً ومركباً بحيث يسهل الانتقال التلقائي Automatic change over من شبكة التوزيع الرئيسية Main distribution network إلى المصدر الاحتياطي والذي يعتمد على وحدة التوليد الاحتياطية لتغذية الأحمال الهامة والتي قد يطلق أيضاً عليها أحمال الطوارئ Emergency loads.

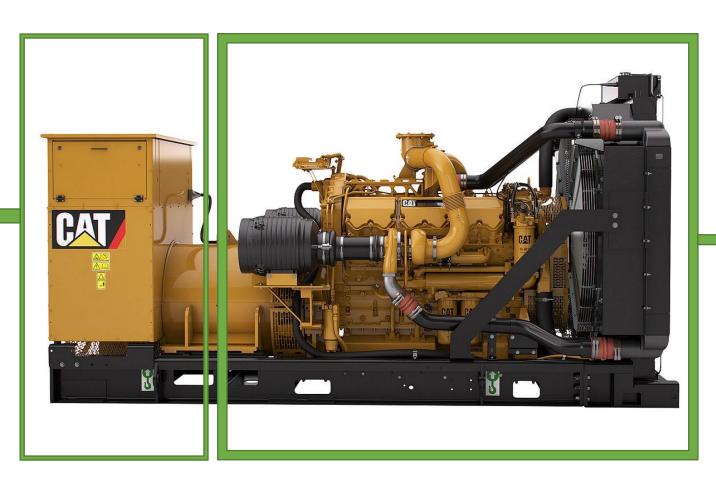
يجب عندما يكون إجمالي أحمال المستشفى أكبر من ٢٥٠ ك.ف.أ، تغذية المستشفى من خلال محولين بحيث يكون أى منهما قادرا على تغذية كامل حمل المستشفى، كما يجب تغذية الأحمال الحرجة كالأجهزة المستخدمة في غرف العمليات والإفاقة والرعاية المركزة والتي لا يسمح بانقطاع التغذية الكهربائية عنها مطلقا، من خلال أنظمة التغذية بقدرة كهربائية غير قابلة للانقطاع. Uninterrupted Power Supply (UPS) system.

يجب الأخذ في الاعتبار إمكانية زيادة الأحمال مستقبلا بنسبة ٢٠%.

ويوضح الشكل (٤-١) مخططاً للتغذية الكهربائية بالمستشفيات

Outlines

- 1. Components ISO 8528
- 2. Mechanical systems
- 3. Specifications
- 4. Generator Power ratings
- 5. Performance classes
- 6. Space allocation

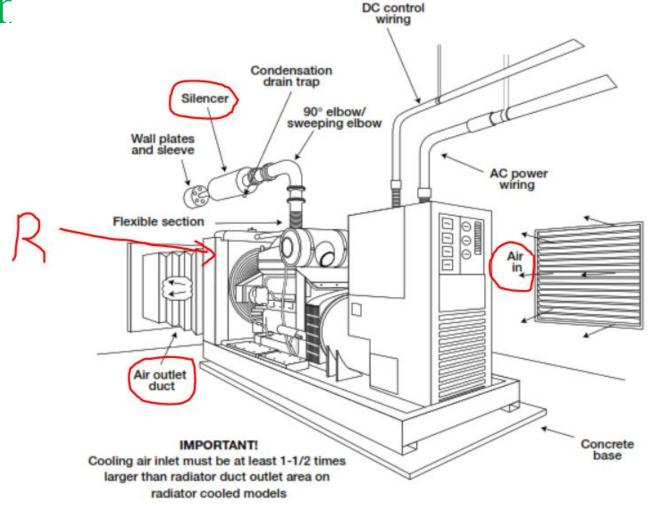


1- Components

Electrical system

Alternator

Mechanical system


Engine

2- Mechanical system

Fuel systems
Exhaust systems
Cooling systems
Starting systems

Site Photos

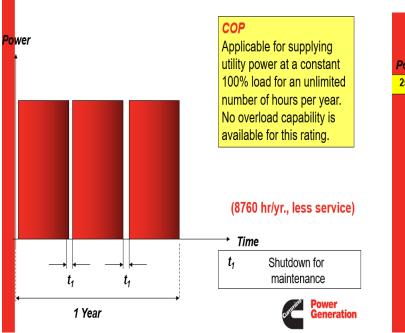
3- Specifications

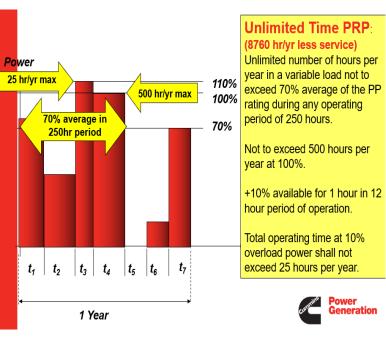
TECHNICAL DATA

748 kW - 906 kW 50 Hz **KTA38 Series Engines**

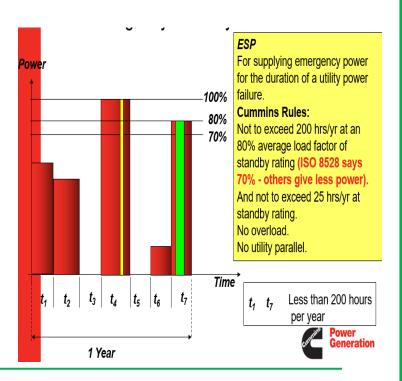
Generating Sets - 50 Hz

Set output	380-415 V 50 Hz	380-415 V 50 Hz
Prime at 40°C ambient	748 kWe 936 kVA	815 kWe 1019 kVA
1999 Set Model (Prime)	CP900-5	CP1000-5
New Model (Prime)	748 DFJC	815 DFJD
Standby at 40°C ambient	832 kWe 1040 kVA	906 kWe 1132 kVA
1999 Set Model (Standby)	CS1000-5	CS1100-5
New Model (Standby)	832 DFJC	906 DFJD
Engine Make	Cummins	Cummins
Model	KTA38G3	KTA38G5
Cylinders	Twelve	Twelve
Engine build	Vee	Vee
Governor / Class	Electronic / A1	Electronic / A1
Aspiration and cooling	Turbo Aftercooled	Turbo Aftercooled
Bore and stroke	159 mm x 159 mm	159 mm x 159 mm
Compression ratio	13.9:1	13.9:1
Cubic capacity	37.8 Litres	37.8 Litres
Starting / Min °C	Unaided	Unaided / 7°C
Battery capacity	254 A/hr	254 A/hr
Nett Engine output - Prime	786 kWm	860 kWm
Nett at flywheel – Standby	875 kWm	950 kWm
Maximum load acceptance single step (cold)	500 kWe	451 kWe
Speed	1500 rpm	1500 rpm
Alternator voltage regulation	±0.5%	±0.5%
Alternator insulation class	Н	Н
Single load step to NFPAII0 para 5.13.2.6	100%	100%





4- Generator Power Ratings


Continuous operating power

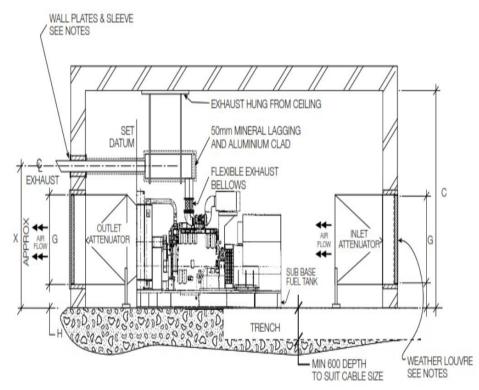
Prime Power

Emergency standby power

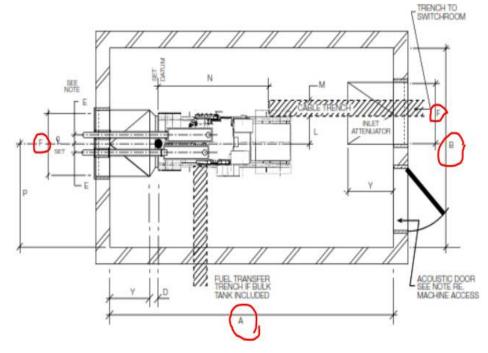
5- Performance classes

IS/ISO 8528-5: 2005

Table 4 — Performance class operating limit values


					Operating limit	values				
	Parameter	Symbol	Unit		Performance	class				
				G1	G2	G3	G4			
Frequency droo	р	$\delta f_{\rm st}$	%	≤ 8	≤ 5	≤ 3 ^r	AMC a			
	Steady-state frequency band			≤ 2,5	≤ 1,5 b	< 0,5	AMC			
Related range of setting	Related range of downward frequency setting				$> (2,5 + \delta f_{st})$		AMC			
Related range of	Related range of upward frequency setting				> + 2,5 °					
Rate of change	Rate of change of frequency setting		%/s		0,2 to 1					
Voltage unbalar	ice	δU _{2,0}	%	1 ⁱ	1 ⁱ	1 ⁱ	1 i			
Related range of	f voltage setting	$\delta U_{\rm s}$	%		< ± 5					
Rate of change	of voltage setting	ν _U	% s ⁻¹		0,2 to 1		AMC			
Transient	100 % sudden power decrease	δU ⁺ _{dyn}		≼ + 35	≤ + 25	≤ + 20				
voltage deviatio	sudden power increase ^{d,e}	δU −dyn	%	≤ - 25 ^d	≤ - 20 ^d	≤ – 15 ^d	AMC			
	Voltage recovery time ^j (see Figure 5)			≤ 10	≤ 6	≤ 4				
Voltage recover	voltage recovery time (see Figure 5)		S	≤ 10 ^d	≤ 6 ^d	≤ 4 ^d	AMC			
Voltage modula	tion ^{k,l} (see Figure 11)	$\hat{U}_{mod,s}$	%	AMC	0,3 ^{m,n}	0,3 ⁿ	AMC			

5- Space Allocation


Section in the room

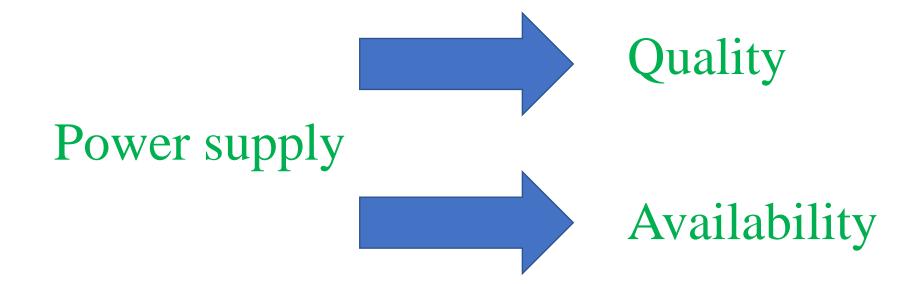
RECOMMENDED ROOM SIZES

Section B/60

Cummins Generator Sets 681 - 2500 kVA - 60 Hz

Generator room layout with Acoustic Treatment to Achieve 85dBA @ 1 metre

Room plan



Uninterruptible Power Supply (UPS)

Shall the facility need the UPS?

Shall the facility need the UPS?

Ministry Of Health and Population General Administration for Engineering Services Researches And Medical Equipment

وزارة الصحة والسكان قطاع شنون مكتب الوزير الإدارة العامة لبحوث الخدمات الهندسية والتجهيزات الصحية

معايير عامة للأعمال الكهربائية في المستشفيات

- تغذية جميع الاعمال الكهربانية بغرف العمليات من لوحات وحدات عدم انقطاع التيار (UPS-Panel
 - . تغذية بومة الغازات من خلال مخرج 3×4 مم2 (دائرة خاصة بها) بمفتاح فصل مناسب (DCS).
- . تغذية كشاف العمليات من خلال مخرج 3×4 مم2 (دائرة خاصة بها) بمفتاح فصل مناسب (DCS).
- يتم توزيع مجموعات البرايز بغرفة العمليات طبقا للفرش الطبى المقدم (مجموعة برايز بكل جانب) بحيث تكون مجموعة البرايز
- الواحدة كافية لتشغيل كافة المعدات الطبية التي تعمل بنفس الوقت بغرف العمليات (في المعتاد عدد 4 برايز دوبلكس بكل جانب ما ع جانب الباب بريزة واحدة فقط).
 - يتم مراعاة تنفيذ أنظمة الأرضى اللازمة لأرضيات الانتي ستاتيكبالعمليات و العناية.
 - نقل جميع لوحات التوزيع لتكون داخل غرف كهرباء خاصة .
 - ₫ تغذية جميع أعمال القوى لسراير غرف العناية المركزة من لوحات وحدات عدم انقطاع التيار UPS-Panels .
 - جميع اعمال القوي داخل غرف المناظير يتم تغذيتها من خلال لوحات UPS .
 - تغذية ملحقات جهاز قسطرة القلب من لوحات وحدات عدم انقطاع التيار UPS
 - م تغذية بعض أعمال القوى بالكونترات من لوحات UPS.

Outlines

- 1. Technology and Types
- 2. Characteristic parameters of a UPS
- 3. Space allocation (space program)
- 4. Battery

1-Technology and Types of the UPS system

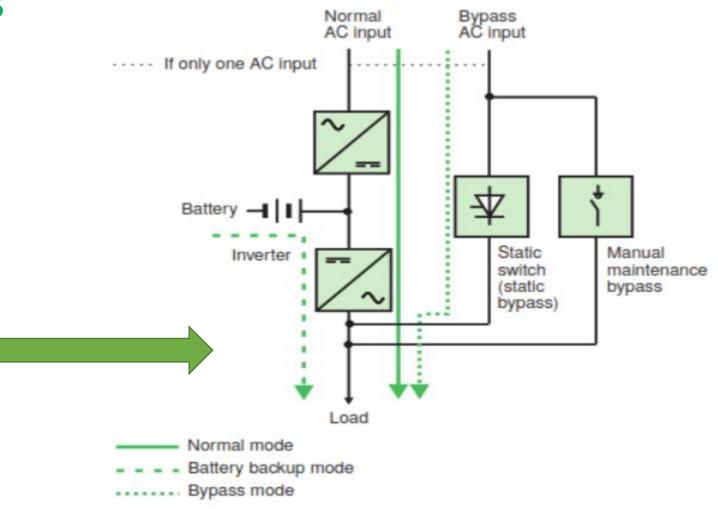
Diesel Rotary UPS

Static UPS

Static UPS components

A UPS comprises the following main components:

- Rectifier/charger, which produces DC power to charge a battery and supply an inverter
- Inverter, which produces quality electrical power, i.e.
- □ Free of all utility-power disturbances, notably micro-outages
- \Box Within tolerances compatible with the requirements of sensitive electronic devices (e.g. for Galaxy, tolerances in amplitude \pm 0.5% and frequency \pm 1%, compared to \pm 10% and \pm 5% in utility power systems, which correspond to improvement factors of 20 and 5, respectively)
- Battery, which provides sufficient backup time (8 minutes to 1 hour or more) to ensure the safety of life and property by replacing the utility as required
- Static switch, a semi-conductor based device which transfers the load from the inverter to the utility and back, without any interruption in the supply of power



Types of static UPSs

Passive standby (also called off-line)

Line interactive

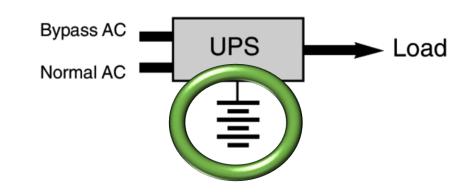
Double conversion (also called on-line)

2-Characteristic parameters of a UPS

Rated power (kVA/kW)	160/144	200/180
Normal AC supply input		
Input voltage (V)	250 – 6	500 V'
Normal and bypass AC inputs	Single input or dual	l input as standard
Frequency (Hz)	40 – 7	70 Hz
Input power factor	0.9	99
THDI	< 3% fu	III load
Bypass AC input		
Input voltage range	342 -	457 V
Frequency	50 Hz o	r 60 Hz
Output		
Phase-to-phase output voltage (V)	380/400	0/415 V
Load power factor	0.9 (0.7 leading to 0.5 lag	gging without de-rating)
Output frequency	50/60 Hz +/- 0.19	% (free-running)
Overload capacity utility operation at 40 °C	150% for 1 minute and	1 125% for 10 minutes
Output voltage regulation	+/-	1%
Total harmonic distortion (THDU)	< 2% at 100% linear load; < 3	3% at 100% non-linear load
Output voltage tolerance	Symmetric load (0 - 100%): +/- 1% s	tatic; asymmetric load: +/- 3% static
Overall efficiency		
Efficiency at full load (AC-AC) at 100% load	Up to	96.5%
ECOnversion mode (meets EN62040-3 Class 1)	Up to 99% (meets E	N62040-3 Class 1)
Standard ECO mode	Up to	99%

3-Space Allocation

Dimensions and weights					
UPS (HxWxD)	1,970 × 1,003 × 854 mm				
Weight in kg. (UPS) (total -power cabinet plus I/O cabinet)	699 kg	724 kg			
Modular battery Cabinet - Narrow (H \times W \times D), weight without batteries	1,970 x 370 x 8	354 mm 139 kg			
Modular battery Cabinet - Wide (H x W x D), weight without batteries	1,970 x 700 x 854 mm 210 kg				



4-BATTERY

- Nickel-cadmium
- Valve regulated Lead-acid

					1							
Туре	Part number	Nom. voltage V	Power 15 min 1.60 Vpc 25 °C W/block	Nominal capacity C ₁₀ 1.80 Vpc 25 °C Ah	Length (I) max. mm	Width (b/w) max. mm	Height (h1) max. mm	Height incl. con- nectors (h2) max. mm	Weight approx.	Internal resist- ance m0hm	Short circuit current	Terminal
XP6V2800	NAXP062800HP0FA	6	2270	195	309	172	223	241	32.6	1.60	3900	F-M6
XP12V1800	NAXP121800HP0FA	12	1370	56.4	220	172	219	235	22.5	8.60	1521	* F-M6
XP12V2500	NAXP122500HP0FA	12	1870	69.5	262	172	223	239	27.7	6.20	2030	F-M6
XP12V3000	NAXP123000HP0FA	12	2350	92.8	309	172	223	239	32.8	5.20	2400	F-M6

Battery

				1.95 Vp	c - Disc	harge in	A at 25	°C					
Туре	Part number	5 min	10 min	15 min	30 min	45 min	1 h	2 h	3 h	5 h	8 h	10 h	20 h
XP6V2800	NAXP062800HP0FA	137	137	137	137	108	92.1	60.7	44.1	28.4	18.4	15.0	7.99
XP12V1800	NAXP121800HP0FA	109	87.8	72.6	46.0	33.8	28.5	15.8	10.9	7.56	5.07	4.31	2.17
XP12V2500	NAXP122500HP0FA	120	102	92.6	60.8	46.7	36.1	19.8	13.3	8.66	5.96	4.99	2.54
XP12V3000	NAXP123000HP0FA	108	108	108	71.9	56.5	47.6	30.9	21.9	13.5	8.64	6.99	3.61

1.90 Vpc - Discharge in A at 25 °C													
Туре	Part number	5 min	10 min	15 min	30 min	45 min	1 h	2 h	3 h	5 h	8 h	10 h	20 h
XP6V2800	NAXP062800HP0FA	238	238	238	160	127	107	71.1	48.8	32.8	21.4	17.4	9.26
XP12V1800	NAXP121800HP0FA	152	113	89.5	54.3	39.8	33.5	19.2	13.8	9.39	5.95	5.08	2.61
XP12V2500	NAXP122500HP0FA	173	134	115	73.0	54.6	43.4	23.7	15.8	10.7	7.18	6.04	3.15
XP12V3000	NAXP123000HP0FA	195	195	176	94.2	70.0	56.7	33.5	24.8	15.7	10.1	8.21	4.29

1.85 Vpc – Discharge in A at 25 °C													
Туре	Part number	5 min	10 min	15 min	30 min	45 min	1 h	2 h	3 h	5 h	8 h	10 h	20 h
XP6V2800	NAXP062800HP0FA	473	399	361	201	151	123	73.9	55.4	35.6	23.1	18.8	10.0
XP12V1800	NAXP121800HP0FA	189	134	104	61.4	44.5	37.3	21.7	15.5	10.2	6.39	5.42	2.82
XP12V2500	NAXP122500HP0FA	218	158	134	82.1	60.8	47.9	25.8	17.3	11.5	7.73	6.67	3.53
XP12V3000	NAXP123000HP0FA	209	209	180	107	78.8	63.1	36.3	26.6	16.9	11.0	8.94	4.71

