إدارة التحكم في الدخان الجزء الثاني (حركة الدخان)

SMOKE MANAGEMENT SYSTEM PART-02 (AIR & SMOKE MOVEMENT)

شركة مدار الجزيرة وشريكة للاستشارات الهندسية

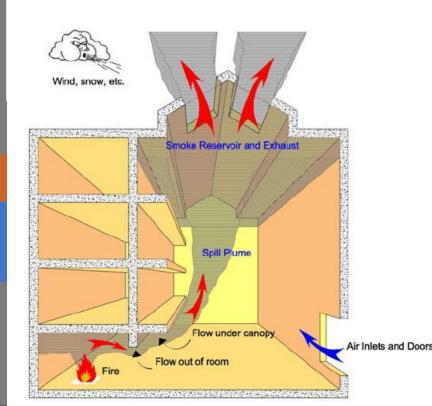
تقديم وإعداد د.م /أحمد حمدي عجور

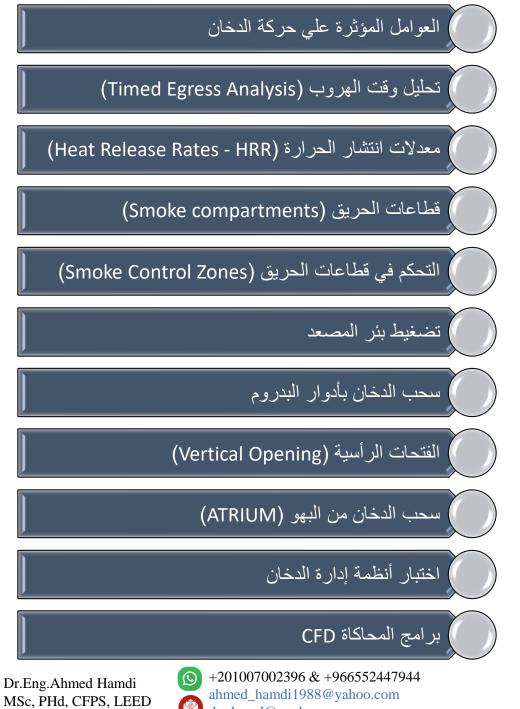
+201007002396 & +966552447944

+201007002396 & +966552447944

https://www.linkedin.com/in/dr-ahmed-hamdi-aggoor

Saudi Building Code





إدارة التحكم في الدخان الجزء الثاني (حركة الدخان)

dr.ahmed@madar-eng.com

مراجع (References)

Saudi Building Code

Saudi Building Code-General SBC 201 – CR, 2018ed

Saudi Fire Code SBC 801 - CR, 2018ed

NFPA101, Life Safety Code, 2018

NFPA 92, Standard for Smoke Control Systems, 2018ed

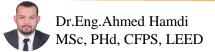
NFPA 92A, Standard for Smoke-Control Systems Utilizing Barriers and Pressure Differences, 2009ed

NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, 2009ed

NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems, 2020ed

NFPA 555, Guide on Methods for Evaluating Potential for Room Flashover, 2017ed

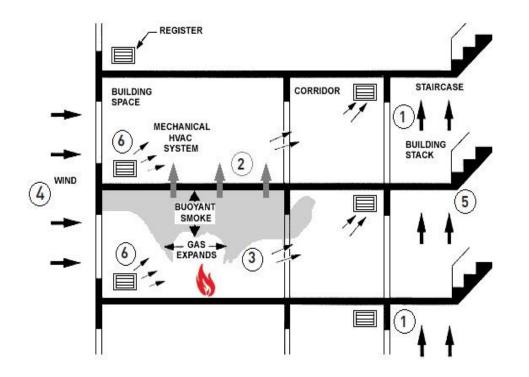
NFPA 556, Guide on Methods for Evaluating Fire Hazard to Occupants of Passenger Road Vehicles, 2020ed


2015 ASHRAE Handbook—HVAC Applications, 2015ed

2015 ASHRAE Handbook—HVAC Fundamentals, 2015ed

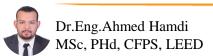
العوامل المؤثرة على حركة الدخان

HVAC operation


Buoyancy of combustion gases

Wind Forces

Thermal Expansion


Natural Convection

Stack Effect

- 1 STACK EFFECT
- 2 NATURAL CONVECTION
- 3 THERMAL EXPANSION
- WIND FORCES
- 5 THERMAL BUOYANCY
- 6 HVAC OPERATION

FACTORS AFFECTING THE MOVEMENT OF SMOKE

Note: Arrows indicate direction of air movement. Neutral Plane Normal Stack Effect Reverse Stack Effect

Figure 3.22 Airflow due to normal and reverse stack effect.

Stairwells
Elevator shafts
Dumbwaiters
Mechanical Shafts

Stack Effect

(الضغط الناتج من فرق درجات الحرارة بين داخل المبني وخارج المبني)،

يكون تأثير الـ (Stack Effect) هو أكثر وضوحا في فصل الشتاء.

$$\Delta p_{SO} = \frac{0.00598g p_{atm}}{R} \left(\frac{1}{T_O} - \frac{1}{T_S}\right) z$$

$$\Delta p_{SO} = \frac{g p_{atm}}{R} \left(\frac{1}{T_O} - \frac{1}{T_S}\right) z \text{ for SI}$$
(3.33)

and at standard atmospheric pressure this is

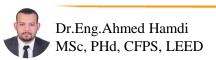
$$\Delta p_{SO} = 7.63 \left(\frac{1}{T_O} - \frac{1}{T_S}\right) z$$

$$\Delta p_{SO} = 3460 \left(\frac{1}{T_O} - \frac{1}{T_S}\right) z \text{ for SI}$$
(3.34)

where

 Δp_{SO} = pressure difference from shaft to the outdoors, in. H₂O (Pa),

g = acceleration due to gravity, ft/s² (m/s²),


Patm = absolute atmospheric pressure, lb/ft² (Pa),

R = gas constant of air, 53.34 ft·lbf/lbm·°R (287.0 J/kg·K),

 T_S = absolute temperature of the shaft, °R (K),

 T_O = absolute temperature of the outdoors, ${}^{\circ}R$ (K),

z = distance above the neutral plane, ft (m).

Stack Effect

Neutral Plane

هو المستوي الذي يكون الضغط داخل المبني يعادل الضغط خارج المبني

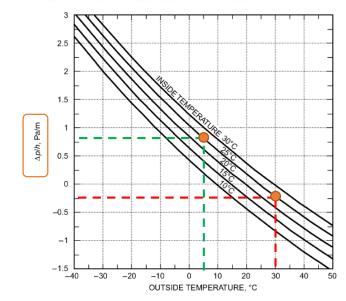
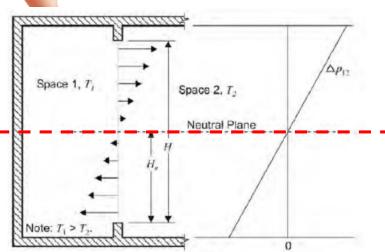
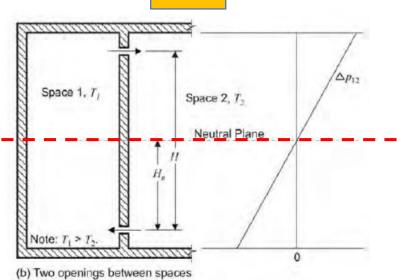
$$H_n = \frac{H}{1 + (T_1/T_2)^{1/3}} \tag{3.19}$$

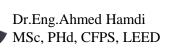
where

H = height of the opening, ft (m),

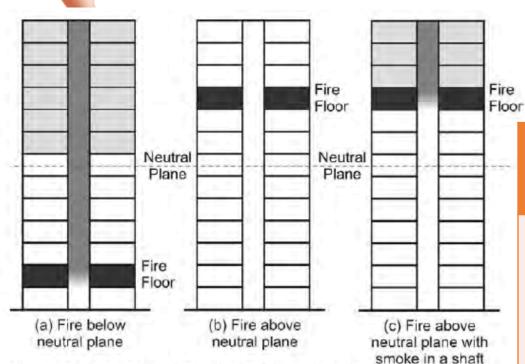
 H_n = height of neutral plane, ft (m),

 T_1 = absolute temperature of space 1, ${}^{\circ}R$ (K),


Fig. 4 Pressure Difference Caused by Stack Effect

(a) Continuous opening between spaces


T1 > T2

Note: If the smoke from a fire above the neutral plane has sufficient buoyancy to overcome stack effect, the smoke can flow into the shaft as in (c) above.

مثال (۱)

INPUT H = 305m

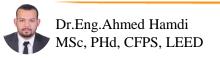
DATA Ts = 23 °C

To = -7 °C

OUTPUT DATA **Location of Neutral Plan**

Stack Effect

$$H_n = \frac{H}{1 + {\binom{T_S}{T_O}}^{1/3}}$$


$$H_n = \frac{305}{1 + {\binom{(23 + 273)}{(-7 + 273)}}^{1/3}} = 150$$

Pressure due to Stack Effect

$$\Delta P = 3460 \left(\frac{1}{T_o} - \frac{1}{T_S} \right) Z$$

$$\Delta P = 3460 \left(\frac{1}{(-7 + 273)} - \frac{1}{(23 + 273)} \right) \times 155$$

$$\Delta P = 204 \, Pa \, (0.8 \, in. \, wg)$$

(see note)

$$\Delta p = 3460 \left(\frac{1}{T_s} - \frac{1}{T_f}\right) h$$

where

 Δp = pressure difference, Pa

 $T_{\rm s}$ = absolute temperature of surroundings, K

 T_f = average absolute temperature of fire compartment, K

h = distance above neutral plane, m

$$T_f = \frac{T_s(H - H_j) + T_j H_j}{H}$$

where

H = floor-to-ceiling height, m

 H_i = thickness of ceiling jet, m

 T_i = absolute temperature of ceiling jet, K

The thick ness of this ceiling jet flow is approximately 5 to 12 percent of the height of the ceiling above the fire source

Buoyancy

يتصاعد الدخان عالى الحرارة بسبب كثافته المنخفضة.

على مستوى سطح البحر ، يمكن التعبير عن فرق الضغط بين

حجرة الحريق ومحيطها على النحو التالي:

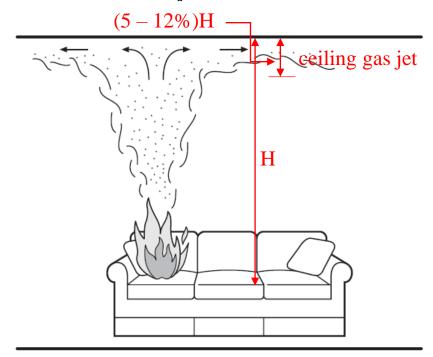
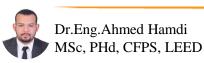
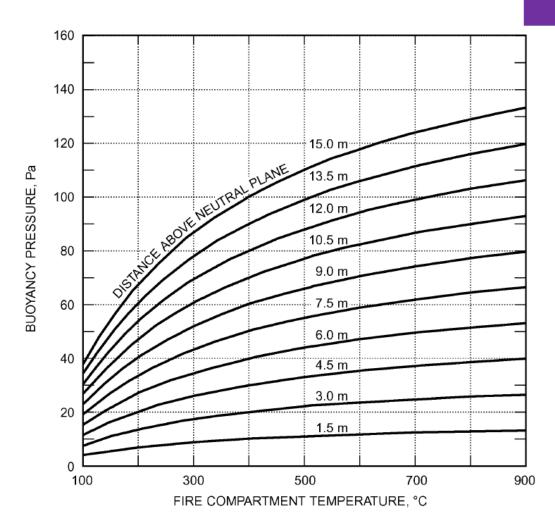




FIGURE 16.1.1 Plume-Ceiling Interaction

Buoyancy

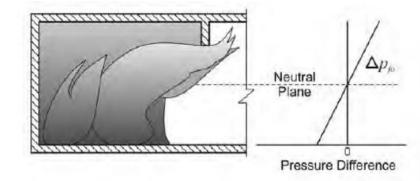


Figure 3.18 Pressure difference due to a fully developed room fire.

Fig. 5 Pressure Difference Caused by Buoyancy

Natural Convection

ينتج الحمل الحراري الطبيعي عن طريق اختلافات في درجة الحرارة داخل الهواء. عند تسخين الهواء ، فإنه يتمدد بينما تظل الكتلة كما هي تجعل الكثافة المنخفضة (كتلة / وحدة حجم) نتيجة زيادة حجم الهواء مع كثافة منخفضة يؤدي إلى ارتفاعه الي أعلي. مع ارتفاع الهواء الساخن ، يتدفق الهواء البارد ليحل محله. الحمل الحراري الطبيعي هو أحد الأليات الرئيسية لنقل الحرارة إلى مكان الحريق، والهواء الساخن والدخان يرتفعان ، ويتحرك الهواء البارد ليحل محله، ينتقل الهواء البارد (المحتوي على الأكسجين اللازم لاستمرار الاحتراق) إلى داخل غرفة الحريق.

Thermal Expansion

(تمدد الهواء / زيادة حجم الهواء نتيجة إنتقالة من وسط درجة حرارته منخفضة إلي وسط درجة حرارتة مرتفعة)، يتم زيادة حجم الهواء بمقدار من

$$\frac{Q_{out}}{Q_{in}} = \frac{T_{out}}{T_{in}}$$

۲-۳ مرات طبقاً (ASHRAE Chapter53)

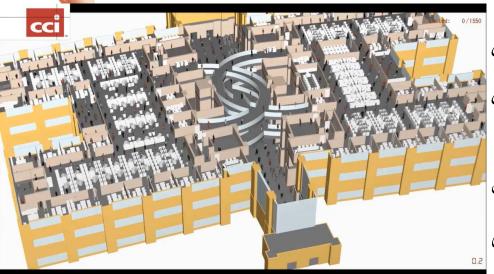
والقيمة السالبة للحائط المعاكس لإتجاه الرياح.

$$p_w = 0.5 C_w \rho_o V^2$$

Wind Forces

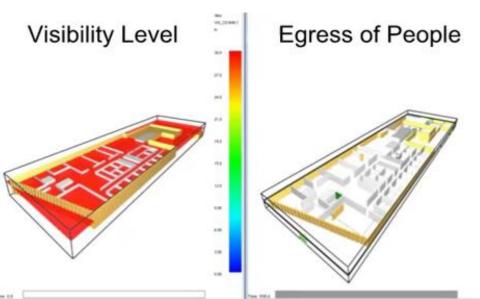
where

(الضغط نتيجة الرياح والمؤثر علي محيط المبني والذي يؤثر علي حركة الدخان)


معاملات الضغط C_W في نطاق (+0.8) الي (+0.8) القيمة الموجبة للحائط المواجه للرياح

 p_w = pressure exerted by wind, Pa

S


 C_w = pressure coefficient, dimensionless

 ρ_o = outside air density, kg/m³ V = wind velocity, m/s

يتم تصميم أنظمة إدارة الدخان بشكل واضح للحفاظ على الوقت الكافي للفترة المطلوبة للإخلاء من قبل شاغلي المبنى.

يمكن استخدام نتائج تحليل وقت الهروب تحكيل المروب (Timed Egress Analysis) لتحديد ما إذا كان بإمكان شاغلي المبني الإخلاء قبل انحدار طبقة الدخان إلى موقعهم أو قد يكونون جزءًا من تحليل القابلية الشاملة لتقييم مقدار الوقت الذي قد يتعرض فيه الأفراد للدخان

العودة للقائمة

وقت تحرك الأشخاص للخروج: الوقت الذي يكون الأفراد مستعدين الأن المتحرك ويمكنهم بدء تحركهم نحو الخروج.

وقت تحضير الأشخاص للإخلاء:
الوقت الذي يحتاجه شاغلي المبني من
فترة إضافية من الوقت للتحضير
للإخلاء. قد يشمل هذا ارتداء الملابس،
والعثور على معطف، وجمع أفراد
الأسرة أو أنشطة أخرى

وقت إدراك الأشخاص بوجود حريق:
سيحتاج شاغلي المبني لبعض الوقت
لإدراك أن حريقًا قد بدأ في المبنى أو يتم
التنبيه إليهم عن طريق سماع إنذار
الحريق المسموع في المبنى، أو رؤية
الأضواء الوامضة، أو إخباره عن
الحريق "الإذاعة الداخلية بالمبني"

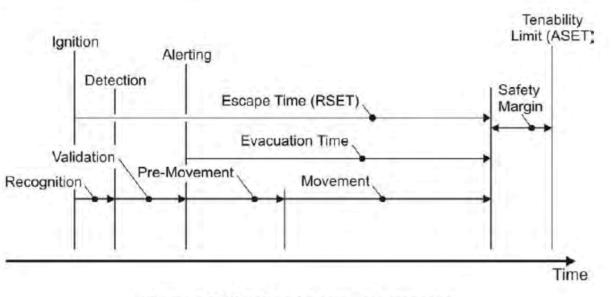


Figure 4.1 Timeline for occupant response.

تعتبر دراسات الخروج المحددة التوقيت بشكل عام أنه بمجرد أن يصبح شاغلي المبني على دراية بالحريق، فإن الإجراءات الوحيدة التي يتخذونها هي تلك المرتبطة بالاخلاء.

يوجد أوقات أخري لابد أن تأخذ في التحليلات هي أوقات مرتبطة بأفعال أخرى قد يقوم بها الفرد، مثل محاولة الإطفاء، أو مساعدة الآخرين، أو الاتصال بقسم الإطفاء. علاوة على ذلك ، عادة ما يتم تجاهل إمكانية قيام شاغلي المبنى بأخذ "الممرات الخاطئة" أثناء الاخلاء.

صعوبة تقدير مقدار الوقت الذي قد ينخرط فيه الفرد في الأنشطة المختلفة أو يقضيه باتباع مسار خاطئ ، يتم حساب هذه الأوقات أحيانًا بشكل غير مباشر من خلال توسيع وقت (Premovement time) أو تطبيق عامل الأمان

السلوك البشري (HUMAN BEHAVIOR)

ا. الإدراك (Recognition):

ملاحظة الإشارات التي تشير إلى شيء مختلف عن المعتاد يحدث. في كثير من الحالات ، تكون الإشارات غامضة (مثل الروائح الغريبة أو الضباب الخفيف أو الأصوات غير الطبيعية). يعتمد الوقت اللازم للأفراد لملاحظة الإشارات على يقظتهم وقربهم من الحريق وما إذا كانت أجهزة الكشف الأوتوماتيكية موجودة. قد لا يُفسر بالضرورة سماع إنذار حريق المبنى أو رؤية وميض على أنه حريق.

۲. التحقق (Validation):

إدراك أن الإشارات مرتبطة بالحريق. عندما يشعر الفرد برائحة غريبة أو يرى ضبابًا ، فقد يختار التحقيق لمعرفة مصدر الرائحة أو الضباب. قد يأتي هذا الإدراك بعد البحث عن مصدر الإشارات ، وأفراد آخرين ينقلون ملاحظاتهم ، وتلقي إشارات إضافية ، وما إلى ذلك.

۳. التعریف (Definition):

تحديد شدة الحادث والوقت المتاح للخروج الآمن.

تحديد الإجراءات الأولية المحتملة وتقييم الإجراءات التي ينبغي القيام بها.

ه. الالتزام (Commitment):

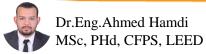
تنفيذ الإجراء الأول.

٦. إعادة التقييم (Reassessment):

التحليل المستمر للإجراءات المجدية ، اعتمادًا على نجاح الإجراء الأولي وملاحظة الظروف المتغيرة.

Table 3-13.1 Estimated Delay Time to Start Evacuation in Minutes

III Williates			
Occupancy Type	W1 (min)	W2 (min)	W3 (min)
Offices, commercial and Industrial buildings, schools, colleges and universities			
(Occupants awake and familiar with the			
building, the alarm system, and evacuation			
procedure.)	< 1	3	> 4
Shops, museums, leisure-sport centers, and			
other assembly buildings (Occupants awake			
but may be unfamiliar with building, alarm			
system, and evacuation procedure.)	< 2	3	> 6
Dormitories, residential mid-rise and high-			
rise (Occupants may be asleep but are			
predominantly familiar with the building,	- 0		
alarm system, and evacuation procedure.)	< 2	4	> 5
Hotels and boarding houses (Occupants may			
be asleep and unfamiliar with the building,			
alarm system, and evacuation procedure.)	< 2	4	> 6
Hospitals, nursing homes, and other			
institutional establishment (A significant			
number of occupants may require		_	
assistance.)	< 3	5	> 8


- W1: live directives using a voice communication system from a control room with closed-circuit television facility, or live directives in conjunction with well-trained, uniformed staff that can be seen and heard by all occupants in the space
- W2: nondirective voice messages (prerecorded) and/or informative warning visual display with trained staff
- W3: warning system using fire alarm signal and staff with no relevant training

Source: Adapted from Fire Safety Engineering in Buildings, Part 1: Guide to the Application of Fire Safety Engineering Principles, Table 21, British Standard Institutue, DD240, London, 1997.

توجيهات مباشرة باستخدام نظام اتصال صوتي من غرفة تحكم مزودة بمرفق تلفزيوني مغلق	W1
الدائرة ، أو توجيهات مباشرة بالاشتراك مع طاقم عمل مدرب جيدًا يمكن رؤيته والاستماع إليه	
من قبل جميع شاغلي المبني	
رسانل صوتية غير موجهة (مسجلة مسبقًا) أو عرض تحذيري مرني بالمعلومات مع طاقم عمل	W2
مدرب	
نظام تحذير يستخدم إشارة إنذار الحريق والموظفين دون تدريب ذي صلة	W3

TABLE 1004.1.2 MAXIMUM FLOOR AREA ALLOWANCES PER OCCUPANT

MAXIMUM FL	OOR AREA ALLOWANCES PE			
FUNCTION OF SPACE		OCCUPANT LOAD FACTOR ^a		
Accessory storage areas, mechanical		28 gross		
equipment room			20 81033	
Agricultural building			28 gross	
Aircraft hangars			46 gross	
Airport terminal				
Baggage claim			1.9 gross	
Baggage handling			28 gross	
Concourse Waiting areas			9 gross	
Assembly			1.4 gross	
Gaming floors (keno, slots, etc.)			1.02 gross	
Exhibit Gallery and Museum			2.8 net	
Assembly with fixed seats		9	ee Section 1004.4	
Assembly without fixed seats			ce section 1004.4	
Concentrated (chairs only-not fixed)			0.65 net	
Standing space			0.05 nct	
Unconcentrated (tables and chairs)			0.46 net	
Chechechates (tables and chans)	30		1.4 net	
Bowling centers, allow 5 persons for each	lane including 4.6 m of runway, and for			
additional areas			0.65 net	
Business areas			9 gross	
Courtrooms—other than fixed seating area			3.7 net	
Day care	FLOOR AREA, GROSS. The floor a		3.3 net	
Dormitories	the inside perimeter of the exterior we		4.6 gross	
Educational	building under consideration, exclusive	e of vent		
Classroom area	shafts and courts, without deduction for		1.9 net	
Shops and other vocational room areas	stairways, ramps, closets, the thickness		4.6 net	
	walls, columns or other features. The floo			
Exercise rooms	building, or portion thereof, not prov		4.6 gross	
H-5 Fabrication and manufacturing	surrounding exterior walls shall be the u		19 gross	
areas	under the horizontal projection of the ro			
Industrial areas	above. The gross floor area shall not inc	lude sharts		
Inpatient treatment areas	with no openings or interior courts.		22 gross	
Outpatient areas	FLOOR AREA, NET. The actual occ	upied area	9 gross	
Sleeping areas not including unoccupied accessory areas such as		as such as	11 gross	
Kitchens, commercial	corridors, stairways, ramps, toile	t rooms,	19 gross	
Library	mechanical rooms and closets.			
Reading rooms			4.6 net	
Stack area		_	9 gross	
Mall buildings—covered and open Mercantile		Se	ee Section 402.8.2	
			5.6	
Areas on other floors		5.6 gross 2.8 gross		
Basement and grade floor areas Storage, stock, shipping areas				
28 gross				
Parking garages		19 gross		
Residential			19 gross	
Skating rinks, swimming pools			16	
Rink and pool			4.6 gross	
Decks		1.4 gross		
Stages and platforms		1.4 net		
Warehouses			46 gross	

△ Table 7.3.1.2 Occupant Load Factor

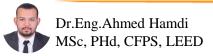
Use	(ft²/person)a	(m ² /person) ^a
Assembly Use		
Concentrated use,	7 net	0.65 net
without fixed seating		
Less concentrated use,	15 net	1.4 net
without fixed seating		
Bench-type seating	1 person/18 linear in.	1 person/455 linear mm
Fixed seating	Use number of fixed seats	Use number of fixed seats
Waiting spaces	See 12.1.7.2 and 13.1.7.2.	See 12.1.7.2 and 13.1.7.2.
Kitchens	100	9.3
Library stack areas	100	9.3
Library reading rooms	50 net	4.6 net
Swimming pools	50 (water surface)	4.6 (water surface)
Swimming pool decks	30	2.8
Exercise rooms with equipment	50	4.6
Exercise rooms without equipment	15	1.4
Stages	15 net	1.4 net
Lighting and access catwalks, galleries, gridirons	100 net	9.3 net
Casinos and similar	11	1
gaming areas		
Skating rinks	50	4.6
Business Use (other	150	14
than below)		
Concentrated Business Use ^f	50	4.6
Airport traffic control tower observation levels	40	3.7
Collaboration rooms/ spaces ≤450 ft ² (41.8 m ²) in area ^f	30	2.8
Collaboration rooms/ spaces >450 ft ² (41.8 m ²) in area ^f	15	1.4
Day-Care Use	35 net	3.3 net
Detention and	120	11.1
Correctional Use		
Educational Use		
Classrooms	20 net	1.9 net
Shops, laboratories,	50 net	4.6 net
vocational rooms		
Health Care Use		
Inpatient treatment	240	22.3
departments		
Sleeping departments	120	11.1
Ambulatory health care	150	14
Industrial Use		
General and high	100	9.3
hazard industrial Special-purpose	NA	NA
industrial		
Mercantile Use		
Sales area on street floor ^{b,c}	30	2.8
Sales area on two or	40	3.7

Δ Table 7.3.1.2 Continued

Use	(ft²/person)a	(m²/person)a
Sales area on floor below street floor ^c	30	2.8
Sales area on floors above street floor	60	5.6
Floors or portions of floors used only for offices	See business use.	See business use.
Floors or portions of floors used only for storage, receiving, and shipping, and not open to general public	300	27.9
Mall structures ^d	Per factors applicable to use of space ^e	
Residential Use		
Hotels and dormitories	200	18.6
Apartment buildings	200	18.6
Board and care, large Storage Use	200	18.6
In storage occupancies	NA	NA
In mercantile occupancies	300	27.9
In other than storage and mercantile occupancies	500	46.5

NA: Not applicable. The occupant load is the maximum probable number of occupants present at any time.

^aAll factors are expressed in gross area unless marked "net."
^bFor the purpose of determining occupant load in mercantile occupancies where, due to differences in the finished ground level of streets on different sides, two or more floors directly accessible from streets (not including alleys or similar back streets) exist, each such floor is permitted to be considered a street floor. The occupant load factor is one person for each 40 ft² (3.7 m²) of gross floor area of sales space.


For the purpose of determining occupant load in mercantile occupancies with no street floor, as defined in 3.3.271, but with access directly from the street by stairs or escalators, the floor at the point of entrance to the mercantile occupancy is considered the street floor. For any food court or other assembly use areas located in the mall concourse that are not included as a portion of the gross leasable area of the mall structure, the occupant load is calculated based on the occupant load factor for that use as specified in Table 7.3.1.2. The remaining mall concourse area is not required to be assigned an occupant load.

"The portions of the mall concourse not used as gross leasable area are not required to be assessed an occupant load based on Table 7.3.1.2. However, means of egress from a mall concourse are required to be provided for an occupant load determined by dividing the gross leasable area of the mall building (not including anchor buildings) by the appropriate lowest whole number occupant load factor from Figure 7.3.1.2(b).

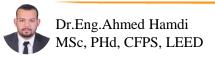
Each individual tenant space is required to have means of egress to the outside or to the mall concourse based on occupant loads calculated by using the appropriate occupant load factor from Table 7.3.1.2.

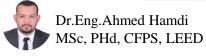
Each individual anchor store is required to have means of egress independent of the mall concourse.

See Al. 7.3.1.9

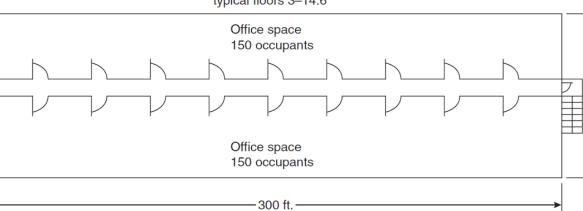
NO.	Estimate Item	Table / Figure
1	Estimate flow density (D) $D = \frac{\text{Occupant load}}{\text{corridor area}} \qquad (Person/ft^2)$	Table 1004.1.2 (SBC801, IBC) Table 7.3.1.2 (NFPA101)
	Speed, Movement Velocity (S) $S = k - akD$	Table 3-14.2 Constants for Equation 2, Evacuation Speed
2	where $S = \text{speed along the line of travel}$ $D = \text{density in persons per unit area}$ $k = \text{constant, as shown in Table 3-14.2}$ $k = k_1;$ and $k = 2.86$ for speed in $k = k_2;$ and $k = 0.266$ for speed in $k =$	Exit Route Element k1 k2 Corridor, Aisle, Ramp, Doorway Stairs 275 1.40 Riser (in.) Tread (in.) 1.40 7.5 10 196 1.00 7.0 11 212 1.08 6.5 12 229 1.16 6.5 13 242 1.23
3	Specific Flow, (F _S) where $F_s = \text{specific flow}$ $D = \text{density}$ $S = \text{speed of movement}$ F_s is in persons/min/ft² when density is in persons/ft² and speed in ft/min; F_s is in persons/s/m² when density is in persons/m² and speed in m/s. Combining Equations 2 and 3 produces $F_s = (1 - aD)kD$ where k is as listed in Table 3-14.2.	

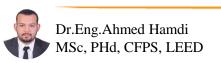
Dr.Eng.Ahmed Hamdi


MSc, PHd, CFPS, LEED


NO.	Estimate Item	Table / Figure
	Maximum Specific Flow, (F _{Sm})	Table 3-14.5 Maximum Specific Flow, F _{sm}
		Maximum Specific Flow
	Take the lower from $(\mathbf{F_{Sm}})$ and $(\mathbf{F_{S}})$	Persons/min/ft of Persons/s/m of Exit Route Element Effective Width Effective Width
4		Corridor, Aisle, 24.0 1.3 Ramp, Doorway Stairs Riser Tread (in.) (in.) 7.5 10 17.1 0.94 7.0 11 18.5 1.01 6.5 12 20.0 1.09 6.5 13 21.2 1.16
	Effective Width, (We) Wall Nominal stair width Handrail	Table 3-14.1 Boundary Layer Widths Boundary Layer
	centerlines	Exit Route Element (in.) (cm)
	3.5 in. 3.5 in. +	Stairways—wall or side of tread 6 15
5	(8.9 cm) (8.9 cm)	Railings, handrails ^a 3.5 9
5	← Effective →	Theater chairs, stadium benches 0 0
	<mark>width</mark>	Corridor, ramp walls 8 20 Obstacles 4 10
	← 6 in. 6 in. →	Wide concourses, passageways <18 46
	(15.2 dii) (15.2 dii)	Door, archways 6 15
	Area of tread use Stair tread	^a Where handrails are present, use the value if it results in a lesser effective width.

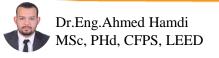
NIO		
NO.	Estimate Item	Table / Figure
6	Calculated Flow, (F_c) $F_c = F_s W_e$ where $F_c = \text{calculated flow}$ $F_s = \text{specific flow}$ $W_e = \text{effective width}$	Density (persons/m²) 0 .5 1 1.5 2 2.5 3 3.5 4 25
7	Transitions $F_{s(\text{out})} = \frac{F_{s(\text{in})} W_{e(\text{in})}}{W_{e(\text{out})}} \tag{10a}$ where $F_{s(\text{out})} = \text{specific flow departing from transition point}$ $F_{s(\text{in})} = \text{specific flow arriving at transition point}$ $W_{e(\text{in})} = \text{effective width prior to transition point}$ $W_{e(\text{out})} = \text{effective width after passing transition point}$ (b) For cases involving two incoming flows and one outflow from a transition point, such as that which occurs with the merger of a flow down a stair and the entering flow at a floor, $F_{s(\text{out})} = \frac{F_{s(\text{in}-1)} W_{e(\text{in}-1)} + F_{s(\text{in}-2)} W_{e(\text{in}-2)}}{W_{e(\text{out})}} \tag{10b}$	Various stairs per Table 3–14.5 Density (persons/ft²) Figure 3-14.5. Specific flow as a function of density.
	Conversion Factors for Relating Line of Travel Distance to Vertical Travel	Table 3-14.3 Conversion Factors for Relating Line of Travel Distance to Vertical Travel for Various Stair Configurations
8		Stairs Riser (in.) Tread (in.) Conversion Factor
		7.5 10.0 1.66 7.0 11.0 1.85 6.5 12.0 2.08 6.5 13.0 2.22





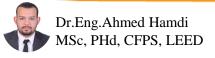
ITEMS	INPUT DATA
Number of Floor	9 floors
Floor to floor height	12 ft (3.7 m)
Stair width	44 in (1.12 m)
Stair risers and treads	7 in : 11 in (178mm : 279mm)
Landings per floor	4-ft × 8-ft (1.2-m × 2.4-m)
Door width	36 in (0.91 m)
Corridor width	8 ft (2.4 m)
Population	300 persons/floor

Example building typical floors 3–14.6



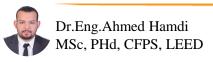
80 ft.

	OUTPUT DATA
Corridor	Estimate flow density (D) $D = \frac{0ccupant\ load}{corridor\ area} \qquad (Person/ft^2)$ $D = \frac{150}{300 \times 8} = \frac{150}{1200} = 0.125\ Person/ft^2$ Speed, Movement Velocity (S) $S = k - kaD$ $S_{corridor} = 275 - (275 \times 2.86 \times 0.125) = 177\ ft/min$
	Specific Flow, (F _S) $F_{S} = (1 - aD) kD$ $F_{S} = [1 - (2.86 \times 0.125)](275 \times 0.125) = 22 \frac{Person}{ft \times min}$
	Maximum Specific Flow, (F _{Sm}) $F_{Sm} = 24 \frac{Person}{ft \times min}$ (Table 3.14.5)
	F _S used for the calculation, because is less than F_{Sm} Effective Width, (We) $W_a = 8 - (2 \times 0.5) = 8 ft$
	Calculated Flow, (F _C) $F_{C} = F_{S} \times W_{e}$ $F_{C} = 22 \times 8 = 154 \frac{person}{min}$
stairway entry doors	Effective Width, (We) $W_e = 36 - (2 \times 6) = 24 in (2 ft)$



	OUTPUT DATA
stairway	Effective Width, (We)
entry	$W_e = 36 - (2 \times 6) = 24 \text{ in } (2 \text{ ft})$ Specific Flow, (F _S)
doors	$F_{s-corridor} \times W_{e-corridor}$
	$F_{S-door} = \frac{F_{S-corridor} \times W_{e-corridor}}{W_{e-door}}$ $F_{S-door} = \frac{22 \times 7}{2} = 77 \frac{Person}{ft \times min}$
	$F_{s-door} = \frac{22 \times 7}{} = 77 \frac{Person}{}$
	Maximum Specific Flow, (F _{Sm}) Person
	$F_{Sm} = 24 \frac{Person}{ft \times min} $ (Table 3.14.5)
	F_{Sm} used for the calculation, because is less than F_S
	$\underline{\text{Calculated Flow}, (F_{\mathcal{C}})}$
	$F_C = F_S \times W_e$ $F_C = 24 \times 2 = 48 \frac{person}{min}$
	$F_C = 24 \times 2 = 48 \frac{1}{min}$
	Tree - 42 - 1 VV. Jul. (VV.)
stairway	Effective Width, (We) $W_{e} = 44 - (2 \times 6) = 32 \text{ in } (2.66 \text{ ft})$
	Specific Flow, (F_S)
	$F_{s-ctain} = \frac{F_{s-door} \times W_{e-door}}{T_{s-door}}$
	$W_{e-stair}$
	$F_{S-stair} = rac{F_{S-door} imes W_{e-door}}{W_{e-stair}}$ $F_{S-door} = rac{24 imes 2}{2.66} = 18 rac{Person}{ft imes min}$
	Maximum Specific Flow, (F _{Sm})
	$F_{Sm} = 18.5 \frac{Person}{ft \times min} $ (Table 3.14.5)
	F_S used for the calculation, because is less than F_{Sm} Calculated Flow, (F_C)
	$F_C = F_S \times W_e$
	$F_C = F_S \times W_e$ $F_C = 18 \times 2.66 = 48 \frac{person}{min}$
	min

	OUTPUT DATA
stairway	The travel distance between floors
•	$L1 = Floor \ to \ floor \ height \times Conversion \ Factor$
	$L1 = 12 \times 1.85 = 22.2 ft$
	The travel on each of the two landings
	$L2 = 2 \times length \ of \ landing$
	$L2 = 2 \times 8 = 16 ft$
	The total floor-to-floor travel distance
	L.T = L1 + L2
	L.T = 22.2 + 16 = 38.2 ft
	Speed, Movement Velocity (S)
	S = k - kaD
	$S_{stair} = 212 - (212 \times 2.86 \times 0.146) = 123 ft/min$
	Estimate impact of merger of stairway flow and stairway entry flow on exit flow.
	$F_{S-out.stair} = \frac{(F_{s-door} \times W_{e-door}) + (F_{s-in.stair} \times W_{e-in.stair})}{W_{e-out.stair}}$ $F_{S-out.stair} = \frac{(24 \times 2) + (18 \times 2.66)}{2.66} = 36 \frac{person}{ft \ min}$
	$W_{e-out.stair}$
	$F_{\text{contactive}} = \frac{(24 \times 2) + (18 \times 2.66)}{(24 \times 2) + (18 \times 2.66)} = 36 \frac{person}{(24 \times 2) + (24 \times 2) + ($
	Maximum Specific Flow, (F _{Sm})
	$F_{Sm} = 18.5 \frac{Person}{ft \times min} $ (Table 3.14.5)
	F_{Sm} used for the calculation, because is less than F_S
	Calculated Flow, (F_C)
	$F_C = F_S \times W_e$ person
	$F_C = 18.5 \times 2.66 = 49 \frac{person}{min}$
	Treate to the state of the stat



ITEM	CALC	OUTPUT	
stairway entry doors	$F_C = 48 \frac{person}{min}$	All person evacuate to stair exit at 3.125 min	
stairway	L.T = 38.2 ft	Time take from floor-to-floor $t = \frac{L.T}{S_{stair}} = \frac{38.2}{123} = 0.31 \text{ min}$	
	$S_{stair} = 123 ft/min$	Number of person evacuate from floor-to-floor in one second = 15 persons	
	$F_C = 48 \frac{person}{min}$	Number of person in stair one second = $15 \times 8 = 120$ persons	

	110010		_
TIME	EVACUATION STATE	TIME	EVACUATION STATE
3.125 min	All persons have evacuated the 9th floor	21.01 min	The end of the flow reach the 3 rd floor
3.91 min	The end of the flow reach the 8th floor	24.14 min	All persons have evacuated the 3 rd floor
7 min	All persons have evacuated the 8th floor	24.45 min	The end of the flow reach the 2 nd floor
7.31 min	The end of the flow reach the 7th floor	27.5 min	All persons have evacuated the 2 nd floor
10.4 min	All persons have evacuated the 7 th floor	30 min All persons have evacuated the building	
10.71 min	The end of the flow reach the 6th floor		
13.84 min	All persons have evacuated the 6 th floor		
14.14 min	The end of the flow reach the 5th floor		
		1	

17.27 min

17.58 min

20.70 min

All persons have evacuated the 5^h floor

The end of the flow reach the 4th floor

All persons have evacuated the 4^h floor

معدلات انتشار الحرارة (Heat Release Rates - HRR)

Table 2.1

Pre-flashover design fire characteristics

Building use	Fire growth rate (kW)	Species	Radiative fraction	Peak <i>HRR/</i> <i>HRR/</i> m ²
All <i>buildings</i> including storage with a stack height of less than 3.0 m	0.0469 t ²	$Y_{soot} = 0.07 \text{ kg/kg}$ $Y_{CO} = 0.04 \text{ kg/kg}$	0.35	20 MW 500 – 1000 kW/m ²⁽²⁾
Carparks (no stacking)	0.0117 t ²	$\Delta H_C = 20 \text{ MJ/kg}$	0.35	250 kW/m ²⁽³⁾
Capable of storage to a stack height of between 3.0 m and 5.0 m above the floor	0.188 t ²	$Y_{CO_2} = 1.5 \text{ kg/kg}^{(1)}$ $Y_{H_2O} = 0.82 \text{ kg/kg}^{(1)}$	0.35	50 MW
Capable of storage to a stack height of more than 5.0 m above the floor and car parks with stacking systems	0.00068 t ³ H		0.35	1000–2500 kW/m ²⁽²⁾ 250 kW/m ²⁽³⁾

NOTE:

- t = time in seconds
- H = height to which storage is capable of in metres
- Y = yield kg/kg
- ΔH_C = heat of combustion
- (1) As an an alternative to $CO_2 + H_2O$ yields use generic fuel as $CH_2O_{0.5}$ and calculate yields.
- (2) In a CFD model the *fire* is intended to be modelled as a plan area where the size is determined from the peak *HRR*/m². A range is provided for *HRR*/m² to accommodate different *HRR* and mesh sizes.
- (3) Use in a zone model.

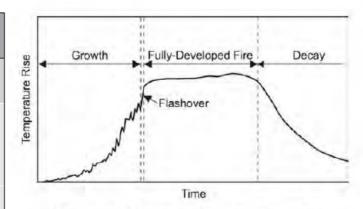
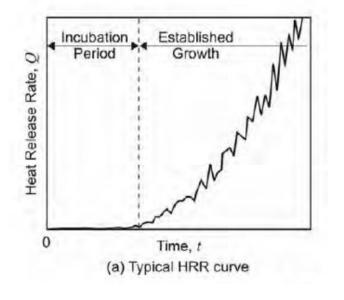
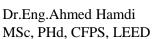



Figure 5.2 Stages of fire development.

معدلات انتشار الحرارة (Heat Release Rates - HRR)


Table 5.1: Heat Release Density of Some Materials

		Heat Rele	ase Density
	Material Burned	Btu/s·ft ²	kW/m^2
1.	Wood pallets, stacked 1.5 ft (0.46 m) high (6%-12% moisture)	125	1400
2.	Wood pallets, stacked 5 ft (1.52 m) high (6%-12% moisture)	350	4000
3.	Wood pallets, stacked 10 ft (3.05 m) high (6%–12% moisture)	600	6800
4.	Wood pallets, stacked 16 ft (4.88 m) high (6%-12% moisture)	900	10,000
5.	Mail bags, filled, stored 5 ft (1.52 m) high	35	400
6.	Cartons, compartmented, stacked 15 ft (4.57 m) high	150	1700
7.	PE letter trays, filled, stacked 5 ft (1.52 m) high on cart	750	8500
8.	PE trash barrels in cartons, stacked 15 ft (4.57 m) high	175	2000
9.	PE fiberglass shower stalls in cartons, stacked 15 ft (4.57 m) high	125	1400
10.	PE bottles packed in item 6	550	6200
11.	PE bottles in cartons, stacked 15 ft (4.57 m) high	175	2000
12.	PU insulation board, rigid foam, stacked 15 ft (4.57 m) high	170	1900
13.	PS jars packed in item 6	1250	14,000
14.	PS tubes nested in cartons, stacked 14 ft (4.27 m) high	475	5400
15.	PS toy parts in cartons, stacked 15 ft (4.57 m) high	180	2000
16.	PS insulation board, rigid foam, stacked 14 ft (4.27 m) high	290	3300
17.	PVC bottles packed in item 6	300	3400
18.	PP tubes packed in item 6	390	4400
19.	PP & PE film in rolls, stacked 14 ft (4.27 m) high	550	6200
20.	Methanol pool, 0.52 ft (0.16 m) diameter	180	2000
21.	Methanol pool, 4.0 ft (1.22 m) diameter	35	400
22.	Methanol pool, 5.7 ft (1.74 m) diameter	35	400
23.	Methanol pool, 8 ft (2.44 m) diameter	37	420
24.	Methanol pool, 3.2 ft (0.97 m) square	66	745
25.	Silicone transformer fluid pool, 5.7 ft (1.74 m) diameter	8	90
26.	Silicone transformer fluid pool, 8 ft (2.44 m) diameter	8	90
27.	Hydrocarbon transformer fluid pool, 4.0 ft (1.22 m) diameter	83	940
28.	Hydrocarbon transformer fluid pool, 5.7 ft (1.74 m) diameter	80	900
29.	Heptane pool, 4 ft (1.22 m) diameter	270	3000
30.	Heptane pool, 5.7 ft (1.74 m) diameter	280	3200
31.	Work station (four sided)	160	1800

Table 11.2.1.2 Summary of Test Data for Automotive Components Tested for NHTSA [21]

Part	Base Polymer	$t_{ m ig} \ (m sec)$	$PHRR_a$ (kW/m^2)
Battery cover	Polypropylene	39	297
Resonator structure	Polypropylene	64	417
Resonator intake tube	Ethylene propylene diene monomer	72	434
Air ducts	Polyethylene (A) or polypropylene (B)	68	560
Brake fluid reservoir	Polypropylene	270	499
Kick panel insulation	Polyvinylchloride	605	205
Headlight — clear lens	Polycarbonate	278	385
Headlight — black casing	Polyoxymethylene	74	158
Fender sound reduction foam	Polystyrene	12	251
Hood liner face	Polyethylene terephthalate	29	71
Windshield wiper structure	Glass-reinforced thermoset polyester resin cross-linked with styrene	252	233
Front wheel well liner	PP/PE copolymer	66	390
Air inlet	PP/PE	48	686
Hood insulator	Nylon 6 and phenolic binder (Novalac)	6	21
Radiator inlet/outlet tank	Phenolic binder (Novalac)	305	344
Engine cooling fan	Nylon 6,6	102	158
Power steering fluid reservoir	Nylon 6	129	217
Windshield with laminate	Glass with PVB laminate	157	187
Blower motor housing	Polypropylene	104	268

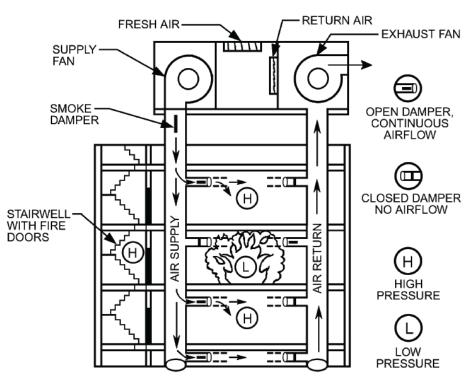
قطاعات الحريق (Smoke compartments)

- يجب أن يقسم المبنى الذي يكون طابقه أكثر من ١٨ مترًا تحت مستوي الشارع لأدنى مستوى من تصريف الخروج إلى قطاعين دخان على الأقل من القطاعين متساويين الحجم تقريبًا طبقا (SBC201, 405.4.1).
 - جميع المباني العالية تتطلب التحكم في الدخان طبقا (SBC201, 403.4.7) عن طريق الأتي:-
- ١. يتم توزيع النوافذ أو الألواح التي يمكن التعرف عليها بسهولة والتشغيل اليدوي حول محيط كل طابق على فترات لا تزيد عن ١٥ م. يجب ألا تقل مساحة النوافذ أو الألواح القابلة للتشغيل عن ٤م ٢ لكل ١٥ م من المحيط.
- 7. توفر معدات مناولة الهواء الميكانيكية تغييرًا واحدًا لعادم الهواء كل ١٥ دقيقة للمنطقة المعنية. يتم نقل الهواء العادم مباشرة إلى الخارج دون إعادة التدوير إلى أجزاء أخرى من المبنى.
 - رمن (Available Safe Egress Time) أعلي من ٢٥ دقيقة.
 - هبوط الدخان في ممر الهروب عن ١.٨ متر
- تركب مراوح سحب الدخان في الإشغال (S1, F1) عندما تكون المساحة اكبر من 4645م٢ وغير مجزئة ما
 عدا هناجر إصلاح الطائرات.
 - لا يتم إستخدام مراوح سحب الدخان في المخازن التي تحتوي على مرشات (ESFR).
 - لا يتم إستخدام مراوح سحب الدخان في الأماكن التي تحتوي على مرشات (FR).
 -) لا يتم إستخدام مراوح سحب الدخان في ثلاجات الأغذية المجمدة التي تحتوي علي بضائع (CLASS I, II)

قطاعات الحريق (Smoke compartments)

إلى يقل عن حجرتين للدخان، وذلك عندما تكون للمنعلة السكان للنوم أو أي طوابق أخرى ذات المساحة الكلية لواحد أو أكثر من مرافق السعة المستخدم أو أكثر، إلى ما لا يقل العلاج أو النوم، وتُقسم الطوابق الأخرى ذات المستخدم أو أكثر، إلى ما لا يقل عن حجرتين للدخان، والمستخدى في المستخدى في المستخدى المستخدى في المستخ	Group I1, R1, R2, R3, R4	Group I2	Group I3	مرافق الرعاية الإسعافية Ambulatory Health Care Occupancies
• لا تزيد مسافة الانتقال إلى باب حاجز الدخان من أي باب غرفة مطلوبة (كالوصول إلى المخرج) على ٥٤ م ألا تزيد مسافة الانتقال إلى باب حاجز الدخان	يُستخدم من قبل الأشخاص الذين يتلقون الرعاية أو العلاج أو النوم، وتُقسم الطوابق الأخرى ذات سعة الإشغال ٥٠ شخصاً أو أكثر، إلى ما لا يقل عن حجرتي دخان. حيث تُقسم الطوابق إلى حجرات دخان • بمساحة لا تزيد على ٢٠٠٠متر في مجموعة الإشغال (11) الحالة-٢	يُستخدم من قبل أشخاص يتلقون الرعاية أو العلاج أو النوم، وتُقسم الطوابق الأخرى ذات سعة الإشغال ٥٠ شخصاً أو أكثر، إلى ما لا يقل عن حجرتي دخان. تُقسم هذه الطوابق إلى حجرات دخان • بمساحة لا تزيد على ٢٠٠٠متر ٢ في مجموعة الإشغال (12) الحالة- ١ مجموعة الإشغال (12) الحالة- ١ مجموعة الإشغال (12) الحالة- ٢ مجموعة الإشغال (12) الحالة- ٢ مجموعة الإشغال (12) الحالة- ٢ مجموعة الإشغال من أي نقطة في	يشغله السكان للنوم أو أي طوابق أخرى ذات سعة إشغال ٥٠ شخصاً أو أكثر، إلى ما لا يقل عن حجرتين للدخان، المساحات التي لها مخرج مباشر إلى واحد مما يلي الشارع الرئيسي. • الشارع الرئيسي. • مبنى مفصول عن منطقة السكن المجاورة بفاصل مقاوم للحريق لمدة ساعتين أو ١٥م من المساحة المفتوحة. • ساحة (محاطة بسور) مؤمنة ذات مساحة حجز ١٥م من منطقة السكن وفر ٢٥٠٥م لكل ساكن، بما في ذلك السكان والموظفين والزوار.	المساحة الكلية لواحد أو أكثر من مرافق الرعاية الإسعافية أكبر من ٩٠٠متر في الطابق الواحد. ويجب ألا تزيد مساحة أي
SBC201, Sec 420.4 SBC201, Sec 407.5 SBC201, Sec 408.6 SBC201, Sec 422.3			 لا تزيد مسافة الانتقال إلى باب حاجز الدخان من أي باب غرفة مطلوبة (كالوصول إلى المخرج) على ٥٠ م ألا تزيد مسافة الانتقال إلى باب حاجز الدخان من أي نقطة في الغرفة على ١٠٥م. 	

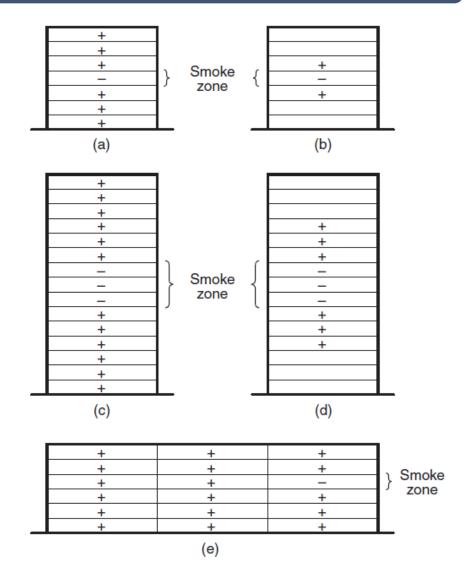
قطاعات الحريق (Smoke compartments)

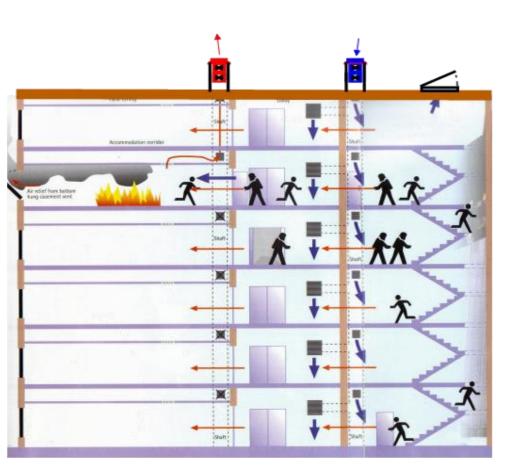

مرافق الرعاية الإسعافية Ambulatory Health Care Occupancies	الاحتجاز والمؤسسات الإصلاحية Detention and Correctional Occupancies	إشغال الرعاية الصحية Health Care Occupancies	New Educational Occupancies
يجب فصل شاغلي الرعاية الصحية المتنقلة عن المستأجرين والشاغلين الأخرين بحيث ألا تقل درجة مقاومة الحريق عن ساعة واحدة للجدران. يقل ٢ حجرة دخان، لا يسري هذا الشرط في الحالات التالية: الحالات التالية: مساحة أقل من (٢٥٤م٢) لكل طابق وتكون هذه المنطقة محمية بنظام معتمد تلقائي للكشف عن الدخان. المبنى محميًا بالكامل من خلال رشاش آلي معتمد. المبنى محميًا بالكامل من خلال رشاش آلي معتمد. حجرة دخان لإشغال الرعاية الإسعافية إذا تم استيفاء بمبيع المعايير التالية: الجدار الفاصل مقاوم للحريق لمدة ١ساعة بلي: الوقت بنظام رش آلي معتمد (١٢٠٠م ٢) الوقت بنظام رش آلي معتمد التالية: المحمية الإسعافية واحدًا مما الوقت بنظام رش آلي معتمد التالية:	يجب توفير حواجز دخان لتقسيم كل طابق يشغله السكان اللنوم أو أي طوابق أخرى ذات سعة حجرتين الدخان حجرتين الدخان التي لها مخرج مباشر إلى واحد مما يلي والشارع الرئيسي. • الشارع الرئيسي. • مبنى مفصول عن منطقة السكن المجاورة من المساحة المفتوحة. • ساحة (محاطة بسور) مؤمنة ذات مساحة من المساحة المفتوحة. • محز ١٥ م من منطقة السكن توفر ١٠٤ من مناطقة السكن توفر ١٠٤ من والموظفين والزوار. • يجب ألا يزيد عدد المقيمين في أي حجرة دخان عن ٢٠٠ شخص. • لا تزيد مسافة الانتقال إلى باب حاجز (كالوصول إلى المخرج) على ٢٠٠ من أي باب غرفة مطلوبة الدخان من أي ناب على ٢٠٠ من أي ناب على ٢٠٠ من أي ناب على ٢٠٠ من أي نقطة في الغرفة على ١٠٠ م.	يجب تقسم أي دور من مبنى الرعاية الصحية الى عدد ٢ قطاع حريق بكل دور طبقا لما يلى: العلاج إلى عدد ٢ قطاع حريق على الغول الغول. الأقل. تقسيم كل دور يحتوي على إشغالية ٥ الأقل. الاستخدام ، إلى ما لا يقل عن عدد ٢ قطاع حريق على الأقل. الاستخدام ، إلى ما لا يقل عن عدد ٢ قطاع حريق على الأقل. تحديد حجم كل قطاع حريق مطلوب في منطقة لا تحديد حجم كل قطاع الحريق ١٠٢٨م٢ ويحتوي على غرف نوم المرضي (لمريضين أو على غرف نوم المرضي (المريضين أو واحد فقط أو جناح "يجتوي على مريض على غرف نوم المرضي (المريض واحد"). مساحة قطاع الحريق ٢٣٧٠م٢ لا تحتوي واحديد مساحة قطاع الحريق ٢٣٧٠م٢ لا تحتوي على غرف نوم المرضي. مساحة قطاع الحريق ٢٣٧٠م٢ لا تحتوي واحديد مساحة قطاع الحريق ٢٢٧٠م٢ في دور على غرف نوم المرضي. المقاومة الحريق المطلوب مسافة لا تتجاوز النشاء أي قطاع حريق يكون الحد الأدنى المقاومة الحريق لمدة ساعة واحدة	يجب تقسيم الشواغر التعليمية إلى أقسام بواسطة أقسام دخان لا تقل درجة مقاومة الحريق عن ساعة واحدة عندما يتوفر الأتي: • يتجاوز الحد الأقصى لمساحة الأرضية، بما في ذلك المساحة الإجمالية لجميع الطوابق (٢٨٠٠ م ٢).

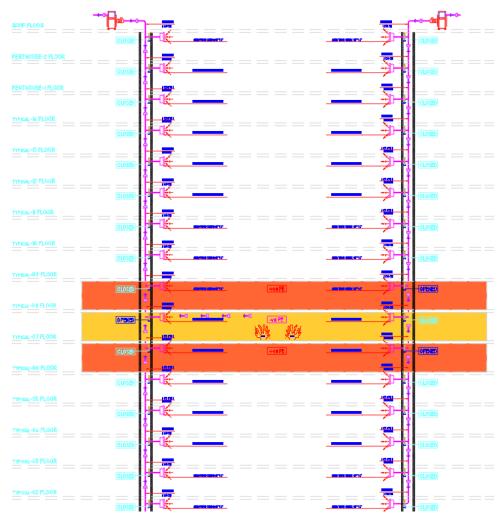
التحكم في قطاعات الحريق (Smoke Control Zones)

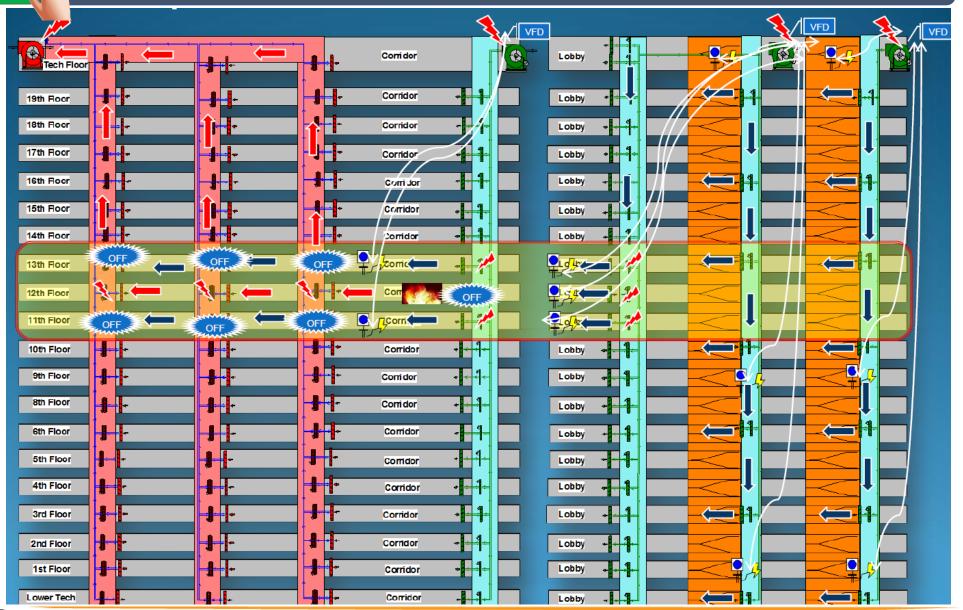
Note: If fans are off, all dampers should be closed.

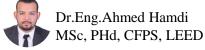
Fig. 11 Smoke Control System Damper Recommendation





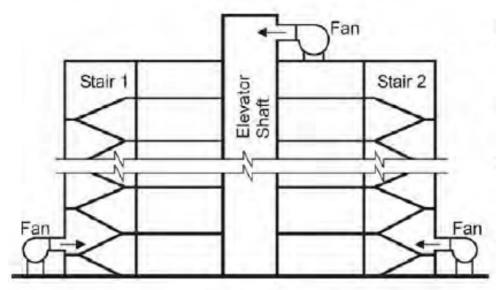

FIGURE A.4.8.1.1.1 Arrangements of Smoke Control Zones.


التحكم في قطاعات الحريق (Smoke Control Zones)



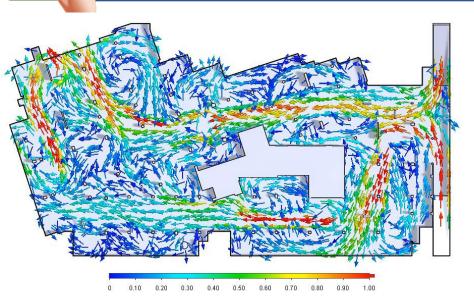
العودة للقائمة الرئيسية

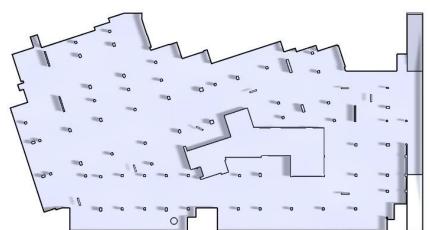
التحكم في قطاعات الحريق (Smoke Control Zones)

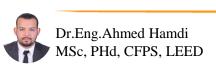


تضغيط بئر المصعد

إذا وجد المصعد داخل قطاع حريق فلابد من تضغيط بئر المصعد لمنع تسرب الدخان

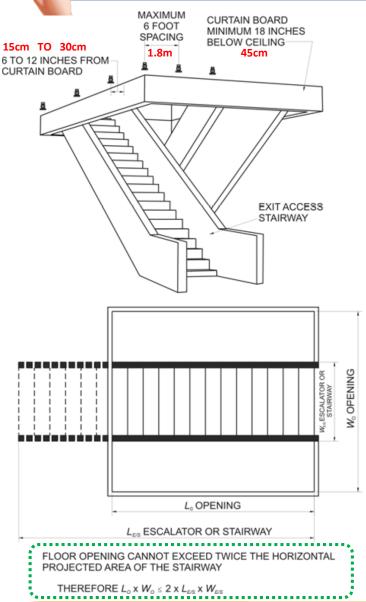

Notes:

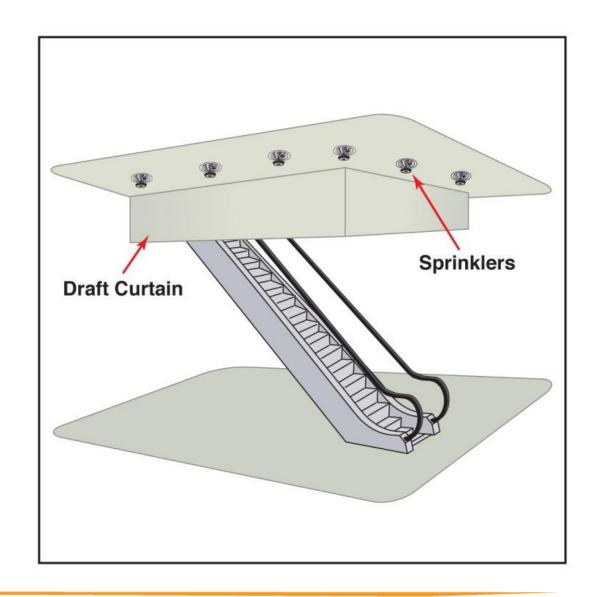

- In the basic system, each stairwell and elevator shaft has one or more dedicated fans that supply pressurization air.
- In most buildings the basic system does not perform well, but there are other systems that have features to improve performance.
- In this figure, the stair pressurization and elevator pressurization are single injection subsystems, but they can be multiple injection subsystems.
- The stair subsystems are not compensated systems.

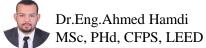

Figure 11.1 Basic elevator pressurization system.

سحب الدخان بأدوار البدروم

- و يجب أن يقسم المبنى الذي يكون طابقه أكثر من ١٨ مترًا تحت مستوي الشارع لأدنى مستوى من تصريف الخروج إلى قطاعين دخان على الأقل من القطاعين متساويين الحجم تقريبًا طبقا (SBC201, 405.4.1).
- یجب ألا یقل الارتفاع الصافي في مناطق مرور السیارات
 والمشاة عن 2.1متر طبقا (SBC201, 406.3.2).
- محساب التهوية (0.75 CFM/ft2) طبقا (0.75 CFM/ft2)
 ر Table 6.5
 - سحب الدخان (8:10 ACH) حسب متطلب الكود.
 - الهواء التعويضي من (% 95 : 85)

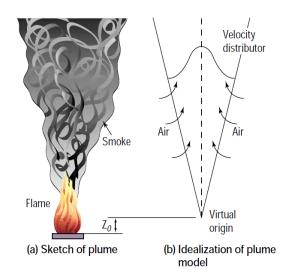


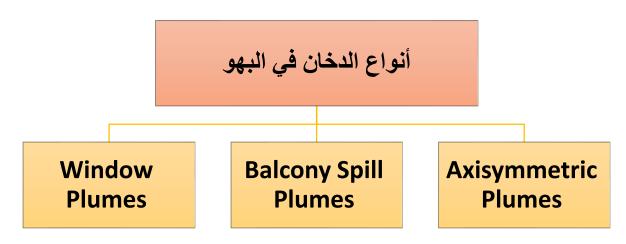

الصفحة رقم

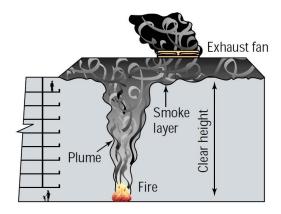

11/ 77

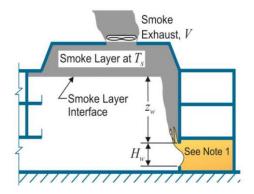
العودة للقائمة الرئيسية

الفتحات الرأسية (Vertical Opening)

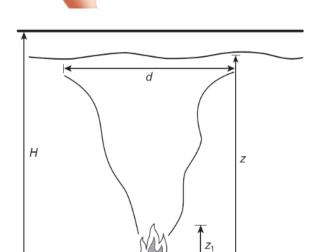

العودة للقائمة الرئيسية


سحب الدخان من البهو (ATRIUM)


- فتحة تربط بين طابقين أو أكثر غير (السلالم المغلقة والمصاعد وطرق الرفع والسلالم المتحركة والسباكة والكهرباء وتكييف
 الهواء أو غيرها من المعدات).
- o يتم عمل مراوح سحب دخان للبهو ماعدا البهو الذي يربط بين دورين في إشغال الرعاية الصحية (Group I.1, Group I.2
 - (condition-2 طبقا (SBC201, 404.5
 - يتم فصل البهو عن المناطق المجاورة بفاصل مقاوم للحريق لمدة ساعة ويمكن إستثناء الأتي:-
 - ١. تركيب زجاج غير مقاوم للحريق بشرط الأتي:-
 - تركيب مرشات علي جانبي حائط الزجاج المسافة بين المرش والحائط من (١٠: ٣٠ سم).
 - المسافة بين المرشات ١.٨م.
 - يتم تركيب الزجاج داخل (gasketed frame) لمنع تهشم الزجاج عند تشغيل المرشات.
 - الأبواب الموجود لا بد أنت تكون (self-closing or automatic-closing)
 - ٢. تركيب حائط زجاج من النوع (block wall assembly) مقاوم للحريق 3/4 ساعة.
- ٣. لا يلزم حاجز حريق بين البهو والمساحات المجاورة لأي ثلاثة طوابق من البهو شريطة مراعاة هذه المساحات في تصميم نظام التحكم في الدخان.



H



Axisymmetric Plumes

Balcony Spill Plumes

Window Plumes

١. حساب كمية الحرارة الناتجة من الحريق داخل البهو

$$Q_c = \chi Q$$

٢. حساب إرتفاع اللهب الناتج من الحريق

$$z_i = 0.533Q_c^{2/5}$$

٣. حساب كمية التدفق للدخان وهي تعتمد على إرتفاع اللهب

when
$$z > z_l$$
, $m = (0.022Q_c^{1/3}z^{5/3}) + 0.0042Q_c$ when $z \le z_l$, $m = 0.0208Q_c^{3/5}z$

٤. حساب درجه حرارة الدخان

$$T_s = T_o + \frac{K_s Q_c}{mC_b}$$
 حساب كثافة الدخان

$$ho = rac{144 P_{atm}}{R(T+460)}$$
 $V=60rac{m}{
ho}$ كمية الدخان

Example 14.2 Steady Smoke Exhaust

What is the smoke exhaust needed to maintain a smoke layer height of 36 ft (11.0 m) with the design parameters listed below?

Ambient temperature 72.0°F(22°C)

Ceiling height 45 ft (13.7 m)

Convective fraction 0.7

Height of top of fuel 0 ft (0 m)

Heat release rate 2000 Btu/s (2110 kW)

Wall heat transfer fraction 0.4

Note that the smoke layer depth is 45-36=9 ft (2.7 m), which is 20% of the height of the atrium ceiling above the fuel. This depth accommodates the formation of the ceiling jet as in the section "Minimum Depth of Smoke Layer" in Chapter 13.

From Equation (14.14), the convective the heat release rate is

$$Q_c = \chi_c \dot{Q} = 0.7(2000) = 1400 \text{ Btu/s} (1480 \text{ kW}).$$

From Equation (14.13), the mean flame height is

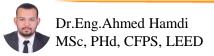
$$z_1 = 0.533 \dot{Q}_c^{2/5} = 0.533 (1400)^{0.4} = 9.7 \text{ ft } (3.0 \text{ m}).$$

The smoke layer height, z, is 36 ft (11.0 m).

Because z_1 is less than z, the mass flow is calculated from Equation (14.11):

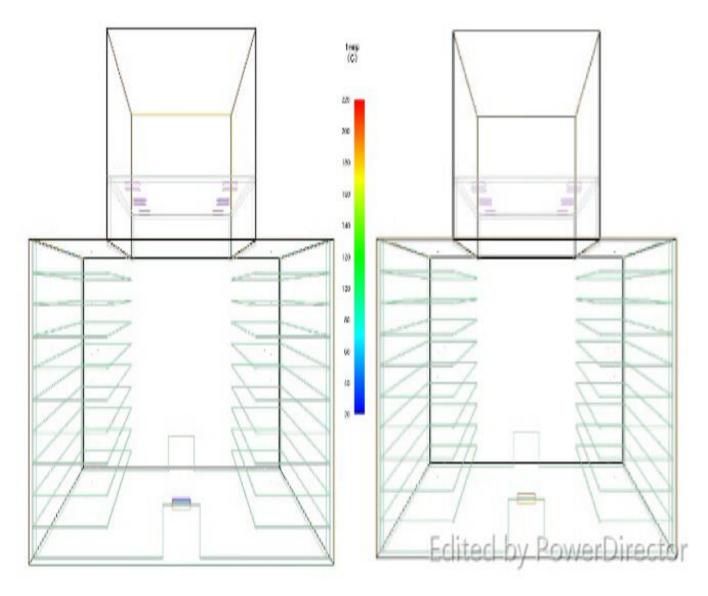
$$\dot{m} = 0.22 Q_c^{-/3} z^{5/3} + 0.0042 \dot{Q}_c = 0.022 (1400^{1/3}) (36^{5/3}) + 0.0042 (1400) = 102 \text{ lb/s} (46.4 \text{ kg/s}).$$

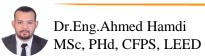
From Equation (14.15), the smoke temperature is


$$T_s = T_o + \frac{\dot{Q}_c(1-\eta)}{\dot{m}C_p} = 72 + \frac{1400(1-0.4)}{102(0.24)} = 106^{\circ}\text{F} (41^{\circ}\text{C})$$

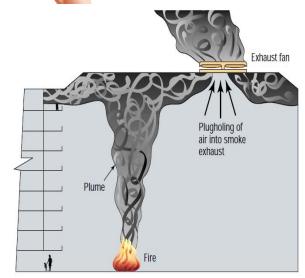
From Equation (14.17), the smoke density is

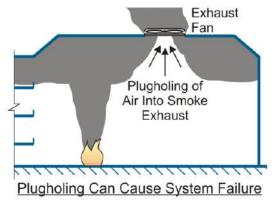
$$\rho_s = 0.075 \frac{530}{T_s} = 0.075 \frac{530}{106 + 460} = 0.0702 \text{ lb/ft}^3 (1.12 \text{ kg/m}^3).$$

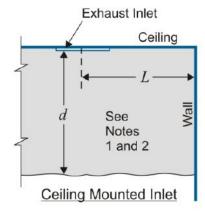

From Equation (14.18), the volumetric flow of exhaust gases is

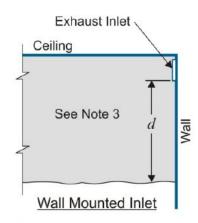

$$\dot{V} = 60 \frac{\dot{m}}{\rho_B} = 60 \frac{102}{0.0702} = 87,200 \text{ cfm } (41.2 \text{ m}^3/\text{s}).$$

العودة للقائمة الرئيسية


سحب الدخان من البهو (ATRIUM)







□ يتم الانتباه لعدد مخارج الهواء المسوح به في عملية سحب الدخان حتى لاتحدث ظاهره تسمي plug holing وهي سحب هواء نقي من اسفل طبقة الدخان دون سحب الدخان نفسه

Notes:

- 1. For a ceiling mounted exhaust inlet with $L < 2 D_i$, $\gamma = 0.5$.
- 2. For a ceiling mounted exhaust inlet with $L \ge 2D_i$, $\gamma = 1$.
- 3. For a wall mounted exhaust inlet, $\gamma = 0.5$.
- 4. d/D_i must be greater than 2.
- 5. V_e must be less than or equal to $V_{\rm max}$.
- 6. The edge-to-edge distance between inlets must not be less than S_{\min} .

Round Inlet Grille

Rectangular Inlet Grille

لحساب أقصى سرعة لسحب الدخان من الـ GRILLS

$$V_{\text{max}} = 452\gamma d^{5/2} \left(\frac{T_s - T_o}{T_o} \right)^{1/2}$$

$$V_{\text{max}} = 4.16\gamma d^{5/2} \left(\frac{T_s - T_o}{T_o} \right)^{1/2} \quad \text{for SI}$$

where

= maximum volumetric flow rate without plugholing at T_s , cfm (m³/s). $V_{\rm max}$

= absolute temperature of the smoke layer, ${}^{\circ}R$ (K). T_s

= absolute ambient temperature, ${}^{\circ}R$ (K).

= depth of smoke layer below the lowest point of the exhaust inlet, ft (m).

= exhaust location factor, dimensionless.

$$D_i = \frac{2ab}{a+b}$$

where

= effective diameter of the inlet, ft (m),

= length of the inlet, ft (m),

= width of the inlet. ft (m).

$$S_{\min} = 0.065 V_e^{1/2}$$

 $S_{\min} = 0.9 V_e^{1/2}$ for SI

where

= minimum edge-to-edge separation between inlets, ft (m), = volumetric flow rate of one exhaust inlet, cfm (m⁵/s).

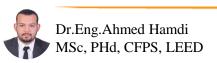
 ** ملحوظه: (d / D_i قسمة (d / D_i أكبر من ٢ طبقاً (NFPA92A Section 6.3.7)

اختبار أنظمة إدارة الدخان

إختبار خطأ

النظام

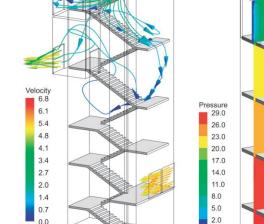
إختبار التسلسل



اختبار أنظمة إدارة الدخان

غير طابق	مطابق	البند		م
		مطابقة الأبواب الموجودة داخل (Fire Zone Compartment) للمواصفات الموجودة في مخططات التصميم	- ۲ -٦	
		وجود أبواب ألية أو ذاتية الإغلاق داخل حدود منطقة الدخان	-٣-٦	
		خطأ النظام	إختبار،	Υ
		خطأ إذا كانت المروحة تعمل بدون سيور	- 1 -Y	
		خطأ إذا كان مراوح التَصنغيط تعمل بدون كواسّف دخان	- ۲ -Y	
		خطأ إذا كانت مراوح التَضعيط تعمل ويتم إلغاء ال Relief	- ٣-Y	
		تضغيط سلم الطوارئ	مراوح	Α
		فروق الضغط عبر كل باب السلم يتجاوز فارق الضـغط المقاس القيمة المطلوبة من الكود	-1-4	
		القوة اللازمة لفتح باب واحد	-Y-A	
		عند فتح جميع الأبواب المطلوبة ، اتجاه تدفق الهواء عبر فتح كل باب	- r -A	
		عند فتح الأبواب يتدفق من الدرج الى المساحة المجاورة بسرعة لا تتجاوز ١ متر/تانية.	-£-A	

غير طابق	مطابق	البند		
		مراوح سحب الدخان (IBC Section909.10.5 - NFPA92A		١
		(Section 5.3.2		
		عدد سيور المحرك المشغل للمروحة ١,٥ مرة ونصف الظروف	-1-1	
		الطبيعية (أقل لعدد سيور المحرك (٢) إتنين).		Н
		منحني الأداء (Performance Curve) يعطى التدفق الهواء عند ظروف ضغط التشغيل وبرجات الحرارة العالية.	-1-1	
		تَتَبِينَاتَ الْمروحة غير قابلة للاحتراق.	-٣-1	
		يتم سحب الدخان بالمراوح إلى مناطق لا تؤدي إلى إعادة إدخال الدخان إلى المبنى مرة أخري	-٤-١	
		ت الهواء / IBC Section909.10.2 – 909.10.4) Damper	مساران	۲
		داكت الهواء والتركيبات تتحمل الضغوط ودرجات الحرارة العالية.	-1-1	
		اختبار الداكث على ضغط ١,٥ مرة ونصف من اقصى ضغط التشغيل.	-7-7	
		لا يزيد الفقد في الدكت من Flow عن ٥ % من كمية التدفق المصمم عليها.	-۲-۲	
		الـ Damper مطابقة للمواصفات ومعتمدة	-8-7	
		الدخان لا يتسرب من الداكت حيث يتم نقله من منطقة الدخان إلى خارج المبنى	-0-1	
		الطاقة	مصبادر	٣
		تغذية نظام سحب الدخات من مصدرين للطاقة (مصدر رئيسي / المولد الإحتياطي)	-1-1	
		عمل المولد الإحتياطي أتوماتيكياً في خلال ١٠ تانية من فقد مصدر الطاقة الرئيسي.	-۲-۳	
		تغذية لوحة التحكم في الدخان ببطاريات ١٥ دقيقة	-٣-٣	
		ظروف غرفة التحكم (تكييف)	-٤-٣	
		أوحة التحكم	مخطط	٤
		مخططات التحكم توضيح جميع الأجهزة في النظام وتحديد موقعها ووظيفتها.	-1-8	
		الدخان / الحرارة / الكاسر الزجاجي	كواشف	٥
		ت الحريق (Fire Zone Compartment)	فطاعان	٦
		فصل مناطق الدخان عن بعضها البعض بحواجز دخان مقاومة للحريق لمدة ساعة.	-1-7	


CONTAM

Multizone Airflow and Contaminant Transport Analysis Software

National Institute of Standards and Technology • U.S. Department of Commerce

CFD

شكراً جزيلاً

تقديم وإعداد د.م /أحمد حمدي عجور

