Ecological Sanitation Symposium

11-13 December 2005, Damascus, Syria

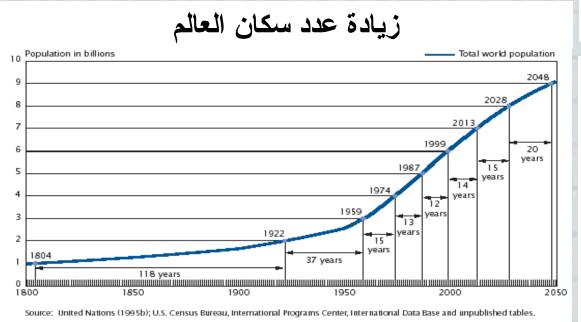
استعراض التكنولوجيات اللاهوائية للمعالجة منخفضة التكاليف لمياه الصرف الصحى الأدمى و إعادة إستخدامها خبرات من ألمانيا و مصر

إعداد:

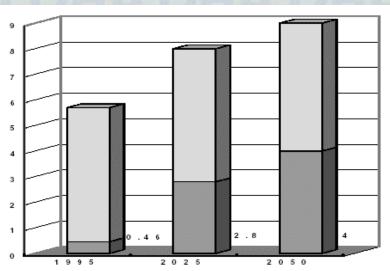
د/ وليد عبد الحليم - أد/ هشام عبد الحليم - أد/ كارل هاينز رويزينفينكل

المحتويات

- الأسباب الملحة وراء ضرورة و زيادة إعادة استخدام مياه الصرف المعالجة
- اعادة استخدام مياه الصرف المعالجة في الري (بين الإيجابيات و السلبيات)
 - استعراض التكنولوجيا اللاهوائية لمعالجة مياه الصرف الصحى
- استعراض النظام المتكامل لمعالجة مياه الصرف الصحى و إعادة استخدامها
- النشاطات الحالية و المستقبلية للمعاهد ISAH, CUFOE, HBRC في مجال المعالجة
 - اللاهوائية لمياه الصرف الصحى
 - ملخص المحاضرة


لماذا التكنولوجيا المستدامة مطلوبة لمعالجة مياه الصرف الصحى؟ حقائق و أرقام مجمعة من (WHO, Unicef, WB)

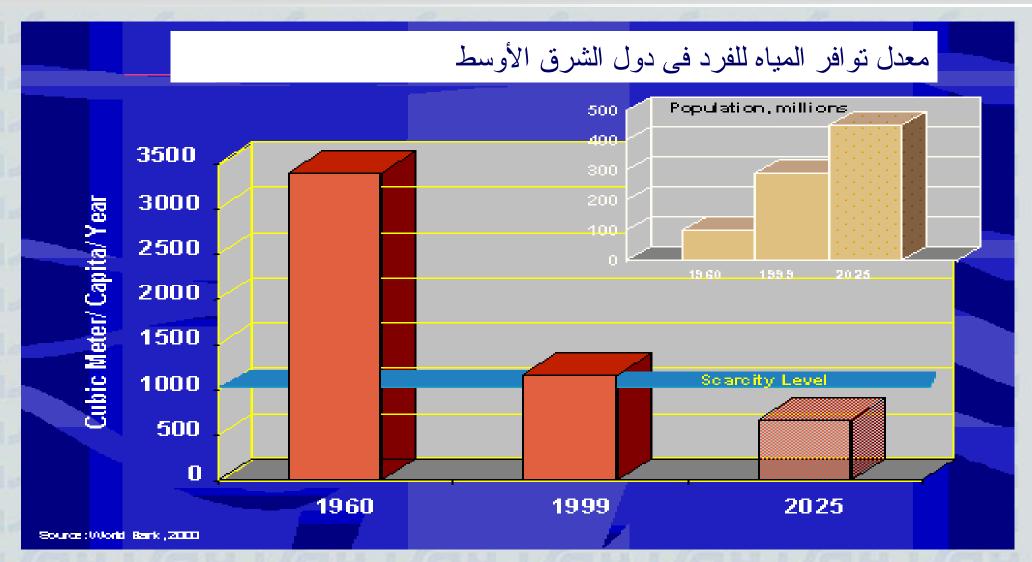
- في العالم النامي: حوالي ثلثي السكان يعيشون بدون أنظمة أمنة صحيا لمعالجة مياه الصرف و التخلص منها
- في مصر (علي سبيل المثال): زيادة عن 3000 قرية تعانى من عدم وجود معالجة لمياه الصرف الصحى
- معظم أنظمة معالجة مياه الصرف في العالم النامي ليست ناجحة فعليا و غير مستدامة
- فى معظم الدول النامية يوجد فقر و ضعف فى سياسات و قوانين إدارة المياه و كذلك تقدير و تقييم الأثر الصحى و البيئى لإدارة المياه



الأسباب الملحة وراء ضرورة و زيادة إعادة استخدام مياه الصرف المعالجة

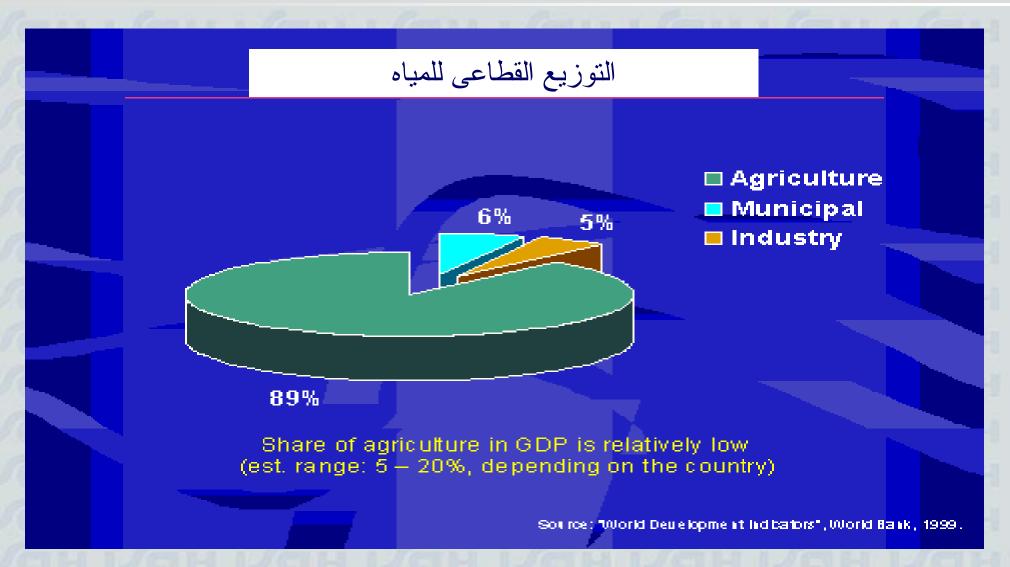
زيادة عجز المياه على مستوى العالم

• في عام 2050 : عدد سكان العالم يقدر بـ 9 بليون نسمة

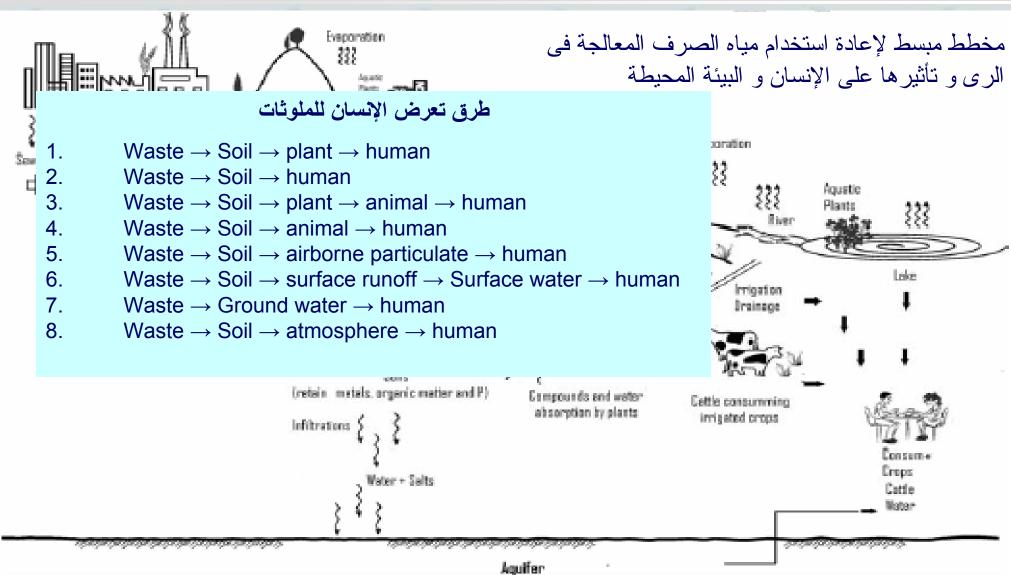

• سنة 2050: سوف يعيش أكثر من 40 % من سكان العالم في دول تعانى من عجز في المياه

* في العالم النامي : معدل إنتاج مياه الصرف يقدر بحوالي 30 – 70 متر مكعب/ فرد/ سنة

HBRC

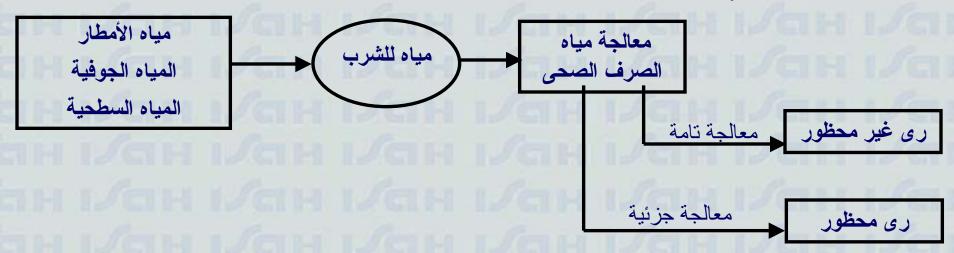

الأسباب الملحة وراء ضرورة و زيادة إعادة استخدام مياه الصرف المعالجة زيادة عجز المياه في دول الشرق الأوسط و شمال أفريقيا

الأسباب الملحة وراء ضرورة و زيادة إعادة استخدام مياه الصرف المعالجة توزيع معدلات استهلاك المياه في الدول النامية



إعادة استخدام مياه الصرف المعالجة في الري

(بين الإيجابيات و السلبيات)



إعادة استخدام مياه الصرف المعالجة في الري (بين الإيجابيات و السلبيات)

الإيجابيات: 1. توفير مصادر المياه عالية الجودة

- 2. الاستدامة البيئية عن طريق اعادة استخدام عناصر التغذية (نيتروجين و فوسفور) في التسميد
 - 3. توفير النقود المنصرفة علي التسميد الكيميائي
 - 4. زيادة المحاصيل و الإنتاج الزراعي
 - 5. تقليل فترات الإنتاج

إعادة استخدام مياه الصرف المعالجة في الري (بين الإيجابيات و السلبيات)

السلبيات:

(في حالة عدم كفاية تقدير و إدارة الأثار الخطرة لمياه الصرف)

- * استخدام تكنولوجيات ذات كفاءة غير كافية
 - * كفاءة معالجة غير مطابقة للمواصفات
- * استخدام اساليب الرى ضعيفة القدرة و الكفاءة
- * التعامل و ملامسة مياه الصرف الصحى بدون توقى اشتراطات الحظر الكافية

الأمراض المتسببة من المياه

Diarrhoea; Typhoid; Ascariasis; Hookworm; Hepatitis A

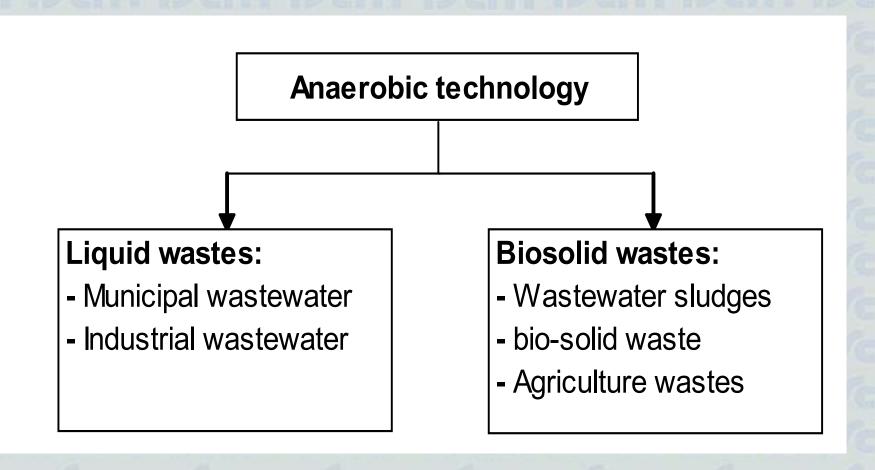
وفاة

2.4 مليون/عام

عجز و عدم قدرة

70 مليون/ عام

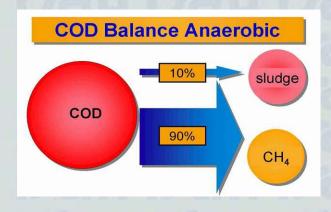
99.8 % من الوفيات من الدول النامية

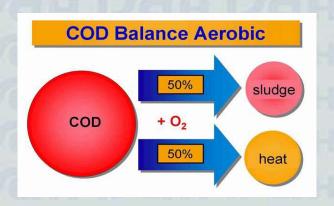

99 % من نسبة الوفيات من الأطفال في سن (0-4) سنوات

WHO: 00; 03,04

HBRC

استعراض التكنولوجيا اللاهوائية التطبيقات الرئيسية




استعراض التكنولوجيات اللاهوائية لمعالجة مياه الصرف الصحى لماذا ؟

فوائد المعالجة اللاهوائية

* تكنولوجيا اقتصادية (منخفضة في تكاليف الإنشاء و التشغيل و الصيانة)

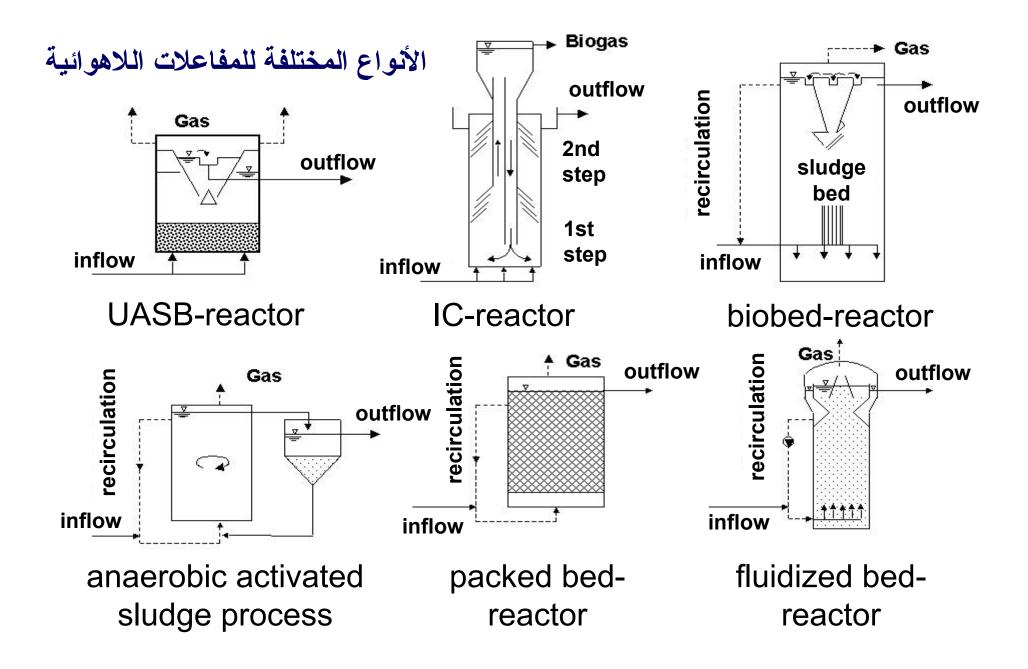
* إنتاج قليل جدا من الحمأة الزائدة

Jim Field, UASB website 2001

HBRC

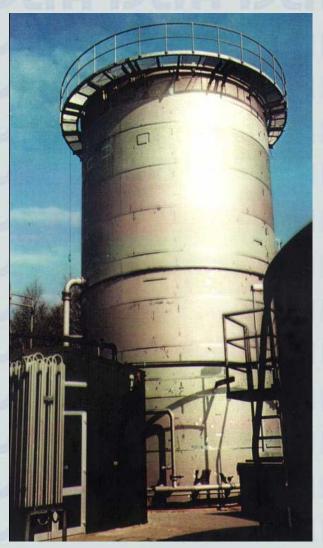
استعراض التكنولوجيات اللاهوائية لمعالجة مياه الصرف الصحى لماذا ؟

■ توازن إيجابي للطاقة: في صورة إنتاج غاز عضوى يستخدم في إنتاج الطاقة البيولوجية



1 kg COD_{rem} -> 350 L CH₄

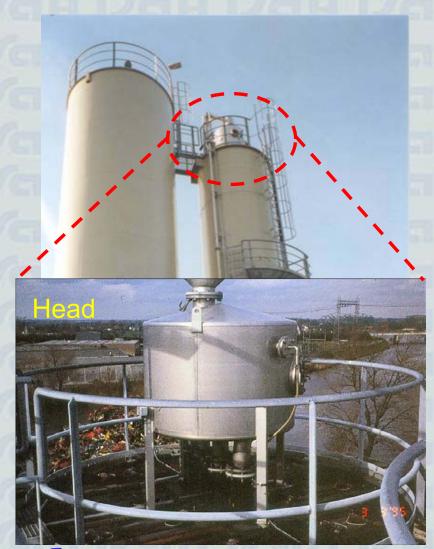
- منخفضة التكاليف في معالجة و إدارة الحمأة
 - تحميل عضوى عالى
- عدم إزالة عناصر التغذية (نيتروجين و فوسفور و بوتاسيوم و كالسيوم)
 - كفاءة معالجة عالية
 - تكنولوجيا مستدامة



HBRC

استعراض التكنولوجيا اللاهوائية لمعالجة مياه الصرف الصحى تطبيقات الصرف الصناعي

معالجة مياه الصرف المخلفة من تصنيع البطاطس

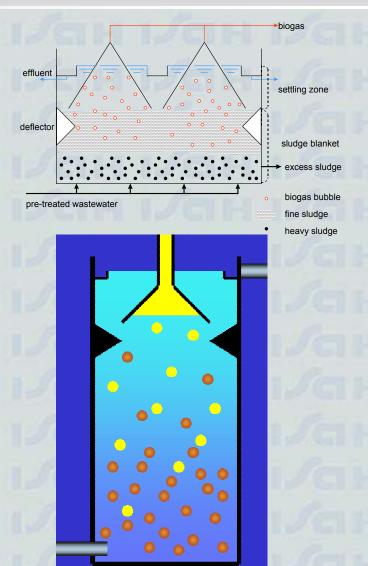


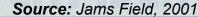
استعراض التكنولوجيا اللاهوائية لمعالجة مياه الصرف الصحى تطبيقات الصرف الصناعي

IC Reactors
OLR ≈ 15-30 kg COD/(m³•d)

H ≈ 20-25 m V_w ca. 6-8 m/h V_g ca. 4-6 m/h

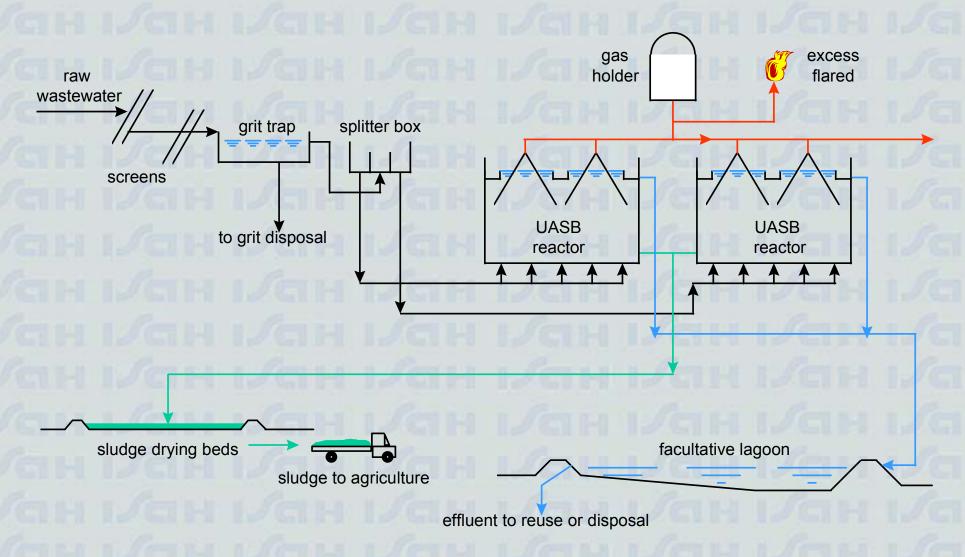
> صناعة الورق صناعة المشروبات الصناعات الغذئية

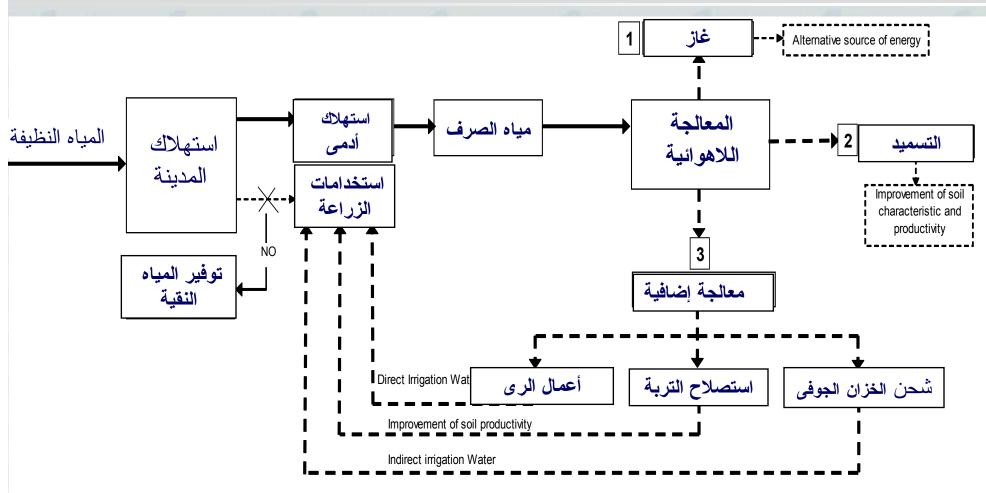

Kraul & Wilkening & Stelling (Distillery)



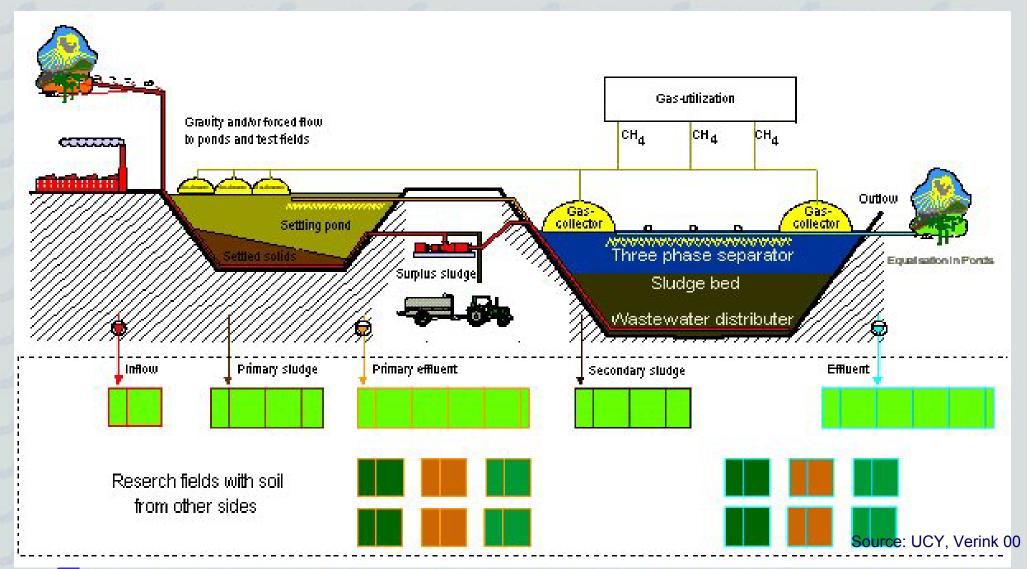
استعراض التكنولوجيا اللاهوائية لمعالجة مياه الصرف الصحى Upflow Anaerobic Sludge Blanket "UASB-Reactor"

يعد الـ UASB أكثر المفاعلات اللاهوائية استخداما و قد أثبت نتائج إيجابية و كفاءات عالية حتى لمعالجة مياه الصرف ذات التركيزات العضوية المنخفضة و مياه الصرف الأدمى




استعراض التكنولوجيا اللاهوائية لمعالجة مياه الصرف الصحى الأدمى المخطط النمطى لمراحل المعالجة

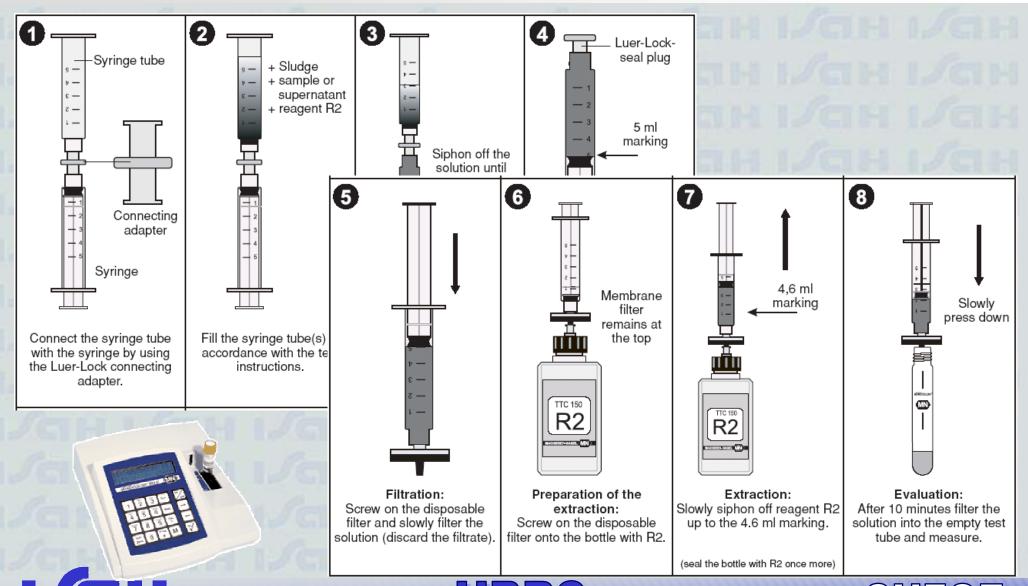
HBRC


استعراض النظام المتكامل لمعالجة مياه الصرف الصحى و إعادة استخدامها Closing the Loop

استعراض النظام المتكامل لمعالجة مياه الصرف الصحى و إعادة استخدامها "Natural UASB-Pond"

استعراض النظام المتكامل لمعالجة مياه الصرف الصحى و إعادة استخدامها "Natural UASB-Pond"

Natural UASB-Pond constructed in Jamaica


استعراض النظام المتكامل لمعالجة مياه الصرف الصحى و إعادة استخدامها عرض و مقارنة بعض النتائج

	Mu	Municipal Wastewater			Municipal wastewater
Parameter	Bucaramanga, Colombia	Mirzapur, India	Kanpur, India	Kanpur Indea	UASB-Pond
Design peak capacity (MLD)	42	14	5	36	Large pilot plant (40
Operating capacity (MLD)	36	10	4.8	21.8	m ³ /d)
Average organic loading					
COD (mg/l)	400	360	560	1183	550
BOD_5 (mg/l)	150	180	210	484	300
TSS (mg/l)	230	360	420	1000	400
Average removal efficiency					
Average HRT (h	1) 5	8	6	5.2	6 - 8
Influent teperature range (°C	C) 23-25	21-30	20-30	22-30	15-30
Gas production (m ³	/d) 3300	500	480	_	250 L/kg CODrem

HBRC

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة حساب النشاط البيولوجي للحمأة

HBRC

التصميم الأمثل لمحطات المعالجة اللاهوائية لمياه الصرف محددات التصميم

معدل التحلل اللاهوائي يعتمد علي العوامل الأتية:

- 1. نوعية و مكونات مياه الصرف الصحى
 - 2. مدة المكث
 - 3. الحمل العضوى علي حجم المفاعل
- 4. الحمل العضوى على التركيز الحيوى للحمأة
 - 5. النشاط الحيوى للحمأة
 - 6. درجة الحرارة و التحميل السطحى

حساب معدلات التحلل اللاهوائي تحت قيم مختلفة لهذه العوامل هام جدا لتصميم محطات المعالجة اللاهوائية

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة الاهوائية استخدام أفضل التكنولوجيات المتاحة

استنباط معاملات التصميم و التشغيل

HBRC

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة الاهوائية محطات تجريبية

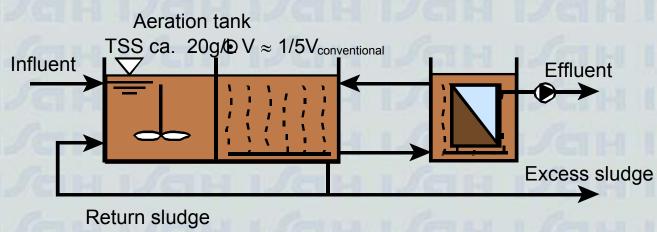
HBRC

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة اللاهوائية محطة تجريبية لمحاكاة الـ UASB بنظام البركة الطبيعية

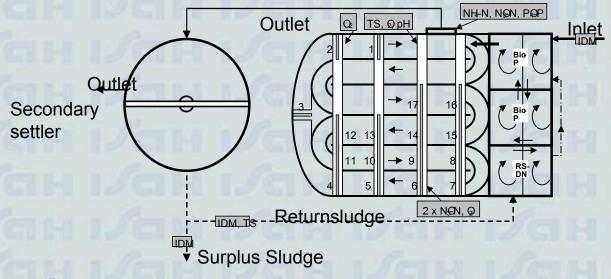
HBRC

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة الاهوائية النشاطات المفاعل اللاهوائي ذو الوسط الثابت المطور

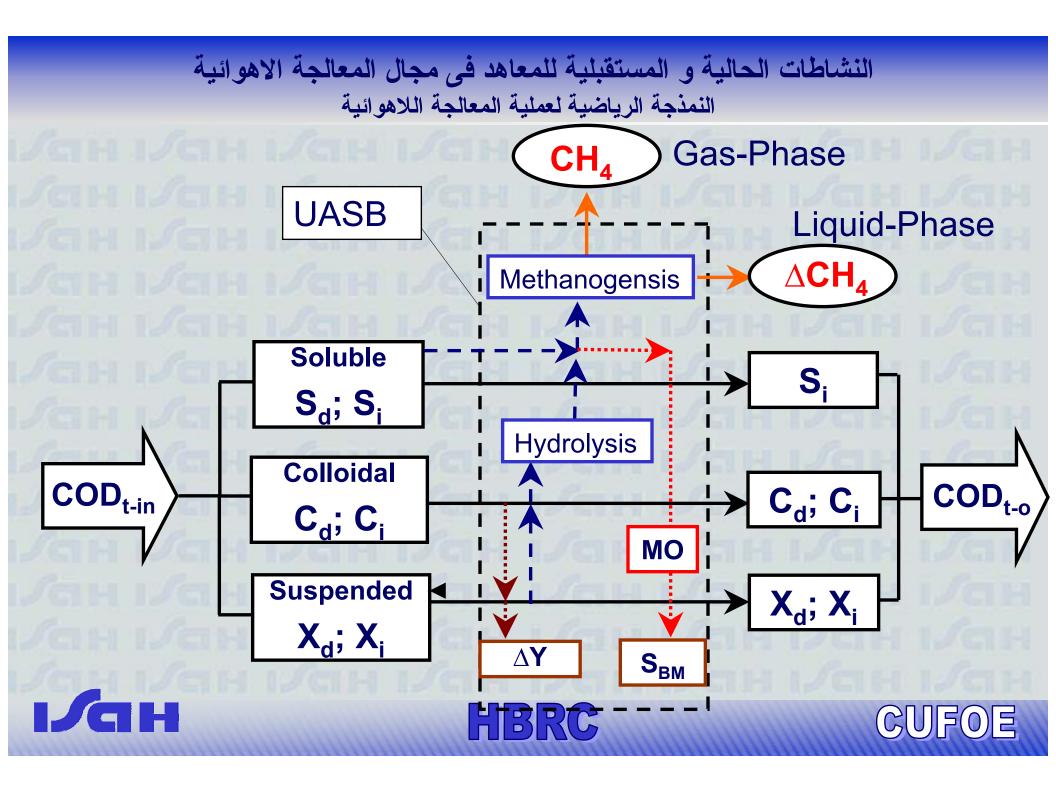
HBRC



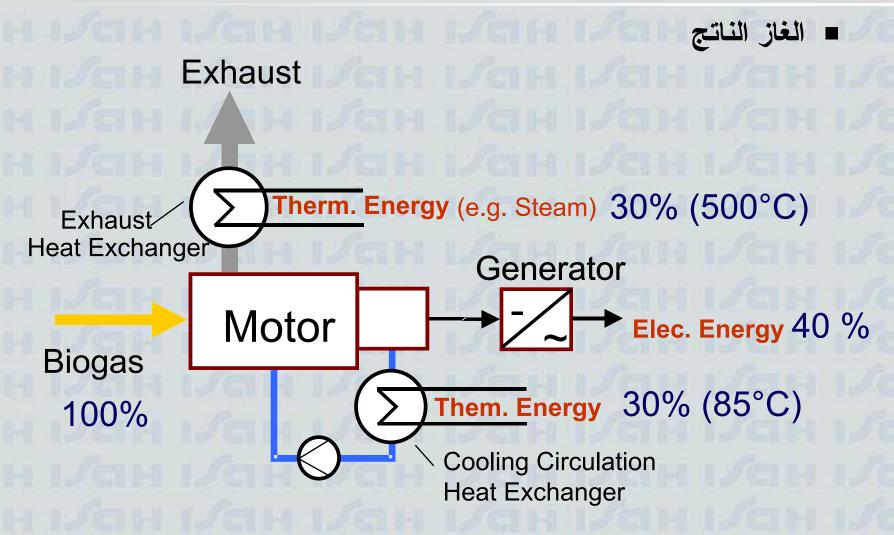
الوصلات التحكم في اتجاهات سريان المياه بين المرحلتين



النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة اللاهوائية المشاطات الحالية و المستقبلية الاضافية



HBRC


النموذج الرياضى النموذج المحددات البيولوجية لعملية المعالجة المعالجة

Temerature range (°C)		onversion Par Acidification % 51 - 43	ameter Methanogensis % 55 - 48	μ 1/d 0.023 - 0.021	netics Param K _d 1/d 0.011- 0.005	Y g VSS/g COD _{rem}	Reference
25	_	_	33 - 50	_	_	_	Lettinga 2001
13	12	21	23	_	_	_	Elmitwalli 2000 HUSB/UASR
18	46	_	42	_	_	_	Halalsheh 2002
30 - 37	_	30 - 50	_	0.02 - 1.4	0.004 - 1.2	0.1	Meyer 2004

HBRC

النشاطات الحالية و المستقبلية للمعاهد في مجال المعالجة الاهوائية استخدامات الغاز الناتج لتوليد الطاقة البيولوجية

ملخص المحاضرة

- .1 لتجنب حدوث العجز في المياه للفترة القادمة:
- استحداث تكنولوجيات حديثة لإعادة توليد المياه المتجددة
 - خفض استهلاك المياه
- استحداث تكنولوجيات لمعالجة مياه الصرف منخفضة التكاليف و إعادة الإستخدام الآمن في أغراض الزراعة
 - 2. استحداث الطرق الحديثة لإختيار أساليب المعالجة المثلي المناسبة للظروف المناخية و الاقتصادية لكل مدينة أو قرية لضمان الاستدامة
- 3. المعالجة اللاهوائية لمياه الصرف الصحى أثبتت كفاءة و منافسة كأسلوب منخفض التكاليف مع امكانية اعادة استخدام المياه المعالجة في الري
 - 4. يجب تعظيم الإستفادة من الغاز الناتج من المعالجة اللاهوائية في توليد الطاقة البيولوجية كمصدر لإنتاج الكهرباء النظيفة

Ecological Sanitation Symposium

11-13 December 2005, Damascus, Syria

شكرا لحسن الايستماع

