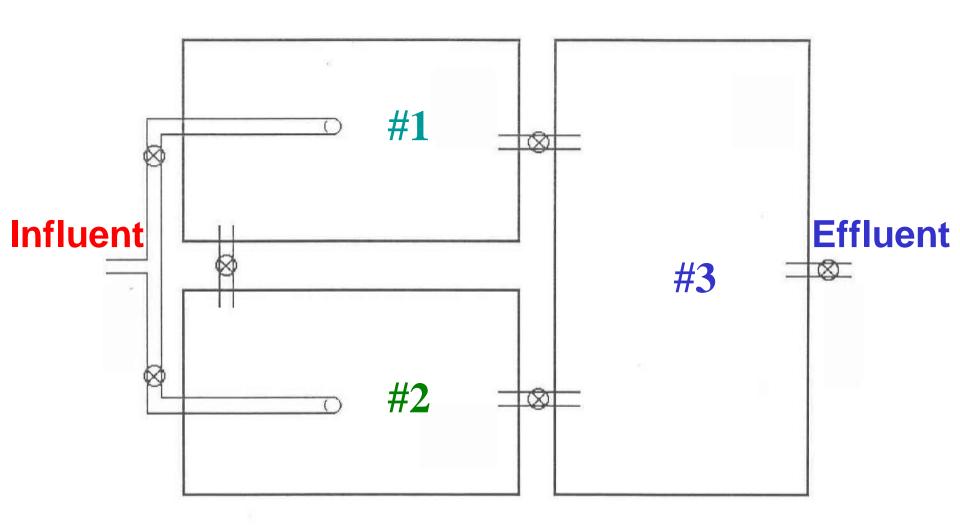
WASTEWATER STABILIZATION LAGOON PROCESS

Prepared by
Michigan Department of Environmental Quality
Operator Training and Certification Unit

Waste Stabilization Lagoons

A carefully designed structure constructed to contain and to facilitate the operation and control of a complex process of treating or stabilizing wastewater.



Typical Lagoon System

WASTEWATER

Water used to carry waste products away from homes, schools, commercial establishments, and industrial enterprises.

WASTE STABILIZATION LAGOON

In a Waste <u>Stabilization</u> Lagoon the Components in the Wastewater are Changed so that there is Little or No Additional <u>Change</u>

Purpose:

Provide for the Operation and Control of Complex Process

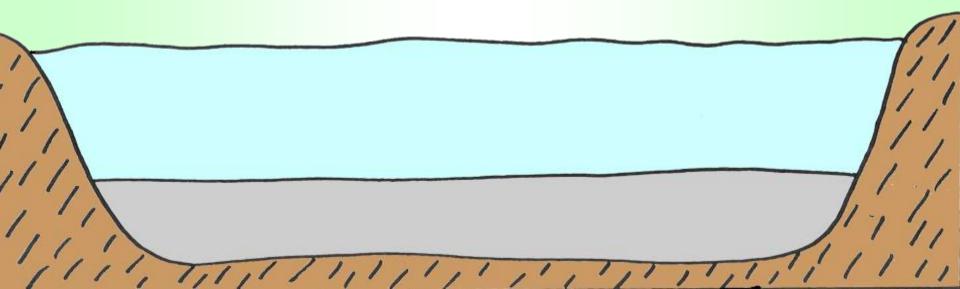
"Stabilizing" Components Under Control

Minimizing Hazards when Discharged

WASTE STABILIZATION LAGOON

In a Waste <u>Stabilization</u> Lagoon the Components in the Wastewater are Changed so that there is Little or No Additional <u>Change</u>

Operators Responsibility:


Ensure Efficient Operation

Protect Environment
Protect Human Health

TREATMENT PROCESS

Waste Stabilization Lagoons "Treatment" Process

Natural Process

Same Process Which Occurs in a Natural Pond or Lake

Under Controlled Conditions

Waste Stabilization Lagoons

Natural Process

Same as Mechanical Plants

Carefully Designed and Constructed

Must Be Operated Properly

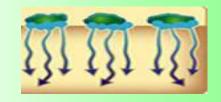
Must Be Understood

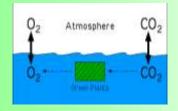
Waste Stabilization Lagoons

"The Process" Involves:

Physical Processes

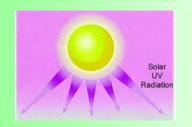
Chemical Processes and


Biological Processes


Physical Processes

Evaporation

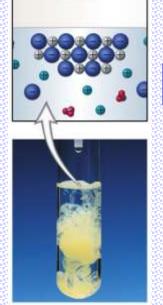
Seepage



Gas Exchange

Sedimentation

SOLIDS

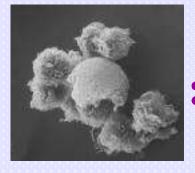


U.V. Radiation

Chemical Processes

Inorganic Activity

Wastewater "Treatment" Process



BACTERIA

BACTERIA Types

<u>Aerobic</u>

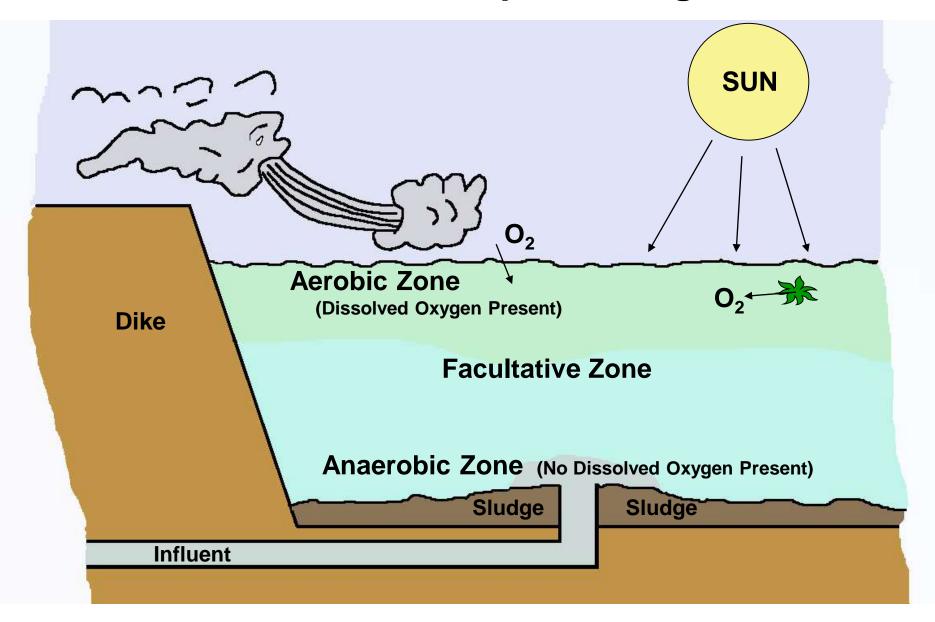
Bacteria that can use only oxygen that is "free" or not chemically combined.

<u>Anaerobic</u>

Bacteria that can live in the absence of "free" oxygen.

Facultative

Bacteria that use either "free" or combined oxygen.


Zones in a Lagoon

AEROBIC

FACULTATIVE

ANAEROBIC

Zonal Relationships in a Lagoon

Zonal Differences

Environments

Bacteria

Activities

ANAEROBIC ZONE

Sedimentation

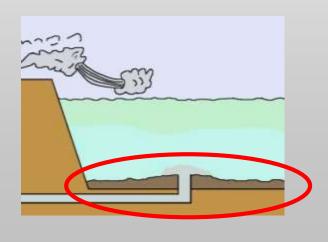
Stabilization

Organics

Organic Acids

Organic Acids Bacteria

Carbon Dioxide (CO₂) Ammonia (NH₃) Hydrogen Sulfide (H,S) Wethane (CH₁₁)


ANAEROBIC ZONE

Sedimentation

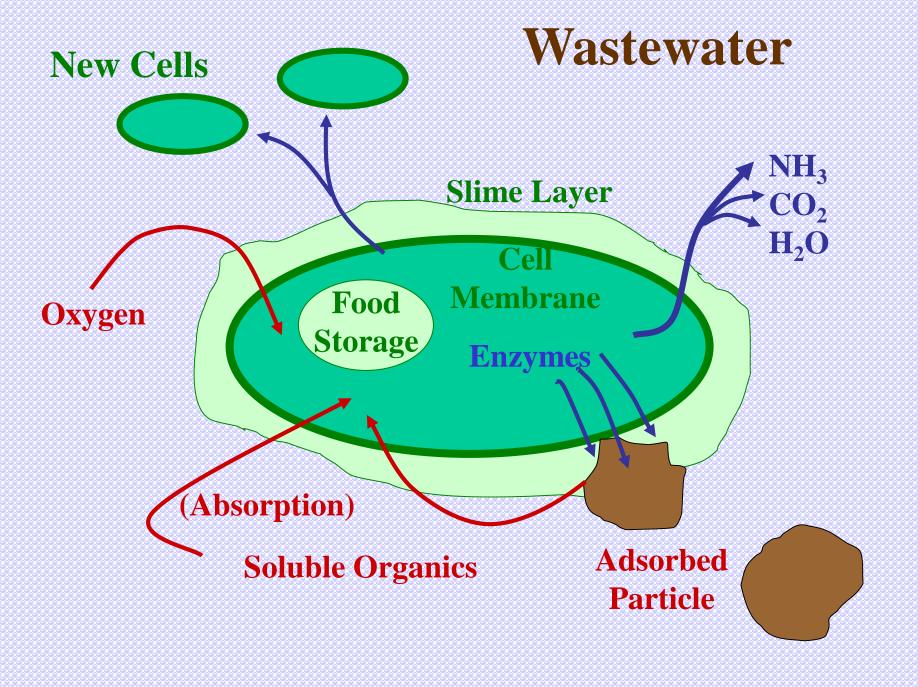
Stabilization

Not All Of the Settled Solids Will Be Broken Down.

The Sludge Layer Will Increase Slowly Over the Life of the Lagoon

AEROBIC ZONE

Bacteria Use Soluble Organics


Influent

Anaerobic Zone

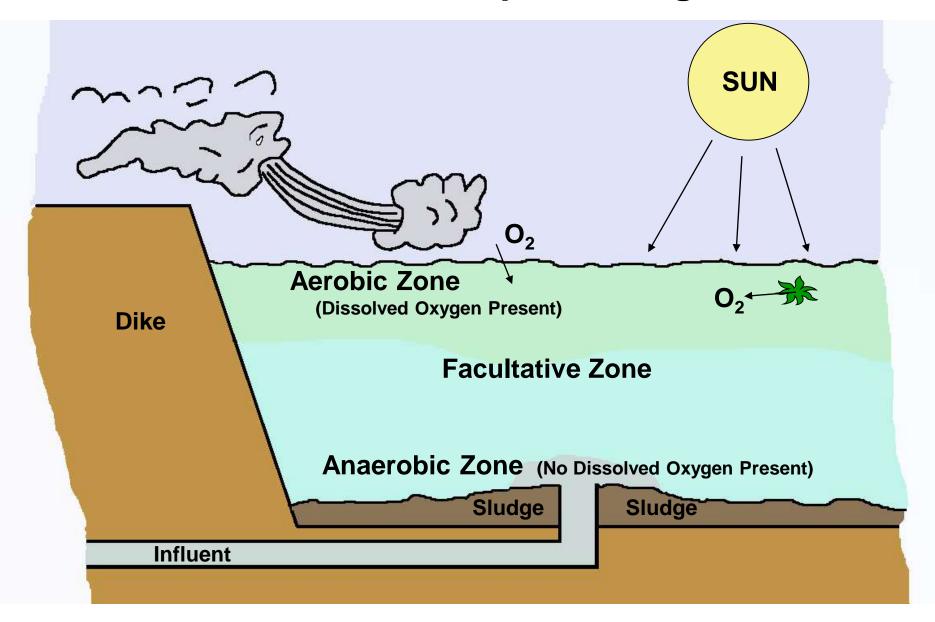
Respiration

RESIPRATION

$$CH_2O + O_2 \rightarrow CO_2 + H_2O$$

FACULTATIVE ZONE

Organisms Utilize Dissolved Oxygen or Combined Oxygen

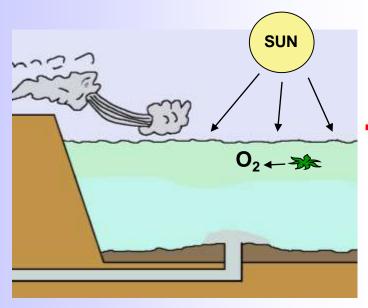

Adapt to Changing Conditions

Continue Decomposition

During

Changing Conditions

Zonal Relationships in a Lagoon


Importance of Sufficient Oxygen

Efficient Treatment

Preventing Odors

Sources of Oxygen

ABSORPTION from ATMOSHERE

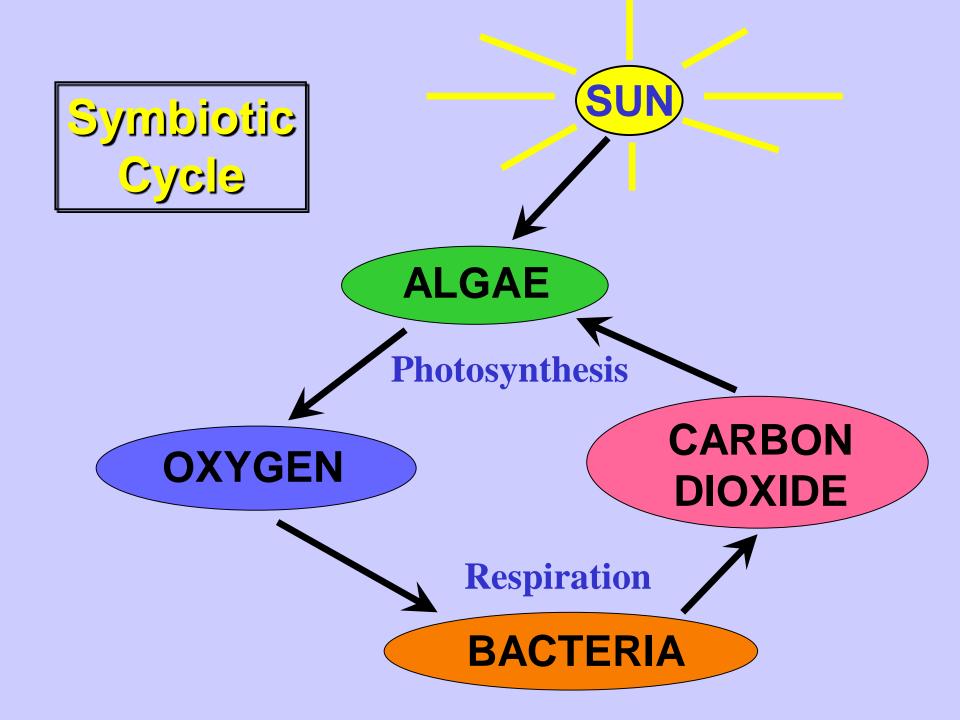
PHOTOSYNTHESIS

PHOTOSYNTHESIS

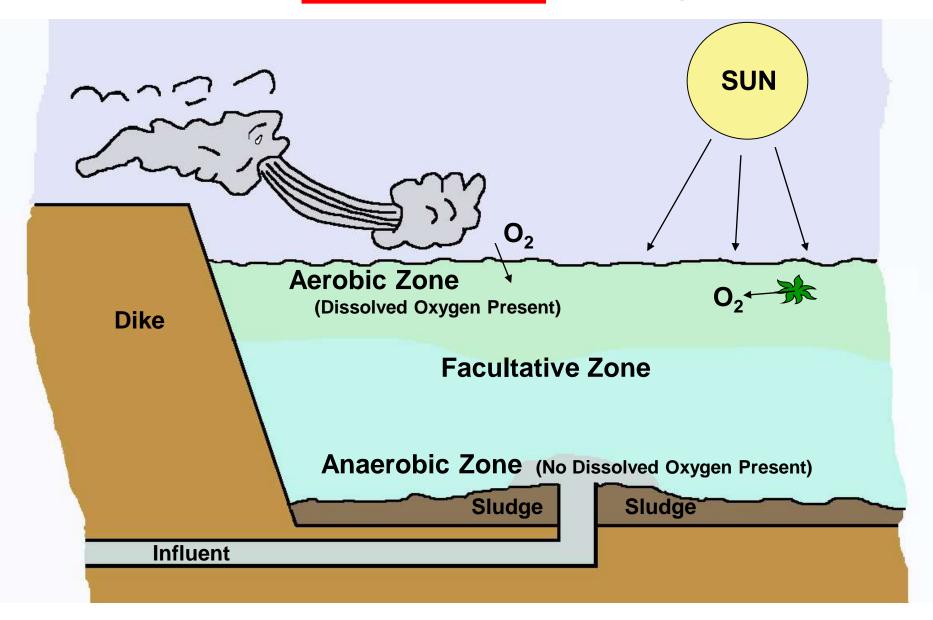
A Process in which **PLANTS Utilize Sunlight and Chlorophyll** to Convert Carbon Dioxide and Inorganic **Substances** to **OXYGEN** and **Additional Plant Material**

OXYGEN SOURCES

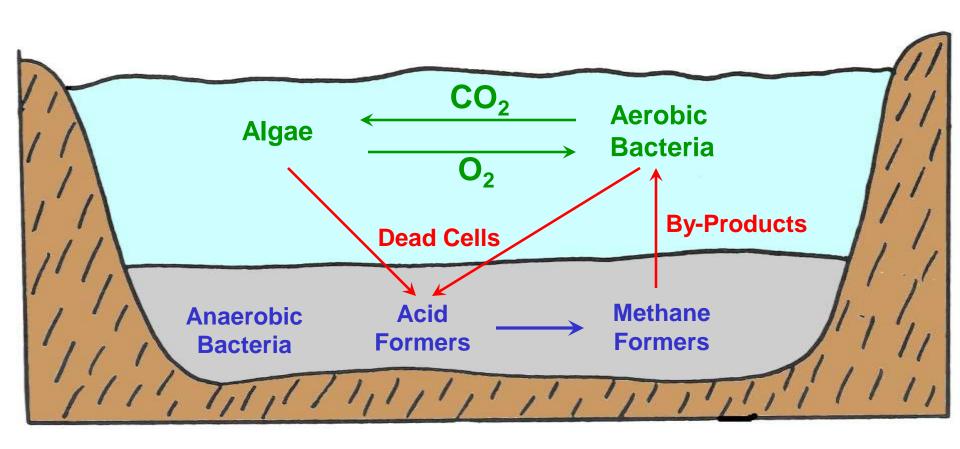
Surface Aeration Provides

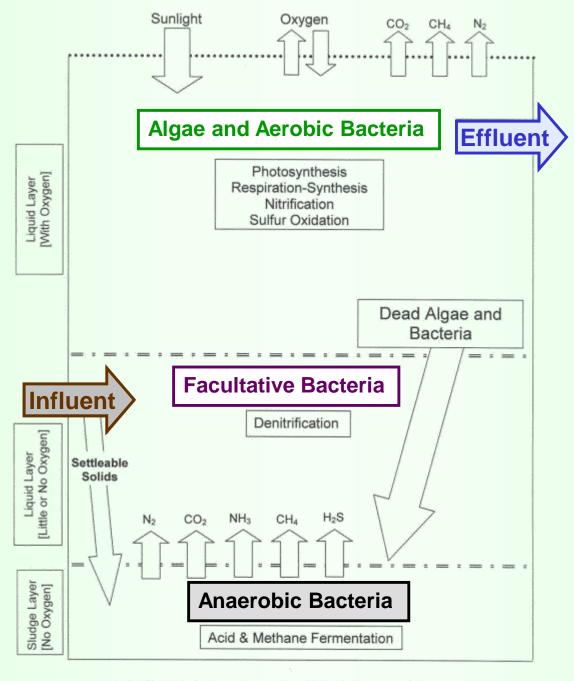

6 Pounds per Acre per Day

At Lagoon D.O. of 2.0 mg/L Temperature Permitting 8.0 mg/L


Algae (Photosynthesis) Provides

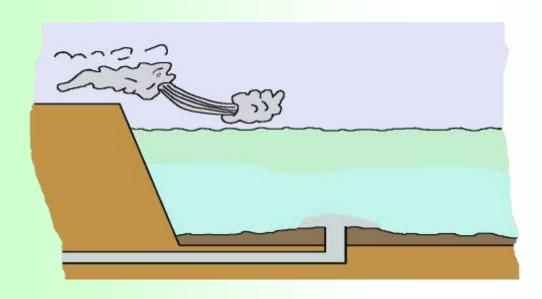
100 Pounds
per Acre
per Day


Each 60 Pounds of Algae Produce 100 pounds Oxygen



Zonal Relationships in a Lagoon

ACTIVITY IN FACULTATIVE PONDS

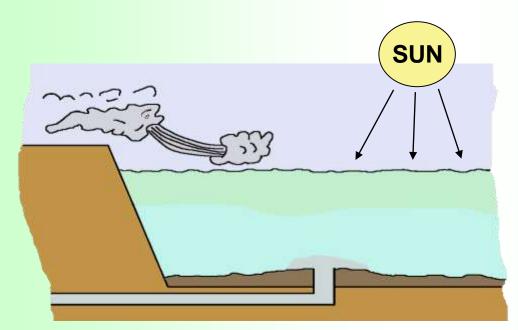


ACTIVITY IN FACULTATIVE LAGOONS

FACTORS THAT AFFECT THE TREATMENT PROCESS

Influence of Wind

Adds Oxygen


Increases Mixing

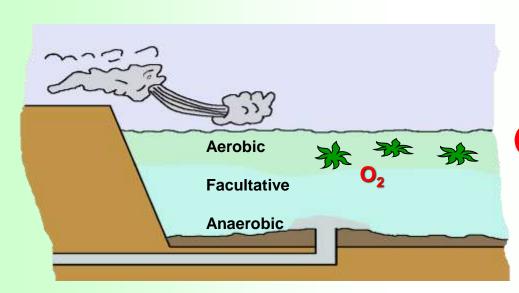
Must Be Controlled

By Minimizing Accumulations of Material On, In, or Around the Lagoon

FACTORS THAT AFFECT THE TREATMENT PROCESS

Influence of Light

Photosynthesis


Disinfection

Must Be Controlled

By Minimizing Accumulations of Material On, In, or Around the Lagoon

FACTORS THAT AFFECT THE TREATMENT PROCESS

Influence of Temperature

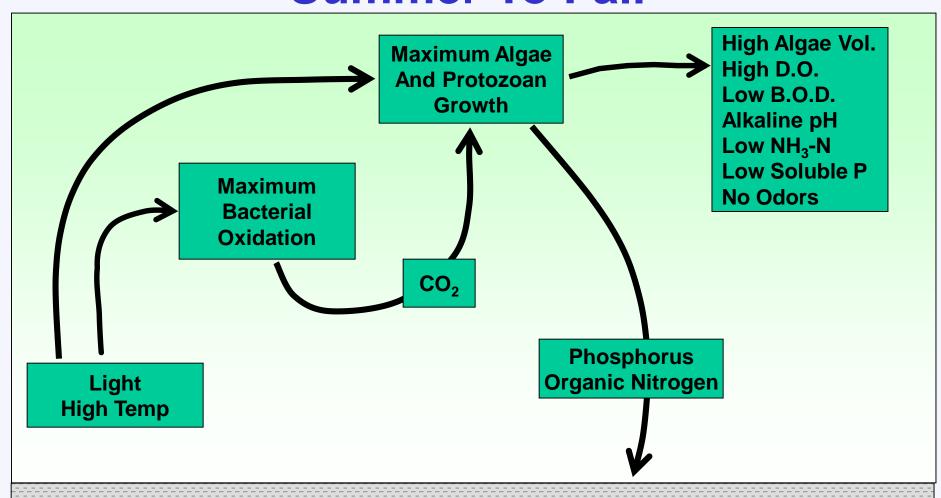
Rate of Bacterial Activity

Growth of Algae

D.O. Saturation

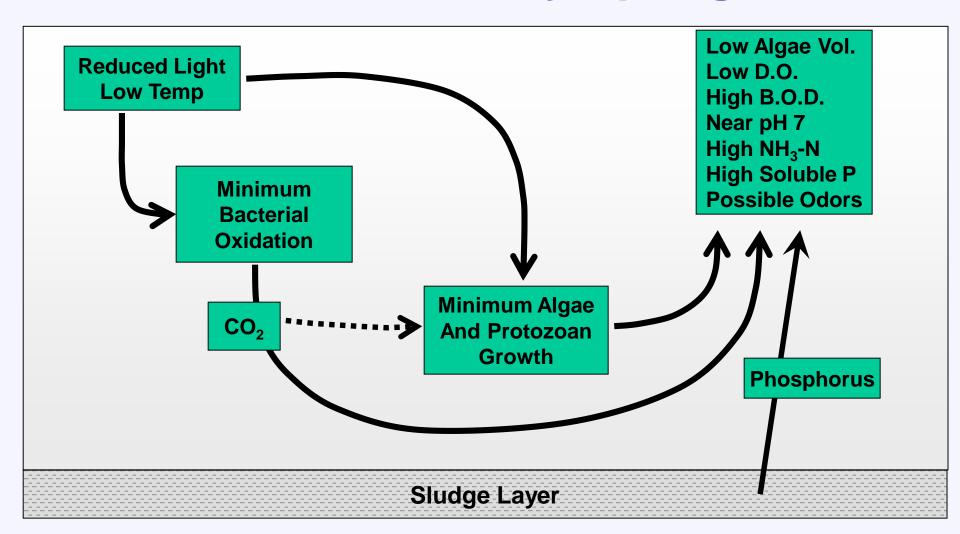
Must Be Considered

FACTORS THAT AFFECT THE TREATMENT PROCESS


Daily Fluctuations

Temperature
Dissolved Oxygen
pH
Must Be Considered

SEASONAL VARIATIONS


Summer To Fall

Sludge Layer

SEASONAL VARIATIONS

Winter To Early Spring

SEASONAL VARIATIONS

Spring and Fall

Transition Periods
Optimum for Discharging

Within Permit Limits
High Stream Flows - Dilution
High D.O. - Lagoon and Receiving Stream
Minimal Human Contact

ADVANTAGES of LAGOON SYSTEMS

- 1. Economical to Construct & Operate.
- 2. Low Monitoring & Control Requirements.
 - 3. Rapid Recovery from "Shock" Loads.
 - 4. Low Energy & Chemical Usage.
 - 5. Low Mechanical Failure.
 - 6. Minimal Sludge Disposal.
 - 7. Long Life.

DISADVANTAGES of LAGOON SYSTEMS

- 1. Large Land Usage.
- 2. Low Control Options.
- 3. Operations Dependant on Climate.
 - 4. Often High Suspended Solids.
 - 5. Seasonal Odors.
- 6. Possible Ground Water Contamination.
 - 7. Not Good In High Loading Situations.

RESULTS of PROCESS

Public Health Protected Pathogens Removed

Environment Protected
Characteristics of Wastewater Changed
End Products Stable

Process Itself Is Not Offensive

GOOD RESULTS IF

Process Is In Balance

Properly Designed Facility

Process Is Controlled

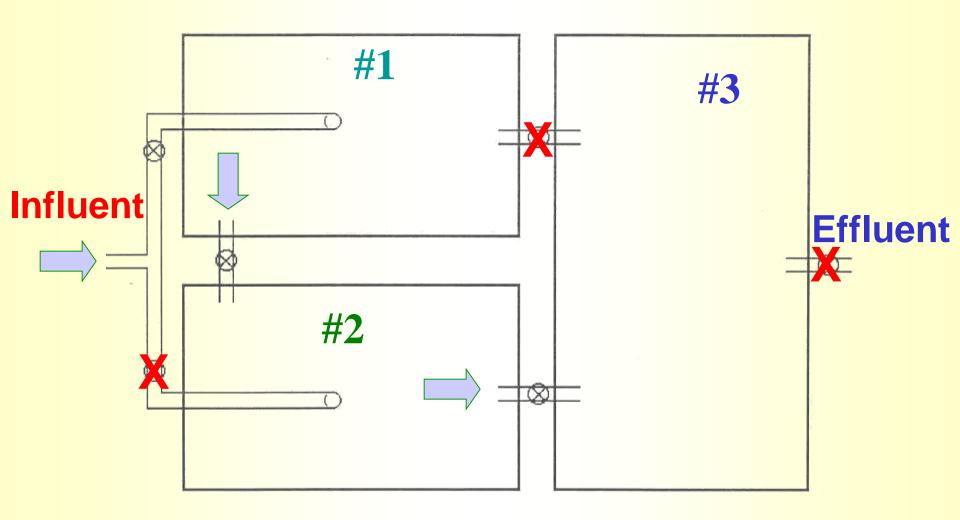
System Is Maintained

Waste Stabilization Lagoons

A carefully designed structure constructed to contain and to facilitate the operation and control of a complex process of treating or stabilizing wastewater.

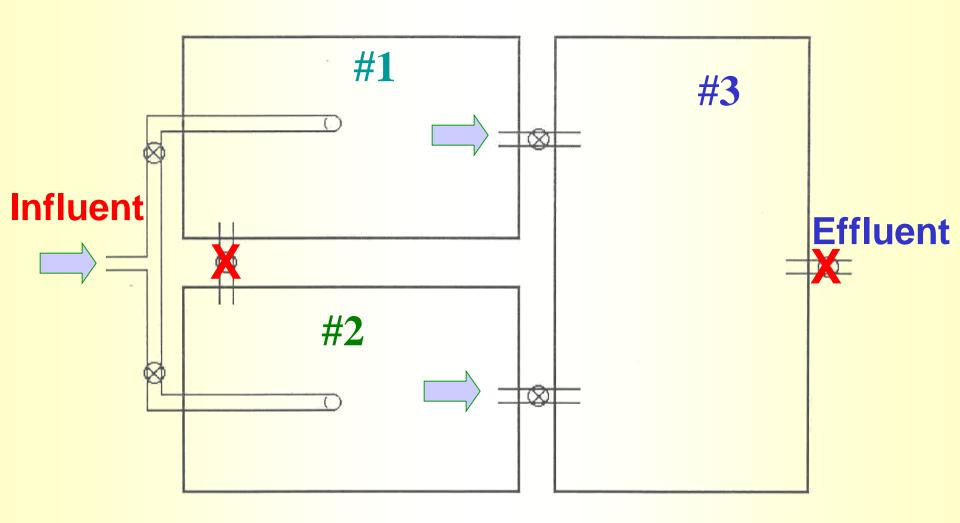
One Very Important Tool of Design and Operation Is The Ability and Use of Series or Parallel Flow Through the System

Series

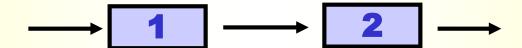


OR

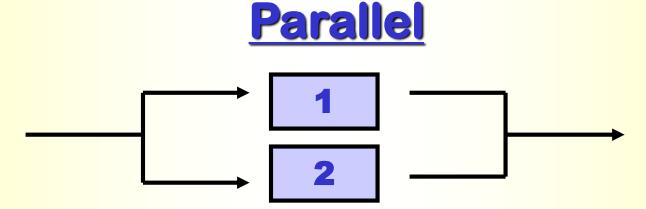
Parallel



Typical Lagoon System


SERIES OPERATION

Typical Lagoon System



PARALLEL OPERATION

Series

Placing Majority of Load on First Cell Summer Operation

Dividing Organic Load Between At Least
Two Cells
Winter Operation

Loading

Amount Applied to the Treatment Process

Related to the SIZE of the System

For Lagoons

Surface Area of the System

Loading

Amount Applied
to the
Treatment Process

Population Loading

Hydraulic Loading

Organic Loading

POPULATION LOADING

Number of Persons per Acre

Population Served (persons)

Area of Lagoon (Acres)

General

50 to 500 Persons per Acre

<u>Michigan</u>

100 Persons per Acre

VOLUME of Wastewater to be Treated

Flow Rate

Gallons per Day (gpd)
OR
Million Gallons per Day (MGD)

Inches per Day

= Influent Rate (gallons per day)
Pond Volume (gallons per inch)

Detention Time

= Pond Volume (gallons)
Influent Rate (gal. / Day)

Example:

Calculate the Detention Time for a lagoon with a volume of 720,000 gallons that receives a flow of 24,000 gallons per day.

$$= \frac{720,000 \text{ gallens}}{24,000 \text{ gallens}} = 30 \text{ Days}$$

Example Problems Detention Time

1. What is the detention time in a 520,000 gallon lagoon that receives a flow of 20,000 gallons per day?

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$

Det. Time =
$$\frac{520,000 \text{ gallons}}{20,000 \text{ gallons/day}}$$

= 26 Days

Example Problems Detention Time

2. What is the detention time in a 1,170,000 gallon lagoon that receives a flow of 0.065 MGD?

= 18 Days

Work Calculations on Separate Paper Answers Given on Next Slides

3. What is the detention time in a 6,750,000 gallon storage pond that receives a flow of 45,000 gallons per day?

4. What is the detention time in a 432,000 gallon lagoon that receives a flow of 0.012 MGD?

3. What is the detention time in a 6,750,000 gallon storage pond that receives a flow of 45,000 gallons per day?

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$

Det. Time =
$$\frac{6,750,000 \text{ gallons}}{45,000 \text{ gallons/day}}$$

= 150 Days

4. What is the detention time in a 432,000 gallon lagoon that receives a flow of 0.012 MGD?

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$

Det. Time = $\frac{432,000 \text{ gallons}}{0.012 \text{ MGD}}$

0.012 MGD X 1,000,000 = 12,000 gal/day

Det. Time = $\frac{432,000 \text{ gallons}}{12,000 \text{ gallons/day}}$

36 Days

4. What is the detention time in a 432,000 gallon lagoon that receives a flow of 0.012 MGD?

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$

Det. Time = $\frac{432,000 \text{ gallons}}{0.012 \text{ MGD}}$

432,000 gallon ÷ 1,000,000 = 0.432 MG

Det. Time = $\frac{0.432 \text{ MG}}{0.012 \text{ MGD}}$

= 36 Days

Detention Time

Pond Volume (gallons)
Influent Rate (gal. / Day)

Need 30 to 120 Days

Design Storage

DESIGN STORAGE

Seasonal Discharge

From 2 Foot Level to Maximum Operating Level

180 Days in Michigan

Detention Time

= Pond Volume (gallons)
Influent Rate (gal. / Day)

Detention Time = $\frac{\text{Volume}}{\text{Flow}}$

Calculate Regularly Monitor Trends

Detention Time

= Pond Volume (gallons)
Influent Rate (gal. / Day)

Detention Time = Volume Flow

Calculation Reliability
Depends on
Flow Measurement Reliability

Detention Time

= Pond Volume (gallons)
Influent Rate (gal. / Day)

Detention Time = $\frac{\text{Volume}}{\text{Flow}}$

Several Ways to Determine Flow

Can Use Timer and Pump Output

Example Flow Rate Calculations

Volume Pumped = Rate X Time

1. A pump rated at 125 gpm was on for 50 minutes. How much water was pumped in gallons?

Volume Pumped = Rate X Time

Volume Pumped = 125 gal X 50 min

= 6250 gallons

2. A pump rated at 150 gpm was on for 3 hours. How much water was pumped in gallons?

Volume Pumped = Rate X Time

Volume Pumped = $150 \frac{\text{gal}}{\text{min}}$ X 3 hours

3/150rs XX 30_mintro yall deligning

Volume Pumped = $150 \frac{\text{gal}}{\text{min}}$ X 180 min

= 27,000 gallons

3. A pump rated at 150 cfm was on for 250 minutes. How much water was pumped in gallons?

Volume Pumped = $150 \frac{ft^3}{min} \times 250 min$

150 ft³ X 7.48 gallon/ft³ = 1,122 gallons
150 X 250 = 37,500 gallons ?
150 ft³/min
$$\stackrel{?}{=}$$
 1,122 gal/min

Volume Pumped = 1,122 gal X 250 min

LOOK AT THE TERMS

- 1. A pump rated at 125 gpm was on for 50 minutes. How much water was pumped in gallons?

 OK!
- 2. A pump rated at 150 gpm was on for 3 hours. How much water was pumped in gallons?

Change TIME Term

3. A pump rated at 150 cfm was on for 250 minutes. How much water was pumped in gallons?

Change VOLUME Term

Work Calculations on Separate Paper Answers Given on Next Slides

- 4. A pump rated at 250 gpm was on for 450 minutes. How much water was pumped in gallons?
- 5. A pump rated at 50 gpm was on for 9 hours. How much water was pumped in gallons?

6. A pump rated at 20 cfm was on for 125 minutes. How much water was pumped in gallons?

4. A pump rated at 250 gpm was on for 450 minutes. How much water was pumped in gallons?

5. A pump rated at 50 gpm was on for 9 hours. How much water was pumped in gallons?

Volume Pumped = Rate X Time

Volume Pumped = $50 \frac{\text{gal}}{\text{min}} \times 9 \text{ hours}$

9 hours X 60 min/hour = 540 min

Volume Pumped = $50 \frac{\text{gal}}{\text{min}} \times 540 \text{ min}$

= 27,000 gallons

6. A pump rated at 20 cfm was on for 125 minutes. How much water was pumped in gallons?

6. A pump rated at 20 cfm was on for 125 minutes. How much water was pumped in gallons?

Volume Pumped = Rate X Time

Volume Pumped =
$$20 \frac{\text{ft}^3}{\text{min}}$$
 X 125 min
Volume Pumped = $2,500 \text{ ft}^3$

2,500 ft³ X 7.48 gallon/ft³

= 18,700 gallons

ORGANIC LOADING

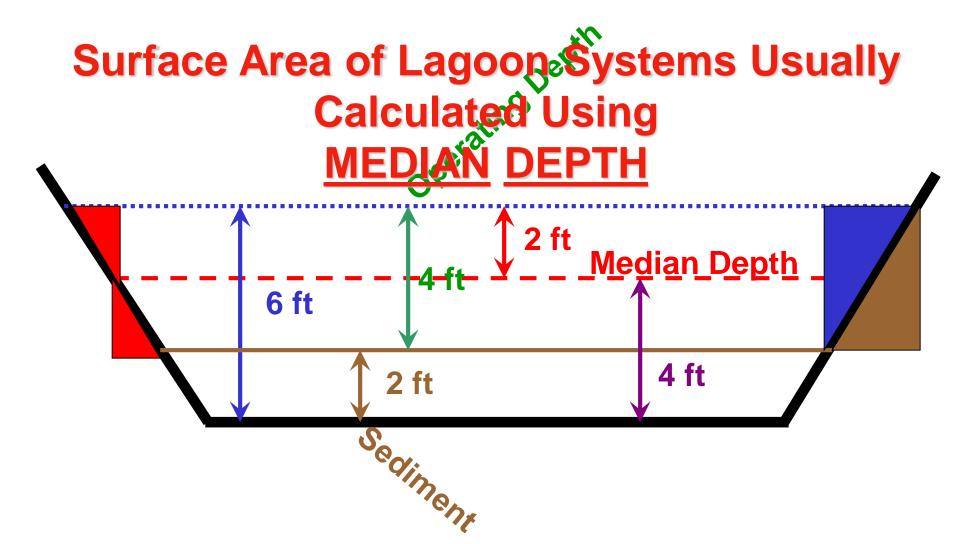
Pounds BOD per Day per Acre

= BOD, pounds per day Pond Area, acres

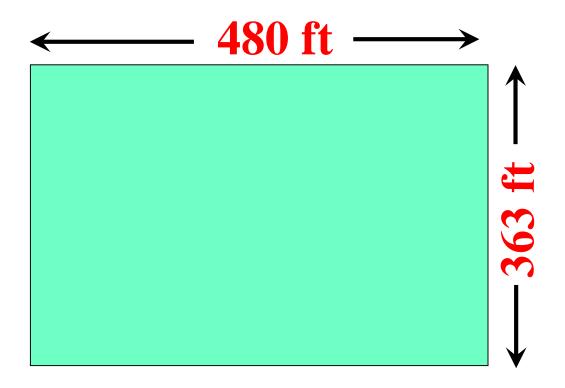
General

10 to 50 Pound BOD per Day per Acre

Michigan


20 Pounds BOD per Day per Acre ALL CELLS

35 Pounds BOD per Day per Acre SINGLE CELL


ORGANIC LOADING

Pounds BOD per Day per Acre

Surface Area

Median Depth is 1/2 the depth of the volume considered for storage.

Dimensions at MEDIAN DEPTH

A. Calculate the Surface Area at median depth in square feet.

Area is always two dimensions.

For a rectangle:

Area = Length **X** Width

Area = 480 ft. X 363 ft.

 $= 174,240 \text{ ft}^2$

B. Calculate the Surface Area in acres.

$$1 \text{ Acre} = 43,560 \text{ ft}^2$$

Area in Acres =
$$\frac{\text{Area in } \text{ft}^2}{43,560 \text{ ft}^2/\text{acre}}$$

C. Calculate the Operating Volume in cubic feet.

Volume = Length X Width X Depth

Volume = Area X Depth

 $174,240 \text{ ft}^2 \times 4 \text{ ft}$

 $= 696,960 \text{ ft}^3$

D. Calculate the Operating Volume in gallons.

Volume in Gallons =

Volume in ft^3 X 7.48 gallons / ft^3

 $696,960 \text{ ft}^3$ X 7.48 gallons / ft^3

= 5,213,261 gallons

E. Calculate the gallons per inch of depth.

Depth = 4 feet

1 foot = 12 inches

4 ft X
$$\frac{12 \text{ in}}{\text{ft}}$$
 = 48 inches

gallons
inch = $\frac{5,213,261 \text{ gallons}}{48 \text{ inches}}$

= 108,610 gal/inch

E. Calculate the gallons per inch of depth.

= 108,610 gal/inch

Use To Check:

Discharge Amount Influent Rate Meter Accuracy Leaks in Seal

F. How many inches would the water level drop if 1,310,000 gallons were discharged?

ORGANIC LOADING

Pounds BOD per Day per Acre

CALCULATION OF POUNDS

We often need to know how many pounds of material we are dealing with.

- 1. Loading on treatment system.
- 2. Calculating pounds of a chemical to add.
- 3. Calculating pounds of a material being discharged.

CALCULATION OF POUNDS

Three things must be known to calculate the POUNDS of material in a quantity of water.

- 1. The Quantity of water must be known.

 (The flow of the water stream or the volume of the tank containing the water.)
 - 2. The Concentration of material in water must be known. (Lab analysis)
 - 3. The Weight of a gallon of water

The Weight of a gallon of water is a constant.

1 gallon of water weighs 8.34 pounds

CALCULATION OF POUNDS

Pounds =

Conc. x Flow (or Volume) x 8.34 Lbs/gallon

Concentration
Of STUFF
In the
Water

Quantity

Of Water

The STUFF

Is In

X Of The Water

Flow (volume) and concentration must be expressed in specific units.

Flow or volume must be expressed as millions of gallons:

i.e.) A tank contains 1,125,000 gallons of water. How many million gallons are there?

Concentration must be expressed as parts per million parts.

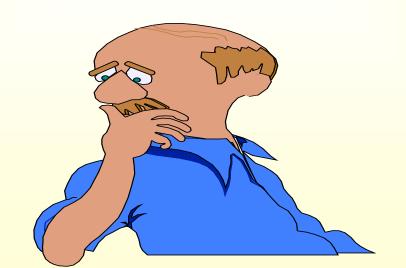
Concentration usually reported as milligrams per liter.
This unit is equivalent to ppm.

When flow (volume) is expressed as MG and conc. is in ppm, the units cancel to leave only *pounds*.

Lbs. =

Concentration x Flow (or volume) x 8.34 lbs/gallon

= Lbs.


If we enter flow rate in M gal per day (MG/D), the answer will be in lbs/day.

Lbs/day = conc. (mg/L) x flow (MGD) x 8.34 lbs gal

= Lbs./Day

The lbs formula can be rearranged to calculate flow or concentration:

b. conc. (mg/L) =
$$\frac{\text{lbs}}{8.34 \text{ lbs/gal x M gal.}}$$

The Pounds formula can be rearranged to calculate concentration or flow

Examples:

Concentration of chemical fed (Dosage).

conc. (mg/L) =
$$\frac{\text{lbs}}{8.34 \text{ lbs/gal x M gal.}}$$

Volume to discharge.

Example Pounds Calculations

1. Calculate the POUNDS of suspended solids discharged to the receiving stream if the suspended solids concentration was 18 mg/L and the plant flow was 0.20 MGD.

```
POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon
```

```
POUNDS/day = 18 mg/L X 0.20 MGD X 8.34 #/gal
```

= 30.0 Lbs./day Suspended Solids

2. Calculate the POUNDS of BOD going to a lagoon system if the influent BOD concentration was 95 mg/L and the flow was 86,000 gallons/day.

```
POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon
```

POUNDS/day =

95 mg/L X
$$\frac{86,000 \text{ gal/day}}{1,000,000}$$
 X 8.34 #/gal

= 95 mg/L X 0.086 MGD X 8.34 #/gallon

= **68.1 Lbs./day BOD**

ORGANIC LOADING

Pounds BOD per Day per Acre

= BOD, pounds per day_ Pond Area, acres 3. What is the organic loading on a 4 acre lagoon that receives a flow of 0.075 MGD with an average BOD concentration of 128 mg/L.

= 80.06 Lbs. BOD/day

Organic Load = 20.0 # BOD/day/acre

4. What is the organic loading on a 6 acre lagoon that receives a flow of 85,000 gallons per day with an average BOD concentration of 144 mg/L.

POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon

= 144 mg/L
$$\times \frac{85,000 \text{ gal/day}}{1,000,000} \times 8.34 \text{ #/gal}$$

= $144 \text{ mg/L } \times 0.085 \text{ MGD } \times 8.34 \text{ #/gal}$

= 102.08 Lbs. BOD/day

Organic Load (17.0 # BOD/day/acre

Practice Calculations

Work Calculations on Separate Paper Answers Given on Next Slides

- 5. Calculate the POUNDS of suspended solids discharged to the receiving stream if the suspended solids concentration was 15 mg/L and the plant flow was 0.12 MGD.
- 6. Calculate the POUNDS of BOD going to a lagoon system if the influent BOD concentration was 135 mg/L and the flow was 32,000 gallons/day.
- 7. What is the organic loading on a 5 acre lagoon that receives a flow of 0.15 MGD with an average BOD concentration of 142 mg/L.

8. What is the organic loading on a 2.6 acre lagoon that receives a flow of 35,000 gallons per day with an average BOD concentration of 144 mg/L.

Example Pounds Calculations

5. Calculate the POUNDS of suspended solids discharged to the receiving stream if the suspended solids concentration was 15 mg/L and the plant flow was 0.12 MGD.

```
POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon
```

```
POUNDS/day =
```

15 mg/L X 0.12 MGD X 8.34 #/gal

= 15.0 Lbs./day Suspended Solids

6. Calculate the POUNDS of BOD going to a lagoon system if the influent BOD concentration was 135 mg/L and the flow was 32,000 gallons/day.

```
POUNDS/day =
```

Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon

POUNDS/day =

135 mg/L X
$$\frac{32,000 \text{ gal/day}}{1,000,000}$$
 X 8.34 #/gal

- $= 135 \text{ mg/L} \times 0.032 \text{ MGD} \times 8.34 \text{ #/gallon}$
 - = 36.0 Lbs./day BOD

7. What is the organic loading on a 5 acre lagoon that receives a flow of 0.15 MGD with an average BOD concentration of 142 mg/L.

= 177.64 Lbs. BOD/day

Organic Load = 35.5 # BOD/day/acre

Example Pounds Calculations

8. What is the organic loading on a 2.6 acre lagoon that receives a flow of 35,000 gallons per day with an average BOD concentration of 144 mg/L.

POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon

= 144 mg/L
$$\times \frac{35,000 \text{ gal/day}}{1,000,000} \times 8.34 \text{ #/gal}$$

 $= 144 \text{ mg/L } \times 0.035 \text{ MGD } \times 8.34 \text{ #/gal}$

= 42.0 Lbs. BOD/day

Organic Load = 16.2 # BOD/day/acre

ORGANIC LOADING

Pounds BOD per Day per Acre

BOD, pounds per day_ Pond Area, acres

General

10 to 50 Pound BOD per Day per Acre

Michigan

20 Pounds BOD per Day per Acre
ALL CELLS

35 Pounds BOD per Day per Acre SINGLE CELL

Work Calculations on Separate Paper Answers Given on Next Slides

- 1. A lagoon is 725 feet wide and 725 feet long at the median epth. The operating depth is 4 feet.
 - A. What is the surface area in square feet?
 - B. What is the surface area in acres?
 - C. What is the Operating Volume in gallons.
 - D. How many inches would the water level drop if 2,620,000 gallons were discharged?
- 2. A lift station pump rated at 250 gpm was on for a total of 608 minutes. How much water was pumped in gallons AND in million gallons?
- 3. What is the detention time in a 15,725,000 gallon lagoon that receives a flow of 0. 45 MGD?
- 4. If 1,200,000 gallons were discharged from a lagoon and the effluent contained 25 mg/L of suspended solids, how many POUNDS of suspended solids were discharged?
- 5. What is the organic loading on a 12 acre lagoon that receives a flow of 0.25 MGD with an average BOD concentration of 150 mg/L.
 - 6. A lagoon is 725 feet wide and 725 feet long at the median depth. How many gallons would be contained in one inch?

- 1. A lagoon is 725 feet wide and 725 feet long at the median depth. The operating depth is 4 feet.
 - A. What is the surface area in square feet?

Area =
$$725 \text{ ft. } X 725 \text{ ft.}$$

- A lagoon is 725 feet wide and 725 feet long at the median depth. The operating depth is 4 feet.
 - **B.** What is the surface area in acres?

$$1 \text{ Acre} = 43,560 \text{ ft}^2$$

Area in Acres =
$$\frac{\text{Area in } ft^2}{43,560 \text{ ft}^2/\text{acre}}$$

= 12 acre

- 1. A lagoon is 725 feet wide and 725 feet long at the median depth. The operating depth is 4 feet.
 - C. What is the Operating Volume in gallons.

Volume = Length X Width X Depth

Volume = Area X Depth

Volume = $525,625 \text{ ft}^2 \text{ X} + 4 \text{ ft}$

 $= 2,102,500 \text{ ft}^3$

 $2,102,500 \text{ ft}^3$ X $7.48 \text{ gallons / ft}^3$

(= 15,726,700 gallons)

- 1. A lagoon is 725 feet wide and 725 feet long at the median depth. The operating depth is 4 feet.
 - D. How many inches would the water level drop if 2,620,000 gallons were discharged?

Operating Volume = 15,726,700 gallons

$$Depth = 4 feet$$

$$4 \text{ ft } X \frac{12 \text{ in}}{\text{ft}} = 48 \text{ inches}$$

= 327,640 gal/inch

- A lagoon is 725 feet wide and 725 feet long at the median depth. The operating depth is 4 feet.
 - D. How many inches would the water level drop if 2,620,000 gallons were discharged?

2. A lift station pump rated at 250 gpm was on for a total of 608 minutes. How much water was pumped in gallons AND in million gallons?

Volume Pumped = Rate X Time

Volume Pumped = 250 gal X 608 min

= 152,000 gallons

152,000 gallons 1,000,000

= 0.152 MG

3. What is the detention time in a 15,725,000 gallon lagoon that receives a flow of 0. 45 MGD?

Detention Time =
$$\frac{\text{Volume}}{\text{Flow}}$$

Det. Time = $\frac{15,725,000 \text{ gallons}}{0.45 \text{ MGD}}$

0.45 MGD X 1,000,000 = 450,000 gal/day

Det. Time = $\frac{15,725,000 \text{ gallons}}{450,000 \text{ gallons/day}}$

= 34.9 Days

4. If 1,200,000 gallons were discharged from a lagoon and the effluent contained 25 mg/L of suspended solids, how many POUNDS of suspended solids were discharged?

```
POUNDS =
```

Conc. (mg/L) X Flow (MG) X 8.34 #/gallon

 $1,200,000 \text{ gallons} \div 1,000,000 = 1.20 \text{ MG}$

POUNDS =

25 mg/L X 1.20 MG X 8.34 #/gal

= 250 Lbs. Suspended Solids

5. What is the organic loading on a 12 acre lagoon that receives a flow of 0.25 MGD with an average BOD concentration of 150 mg/L.

```
POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon
```

= 150 mg/L X 0.25 MGD X 8.34 #/gal = 312.75 Lbs. BOD/day

= 26.1 # BOD/day/acre

6. A lagoon is 725 feet wide and 725 feet long at the median depth.

How many gallons would be contained in one inch?

Volume = 725 ft. X 725 ft. X 1 in.

1 in. X
$$\frac{1 \text{ ft}}{12 \text{ in}} = 0.0833 \text{ ft.}$$

Volume = 725 ft. X 725 ft. X 0.0833 ft.

 $= 43,785 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3$

= 327,512 gal/inch

Work Calculations on Separate Paper Answers Given on Next Slides

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - A. What is the surface area in square feet?
 - **B.** What is the surface area in acres?
 - C. What is the Operating Volume in gallons.
 - D. How many inches would the water level drop if 245,000 gallons were discharged?
- 2. A lift station pump rated at 325 gpm was on for a total of 647 minutes. How much water was pumped in gallons <u>AND</u> in million gallons?
- 3. What is the detention time in a 5,250,000 gallon lagoon that receives a flow of 0. 125 MGD?
- 4. If 625,000 gallons were discharged from a lagoon and the effluent contained 23 mg/L of suspended solids, how many POUNDS of suspended solids were discharged?
- 5. What is the organic loading on a 9 acre lagoon that receives a flow of 0.15 MGD with an average BOD concentration of 144 mg/L.

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - A. What is the surface area in square feet?

Area = Length X Width

Area = 250 ft. X = 525 ft.

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - B. What is the surface area in acres?

$$1 \text{ Acre} = 43,560 \text{ ft}^2$$

Area in Acres =
$$\frac{\text{Area in } ft^2}{43,560 \text{ ft}^2/\text{acre}}$$

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - C. What is the Operating Volume in gallons.

Volume = Length X Width X Depth
Volume = Area X Depth
Volume =
$$131,250 \text{ ft}^2 \text{ X} \cdot 5 \text{ ft}$$

= $656,250 \text{ ft}^3 \cdot \text{X} \cdot 7.48 \text{ gallons} / \text{ft}^3$
= $4,908,750 \text{ gallons}$

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - D. How many inches would the water level drop if 245,000 gallons were discharged?

Operating Volume =
$$4,908,750$$
 gallons

$$Depth = 5 feet$$

5 ft X
$$\frac{12 \text{ in}}{\text{ft}}$$
 = 60 inches

- 1. A lagoon is 525 feet wide and 250 feet long at the median depth. The operating depth is 5 feet.
 - D. How many inches would the water level drop if 245,000 gallons were discharged?

= 3.0 inches

2. A lift station pump rated at 325 gpm was on for a total of 647 minutes. How much water was pumped in gallons AND in million gallons?

Volume Pumped = **Rate X Time**

Volume Pumped =
$$325 \frac{\text{gal}}{\text{min}} \times 647 \text{ min}$$

3. What is the detention time in a 5,250,000 gallon lagoon that receives a flow of 0.125 MGD?

$$Det. Time = \frac{Volume}{Flow}$$

$$Det. Time = \frac{5,250,000 \text{ gallons}}{0.125 \text{ MGD}}$$

$$0.125 \text{ MGD X } 1,000,000 = 125,000 \text{ gal/day}$$

$$Det. Time = \frac{5,250,000 \text{ gallons}}{125,000 \text{ gallons/day}}$$

$$= 42 \text{ Days}$$

4. If 625,000 gallons were discharged from a lagoon and the effluent containd 23 mg/L of suspended solids, how many POUNDS of suspended solids were discharged?

```
POUNDS =
```

Conc. (mg/L) X Flow (MG) X 8.34 #/gallon

625,000 gallons \div 1,000,000 = 0.625 MG

POUNDS =

23 mg/L X 0.625 MG X 8.34 #/gal

= 120 Lbs. Suspended Solids

5. What is the organic loading on a 9 acre lagoon that receives a flow of 0.15 MGD with an average BOD concentration of 144 mg/L.

Organic Load =
$$\frac{\text{Pounds BOD/day}}{\text{Acre}}$$

POUNDS/day = Conc. (mg/L) X Flow (MGD) X 8.34 pounds/gallon

= 144 mg/L X 0.15 MGD X 8.34 #/gal = 180 Lbs. BOD/day

Organic Load =
$$\frac{180 \text{ Lbs. BOD/day}}{9 \text{ Acre}}$$

= 20 # BOD/day/acre

WASTEWATER STABILIZATION LAGOON PROCESS

Prepared by
Michigan Department of Environmental Quality
Operator Training and Certification Unit

