معالجة الصرف الصناعي للمنشآت الصناعية والتي تعمل بنشاط: تصنيع بطاريات السيارات

مقدمة:

صناعة بطاريات السيارات من الصناعات الملوثة للبيئة وتعد من التصنيف البيئي ج - balck list نظرا للملوثات الناتجة عن تلك الصناعة

إلا أنة حديثا تغير مفهوم الصناعة لذالك النشاط نظرا لدخول الأنظمة الحديثة الاتوماتيكية لتلك الصناعة والتي تعمل بشكل قوى على زيادة وسائل الأمان وتقليل عوامل الاحتكاك بين العامل البشرى والمواد الملوثة الضارة بالعامل البشرى

<u>الصرف الصناعي لتلك الصناعة :</u>

وبخصوص الصرف الناتج عن تلك الصناعة فأنة يختلف باختلاف نظام التصنيع والشركات المصنعة لتك الخطوط

وفى هذا الجزء سوف نقوم بشح طرق المعالجة على أسوأ أنظمة التصنيع والتي ينتج عنها صرف ملوث وغير مطابق للوائح والقوانين المنظمة للصرف على شبكة المجارى العامة

ويحتوى الصرف الناتج عن تلك الصناعة على:

- أكسيد الرصاص
- 🗸 انخفاض حاد في الأس الهيدروجيني
 - 🗸 بقایا رصاص
 - 🗸 ارتفاع في العوالق الصلبة

<u>النواحي الايجابية لعملية المعالجة :</u>

من المميزات الملحوظة في البنود السابق ذكرها هو عدم احتوائها المطلق على اى من المواد العضوية بمياه الصرف وبالتالي مما يسهل في عملية المعالجة ويقلل بشكل قوى في المساحة المطلوبة لعملية المعالجة نظرا للانخفاض بل انعدام المواد العضوية والتي تعمل على زيادة حجم الوحدة المخصصة للمعالجة طبقا للكود المصري.

كما انة من المميزات الهامة جدا في هذا النظام ان جميع المؤشرات الموجودة بالعينة او بطبيعة مياة الصرف جميعها تمثل قيمة اقتصادية عالية جدا جدا حيث انة وجد وبالتجربة الفعلية ان هذا النظام من المعالجة يعمل على استعادة الخامات او المواد التي تمثل قيمه مادية عالية وإعادة استخدامها مرة أخرى في العملية الإنتاجية متاح .

<u>ومن تلك المواد ذات القيمة المادية العالية </u>

- 1. حامض الكبريتيك المخفف الناتج عن عملية الشحن بتجديد المحتوى الموجود داخل غرف الشحن وتحضير الحامض وخلافة حيث انة يتم التخلص من الشوائب الموجودة بالحامض عن طريق بعض الفلاتر المخصصة لذلك ويتم ضبط تركيز الحامض وإعادة استخدامه مرة أخرى ومن النواحي الايجابية في عملية إعادة استخدام الحامض هو التوفير الاقتصادى الشديد من ناحية:
 - التقليل من الفاقد وإعادة الاستخدام

- عملية صرف الحامض بمياة الصرف يعمل على خفض الاس الهيدروجيني للمياه
 وبالتالي لابد من معالجتها بالمعادلة بمادة قلوية ومنها هيدروكسيد الصوديوم مما
 يرفع من التكلفة
 - الرصاص وهو من المواد مرتفعة السعر وعملية استخدامها مرة اخرى ذو طبيعة ايجابية عن طريق دخوله بالعملية الإنتاجية بعد التخلص من عض الشوائب أثناء اعادة الاستخدام بالصهر
 - اكسيد الرصاص وهو ايضا من المواد
 ذو القيمة المرتفعة وينتج من عملية
 انتاج العجينة المستخدمة في العملية الإنتاجية

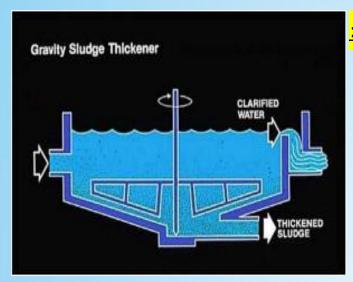
حيث تعد هذه المؤشرات هامة جدا في الحكم على عدم صرف تلك المياه الصناعية الا بعد الالتزام بمعالجتها على وجه السرعة وتأثيرها الفعلى على نسب دخول محطات معالجة الصرف الصحى والصناعى وتأثيرها السلبى على نسب خروج الصرف المعالج .

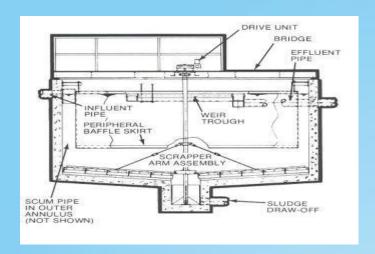
<u>الموقف البيئي :</u>

وسائل التحكم السابق ذكرها هامة جدا واستخدامها في مراحل الانتاج عن طريق

- تركيب منظومة اعادة استخدام الحامض قبل صرفة على المجارى

- تركيب منظومة إعادة استخدام اكاسيد الرصاص عن طريق منظومة الترشيح باستخدام مرشحات الضغوط
 - ترسيب الرصاص وإعادة استخدامه مرة أخرى

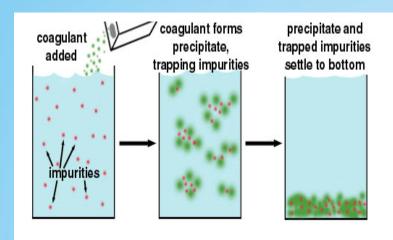

يعمل على تقليص نظام المعالجة بصورة عالية جدا وما يتبقى بمياه الصرف سوى بعض المخلفات البسيطة وانخفاض بسيط بالأس الهيدروجيني وبعض المواد العالقة او المواد سابقة الذكر الناتجة عن بعض عوامل الترسيب وعدم الإحكام الجيد لوسائل التقليل

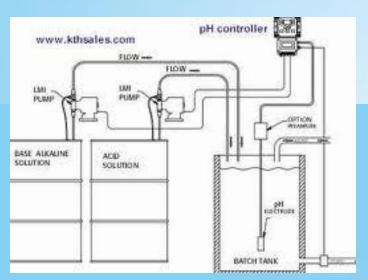

بالنظر في طبيعة مياه صرف تلك المصانع — على اسوأ الاحتمالات — فأنها تحتوى على نسب مواد عالقة لا تتجاوز حدود القانون وبالتالى تم تطبيق لوائح وقوانين تعمل على حماية تلك الشبكات والمحطات وتغريم تلك المصانع والشركات رسوم اعباء التنقية لحين الالتزام بأعمال المطابقة مع العلم بان معالجة الصرف الصناعي لتك المصانع من السهولة بمكان حيث انها تخضع لنظام المعالجة الكيمافيزيائية .

<u>وتتخلص المعالجة في اللاتي :</u>

- <u>احواض ترسيب ابتدائية وتحتوي على :</u>

أحواض ترسيب ابتدائية وتعتمد
 احجام تلك الاحواض على معدل
 التصرف وعلى نسبة المواد العالقة
 الموجودة بالعينة




تحتوى هذه الأحواض على منظومة سحب الرواسب ومنها إلى أحواض التجفيف للاستفادة من تلك المواد الناتجة عن عملية الترسيب

- احواض المعالجة الكيماوية:

وتتكون من عدد من حوض معالجة كيماوية يختلف الحجم حسب معدل التصرف للمياه الناتجة - مياه الصرف ويتم إضافة مادة هيدروكسيد الصوديوم بالخزان الأول للوصول الى الأس الهيدروجيني الى التعادل ومن المفضل استخدام اجهزة التحكم بالاس الهيدروجيني والتي تعمل اتوماتيكيا ويفضل ان تكون مزدوجة الإشارة

ويتم استخدام بعض المواد ذات الكفاءة العالية في عملية الترسيب والتي تعمل على تقليل فترة الترسيب

والمساعدة في التخلص من المواد الناتجة عن عملية المعالجة

وأحواض الترسيب دائرية يتم معالجة المياه كيماويا بداخلها وتحتوى على قلاب من أعلى للمساعدة على الخلط وحسب معدل التصرف يتم اختيار نظام المعالة الكيماوية المتوالى او المنفصل وهما:

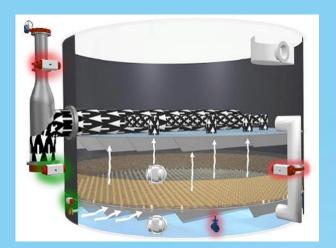
متوالي

- يحتوى على عدد اثنين خزان او اكثر حسب عدد المواد التي يتم المعالجة
 بها على ان يتم حقن المادة الاولى بالخزان الاول مع التقليب المستر ومنها
 الى الخزان اثانى ويتم اضافة المادة الثانية مع التقليب بالسرعة المطلوبة
 مع الاحتفاظ في كل المراحل بزمن التفاعل معتمدا على كمية المادة
 المعالجة مع حجم الخزان .
 - يستخدم هذا النظام في حالة معدلات التصرف العالية

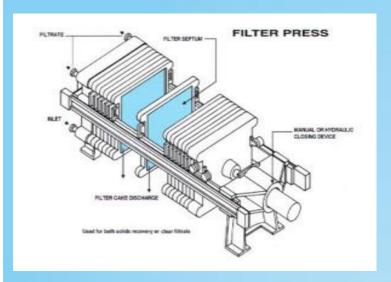
المنفصل:

- ويتم حقن جميع المواد بالتوالي في خزان واحد معتمدا على الاحتفاظ بزمن التفاعل في كل مرحلة حقن
 - ويستخدم هذا النظام في حالة ان يكون معدل التصرف قليل

- احوض الترسيب النهائية:


تحتوى منظومة المعالجة على احواض ترسيب مابعد المعالجة الكيماوية لترسيب ماتم معالجته من مواد عالقة بمياه الصرف معتمدا في تصميمها على معدلات التصرف وحجم المواد الراسبة والعوالق

كما انة من المفضل استخدام اى من الوسائل المساعدة في عملية الترسيب ومنها انابيب الترسيب او شرائح اللاميلا


عما بأنة لابد من صرف المياه مباشرة من أحواض المعالجة الى أحوض الترسيب لضمان عملية المعالجة

والتي ينتج عنها تكوين مواد هلامية تتكون بعد إضافة هيدروكسيد الصوديوم ترسب اكاسيد الرصاص

- احواض تجفيف الرواسب

احواض تحتوى على منظومة تجفيف لنزع المياة من الرواسب حيث تمثل المياة نسبة لاتقل عن 50 % من اجمالى الحجوم .

يستخدم أيضا الفلتر برس للاستفادة
 التامة من جميع المواد الناتجة عن
 عمليات الترسيب ذو القيمة العالية

وشكرا ونرجو الإفادة للجميع

تأليف: عدلي السيد عبدا لله Adli hc@yahoo.com -----00201116863131