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a b s t r a c t

Large amounts of data are increasingly accumulated in the energy sector with the continuous application

of sensors, wireless transmission, network communication, and cloud computing technologies. To fulfill

the potential of energy big data and obtain insights to achieve smart energy management, we present a

comprehensive study of big data driven smart energy management. We first discuss the sources and

characteristics of energy big data. Also, a process model of big data driven smart energy management is

proposed. Then taking smart grid as the research background, we provide a systematic review of big data

analytics for smart energy management. It is discussed from four major aspects, namely power gen-

eration side management, microgrid and renewable energy management, asset management and col-

laborative operation, as well as demand side management (DSM). Afterwards, the industrial develop-

ment of big data-driven smart energy management is analyzed and discussed. Finally, we point out the

challenges of big data-driven smart energy management in IT infrastructure, data collection and gov-

ernance, data integration and sharing, processing and analysis, security and privacy, and professionals.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid development of sensor technology, wireless

transmission technology, network communication technology,

cloud computing, and smart mobile devices, large amounts of data

has been accumulated in almost every aspects of our lives.

Moreover, the volume of data is growing rapidly with increasingly

complex structures and forms. A research report of International

Data Corporation (IDC) [1] pointed out that 1.8ZB data were cre-

ated and replicated in 2011 worldwide, and it is estimated that this

figure will increase by 50 times by the year 2020. The big data era

has arrived [2].

In the energy sector, large amounts of energy production and

consumption data are being generated and the energy systems are
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being digitized, with the increasing penetration of emerging

information technologies [3]. The innovations brought by big data

are changing the landscape of traditional energy industry. Cur-

rently, the energy sector is facing various challenges [4], such as

challenges in operational efficiency and cost control [5], system

stability and reliability [6], renewable energy management [7],

energy efficiency and environmental issues [8], as well as con-

sumer engagement and service improvement [9]. To better deal

with these challenges, energy big data analytics provide new

opportunities by achieving smart energy management. Specifi-

cally, to achieve the goals of clean power generation, efficient

power transmission, dynamic power distribution and rational

electricity consumption, smart grid that incorporates distributed

generation resources and innovative storage solutions have been

proposed [10–14]. Smart grid introduced the concept of “infor-

mation flow”. It is designed to integrate information flow and

energy flow, thus achieving data collection and energy transmis-

sion at the same time [4]. In smart grid, large amounts of and

various types of data, such as device status data, electricity con-

sumption data, and user interaction data, are being collected.

Then, many data analysis techniques, including optimization [15–

17], forecasting [18–20], classification and clustering [21–25], can

be applied on the large amounts of smart grid big data. Thereby,

power generation and operation can be optimized in real time,

electricity demand can be predicted accurately, electricity con-

sumption patterns can be discovered precisely, and dynamic pri-

cing mechanisms can be developed effectively. Based on big data

analytics, smart grid can detect and restore from failures rapidly,

response electricity demand quickly, supply more reliable and

economical energy, and enable customers to have more control

over their energy use [26]. Big data analytics can provide effective

and efficient decision support for all of the producers, operators,

customers and regulators in smart grid.

Big data is changing the way of energy production and the

pattern of energy consumption. Energy big data have brought

opportunities and challenges at the same time for us. Some of the

primary and urgent challenges include: (a) how to effectively

collect, store and manage the energy big data; (b) how to effi-

ciently analyze and mine the energy big data; (c) how to use the

energy big data to support more effective and efficient decision

makings; (d) how to get insights and obtain values from the

energy big data; and (e) how to effectively prevent risks and

protect privacy while utilizing the energy big data.

To realize the full potential and deal with the various chal-

lenges of energy big data, as well as get insights to achieve smart

energy management, we present a systematic and comprehensive

study of big data driven smart energy management in this paper.

To the best of our knowledge, this is the first attempt to system-

atize both the extraordinary opportunities and the tough chal-

lenges of big data in energy sector. In the next Section, we discuss

the sources and characteristics of energy big data, and propose a

process model of big data driven smart energy management. Then

in Section 3, taking smart grid as a research background, we pre-

sent the research issues of big data driven smart energy man-

agement from four major aspects, namely the power generation

side management, microgrid and renewable energy management,

asset management and collaborative operation, and demand side

management (DSM). The industrial development of big data dri-

ven smart energy management is also surveyed and discussed.

Finally, Section 4 provides the summary and future challenges of

big data driven smart energy management.

2. Energy big data and smart energy management

2.1. Sources of energy big data

In a certain sense, smart energy system can be regarded as the

convergence of the Internet and the various intelligent devices and

sensors spread throughout the energy system [27]. In smart grid,

the main source of data is the advanced metering infrastructure

(AMI) [28,29], which is one of the underlying enabling technolo-

gies of smart grid. AMI deploys a large number of smart meters

and other measuring terminals at the end-user side.

The smart meters usually collect customers’ electricity con-

sumption information every 15 mins, and the meter readings

alone have created and accumulated massive amount of data. It is

estimated the number of readings will surge from 24 million a

year to 220 million per day for a large utility company when the

AMI is adopted and implemented [30]. A large amount of meter

reading data will be collected in a distribution network with

1 million metering devices, and the volume of the data can grow

exponentially. If the size of each collection record is 5 Kb, the

amount of records and the volume of data with different collection

frequencies in a year are shown in Table 1.

Table 1 indicates that the large amounts of AMI data grow very

quickly. When the data are collected every 15 mins by the 1 mil-

lion metering devices, the total records will reach 35.04 billion and

the volume of meter reading data will surge up to 2920 Tb.

Nevertheless, the big data in smart grid are not just the meter

data. Many other intelligent devices like BAS, sensors and ther-

mostats used throughout the whole process of power generation,

transmission, distribution, substation and consumption are also

collecting vast quantities of data. Ref. [32] summarizes four types

of big data sources in utilities, namely AMI data (smart meters),

distribution automation data (grid equipment), third-party data

(off-grid data sets), and asset management data (firmware for all

smart devices and associated operating systems).

The weather data, such as the angle of the sun, wind speeds

and temperature, play an important role in supporting smart

energy management. For example, the weather data can be used

for renewable energy power generation forecasting, system fault

identification, and user energy consumption forecasting, thus

supporting the decision-makings of different participants in

energy systems. It is believed that weather data, mobile data,

thermal sensing data, Hadoop and energy database, clean energy

data, electric vehicle data, transmission line sensor, real estate

data, dynamic pricing, and energy consumption control through

behavioral analysis are the ten ways that big data is remaking

energy and utilities [33]. It is estimated that weather data will one

day become the next generation infrastructure platform of energy-

saving services and applications, like maps and location data that

form the basic platform for a lot of services. Currently, industry has

realized the significance of weather data. WeatherBug, founded in

1992, is a company that provides live weather data, information

and services. In 2010, it has launched its smart grid products and

solutions, by selling its weather services to the smart grid industry

[34,35].

In addition, the Geographic Information System (GIS) data is

also an integral part of energy big data. GIS is a traditional source

Table 1

The amount of data collected by 1 million metering devices in a year.

Collection frequency 1/day 1/hour 1/30 min 1/15 min

Records (billion) 0.37 8.75 17.52 35.04

Volume of data (Tb) 1.82 730 1460 2920

Source: Ref. [31]
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of big data, which can provide important decision supports for

energy systems [36,37]. GIS data describe the geographic features

of a certain region, and it mainly include spatial and attribute data.

GIS data have some specific characteristics compared with other

kinds of data. First, GIS data not only include the general attribute

data of geographic features, but also a lot of spatial data that

describe the spatial distribution of geographic features. Second,

GIS is a complex giant system that describes resources and

environment using a variety of data. The amount of data is huge.

Third, the GIS data are not updated in real-time. The GIS database

usually has a long update cycle. The GIS big data can play many

important roles in supporting smart energy management. For

example, in smart grid environment, the GIS data layers can be

used to correlate electrical networks to geographical locations.

Due to the fact that energy big data are collected from many

different sources by different data acquisition devices, database

integration becomes a crucial aspect in energy big data analytics.

The data from different platforms and applications are usually

heterogeneous, independent and mutually closed. Also, the data

structure, format and quality vary widely. Many big data analysis

tasks cannot be completed without data integration. Currently,

many models and approaches of database integration have been

proposed [38–40].

2.2. Characteristics of energy big data

Businesses and organizations can “extract value from very large

volumes of a wide variety of data by enabling high-velocity cap-

ture, discovery, and/or analysis” [41]. Therefore, big data have the

characteristics of “4V”, i.e., volume, velocity, variety and value [41–

43]. For the energy big data, their “4V” characteristics are reflected

in the following aspects.

Volume. The introduction of smart metering devices and sensors

in smart energy systems, as well as the combination of other data

sources, present many new opportunities as well as many tough

challenges. The first challenge is the massive amount of data.

Though the volume of energy big data may not equal to those

generated by traditionally data-intense industries, the large amount

of data also present a big challenge for energy sector. This challenge

is not only reflected in the storage side, but more importantly in the

analysis and processing of the energy big data [31].

Velocity. This characteristic refers to the speed requirement for

collecting, processing and using the energy big data. In smart

energy systems, the speed of data collection and processing are

very fast ranging from 5- or 15 mins interval to sub-second

interval. There are many streaming data and relatively large

volume data movement. For the many real-time tasks in smart

energy systems, such as equipment reliability monitoring, outage

prevention or security monitoring, the analytical algorithms that

need many hours or more time to run are not competent.

Variety. Variety means the increasing complex of data types. In

smart energy systems, the data are not only traditional structured

relational data, but also many semi-structured data like the

weather data and Web services data, as well as unstructured data

like customer behavior data and the audio and video data. The

energy big data is a mix of structured, semi-structured and

unstructured data [26]. With the increasing utilization of social

media and call center dialogs in energy sector to support decision

makings, the energy big data will become more varied.

Value. Energy big data itself is meaningless unless valuable

knowledge that supports effective and efficient decision makings

throughout the energy management process can be discovered.

We can get insights from the energy big data to promote consumer

engagement and efficiency improvement, to enhance system

reliability, to understand energy consumption patterns, and to

develop competitive marketing strategies. Also, the value of

energy big data is sparse, which means that the knowledge mined

and the value obtained from large amounts of data may be limited.

Therefore, in the era of big data, we should pay more attention to

the overall data rather than the sample data [44].

Besides the “4V” characteristics of energy big data, Ref. [45]

also presented the “3E” (energy, exchange and empathy) char-

acteristics of energy big data. Energy (data-as-an-energy) means

that energy savings can be achieved by big data analytics.

Exchange (data-as-an-exchange) refers to that the big data in

energy system need to exchange and integrate with the big data

from other sources to better realize its value. Empathy (data-as-

an-empathy) means that better energy services can be provided,

users’ needs can be better satisfied, and consumer satisfaction can

be improved based on energy big data analytics.

The “4V” and “3E” characteristics of energy big data are shown

in Fig. 1.

2.3. Data-driven smart energy management

To achieve the smart energy management objectives based on

big data analytics, we propose a process model of big data driven

smart energy management, as shown in Fig. 2.

Fig. 2 indicates that it consists of seven major steps for big data

driven smart energy management tasks. In the process model,

data collection, transmission, storage, cleaning, preprocessing,

integration and feature selection are important preparation phases

for big data mining. Then, data mining and knowledge discovery is

the key step and the core content of big data driven smart energy

Fig. 1. “4V” and “3E” characteristics of energy big data.

Big Data Analytics for Smart Energy Management

Smart energy management

Intelligent decision-making and real-time interaction

Representation, visualization and application

Data mining and knowledge discovery

Data integration and feature selection

Data cleaning and preprocessing

Data collection, transmission and storage

Fig. 2. A process model of big data driven smart energy management.
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management. Afterwards, the knowledge extracted from energy

big data should be represented, visualized and applied, thus sup-

porting the decision making and control throughout the energy

system. Finally, the various smart energy management objectives,

including energy efficiency, consumer engagement, real-time

monitoring, demand response, intelligent control, and dynamic

pricing, can be achieved.

Big data analytics play an important role in the whole process

of smart grid management, including power generation, power

transmission, and power distribution and transformation, as well

as demand side management.

For smart grid, the whole process decision support of big data is

shown in Fig. 3.

The application of these energy big data means significantly

improved efficiency and new business opportunities. Based on the

big data analytics and services, energy is now being saved in ways

that were not possible in the past. It is reported that installing

smart meters could generate between $40 and $70 in annual

savings for each customer [30]. Through the various advanced data

collection, processing, analysis and visualization tools and tech-

niques, we can discover new trends and patterns, optimize exist-

ing business processes to drive productivity and operational effi-

ciency, discover hidden values, and get additional insights from

the energy big data. GTM Research has estimated that the value of

the global utility data analytics market at a cumulative $20 billion

between 2013 and 2020, growing from $1.1 billion in 2013 to $3.8

billion globally in the year 2020 [46].

3. Research status and industrial development of big data

driven smart energy management

3.1. Research status of big data driven smart energy management

In smart grid environment, the studies of big data analytics

based decision support and intelligent control are mainly in the

following four aspects, namely, power generation side manage-

ment, microgrid and renewable energy management, asset man-

agement and collaborative operations, and DSM.

Based on big data analytics, power generation and planning

can be optimized. Power generation planning [47–49] and eco-

nomic load dispatch (ELD) [50–52] are two of the most important

decision making processes in power generation. Taking advantage

of the widely collected energy big data and advanced big data

analytics techniques, the energy production efficiency can be sig-

nificantly improved and the production costs can be greatly

reduced.

Renewable energy is an important part of modern energy

systems. Microgrid [53] is a promising distributed power genera-

tion model which integrates the renewable energy power gen-

eration. In smart grid, wind power and solar power are two major

renewable energy power generation methods. However, their

outputs are significantly affected by weather conditions. Big data

analytics play an important role in renewable energy and micro-

grid management. For example, renewable energy power genera-

tion forecasting will be more accurate and efficient based on the

massive weather data analysis. The integration of energy produc-

tion and consumption data, GIS data, and the weather data (e.g.,

temperature, atmospheric pressure, humidity, cloud cover, wind

speed, and wind direction) can support the sites selection of

renewable power generation devices, thus to improve power

output and energy efficiency.

Power industry is a typical asset-intensive industry. Both the

power generation companies and the power grid enterprises often

face many asset management problems, such as resource sharing,

asset retirement monitoring, operation and maintenance man-

agement, procurement monitoring, and inventory management.

The efficiency of asset management and collaborative operation

can be improved based on energy big data analytics. The data of

production, operation, marketing and management can be inte-

grated, and data sharing can be achieved throughout power gen-

eration, transmission, transformation, distribution, and consump-

tion. By coordinating the management of electricity production,

operation, maintenance, and sales, the allocation of resources can

be optimized and the production efficiency and resource utiliza-

tion rate can be improved. The power grid reliability and stability

can also be improved by means of big data analytics. The massive

sensor data collected from power system infrastructure, combined

with advanced big data analysis and visualization techniques can

change the traditional ways of power system operation and

maintenance. Thus, the efficient operation, real-time monitoring

and fault diagnosis, and intelligent scheduling management of

power system can be achieved. The risk and unnecessary expenses

of manual operation can be reduced, and the reliability of power

Fig. 3. Whole process decision support of big data for smart grid management.
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Table 2

Some research on big data driven smart grid management.

Tasks Data sources Methods Refs.

Power generation side management Power generation planning Carbon emission data, generating units data Constraint programming, fuzzy possibilistic model [47–49]

Technology cost and performance data Constraint programming and compromised modeling [62–64]

Generating cost data, budget and capacity constraints data

etc.

Portfolio-theory, dynamic programming [65, 66]

Economic load dispatch (ELD) Load demand, generator parameters, transmission loss Biogeography-based optimization (BBO) algorithm [17, 50]

Load demand, operating zones data, transmission loss Particle swarm optimization (PSO) based methods [51, 52, 67–69]

Load demand, operating zones data, ramp-rate limits data Differential evolution based methods [70–72]

Load demand, generator parameters Harmony search based methods [73–76]

Microgrid and renewable energy

management

Microgrid optimal load distribution Load demand, distributed generator parameters Single-objective and multi-objective optimization [16,77–79]

Investment planning Cost data, distributed generator capacity data Cost–benefit analysis [80,81]

Wind power forecasting Past power measurements, wind speed and direction Self-organized map, quantile regression, artificial neural network,

time series models, support vector machine (SVM)

[82–87]

Solar power forecasting Past power measurements, meteorological forecasts of solar

irradiance, relative humidity and temperature

Time series models, autoregressive (AR) models, artificial neural

network

[88–92]

Hybrid wind-solar power generation Wind and solar power generation, load demand, energy sto-

rage data

Time series analysis, system control, operational management [93–96]

Asset management and collaborative

operations

Asset management Condition monitoring data, operating observations, network

data, component reliability data

Condition assessment techniques, the Health Index, reliability-

centered method, service-oriented architecture

[97–101]

Operation and control Substation data, operation conditions data Automated analysis, credibility theory, random fuzzy model [102,103]

Fault diagnosis Diagnostic signatures, control signal, local current and voltage

signals

Qualitative physics based approach, multi-agent system, wavelet

based methods, artificial neural network, SVM

[104–106]

System reliability Improvement Load data, failure data, equipment information Sequential Monte Carlo simulation, fault tree analysis, risk

importance measures

[107–109]

Demand side management (DSM) Load forecasting Historical load data, temperature, wind speed, cloud cover Neural Networks Approach [18,110,111]

Support vector regression [20,112]

PSO based methods [113,114]

Ant colony optimization [115,116]

Hybrid approaches [117–119]

Load classification and consumers

segmentation

Load profiles, electricity consumption data Fuzzy c-means (FCM) clustering [21,120,121]

K-means clustering [122,123]

Hierarchical clustering [124,125]

Self-organized Mapping (SOM) [126]

Dynamic pricing (variable pricing or

real-time pricing)

Load demand, power supply, user behavior data Simulations, least-squares SVM, economic modeling [58–60]

User response to dynamic pricing Load demand, time-of-use rates, critical-peak pricing (CPP)

tariffs

Survey, empirical studies, linear programming, price prediction [127–129]

Non-technical loss (NTL) detection Historical load data, customer load profiles, electricity con-

sumption behavior information

SVM based method, harmony search, Bayesian networks, decision

trees

[130–133]
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Table 3

Some companies that provide big data-driven smart energy management products and services.

Company Founded Brief introduction Big data-driven products or services Refs.

3TIER 1999 An integrated suite of renewable energy assessment, forecasting, and asset optimization

services delivered to customers.

Solutions: Renewable energy project feasibility, energy marketing, and asset management. [135]

EnerNOC 2001 A provider of energy intelligence software and services for customers, electric power

grid operators and utilities.

Products: DemandSMART™, EfficiencySMART™, SupplySMART™, EnerNOC Demand

Resource™, EnerNOC Demand Manager™, EnerNOC's Network Operations Center (NOC).

Services: Demand response and demand management, energy consumption and energy

project management, energy supply and utility bill management.

[136]

Silver Spring

Networks

2002 It delivers the open, standards-based networking platform, software and services for

utilities and cities to support multiple smart grid and smart city applications and ser-

vices on a single, unified network.

Products: Smart Energy Platform™ (including metering devices, distribution automation

devices, in-home devices, network infrastructure, and software solutions). Services: Business

system integration, customer support, hosting choices, installation support, mesh design,

monitoring and maintenance, and training.

[137]

Tendril 2004 A utility-to-home-energy-management company that provides the infrastructure, ana-

lytics, and understanding required to deliver personalized energy services.

Product: Data-driven Energy Service Management (ESM) platform. Services: Energy effi-

ciency, demand management, customer engagement.

[138]

EcoFactor 2006 A company that delivers predictive cloud-based home energy management platforms,

automated energy savings, comfort and control through energy efficiency, demand

response and HVAC performance monitoring services.

Products: Cloud-based energy platform and open thermostat APIs. Services: Proactive

energy efficiency, optimized demand response, and HVAC performance monitoring.

[139]

Efergy 2006 A global manufacturer of energy monitors and energy saving products. Products: Wireless energy monitors. Services: Energy consumption monitoring, energy

usage information, carbon footprint, energy saving.

[140]

EnergyHub 2007 A provider of cloud-hosted software platform, web and mobile apps, and smart devices

for managing energy use in homes and small businesses.

Product: Mercury smart thermostat platform. Services: Real-time energy usage information,

remote monitoring and control energy management, notifications, peak power reduction,

energy saving, energy efficiency, and customer engagement.

[141]

Opower 2007 A provider of cloud-based software platform to enable utilities to achieve energy effi-

ciency, customer engagement and demand response, and present insights and sug-

gestions to consumers to motivate reductions in household energy consumption and

enable savings for the individual.

Product: Cloud-based software platform Opower 5-Flex. Services: Energy efficiency, custo-

mer engagement, demand response, thermostat management.

[142]

C3 Energy 2009 A SaaS analytics company that leverage big data, grid analytics, social networking, and

cloud computing to improve energy efficiency, customer engagement, and smart grid

operations.

Products: C3 Energy Smart Grid Analytics™, C3 Energy Grid Analytics™, and C3 Energy

Customer Analytics™. Services: Revenue protection, outage analysis, prediction & restora-

tion, AMI operations, reliability & safety, voltage optimization, customer segmentation &

targeting, demand response, substation automation, volt/VAR optimization, energy effi-

ciency, customer engagement, etc.

[143]

FirstFuel 2009 An energy analytics company that helps utilities and government agencies deliver

scalable energy efficiency across their commercial building portfolios.

Product: Remote Building Analytics (RBA) platform. Services: Energy efficiency, meter data

analytics, improving commercial building efficiency, energy management information

systems.

[144]

Grid Navigator 2009 A provider of intelligent energy management systems (EMS) for commercial & industrial

applications.

Products: BACnetXchange server, GridRadar, smart thermostat, lighting widget. Services:

Energy management system, lighting system, and solar metering solution.

[145]

Simple Energy 2010 A SaaS company that motivates people to save energy. Products: Engagement Platform (Energy Insights, Energy Community, Energy Rewards),

Marketplace (a utility branded e-commerce platform).

[146]

Nest 2010 A home automation company that designs and manufactures sensor-driven, Wi-Fi-

enabled, self-learning, programmable thermostats and smoke detectors.

Products: Nest Thermostat and Nest Protect. Services: Auto-schedule, personalized services,

remote control, automatic updates, sensing and learning, multiple devices communications,

smoke and carbon monoxide detection.

[147]

AutoGrid 2011 It is dedicated to organize the energy big data and make it useful and actionable for

electricity generators and providers, grid operators and customers, by its scalable

software system.

Products: Energy Data Platform (EDP), Demand Response Optimization and Management

System (DROMS). Services: Real-time load forecasting and event monitoring, demand

management, modeling of grid physics, measurement, verification, analytics and reporting.

[148]

Bidgely 2011 A technology company providing innovative energy monitoring & management

solutions.

Solutions: Customer engagement, energy efficiency, demand management, and utility

insights.

[149]

Big Data Energy

Services

2012 A cloud-based service provider and consultancy providing data services for demand

response, data analytics, meter data and transaction management.

Solutions: Big data analytics, data transformation & management, demand response, set-

tlement & forecasting.

[150]

Note: The companies are sorted according to their founded years.
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grid system can be improved. In addition, based on the energy

consumption data and the correlation analysis between network

failures and power outages, the fault locations can be precisely

identified, and real-time fault diagnosis and recovery can be

achieved. Also, through the real-time monitoring, collection and

analysis of energy consumption data, peak load shifting can be

carried out to reduce the risks of power failure and grid collapse.

The weather data is also important in enhancing system reliability

and stability. The particular weather patterns discovered can be

used to predict future outages and identify the problem positions

or areas, thus leading to faster failure warnings and recovery [30].

DSM is one of the most extensive application areas of big data

analytics, ranging from consumer segmentation to dynamic pri-

cing [54]. A lot of valuable knowledge can be discovered from the

massive electricity consumption data collected in near real time by

intelligent metering devices. This knowledge can support many

demand side decision makings and marketing strategies devel-

opment. Load forecasting [55] is an important research content in

smart grid, which means the forecasting of future load demand

based on historical load data, weather data, and social factors, etc.

For different purposes, load forecasting can be divided into short

term, medium term and long term load forecasting. Currently,

many load forecasting models and methods have been proposed

[18,20,56]. Load classification [21,57] is the process to partition

different load profiles into groups using the various clustering

methods. The energy consumption patterns of different users can

be identified by load classification, which can support the devel-

opment of competitive marketing strategies and the offering of

personalized energy services. It can also help different consumers

develop their energy saving plans at the same time. Dynamic

pricing [58–60], also referred to variable pricing or real-time pri-

cing, can guide the user’s energy consumption behaviors and

improve the reliability of power system by different pricing stra-

tegies. Knowing how customers respond to dynamic pricing pro-

grams is also a field where analytics can play an important role

[61]. It is also possible to use massive metering data and big data

analytics to analyze energy diversion, identify grid loss, and

prevent theft.

Table 2 shows a summary of the data sources, common

methods and some references of different big data driven smart

grid management tasks.

In addition, risks and privacy are key issues throughout the

whole process of big data driven smart energy management. To

fully achieve the economic and social benefits of energy big data,

individuals’ privacy must be effectively protected and the potential

risks of using data must be reasonably avoided. Therefore, both

technological and non-technological measures are important to

re-conciliate the benefits and security & privacy risks of energy big

data. In terms of technological means, for example, energy com-

panies that used individuals’ data should disclose the logic

underlying their decision-making processes to the extent possible

without compromising their trade secrets or intellectual property

rights. The classification of big data resources (e.g., private big

data, public big data and hybrid big data) is also an important

technological measure [134]. As for non-technological measures,

legal supervision, ethics education, and the enhancement of self-

protection awareness are all necessary.

3.2. Industrial development of big data driven smart energy

management

With the further research on big data driven smart energy

management, the related industries are also developing rapidly. In

recent years, the IT giants like IBM, SAS, Oracle, Teradata, EMC and

SAP, and grid giants including General Electric, Siemens/eMeter,

ABB/Ventyx, Schneider Electric/Telvent, Toshiba/LandisþGyr and

more, are beginning to provide energy big data and smart energy

management related products and services for both utility com-

panies and consumers [61]. In addition, many startups that focus

on the big data-driven smart energy management products and

services also have a rapid growth in the past few years.

Industrial development and scientific research are mutually

reinforcing. Practical applications that promote economic and

social development are the ultimate goal of scientific research.

Also, tracking the industrial development process and trends

contributes to relevant scientific research. Therefore, in this sec-

tion, we present an overview of the industrial development rela-

ted to big data driven smart energy management.

Table 3 summarizes the founded years, brief introduction, and

some big data-driven products and services of some startup com-

panies that focus on big data driven smart energy management.

The industry of big data-driven smart energy management has

been developing rapidly in recent years, and many related start-

ups continue to emerge. Therefore, Table 3 just listed some

selected representatives. Nevertheless, most of the startup com-

panies that provide big data-driven smart energy management

products and services were founded around the year 2009, when

the concepts of “big data” was just proposed. This further

demonstrates that the research and industrial development of big

data-driven smart energy management were mutually reinforcing.

The rapid development of related industries also reveals the

insufficiencies of current energy systems and people’s increasing

demand for the achievement of smart energy management, as

well as the potential that big data analytics can play in promoting

smart energy management.

As for the products provided by these startups, we find that

cloud computing, big data analytics and sensing technologies

based intelligent hardware devices, software, platforms and sys-

tems are the most common. Their services and solutions are

mainly focused on real-time monitoring and forecasting, demand

response and demand side management, customer engagement,

energy efficiency optimization, energy consumption notifications

and reports, and targeted marketing. Most of these services are the

key objectives of big data-driven smart energy management.

Big data is still in its infancy, and most of the related big data-

driven smart energy management technologies are not mature.

With the deepening of scientific research and industrial develop-

ment, people’s understanding and awareness of smart energy

management will also changing. Currently, we are still faced with

some severe challenges to fulfill the potential of energy big data

and fully achieve smart energy management objectives.

4. Summary and future prospects

Energy big data not only include the massive smart meter

reading data, but also the huge amount of data from other sources,

such as the weather data, the GIS data and the asset management

data. The energy big data has the “4V” (i.e., volume, velocity,

variety and value) and “3E” (i.e., energy, exchange and empathy)

characteristics. According to the proposed process model of big

data driven smart energy management, big data analytics play

important roles in the whole process of smart grid management,

ranging from power generation to demand side management.

In recent years, both the related scientific research and indus-

tries of big data driven smart energy management have developed

rapidly. However, to fully realize the potential of energy big data

and achieve the objectives of smart energy management, there are

still some severe challenges that need to be addressed.

(1) Information technology (IT) infrastructure. The explosive

growth of energy big data and the speed requirement for
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collecting, processing and using of energy data have brought a

serious of challenge for traditional IT infrastructure [151]. The

IT infrastructure needs to be improved in network transmis-

sion capacity, data storage capacity, data processing capability,

data exchange capability, data visualization capability and data

interaction capability to better support big data driven smart

energy management.

(2) Data collection and governance. Though the volume of energy

big data is large and the energy big data contain a lot of

valuable knowledge, their value is sparse and the data quality

is not so high in most cases. The timeliness, integrity, accuracy

and consistency of energy big data need to be improved [45].

The big data driven smart energy management requires

complete data governance strategies, as well as organization

and control procedures. High quality, standardization and

format uniform are the prerequisites of many energy big

data-intensive applications.

(3) Data integration and sharing. Currently, there are still many

barriers on the integration and sharing of energy big data from

various sources. Different data definition, storage, and man-

agement standards and models are often adopted among

different energy companies or organizations, and there are

also some redundant data collection and storage [45]. On the

other hand, a lack of accessible data hampers researchers that

are working on big data and smart energy management. In

recent years, there have been some initiatives on energy big

data integration and sharing. Green Button data (www.green-

buttondata.org), launched in 2012, is an industry-led effort

that responds to a White House call-to-action [152]: provide

electricity customers with easy access to their energy usage

data in a consumer-friendly and computer-friendly format via

a "Green Button" on electric utilities' website. In addition,

WikiEnergy (www.wiki-energy.org), founded in March 2014

by a consortium of university and NGO researchers, is a suite

of online research tools that includes the world’s largest

research database of customer energy and water use, and

the data are free available for university and NGO researchers

conducting scientific and public interest research and curri-

culum development [153,154].

(4) Data processing and analysis. Traditional data analysis tech-

niques in data mining, machine learning, statistical analysis,

data management and data visualization may encounter some

difficulties in dealing with the energy big data. Effective and

efficient big data processing and analysis techniques are the

premise and important support of the many smart energy

management tasks. The modeling and simulation in big data

driven smart energy management always involve huge

amount of data and a lot of parameters in many complex

operational processes at different granularities of spatial and

temporal. With different modeling elements and parameter

settings at multiple scales, multiple models established and

simulation results obtained should also be properly inter-

preted to support the various decision makings.

(5) Security and privacy. The energy system is vulnerable to be

attacked, and a lot of privacy information is involved in energy

big data. Therefore, security and privacy is one of the most

serious challenges in big data driven smart energy manage-

ment [155–157]. The security mechanism of the IT infrastruc-

ture of smart energy systems need to be further improved.

Also, protecting the privacy of sensitive customer data is a key

issue in energy big data analytics [26]. In smart energy

management, consumers should have the right to own their

data, and their personal data such as household electricity

usage should be protected and only used as the consumer

allows [30]. Industry self-regulation, technical means, and

strengthened legislation should all combine to enhance the

security and privacy of data-intensive smart energy systems.

(6) Professionals of big data analytics and smart energy manage-

ment. Big data driven smart energy management is a multi-

disciplinary field. All of the energy experts, data scientists, IT

professionals, engineering specialists and management

experts are essential for big data driven smart energy man-

agement. Big data analytics and smart energy management

are relatively new fields, and professionals in these areas are

still lacking. Courses and programs in management science,

data science, energy science, computer science and social

science should be developed to train comprehensive talents

that qualified for the various jobs of big data driven smart

energy management.
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