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being digitized, with the increasing penetration of emerging
information technologies [3]. The innovations brought by big data
are changing the landscape of traditional energy industry. Cur-
rently, the energy sector is facing various challenges [4], such as
challenges in operational efficiency and cost control [5], system
stability and reliability [6], renewable energy management [7],
energy efficiency and environmental issues [8], as well as con-
sumer engagement and service improvement [9]. To better deal
with these challenges, energy big data analytics provide new
opportunities by achieving smart energy management. Specifi-
cally, to achieve the goals of clean power generation, efficient
power transmission, dynamic power distribution and rational
electricity consumption, smart grid that incorporates distributed
generation resources and innovative storage solutions have been
proposed [10-14]. Smart grid introduced the concept of “infor-
mation flow”. It is designed to integrate information flow and
energy flow, thus achieving data collection and energy transmis-
sion at the same time [4]. In smart grid, large amounts of and
various types of data, such as device status data, electricity con-
sumption data, and user interaction data, are being collected.
Then, many data analysis techniques, including optimization [15-
17], forecasting [18-20], classification and clustering [21-25], can
be applied on the large amounts of smart grid big data. Thereby,
power generation and operation can be optimized in real time,
electricity demand can be predicted accurately, electricity con-
sumption patterns can be discovered precisely, and dynamic pri-
cing mechanisms can be developed effectively. Based on big data
analytics, smart grid can detect and restore from failures rapidly,
response electricity demand quickly, supply more reliable and
economical energy, and enable customers to have more control
over their energy use [26]. Big data analytics can provide effective
and efficient decision support for all of the producers, operators,
customers and regulators in smart grid.

Big data is changing the way of energy production and the
pattern of energy consumption. ‘ ' ; ‘ ;

To realize the full potential and deal with the various chal-
lenges of energy big data, as well as get insights to achieve smart
energy management, we present a systematic and comprehensive
study of big data driven smart energy management in this paper.
To the best of our knowledge, this is the first attempt to system-
atize both the extraordinary opportunities and the tough chal-
lenges of big data in energy sector. In the next Section, we discuss
the sources and characteristics of energy big data, and propose a
process model of big data driven smart energy management. Then
in Section 3, taking smart grid as a research background, we pre-
sent the research issues of big data driven smart energy man-
agement from four major aspects, namely the power generation
side management, microgrid and renewable energy management,
asset management and collaborative operation, and demand side
management (DSM). The industrial development of big data dri-
ven smart energy management is also surveyed and discussed.
Finally, Section 4 provides the summary and future challenges of
big data driven smart energy management.

2. Energy big data and smart energy management
2.1. Sources of energy big data

In a certain sense, smart energy system can be regarded as the
convergence of the Internet and the various intelligent devices and
sensors spread throughout the energy system [27]. In smart grid,
the main source of data is the advanced metering infrastructure
(AMI) [28,29], which is one of the underlying enabling technolo-
gies of smart grid. AMI deploys a large number of smart meters
and other measuring terminals at the end-user side.

The smart meters usually collect customers’ electricity con-
sumption information every 15 mins, and the meter readings
alone have created and accumulated massive amount of data. It is
estimated the number of readings will surge from 24 million a
year to 220 million per day for a large utility company when the

. For example,

thus
supporting the

It is estimated that weather data will one
day become the next generation infrastructure platform of energy-
saving services and applications, like maps and location data that
form the basic platform for a lot of services. Currently, industry has
realized the significance of weather data. WeatherBug, founded in
1992, is a company that provides live weather data, information
and services. In 2010, it has launched its smart grid products and
solutions, by selling its weather services to the smart grid industry
[34,35].

In addition, the Geographic Information System (GIS) data is
also an integral part of energy big data. GIS is a traditional source

Table 1
The amount of data collected by 1 million metering devices in a year.

Collection frequency 1/day 1/hour 1/30 min 1/15 min
Records (billion) 0.37 8.75 17.52 35.04
Volume of data (Tb) 1.82 730 1460 2920

Source: Ref. [31]
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of big data, which can provide important decision supports for
energy systems [36,37]. GIS data describe the geographic features
of a certain region, and it mainly include spatial and attribute data.
GIS data have some specific characteristics compared with other
kinds of data. , GIS data not only include the general attribute
data of geographic features, but also a lot of spatial data that
describe the of geographic features. )
GIS is a complex giant system that describes resources and
environment using a variety of data. The amount of data is huge.
Third, the GIS data are not updated in real-time. The GIS database
usually has a long update cycle. The GIS big data can play many
important roles in supporting smart energy management. For
example, in smart grid environment, the GIS data layers can be
used to correlate electrical networks to geographical locations.

Due to the fact that energy big data are collected from many
different B

The data from different platforms and applications are usually
heterogeneous, independent and mutually closed. Also, the data
structure, format and quality vary widely. Many big data analysis
tasks cannot be completed without data integration. Currently,
many models and approaches of database integration have been
proposed [38-40].

2.2. Characteristics of energy big data

Businesses and organizations can “extract value from very large
volumes of a wide variety of data by enabling high-velocity cap-
ture, discovery, and/or analysis” [41]. Therefore, big data have the
characteristics of “4V”, i.e., volume, velocity, variety and value [41-
43]. For the energy big data, their “4V” characteristics are reflected
in the following aspects.

Volume. The introduction of smart metering devices and sensors
in smart energy systems, as well as the combination of other data
sources, present many new opportunities as well as many tough
challenges. The first challenge is the massive amount of data.
Though the volume of energy big data may not equal to those
generated by traditionally data-intense industries, the large amount
of data also present a big challenge for energy sector. This challenge
is not only reflected in the storage side, but more importantly in the
analysis and processing of the energy big data [31].

. This characteristic refers to the speed requirement for
collecting, processing and using the energy big data. In smart
energy systems, the speed of data collection and processing are
very fast ranging from 5- or 15 mins interval to sub-second
interval. There are many streaming data and relatively large
volume data movement. For the many real-time tasks in smart
energy systems, such as equipment reliability monitoring, outage
prevention or security monitoring, the analytical algorithms that
need many hours or more time to run are not competent.

. Variety means the increasing complex of data types. In
smart energy systems, the data are not only traditional structured
relational data, but also many semi-structured data like the
weather data and Web services data, as well as unstructured data
like customer behavior data and the audio and video data. The
energy big data is a mix of structured, semi-structured and
unstructured data [26]. With the increasing utilization of social
media and call center dialogs in energy sector to support decision
makings, the energy big data will become more varied.

Value. Energy big data itself is meaningless unless valuable
knowledge that supports effective and efficient decision makings
throughout the energy management process can be discovered.
We can get insights from the energy big data to promote consumer
engagement and efficiency improvement, to enhance system
reliability, to understand energ s, and to
d s. Also, the value of

energy big data is sparse, which means that the knowledge mined
and the value obtained from large amounts of data may be limited.
Therefore, in the era of big data, we should pay more attention to
the overall data rather than the sample data [44].

Besides cs of energy big data, Ref. [45]
also presented the “3E” ( ' ) char-
acteristics of energy big data. Energy (data-as-an-energy) means
that energy savings can be achieved by big data analytics.
Exchange (data-as-an-exchange) refers to that the big data in
energy system need to exchange and integrate with the big data
from other sources to better realize its value. (data-as-
an-empathy) means that better energy services can be provided,
users’ needs can be better satisfied, and consumer satisfaction can
be improved based on energy big data analytics.

The “4V” and “3E” characteristics of energy big data are shown
in Fig. 1.

2.3. Data-driven smart energy management

To achieve the smart energy management objectives based on
big data analytics, we propose a process model of big data driven
smart energy management, as shown in Fig. 2.

Fig. 2 indicates that it consists of seven major steps for big data
driven smart energy management tasks. In the process model,
data collection, transmission, storage, cleaning, preprocessing,
integration and feature selection are important preparation phases
for big data mining. Then, data mining and knowledge discovery is
the key step and the core content of big data driven smart energy

"’ Volume \ ( )
‘ Velocity | Vv y. : 3E - N
j ) | Energy Big Data |  Exchange
C Varety A
‘, Value ‘ \;Empathy ‘

Fig. 1. “4V” and “3E” characteristics of energy big data.
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Fig. 2. A process model of big data driven smart energy management.
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Whole Process Decision Support of Big Data for Smart Grid Management
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Fig. 3. Whole

management. Afterwards, the knowledge extracted from energy
big data should be represented, visualized and applied, thus sup-
porting the decision making and control throughout the energy
system. Finally, the various smart energy management objectives,
including energy efficiency, consumer engagement, real-time
monitoring, demand response, intelligent control, and dynamic
pricing, can be achieved.

Big data analytics play an important role in the whole process
of smart grid management, including power generation, power
transmission, and power distribution and transformation, as well
as demand side management.

For smart grid, the whole process decision support of big data is
shown in Fig. 3.

The application of these energy big data means significantly
improved efficiency and new business opportunities. Based on the
big data analytics and services, energy is now being saved in ways
that were not possible in the past. It is reported that installing
smart meters could generate between $40 and $70 in annual
savings for each customer [30]. Through the various advanced data
collection, processing, analysis and visualization tools and tech-
niques, we can discover new trends and patterns, optimize exist-
ing business processes to drive productivity and operational effi-
ciency, discover hidden values, and get additional insights from
the energy big data. GTM Research has estimated that the value of
the global utility data analytics market at a cumulative $20 billion
between 2013 and 2020, growing from $1.1 billion in 2013 to $3.8
billion globally in the year 2020 [46].

3. Research status and industrial development of big data
driven smart energy management

3.1. Research status of big data driven smart energy management

In smart grid environment, the studies of big data analytics
based decision support and intelligent control are mainly in the
following four aspects, namely, power generation side manage-
ment, microgrid and renewable energy management, asset man-
agement and collaborative operations, and DSM.

Based on big data analytics, power generation and planning
can be optimized. Power generation planning [47-49] and eco-
nomic load dispatch (ELD) [50-52] are two of the most important

' management.

decision making processes in power generation. Taking advantage
of the widely collected energy big data and advanced big data
analytics techniques, the energy production efficiency can be sig-
nificantly improved and the production costs can be greatly
reduced.

Renewable energy is an important part of modern energy
systems. Microgrid [53] is a promising distributed power genera-
tion model which integrates the renewable energy power gen-
eration. In smart grid, wind power and solar power are two major
renewable energy power generation methods. However, their
outputs are significantly affected by weather conditions. Big data
analytics play an important role in renewable energy and micro-
grid management. For example, renewable energy power genera-
tion forecasting will be more accurate and efficient based on the
massive weather data analysis. The integration of energy produc-
tion and consumption data, GIS data, and the weather data (e.g.,
temperature, atmospheric pressure, humidity, cloud cover, wind
speed, and wind direction) can support the sites selection of
renewable power generation devices, thus to improve power
output and energy efficiency.

Power industry is a typical asset-intensive industry. Both the
power generation companies and the power grid enterprises often
face many asset management problems, such as resource sharing,
asset retirement monitoring, operation and maintenance man-
agement, procurement monitoring, and inventory management.
The efficiency of asset management and collaborative operation
can be improved based on energy big data analytics. The data of
production, operation, marketing and management can be inte-
grated, and data sharing can be achieved throughout power gen-
eration, transmission, transformation, distribution, and consump-
tion. By coordinating the management of electricity production,
operation, maintenance, and sales, the allocation of resources can
be optimized and the production efficiency and resource utiliza-
tion rate can be improved. The power grid reliability and stability
can also be improved by means of big data analytics. The massive
sensor data collected from power system infrastructure, combined
with advanced big data analysis and visualization techniques can
change the traditional ways of power system operation and
maintenance. Thus, the efficient operation, real-time monitoring
and fault diagnosis, and intelligent scheduling management of
power system can be achieved. The risk and unnecessary expenses
of manual operation can be reduced, and the reliability of power
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Table 3

Some companies that provide big data-driven smart energy management products and services.

Company Founded Brief introduction Big data-driven products or services Refs.

3TIER 1999 An integrated suite of renewable energy assessment, forecasting, and asset optimization Solutions: Renewable energy project feasibility, energy marketing, and asset management. [135]
services delivered to customers.

EnerNOC 2001 A provider of energy intelligence software and services for customers, electric power  Products: DemandSMART™, EfficiencySMART™, SupplySMART™, EnerNOC Demand [136]
grid operators and utilities. Resource™, EnerNOC Demand Manager™, EnerNOC's Network Operations Center (NOC).

Services: Demand response and demand management, energy consumption and energy
project management, energy supply and utility bill management.
Silver Spring 2002 It delivers the open, standards-based networking platform, software and services for ~ Products: Smart Energy Platform™ (including metering devices, distribution automation [137]
Networks utilities and cities to support multiple smart grid and smart city applications and ser- devices, in-home devices, network infrastructure, and software solutions). Services: Business
vices on a single, unified network. system integration, customer support, hosting choices, installation support, mesh design,
monitoring and maintenance, and training.

Tendril 2004 A utility-to-home-energy-management company that provides the infrastructure, ana- Product: Data-driven Energy Service Management (ESM) platform. Services: Energy effi- [138]
lytics, and understanding required to deliver personalized energy services. ciency, demand management, customer engagement.

EcoFactor 2006 A company that delivers predictive cloud-based home energy management platforms, Products: Cloud-based energy platform and open thermostat APIs. Services: Proactive [139]
automated energy savings, comfort and control through energy efficiency, demand energy efficiency, optimized demand response, and HVAC performance monitoring.
response and HVAC performance monitoring services.

Efergy 2006 A global manufacturer of energy monitors and energy saving products. Products: Wireless energy monitors. Services: Energy consumption monitoring, energy [140]

usage information, carbon footprint, energy saving.

EnergyHub 2007 A provider of cloud-hosted software platform, web and mobile apps, and smart devices Product: Mercury smart thermostat platform. Services: Real-time energy usage information, [141]
for managing energy use in homes and small businesses. remote monitoring and control energy management, notifications, peak power reduction,

energy saving, energy efficiency, and customer engagement.

Opower 2007 A provider of cloud-based software platform to enable utilities to achieve energy effi- Product: Cloud-based software platform Opower 5-Flex. Services: Energy efficiency, custo- [142]
ciency, customer engagement and demand response, and present insights and sug- mer engagement, demand response, thermostat management.
gestions to consumers to motivate reductions in household energy consumption and
enable savings for the individual.

C3 Energy 2009 A SaaS analytics company that leverage big data, grid analytics, social networking, and Products: C3 Energy Smart Grid Analytics™, C3 Energy Grid Analytics™, and C3 Energy [143]
cloud computing to improve energy efficiency, customer engagement, and smart grid Customer Analytics™. Services: Revenue protection, outage analysis, prediction & restora-
operations. tion, AMI operations, reliability & safety, voltage optimization, customer segmentation &

targeting, demand response, substation automation, volt/VAR optimization, energy effi-
ciency, customer engagement, etc.

FirstFuel 2009 An energy analytics company that helps utilities and government agencies deliver Product: Remote Building Analytics (RBA) platform. Services: Energy efficiency, meter data [144]
scalable energy efficiency across their commercial building portfolios. analytics, improving commercial building efficiency, energy management information

systems.

Grid Navigator 2009 A provider of intelligent energy management systems (EMS) for commercial & industrial Products: BACnetXchange server, GridRadar, smart thermostat, lighting widget. Services: [145]
applications. Energy management system, lighting system, and solar metering solution.

Simple Energy 2010 A SaaS company that motivates people to save energy. Products: Engagement Platform (Energy Insights, Energy Community, Energy Rewards), [146]

Marketplace (a utility branded e-commerce platform).

Nest 2010 A home automation company that designs and manufactures sensor-driven, Wi-Fi- Products: Nest Thermostat and Nest Protect. Services: Auto-schedule, personalized services, [147]
enabled, self-learning, programmable thermostats and smoke detectors. remote control, automatic updates, sensing and learning, multiple devices communications,

smoke and carbon monoxide detection.

AutoGrid 2011 It is dedicated to organize the energy big data and make it useful and actionable for ~ Products: Energy Data Platform (EDP), Demand Response Optimization and Management  [148]
electricity generators and providers, grid operators and customers, by its scalable System (DROMS). Services: Real-time load forecasting and event monitoring, demand
software system. management, modeling of grid physics, measurement, verification, analytics and reporting.

Bidgely 2011 A technology company providing innovative energy monitoring & management Solutions: Customer engagement, energy efficiency, demand management, and utility [149]
solutions. insights.

Big Data Energy 2012 A cloud-based service provider and consultancy providing data services for demand [150]

Services

response, data analytics, meter data and transaction management.

Note: The companies are sorted according to their founded years.
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grid system can be improved. In addition, based on the energy
consumption data and the correlation analysis between network
failures and power outages, the fault locations can be precisely
identified, and real-time fault diagnosis and recovery can be
achieved. Also, through the real-time monitoring, collection and
analysis of energy consumption data, peak load shifting can be
carried out to reduce the risks of power failure and grid collapse.
The weather data is also important in enhancing system reliability
and stability. The particular weather patterns discovered can be
used to predict future outages and identify the problem positions
or areas, thus leading to faster failure warnings and recovery [30].

DSM is one of the most extensive application areas of big data
analytics, ranging from consumer segmentation to dynamic pri-
cing [54]. A lot of valuable knowledge can be discovered from the
massive electricity consumption data collected in near real time by
intelligent metering devices. This knowledge can support many
demand side decision makings and marketing strategies devel-
opment. Load forecasting [55] is an important research content in
smart grid, which means the forecasting of future load demand
based on historical load data, weather data, and social factors, etc.
For different purposes, load forecasting can be divided into short
term, medium term and long term load forecasting. Currently,
many load forecasting models and methods have been proposed
[18,20,56]. Load classification [21,57] is the process to partition
different load profiles into groups using the various clustering
methods. The energy consumption patterns of different users can
be identified by load classification, which can support the devel-
opment of competitive marketing strategies and the offering of
personalized energy services. It can also help different consumers
develop their energy saving plans at the same time. Dynamic
pricing [58-60], also referred to variable pricing or real-time pri-
cing, can guide the user’s energy consumption behaviors and
improve the reliability of power system by different pricing stra-
tegies. Knowing how customers respond to dynamic pricing pro-
grams is also a field where analytics can play an important role
[61]. It is also possible to use massive metering data and big data
analytics to analyze energy diversion, identify grid loss, and
prevent theft.

Table 2 shows a summary of the data sources, common
methods and some references of different big data driven smart
grid management tasks.

In addition, risks and privacy are key issues throughout the
whole process of big data driven smart energy management. To
fully achieve the economic and social benefits of energy big data,
individuals’ privacy must be effectively protected and the potential
risks of using data must be reasonably avoided. Therefore, both
technological and non-technological measures are important to
re-conciliate the benefits and security & privacy risks of energy big
data. In terms of technological means, for example, energy com-
panies that used individuals’ data should disclose the logic
underlying their decision-making processes to the extent possible
without compromising their trade secrets or intellectual property
rights. The classification of big data resources (e.g., private big
data, public big data and hybrid big data) is also an important
technological measure [134]. As for non-technological measures,
legal supervision, ethics education, and the enhancement of self-
protection awareness are all necessary.

3.2. Industrial development of big data driven smart energy
management

With the further research on big data driven smart energy
management, the related industries are also developing rapidly. In
recent years, the IT giants like IBM, SAS, Oracle, Teradata, EMC and
SAP, and grid giants including General Electric, Siemens/eMeter,
ABB/Ventyx, Schneider Electric/Telvent, Toshiba/Landis+Gyr and

more, are beginning to provide energy big data and smart energy
management related products and services for both utility com-
panies and consumers [61]. :

Industrial development and scientific research are mutually
reinforcing. Practical applications that promote economic and
social development are the ultimate goal of scientific research.
Also, tracking the industrial development process and trends
contributes to relevant scientific research. Therefore, in this sec-
tion, we present an overview of the industrial development rela-
ted to big data driven smart energy management.

Table 3 summarizes the founded years, brief introduction, and
some big data-driven products and services of some startup com-
panies that focus on big data driven smart energy management.

The industry of big data-driven smart energy management has
been developing rapidly in recent years, and many related start-
ups continue to emerge. Therefore, Table 3 just listed some
selected representatives. Nevertheless, most of the startup com-
panies that provide big data-driven smart energy management
products and services were founded around the year 2009, when
the concepts of “big data” was just proposed. This further
demonstrates that the research and industrial development of big
data-driven smart energy management were mutually reinforcing.
The rapid development of related industries also reveals the
insufficiencies of current energy systems and people’s increasing
demand for the achievement of smart energy management, as
well as the potential that big data analytics can play in promoting
smart energy management.

As for the products provided by these startups, we find that
cloud computing, big data analytics and sensing technologies
based intelligent hardware devices, software, platforms and sys-
tems are the most common. Their services and solutions are
mainly focused on real-time monitoring and forecasting, demand
response and demand side management, customer engagement,
energy efficiency optimization, energy consumption notifications
and reports, and targeted marketing. Most of these services are the
key objectives of big data-driven smart energy management.

Big data is still in its infancy, and most of the related big data-
driven smart energy management technologies are not mature.
With the deepening of scientific research and industrial develop-
ment, people’s understanding and awareness of smart energy
management will also changing. Currently, we are still faced with
some severe challenges to fulfill the potential of energy big data
and fully achieve smart energy management objectives.

4. Summary and future prospects

The energy big data has the “4V” (i.e., volume, velocity,
variety and value) and “3E” (i.e., energy, exchange and empathy)
characteristics. According to the proposed process model of big
data driven smart energy management{ o :

t,
ranging from power generation to demand side management.

In recent years, both the related scientific research and indus-
tries of big data driven smart energy management have developed
rapidly. However, to fully realize the potential of energy big data
and achieve the objectives of smart energy management, there are
still some severe challenges that need to be addressed.

Information technology (IT) infrastructure. The explosive
growth of energy big data and the speed requirement for
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collecting, processing and using of energy data have brought a
serious of challenge for traditional IT infrastructure [151]. The
IT infrastructure needs to be improved in network transmis-
sion capacity, data storage capacity, data processing capability,
data exchange capability, data visualization capability and data
interaction capability to better support big data driven smart
energy management.

Data collection and governance. Though the volume of energy
big data is large and the energy big data contain a lot of
valuable knowledge, their value is sparse and the data quality
is not so high in most cases. The timeliness, integrity, accuracy
and consistency of energy big data need to be improved [45].
The big data driven smart energy management requires
complete data governance strategies, as well as organization
and control procedures. High quality, standardization and
format uniform are the prerequisites of many energy big
data-intensive applications.

Data integration and sharing. Currently, there are still many
barriers on the integration and sharing of energy big data from
various sources. Different data definition, storage, and man-
agement standards and models are often adopted among
different energy companies or organizations, and there are
also some redundant data collection and storage [45]. On the
other hand, a lack of accessible data hampers researchers that
are working on big data and smart energy management. In
recent years, there have been some initiatives on energy big
data integration and sharing. Green Button data (www.green-
buttondata.org), launched in 2012, is an industry-led effort
that responds to a White House call-to-action [152]: provide
electricity customers with easy access to their energy usage
data in a consumer-friendly and computer-friendly format via
a "Green Button" on electric utilities' website. In addition,
WikiEnergy (www.wiki-energy.org), founded in March 2014
by a consortium of university and NGO researchers, is a suite
of online research tools that includes the world’s largest
research database of customer energy and water use, and
the data are free available for university and NGO researchers
conducting scientific and public interest research and curri-
culum development [153,154].

Traditional data analysis tech-
niques in data mining, machine learning, statistical analysis,
data management and data visualization may encounter some
difficulties in dealing with the energy big data. Effective and
efficient big data processing and analysis techniques are the
premise and important support of the many smart energy
management tasks. The modeling and simulation in big data
driven smart energy management always involve huge
amount of data and a lot of parameters in many complex
operational processes at different granularities of spatial and
temporal. With different modeling elements and parameter
settings at multiple scales, multiple models established and
simulation results obtained should also be properly inter-
preted to support the various decision makings.

. The energy system is vulnerable to be
attacked, and a lot of privacy information is involved in energy
big data. Therefore, security and privacy is one of the most
serious challenges in big data driven smart energy manage-
ment [155-157]. The security mechanism of the IT infrastruc-
ture of smart energy systems need to be further improved.
Also, protecting the privacy of sensitive customer data is a key
issue in energy big data analytics [26]. In smart energy
management, consumers should have the right to own their
data, and their personal data such as household electricity
usage should be protected and only used as the consumer
allows [30]. Industry self-regulation, technical means, and

strengthened legislation should all combine to enhance the
security and privacy of data-intensive smart energy systems.
(6) e o :

Big data driven smart energy management is a multi-
disciplinary field. All of the energy experts, data scientists, IT
professionals, engineering specialists and management
experts are essential for big data driven smart energy man-
agement. Big data analytics and smart energy management
are relatively new fields, and professionals in these areas are
still lacking. Courses and programs in management science,
data science, energy science, computer science and social
science should be developed to train comprehensive talents
that qualified for the various jobs of big data driven smart
energy management.
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