

Programmable Logic Controller
(PLC)

Alireza Mousavi, Morad Danishvar and Alexandre Spieser

1. Introduction

11111111

PLC is adigital computer used for automation of
electromechanical processes in plants. The PLC is designed for multiple inputs and outputs
arrangements, so we can get the data from the sensors, work with it and command the

actuators.

The first Programmable Logic Controller (PLC) was developed by a group of engineers at
General Motors in 1968, when the company were looking for an alternative to replace
complex relay control systems. The new control system had to meet the following

requirements:

e Simple programming
e Program changes without system intervention (no internal rewiring)
e Smaller, cheaper and more reliable than corresponding relay control systems

e Simple, low cost maintenance

2. PLC Components

Fig 1 illustrates the system components of a PLC.

PLC-program

.

Input module |=—=">| Central control unit J—=">|Output module

I !

Sensors Actuators

Figure 1. PLC components

The function of an input module is to convert incoming signals into signals that can be
processed by the PLC, and to pass those signals to the central control unit. The reverse task is
performed by an output module. This converts the PLC signal into signals suitable to operate
and invoke the plant actuators. The actual processing of the signals is undertaken in the

central control unit and with respect to the program stored in the memory.

The programs and operational routines in a PLC can be created in various ways:

The "Ladder diagram™ strongly resembles a schematic diagram of relay logic. The other
features are function block diagram (FBD) and statement list (STL). Fig 2 shows an example
presented in different ways using controlLogix development tool. Depending on how the
central control unit is connected to the input and output modules, various versions of the PLC
can be put together. For example, compact PLCs (input module, central control unit and

output module in one housing) or modular PLCs.

Ladder Logic (LAD)

Suitable for users from the electrical engineering industry, for example.

"Green Lig
”KEY l" "KEY 2" ht"

Statement List (STL)

Suitable for users from the world of computer technology, for example.

A " KEY_]. #
A "Key 2"
= "Green Light"

Function Block Diagram (FBD)
Suitable for users from the world of circuit engineering, for example.

& "Green Lig

"KEY_]." _— ht"

"Ke Y_z LL— —_—

Fig 2. Different PLC programming structures
3. Basic Procedure for PLC programming:

Figure 3 describes the basic procedure for programming PLC.

[Desianing the solution fo the automation task

.

[Creating a project]

"

[Configuring the hardware]

“

[Creating a program]

"

[Transferring the program to the CPU and debugging]

Fig 3. Basic procedure for PLC programming

ALLEN BRADLEY PLC: CompactLogix L32E

Allen-Bradley is the brand-name of a line of Factory Automation Equipment

manufactured by Rockwell Automation.

The connection between the controller and the computer is either serial cable or
Ethernet cable. We will explain the steps to setting up a project on PLC Allen Bradley using
RS logix5000 software.

3.1 Configuring the hardware
Connect the Controller via the Serial Port and Configure the Serial Driver:

Begin with connecting the serial cable to the PC on one side and the controller on the other
side.
Next configure a connection. To configure a connection, we use the RSLinx Classic Lite
software. For the serial communication we need to configure the RS-232 DF1 Device driver.
1. Choose configure driver.
2. From the Available Driver Types pull-down menu, choose the RS-232 DF1 Device
driver.
3. Click Add New to add the driver.
4. The Add New RSLinx Driver dialog box appears.
5. Specify the driver name and click OK.

The configure dialog box appears:

% RSLinx Classic Gateway - [RSWho -1] (=0 >
a5 File Edit View Communica ttions Station DDE/OPC Security Windo Help
= = 218 |lie] 2|
¥ Autobrow” oo ure Drivers 7=
= Q Work| .
Avalable Driver Types:
B U | i . Close
B-s Al (Configure RS-232 DFL Devices }
Help
Co Device Mame: AB_DF1-1
Configure..
Comm Part: | COM4 - Device: |Logix 5550 / CompactLogs v
Startup...
Baud Fate: 13200 - Sllima (e Stan
(Decimal) o
. Stop
Parity: |Mone - Enar Checking: |BCC -
Delete
Stop Bits: |1 - Protocol: |Full Duplex +
Aute-Canfigure
For Help, press F1 I Use Modem Digler M 07/04/12 [04:07 PM

akK Cancel ‘ Delete ‘ Help ‘

Figure 2.3: Configuring Communication

Specify the serial port settings.
o From the Com Port pull-down menu, choose the serial port on the workstation to that
the cable is connected to (e.g. Port 1, Port 2, ...).
o From the Device pull-down menu, choose Logix 5550-Serial Port.

o Click Auto-Configure.

Verify that the Auto-Configuration was successful. If it doesn’t work, check if you have
selected the correct port.

3.2 Configure the 1/0 modules:
In the next steps we intend to configure the physical modules in the project.

In order to establish a communication between the controller and an 1/0O module in the

system, add the module to the I/O Configuration folder of the controller.

When you add a module, you also define a specific configuration for the module.

Offline 0. T RUN —] Path: [AB_DFT-1\T - &
Mo Forces b, F oK q}
Mo Editz = = IB;;T 1
4 b _\ Favorites A4 Add-On A Safety A Alarms A Bit A TimeriCounter A Input/Output A Com
Controller Organizer > X
T MainTask ||| 2 select Module Select the module ==
C& MainProgram
...l21 Unscheduled Programs / Phases Module Description erndor
=-E5 Motion Groups B8 Analog -
{...59 Ungrouped Axes - 1768-IF16C 16 Channel Current Analog Input Allen-Bradle
.7 Add-On Instructions - 1769-IF16Y 16 Channel Voltage Analog Input Allen-Bradle
=53 Data Types - 1768-IF4 4 Channel Current/Voltage Analog Input Allen-Bradle =
Cﬂ, User-Defined - 1769-IFAFXOF2F 4 Channel Input/2 Channel Output, Fast Analog Allen-Bradle
Strings - 1769-IF4I 4 Channel Isolated Analog Current/Voltage Input Allen-Bradle
Add-On-Defined - 1763-IF4X0F2 4 Channel Input/2 Channel Qutput Low Resolution ... Allen-Bradle
Cﬂ, Predefined - 1769-IF8 & Channel Current/Voltage Analog Input Allen-Bradle
C@, Module-Defined - 1769-IRA 6 Channel RTD/Direct Resistance Analog Input Allen-Bradle
.7 Trends | - 1769-ITh 6 Channel Thermocouple/mV Analog Input Allen-Bradle
54 VO Configuration 3 1769-0F2 2 Channel Current/Voltage Analog Output Allen-Bradle il
Em Backplane, CompactLogix System Qe T T e e At Mt e n..:-_
{0 1769-L32E test_with_manual
5.4 1769-L32F Ethernet Port LocalE Add Favarite
{1) + é"coijae;'éfs — By Categary Byendaor Favorites
B 12117659-0WSl/E output_m oK [Cancel] [Help
L] [311769-1816/A input_mod

Figure 4. Configuring and adding modules to the project
3.3 Creating a program

a. Ladder Logic programming

In this section we will cover some of the basic and most used instructions in PLC
programming. Following the explanations on how to program the controller, we will then

have a look at how we can implement and use those instructions in real life applications.

Figure 5 shows a PLC ladder program. A PLC ladder program is a planned set of instructions
resembling a hardwired ladder diagram. It consists of a line (L) power rail and a neutral (N)
power rail between which one or more rungs are inserted.

Each individual rung contains one or more input instructions on its left-hand (L power rail)
side, and a single output instruction or several output instructions placed in parallel on its
right-hand (N power rail) side. In Figure 5, for example, the instructions Examine If Closed
(XIC) and Examine If Open (XIO) are input instructions analogous to relay contacts. On the
other hand, the instruction Output Energize (OTE) is an output instruction analogous to a
relay coil.

The PLC ladder program is the main component of the project you download to a PLC. The

PLC uses this program to interpret the signals present at its inputs and operate its outputs

accordingly.
INPUT OUPUT
INSTRUCTIONS INSTRUCTIONS
!/ N/ N\
EXAMINE
L IF CLOSED N OUTPUT
: B3 | —
‘l 0I R ENERGIZE
RUNG 0 |] \OTE;1
I:0 B3
RUNG 1 ¢—— | , (OTE)Q—“
1:0 B3 B3 0:0
RUNG2 . J/fz | }—«1 — OTE)1
EXAMINE 0:0
IF OPEN (oTE)
3
RUNG 3 |END

Fig 5. PLC ladder program

b. Logical Continuity.

During PLC operations, and in order to determine whether these PLC inputs are activated or
deactivated, the processor reads (scans) the status of the signals applied to the PLC inputs,
through the PLC internal input interface, The processor then updates the input data file (data

file 11) bits accordingly. The processor then evaluates each rung of the ladder program
7

individually, updates the timer, binary status, counter, and control data, and then modifies the
output data file (data file O0) bits accordingly. The output data file bits are used to energize
or de-energize relays in the PLC internal output interface, causing these relays to apply or
remove power to/from the devices connected to the PLC output interface terminals.

To evaluate a rung, that is, to determine if the rung is true or false, the processor verifies if a
continuous left-to-right path of true input instructions exists between the line (L) and neutral

(N) power rails.

c. Basics of PLC Programming

* When a continuous path of true input instructions exists, the rung is evaluated as true and
the output instruction on this rung is true.

* When there is no continuous path of true input instructions on the rung, the rung is

evaluated as false and the output instruction on this rung is false.

The status of a rung instruction (true or false) depends on the logic state of the data file bit
this instruction is shown in Figure 6, for example, indicates the status of the instructions
Examine If Closed (XIC) and Examine If Open (XIO), according to the logic state of the

corresponding data file bit. From this figure, we can see that:

» The Examine If Closed (XIC) instruction is true when its associated bit is at logic state 1;
« Conversely, the Examine If Open (XIO) instruction is true when its associated bit is at logic
state 0.

THE STATUS OF THE INSTRUCTION IS
IF THE
CORRESPONDING XIC X10
DATA FILE EXAMINE IF CLOSED EXAMINE IF OPEN
BIT IS
LOGIC O FALSE TRUE
LOGIC 1 TRUE FALSE

Fig 6. Truth table for the XIC and XIO input instructions

d. Series (AND) and Parallel (OR) Logics

The ladder rung in Figure 2 is an example of series (AND) logic. Series logic means that all
the instructions in the rung (XIC I: 0/0 AND XIO I: 0/1) must be true in order for output
instruction OTE O: 0/1 to be true.

The ladder rung in Figure 7 is an example of parallel (OR) logic. Parallel logic means that
one or another path of true instructions must exist on the rung in order for the output
instruction to be true. In Figure 7, at least one of the input instructions XIC 1:0/1 OR XIC
1:0/2 must be true in order for instruction OTE O:0/1 to be true. Parallel logic is programmed

by branching instructions in a ladder rung.

I:0 0.0

— | (OTE)1—lp

2 \

BRANCH

Fig 7. Series and parallel logics.

e. Documenting a Ladder Program

You can document a ladder program by inserting rung comments, instruction descriptions,
and address descriptions. This allows you to keep notes on:

« How your ladder program works;

* The purpose of an instruction or a rung;

 The type of input or output device (pilot lamp, pushbutton, limit switch, etc.) associated
with each address;

« The conditions required for a rung to be true.

You can insert your comments and descriptions while you enter a ladder program or after you
have entered it. The three types of comments and descriptions which can be inserted are
described below.

» The rung comment: normally used to determine what the rung is meant to do. It is
displayed just over the rung in the ladder view window.

* The instruction description: used to determine what the instruction is meant to do or the
conditions required for the instruction to be true. This description specifies the type and
address of the instruction. All instructions of the same type that have a common address will
automatically have the same instruction description. The instruction description is displayed
over each instruction in the ladder view window.

 The address description: used to identify the type of input or output device associated with

an address. All instructions having the same address will automatically have the same address

description. Note that address descriptions associated with instructions that are provided with
an instruction description are not displayed in the ladder view. However, all address

descriptions can be observed by opening the Cross Reference data file.

f. Some definitions:

The following is a list of the basic instructions in RSLogix series:

e XIC - Examine if Closed
e XIO - Examine if Open
e OTE - Output Energize
e OTL - Qutput Latch

e OTU- Output Unlatch

e OSR - One-Shot Rising

XIC Examine if Closed

Symbol

Definition
« Examines a bit for an On condition
o Use the XIC instruction in your ladder logic to determine if a bit is ON.
e 0=False

e 1=True

Devices
o Start/Stop push buttons
e Selectors
e Limit switch
e Proximity switch
e Light

o Internal bit

10

X10O Examine if Open

Symbol

Definition
Examines a bit for an off condition.
Use an XIO instruction in your ladder logic to determine if a bit if off.
1="True

0 = False

Devices
Start/Stop push buttons
Selectors
Limit switch
Proximity switch
Light
Internal bit

OTE Output Energize

Symbol

B30

= o

Definition
Turns a bit on or off
Use OTE instruction in your ladder logic to turn on a bit when rung condition is

evaluated as true.

Devices
Light
Motor run signal

Internal bits

11

OTL Output Latch

Usually we latch a signal with a condition and then unlatch it when a different condition

becomes true. Most of time the Latch / Unlatch go together.

Symbol

Definition

e Turns a bit on when the rung is executed, and this bit retains its state when the rung is
not executed or a power cycle power occurs.

o OTL is a retentive output instruction. OTL can only turn on a bit. This instruction is
usually used with OTU with both OTL and OTU addressing the same bit.

« Ladder logic can examine a bit controlled by OTL as often as necessary.

e When you assign an address to the OTL instruction that corresponds to the address of
a physical output, the output device wired to the screw terminal is energized when the
bit is set. When rung conditions become false, the bit remains set and the
corresponding output device remains energized.

e Actuating the latch input turns the function on or causes it to change state. The
function then stays on even if the latch input is turned off. To turn the function off,

another input must unlatch which turns the function off.

OTU Output Unlatch

Symbol

B3:0

——

Definition
e Turns a bit off when the rung is executed, and this bit retains its state when the rung is
not executed or when power cycle occurs.
e OTU is a retentive output instruction. OTU can only turn off a bit. This instruction is
usually used with OTL with both OTL and OTU addressing the same bit.

o Ladder logic can examine a bit controlled by OTU as often as necessary.

12

e When you assign an address to the OTU instruction that corresponds to the address of
a physical output, the output device wired to the screw terminal is de-energized when
the bit is cleared.

e The unlatch instruction tells the controller to turn off the addressed bit. Thereafter, the

bit remains off, regardless of the rung condition, until it is turned on.
OSR One-Shot Rising

Symbol

B3:0

oSk -
5

Definition

o Triggers a one-time event.

e The OSR instruction is a retentive input instruction that triggers an event to occur
only one time. Use the OSR instruction when an event must start based on change of
state of the rung from false to true.

o When the input instruction goes from false to true, the OSR instruction conditions the
rung so that the output goes true for one scan. The output goes false and remains false

for successive scans until the input makes another false to true transition.

3. Introduction to Counters

In this section we will cover the count up count down and reset instruction. Counters are very
essential in ladder logic programming. Counters are used to index, increment or decrement

values.

The following is a list of counter instructions:
e CTU -CountUp
e CTD - Count Down
e RES - Reset

13

CTU Count UP

Symbol
CTU
+ Cowt Up —(CU>-
Cowriter C3:0
Preset 10 —{DN -
Acomm 0
Definition

Increments the accumulated value at each false to true transition and retains the
accumulated value when the instruction goes false or when power cycle occurs.

The CTU is an instruction that counts false to true transition. When this transition
happens the accumulated value is incremented by one count.

A CTU accumulation is reset by the RES instruction.

If the accumulation value is over the maximum range then the overflow (OV) bit will

be true.

Each counter address is made of a 3-word element.

Word 1 is the control word

Bit 0-7: Internal Use

Bit 10: UA - Update accumulation value.
Bit 11: UN - Underflow bit.

Bit 12: OV - Overflow bit.

Bit 13: DN - Done

Bit 14: CD - Count down is enabled.

Bit 15: CU - Count up is enabled.

Word 2 stores the preset value. (PRE)

Specifies the value, which the counter must reach before the controller sets the done
bit. When the accumulator value becomes equal to or greater than the preset value, the
done status bit is set. You can use this bit to control an output device.

Preset value is from -32,768 to 32,767

If a timer-preset value is negative an error will occur.

Word 3 stores the accumulated value. (ACC)

This is the number of times of false to true transitions that have occurred since the

counter was last rest.

14

CTD Count Down

Symbol
CTD
- Cowt Dovm D -
Coumter C3:0
Preset 10 DN
Acomn 0
Definition

Decrements the accumulate value at each false to true transition and retains the
accumulated value when the instruction goes false or when power cycle occurs.

The CTD is an instruction that counts false to true transition. When this transition
happens the accumulated value is decrements by one count.

A CTD accumulation is reset by the RES instruction.

If the accumulation value is below the minimum range then the underflow (UN) bit

will be true.

- Each counter address is made of a 3-word element.

Word 1 is the control word

Bit 0-7: Internal Use

Bit 10: UA - Update accumulation value.
Bit 11: UN - Underflow bit.

Bit 12: OV - Overflow bit.

Bit 13: DN - Done

Bit 14: CD - Count down is enabled.

Bit 15: CU - Count up is enabled.

Word 2 stores the preset value. (PRE)

Specifies the value, which the counter must reach before the controller sets the done
bit. When the accumulator value becomes equal to or greater than the preset value, the
done status bit is set. You can use this bit to control an output device.

Preset value is from -32,768 to 32,767

If a timer-preset value is negative an error will occur.

15

- Word 3 stores the accumulated value. (ACC)
RES Reset

Symbol

CRES >
Definition
o Resets the accumulated value and status bit of a timer or counter.
e Use a RES instruction to reset timers or counters. When the RES instruction is
enabled, it resets the Timer On Delay, Retentive Timer, and Counter Up, Counter

Down instruction having the same address as the RES instruction.

4. Introduction to Timers

In this section we will cover timers used in ladder logic programming. Timers are very
important in ladder logic programming. Timers give the precision in time. Timer on delay
starts timing when instruction is true. Timers are used to track time when instruction is on or

off. They could also keep track on a retentive base.

Definition

The following is a list of timer instructions:
e TON - Timer On Delay
e TOF - Timer Off Delay
e RTO - Retentive Timer

TON Timer On Delay

Symbol
TON
- Tiner On Delay L CEN -
Tamer T4:1
Time Base 10 DN
Preset 100
Acamm 0
Definition

o Count time base intervals when the instruction is true.

16

The Timer on Delay instruction begins to count time base intervals when rung
conditions become true. As long as rung conditions remain true, the timer adjust its
accumulated value (ACC) each evaluation until it reaches the preset value (PRE). The
accumulated value is reset when rung conditions go false, regardless of whether the

timer has timed out.

Each Timer on Delay is made of a 3-word element.

Word 1 is the control word

Bit 0-12: Internal Use

Bit 13: Done (DN) this bit is on when the Accumulation value >= Preset Value
Bit 14: Timer Timing (TT) this bit is on when the timer is timing

Bit 15: Enabled (EN), this bit is on when the timer is energized.

Word 2 stores the preset value. (PRE)

The programmer specifies this value. When the accumulated time reaches the preset
value the controller sets the done bit. When the accumulated value becomes equal to
or greater than the preset value, the done bit is set. Usually preset value is from 0 -
32,767

If a timer-preset value is negative an error will occur.

- Word 3 stores the accumulated value. (ACC)

This is the time elapsed since the timer was last reset. When enabled the timer updates
this continually.

Time Base: is the timing update interval, this can vary from 0 - 1 second.

TOF Timer Off Delay

Symbol
TOF
1 Tamer OF Delay BN -
Timer T4:2
Time Base 10 DN
Preset 150
Acamm 0
Definition

Counts time base intervals when the instruction is false.
The Timer Off Delay instruction begins to count time base intervals when the rung
makes a true to false transition. As long as rung conditions remain false, the timer

increments its accumulated value (ACC each scans until it reaches the preset value
17

(PRE). The accumulated value is reset when rung conditions go true regardless of

whether the timer has timed out.

Each timer address is made of a 3-word element.

Word 1 is the control word

Bit 0-12: Internal Use

Bit 13: DN- Done

Bit 14: TT - Timer Timing
Bit 15: EN - Timer is enabled

Word 2 stores the preset value. (PRE)

Specifies the value, which the timer must reach before the controller sets the done bit.
When the accumulated value becomes equal to or greater than the preset value, the
done bit is se.

Preset value is from 0 - 32,767

If a timer-preset value is negative an error will occur.

Word 3 stores the accumulated value. (ACC)

This is the time elapsed since the timer was last reset. When enabled the timer updates
this continually.

Time Base: is the timing update interval, this can vary from 0 - 1 second.

RTO Retentive Timer

Symbol
RTO
1 Retertive Tomer On —CEN
Timer T4:3
Time Base 10 DN~
Preset 100
Acomm 0
Definition

Counts time base intervals when the instruction is true and retains the accumulated
value when the instruction goes false or when power cycle occurs.

The Retentive Timer instruction is a retentive instruction that begins to count time
base intervals when rung conditions become true.

The Retentive Timer instruction retains its accumulated value when any of the
following occurs:

Rung conditions become false.

e Changing Processor mode from REM run /Test / program mode.

e The processor loses power while battery backup is still maintained and a fault occurs.

Note: To reset the accumulated value in RTO, you must use a reset instruction (RES) with the

same address.

Each Retentive Timer is made of a 3-word element.
Word 1 is the control word

e Bit0-12: Internal Use

e Bit 13: DN- Done

e Bit14: TT - Timer Timing

e Bit15: EN - Timer is enabled

Word 2 stores the preset value. (PRE)

o Specifies the value, which the timer must reach before the controller sets the done bit.
When the accumulated value becomes equal to or greater than the preset value, the
done bit is se.

o Preset value is from 0 - 32,767

o If atimer-preset value is negative an error will occur.

Word 3 stores the accumulated value. (ACC)

e This is the time elapsed since the timer was last reset. When enabled the timer updates

this continually.

o Time Base: is the timing update interval, this can vary from 0 - 1 second.

5. An Introduction to RSLogix5000 Tags

Tags are the method for assigning and referencing memory locations in Allen Bradley
Logix5000 controllers. No longer are there any physical addresses such as N7:0 or F8:7 which
use symbols to describe them. These have been replaced with tags that have a pure text based
addressing scheme. This is a departure from the more conventional ways of programming
PLCs, which includes Allen Bradley earlier line of PLC5 and SLC 500 controllers.

One of the hardest transitions from the older systems is realizing how the tag database works.
The person with experience in Allen Bradley systems will recognize many of the instructions
and be at home with the editor in RSLogix 5000. Understanding the tag database is the first

major hurdle in becoming comfortable with the ControlLogix and CompactLogix systems.
19

Earlier Allen Bradley PLCs programmed with RSLogix 5 and RSLogix 500 software had

data files to store 1/0 and other internal values. These different data files could only hold one

data type. A data type defines the format and the size of the stored value.

The Logix5000 controllers have done away with data files and in its place is the tag database.

The tag database organizes memory locations in one place. Each tag is assigned its own data

type. The table below shows the association between the current data types and the older

systems with data files.

Type RSLogix 5000

Output Input and output modules, when configured,

Input automatically create their own tags like
Local:0:1.Data.0

Status Use the GSV and SSV instructions to get status
information such as the CPU time, module states
and scan times.

Bit Assign the Boolean (BOOL) data type to the tag.

Timer Assign the TIMER data type to the tag.

Counter Assign the COUNTER data type to the tag.

Control Assign the CONTROL data type to the tag.

Integer Assign the double integer (DINT) data type to the

tag.

Floating Point

Assign the REAL data type to the tag.

Creating a Tag

One way to create a new tag is right click on the Controller Tags in the Controller Organizer

and select New Tag. Even faster is the Ctrl+W hot key.

20

=3 Controller Class | ‘
Contraller Tag
(5 Contralier Fag| 1 HewTag... [o ik
73 Power-Up Hanl
=& Tasks
3 @ MainTask Edit Tags
+ B MainProgr) erify
+ (23 Unscheduled A
=I5 Motion Groups
[Z3 Ungrouped &x
[Add-On Instructiof...
e -

Manitor Tags

Expoit Tags...

Print.

The following dialog box pops up.

Hew Tag,
A
Description Start button an Line Coree

| _ Coreel |

I

. Bare = Gorecter |
Aliss For \
DataIype: [BOOL J
Scope:
Style: [pecimal — +]
r

The Name given to the tag has the following rules:

o only alphabetic characters (A-Z or a-z), numeric characters (0-9), and underscores ()
e must start with an alphabetic character or an underscore

e no more than 40 characters

e no consecutive or trailing underscore characters (_)

e not case sensitive

The tag Type defines how the tag operates in the project

Base A tag that actually defines the memory where the data is
stored

Alias A tag that represents another tag

Produced Send data to another controller

Consumed Receive data from another controller

Alias tags mirror the base tag to which they refer. When the base tag value changes so does
the alias tag. Use aliases in the following situations:
21

e program logic in advance of wiring diagrams
e assign a descriptive name to an /O device
e provide a more simple name for a complex tag

e use adescriptive name for an element of an array

Produced and consumed tags make it possible to share tags between controllers in the same

rack or over a network. This article does not cover this aspect.

Select a Data Type for the tag by typing it in or by clicking on the ellipsis button and
selecting it from the list. A data type is a definition of the size and layout of memory
allocated for the created tag. Data types define how many bits, bytes, or words of data a tag

will use.

The term Atomic Data Type refers to the most basic data types. They form the building
blocks for all other data types.

Data Type Abbreviation Memory bits Range

Boolean BOOL 1 0-1

Short Integer SINT 8 -128 to 127

Integer INT 16 -32,768 to 32,767

Double Integer DINT 32 -2,147,483,648 to

2,147,483,647

Real Number REAL 32 +/-3.402823E38 to +/-
1.1754944E-38

Logix5000 controllers are true 32-bit controllers, meaning the memory words are 32-bits
wide. No matter what, a tag always reserves 32 bits of memory even if it is a Boolean or
integer data type. For this reason, it is best to use a DINT when dealing with integers.
Furthermore, a Logix5000 controller typically compares or manipulates values as 32-bit
values (DINTs or REALS).

A Logix5000 controller lets you divide your application into multiple programs, each with its
own data. The Scope of the tag defines if a tag is global (controller tags) and therefore

available to all programs or local (program tags) to a select program group. Pay careful

22

attention to this field as creating it in the wrong area may lead to some confusion later on as

to its location.

=|-#=5] Controller EmptyDemo_\16
[Contraller Faulk Handler
73 Power-Up Handler

=45 Tasks

E Program Tags
Bl MainRoutine
23 Unscheduled Pragrams

Controller Tags are available to all programs. You cannot go wrong using controller scoped
tags unless you easily want to copy and paste programs. A tag must be controller scoped
when used in a Message (MSG) instruction, to produce or consume data and to communicate

with a PanelView terminal.

Program Tags are isolated from other programs. Routines cannot access data that is at the
program scope of another program. Having program tags make it easy to copy/paste
programs and not have to worry about conflicting tag names. Make sure though that no

controller tags are named the same as program tags.

Style is the form in which to display the tag by default. The following table provides you with
information on the base and notation used for each style.

Style Base Notation

Binary 2 2#

Decimal 10

Hexadecimal 16 16#

Octal 8 8#

Exponential 0.0000000e+000
Float 0.0

23

Edit and Monitor Tags

To edit existing tags select the Logic > Edit Tags menu item. A spread sheet like view lets

you create and edit tags.

Right click on

squares for tag Change

options scope Filter Right click the
header for

;_ options L
e E{l “whellPump - Shawy. .. S Al

T Description -

¥

Monitor Tags

I ame 18 | Alias For | Baze Tag | Data Type | Style
ﬂ Start BOOL Decimal Start button for motor
J Stop BOOL Decimal Stop button for motor
J Jog BOOL Decimal | Jog button for ratar
J Speed REAL Float Speed zetpoint uzed for
J +|-&larm_Code DIMT Decimal | Alarm code returned fror
J +|-Mator_Delay TIMER Delay before starting mc

g

%E(I'n Tags f <

Tabs to switch between
monitoring and editing

Line for new
tag entry

Clicking the + sign next to a tag reveals its structure. For a DINT tag this is the 32 individual

bits that make up the tag which will not be of interest if you are using the tag as a number

rather than individual bits. If you do wish to use the individual bits then you can address them
in this way with the tag name followed by a period and then the bit position (e.g. MyTag.5).

Shown below is the expanded structure for a TIMER. Notice it is made of two DINTs and

three BOOLSs. In this case, the Booleans are packed into one DINT and therefore a timer uses

three DINTs of memory.

Conclusion:

These are the basics of tags. The advantages are:

1. Tags, if done right, create a level of documentation that is stored in the PLC.

2. The software does an automatic housekeeping of memory locations. There is no more

worrying about physical addressing and memory conflicts.

3. Structures can be more easily put together based on function rather than data type.

24

Advance subjects include arrays, user defined data types (UDT) and Add-On Instructions.
Hopefully, you will continue to learn more about the power of tags. There is no doubt that if
you grasp the principles presented here you will be well on your way to using and
troubleshooting any Logix5000 controller.

25

A Quick Tutorial on RSLogix Emulator 5000

RSLogix Emulator 5000 is a software simulator for the Allen Bradley line of Logix 5000
controllers (ControlLogix®, CompactLogix®, FlexLogix®, SoftLogix5800® and
DriveLogix®). The goal is to mimic the function of a PLC without the actual hardware and

thus do advanced debugging.

As a quick introduction we’ll go through a simple example of setting up a simulation. This

involves three major steps.

1. Setting up the chassis monitor.
2. Creating a connection in RSLinx.

3. Creating a project with associated emulation hardware.
Setting up the Chassis Monitor

To start the Chassis Monitor, click Start > Programs > Rockwell Software >
RSLogixEmulate 5000 > RSLogix Emulate 5000 Chassis Monitor.

(=} RsLogix 5 English

(5 Utilities

(5} BOOTP-DHCP Server

@ FactoryTalk Tools

(53 Rslinx

(53 RsLogix 500 English

@ RSLogix S000 Enkerprise Series
(53 RsLogix 5000 Tacls

@ RSLinx Tools

R5Logix Emulate 5000 Chassis Maonitor
R.SLogix Erulate 5000 ReadMe
Test Time Lkility

(5} Rshetwors

(5} RSTestStand Lite

@ R.3Yiew Enterprise

(5 RsViewsz

(5} Rs¥iewsz Taals

FactoryTalk Adrminiskration Console

Lol ©

v w w w v BT ¥ ¥ ¥ W ¥ W W W

26

When the emulator opens up you’re confronted with what looks like an empty chassis. In

slot 0 is an RSLinx module which has to be there for the emulator communications to work.

Your slot 1 might have another irremovable RSLinx module depending if you are running

RSLogix Enterprise.

':Ei'i___RSLugiH Emulate 5000 Chassis Monitor 0] x|

Slok Wiews

Opkions

Help

1]
F=Lins

1

Computer - |STUDENT11

2 3 4 5 B 7 a

R5Linx

For Help, press F1

[

From here we set up our hardware configuration for simulation. Our first step will be to add

the CPU. In this case it is a special one called an Emulation Controller.

el

Click Slot > Create Module.
Choose the Emulator RSLogix Emulate 5000 Controller.
Chose slot 2 for the controller

Click OK to add it to the chassis monitor.

Select Module

Module Type: [1784-PCIC ControlM et PCI Meszaging K

1734-PCICS ContralMet PCl Scanner
1784-PCIDS DeviceMet PCI Scanner
1784-PETCS ControlM et Scanner
1784-PMOZAE 2 Az Analog/Encoder Servo
1784-PM1B5E 16 Axiz SERCOS

1783-51k 32 Point Input/Output Sirmulatar

Carnicel

il

Emulatar BSLogix Ermulate 5000 Contraller

Slat: IE _l;'

5. At this point you may be accosted with a message about previous configurations. Just

select Reset the Configuration to Default Values and click NEXT.

27

6. The next two dialog screens are for setting up the controller

Click NEXT and FINISH accepting all the defaults.

General x|
Tvpe: FSLogis Emulate 5000 Emulogi=S868 Contraller
Yendor Allen-Bradley
Yergiar; |'|] TI
temaory Size [FB]: I [2072]
Feriodic 5ave [ntersal: = -
(Range: 0.5 o 30 min] I'I 1] 3, ¥ Enable Periodic 5ave
Controller M arne: Lazt Loaded:
< Back I Mest » I Cancel Help
x
Type: FiSLogix Emulate 5000 EmulogixbE68 Contraller
Yendor Allen-Bradley
Continuous Task _
Crwell Time [mz): =
CPLI Affirity:
Channel 0
Senial Part: IM':""E j‘
< Back I Finizh I Cancel Help

Next we’ll add some input/output simulation.

1. Click Slot > Create Module.
2. Choose the 1789-SIM 32 Point Input/output Simulator.
3. Chose slot 3 for the simulator and click OK.

details.

28

x
Module Type: [1734-PCIC ContralMet PCI Meszaging QK I
1734-PCICS ContralMet PCl Scanner

1784-PCIDS DeviceMet PCI Scanner
1784-PETCS ContraolM et Scanner
1784-PMOZAE 2 Axiz Analog/Encoder Servo
1784-PM1B5E 16 Axiz SERCOS

Cancel

1789-5[k 32 Paint lnput/0utput Simulator
Ermulator RS Lagis Emulate 5000 Cantraller

Slat; |3 _I?

4. Accept the defaults for the setup by clicking NEXT and FINISH.

Select Device x|

Tupe: 178351 32 Paint Input/Output Sirmulatar

Vendor, Allen-Bradley

< Back I Mest = I Cancel Help

General x|

Tupe: 173351k 32 Point Input/Output Simulator
Yendaor: Allen-Bradley

Serial Mumber: IEIS

Label for 1783-51M

Module Marques: ISimuIatiDn Teszl

< Back I Finizh I Cancel Help

The chassis monitor will now have two emulation modules in it ready to go.

{25 RSLogix Emulate 5000 Chassis Monitor =10 x|
Slok Wiew Cptions Help

Computer: |STLIDENT11

2 3 4] E i g

EmuLuan 1729-51h
FLUH 150
FEC 3
EAT oK

FillH FEM FR

()

For Help, press F1

Creating a connection in RSLinx

1. Start RSLinx under Start > Programs > Rockwell Software > RSLinx > RSLinx
Classic

2. Click Communications > Configure Drivers.

3. Select the Virtual Backplane (SoftLogix 58xx) driver from the Available Driver
Types list.

4. Click Add New. The Add New RSLinx Driver dialog box appears. Click OK.

5. The new driver appears in the Configured Drivers list. Click Close.

30

Configure Drivers

fovailable Dmver Types:

2 x|

‘irtual Backplane |5 oltlogeSts)

Lo
:
2
E
&

RS-232 DF1 devices
Ethemet devices
Ethemet/IF Driver

fm

DF1 Poling M aster Driver

174T-PIC £ AIC+ Dirrver

DF1 Slave Dinveer

5-5 SD/502 for DH+ devices
PLC-5 [DH+) Emulator diver

SoltboguS dives

‘Wirheal Backplane [Saltl ageSs:

17B4-ET K THD)PETADPCHE for DH+/DH-485 devices
1764-KTC] for ContraM el devices

1784-PCC bor ConbrolMet devices
1784-PCICIS) for ConbiolNet devices

DendceMet Dvers [1784-PCO/PODS A FF0-EFD.SDMPT divers]
SLC 500 (DH4B5) Emulstar divve

RHemote Devices via Ling Gateway

Help

Configure,..

atanup...

[tk

I \; ;
I ™
] o

Using RSLogix Emulator in a Project

To use the emulator in a project you must setup the hardware correctly.

1. Start the RSLogix 5000 software and create a new project.

2. Under the New Controller window type select an Emulator — RSLogix Emulator 5000

Controller. Give it a name and assign it to the same slot as the one you put in the

Chassis Monitor which in our example is slot 2. Click OK.

Mew Controller

YWendor:
Type:

R evizion:

M arne:

Dezcriptiorn:

Chazziz Type:
Slat:

Create In:

Allen-Bradley

I E rmulator

I'IE 1|r|

FiSLogix Emulate 5000 Controller j F. I
Cancel |

™| Bedundancy Enabled Help |

IEmuIatDr_E wample

I‘IF"EE-M‘ 7-Slot ControlLogix Chassis |

2 = 2 aftety Partmer Slof:

IE:'\HSLDgi:-: BO00%Projectd Browsze. . |

31

3. In RSLogix 5000's Controller Organizer, right click on the I/O Configuration folder,
and then click New Module. The software displays the Select Module window.

4. Open the Other folder. Select the 1756-MODULE from the modules list and then
click OK.

1 Select Module

bl odule |Descriptiu:un
- Analog
- iZommunicakions
-Conkrollers
- Digital
-Drives
-Motion
- Other

o 1 756-MODLILE
- Specialty

Genetic 1756 Module

Find...

Bty Categany I By “Wendar Favorntes I

2k, I Cancel

5. The software displays the New Module window.
a. Add a Name for the card.
b. In the Slot field put the number that corresponds with the Chassis Monitor.

c. For the Connection Parameters put in the following and click OK

Assembly)
Size
Instance
Input 1 2
Output 2 1
Configuration | 16 0

32

New Module

Tupe: 1756-MODILE Genesic 1756 Module
Parent Local — Cannection Parameters
Aszsemnbly ;
Instance: Size:
Nasms ISimulahr_l:ard Input: |1 |1 _,::I [32-bit)
Dezciphion: ;I Oustput: I2 I1 ::I [32-bit)

| Configuratior: |'|E

Comm Format: |Data - DINT

Slot ¢ =

|u

= (Bbi)

j Shatis | pen: I
Shatus utput I

¥ Open Modude Propesties

ok | Cancel |

Help

6. On the next Module Properties screen make sure to change the Requested Packet

Interval to 50.0 ms.

i Module Properties: Local:4 {1756-MODLULE 1.1}

[Inhibit Module

General Connechion® | b odule Infn:nl Backplanel

Requested Packet Interval [RPI]: I ED.EIE: mz [0.2 - 750.0 mz]

[Major Fault On Controller If Connection Failz while in Fun Mode

™| Usze Scheduled Connection over Comtralk st

todule Fauilt

Statuz: Offline

Ready, Set, Go

| k. I Cancel

You are now ready to use the emulator just like you would any other PLC. Open Who
Active and set the path to the RSLogix 5000 Emulator.

33

£t Who Active _oj x|
¥ Autobiowss Flefresh |
= E ‘Warkstation, STUDENTLL | Go Oriline |
=5 Linx Gateways, Ethernet
F =5 AB_DF1-1, DH-485 Upload... |
=8 AB_VEP-1, 1759-A17/4 Yirtual Chassis
= 0, workstation, RSLinx Server Download |
01, RSLlinx Enterprise - Deskiop, RSLinx Enterprise - Deskbop -
3 02, RSLagi: 5000 Emulator, Emulator R15,39 Lpaste Bmare |
03, 1789-5IM 32 Point Input/Output Simulator, 1769-519 v1.00 Claze |
Hep |
Fath: AB_WBP1\2 Set Prmect Path |
Fatk in Progect: <nones
ilear Proect Path |
e

The inputs can be simulated in the emulator’s Chassis Monitor by right clicking on the
module and selecting Properties. Under the 1/0 Data tab is the ability to toggle each of the

inputs on or off.

34

& Controller Tags - Emulator_Example{controller)

Scope: I ﬂ Emulatcur_E:-:ampj Show... I Show Al

Hame o | W alue € | Force Maszk € | Style

[+-Lozal:3:C L Ioout
[—=-Lazal: 31 — A

El-Ll:u:aI:S:I.Data f...1 I | Decimal

[+]-Local:3:1. D ata0] 0 Decimal

2 [=]-Local:3:1.0rata[1] 54 Decimal

—ocal3:.Data[1].0 0 Decimal

— ocal 31 .0ata[1].1 1 Decimal

—Local:3l.Data[1].2 1 Decimal

—ocal3.Data[1].3 0 Decimal

—ocal 3 .Data[1]. 4 1 Decimal

—Local 3 .Data[1].5 1 Decimal

B il': General /0 Data | b odule Infu:ul b odule Statusl

= Inputz [Chck to toggle onsoff]
15 00 04 02 02 04 a5 a5 OF 08 09 10 411 412 13 14 15
- 16 17 18 19 20 24 22 23 24 25 26 27 28 29 30 31
= Outputs
8 oo 04 02 03 04 05 05 OF 02 09 10 411 12 13 14 15
= 16 17 18 19 20 24 22 23 24 25 26 27 28 29 30 31
k. Cancel Apply Help

35

Ladder Logic programming with RSLogix 5000 and RSEmulator 5000

First Step with RSLinx

RSLinx is the software RSLogix will use to communicate with your PLC or in our case to the

emulator.

Let’s start by running the RSLinx software under the START > All Programs > Rockwell

Software > RSLinx > RSLinx Classic. A Follow these steps to set it up:

1. Under the Communications menu select Configure Drivers.

2. Under the Available Drivers Types select the PLC Emulator driver and click the Add
button.

3. You can give the driver a name but | just leave it at the default.

4. Leave the configuration options as Station Number 00 and click OK.

Your driver should now be running and look likes the picture below.

e -1

Configure Drivers

Axallable Driver Types:

Cloze
|SLC 500 [DH485) Emulator driver |

Help

Configured Drivers:

Mame and Description Statuz
ErUS00-1 SLC 500 [DH485] Emulator Sta:00 Running

FEEEE kg

Second step running RSLogix 5000

START > All Programs > Rockwell Software >RSLogix 5000.

w

6

O Fle Edt Vew Sewch logc Comeuncatons Toos Window Hep

f
&
£

BiwE| 8] siwj@| || [owsTacsunis =l Slnlnl e ¥E Qe I L o T T Ry R B i
Offine 05 F Ao S pon [ZETHANTN 1010 28ackplaned =) & ol v]\ravornes (BE X Treieuie X Foaoed K Cemeee
NoFaces b/ 7 0K i B 7 -

1
EERE

= 23 Controler HURON_GINNING_EAS A [1]

D Comoler Tags -
Controler Pauk Handler Enaties the DNET Scanner ~
& 3 Power L Hander Locat 1.0, CommancRegater Ao
- 3 Tosks
= T8 MenTask
~ £P Marfrogrem

Program Tags THE FOLLOWING TEN OR SO RUNGS ARE FOR APRON 1 DRVE CONTROL VIA DNET
Maroutre
B s Copees the five 32 bt DNET Scanner DINTS from the Drive 12 fen 16 bt words
[MOOULE_FESDER_STSTE The first tro 16 e words are the Grive’s status and sp0ed feeddack
UecediedProgene | The reat of e 15 b2 words ace Data Out A1 ihvough Data Out D2 from the Sve
3 Moton Groups
Ungrouped Axes
1 Trands
53 Dota Types

When the drve B runang
ACTVE
APRON_1_DRVE_NPUT_MAGES) 1 APRON_1_DRIVE_RUN_STATUS
T i
1eFORVARD.
ACTUAL DR OeREVERSE
APRON_1_DRIVE_NPUT_MAGENS Y APRON_1_DRVE_FORWARD_REVERSE_STATUS
i e
When the drive & faulled
AT
APRON_!_DRIVE_NPUT_MAGENS 7 APRON_1_DANE_FAULT_STATUS
< > >
N / a1 *
Ready Rung 0 of 50 NS VR

Let’s make a simple rung to test. Make sure the cursor is on the rung with the END on it and

then click the New Rung icon in the instruction toolbar.

| New Rung lcon

E--HUEEM{}{L}{U}#BL#BS El

| 4] ¥ \User 4Bt &4 Timerfourter A InputiDutput £ Compare |

Now click on the Examine if Closed= ?E instruction to add it to the rung. A Double click
on the question mark above it and enter 1:0/0 as its input address. Just leave the description
pop up box empty by clicking OK.

Next, click on the Output Energize ** instruction to add it to the right side of the rung.
Double click on the question mark above it and enter O:0/0 as its output address. Just leave

the description pop up box empty by clicking OK.

You should now have something like below.

37

5 LAD 2 -- MAIN_PROG

L
=)
D2

aaaa

ool

]

e

(i

e
L]
2

ol 1

LA

END T—

e T L

Sy

The next very important step is to verify the project with the Edit > Verify Project menu

item. This will compile the project and get it ready for the emulator.

ﬂ: RSLogix Micro Starter Lite - TE&.

[

Inda

Cuk
Copy

Delete
Insert
Append

Yerify File
Yerify Project

Chrl+2

Chrl4+
Chrl+C

Dl
Ins

. P it e g

File ' Edit “iew Search Comms Tu:u:-l!

f

[e]fie]

P T ’LF':-"LH

N g

Save the project as something like Test.

RSEmulator 5000

The emulator allows us test our work by running a virtual PLC and help us to download our

program to it and run it in a very similar fashion to a real PLC. Start the emulator with the

START > All Programs > Rockwell Software > RSLogix Emulate 500 > RSLogix Emulate

5000

Set the Emulator up as it has been explain above in Emulator part.

38

Connecting Excel to ControlLogix

By John Schop at http://www.plcdev.com/connecting_controllogix_excel

Have you ever lost data in a CLX processor, because you downloaded new code?
Unfortunately, when you download a program to a ControlLogix processor, you also

download the values of the tags (variables).

A solution to this problem that could be useful is an Excel sheet that reads and writes values

to the ControlLogix processor using the DDE/OPC capabilities of RSLinx.
In this article, | will show you how to create one of these sheets for your projects.
Here's what you'll need:

o Microsoft Excel, with some basic knowledge about programming macro's in Visual
Basic
e RSLinx (not the 'Lite’ version, because that does not have DDE/OPC capabilities)

e A ControlLogix processor of course

Let's fire up RSLogix first, and create a bunch of tags with values. In this example, | created
2 arrays, of the types DINT and REAL, each with a length of [10] tags. These arrays | filled

with some values:

39

Scope: |BEXCEL_TEST v | | Show.. | DINT. REAL 4
N armne & |Value = | Farce Mask“| Style | Data Type| Des(
| |= DINT_Amay R ... Decimal DI T[10] }
| DINT_Awray(0] 1 Decimal DIMT -*
| A DINT _Anap(1] z Decimal DIMT }
| DINT_Awray(2] 3 Decimal DIMT (
| A DINT _Anap(3] g Decimal DIMT I
|+ DINT_Aray(4] g Decimal DIMT ¢
| DINT_Aray(9]] Decimal DIMT ‘;
| A DINT _Anap(E] 7 Decimal DIMT i
|+ DINT_Aray[7] a Decimal DIMT i
|+ DINT_Aray(3]] Decimal DIMT !
| A DINT _Amap(d] 10 Decimal DIMT p
|— REAL_Amray | .0 ...} Float REAL[10] ;
|| REAL_Arrap[0] 1.0 Float REAL ¥
| REAL_Arraw[1] 2.0 Float REAL (l
| REAL Armray[2] 3.0 Float REAL A
|| REAL_Arrap[3] 4,0 Float REAL :
| REAL_Arrap[4] 5.0 Flaat REAL -
| REAL Armray5] 6.0 Float REAL i
|| REAL_ArravB] 7.0 Float REAL {
| REAL Armray[7] g.0 Float REAL !
|| REAL_Array[8] 2.0 Float REAL :
|| REAL_Arraw[d] 0.0 Float REAL 4":
|4] » [\ Monitor Tags £Edit Tags / IK 3
¥ e a®

""““"“""“-~-v‘l"-‘"--}"“~.-..r+l-"‘ —%-J\.\JH"‘ -.J"."""’rrh“-. r‘* \‘JH'-'#'\ -

I'm not going to do anything with the PLC program; | just need some data in a number of

tags.

Next, we're going to set up a DDE/OPC Topic in RSLinx. Depending on the version of

RSLinx you use, it might look slightly different, but you should be able to follow this with

the

screenshots.

Assuming that you know how to setup RSLinx initially to get online with your controller, I've

skipped some steps. The setup | use looks like this in RSLinx:

40

WV Autobrowse By ZE| Browsing - node 3 not found

Elfe.‘ AB_ETH-1, Ethernet o1 0z oo
= ﬂ 134,200,211, 16, 1756-ENET A, 1756-EMBT /A 1756-EMET/A Ewcel_Test MHI_HydO...

= workstation, LINEEG_—_—— ;
fg,- Linx Gateways, Ethernet f

#-f 02, 17564 1fA LOGIX 5550, Excel_Test
Y o ‘x«.f""“"‘*-*ml""\ A R el

=1 Backplane, 1756-A10/A
- [00, 17564161 LOGIX 5551, [N
b 01, 1756-ENBT/A
fﬂﬁ.,qm*'ﬂ-ﬂ-&_ o "*_’_ﬁ _

As you can see, | have a 10 slot CLX rack, with a 1756-ENBT card in slot 1 (address
134.200.211.16), and two processors, one in slot 0, and one in slot 2. The one in slot 2 is the
processor we are going to use for this exercise.

Now, open up the DDE/OPC topic configuration by clicking 'DDE/OPC' and then "Topic
Configuration’ in the top menu of RSLinx.

20

Project Default

Topéc List

 Data Souce | Data Collection | Advanced Communication |
V' Autobrowse
=1 24 Workstaton, USCLEJSCHOP

@ 2 Linx Gateways, Ethernet

= &5 AB_ETH-1, Ethemet

5§ 134.200.211.16, 1756-ENBT/A, 1756-ENBT/A
= 68 Backplane, 1756-A10/A

& i 00, 1756161 LOGIX5561, MHI_HydOEMBase

!

01, 17S6-ENBT/A

= 02, 1756-L1/A LOGIX5550, Excel_Test

New I Clone | Delete I Applp I | Done I Help I

I'm going to create a new DDE/OPC topic called 'EXCEL_TEST', and use the Logix5550
processor in slot 2 as the data source. In order to do this, you have to click the 'New' button,

41

give the topic the desired name, and make sure the processor in slot 2 is selected as the source
before you click 'Done’

"Q‘- RSLinx Classic Gateway

File Edit View Communications Station | DDE/OPC Security Window Help

=] 5| 218 lie] ¥|

Topic Configuration. .. k
Alias Topic Configuration.,

Active Topics/Ttems. ..
-w-—......f\._w —_ _“_"

To test if your setup is working, at this point you can use the OPC test client provided with
RSLinx. I'm not going into detail about that, but | did make sure this worked before
continuing with the next step, creating the Excel sheet.

Let's start up good old Excel, and create a new workbook. On this workbook, place a new
command button. You can find the Command Button control in the 'Control Toolbox' toolbar
in Excel. When you have the button, right click on it and choose 'View Code'. This will take
you to the Visual Basic Editor:

Ed Microsoft Excel - Book1
File Edit Wew Insert Format Tools Data Window Help
DE & 2 i w% -2 I -lle £ ul==49
CommandBut... = & =EMBED("Forms.CommandButton.1","") f
A | B | ¢ [b | E | F [6 [H |
1 I R R N R
2 O O Control Toolbox * X,
i < CommandButton E & }
Vi el o & EHEH & £ 3 3]
A FEacmE s AE R
6 €
7 i Copy I
8 [Paste
190 " Properties |
11 | View Code M |
5
12 CommandButton Object » |
13
14 Grouping k|
15 Order »
16
17 &3{ Format Contral... I
'-Mxh,“-#*-ﬁ-“ﬂw;;‘ xl-.,_‘#."-. L‘.ﬂﬂ“q#’“ 1--__,.--,_..‘.-»;1 N

42

First, create a function that will open the DDE topic to Excel:

Private Function OpenR3Linxi()
On Error Resume Next

'Open the connection to B3Linx
OpenR3Linx = DDEInitiate ("RILINI"™, "EXCEL TE3T™)

'Check if the connection was made

If Err.Nuwher <> 0 Then
MzgBox "Error Conhnecting to topic’, wvhExclamation, "Error™

OpenB3Linx = 0 'RBeturn fal=se 1if there waz an error
End If

End Function

Now, if I call this function from the CommandButton1_Click event, it will open the link to

RSLinx:

Private Sub CommandButtonl Clicki)
k=linx = OpenRSLinx()

End Sub

43

References:

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1769-

um011 -en-p.pdf

http://literature.rockwellautomation.com/idc/groups/literature/documents/qs/1756-gs001 -

en-p.pdf

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-

pm001 -en-e.pdf

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-

rm003 -en-p.pdf

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-

rm094 -en-p.pdf

44

