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Power System Fault Analysis (1)

All Protection Engineers should have an
Tan_ders’randing

Calculate Power System Currents and Voltages during Fault
Conditions

Check that Breaking Capacity of Switchgear is Not
Exceeded

Determine the Quantities which can be used by Relays to
Distinguish Between Healthy (i.e. Loaded) and Fault
Conditions

Appreciate the Effect of the Method of Earthing on the
Detection of Earth Faults

Select the Best Relay Characteristics for Fault Detection

Ensure that Load and Short Circuit Ratings of Plant are Not
Exceeded

Select Relay Settings for Fault Detection and Discrimination
Understand Principles of Relay Operation
Conduct Post Fault Analysis
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Power System Fault Analysis (2)

Power System Fault Analysis also used to :-

» Consider Stability Conditions
Required fault clearancetimes
Need for 1 phaseor 3 phase auto-reclose
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Computer Fault Calculation Programmes

Widely available, particularly in large power utilities
Powerful for large power systems
Sometimes overcomplex for simplecircuits

Not always user friendly

v vvyyvVvyy

Sometimes operated by other departments and not
directly availableto protection engineers

v

Programme calculation methods:- understanding is
Important

» Need for ‘by hand’ spot checks of calculations
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Pocket Calculator Methods

» Adequatefor the majority of simple applications

» Useful when no access is availableto computers and
programmese.g. on site

» Useful for ‘spot checks’ on computerresults
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Vectors

Vector notation can be used to represent phase
relationship between electrical quantities.

7

<|
6,

\ V = Vsinwt = V £0°

| £-6° = Isin(wt-0)
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] Operator

Rotates vectors by 90° anticlockwise

Aj=u9oo

90° ’/ \900
90° \L }90"

P =12270°
v = 4

1 2180° &

|

mn
|
—

Used to express vectors in terms of “real” and
“Imaginary” parts.
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a=1.120°

Rotates vectors by 120° anticlockwise

Used extensively in “Symmetrical Component Analysis”

1 .3

a = 1£120° = -2 + J°~

2
—_120°
120° r\\ > ]
a’ = 1/240° = . jﬁ
2 2
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Balanced 3@ voltages

Ve

al+a+1 =0

AV A

a=1.120°
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Balanced Faults
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Balanced (39) Faults (1)

» RARE :- Majority of Faults are Unbalanced

» CAUSES :-

1. System Energisation with Maintenance Earthing
Clamps still connected.

2. 10 Faults developing into 3@ Faults
» 30 FAULTS MAY BE REPRESENTEDBY 1@ CIRCUIT

Valid because system is maintained in a BALANCED state
during the fault

Voltages equal and 120° apart

Currents equal and 120° apart

Power System Plant Symmetrical
Phase Impedances Equal
Mutual Impedances Equal
Shunt Admittances Equal
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GENERATOR TRANSFORMER

Balanced (39) Faults (2)

LINE ‘X’ LINE *Y’

—() &9

LOADS

30 FAULT

[J

553

r-—-—---—-

L LOAD
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Balanced (39) Faults (3)

| F‘\
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\
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\ —-— - -
- - IOF
/
/
Ec II Eb
/
/

/
s
Positive Sequence (Single Phase) Circuit -
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ZLOAD
oN,
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Representation of Plant
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Generator Short Circuit Current

The AC Symmetrical component of the short circuit current varies with time
due to effect of armature reaction.

l\
| W\ i —

JJ% [y MME
J

V4

I//
Magnitude (RMS) of current at any time t after instant of short circuit :

Iac — (Iu_In)e-t/Td" + (Iu_I)e-t/Td' + 1

" = Initial Symmetrical S/C Current or Subtransient Current
= E/Xd" ~ 50ms

I' = Symmetrical Current a Few Cycles Later ~ 0.5s or
Transient Current = E/Xd'

I =  Symmetrical Steady State Current = E/Xd
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Simple Generator Models

Generator model X will vary with time. Xd" - Xd' - Xd

X

AR O

©
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XG=O.2pU

20MVA

sim plified.

11kV

Parallel Generators

11kV
11kV

j0.05

If both generator EMF’s are equal ..
resulting from the sameideal source - thus the circuit can be

X=0.2pu

20MVA

they can be thoughtof as
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P.U. Diagram

i0.05 0.1

O
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2 Winding Transformers

® 2 =
ZS =
Z =
ZP ZS S] . =
——1{ 1] [ —e—
N Iy =
N, Zr =
P, Ity =1p + Ls s,
@ .I .I @

Positive Sequence Impedances of Transformers

Primary Leakage Reactance

Secondary Leakage
Reactance

Magnetising impedance
Large compared with Zp
and Zg

Infinity .. Represented by
an Open Circuit

Zp + Zg = Positive
Sequence Impedance

Zpand Zg

both expressed
on same voltage
base.
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Motors

v

Fault current contribution decays withtime

v

Decay rate of the currentdepends on the system.
From tests, typical decay rate is 100 - 150m S.

» Typically modelled as avoltage behind an
iImpedance

1.0
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Induction Motors — IEEE Recommendations

Small Motors

Motor load <35kW neglect
Motor load >35kW SCy, = 4x sum of FLCy,

Large Motors

SCy = motorfull load amps
Xdll

Approximation:  SCy,, = lockedrotoramps
SCy

5X FLCy, ® assumes motor
Impedance 20%
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Synchronous Motors — IEEE Recommendations

Large Synchronous Motors

SCy = 6.7xXFLCyfor Assumes X"d = 15%
1200 rpm
~ S5XFLCyfor Assumes X"d = 20%
514 -900 rpm
~ 3.6X FLCy,for Assumes X"d = 28%

450 rpm or less
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Analysis of Balanced Faults

> Fault Analysis —January 2004
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Different Voltages — How Do We Analyse?

11/132kV 132/33kV
50MV A 50MVA
Feeder
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Referring Impedances

ldeal
Transformer

Consider the equivalent CCT referred to : -

Primary Secondary

2 2
R; +N2R, X1+ Ny Ri/N2+R, /N * X
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Per Unit System

Used to simplify calculations on systems with more
than 2 voltages.

Definition

P.U. Value = Actual Value
of a Quantity Base Value in the Same Units
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Base Quantities and Per Unit Values

11/132kV 132/33 kV
50 MVA 50 MVA
O/H LINE FEEDER
= = [, = 8Q
ZG 0.3 p.u. ZT = 10% Z|_ 400 ZT = 10% L 8

Particularly useful when analysing large systems with
several voltage levels

All system parameters referred to common base quantities
Base quantities fixed in one part of system

Base quantities at other parts at different voltage levels
depend on ratio of intervening transformers
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Base Quantities and Per Unit Values (1)

Base quantites normally used :-

BASE MVA = MVA, = 3J MVA

Constant at all voltage levels

Value ~ MVA rating of largest item
of plant or 100MVA

BASE VOLTAGE = KV, = &/J voltage in kV

Fixed in one part of system

This value is referred through
transformers to obtain base
voltages on other parts of system.

Base voltages on each side of

transformer are in same ratio as
voltage ratio.
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Base Quantities and Per Unit Values (2)

Other base quantites :-

(KM )2

Baselmpedance = Zp = MVA In Ohms

MVAp
J3. KV

Base Current =Ip =

> Fault Analysis —January 2004
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Base Quantities and Per Unit Values (3)

Per Unit Values = Actual Value

Base Value

PerUnit MVA = MVA,,, = VA

h MVA,
PerUnit Voltage = kVpy = KVa

u. K\,
PerUnit Impedance = Z,,, = Za _ za_MVAg

“b (K\b)

PerUnit Current = I, = la
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Transformer Percentage Impedance

» IfZ: = 5%
with Secondary S/C
5% V ratep) Produces | gatepy IN Secondary.

"V ratepy Produces 100 x | gatep)
5

= 20 X | ratED)
» If SourcelmpedanceZs = 0
Faultcurrent = 20 X | gatep)

Fault Power = 20X kVA ratep)

> ZT |S baSEd On I (RATED) & V (RATED)
I.e. Based on MVA gatep) & KV raTeD)

. Issamevalueviewed from either side of transformer.
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Example (1)

Per unitimpedance of transformeris sameon each side of
the transformer.

Consider transformer of ratio kV1/ kV2

0 ©

MVA

KV, / kV; @ KV, / KV,

Actual impedance of transformer viewed from sidel = Z_;

Actual impedance of transformer viewed from side2 = Z_,
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Example (2)

Base voltage on each side of a transformer must be in the
sameratio as voltageratio of transformer.

11.8kV 11.8/141kv  132/11kV
O_@% Distribution
—
System

Incorrect selection

selection of kVDb 132

1 |
: :
= i
of kVb 11.8kV 1 132kV | 11kV
= i
Correct selection 132x11.8! 132kV i 11kV
of kVb 141 i |
= 11.05kV |
1
i i
Alternativecorrect 11.8kV ! 141kV E 141x11=11.75kV
1
= i
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Example

11kV 11/132kV 132/33 kV

20 MVA 50 MVA 50 MVA
03pu. 10% 40Q 10%  8Q
: : : 3
BV L 132 1 g3 FAUL
1 1 1
I 50 , 50 1 50
2420 1 3490 1 2180
1 1 1
| | | 13, KV = 0.698 X I, =
i 2625 A i 219 A i 874 A 0.698 x 2625 = 1833A
: : I3, KV = 0.698 x 219 = 153A
1 1
03y 500 "o l;akV = 0.698 x 874 = 610A
I e 40 8 _
: 20 01pU349 011553 01pu 21 =0.367p..
1=0.75,,. }
1.432, .
1o IF= 1 = 0.498p.u
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Fault Types

Line - Ground (65 - 70%)
Line - Line- Ground (10 - 20%)
Line - Line (10 - 15%)
Line - Line - Line (5%)

Statistics published in 1967 CEGB Report, but are
similar today all over the world.
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Unbalanced Faults

> Fault Analysis —January 2004
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Unbalanced Faults (1)

In three phase fault calculations, a single
phase representation is adopted.

3 phase faults are rare.
Majority of faults are unbalanced faults.

UNBALANCED FAULTS may be classified into
SHUNT FAULTS and SERIES FAULTS.
SHUNT FAULTS:

Lineto Ground
Lineto Line
Lineto Line to Ground

SERIES FAULTS:

Single Phase Open Circuit
Double Phase Open Circuit
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Unbalanced Faults (2)

LINE TO GROUND

LINE TO LINE

LINE TO LINE TO GROUND

Ccauses :

1) Insulation Breakdown
2) Lightning Discharges and other Overvoltages
3) Mechanical Damage
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Unbalanced Faults (3)

OPEN CIRCUIT OR SERIES FAULTS
Ccauses:
1) Broken Conductor

2) Operation of Fuses
3) Maloperation of Single Phase Circuit Breakers

DURING UNBALANCED FAULTS, SYMMETRY OF SYSTEM
ISLOST

- SINGLE PHASE REPRESENTATION IS NO LONGER VALID
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Unbalanced Faults (4)

Analysed using :-

» Symmetrical Components

» Equivalent Sequence Networks of Power
System

» Connection of Sequence Networks
appropriate to Type of Fault

> Fault Analysis —January 2004
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Symmetrical Components

> Fault Analysis —January 2004
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Symmetrical Components

Fortescuediscovered aproperty of unbalanced phasors
‘n’ phasors may be resolvedinto :-

» (n-1)sets of balanced n-phasesystems of phasors, each
set having adifferent phase sequence

plus
» 1setofzerophasesequenceor unidirectional phasors

Va = Vart Vap + Vaz + Vpg----- Vam-1) ¥ Van
Vg = Vp1+ Vgo + Vg + Vg ----- VBm-1) T Ven
Ve = Vo1t Voo + Vg + Vg ----- Vemn-1) + Ven
Vp = Vpg+ Vpp + Vpg + Vpy ----- Vbmn-1) + Vpn

Vi = ¥y A m na Vo T VY

(n-1) x Balanced 1x Zero
Sequence
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Unbalanced 3-Phase System

Va = Va1 + Vao + Vpo

Vg = Vg + Vgy + Vpg

Ve = Vg1 + Vo + Vg

120°

V1

Positive Sequence

Va2

A

240°

Vi, Veo

Negative Sequence
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Unbalanced 3-Phase System

Zero Sequence

> Fault Analysis —January 2004

46



Symmetrical Components

Phase = Positive + Negative + Zero
A\/A
Va= Var+ Va2t Vao
Vg = Vg1 + Vo + Vi
Ve = Ver1+ Vet Veo
-l )
Ve \
Va1 Vg
VaoVRo V
}'VCZ / 0
Ver
Vg2
Vg1 = 0?Vy4 Ve = a Vo Veo = Vao

Ve = aVag Voo = 0%Vpo Veo = Vao
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Converting from Sequence Components to

Phase Values

S
[

Var + Va2 + Vpo
Vg = Vg1 + Vgy + Vg = @2V + @V + Vyg
Ve = Vei + Voo + Vg = @V + @V + Vyg
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Converting from Phase Values to

Sequence Components

VAl = 1/3 {VA + aVB + aZVC}
Vi, = 13{Vs + a?Vy + aVg)
VAO = 1/3 {VA + VB + Vc}

Va
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1/3 {V,
1/3 {V,

1/3{V, +

1341,
1341,
1341,

OCVA2
xszz

Ca2
2
oclps

Vg
oC 2VB

oclg

oc2|B

Vao
Vao
Vao
lno
lno
lno
oc2VC}
Ve }
Ve '}
oc2|C }
ocle }
lc }

Summary
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Used to detect earth faults

Residual Current

3Y Faults
IS Faults

zero for ;-

present for :-

-
-
| A
-
-
5
-
=
lc
AlResipual = Ia t I + ¢
= 3'0
lrespuaL 1S Balanced Load lresipuaL 1S JIE Faults

QIDIE Faults
Open circuits (with
current in remaining phases)
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Used to detect earth faults

—

A

VResipuaL =
Vat Vgt Ve

= 3\/0

Residual Voltage

Residual voltage is measured
from “Open Delta” or “Broken
Delta” VT secondary windings.

Vrespual 1S zero for:-

Healthy unfaulted systems
3J Faults
I Faults

VrespuaL 1S present for:-

JIE Faults

DIGIE Faults

Open Circuits (on supply
side of VT)
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Example

Evaluatethe positive, negative and zero sequence
components for the unbalanced phase vectors:

Ve
Vy, = 1 £0°
Vg = 1.5 £-90°
>VA
Ve = 0.5 £120°

> Fault Analysis —January 2004

53



Solution

= 1/3(V, + aVg + a?Vy)

1/3[1 + (1 £120) (1.5 £-90)
+ (1 £240)(0.5 £120)]
0.965 £15

= 113 (V, + a?Vg + aV()

1/3[ 1 + (1 £240) (1.5 £-90)
+ (1 £120) (0.5 £120)]

0.211 £150

= 1/3 (Vo + Vg + V()
1/3 (1 + 1.5Z£-90 + 0.5 Z£120)
0.434 £-55
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Ver = aVag

Vg = 0?Va]

Positive Sequence Voltages

Va1 = 0.965/15°

> Fault Analysis —January 2004
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Va,=0.2112150° Vey = Vs,

\QV

Vey = GV

Negative Sequence
Voltages

-55°

Vag = 0.434£-55°
\/BO = -

Veo =

Zero Sequence
Voltages
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Symmetrical Components

Ve
Vei Vg
Ve Vo
Vo Ve Va
Va0
Va
Ve2 v,
VB]
Vi
VeoN Ve

> Fault Analysis —January 2004
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Example

Evaluatethe phase quantities I, I, and I, from the sequence
components

., = 0.620
., = -04/0
e = -0.2/0
Solution
Ia = lartlaztlao =0
g = «flypFaclpy+ lag
= 0.6£240-0.4£120-0.2£0 = 0.91£-109
lc = «lpgtocflpy+ g

= 0.6£120-0.4£240-0.2£0 = 0.91£-109
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Representation of Plant
Cont...
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Transformer Zero Sequence Impedance
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General Zero Sequence Equivalent Circuit for

Two Winding Transformer

Primary 7 Secondary
Terminal 'a’ 10 'q9' Terminal
|O |b| |O lb
No

On appropriate side of transformer

Earthed Star Winding

Delta Winding -

Unearthed Star Winding

- Close link ‘a’
Open link ‘b’

Open link ‘@’
Close link ‘b’

- Both links open
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® T

Zero Sequence Equivalent Circuits (1)

>

/
/
\
F Y%
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® U

Zero Sequence Equivalent Circuits (2)

V
\

>
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® U

Zero Sequence Equivalent Circuits (3)

[ Y%

>

> Fault Analysis —January 2004



® U

Zero Sequence Equivalent Circuits (4)

[ Y%

&
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T
Lp Lg S
-}  — .
7y, Ly
T
N;
Ip L g
1 }—eo—
Iy
T

3 Winding Transformers

Zp, Zs, Zy = Leakage reactances of Primary,
Secondary and Tertiary Windings

Zy = Magnetising Impedance = Large

. Ilgnored

Zp.s = Zp + Zs = Impedance between Primary (P)
and Secondary (S) where Zp & Zg
are both expressed on same
voltage base

S|m|lar|y ZP-T = Zp +ZT and ZS-T = ZS +ZT
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Auto Transformers

T N

Equivalent circuit is similar to that of a 3 Zy = Magnetising Impedance =
winding transformer. Large .. Ignored

Zy1 = Zy + Z1 (both referred to same voltage base)
Zuyty = Zm t+ Zy; (both referred to same voltage base)

Ziw = Z, +Zn, (both referred to same voltage base)
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Sequence Networks

> Fault Analysis —January 2004
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Sequence Networks (1)

It can be shown that providing the system
iImpedances are balanced from the points of
generationright up to the fault, each
seguence current causes voltage drop of its
own sequenceonly.

Regard each current flowing within own
network thro’impedances of its own
sequenceonly, with no interconnection
between the sequence networks rightup to
the point of fault.
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Sequence Networks (2)

» +ve, -ve and zero sequence networks are drawn for a
‘reference’ phase. Thisis usually taken as the ‘A’
phase.

» Faults are selected to be ‘balanced’ relative to the
reference ‘A’ phase.

e.g. For @/E faults consider an A-E fault

For @/@ faults consider a B-C fault

» Sequence network interconnectionis the simplest for
thereference phase.

> Fault Analysis —January 2004

73



Positive Sequence Diagram

® o

1. Startwith neutral point N,

- All generator and load neutrals are
connected to N,

2. Include all source EMF’s

- Phase-neutral voltage

3. Impedance network

- Positive sequenceimpedance per phase

4. Diagram finishes at fault point F,
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Example

Generator Transformer

Line F
N N ( gi — 7
R
E =
S i Z
N, G1 1 L] , K
p—<:)—| — | .' ———>
[v
o)
(Ny)
V; = Positivesequence PH-Nvoltage at fault point
I, = Positivesequencephasecurrentflowinginto F;

Vi = EBEi1- 11+ Z1y + Z9)
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Negative Sequence Diagram

1. Start with neutral point N,

- All generator and load neutrals are connected
to N,

2. No EMF’s included

- No negative sequence voltageis generated!
3. Impedance network

- Negative sequenceimpedance per phase

4. Diagram finishes at fault point F,
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Example

Generator Transformer .
Line F
O— 05—
R . .
System Single Line
Diagram
E =
N, Lo L1y L9 l, F
I L1 — O
O
Negative Sequence (Nz)
Diagram
V, = Negativesequence PH-Nvoltage at fault point

Negative sequence phase current flowing into F»,

Vo = lh(Zgat Z1o+ Z1o)

> Fault Analysis —January 2004

7



Zero Sequence Diagram (1)

For “In Phase” (Zero Phase Sequence) currents to flowin
each phase of the system, there must be a fourth
connection (thisis typically the neutral or earth
connection).

a0 * Igo t lco = 3lao
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Zero Sequence Diagram (2)

Resistance Earthed System :-

N

31a0

Zero sequence voltage between N & E given by
R Vo = 31.R

Zero sequence impedance of neutral to earth path
- ZO = Vo = 3R

lno
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Zero Sequence Diagram (3)

Generator Transformer
Llne F

BP———

System Single Line Diagram

N Lo Lo . Lo lo Fg
- O
0 Zero Sequence Network (No)
Vg = Zerosequence PH-Evoltage at fault point
lp, = Zerosequencecurrentflowinginto Fj

Vo = -lg(Ztot+ ZLo)
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Network Connections
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Interconnection of Sequence Networks (1)

Consider sequence networks as blocks with fault
terminals F & N for external connections.

OF,;
POSITIVE
SEQUENCE
NETWORK
ON;
l,
— o F2
NEGATIVE
SEQUENCE Vs
NETWORK
O N,
lo
—1T—OF,
ZERO
SEQUENCE vV,
NETWORK
——-O N,
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Interconnection of Sequence Networks (2)

For any given faultthere are 6 quantities to be considered at the fault
point

ie. Vi Vg Vo o Iy lg g

Relationships between thesefor any type of fault can be converted
into an equivalentrelationship between sequence components

V, V,, Vo and Iy, 1y, 1,

Thisis possibleif :-

1) Any 3 phase quantities are known (provided they are not all
voltages or all currents)

or 2) 2areknown and 2 others are known to have aspecific
relationship.

From the relationship between sequence V’s and I’s, the mannerin
which theisolation sequence networks are connected can be
determined.

Theconnection of the sequence networks provides asingle phase
representation (in sequence terms) of the fault.
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To derivethe system constraints at the faultterminals :

- F
P
9
I I3 lc
@ @) @
Val VB Ve
@)

Terminals are connected to represent the fault.
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Line to Ground Fault on Phase ‘A’

|
9
|
'A '8 'c At fault point :-

@) @) VA = 0
val 1Vvel  ve Vi = 7
1, = 9
I = 0
i e = O
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Phase to Earth Fault on Phase ‘A’

At fault point

= O; Ig =0; Ic=0

but Va, = V;+V,+ YV,

V, + Vo, +Vy= 0f - - (1)
= L3 (s + Ig 1) = 1/31,

= 13+ alg+ a3 = 1/31,

= 1/3 (1, + @%lg + alg) = 1/31,

NN T T e — (2)

To comply with (1) & (2) the sequence networks must be connectedin series :-

I, E
~e H——O
Seq
N/W I)\L}]
I
N] -ve —LéFQ
5€q IVQ
N/W

Seq
N/W

N\
N o b
0
N2 ™ Zero
%
™\
\ ¥ 4
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Example : Phase to Earth Fault

(~0) / A-G
\_/ .
132 kV Z;; =100 FAULT

2000 MVA Lig=35Q IF
e ZS] - 87Q
ZSO = 87Q
87 ]O I] F]
——/——T——>——
N
o
8.7 10 b Fp
I 1T > ®
N,
9
8.7 35 b F
— — >—o
No
9

Total impedance = 81.1Q

I, = I, = Ip = 132000 = 940 Amps
V3x 81.1
Ik=I1,=01L+ L+, = 3l
= 2820 Amps
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Earth Fault with Fault Resistance

I] F]
O
POSITIVE
SEQUENCE v
NETWORK 1
O
N;
L, F
— 0\
A\ %4
NEGATIVE
SEQUENCE \/2
NETWORK
O
No
F
|o ’O\
A4
ZERO
SEQUENCE VO
NETWORK
O
No

37
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Phase to Phase Fault:- B-C Phase

tve

|
1 3
Seq |v]

N/W
""i>N1

-ve
Seq
N/W

lo
Zero OFy
Seq '
N/W Vo
Ong
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Example : Phase to Phase Fault

(~0) / B-C
132 KV 7, =15 =10Q FAULT
2000 MVA

= ZS] = ZSQ =8.7Q
132000
V3 8.7 10 L F
—(~)——2 — —
N;
@
8.7 10 |2 FQ
I I g ® >
N»
@
Total impedance = 37.4Q I = azl;+ al,
I, = _132000 = 2037 Amps = a?l, - aly

V3x 37.4 = (a2- a) |,

l, = -2037 Amps = () . V¥3x 2037

= 3529 Amps.
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Phase to Phase Fault with Resistance

LF
| |
e——

tve
Seq
N/W

|
_](LF]

)
ve —JJFQ

Seq '
' Vi N/W V2
TNl TNQ
lo
zZeros ——OF
eq IV
N/W 0
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Phase to Phase to Earth Fault:- B-C-E

—(I) —I2<L _(LIO
+ve M -ve F2 Zero Fo

l
Seq ' Seq ' Seq l
N/W Vi N/W V2 N/W Vo

s D S
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Phase to Phase to Earth Fault:-

B-C-E with Resistance

[

A 12 (L |
wve —OF -ve F2 ZeroS __O_OFO

Seq 'V] Seq 'Vz eq IVO

N/W N/W N/W
TNQ TNO
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Maximum Fault Level

Single Phase Fault Level

» Can be higherthan 3® faultlevel on solidly-
earthed systems

Check that switchgear breaking capacity > maximum
faultlevel for all fault types.
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30 Versus 19 Fault Level (1)

O-o|-a
JA\\ PN A\
7N
Xg X1
* E E
~_ > (= = ——
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30 Versus 19 Fault Level (2)

— o
1 I ZZ]_-I—ZO
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30 Versus 1@ Fault Level (3)

E 3E 3E

3@ = — = — =
FAULTLEVEL Z4 374 271 +24

3E
221+ Zp

1DEAULTLEVEL =

L IFZy < 74

1IEAULTLEVEL > 3YFAULTLEVEL
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Open Circuit & Double Faults
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Series Faults (or Open Circuit Faults)

N

NEGATIVE SEQUENCE NETWORK

Qo

N B A

.

POSITIVE SEQUENCE NETWORK

N

ZERO SEQUENCE NETWORK
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Interconnection of Sequence Networks

Consider sequence
networks as blocks with
faultterminals P & Q for
Interconnections.

Unlike shunt faults,
terminal N is not used
for interconnections.

POSITIVE
SEQUENCE
NETWORK

NEGATIVE
SEQUENCE
NETWORK

N; O———

ZERO
SEQUENCE
NETWORK
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Derive System Constraints at the Fault Terminals

Theterminal conditionsimposed by different open circuit
faults will be applied across points P& Q onthe 3line
conductors.

Faultterminal currents |, I, I, flow from P to Q.
Faultterminal potentials V,, V,,, V. will be across P and Q.

1<
Q

1<
0

o
Yo SUSPRNN ¢ SREpRY ¢ MR
ol
Q- -= - --0--0
<
O
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Open Circuit Fault On Phase A (1)

P Q

I I
Vg ! lg I Vq

i i

1 Vg I
Vi 1 Iy | lvb

| — I

I I

1 Vb |
Ve i lc I Ve

| - T

I I

1 Ve 1

At fault point :-

V, = ?
Vp — 0
Vo = 0
, = 0
Ib — ?
. = 2
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Open Circuit Fault On Phase A (2)

At fault point
Vb, = 0; voe=0; 1, =0

Vo = 1/3(va+tvy+ v.) = 1/3v,
vV, = 1/3 (v +ocv,+oc?v,.) = 1/3 v,
Vo, = 1/3 (v, +oc?v,+ ey, ) = 1/3 v,

c|\vy = vy, = vy = 13V, | - (1)

I, = L+ L+|lp = 0 - (2)

From equations (1) & (2) the sequence networks are connected
in parallel.

tve P -ve Py Lero I
\%

Seq IV] Seq IVQ Seq
N/W
N/W _TQ] / ﬂ)QQ N/W ATQO
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Two Earth Faults on Phase ‘A’
at Different Locations

(1) At fault point F
Vo=0; 1I,=0; 1.=0

It can be shown that

Ial B Ia2 — IaO
Va1+Va2+Va0 - 0

(2) At fault point F'
VS =0;1,'=0; I.;/=20

It can be shown that

al |™— Ia2 - IaO
Va1+Va2+VaO = 0
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INCORRECT
CONNECTIONS

As - Vo # Vg
Va2 # Vaél
Val #'. Va{'
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1/1
%'Vd
2
1/1
Vag Va' |Vo
0 0

$NO $Nb
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Open Circuit & Ground Fault

\ 2 o
o Ya :.VO * -
' |
| Vi | Y v o
I o
2 > -2 ’
' |
1 Vb :
I Ve !l 1 Ve lc
I I v
[ loH o I+ |+
L Ve | a'la 3 b b l c''c
o o
|
Open Circuit Fault At fault point :- Line to Ground Fault At fault point :-
v, = ? Va' = 0
Vp = 0 Vb' = ?
Ve = 0 \Vc' = ?
., = O L+ 1, = ?
Ib = ? Ib + Ilb - 0
. = ? I + I'; = 0
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-l '] la, + 1a'
' Va
1
N ~
[ 2 v, @
la} 1a7, 'C‘g” la, +
la’,
vVdQds
Va, Var ' Var
2 2
O
Po & Q0 ’ 4
|Oo IO’O IO?+ |Oo+
o’y
VQp
VOO Var ' Var
0 0
O
No
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