ISO 50002 Energy Audit

Question 9.

An industry operates a cooling water pump for process cooling and refrigeration applications. During the performance testing the following operating parameters were obtained:

(a) Pump water flow (Q)

 $= 0.40 \text{ m}^3/\text{s}$

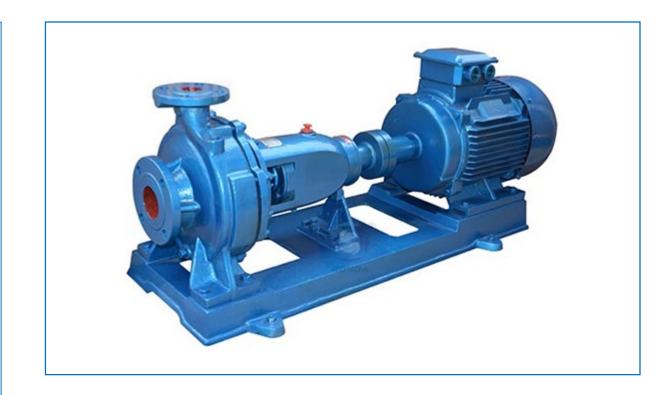
(b) Power consumption (P)

= 325 kW

(c) Suction head, tower basin level (h1) = +1 m

(d) Delivery head (h2)

= +55 m


(e) Motor efficiency

= 88 %

(f) Density of water

= 996 kg/m3

Determine the pump efficiency.

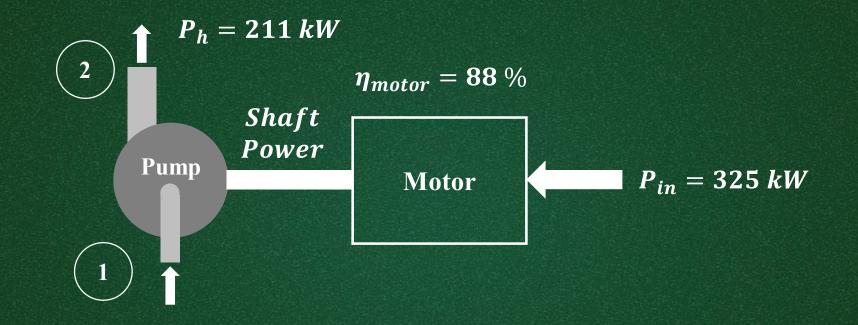
$$\eta_{pump} = \frac{Hydraulic\ Power\ or\ Pump\ Power\ Output}{Power\ Input\ to\ the\ Pump\ Shaft}$$

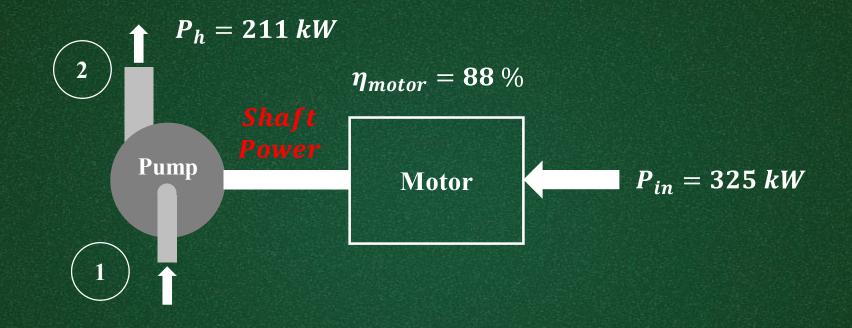
$$\eta_{pump} = \frac{Hydraulic\ Power\ or\ Pump\ Power\ Output}{Power\ Input\ to\ the\ Pump\ Shaft}$$

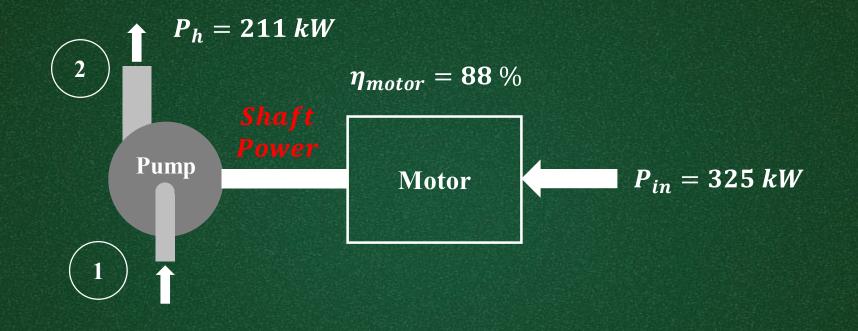
$$P_h(kW) = \frac{\rho(\frac{kg}{m^3}) \times g(\frac{m}{s^2}) \times Q(\frac{m^3}{s}) \times H(m)}{1000}$$

Hydraulic Power

$\eta_{pump} = \frac{Hydraulic\ Power\ or\ Pump\ Power\ Output}{Power\ Input\ to\ the\ Pump\ Shaft}$


$$P_h(kW) = \frac{\rho(\frac{kg}{m^3}) \times g(\frac{m}{s^2}) \times Q(\frac{m^3}{s}) \times H(m)}{1000}$$


$\eta_{pump} = \frac{Hydraulic\ Power\ or\ Pump\ Power\ Output}{Power\ Input\ to\ the\ Pump\ Shaft}$


$$P_h(kW) = \frac{\rho(\frac{kg}{m^3}) \times g(\frac{m}{s^2}) \times Q(\frac{m^3}{s}) \times H(m)}{1000}$$

$$Total\ Head = h_2 - h_1 = 55 - 1 = 54\ m$$

$$P_h(kW) = \frac{996\left(\frac{kg}{m^3}\right) \times 9.81\left(\frac{m}{s^2}\right) \times 0.4\left(\frac{m^3}{s}\right) \times 54(m)}{1000} = 211$$

$$\eta_m = \frac{P_{out}}{P_{in}}$$

$$Shaft Power = P_{out} = \eta_m \times P_{in}$$

$$= 0.88 \times 325 = 286 \, kW$$

$$\eta_{pump} = \frac{P_h}{P_{shaft}} \longrightarrow \eta_{pump} = \frac{211}{286} = 73.77 \%$$

ISO 50002 Energy Audit

Thank you for your attention

ehsan.marashi@yahoo.com

https://www.linkedin.com/in/ehsan-marashi/

https://www.linkedin.com/groups/8975844/