
T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

1

Introduction

Introduction

A training about the basics of IEC 61131-3 programming tool CoDeSys

Source: The CoDeSys training material made from the text in the online help of CoDeSys programming tool version 3.5 and different help documents

from CoDeSys (3S) as well as published text on the homepage http://www.codesys.com and various examples

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

2

Training Agenda (2 days)

• 3S-Smart Software Solutions GmbH & CODESYS

• Beijer Electronics offer

• Structured project, IEC 61131-3

– Editors IL / LD / FBD / ST / SFC / CFC

• CoDeSys programming tool

– User interface

• Task / POU / Variables

– Declaration of Local and Global variables

• Exercises with editors and Elevator Simulator

– Timers and Counters

– Operands and Calculations

• Create user made blocks (FB / FUN)

• Library Management

• Diagnostics and other features

• Project Backup

• Device settings and Transfer to HW >> Appendix

– Example with TxA or TxB SoftControl and Crevis I/O

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

3

CoDeSys V3
3S-Smart Software Solutions

CoDeSys

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

4

3S-Smart Software Solutions Gmbh

• The company of CoDeSys

3S-Smart Software Solutions

– Headquarters in Kempten, Germany

– Founded in 1994 by Dieter Hess and

Manfred Werner

– More than 100 software enginers

– The company is certified to ISO 9001

• CoDeSys Products

– CODESYS Engineering, Runtime,

Visualization, Fieldbus, Motion + CNC

and Safety

– CoDeSys is used in virtually all sectors

of the automation industry

– Different Devices programmable with

CODESYS from >350 manufactures http://www.codesys.com/

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

5

CoDeSys (Controller Development System)

• CoDeSys is the product name of the

complete software family of

IEC 61131-3 programming tools

• The runtime system CoDeSys Control

provides the following main functions:

– Execution of the application(s), that are

created with CoDeSys 3.x

– Debugging of the IEC application

– Connection to the IO-system and Drives

– Communication with the programming

tool CoDeSys 3.x or other clients (HMI)

– Routing for communication to

subordinate runtime systems

– Runtime system to runtime system

communication (“PLC-to-PLC”)

Connection to external I/O

and Drives via IO-system

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

6

Overview CoDeSys - Key benefits

• The IEC 61131-3 Development System

– Free programming tool, no fuzz. A large number of companies rely on CoDeSys!

• CoDeSys Control - the “SoftPLC” Runtime System (OEM)

– Available for OS like e.g. Windows CE, VxWorks and Linux, further upon request

• CoDeSys Control RTE – “Hard realtime” PLC control

– Turns any type of industrial PC with Windows XP/Vista/7 operating system into a powerful PLC

• CoDeSys SoftMotion - Control and Motion become one

– Single or Multi axis movements with PLCopen motion POUs, CAM & gearing, CNC..

• CoDeSys Safety – SIL 2/3 possibilities (IEC 61508)

• CoDeSys OPC-Server

– A part of the standard delivery package of CoDeSys Development System

• CODESYS Professional Developer Edition – Efficient Application Development with
integrated Add-Ons in the IEC 61131-3 Development System

– http://www.codesys.com/products/codesys-engineering/professional-developer-edition.html

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

7

The offer from Beijer Electronics

Cost-efficient
HMI PLC + I/O

Low-end PLC
(HMI optional)

High performance
HMI PLC + I/O

• CoDeSys Embedded Controllers

iX TxA SoftControl
+ Crevis I/O

Serial Modbus RTU
(Modbus TCP)

iX TxB SoftControl
and SoftMotion

+ Crevis I/O

EtherCAT
Modbus TCP

Crevis NA-9379

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

8

Crevis NA-9379 - The Programmable I/O

• NA-9379 ”the PIO”

– A smart and compact PLC expandable

with various I/O-modules of FnIO-S

series

• General

– Modbus/TCP client for Remote I/O etc

– Modbus/TCP server for HMI/SCADA

communication

– Modbus RTU slave on RS485 port

– PLC<>PLC communication via standard

CODESYS functionality

– Application memory, 512 kB

– Operating temperature -20 -> +50°C

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

9
| 9

The iX HMI SoftControl

• A combination of two automation products:

– iX HMI solution from Beijer Electronics
» iX offer an open development platform through .NET components

and to create customized functionality using C# scripting

– CoDeSys, the SoftPLC runtime system

The iX TxA SoftControl range The iX TxB SoftControl range

RTU/TCPRTU

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

10

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

11

CoDeSys V3

Structured Project

Structured Project

CoDeSys, the standard in IEC 61131-3 Controller and PLC programming

Made by company 3S-Smart Software Solutions, located in south of Germany

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

12

IEC 61131-3 standard

• Programmable Controller Program Languages

• There are 5 program languages defined in the IEC 61131-3 standard

- IL (Instruction List)

‐ LD (Ladder Diagram)

- FBD (Function Block Diagram)

- ST (Structured Text)

- SFC (Sequential Function Chart)

• CoDeSys provide one additional CFC-editor

- CFC (Continuous Function Chart)

- An extension to the IEC 61131-3 programming languages

• CoDeSys is certified by PLCopen, www.plcopen.org

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

13

IEC 61131-3, Instruction List (IL)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

14

IEC 61131-3, Ladder logic (LD)

Combine both LD and

FBD code in one editor

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

15

IEC 61131-3, Function Block Diagram (FBD)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

16

IEC 61131-3, Structured Text (ST)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

17

IEC 61131-3, Sequential Function Chart (SFC)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

18

Continuous Function Chart (CFC)

• The extension to the IEC 61131-3 programming languages

• Another implementation of the Function Block Diagram (FBD-editor)

• The execution sequence can be controlled and visualized with the
little boxes in the right top corner of each function box

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

19

Continuous Function Chart (CFC)

• Pros with CFC-editor:

– Easy to understand the CFC graphical editor

– The CFC editor allows continuous connections for example for programming
feedback loops and to build macros of boxes and their connections

– Make program with ready-made blocks (FUN / FB) link them together and set
parameters, and allow “Auto routing” of connections

– Makes it possible to explicitly control the execution order

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

20

Program Organization Unit (POU)

• IEC 61131-3 types of program parts available in CoDeSys

1) Program Block (PRG)

- Editors of type IL, LD, FBD, ST, SFC and CFC

- FUN and FB are called from the PRG

2) Function (FUN)

- One output

3) Function Block (FB)

- Several outputs

- Called by instance

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

21

IEC 61131-3, Structured Project

• TASK – Execution control

- An execution control element in the
processing of IEC program

- A Task is defined by a priority and by
a type condition as Cyclic (Intervall),
Event, Freewheeling or Status, that
will trigger the start of the execution

• POU - Program Organization Unit

– PRG (Program)

– FUN (Function)

– FB (Function Block)

• GVL - Global Variable List

- Multiple number of GVL per project
A common Global variable list

POU

PRG: SFC

POU

PRG: FBD

POU

PRG: LD

TASK
Cyclic(T#Xms)

POU

PRG: LD

POU

PRG: FBD

TASK
Event: %MX0.1

POU

FB: LD

POU

FUN: ST

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

22

CoDeSys, Structured Project

• Each project
contains at least
- one Device (Soft PLC)

• Each device
contains at least
- one Application

• Each application
contains at least
- one Task

• Each task
contains at least
- one POU

• Note, one Device may
have more than one
Application (compare
multiple CPU solutions)

Device 1 Device 2 Device 3

Task

POU

Program block

POU

Program block

Task

POU

Program block

POU

Program block

Task

POU

Program block

POU

Program block

Task

POU

Program block

CoDeSys Project

Application Application Application 1

Application 2

Task

POU

Program block

POU

Program block

POU

Program block

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

23

CoDeSys V3

Programming Tool

Programming Tool

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

24

Launching CoDeSys

Toolbar

Devices

window,

Navigation

Work

window

Status bar

ToolBox

selection

window

Dockable

windows

Properties

window

Watch window

I/O Driver/

Fieldbus

status

Project

settings

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

25

Toolbars

• Docking/floating toolbars

Drag & Drop

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

26

Work windows

Hold the cursor above

the variable, and the

tooltip will show

Easily jump between each part of

the project with the list of tabs

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

27

Customize the user interface

• Customize dialog, via menu selection Tools/Customize

• Sub-dialogs (tabs) for the configuration of Menu, Keyboard and Toolbars

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

28

Options

• Menu selection Tools/Options, for user defined settings

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

29

Options example, change Text editor

• Changing font and size (Text area)

• Default “Courier New” for example
change to “Trebuchet MS”

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

30

Create new project

• File – New project… (CoDeSys V3.5)

Select

Standard project

Project name

and patch

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

31

Create new project (wizard)

• When using the wizard a standard Device and Application (program) will be
created automatically, select type of device and program editor

• Device: CoDeSys Control Win V3 (Soft PLC)

Select LD-editor,

Ladder Logic Diagram

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

32

New Device and Object (without wizard)

• Add Device or Object using context menu or menu selection

Right click then

Add Object or Add

Device… Menu selection Project/

Add Object or Add Device…

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

33

Adding device (without wizard)

• Give a name to the device

Select CoDeSys

Control Win V3

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

34

Adding POU (without wizard)

• Give a name to the POU and select
programming language

Select ‘Program’

Select programming

editor

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

35

Append program to Task (without wizard)

• One or several programs (POUs) are connected to one Task

Select execution type for

example ‘Cyclic’ and an

interval of t#20ms

POUs to be executed

by this Task

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

36

Exercise, Create a project

• Create new empty project with Device, POU and Task

• Try using toolbars and docking windows and check options menu

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

37

CoDeSys V3

Declaration

Variables

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

38

How to declare a variable?

• We need:

– Variable name (Identifier) , Colon , Data type ,

Initial value (optional) , Semicolon , Comment (optional)

siMyVariable : SINT := 65 ; (* init in dec *)

(* := 16#41 init in hex *)

(* := 2#0100_0001 init in binary *)

• The identifier in the example start with a prefix (si), that’s the standard in

samples from 3S (CoDeSys) showing that this is a Short Integer (si)

• Note, a list of “prefix” are given in the online help [F1] of CoDeSys, search for

Variable names in chapter Recommendations on the naming of identifiers

• Each variable is assigned to a data type which defines how much memory space

will be reserved and what type of values it stores

• The declaration can be done in the declaration part of a POU or via

the Auto Declare dialog, as well as in a DUT or GVL editor

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

39

Variable naming restrictions

• Restrictions, the following identifier can be used:

- No length limitation inside CoDeSys

- Letters and numbers

- Name must start with a letter

- Only single underscores

- Note that "A_BCD" and "AB_CD" are considered two different identifiers

- Compare declaration of constants (and initial value)

- Do not use spaces, or IEC keywords / operands, or special char: +, -, *,/,…

- Not case-sensitive, which means that
"VAR1", "Var1" and "var1" are all the same variable

- An identifier must not be duplicated locally

- An identifier can be declared with the same name in different GVL lists

• An instance path starting with “.” opens a global scope. So, if there is a local
variable, for example “ivar” with the same name as a global variable “.ivar”
the latter refers to the global variable (“.” is the global scope operator)

• Ignoring the restrictions above will result in a compile error!

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

40

Global or local variables

• When shall a global variable be used?

- If it’s used in more than one POU

- If it’s a physical in/output address

- If it will be monitored by HMI or Scada

• Using variable names makes it more

easy to understand and to maintain

the project

• Global Variable names, can be used

in more than one POU

• Local Variable names,

can only be used in one POU

• Note, a feature in CoDeSys is that

multiple declaration of variable

names are supported using the name

of the GVL as a namespace for the

included variables, example:

globlist1.ivar := globlist2.ivar;

(* ivar from GVL globlist2 is copied

to ivar in GVL globlist1 *)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

41

Declaration of variables

• Declare variables either globally in a Global Variable List or

locally in the declaration part of each POU
Global list, in

textual format

Local list, in

Tabular format

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

42

Declaration of variables

• Declaration can be made either in ‘Textual’ or ‘Tabular’

editor of a POU object, for example:

• Use standard data types, user defined data types (DUT = Structure, Enumeration,

Alias and Union) and instances of function blocks

• Remanent Variables - RETAIN, PERSISTENT

• Attribute keywords RETAIN , PERSISTENT and CONSTANT can be added to the

declaration of the variables "type" in order to specify the scope

• Each variable is assigned to a data type which defines how much memory space

will be reserved and what type of values it stores

Textual editor Tabular

editor

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

43

Standard Data Types

• BOOL (x, prefix)
1 bit, Boolean; in-/outputs or Memory bits

• INT (i) – Integer 16-bit, with sign-bit

• DINT (di)– Double Integer 32-bit, with sign-bit

• WORD (w) – Word Unsigned 16-bit

• DWORD (dw) - Double Word Unsigned, 32-bit

• TIME (tim) - 16-bit, without sign-bit

• ARRAY (a) - Array with index up to 3
dimensions

• REAL (r) - 32-bit floating point

• STRING (s) – Character strings

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

44

More of data types in CoDeSys

• Data types in general

BYTE – 8 bit

LWORD - 64 bit Long Word

SINT - Short Integer, 8 bit, with sign-bit

LINT – Long Integer 64 bit, with sign-bit

U – use the prefix U to make it
unsigned byte or integer,
for example USINT

TIME – 16 bit, without sign-bit

ARRAY – Array with index up to
3 dimensions

STRING – character strings

REAL- 32 bits Real (1.175494351e-38 to 3.402823466e+38)

LREAL – 64-bits Real (2.2250738585072014e-308 to 1.7976931348623158e+308)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

45

• Three classes

• Data type classes

- Program

- Datatype

- Variable

- Simple type

- Function block

- Data unit type

Program (PRG)

Function (FUN)

Function Block (FB)

Simple type (Standard type)

Function Block

Data Unit Type (Struct)

Global (VAR_GLOBAL; attribute CONSTANT, RETAIN, PERSISTENT)

Local (VAR; attribute CONSTANT, RETAIN, PERSISTENT)

FB (VAR, VAR_INPUT, VAR_OUTPUT,VAR_IN_OUT

; attribute CONSTANT, RETAIN, PERSISTENT)

Classes IEC 61131-3

Bool

Int / Word

Dint

Array of...

MyBlock

CounterBlock Bool

Int / Word

Dint

Array of...
MyDataStructure

ProductionResult

Weather

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

46

• Creating variable lists

- GVL_Input

- GVL_Output

- GVL_Memory

- GVL_Data

Exercise, Global variable lists

Go to properties of each

object by right-click

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

47

• Declare some Input variables to the ’GVL_Input’ list

Exercise, Declare inputs

Some of the variables

will be used for the

Elevator Simulator in

later exercises

Tip!

Import from text file,

GlobalVariableList.txt

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

48

• Declare Output variables to the ’GVL_Output’ list

Exercise, Declare outputs

Tip!

Import from text file,

GlobalVariableList.txt

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

49

Numeric Data

• The programming tool uses
binary, octal, decimal and
hexadecimal bases
as shown in this table

– Binary (base 2)

– Octal (base 8)

– Decimal (base 10)

– Hexadecimal (base 16)

• Tip! Use the calculator on the
computer to translate between
different numerical bases

– Run ‘Calc’

Binary Octal Decimal Hexadecimal

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

10000 20 16 10

10001 21 17 11

etc

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

50

Numbering Systems (Constants)

• 2#10011011 (bin) = 8#233 (oct) = 155 (dec) = 16#9B (hex)

• These numeric values can be of data type BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL and LREAL

2# 1 0 0 1 1 0 1 1 = 128+16+8+2+1=155

1248163264128

2# 1 0 0 1 1 0 1 1 = 2|2+1|2+1= 8#233

12412412

2# 1 0 0 1 1 0 1 1 = 8+1|8+2+1=16#9B

12481248

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

51

• Decimal constants have no prefix
82, -16000, 238, 1_234_667_778

• Hexadecimal constants have the prefix 16#
16#1A, 16#111, 16#3A0F, 16#3A_0F

• Octal constants have the prefix 8#
8#15, 8#707,

• Binary constants have the prefix 2#
2#1100, 2#1, 2#11011011, 2#1101_1011

• Floating constants
3.141593, 1.43E-12, -1.75E-22, -12.0, -REAL#12

• Time constants
T#1h20m, TIME#80m, T#500ms

• Time of day constant
TOD#16:56:34, TIME_OF_DAY#16:56:34

Constants in IEC 61131-3

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

52

• Tip! Define display format upon declaration

PROGRAM ST_display_mode

VAR

{attribute 'displaymode' := 'dec'}

iDec: INT := 1333;

{attribute 'displaymode' := 'hex'}

iHex: INT;

{attribute 'displaymode' := 'bin'}

iBin: INT;

END_VAR

Display format

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

53

CoDeSys V3
Ladder logic

Ladder (LD)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

54

Creating Program Components

• The following Ladder example highlights the major features

Coil

Data type conversion

Logical

Functions

Function

Contact

Function Block

Easy to add

new Network

Structure with

Networks

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

55

Contact

Ladder logic editor

• Click (Contact) on the Ladder toolbar
- and then click a desired position to position a Contact there

Use either toolbar or selection

via context menu

right click

Coil

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

56

Ladder logic editor

• Add variable names to objects
- This can be done via type ahead or via dialog

Press OK

Start type variable name

and select from list

Or press button […]

and select varible

name from dialog

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

57

• Change Contact type, using toolbar or context menu

• Change Contact type

Ladder – Negation / Edge detection

Click or

Right click

Click or

Right click

Negation

Edge detection

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

58

• Change Coil type, using toolbar or context menu

• Change Coil type

Ladder – Negation / Set or Reset

Click or

Right click

Click or

Right click

Set or Reset

Negation

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

59

• Select a network, and right-click

• Now select ’Insert Network (below)’

Adding Networks

Network

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

60

Drag and Drop / Cut-Copy-Paste

• Drag an existing network, and drop it to a new position

• While pressing the [Ctrl] key to copy the existing network

• Copying/moving ladder blocks using the clipboard

- Code can be copied by the general menu options or
shortcut keys using the clipboard

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

61

Drag and Drop objects

• To move programs (for example “POU_1”) into the desired Task
configuration ‘Drag & drop’ can be used

• Once programs are assigned an execution type, they will get default
parameters automatically

Drag & drop

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

62

Build (Rebuild) project

• ‘Build’ shortcut [F11], starts the build process of the active application

» All objects belonging to the application will be syntactically checked

» Notice that no compilation code will be generated, like it will be done when
‘login’ or ‘download‘ an application!

» The build process is done automatically before each ‘login’ with changed
application program

• The syntactical check will give error messages or warnings

» These are displayed in the ‘Message’ view of category "Build“

» Max. no of displayed errors/warnings is 500

• If the program has not been changed since the last build-process, and no errors
were detected, it will not be built again

» The message "The application is up to date" will be displayed

• To get the syntactical checks done again, do Rebuild

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

63

Build - Message view

• If the build process will generate errors, warnings or messages
please check the ‘Messages’ view

» Commands are available for navigating between messages and source code

Example of error

when missing [:] in

the declaration view

Select tab, and click on the

line of an error or press [F4] to

go from top to bottom

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

64

Set communication parameters

•Connect to device is done by ‘Set active path’ and ‘Login’ [Alt+F8]

1. Select Gateway

2. Scan network

3. Select PLC

4. Device information

5. Set active path

6. Login to device:
» Menu selection

Online – Login

» Toolbar or shortcut

Double-click

Select gateway, select soft PLC, then

set active path, and login to device

Note!

- To connect with the soft PLC you need

to ”Login”, and to login you need to

start the CoDeSys Gateway and PLC

(CoDeSys Control Win V3)

- Check for the icons in the systray or

use the start menu in Windows

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

65

Go online by Login

• At ‘Login’ [Alt+F8] you will get the option to download application to PLC

• Online change or download is the alternatives for the soft PLC

- “Login with online change” will keep the CPU in run mode!

- “Login with download” will set the PLC in stop!

”Login with online change”

will keep the PLC in RUN

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

66

Start and stop the PLC

• After login you can Start the soft PLC by toolbar or menu selection

• The text in the navigator will change to [run]

Set PLC in Run mode

The PLC code are shown in

monitoring mode

Indication with

[stop] or [run]

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

67

View code in other language

• Switch languages between FBD, LD and IL format

[Ctrl]+[1]

[Ctrl]+[2]

[Ctrl]+[3]

View mode can be selected from

menu selection FBD/LD/IL - View or

from shortcut keys

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

68

Exercise, Create first program code

1. Add PLC_PRG as a ’POU’ to the Application, use Instruction List (IL)

2. Declare local bit variables in ’Textual editor’ mode

3. Write a simple IL program code, make ’Build’ and check syntax

4. Create a minor error in the code, find the error from ’Message’ view

5. Try look at the code in FBD, LD or IL-editors by changing view mode:

‐ Use menu selection FBD/LD/IL – View – View as…

‐ Or use shortcut keys [Ctrl+1] , [Ctrl+2] or [Ctrl+3]

Declare Local variables in

the POU and use them in

the IL code

View comment in IL by

activating the Option,

‘Show network comment’

Tip! Use [Ctrl]+[Enter] to

insert a new IL line below

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

69

Exercise, Connect to device

• Set communication parameters (Gateway, PLC, Set path)

• Login [Alt]+[F8] and Start PLC [F5]

• View program code in monitor mode with ”power flow” indication

• Test program by writing values to the PLC

>> Menu selection Debug – Write values [Ctrl]+[F7], or context menu

Use [Ctrl]+[F7] to

write value to PLC

from variable list

Note! The Power flow

indication is calculated from

the monitoring values

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

70

• Write a new label name and finish with [Enter]

• This will open the ‘Auto Declare’ window

Choose Local or

Global variable

Declare new variable in editor

Click the OK button to

insert the new variable

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

71

Watch Window – Open Watch view

• A watch list is a user-defined set of project variables for simultaneous monitoring
of their values in a table

• By default four individual watch lists can be set up in the watch views Watch 1,
Watch 2, Watch 3, Watch 4

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

72

Watch Window – Register variables

• Register variables in a watch list Watch1 open the edit frame of the column
Expression by performing a mouse-click in a field of the expression column
and pressing [space] and the complete path for the desired variable

• The input assistant is available via button […]

Type start of the

variable name

Open input assistant

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

73

Watch Window – Change value

• Writing and forcing of the variables is possible within the watch view

• View Watch All Forces in online mode always gets filled automatically

with all currently forced values of the active application

Use [Ctrl]+[F7] to

write value to PLC

from the Watch list

Use [Ctrl]+[F7] to write

from the variable list

Right-click and select ’Write’

or ’Force’ by context menu

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

74

Settings for Elevator Simulator

• In the exercises with CoDeSys we are using an ’Elevator Simulator’

• The Elevator application are written in iX Developer 2.0, and run
as a standalone Modbus TCP slave on localhost (ip 127.0.0.1)

• Please, see additional settings in “Tab3” of the binder

Elevator Simulator

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

75

• Write a new Ladder program:

– Use the global variable names

– The elevator moves up as long
as the push-button on 2nd floor
is active, and stops when it
reaches the sensor for 2nd floor

– The elevator moves down as
long as a push-button on 1st
floor is active, and stops when
it reaches the sensor for 1st
floor

ButtonLevel2

Exercise, Simple lift

• Additional exercise: E1

updown

ButtonLevel1

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

76

Exercise, Latched function

• Use latched function

‐ Just press the push-buttons shortly to get

the elevator to move to the 1st or 2nd floor

ButtonLevel2

updown

• Additional exercise: E2

ButtonLevel1

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

77

CoDeSys V3

Timers and Counters

Timers and Counters

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

78

Timer block in CoDeSys

Timer ON (TON) Timer OFF (TOF) Timer PULS (TP)

• TON , TOF and TP are the timers of IEC 61131-3 standard

• Note, the instructions are described in the online help of CoDeSys, press [F1]

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

79

Add timer / counter instructions

• Drag & drop items from the toolbox to a network in editor

• Drop the item at the green field “Start here”

Drag & drop

Type the name of the

instruction and select

from the list

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

80

• TON

IN = Executing condition

PT= Timer setting value, TIME constant
(for example T#54m36s700ms)

Q = Output ValueOut = Preset

ET= Timer current value

Timer declaration
Click here and write

an instance name,

then [Enter]

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

81

On Delay Timer

• TON

IN

Q

PT

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

82

On Delay Timer (online)

• TON during execution and monitoring

• Not active

• Active

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

83

Exercise, Open door

• Open door with delay

- When elevator arrives at a floor
open the door after 2 seconds

- The door is closed when button level is
pressed before moving to next floor

- Note, the elevator motor should not be
allowed to start if the door is open!

- Use outputsignal ElevatorDoor: BOOL;

• Additional exercise: E3

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

84

• Modify the program

- Add instructions to make the
lamps at each floor light up
when the elevator has arrived

- Output signal LampLevel1 to 4

LampLevel2

LampLevel3

LampLevel1

Exercise, Lamps

• Additional exercise: E4 and E5

LampLevel4

Lamp of level 2

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

85

Counters

• CTU , CTD and CTUD are the countes of IEC 61131-3 standard

Count Up (CTU) Count Down (CTD) Count Up/Down (CTUD)

• Note, the counters are described in the online help of CoDeSys, press [F1]

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

86

Counter CTU (IEC)

CU

The counter react when

signal goes high

• CTU

CU = Executing condition

RESET = Counter reset condition

PV= Preset value, decimal constant

Q = Output ValueOut = Preset

CV= Counter current value

Declare an unique

instance name

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

87

Example of counter CTUD

• Instance of CTUD in the local variable list

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

88

• When the elevator has started 5 times, it
should stop for service and maintenance.

• Let a counter keep track of how many
times the motor has started.

• Activate all the lights in the elevator to
shine steadily, and ensure that the
elevator will not run until service is
completed.

• After service make acknowledge via
ServiceReset and the elevator should work
normally until the next service occasion.

Exercise, Service Counter

• Additional exercise: E7

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

89

CoDeSys V3

Data Instructions

Operarators

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

90

Find instructions and operators

• The online help of CoDeSys, include a summary of all standard instructions

• Menu selection Help/Content, and ‘Programming Reference’

MOVE command

found in section

‘Arithmetic

Operators’

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

91

ADD Addition (2 or 3 inputs)

SUB Subtraction

MUL Multiplication

DIV Division

MOVE Data transfer

EQ, LT etc. Comparison

SEL Binary Selection

MUX Mulitplexer

LIMIT Limiting

Data Instructions

• Examples of data instructions from the toolbox in CoDeSys

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

92

Source 1

Source 2

Destination

Data Instructions

Function / Operator

Enable, EN
Enable Out, ENO

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

93

Comparison

EQ Equal to (=)

Returns true when the operands are Equal

NE Not Equal to (<>)

Returns true when the operands are different (Not Equal)

GE Greater than or Equal to (>=)

Returns true if the 1st operand is Greater

than or Equal to the 2nd operand

GT Greater than (>)

Returns true if the 1st operand is

Greater Than the 2nd operand

LE Less than or equal to (<=)

Returns true if the 1st operand is

Less than or Equal to the 2nd operand

LT Less than (<)

Returns true if the 1st operand is

Less Than the 2nd operand

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

94

Add data instructions / operators

• Drag & drop items from the toolbox to a network in editor

Drag & drop

Type the name of the

instruction and select

from the list

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

95

Example with MOVE, ADD, MUL (real)

MOVE

ADD

MUL
RealVar0

* RealVar1

RealVar2

Run

Trig Data0 Data1

Data1

+ Data2

Data3
Trig2

Edge

• Note, symbol for ‘Edge’ detection of the EN input of ADD operand

• Corresponds to inserting a R_TRIG function block for detecting a rising edge

• Compare the F_TRIG function block for detecting a falling edge

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

96

Floating Point Calculations

ADD

SUB

DIV

MUL

• Division

• Multiplication

• Addition

• Subtraction

The monitoring shows

floating point value

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

97

• Declare Data variables to the ’GVL_Data’ list

Exercise, Declare INT and REAL

Tip!

Import from text file,

GlobalVariableList.txt

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

98

Exercise, Scale a value

• Make a new program for scaling a Integer value (INT)

• Use formula In * Gain + Offset = Out

– Similar to the linear equation y=kx+m

• Declare the variables and write the code in FBD editor

• Test program in PLC and monitor values

– Use the screen “Scale value” of the Elevator Simulator
when available

• Note, if you make this exercise with local floating point
variables and constant values these values must be written in
decimal form with radix point

– For example 123.45

• Additional exercise: E6

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

99

CoDeSys V3

Task conditions

Function Blocks

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

100

Task Condition

• Task execution by Type and Event:

Cyclic: The task will be processed cyclic according to the time

definition ("task cycle time") given in the field 'Interval'

Freewheeling: The task will be processed as soon as the

program is started and at the end of one run will be

automatically restarted in a continuous loop.

There is no cycle time defined

Status: The task will start if the the Event is true

Event: The task will start as soon as the variable defined in the Event field

gets a rising edge

External event: The task will be started as soon as the system event, which is

defined in the Event field, occurs. It depends on the target, which events will

be supported and offered in the selection list.

(Not to be mixed up with system events.)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

101

Task Condition

• Difference between Status and Event:

- The specified event being TRUE fulfills the start condition of a status driven task,
whereas an event driven task requires the change of the event from FALSE to TRUE.

- If the sampling rate of the task scheduler is too low, rising edges of the event may be
left undetected.

• The following example illustrates the behaviour of the task in reaction to

an event (green line):

Event condition

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

102

Event Condition

Select Property (0-31)

Executes the task when the

specified variable is TRUE

• Task with a “Status” driven execution by SwitchInput0

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

103

• Manual operation

- For some reason the elevator stops
working and stops between two floors,
then it’s good if you manually can run
the elevator to the next floor

- Use the “Manual/Auto” switch in the
program so that the service personnel
should be able to manually control the
elevator by additional inputs for manual
up and manual down

Exercise, Event Condition

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

104

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

105

CoDeSys V3

Function Blocks

Function Blocks

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

106

Inputs Program Outputs

Function Block

Function Block ”Instance”

• Function Block (FB) or a Function (FUN) are user made subroutines

- Instead of writing the same program code several times, it can be
written once and invoked as a block with new in-/out parameters

Use FB when several

outputs from a block

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

107

Create user defined blocks

• Function Blocks or Functions are

created as in separate program

components (POU)

– FB, Function block

– FUN, Function

Creating a new Function Block

• Step 1:

Menu selection Project/Add Object/POU

or Right-click ‘Application’ in the project

navigation tree select Add Object/POU

Right-click

Choose Add Object

POU…

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

108

Create a new Function Block

• Step 2:

From the dialog ’Add POU’ select:

Data Type = Function Block

• Step 3:

Enter a Data Name = “MyFB”

• Step 4:

Choose Language = Stuctured Text

•Write the blocks in any IEC-editor

•Blocks can be called from another

POU (Program or Function Block)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

109

Function Block, Inputs and Outputs

• Step 5: Define the following
variables for the function block

(*My first Function Block *)

Result1:=Add1+Add2;

Result2:=Result1-Sub1;

VAR_INPUT = input variable

VAR_OUTPUT = output variable

VAR = internal variable

VAR_IN_OUT = both input and

output variable

• Step 6: Write the code of the block

using ST-editor and the variables

just defined

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

110

Function Block, Selection

• Drag & drop items from the toolbox to a network in editor (FBD)

• Drop the item at the green field “Start here”

Drag & drop

Type the name of the

instruction and select

from the list

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

111

Function Block, Instance name

When finished, click Set

• Name the instance of the block in the local or global list

Choose a Identifier for

the block

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

112

Exercise, Function Block (FB)

• Create the same function block as in the previous example,
according to steps 1 to 6

• Try using FBD/Ladder/IL-editor instead of ST-editor if you like

• Download and test the program

Tip!
Try to monitor the the internal instance of the block

• Additional exercise: E8

If more than one

output signal use FB

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

113

Exercise, Function (FUN)

• Create a Function, defined in ST-editor as follows:

- Scale the input signal with specified gain and offset

- Formula: Output := Input*Gain + Offset

- Signal type: REAL

- Result type: REAL

• Additional exercise: E9

Tip! The return-variable

has the same name as the

name of the function

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

114

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

115

CoDeSys V3

Library management

Diagnostics

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

116

Libraries in CoDeSys

• Libraries can provide functions and function blocks as well as data

types, global variables and even visualizations

• Can be used in the project just like the other POUs and variables

which are defined directly within the project

• The default extension for a library file in CoDeSys V3 is *.library

• In contrast to *.lib used in CoDeSys V2.3 and earlier versions

• Encrypted libraries have the extension *.compiled-library

• Libraries might be protected by a license (dongle)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

117

Open source libraries (OSCAT)

• Libraries can provide functions and function blocks as well as data

types, global variables and even visualizations

• Open source CoDeSys libraries on the web, for example:

http://www.oscat.de/

http://www.oscat.de/downloadmanager.html

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

118

Library Manager

• The management of the libraries in a project is done in the
“Library Manager” dialog, and the preceding installation on
the system in the “Library Repository” dialog

• The project functions for local and global search and replace
also work for included libraries

“IoStandard” is the name

of the Library included in

a new empty project file

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

119

Library Repository

• The “library repository” is a database for libraries which have
been installed on the local system in order to be available for
getting included in CoDeSys projects

• The Library Manager Object provides
the command “Library Repository” for
handling library locations, installing
and uninstalling of libraries

• By default this command is part of

the Tools menu. If necessary, open

the Customize dialog to view respective

to modify the menu configuration

• For general information on the Library

Management please see the online help

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

120

Find new functions in library

• Find a new instruction …

• Search in the database

for the instruction,

with wildcards,

BLINK

• Function block BLINK

found in two libraries

“Util” ver 3.4 and 3.5

• Then end with OK

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

121

Add library to repository

• The selected library “Util” was included in the repository

Details will show

information about the

instructions included in

this library

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

122

Show details of instruction

• Show the details of the instruction, for example BLINK

• Tabs for Inputs/Outputs, Graphical and Documentation are available

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

123

Add library to project

• Add the library “Util” to the project

• Now it will show in the list of libraries of the Library Manager

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

124

Use instruction in program

• Add the new function block to the program code

• Create an instance of the function block and attach variables

• Open the help of BLINK instruction with shortcut [F1]

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

125

CoDeSys V3

Diagnostics and

Other features

Diagnostics

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

126

Correcting Errors and Warnings

• Menu selection View/Messages [Alt+2]

• Open the location of the error/warning by double-click of the message

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

127

Find/Replace

• Menu selection Edit/Find Replace

• Searching for and replacing variables in the program

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

128

Cross Reference

• Menu selection View/Cross Reference List, opens a window with the cross

references of a project variable

• It will show the locations where the variable is used within the project or

just within the scope of the same POU, open location with double-click

Double-click, to jump into the

program or variable list

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

129

Security (Users and groups)

• Menu selection Project/Project settings/Users and Groups, provides three dialogs for

the user management of the current project: Users, Groups, Settings…

• The access control for projects particular objects responsibilities, the right to perform

certain actions in a project can be configured and managed via dialogs of the Project

Settings, object Properties and User Management…

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

130

Declare for 1, 2

or 3 dimensions

• Vector Management with IEC 61131-3

• An ARRAY is a collection of elements of same datatype

• Wizard for Array declaration available:

Array / Indexing

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

131

Three-dimensional array

• One-, two-, and three-dimensional Arrays are supported
as elementary data types … <Array-Name>[Index1, Index2, Index3]

• Arrays can be defined both in the declaration part of a POU
and in the global variable list

• Use constant or index for addressing

Arrays “LabelName[Index]”

Two-dimensional arrayOne-dimensional array

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

132

• The operator can select an recipe number from the panel,
that will make the Recipe Area load one of the 10 recipes to
the Selected Recipe area in the PLC

Indexing Example

Array of 1..20

Selected

Recipe

Recipe 1

Recipe 2

Recipe 3

Recipe 10

Reg1

Reg20

Reg21

Reg40

Reg41

Reg60

Reg181

Reg200

Recipe Area

Recipe#

• A recipe may contain
various parameters:
- Number
- Quantity
- Color Code
- Timer value
- Temperature, etc…

Array???

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

133

Indexing Example (ST-editor)

Array of 1..20

Selected

Recipe

Recipe 1

Recipe 2

Recipe 3

Recipe 10

Reg1

Reg20

Reg21

Reg40

Reg41

Reg60

Reg181

Reg200

Recipe Area

Recipe#

Using a Two-dimensional Array

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

134

• Elevator with memory

- Improve the program so that the
elevator can handle all 4 floors

- Remember that you can get to the 2nd
and 3rd floor from two directions

- Tip, find out all possible routes to all
floors and create a solution that uses
memory for every possible route,
declare in GVL_Memory list

Final Exercise, Elevator of four floors

up

down

//Memory variables

VAR_GLOBAL

MemoryDown: BOOL; // Down

MemoryUp: BOOL; // Up

Mem432to1: BOOL;

Mem1to2: BOOL;

Mem43to2: BOOL;

Mem12to3: BOOL;

Mem4to3: BOOL;

Mem123to4: BOOL;

END_VAR

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

135

CoDeSys V3

Project backup

Project Backup

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

136

Source upload / download

Source code download and upload

• Menu selection File/Source download…

• CoDeSys does not support the disassembling of downloaded projects!
A much better option is the source code download where the whole
project including all the graphical information is available on the
controller device. All the security mechanism are available as well.

• Select Timing option in the menu selection Project/Project Settings
to make it automatic.

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

137

Boot application / Download file

Boot application download

• CoDeSys supports the generation of boot project, the “Boot application” will
be loaded automatically when the PLC gets started.

• Note that Boot after Online Change and Restart of Device,
must be done to make a safe restart after power off.

• Highlight the "Application" option in the "Device" window
and right click, select "Properties" and "Boot application“.

Download / Upload of a file

• CoDeSys supports the storage of any file on the controller. This can be very
helpful in order to be able to use the target controller as a storage medium.

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

138

Load and Save options

Select the proper

option for your

project

• Create backup files - If this option is activated, at each saving the project will not only

be saved in <projectname>.project but also copied to a file <projectname>.backup.

• If needed you can rename this backup-file and re-open in CoDeSys.

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

139

Project backup

• Menu selection File/Project Archive

• The best way to get all components from a CoDeSys project
is to make a ‘Save/Send Archive’

- That will save and pack all files referenced by and used within
the currently opened project in to one archive file!

- The archive file can either be stored or sent as attachment of an email

• The archive file can easily be unpacked by use of ‘Extract Archive’

• Note, the archive function is not intended for restoring a project environment.
It is designed for an easy packing of all files belonging to a project!

• All supported files are:
- CoDeSys project archive (from V3) *.projectarchive

- CoDeSys project files (from V3) *.project

- CoDeSys library files (from V3) *.library

- CoDeSys project files (before V3, i.e. V2.3) *.pro

- CoDeSys library files (before V3, i.e. V2.3) *.lib

• CoDeSys library files from V3.0 has extension ".library"

additionally there might be further file type options

depending on the available project converters

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

140

CoDeSys, how to backup process data?

• How to make backup of process data from the Soft PLC (CoDeSys) to computer?

- Use menu selection Project / Add object / Recipe Manager

- Recipe Manager will create files of extension ".txtrecipe"

• Procedure how to make backup of variable values from the PLC to a file in a computer
using "Recipe Manager" in the CoDeSys application, can be found in below link.

http://www.beijer.se/web/web_se_be_se.nsf/docsbycodename/filearchive?OpenDocume

nt&mylink=/web/BexFilePileAUT.nsf/fm.be.searchframe?openform&Lang=SE&DocID=94

B54BC3B26E94F5C1257AC4005C763C

• By using the function "Load and Write Recipe" the backup can be restored to the
CoDeSys device by accessing the special text-file (for example
ValueBackup1.txtrecipe), and it can be edited with a normal text editor too.

• Attached example project (Recipe_Backup.zip) including:

- RecepieManagerExample.projectarchive (CoDeSys project of T4A SoftControl)
- ValueBackup1.txtrecipe (Example of backup text file)
- iX_T4A_SC_RecValues (iX Developer project of T4A SoftControl)

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

141

Web Site

• Business Area Automation
www.beijer.se
- Product
- Branches
- Support
- Contact us
- About us
- eBusiness

• Support Online
support.beijer.se
- Download Knowledges
- Program Examples (Function blocks)
- Startup guidelines
- User’s Manuals, Configuration files
- Cable guides and Drawings
- Current software version
- File transfer

• Beijer Group
www.beijergroup.com

• http://support.beijer.se

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

142

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

143

CoDeSys V3

Additional Exercises

Additional exercise

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

144

• Modify the program

– Make sure to control the motor of the
elevator properly so it cannot run up
and down at the same time!

– For example ElevatorUp should not be
started when ElevatorDown is active
and vice-versa

Additional Exercise, E1

updown

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

145

Additional Exercise, E2

• Interlocking

‐ Add interlocks so that one boolean signal

“Manual/Auto” must be TRUE for the

elevator to run up and down when pushing

the buttons on the elevator

ButtonLevel2

updown

ButtonLevel1

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

146

Additional Exercise, E3

• Lamps on each floor

- Complete the program so that the light
of the respective push-button is lit as
long as the button is pressed

- Use outputsignal LampLevel1 to 4

Lamp of level 2

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

147

Additional Exercise, E4

• Start Delay

- Complete with delay so that the level
buttons must be pressed at least one
second (T#1s) before the elevator goes
up or down

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

148

Additional Exercise, E5

• Flashing function

- Complete the program with a
flashing function

- Make the lamp blink at the floor
to which the elevator is arriving

- When the elevator arrives, make
the lamp shine steadily

- Outputsignal LampLevel1 to 4

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

149

Additional Exercise, E6

• Remanent Variables

- As a test, declare Remanent Variables
(RETAIN and PERSISTENT) of some of the
global variables of type INT

- The difference is that Remanent Variables
maintain their status even during power
failure of the PLC

- Login and define values to these
Remanent Variables as a practical test,
then use menu selection Online – Reset
warm and check status

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

150

Additional Exercise, E7

• Automatic return to 2nd floor

- Complete the program so that the
elevator returns to the 2nd floor, from
the 1st, 3rd or 4th floor after 10
seconds

Automatic

return
up

down

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

151

Exercise, Function Block, E8

• Create the following Function Block, ’ConeCalculation’

–Input and output signals type: REAL

–Use ST-editor, makes it more easy with the formulas

• If the boolean input ‘AreaOrVolume’ is true the mantle
area ‘ConeMantelArea’ is calculated, otherwise the volume
‘ConeVolume’ is calculated.

• Formula: Mantel Area = pi * radius * side

• Formula: Volume = 1/3 * pi * radius ² * height

• Tip, declaring "pi" as a variable constant 3.1415

h

r

s

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

152

• Copy the more simple Scale block and make
a function with the following features:

- Result type: REAL

- Editor: Structured Text (ST)

- The block scales the input to a REAL value
from MinOut to MaxOut

- The input signal is expected to be between
MinIn and MaxIn analog input resolution

• Use the block to scale the analog input signal
to a value between 0.0 and 1000.0

• FORMULA: Output = Gain * Input + Offset
Gain = (MaxOut-MinOut) / (MaxIn-MinIn)
Offset = (MinOut – Gain * MinIn)

Exercise, Function, E9

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

153

T
a
b
2
_
C
o
D

e
S
y
s_

In
tr

o
 2

0
1
4
-0

2
-0

3

154

