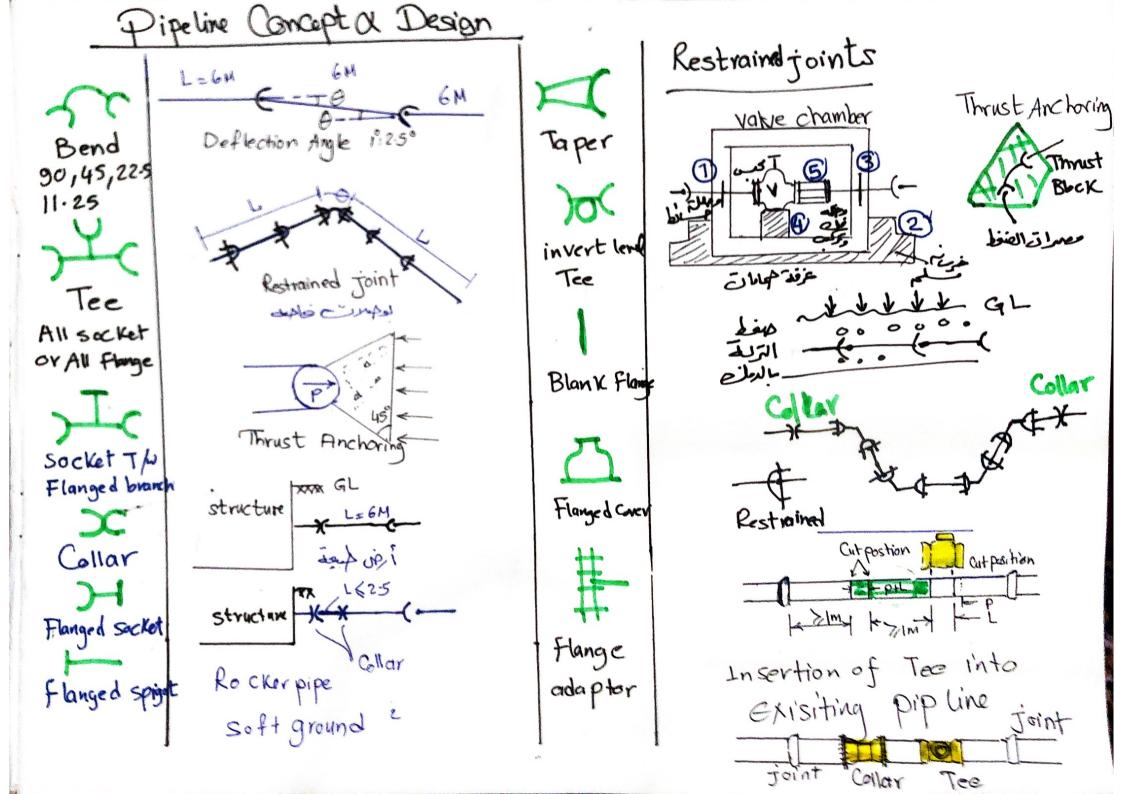


كروكى بوضح منظومة الصرف الصحى Waste Water System

كروكى بوضح منظومة مباه الشرب لمدينة


معاییر التصمیم الحدیث New Modern Design Criteria

Sustainability Real-ability Integrity

Foot print ZLD

الاستدامة الموثوقية الحوكمة

البصمة الكربونية صفر تسريب

Material of the pipeline

GRP
DI
STEEL
PLASTIC

Type of pipeline

Water supply pipelines
Sewage pipelines
Industrial water pipelines
Agricultural water pipelines

Ductile iron pipe is highly accepted because of its excellent strength, durability and laying workability.يتم. قبول أنابيب حديد الدكتايل بشكل كبي بسبب قوتها الممتازة ومتانتها وقابليتها للتشغيل

Common Connection Method of Pipeline

Threaded

Spigot and Socket

FLANGED

Clamp

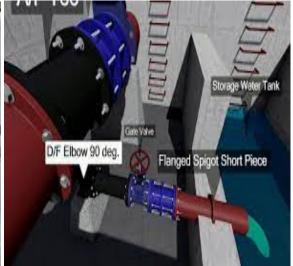
Welding

Hot melt

Compression

PIPELINE COMPONANTS

Air Valve


NRV

THRUST BLOCK

Soil Compaction

AIR VALVE CHAMBER

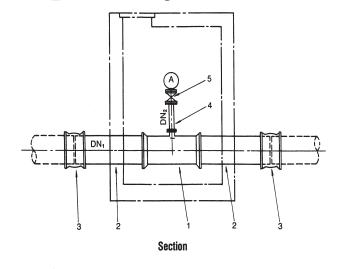
VALVE CHAMBER

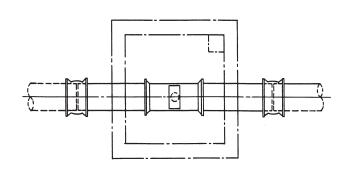
WASHOUT CHAMBER

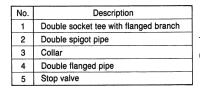
PIPELINE FITTINGS AND ACCESSORIES

Dismantling Joints

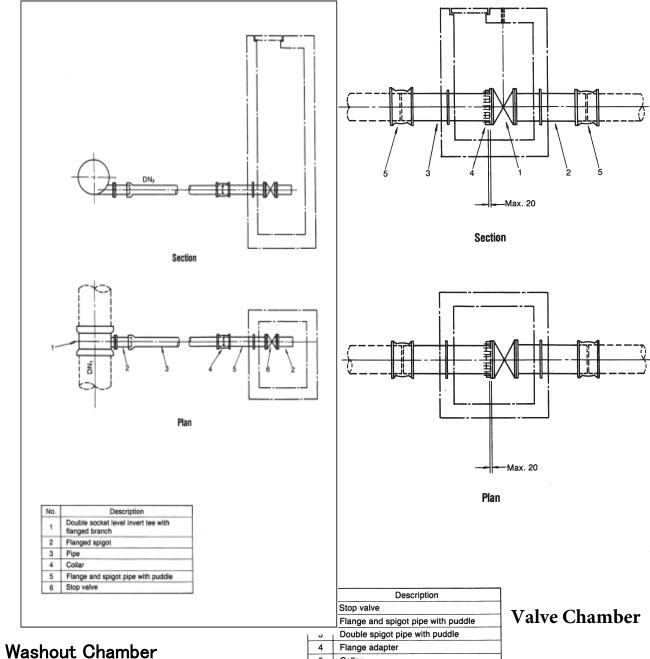
Ductile Iron MJ Collar


BUTTERFLY VALVE





Pipe Arrangement in Chambers

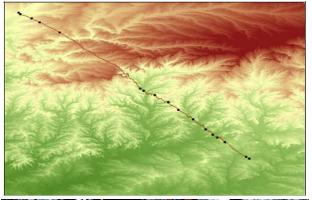


Plan

Air Relief Valve Chamber

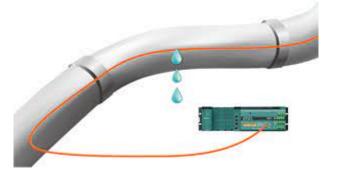
Collar

Pipeline Integrity Management Practices


Leak detection Visual inspection of pipe

Remote sensing by satellites Line patrols flying over pipeline Daily checking of pumps running

Checking of pressure regulators pressure-relief valves.


Checking of control valve

Inspection tools and pressure testing

Pipeline Integrity Management Practices

Metal loss tools (corrosion tools) Magnetic flux leakage (MFL): Ultrasonic:

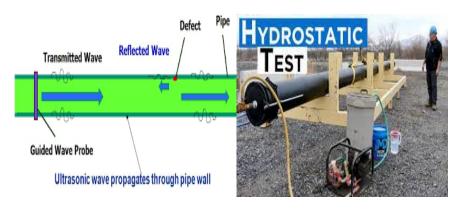
Crack detection tools

Ultrasonic crack detection:

Transverse magnetic flux leakage:

Elastic wave tool:

Geometry tools

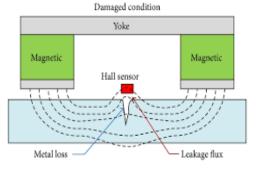

Caliper tools:

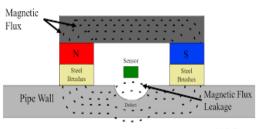
Pipe deformation tools:

Mapping tools

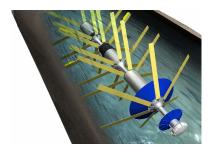
Long range guided waveinspection

Hydrostatic testing





♣Images taken from OPS website: ops.gov.com



Pipeline Condition Assessment Services

Technologies and expertise to detect leaks, gas pockets and structural weaknesses in pipes and prevent network failure, Xylem can help you to find the exact location of problem areas, to detect and fix weaknesses before they cause a major shutdown.

SoundPrint® AFO

PipeDiver®

Pipeline condition assessment

Xylem's pipeline condition assessment services can shed more light on the health of your most critical pipe infrastructure.

Xylem's solutions can address the needs of both metallic and concrete pipes in water main networks and sewer rising mains.

The assessment approach includes a preliminary analysis for the selection of the specific technology, the pipe assessment for the detection of defects and gas pockets that are sources of failure, and finally a risk assessment for the evaluation of main failure and its consequences.

Inline leak detection

Sahara®, SmartBall®

Xylem's inline leak detection solutions can accurately locate leaks in your water transmission mains by bringing the sensor at the source of the leak.

Identifying leaks and their severity can help prioritize the most critical sections in need of urgent attention as operators cannot afford to shut down the service completely and excavate large portions of a city street to search for suspected leaks.

The accuracy of inline leak detection can effectively reduce shutdown and excavation times, allowing operators to carry out fiscally responsible and efficient repair projects.

24x7 pipe condition monitoring

Xylem's acoustic fiber optic technology allows for continuous monitoring of prestressed concrete cylinder pipes (PCCP) to identify critical issues in real-time, thereby enabling network operators to take prompt corrective action to prevent failures.

The monitoring system is able to identify wire wrap breaks, alerting asset managers when there is an unacceptable increase in activity that could lead to pipe failure.

Xylem's transient pressure monitoring analyses the operating pressure in a pipeline to understand the system hydraulics and the effect of pressure surges.

	SmartBall® Leak	Sahara® Leak	PipeDiver® Ultra
Tool Type	Free-Swimming	Tethered	Free-Swimming
Pipe Materials	All	All	Steel, Ductile Iron and Cast
Pipe Diameter	250 mm and larger	250 mm and larger	lron 450 mm to 1320 mm
Typical Location	± 2 m	± 0,5 m	50 mm by 20% wall loss
Accuracy Insertion point size	100 mm or larger	50 mm or larger	≥ 300/400 depending on the
Inspection Length	Up to 24 hours	0,8-1,5 km per insertion	insertion Up to 14 hours
Pipeline Mapping	Ye	Ye	Ye
Inline video	No	Ş _e	\$ _e
	· · · · · · · · · · · · · · · · · · ·	S	S

نظام توزيع المناطق والكتل السكانية

تستخدم معظم المياه اليابانية هذا النظام خدمات. إنه فعال للغاية في تقليل التسرب والحفاظ على الاستقرار الإمداد عن طريق تحسين ضغط المياه في خطوط أنابيب التوزيع قياس التدفقات في مناطق صغيرة للسماح بالكشف المبكر عن الحالات غير الطبيعية تحديد موقع الأنابيب المكسورة بسرعة

السماح للمشغلين بإجراء تعديلات فورية على التوزيع

الطريق والتبديل إلى مصدر احتياطي

الكتل الكبيرة والصغيرة تسمح الكتل الكبيرة بالتبديل بين الماء مصادر ومحطات معالجة المياه الكتل الصغيرة هي مناطق منفصلة داخل كتلة كبيرة لتبديل مسار التوزيع أثناء صيانة

شبكة الاتصال

تعديل جذري في شبكة إمدادات المياه غير المنظمة وتحسينها التشغيل والصيانة بإدخال نظام محوسب

يجعل النظام من السهل التعرف على أنابيب التوزيع المعطلة وتوفير إمدادات احتياطية لتقليل تعليق الخدمة

ربط متقدم بين مصادر المياه وخزانات التوزيع تحويل مصادر المياه بالتحكم عن بعد في تشغيل الصمام تقليل التسرب في وحدات البلوك نظام جاف تماما مركز إدارة المياه ونظام الخرائط المتقدم جدا

فعال في تقليل التسرب

أنظمة التوزيع على أساس الخصائص الطبوغرافية (بما في ذلك موقع مصادر المياه ومحطات المعالجة) يساهم في عمليات تزويد المياه بكفاءة

DESIGN OF CIRCULAR LINER PIPE TO RESIST EXTERNAL HYDROSTATIC PRESSURE

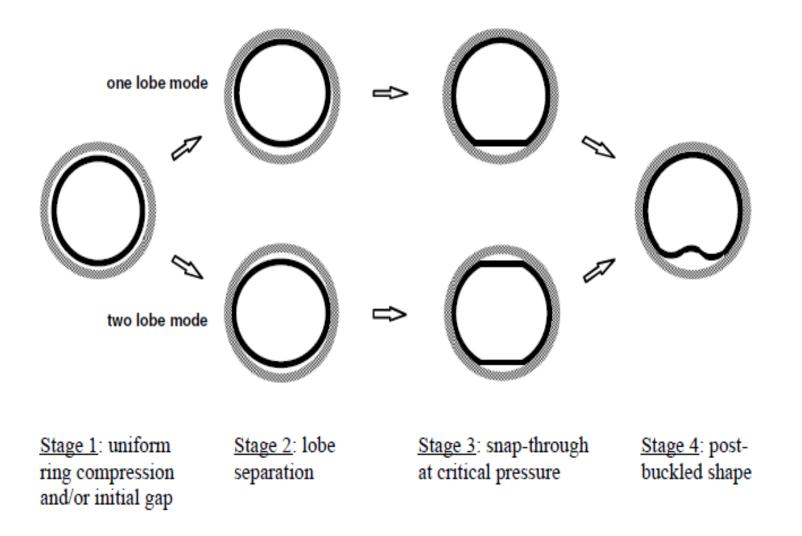
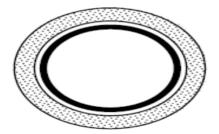
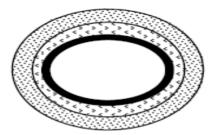
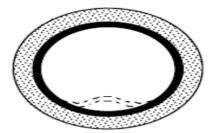
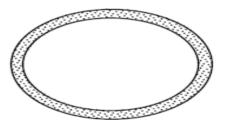




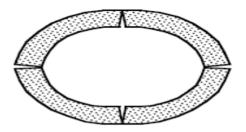
Figure 4 Steps in non-linear hydrostatic buckling of encased circular liner pipe (liner deformations fully consistent with boundary conditions)


DESIGN OF CIRCULAR LINER PIPE TO RESIST EXTERNAL HYDROSTATIC PRESSURE

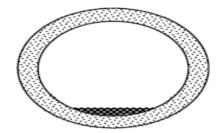
Gap (e.g. due to thermal shrinkage of liner)



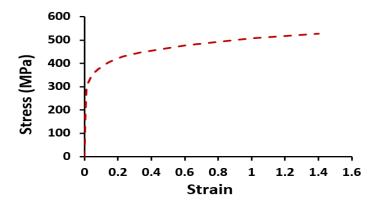
Ovality (e.g. deformation of grouted slip-lined pipe)

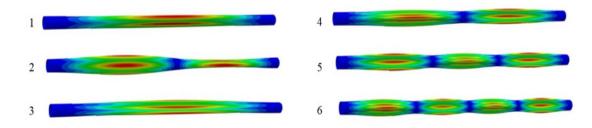


Longitudinal (e.g. original fold line of close-fit pipe)

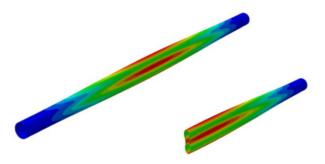


Ovality — elliptical (deformed flexible pipe)


Ovality — 4-hinge (deformed rigid pipe)


Longitudinal (e.g. flat invert due to residual sediment)

b) SYSTEM


Figure 7 Examples of characteristic (renovation technique) and system (host pipe) imperfections affecting liner buckling resistance

Stress-strain curve of material.

Buckling modes resulting from buckling analysis for steel pipe specimens.

The large deflection collapses of the pipeline in response to external pressure.

Figure 3: Development of yield lines with buckling propagation during the post-buckling stage [11].

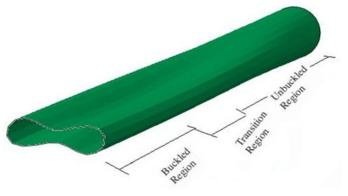


Figure 1: Shape of deformation caused by local buckling and its propagation.

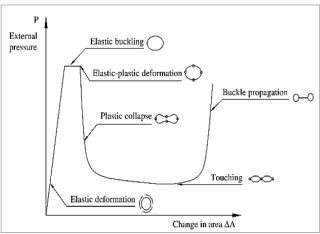
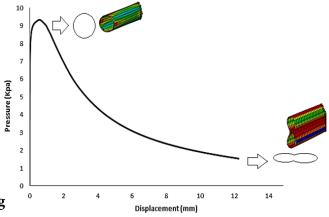



Figure 2: Elastic, elasto-plastic, and plastic behaviors of the pipeline [11].

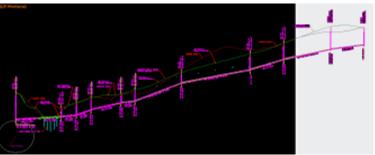
تأثير نسبة القطر إلى السماكة على خط الأنابيب المعرض للضغط الخارجي

The major factors affecting the failure load are the environmental conditions (type of loading and load history) geometry of the pipe (diameter to thickness ratio; D/t) mechanical properties of the pipe material, presence of initial geometric imperfections.

يمكن للأنبوب ، (D/t) وجدت هذه الدراسة أنه بالنسبة للقطر الثابت لنسبة السماكة الذي له قطر وسمك أعلى أن يحافظ على أحمال أكبر بنسبة 10 إلى 22 في المائة في الذي له قطر وسمك أعلى التأثير المباشر للقطر والسمك على الإجهاد الناجم في الأنبوب. إلى انخفاض ضغط الانهيار المحلي للأنبوب. D/t بشكل عام ، يؤدي الانخفاض في ينتشر التواء عند ضغوط منخفضة تصل إلى 20 إلى 25 في المائة من ضغط الانهيار

Contents

General Pipeline Design


Layout of Pipeline

Water Hammer

Design of Ductile Iron Pipe

Thrust Anchoring

Corrosion Protection

Almost always the process starts with certain defined parameters:-

• Flow to be delivered

In the case of a main transfer pipeline this would probably be a max daily volume. If pumped then there may be constraints on the pumping hours.

For a potable distribution system, you need to know the peak demands, the variation of those demands daily, weekly and seasonally.

In the case of a sewage collection system, average and peak dry weather and peak storm flows at entry to the system.

- Source levels and possible variations in those levels
- Delivery locations and levels or, in the case of a distribution system, the minimum pressure to be maintained at supply points

دائمًا تقريبًا تبدأ العملية ببرامترات محددة محددة

التدفق المراد تسليمه

في حالة وجود خط أنابيب نقل رئيسي ، من المحتمل أن يكون هذا الحد الأقصى لحجم التداول اليومي. إذا

بعد ذلك قد تكون هناك قيود على ساعات الضخ

بالنسبة لنظام التوزيع الصالح للشرب، فأنت بحاجة إلى معرفة متطلبات الذروة، وتنوع

تلك المطالب اليومية والأسبوعية والموسمية

في حالة نظام تجميع مياه الصرف الصحي ، متوسط الذروة والطقس الجاف وذروة الامطار عند دخول البيارة

مستويات المصدر والاختلافات المحتملة في تلك المستويات

مواقع التسليم ومستوياته أو ، في حالة نظام التوزيع ، الضغط الأدنى يتم الاحتفاظ بها في نقاط الضخ

Further Design Issues For Raw Water And Sewage PumpingSystems:

- Security of supply for raw water main to treatment works may need to consider twin pipes or local storage
- May need to transport sediment possibly higher velocities
- Organic slimes likely to develop on pipe walls:roughness may increase with time disinfection may be required provision for pigging/swabbing may be required
- Contamination probably not an issue negative pressure may be acceptable under some conditions.

```
تأمين الإمداد - بالنسبة للمياه الخام الرئيسية لأعمال المعالجة ، قد تحتاج إلى التفكير في أنابيب مزدوجة أو التخزين المحلي قد تحتاج إلى نقل الرواسب - ربما بسرعات أعلى • الطين العضوي المحتمل أن يتطور على جدران الأنابيب • قد تزداد الخشونة مع مرور الوقت قد تكون هناك حاجة للتطهير قد تكون هناك حاجة لتوفير الخنزير / المسحة قد تكون التلوث مشكلة - قد يكون الضغط السلبي مقبولاً تحت البعض الظروف
```

Further Design Issues For Potable Water Systems

- Security of supply reticulation requirements?
- Deterioration of pipe lining in service eg hard water? The roughness may increase with time
- Velocity limitations? No sediment to transport but may be restrictions on high velocity to prevent re-suspension of fine material.
- Potential for contamination entry at air valves, pipe joints. Negative pressures must be avoided
- Disinfection requirements? Residual chlorine levels? Possible need for re-chlorination in extensive system or long pipeline.

تأمين التوريد - متطلبات الربط الشبكي؟ •

تدهور بطانة الأنابيب أثناء الخدمة - مثل الماء العسر؟ قد تزيد الخشونة مع زمن قد تنايق المواد الدقيقة وقد السرعة العالية لمنع إعادة تعليق المواد الدقيقة والمتالية دخول التلوث في صمامات الهواء ووصلات الأنابيب يجب أن تكون الضغوط السلبية

تجنبها

متطلبات التطهير؟ مستويات الكلور المتبقية؟ الحاجة المحتملة لإعادة الكلورة في نظام واسع أو خط أنابيب طويل

The design process then covers some or all of the following activities but rarely in a nice logical linear sequence!

- 1. Decide route (approximately);
- 2. Initial sizing of pipe ideally carry out optimisation of capital and operating costs. Consider pipe material.
- 3. Consider:
- pipeline longitudinal profile and its influence on the hydraulic operation
- overall system operation
- need for pumping and number of stations
- the system control philosophy and the range of potential operating conditions
- 4. Carry out initial hydraulic design and assess maximum working pressures.
- 5. Make an initial assessment of surge problems and consider need for surge protection.
- 6. If necessary, reconsider route and longitudinal profile.
- 7. Consider security and safety.
- 8. Finalize pipe size(s) and carry out detailed hydraulic analysis.
- 9. Define pump duties, number of pumps and range of operation.
- 10. Consider air valve and washout locations.
- 11. Finalize route and depths of cover.
- 12. Carry out structural design:-
- consider soil loadings
- vehicular and other live loadings
- potential for internal sub-atmospheric pressures
- temperature induced loads
- 13. Consider corrosion protection requirements
- 14. Consider need for pigging and/or swabbing
- 15. Finalise design of surge protection, valving requirements, thrust blocks etc.
- 16. Produce construction drawings, specifications etc

SUMMARY OF PIPELINE SYSTEM DESIGN

- 1. Think in terms of the energy line the hydraulic gradient
- 2. Unless energy is put into the flow (eg pumping) energy must be lost and the total energy line must reduce in the direction of flow.
- 3. The pipeline pressure head is the difference between the piezometric level and the pipeline invert. i.e. it is a function of the pipeline profile as well as the hydraulic gradient.
- 4. Generally the velocity head is small relative to the pipeline pressure. Thus the pressure in the pipe can usually be taken as the difference between the total energy line and the pipeline level.

BUT this is not true if the pipeline velocities are high and the pressures are low

- 5. Draw the pipeline profile and total energy lines for the full range of flows and pipeline roughnesses. Consider the cases of maximum and minimum pumping conditions and zero flow.
- 6. Draw the system curves and pump curves over the full range of possible operation. Consider appropriate duty requirements for pump(s)
- 7. Consider potential run-out, need for throttling, NPSH requirements
- 8. At an early stage consider how the system is going to be controlled.

فكر من منظور خط الطاقة - التدرج الهيدروليكي .1

ماً لم يتم وضع الطاقة في التدفق (مثل الضخ) ، يجب فقدان الطاقة ويجب أن ينخفض خط الطاقة الإجمالي في اتجاه التدفق . 2 رأس ضغط خط الأنابيب هو الفرق بين مستوى قياس الضغط وانعكاس خط الأنابيب. أي أنها دالة في ملف تعريف خط الأنابيب . . 3 بالإضافة إلى التدرج الهيدروليكي

بشكل عام ، يكون رأس السرعة صغيرًا بالنسبة لضغط خط الأنابيب. وبالتالي ، يمكن عادةً اعتبار الضغط في الأنبوب بمثابة . 4 الفرق بين خط الطاقة الإجمالي ومستوى خط الأنابيب

ولكن هذا ليس صحيحا إذا

سرعات خط الأنابيب عالية والضغوط منخفضة

ارسم ملف تعريف خط الأنابيب وخطوط الطاقة الإجمالية للمجموعة الكاملة للتدفقات وخشونة خطوط الأنابيب. 5

ضع في اعتبارك حالات الحد الأقصى والحد الأدنى من شروط الضخ والتدفق الصفري

ارسم منحنيات النظام ومنحنيات المضخة على النطاق الكامل للتشغيل المحتمل. مراعاة متطلبات العمل المناسبة للمضخة .6 ((المضخات

NPSH النظر في النفاد المحتمل ، والحاجة إلى الاختناق ، ومتطلبات .7 في مرحلة ميكرة ، فكر في كيفية التحكم في النظام .8

مصادر المحاضرة

كتاب مصنع تورشيما للطلمبات محاضرات درجة الماجستير من جامعة كرين فيلد الكود المصرى بعض المصادر من الانترنت