



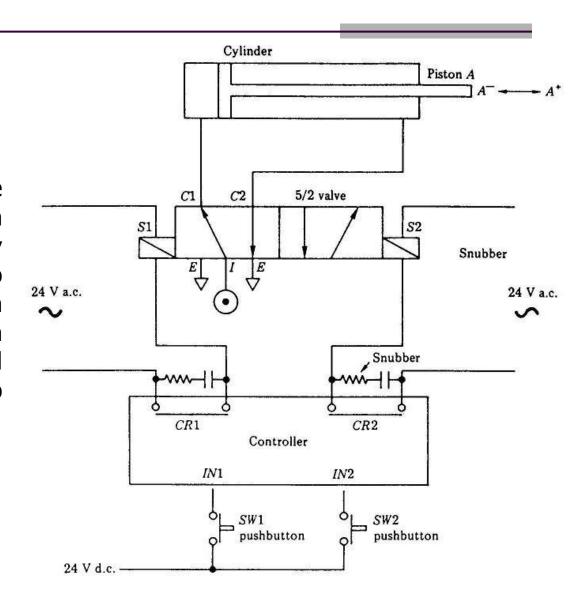

# PLC Exercises Ladder Diagram Programming

By

## Dr. Mohammad Salah

Mechatronics Engineering Department Hashemite University

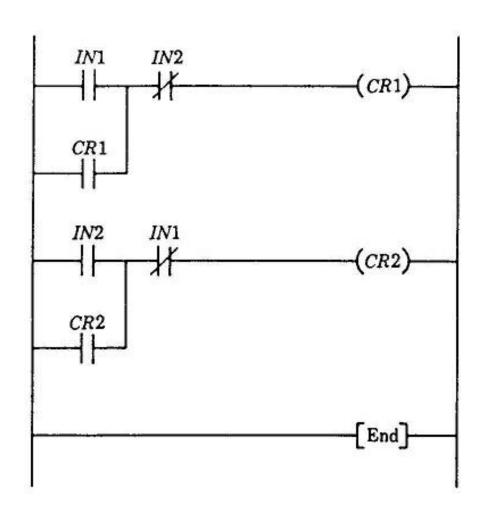



# Steps for Building a Ladder Diagram

- 1. Determine the No. of digital I/O
- 2. Determine the No. of analog I/O (if needed)
- 3. Determine if there are special functions in the process
- 4. Estimate program capacity depending on the process
- 5. Choose a suitable PLC series
- 6. Prepare the wiring diagram
- 7. Draw flowchart or control diagram (Optional)
- 8. Program the PLC using the ladder diagram

## **Exercise #1: Moving a Pneumatic Piston**

#### **Control Problem**


The PLC task is to move the piston in and out. When switch SW1 is momentarily turned on, piston A is to move out of the cylinder in A+ direction. When switch SW2 is momentarily turned on, piston A is to move into the cylinder in A- direction.



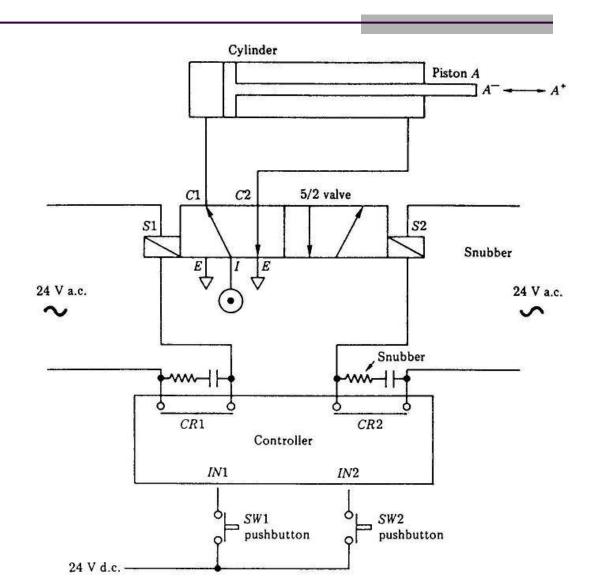
w



## **Exercise #1: Moving a Pneumatic Piston**

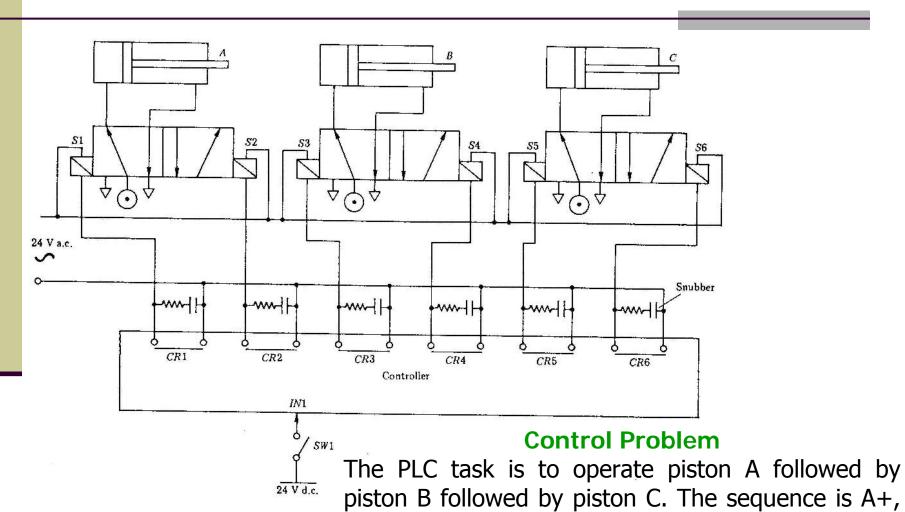


| Address | Instruction | Data |  |
|---------|-------------|------|--|
| 0       | LOAD        | IN1  |  |
| 1       | OR          | CR 1 |  |
| 2       | AND NOT     | IN2  |  |
| 3       | OUT         | CR1  |  |
| 4       | LOAD        | IN2  |  |
| 5       | OR          | CR2  |  |
| 6       | AND NOT     | IN1  |  |
| 7       | OUT         | CR2  |  |
| 8       | END         |      |  |


## **Exercise #1: Moving a Pneumatic Piston**

If SW1 and SW2 are pressed together, what would happen?

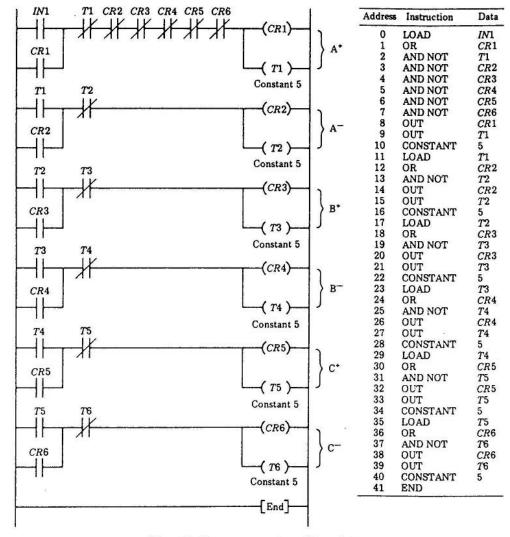
The two solenoid valves will be tuned off


How can we make an electrical interlock?

Use the contacts of the main relays instead of the input contacts



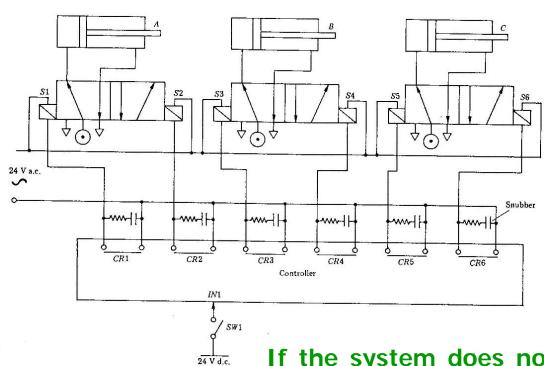
#### **Exercise #2: Sequencing of Pneumatic Pistons**


A-, B+, B-, C+, C- is to be repeated when switch



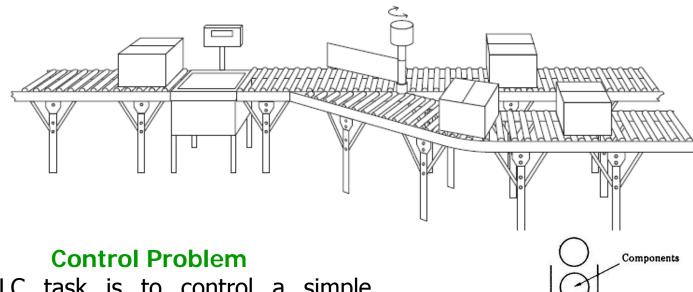
SW1 is turned on

#### ٧

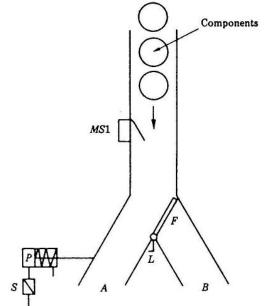

#### **Exercise #2: Sequencing of Pneumatic Pistons**



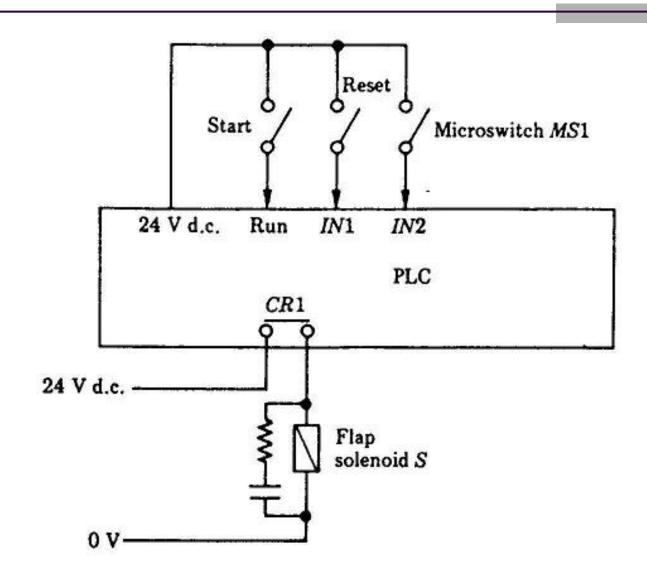
Circuit for sequencing the pistons.




#### **Exercise #2: Sequencing of Pneumatic Pistons**

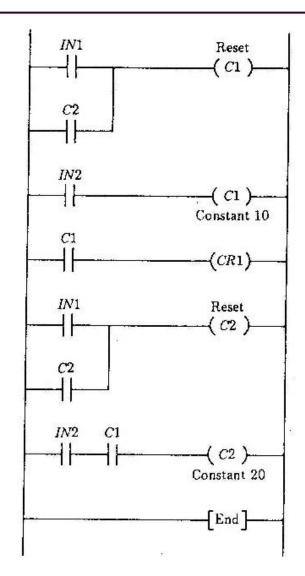



If the system does not work or sequence in not correct, what would be the possible reasons?


- Solenoid valves do not work
- The wiring of solenoid valves is not correct or not in the correct order (wiring problem)
- The ladder diagram is not properly written (sequence in not correct)



The PLC task is to control a simple machine which counts and batches components moving along a conveyor. It is required that ten components be channeled down route A and twenty components down route B. A reset facility is required

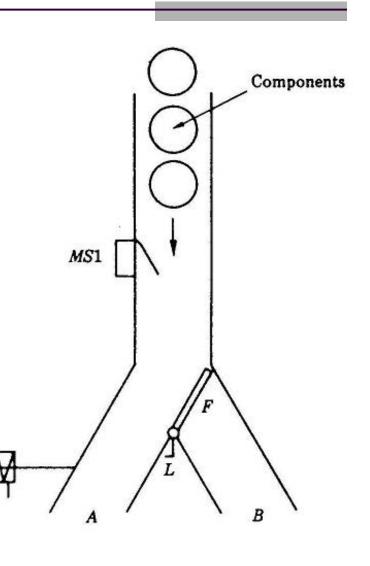




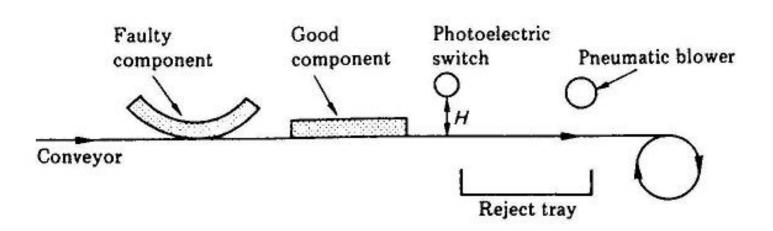



1.





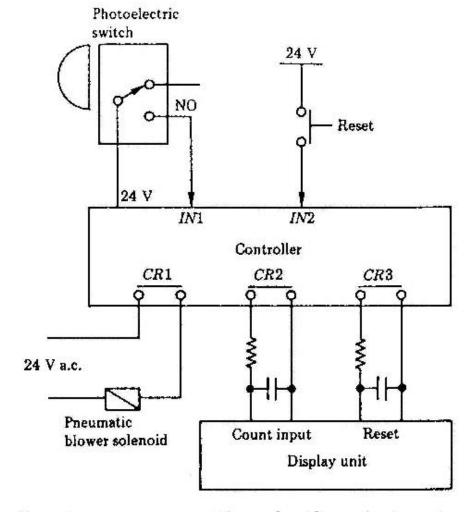

| Address | Instruction | Data<br>IN1 |  |
|---------|-------------|-------------|--|
| 0       | LOAD        |             |  |
| 1       | OR          | C2          |  |
| 2       | RESET       | C1          |  |
| 3       | LOAD        | IN2         |  |
| 4       | OUT         | C1          |  |
| 5       | CONSTANT    | 10          |  |
| 6       | LOAD        | C1          |  |
| 7       | OUT         | CR1         |  |
| 8       | LOAD        | IN1         |  |
| 9       | OR          | C2          |  |
| 10      | RESET       | C2          |  |
| 11      | LOAD        | IN2         |  |
| 12      | AND         | C1          |  |
| 13      | OUT         | C2          |  |
| 14      | CONSTANT    | 20          |  |
| 15      | END         |             |  |




If the system does not batch and/or count, what would be the possible reasons?

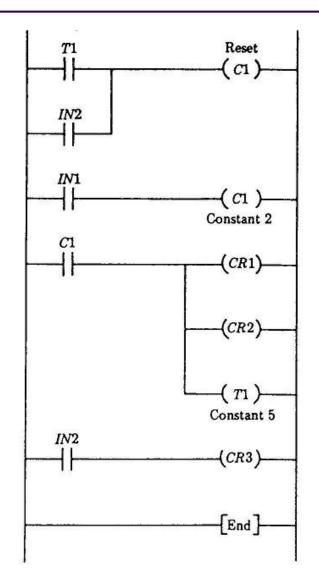
- The reset switch is always on
- The microswitch does not work
- The flap solenoid does not work
- The ladder diagram is not properly written



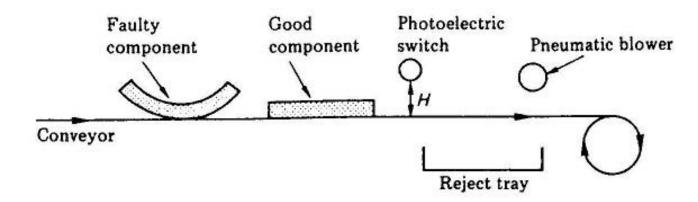





#### Reject system


#### **Control Problem**

The PLC task is to detect and reject faulty components. Components are transported on a conveyor past a retro-reflective type photoelectric switch. The photoelectric switch is positioned at a height (H) above the conveyor where (H) represents a tolerance value for component height. Good components pass underneath the photoelectric switch and no signal is generated. Faulty components break the light beam twice as they pass the photoelectric switch.




Input/output connections for the reject system

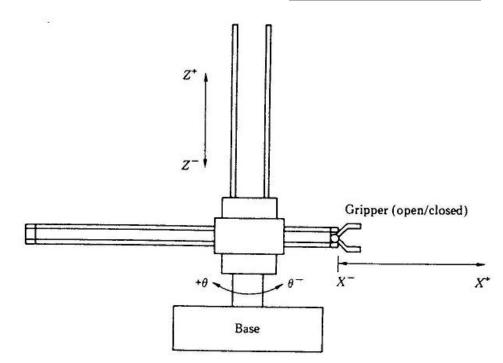




| Address | Instruction | Data       |  |
|---------|-------------|------------|--|
| 0       | LOAD        | <i>T</i> 1 |  |
| 1       | OR          | IN2        |  |
| 2       | RESET       | C1         |  |
| 3       | LOAD        | IN1        |  |
| 4       | OUT         | C1         |  |
| 5       | CONSTANT    | 2          |  |
| 6       | LOAD        | C1         |  |
| 7       | OUT         | CR1        |  |
| 8       | OUT         | CR2        |  |
| 9       | OUT         | T1         |  |
| 10      | CONSTANT    | 5          |  |
| 11      | LOAD        | IN2        |  |
| 12      | OUT         | CR3        |  |
| 13      | END         |            |  |



Reject system

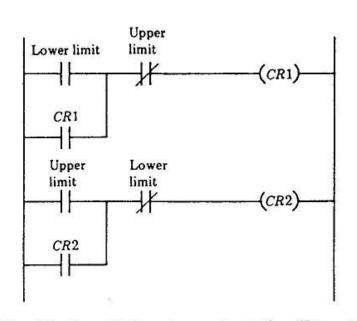

If the system does not reject faulty components, what would be the possible reasons?

- The photoelectric switch is too high (H is too big)
- The photoelectric switch does not work
- The pneumatic blower does not work
- The ladder diagram is not properly written
- The faulty components is not as described in the drawing

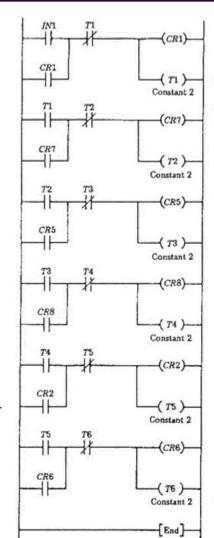


#### **Exercise #5: Pick and Place Unit**

| CR1 | $X^+$         |
|-----|---------------|
| CR2 | $X^{-}$       |
| CR3 | $Z^+$         |
| CR4 | $Z^{-}$       |
| CR5 | $\theta^+$    |
| CR6 | $\theta^-$    |
| CR7 | close gripper |
| CR8 | open gripper  |




#### **Control Problem**


The PLC task is to:

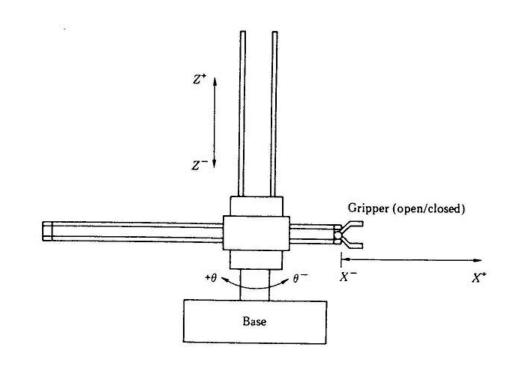
- a) move the gripper to X+ position
- b) close the gripper so that it takes hold of a component
- c) rotate the gripper through  $180^{\circ}$  to the  $\Theta+$  position
- d) Release the component
- e) Rotate the gripper back to the Θ- position so that the pick and place operation may be repeated

#### **Exercise #5: Pick and Place Unit**



Using limit switches to control the  $X^+$  and  $X^-$  movement

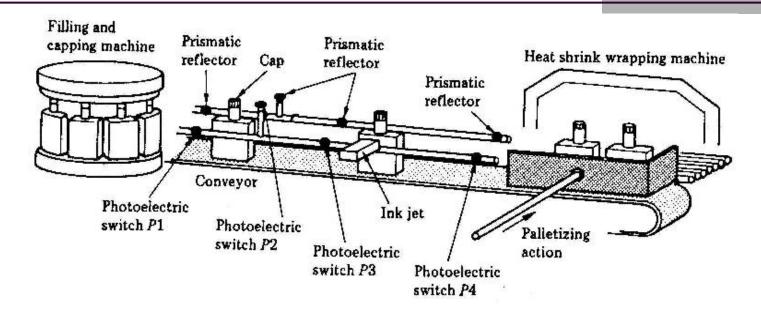



| lddress          | Instruction | Data                   |  |
|------------------|-------------|------------------------|--|
| 0                | LOAD IN     |                        |  |
| 1                | OR          | CR1<br>T1<br>CR1<br>T1 |  |
| 2<br>3<br>4<br>5 | AND NOT     |                        |  |
|                  | OUT         |                        |  |
|                  | OUT         |                        |  |
|                  | CONSTANT    | 2                      |  |
| 6                | LOAD        | T1                     |  |
| 7                | OR          | CR7                    |  |
| 8                | AND NOT     | 72                     |  |
| 9                | OUT         | CR7                    |  |
| 10               | OUT         | T2                     |  |
| 11               | CONSTANT    | 2                      |  |
| 12               | LOAD        | T2                     |  |
| 13               | OR          | CR5                    |  |
| 14               | AND NOT     | 73                     |  |
| 15               | OUT         | CR5                    |  |
| 16               | OUT         | T3                     |  |
| 17               | CONSTANT    | 2                      |  |
| 18               | LOAD        | 73                     |  |
| 19               | OR          | CR8                    |  |
| 20               | AND NOT     | T4                     |  |
| 21               | OUT         | CR8                    |  |
| 22               | OUT         | T4                     |  |
| 23               | CONSTANT    | 2                      |  |
| 24               | LOAD        | T4                     |  |
| 25               | OR          | CR2                    |  |
| 26               | AND NOT     | 75                     |  |
| 27               | OUT         | CR2                    |  |
| 28               | OUT         | T5                     |  |
| 29               | CONSTANT    | 2                      |  |
| 30               | LOAD        | 75                     |  |
| 31               | OR          | CR6                    |  |
| 32               | AND NOT     | 76                     |  |
| 33               | OUT         | CR6                    |  |
| 34               | OUT         | 76                     |  |
| 35               | CONSTANT    | 2                      |  |
| 36               | END         |                        |  |

1 /

#### **Exercise #5: Pick and Place Unit**

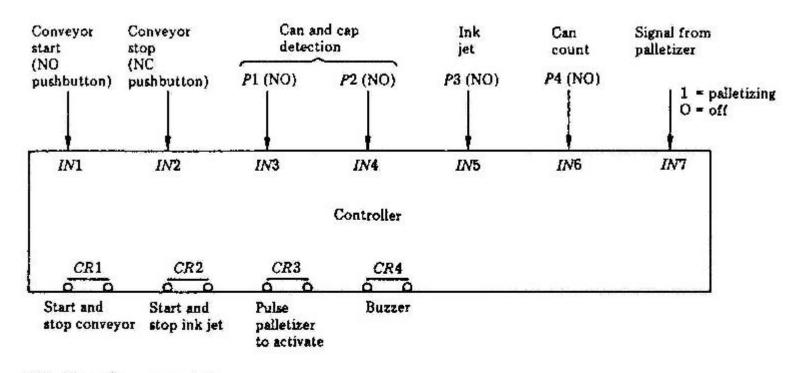
If the system does not work or sequence is not correct, what would be the possible reasons?


- Wiring problem
- Some solenoid valves do not work
- Timing is not correct
- The ladder diagram is properly written not (sequence in not correct)



#### How can we get rid of the timers in the ladder diagram/program?

Use position sensors for feedback but that would be expensive compared to using timers but more accurate and reliable in case the mechanical system starts to have some problems

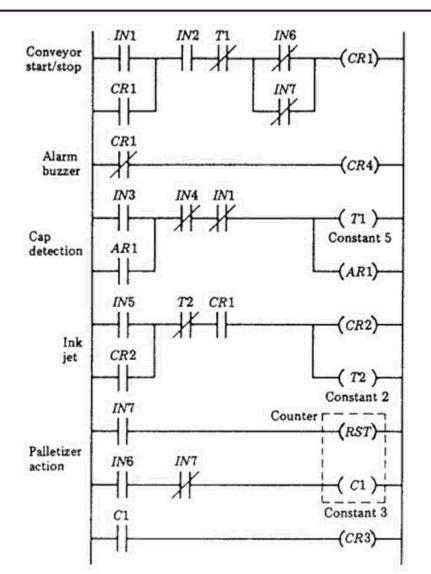





#### **Control Problem**

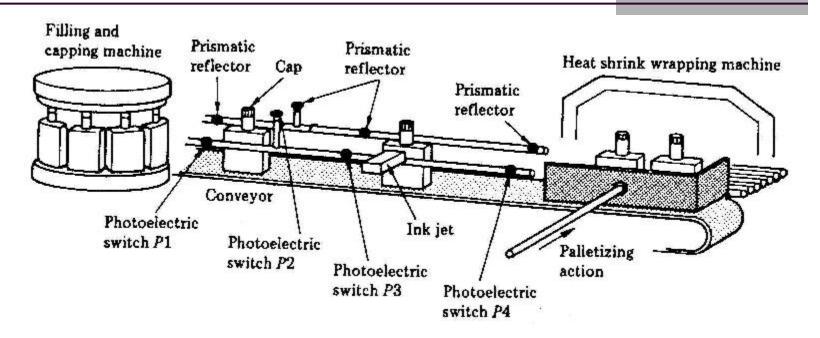
The PLC task is to organize the production process. Cans filled with fluid and capped before passing into a conveyor. The photoelectric switches P1 and P2 are used to check that each can has a cap. Photoelectric switch P3 provides a trigger for the ink jet printer which prints a batch number on each can. Photoelectric switch P4 is used to count three cans into the palletizing machine that transports three cans through a machine which heat shrinks a plastic wrapping over them. All photoelectric switches on the production line are of the retro reflective type.

۲.



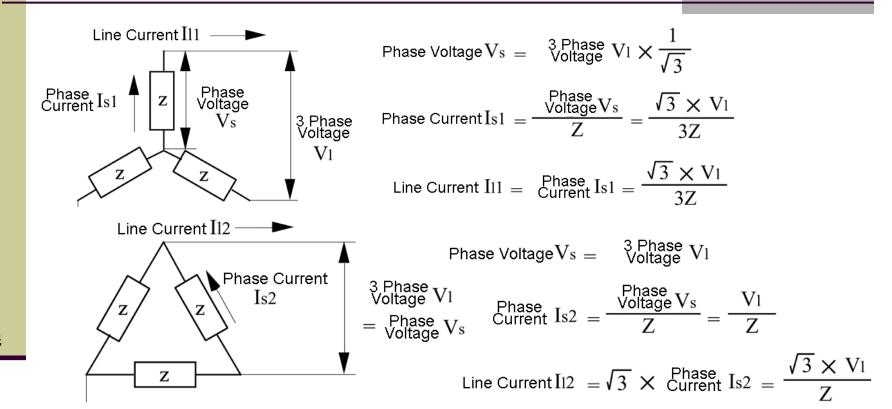

NO - Normally open contact

NC - Normally closed contact


Input/output connections for the production line.





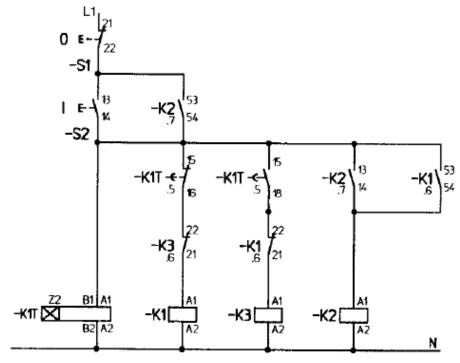

| Address | Instruction | Data |  |
|---------|-------------|------|--|
| 0       | LOAD        | IN1  |  |
| 1       | OR          | CR1  |  |
| 2       | AND         | IN2  |  |
| 3       | AND NOT     | T1   |  |
| 4       | LOAD NOT    | IN6  |  |
| 5       | OR NOT      | IN7  |  |
| 6       | AND BLOCK   |      |  |
| 7       | OUT         | CR1  |  |
| 8       | LOAD NOT    | CR1  |  |
| 9       | OUT         | CR4  |  |
| 10      | LOAD        | IN3  |  |
| 11      | OR          | AR1  |  |
| 12      | AND NOT     | IN4  |  |
| 13      | AND NOT     | IN1  |  |
| 14      | OUT         | T1   |  |
| 15      | CONSTANT    | 5    |  |
| 16      | OUT         | AR1  |  |
| 17      | LOAD        | IN5  |  |
| 18      | OR          | CR2  |  |
| 19      | AND NOT     | T2   |  |
| 20      | AND         | CR1  |  |
| 21      | OUT         | CR2  |  |
| 22      | OUT         | T2   |  |
| 23      | CONSTANT    | 2    |  |
| 24      | LOAD        | IN7  |  |
| 25      | RESET       | Cl   |  |
| 26      | LOAD        | IN6  |  |
| 27      | AND NOT     | IN7  |  |
| 28      | OUT         | C1   |  |
| 29      | CONSTANT    | 3    |  |
| 30      | LOAD        | Cl   |  |
| 31      | OUT         | CR3  |  |
| 32      | END         |      |  |



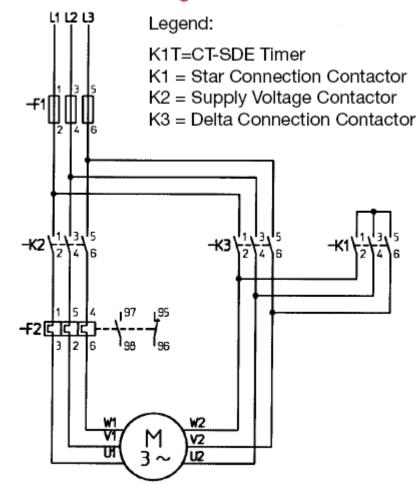


If the system allows uncapped cans to pass, what would be the possible reasons?

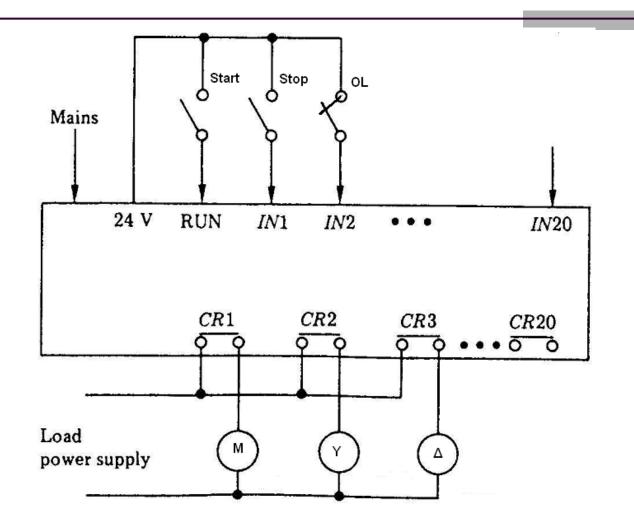
- The height of the photoelectric switch needs to be readjusted
- The photoelectric switch does not work (transmitter or receiver)
- The photoelectric transmitter is not aligned with the receiver
- The ladder diagram is not properly written (or timer is not set properly)




The comparison result of the line currents between the star and delta connections is shown here.


$$\frac{\text{Line Current I}_{11}}{\text{Line Current I}_{12}} = \frac{\sqrt{3} \times V_1}{3Z} \times \frac{Z}{\sqrt{3} \times V_1} = \frac{1}{3}$$




#### Control Circuit Diagram



#### **Power Circuit Diagram**







PLC system layout – Wiring diagram



| No  | Contact 1 | Contact 2                                        | Contact 3                                        | Contact 4   | Contact 5   | Coil                  |
|-----|-----------|--------------------------------------------------|--------------------------------------------------|-------------|-------------|-----------------------|
| IVO |           |                                                  |                                                  | Contact 4   | Contact 5   |                       |
|     | 11        | 12                                               | 13                                               |             |             | г <sub>М1</sub>       |
| 001 | $\vdash$  | <del>                                     </del> | <del>                                     </del> |             |             | ()                    |
|     | □Start    | □Stop                                            | Overload                                         |             | !           |                       |
|     | M1        |                                                  |                                                  |             |             | 1                     |
| 002 | <u> </u>  |                                                  | ļ                                                | ;<br>       | ;<br>       |                       |
|     | ''        |                                                  |                                                  |             |             | 1                     |
|     | M1        | t1                                               | ~2                                               |             |             | [ Q2                  |
|     | '''       |                                                  | q3                                               |             |             | /\                    |
| 003 |           | <del>                                     </del> |                                                  |             |             | ()                    |
|     |           | □Timer                                           | □Delta ON                                        |             |             | □Star ON              |
|     |           | T1                                               | q2                                               |             |             | [ Q3                  |
| 004 |           | <del></del>                                      | $ \nu$                                           | 1           | 1           | —()—                  |
|     |           | □ <sub>Timer</sub>                               | □Star ON                                         |             |             | □ <sub>Delta</sub> ON |
|     |           | 111101                                           | Otal Oli                                         | 1<br>1<br>1 | 1<br>1<br>1 | [ Q1                  |
| 005 |           |                                                  |                                                  |             | 1           |                       |
| 303 |           |                                                  |                                                  |             |             |                       |
|     |           |                                                  |                                                  | 1           | 1<br>1      | □Main ON              |
|     |           |                                                  |                                                  | 1           | 1           | Π1                    |
| 006 |           | <u>-</u>                                         | <del></del>                                      |             | !           | ()—                   |
|     |           |                                                  |                                                  |             |             | □ <sub>Timer</sub>    |