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Abstract

This case study discusses the identification, troubleshooting, and correction of a
torsional instability in an electric motor-driven driveline with variable frequency
drive (VFD) for a high-pressure gas compressor test facility permanently installed at
SwRI. A torsional instability was identified on the gearbox high-speed shaft at speeds
when the VFD output (line) frequency met or exceeded the torsional natural
frequency of the train. The issue was resolved by changing to sensorless vector
control in the VFD instead of voltage/frequency control. In the literature, this change
was not observed to solve similar problems.
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Literature on Sub-synchronous Torsional Interaction

Kerkman et al, 2008.

Feese and Maxfield,
2008.

Feese, 2017.

Shimakawa and Kojo,
2007.

Kocur and Muench,
2012.

Svetti et al., 2015.

ID fan coupling and motor shafts failed due to VFD
excitation of TNF at all speeds where 1X EF > TNF.

Identified cause: Distortion from PWM, bus voltage

feedback, and carrier comparison. Operation in V/F
mode was problematic.

Coupling failure due to torsional vibration. Caused by

torsional frequency content in speed feedback signal.

Torsional failure of LNG compressor couplings due to
combination of typical harmonics and white noise,
amplified by feedback of VFD speed signal.

Electrical interactions with multiple turbo-generator
trains on same electrical grid. Turbo-generator
torsional oscillations -> grid voltage oscillations ->
VFD current oscillations

Replaced VFD with new one with different
parameters for duty cycle update, dead time
compensation, bus voltage feedback
filtering, and DC link choke to minimize non-
characteristic harmonics.

Switch to V/F control mode with no speed
feedback.

Require limits of white noise produced by
VFDs, Speed feedback signals for VFD should
be filtered. Consider notch filters around
TNF.

Perform interaction studies for island
networks with large VFDs and gas turbine
generators. Tune VFD control settings.



VFD EMD Compressor Facility used in Case Study

5-stage centrifugal

compressor, max
speed 16,500 rpm

single-stage, single-helical,
7.792 gear ratio, 14,025
rom output speed gearbox

e )gmi—l;

4040 HP, 1800 rpm,
60 Hz induction motor

VFD controlled



Compressor Test Loop

Discharge
6” Sch160

Control ,.;.:_:. .. S il
(not pictured) \fﬁ’i Working fluid: Nitrogen
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Torsional Rotordynamic Model

 Campbell diagrams show no interference with 15t mode with
mechanical 1x and 2x energy orders (next slides)

* VFD non-integer excitation data not provided by VFD manufacturer
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Drivetrain Commissioning

Mechanical Check-out:
Open Loop / Air
Full speed (14k rpm)

l

Low pressure (P1 = 30 psia)
Full speed

l

High pressure (P1 = 600 psia)
Part speed (9.5krpm)
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The Issue:

During high-pressure,
high-speed testing, high
vibrations were
observed on the
gearbox at the
drivetrain’s torsional
frequency (38 Hz)
between the speeds of
9,800—-11,000 rpm.
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Gearbox Low-Speed Shaft Accelerometer
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Response observed on the gearbox shafts with proximity
probe, but little response observed on the compressor shaft
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Additional Observations:
1. Audible noise during operation (steady state,
accelerations, and decelerations) from gearbox
No noise when deceleration occurred via
emergency stop on VFD
2. Visual wear on gearbox teeth in post-test
inspection
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Dynamic Torque Measurements
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Low Speed Coupling Measurements

Measured dynamic torque
was applied to the
torsional model to
determine stress at
various critical locations in
the machine.

The stress was plotted on
a Goodman diagram to
determine if low-cycle
fatigue had occurred.

Coupling Spacer

Motor Shaft

Talternating

0alternating

30000 T
25000
20000
15000
10000
5000

0 F T O S O T N

25000

20000

15000

10000

5000

¢ Modified Coupling
Allowable Limit

——Linear (Allowable Limit)

y =-0.2205x + 23893

0

T
20000

T
40000

I I I
60000 80000 100000 120000

Tmean

¢ Modified Coupling

Allowable Limit H

—— Linear (Allowable Limit)

y =-0.2205x + 23656

T
20000

T
40000

T T T
60000 80000 100000 120000

Gmean



Vel (ips)

Vel (ips)

Mils p-p

10

-10

0.4
0.3
0.2

0.1

0.5

1.5

Motor Current Monitoring: 11,400 rpm V/F Mode

Gearbox Low-Speed Shaft Accelerometer
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VFD Operation Mode

Motor OEM was onsite to assist in changing VFD operation mode
and related settings and to observe performance.

Major Change:

e Operate VFD in Sensorless Vector Mode opposed to V/F Mode

* Tuned settings (filter constants and gains) to improve
performance (power availability and stability) without inducing
response

19



VFD Operational Mode: V/F

V/F Mode is open loop speed control method

There is a steady state relationship between speed reference and
output frequency/voltage determined by parameterization.

Motor speed is free to seek motor/load-torque equilibrium within
a slippage window around synchronous speed.

Choices of PWM frequency didn’t seem to provide any benefit

20



VFD Operational Mode: Sensorless Vector

Sensorless vector mode is closed loop control
Provides various means of tuning with filter gains and constants

This operating mode also controls motor excitation precisely,
which may be beneficial to the present issue, given the observed
effects of adjusting the V/F characteristic.

21



Change in Low- Speed Couplmg Strain at 9,800 rpm
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As shown earlier...
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Summary & Conclusions

Torsional excitation and response of the compressor train was
unrelated to integer and non-integer VFD harmonics

Slip associated with speed control in V/F Mode suspected to cause
torsional response

Sensorless Vector Mode did not eliminate response, but
significantly reduced the magnitude of the response

Torsional vibration monitoring recommended to detect problems
and avoid unanticipated coupling/shaft failures

This solution differs from other instances in the literature

No ‘typical’ solution for all VFD-excited torsional vibrations; may
need to involve VFD manufacturer and utilize coupled mechanical-

electrical dynamic model s
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