



# Liquid Fuel Cells: A Promising Power for a Prosperous Future

### By

### Ahmad M. Mohammad Alakraa

#### **Professor**

Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt

### amahmoud@sci.cu.edu.eg

http://scholar.cu.edu.eg/?q=ammohammad/

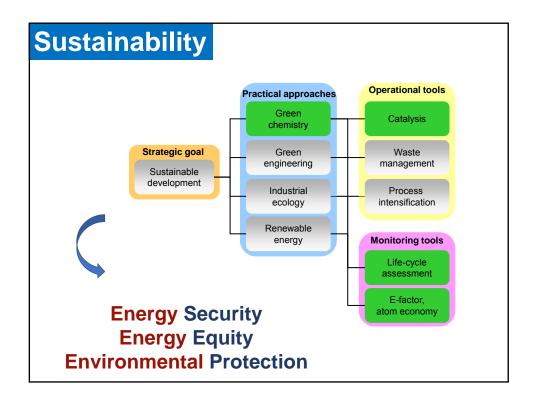
# Outline

- Sustainability
- **↓** Energy Services & Climate Change
- **♣** Fuel Cells
  - Motivation, features and applications
  - HFCs (H<sub>2</sub>/O<sub>2</sub> FCs) challenges
- DFAFCs & FAO
  - Mechanism, Catalyst's poisoning & Kinetic enhancement outlook
  - FeOx/Au/Pt/GC nanoanode
  - Activity & Stability
  - Mechanism
- **4** Conclusion

## Sustainability

# Sust. Society

is one that meets the needs of the **current generation** without sacrificing the ability to meet the needs of **future generations**.


# Sust. Development

is a strategic goal that can be reached using various approaches as "Green chemistry"

# Green Chem. "Seek prevention, not cure"

 designs chemicals and processes that generate and use fewer (or preferably no) hazardous substances.





## **12 Principles of Green Chemistry**

- Prevent waste instead of treating it.
- Design atom-efficient synthetic methods.
- 4 Choose synthetic routes using **nontoxic** compounds where possible.
- Design new products preserving functionality while reducing toxicity.
- Minimize the use of auxiliary reagents and solvents.
- Design processes with minimal energy requirements.
- Preferably use renewable raw materials.
- Avoid unnecessary derivatization.
- Replace stoichiometric reagents with catalytic cycles.
- Design new products with biodegradable capabilities.
- Develop real-time & on-line process analysis & monitoring methods.
- Choose feedstocks and design processes that minimize the chance of accidents.

"Anastas, P.T. and Warner, J. (2000) Green Chemistry: Theory and Practice, Oxford University Press, ISBN 0-19-850698-8,

# Quantifying Environmental Impact

♣ When are processes and products claimed to be "efficient", "green", "environmentally friendly", and "Eco-friendliness"?

#### Reactant conversion

 fraction of reactant molecules that have transformed to product molecules (regardless of which product it is).

### Selectivity to a product P

o is the fraction (or percentage) of the converted reactant that has turned into this specific product P

### Yield of P = Conversion × Selectivity of P

- **↓** High conversions in short time **=** smaller and safer reactors.
- **↓** High selectivity **=** less waste, simpler & cheaper separation units.

# E-factor

- ↓ is the quotient kg<sub>waste</sub>/kg<sub>product</sub>
- "waste" is everything (CO<sub>2</sub> or NO<sub>x</sub>, water, common inorganic or heavy metal salts, and/or organic compounds) formed in the reaction except the desired product.

## **Atom Economy**

Let refers to how many and which atoms of the reactants are incorporated into the products.

Gadi Rothenberg, Catalysis: Concepts and Green Applications 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

# Oxidation of diphenylmethanol to benzophenone

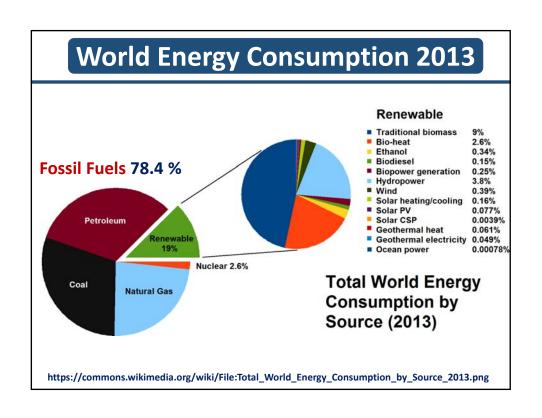
diphenyl methanol

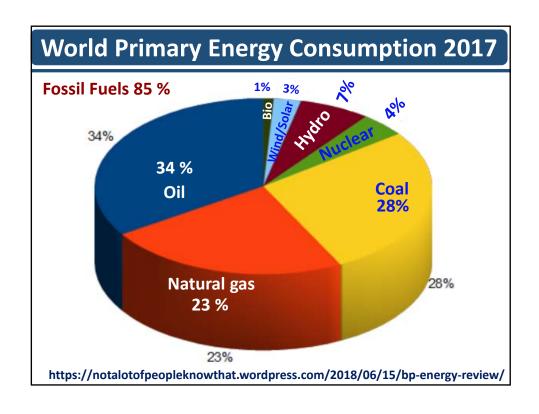
benzophenone

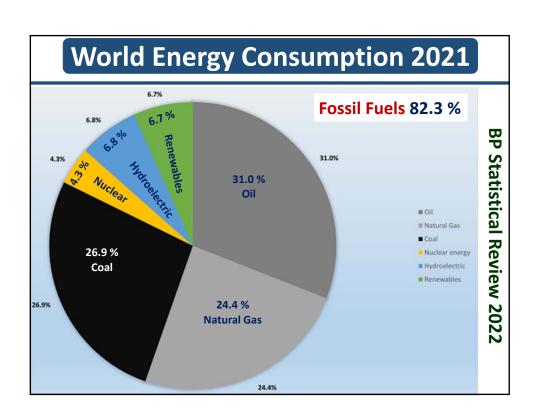
Even for 100 % yield & selectivity, for every kilogram of benzophenone we generate 0.717 kg of chromium sulfate and 0.197 kg of water.

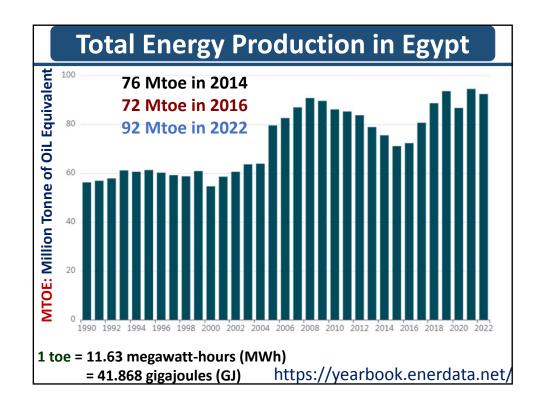
$$E - factor = (0.717 + 0.197)/1 = 0.914$$

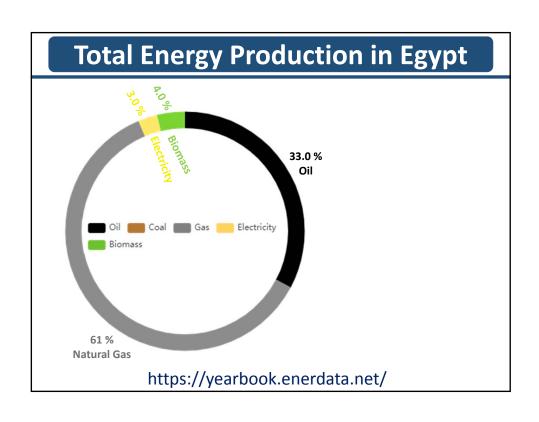
# **Energy Services**

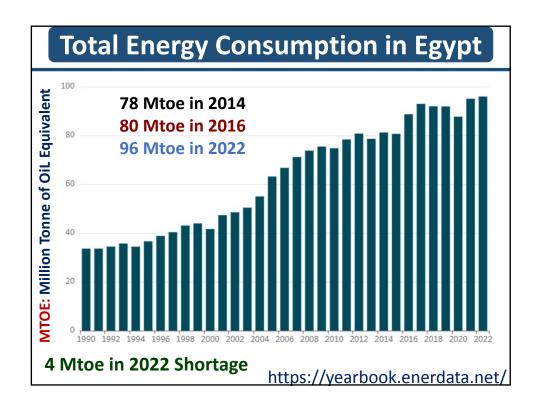

- Measure
  - ▶A country's economic development.
- Essential for
  - Heating
  - clean water ▶ Sanitation
- Cooking
- Healthcare
- **▶** Mechanical power
- **▶** Transportation
- **▶** Lighting
- **▶** Telecommunications

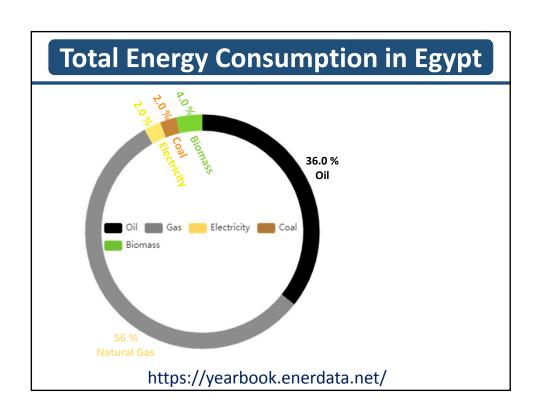

### In 2010

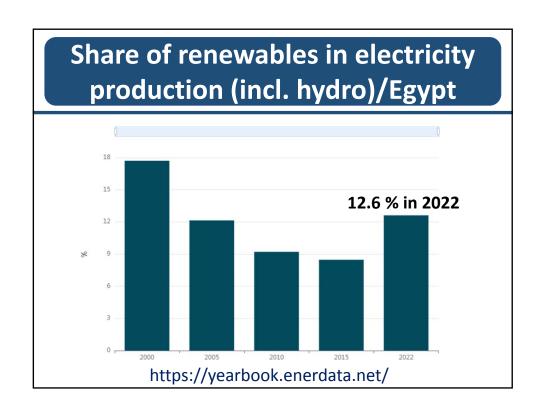

- 1.2 billion people are without access to electricity
- More than 2.7 billion people rely on the traditional use of biomass for cooking

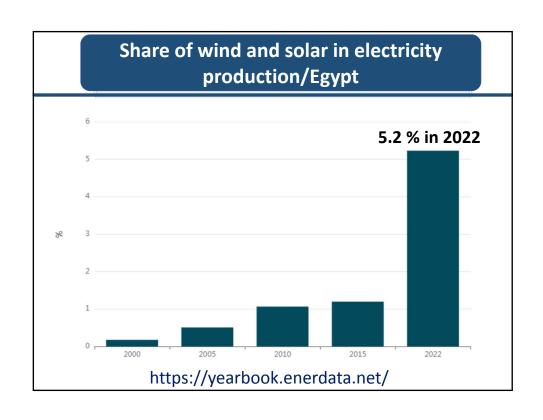

http://www.worldenergyoutlook.org/resources/energydevelopment/

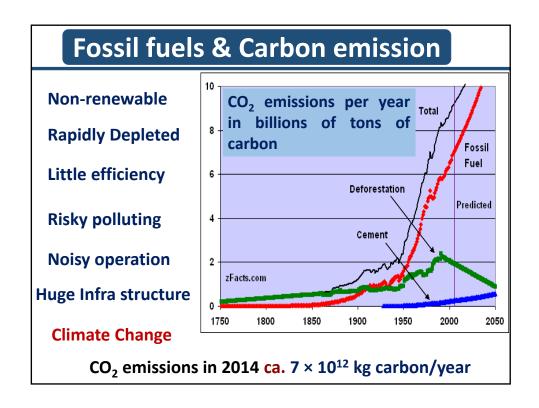


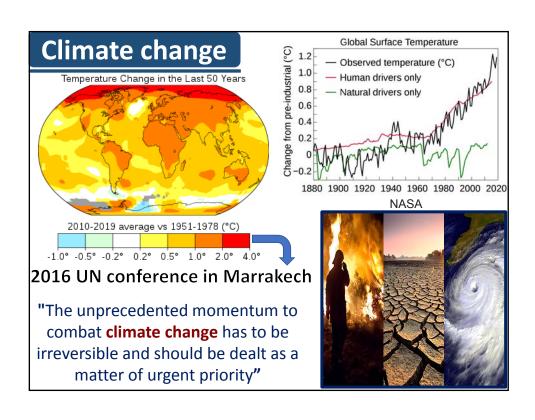



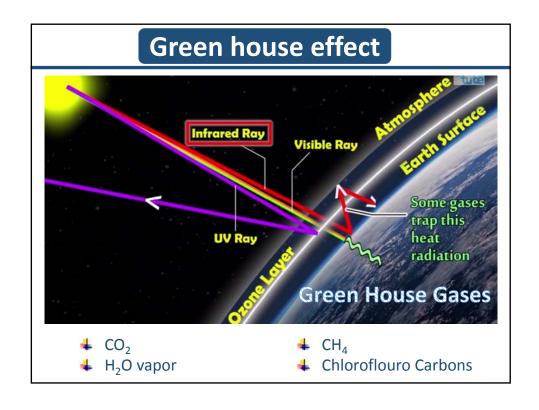



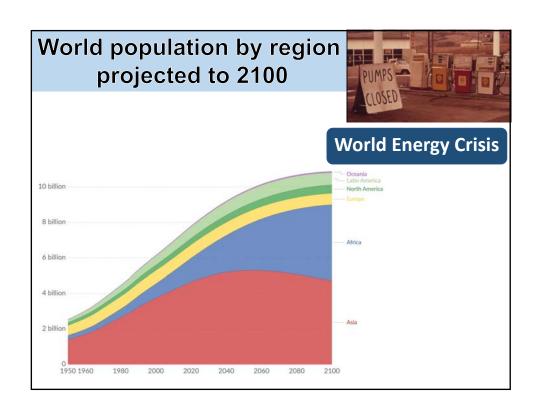



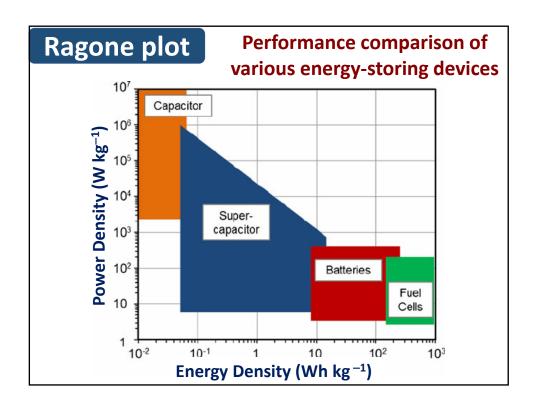







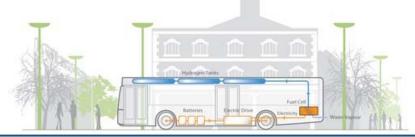







# **Fuel Cells**

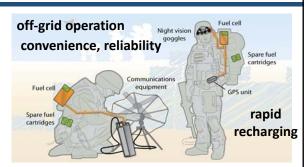
- Enhanced Efficiency
- ▶ Reliability
- Robustness
- Safety
- ► Moving flexibility
- Low emissions (Clean Energy)
- Less Noisy
- ▶ Long-lasted
- Easily installed
- Economic


#### **Efficiency**

- Up to 60% in electrical energy conversion
- Up to 80% of electricity and heat

#### **Emissions**

- Up to 90% reduction in major pollutants
  - FCs are recommended for several stationary, portable and emergency backup power applications


## **Applications/ transportation**



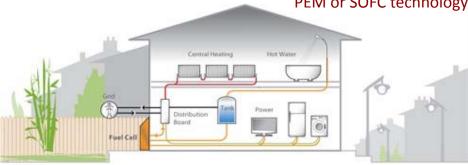
- ♣ Forklift trucks: airport baggage trucks etc
- ♣ Two- and three-wheeler vehicles such as scooters
- Light duty vehicles (LDVs), such as cars and vans
- Buses and trucks
- Trains and trams
- and smaller boats, Manned light aircraft العبارات
- and طائرات بدون طیار (UAVs) طائرات بدون طیار and unmanned undersea vehicles (UUVs), for example, for reconnaissance استطلاع

## Applications/ Portable (>5 W up to 500 kW)

Military
 applications
 (portable soldier
 power, skid
 mounted fuel cell
 generators etc)



lower operating costs


longer run-times compared with batteries

significant weight reduction

- ♣ Auxiliary Power Units (APU) (e.g. for the leisure راحة and trucking industries),
- etc) المحراث Portable products (torches, vine trimmers
- Small personal electronics (mp3 players, cameras etc)
- Large personal electronics (laptops, printers, radios etc),
- Education kits and toys.

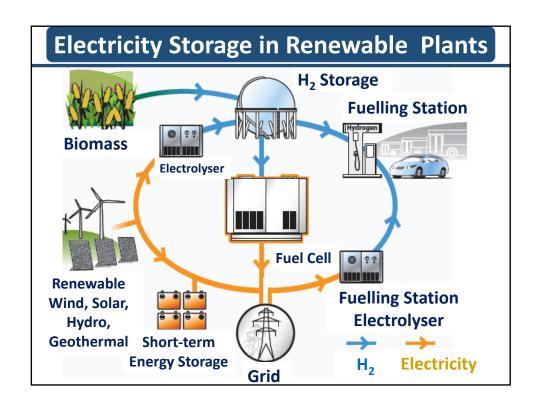
## Applications/ Stationary (0.5 - 10 kW)

PEM or SOFC technology



- Combined heat and power (CHP): overall efficiencies of 80-95%
- Uninterruptible power systems (UPS): e.g., residential use.
- Primary power units

http://www.fuelcelltoday.com/applications/


## **Distributed Generation Systems, DGS**

Generation systems located near the consumer not far away or central

During transmission, distribution, transformation, energy losses may exceed 32 %.

# **DGS** saves

- Energy losses long transmission over and distribution lines
- Installation costs
- local voltage regulation
- Ability to add a small unit instead of a larger one during peak load conditions.



|                            | Reciproc<br>ating<br>Engine | Diesel<br>Turbine | Photo<br>Voltaics | Wind<br>Turbine | FCs                |
|----------------------------|-----------------------------|-------------------|-------------------|-----------------|--------------------|
| Capacity range             | 500 kW<br>- 5 MW            | 500 kW –<br>25 MW | 1 kW –<br>1 MW    | 10 kW<br>- 1 MW | 200 kW<br>– 2 MW   |
| Efficiency<br>%            | 35                          | 29 – 42           | 6 – 19            | 25              | 40 - 60            |
| Capital<br>cost<br>(\$/kW) | 200 –<br>350                | 450 – 870         | 6600              | 1000            | 1500 – <<br>3000 < |
| O&M<br>cost<br>(\$/kW)     | 0.005 –<br>0.015            | 0.005 —<br>0.0065 | 0.001 –<br>0.004  | 0.01            | 0.0019 –<br>0.0153 |

# FCs' Types

# Based on the operating T

- Low-temperature FCs: < 130°C Alkali AFCs, proton exchange membranes PEMFCs, and phosphoric acid PAFCs FCs.
- High-temperature FCs: (500–1000°C), Molten carbonate (MCFCs) and Solid oxide (SOFCs) FCs

# Based on the electrolyte nature

- Solid (polymer or ceramic) electrolyte (PEMFCs, SOFCs)
- Liquid (aqueous or molten) electrolyte (PAFCs, AFCs, MCFCs)

## **PEMFCs**

- High power density,
- Fast start-up system,
- Low operation temperature,
- Low emissions,
- System robustness (the ability to withstand or overcome adverse conditions or rigorous testing)
- Ease transportation and storage
- High scalability



Electric vehicles & portable applications

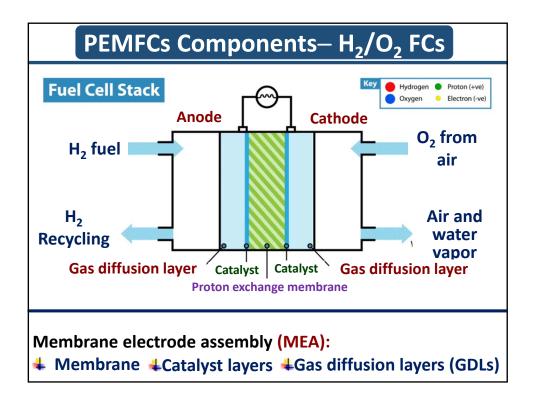
# **Electric Vehicles**

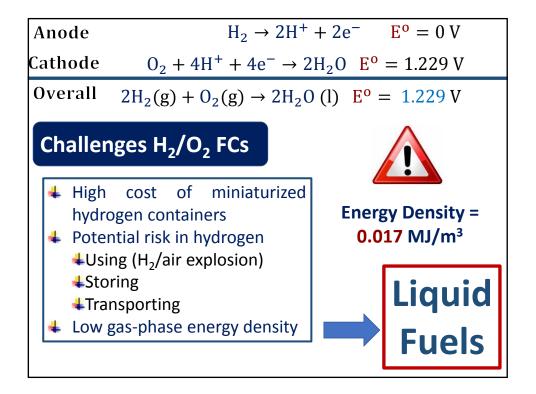
### **Toyota FCEV**

- In Japan on December 15, 2014
- Travel up to 300 miles on a single tank of hydrogen



#### **Honda FCV**


- March 2016
- 70 MPa high-pressure hydrogen storage tank
- Travel up to 430 miles on a single tank of hydrogen




# H<sub>2</sub> Fuel Cell Buses



Mercedes-Benz Fuel Cell Bus (O530) 2007-11





### Fuels?

#### Anything that can be oxidized at an electrode

e.g., gasoline; diesel and biodiesel; jet propellant (JP-8, JP-5); methane (natural gas); propane; biogas; ammonia; methanol; ethanol; butanol, etc.

### **Selection Criteria**

- availability
- □ cost
- toxicity
- □ calorific value
- storage (gravimetric and volumetric density)
- ☐ fuel cell performance
- effect on performance degradation
- □ phase (solid, liquid, gas)
- water content (or other non reacting species such as CO<sub>2</sub>)
- purity
- security of supply, carbon content, etc.

### membranes?

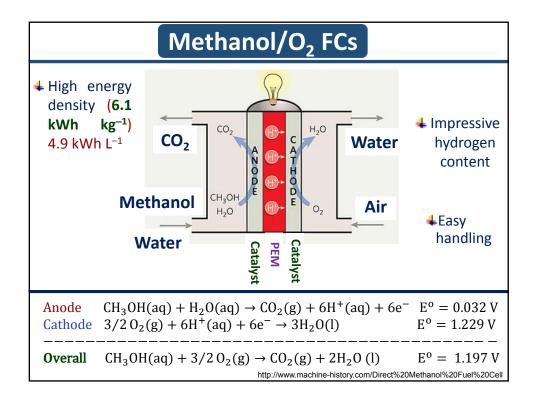
### **Selection Criteria**

- Chemical and Electrochemical Stability
- Mechanical Strength and Stability
- Compatibility (good adhesion) to FCs components
- Extremely low permeability to reactants (H<sub>2</sub>, methanol, O<sub>2</sub>) to maximize Coulombic efficiency
- ♣ High electrolyte transport to maintain uniform electrolyte content and to prevent local drying.
- High proton conductivity to support high currents with minimal resistive losses and zero electronic conductivity;
- Production costs compatible with the intended application.

## Perfluorosulfonic acid polymer membranes

Derivatives of polytetrafluoroethylene (PTFE) possessing perfluoroether side chains with sulfonic acid end groups

$$CF_2$$
  $CF_2$   $y$  Nafion® membrane (x = 6–10, y = z = 1)  
 $CF_2$   $CF_3$   $z$   $CF_3$   $z$   $z$   $z$   $z$ 


$$CF_2$$
  $CF_2$   $CF_2$   $CF_3$   $CF_4$   $CF_2$   $CF_2$   $CF_3$   $CF_4$   $CF_2$   $CF_4$   $CF_4$   $CF_4$   $CF_4$   $CF_5$   $CF_5$   $CF_6$   $CF_6$ 

$$CF_2$$
  $CF_2$   $CF_3$   $CF_4$   $CF_5$   $CF_5$ 

### **Challenge of Nafion**



- ♣ High methanol crossover: even at low methanol concentrations, leading to a loss of coulombic efficiency and depolarization of the oxygen electrode reaction at the cathode.
- ♣ High costs: US \$ 600-700/m². Costs may be lowered if much thinner membranes are developed
- ♣ Operate only at Low T < 100°C. At higher T they dry out partially and lose their high proton conductivity.



## **Challenge of DMFCs**



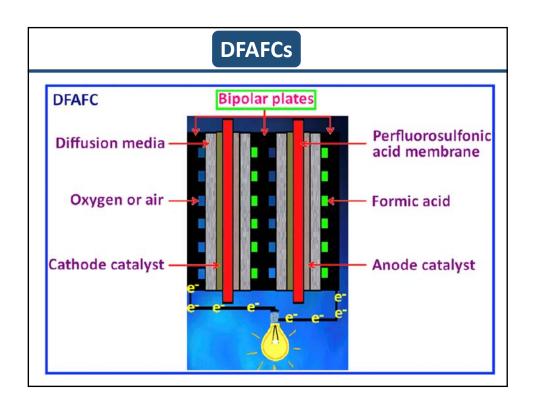
- Inherent toxicity
- **Water Management** 
  - dilution of the fuel = lowering in Energy density
  - Water loss via crossover under electro-osmotic drag and molecular diffusion through the membrane
- High fuel crossover through Nafion-based membranes
  - necessitates lower fuel concentration < 2M. Higher than this reduces fuel utilization and decreases cell performance
- ♣ Slow oxidation kinetics which necessitates a T> 100°C for
  - Fast oxidation kinetics
  - Better CO tolerance (Fast desorption of poisoning CO)
- **↓ Damage of Nafion® membranes:** They operate at **< 100°C**. To avoid drying out and losing the high proton conductivity.

## **Formic Acid**

promising for **low-T** PEMFCs

- Small organic molecule, highly available, easily ionizable
- Pungent odor (early warning signs of exposure)
- Low carbon content but high hydrogen capacity (ca. 4.4 % by mass)
- ➡ high volumetric hydrogen content (53 g L<sup>-1</sup> under standard temperature and pressure)
- high specific energy (5.3 MJ kg<sup>-1</sup>)
- high volumetric energy density (6.4 MJ L<sup>-1</sup> at ambient conditions)
- Low toxicity & low odor threshold (attention to leaks)
- Easy and safe storage
- Non-flammable at moderate concentrations
- Involves 2 e⁻ in oxidation with cleavage of two bonds.

### FA is a renewable chemical for H<sub>2</sub> storage


- **Dehydrogenation** of FA has a low  $\Delta H_r$ ; thus,  $H_2$  can be produced from FA at moderate Ts (< 100°C).
- less energy is required for H<sub>2</sub> production from FA
- CO<sub>2</sub> (coproduct of FA dehydrogenation) can hydrogenate back to FA in water or organic solvents.
- FA can be a renewable chemical for H<sub>2</sub> storage

Formic Acid as a Hydrogen Carrier for Fuel Cells Toward a Sustainable Energy System,

<u>Advances in Inorganic Chemistry, Volume 70,</u> 2017, Pages 395-427

<a href="https://doi.org/10.1016/bs.adioch.2017.04.002">https://doi.org/10.1016/bs.adioch.2017.04.002</a>

| FA is a renewable chemical for H <sub>2</sub> storage  |                                                        |                                                         |  |
|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--|
| https://doi.org/10.1016/bs.adloch.2017.04.002          | Δ <sub>r</sub> H <sup>0</sup><br>′kJ mol <sup>-1</sup> | Δ <sub>r</sub> G <sup>0</sup><br>/ kJ mol <sup>-1</sup> |  |
| $HCOOH(l) \rightarrow H_2(g) + CO_2(g)$                | +31.2                                                  | -33.0                                                   |  |
| $HCOOH(l) \rightarrow H_2O(l) + CO(g)$                 | +28.4                                                  | -13.0                                                   |  |
| $HCOOH(aq) \rightarrow H_2(g) + CO_2(g)$               | +32.0                                                  | -43.2                                                   |  |
| $HCO_2NH_4(aq) \to H_2(g) + CO_2(g) + NH_3(g)$         | +84.3                                                  | +9.5                                                    |  |
| $CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g)$        | +206.1                                                 | +140.9                                                  |  |
| $CO(g) + H_2O(g) \rightarrow H_2(g) + CO_2(g)$         | -41.2                                                  | -28.6                                                   |  |
| $H_2O(1) \to H_2(g) + 1/2O_2(g)$                       | +285.8                                                 | +238.2                                                  |  |
| $NH_3(g) \rightarrow 3/2H_2(g) + 1/2N_2(g)$            | +46.1                                                  | +16.5                                                   |  |
| $C_6H_{11}CH_3(l) \rightarrow 3H_2(g) + C_6H_5CH_3(l)$ | +202.2                                                 | +93.3                                                   |  |
| $CH_3OH(l) + H_2O(l) \rightarrow 3H_2(g) + CO_2(g)$    | +131.0                                                 | +9.0                                                    |  |



runs

with

acid

## Miniature air breathing DFAFCs

 $2 \text{ cm} \times 2.4 \text{ cm} \times 1.4 \text{ cm}$  DFAFCs at room temperature produced current density up to 250 mA/cm<sup>2</sup> and power density up to 33 mW/cm<sup>2</sup> at ambient conditions



### **DFAFCs**

- Easy handling
- Small crossover
  - Repulsion between HCOO-/sulfuric gr. of Nafion
  - concentrated fuel and thinner Allow high membranes
- has a less poisoning impact Pt-based to electrocatalysts.
- Market DFAFCs have a higher theoretical open-circuit potential (1.48 V) than that of hydrogen fuel cells (1.23 V) and DMFCs (1.21 V).

### **DFAFCs**

### Anode -

$$\text{HCOOH(aq)} \rightarrow \text{CO}_2(g) + 2\text{H}^+(aq) + 2\text{e}^ E^0 = -0.25 \text{ V}$$

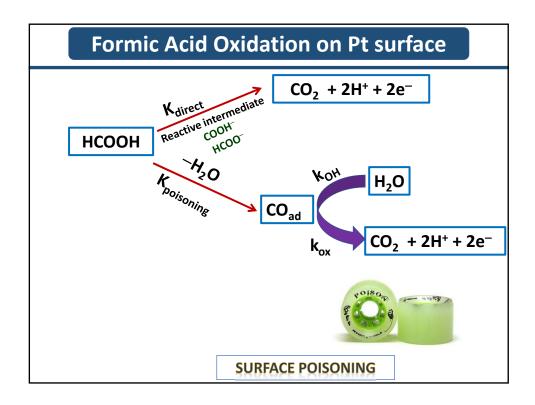
## Cathode

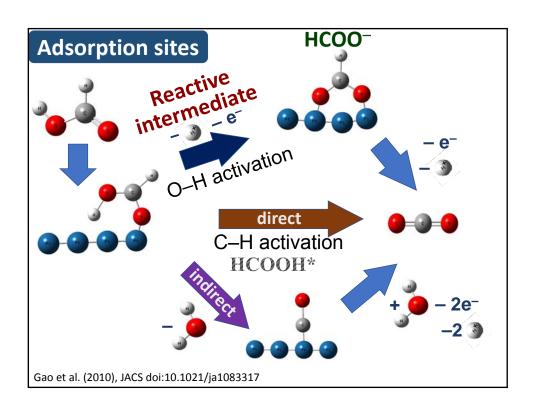


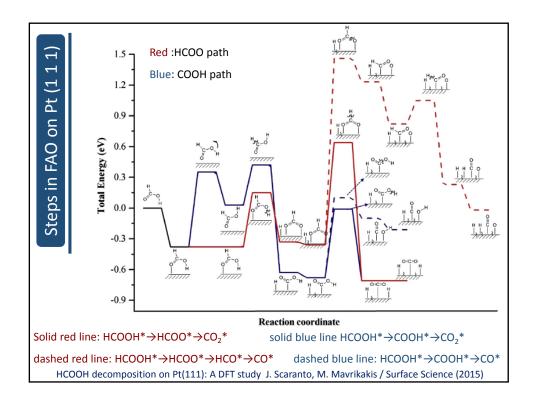
$$1/2 O_2(g) + 2H^+(aq) + 2e^- \rightarrow H_2O(l)$$
  $E^0 = 1.229 V$ 

### **Overall**




 $HCOOH(aq) + 1/2 O_2(g) \rightarrow CO_2(g) + H_2O(l)$  E<sup>o</sup> = 1.48 V

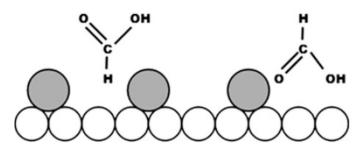

## Challenge in DFAFCs


- Low (2,104 Wh L<sup>-1</sup>) volumetric energy density of formic acid if compared to methanol (4,900 Wh  $L^{-1}$ ).
  - This deficiency in DFAFCs is compensated by the 6X reduction in crossover through the Nafion™ membrane, allowing substantially higher fuel concentrations. (5– 12 M FA) Vs. (1–2 M Methanol)
- Poisoning with the CO intermediate
  - resulting from the "non-faradaic" dissociation of FA at Pt surface



Development of Efficient and Stable Electrocatalysts is required

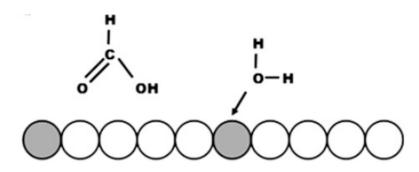







## **Mechanisms of Enhancement**

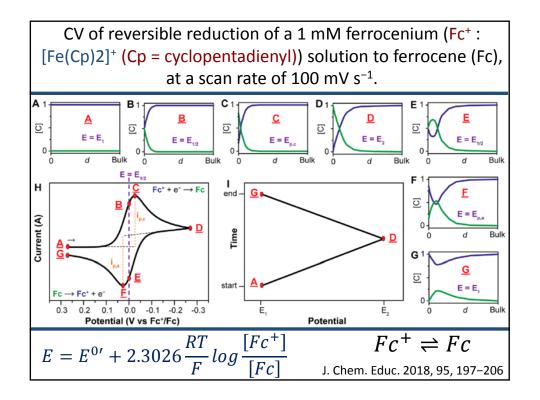
### Ensemble or third-body effect

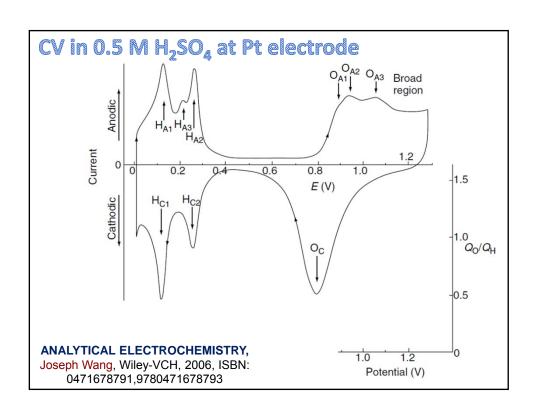

adatoms or alloys to preferentially orient the adsorption mode (by steric hindrance) of FA in the CH-down direction (Dehydrogenataion Enhancement)

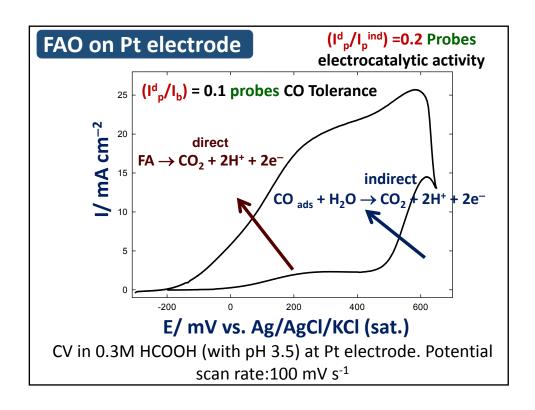


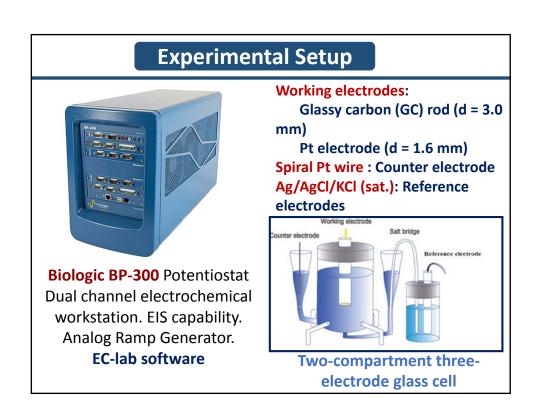
(Lecture Notes in Energy 9) Meng Li, Radoslav R. Adzic (auth.), Minhua Shao (eds.)-Electrocatalysis in Fuel Cells\_ A Non- and Low- Platinum Approach-Springer-Verlag London (2013)

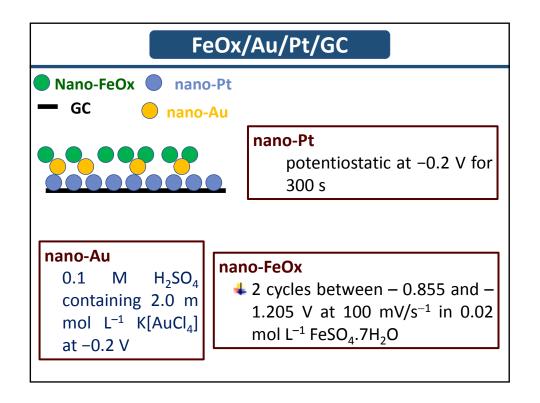


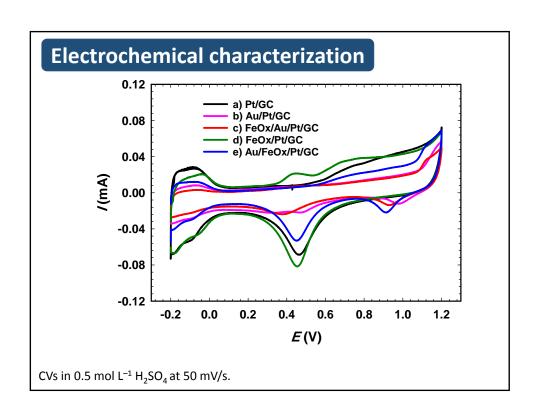

increase availability of activated hydroxyl groups (Dehydration Enhancement)

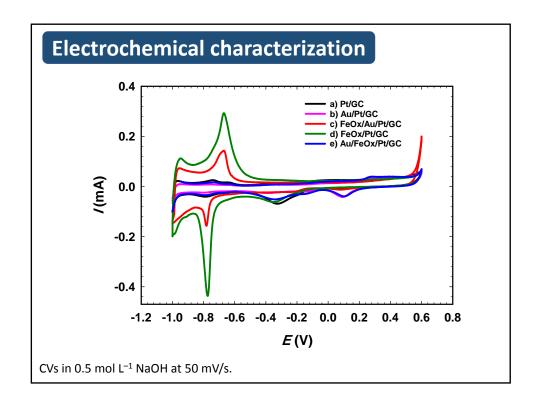


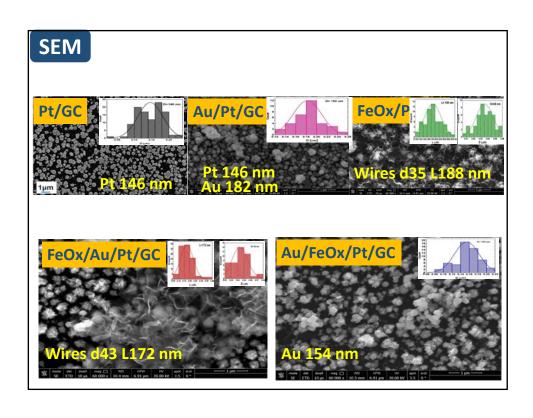


- **Section 2** Electronic effect
  - Tuning the Pt/CO<sub>ads</sub> bonding


# **Cyclic voltammetry**

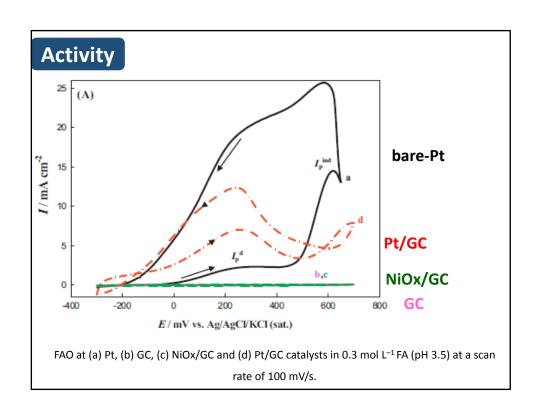

- powerful in acquiring qualitative information about electrochemical reactions.
- rapidly provides considerable information on the thermodynamics of redox processes and the kinetics of heterogeneous electron transfer reactions and on coupled chemical reactions or adsorption processes.
- ♣ offers a rapid location of redox potentials of the electroactive species, and convenient evaluation of the effect of media on the redox process.
- consists of scanning linearly the potential of a stationary working electrode (in an unstirred solution), using a triangular potential waveform.
- The resulting current-potential plot is termed a cyclic voltammogram.

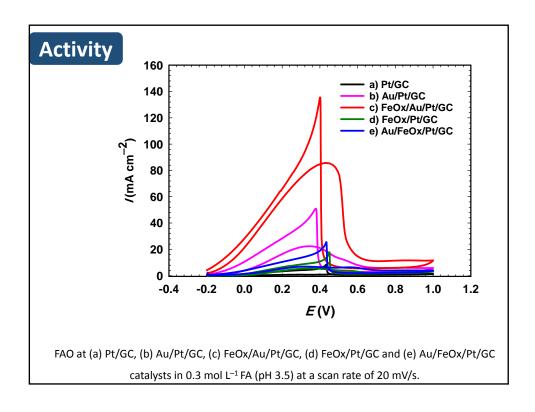


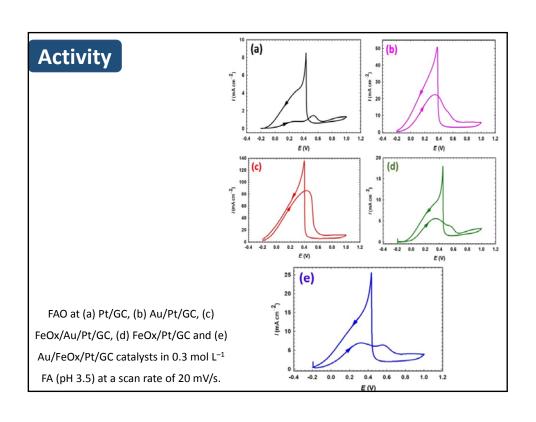





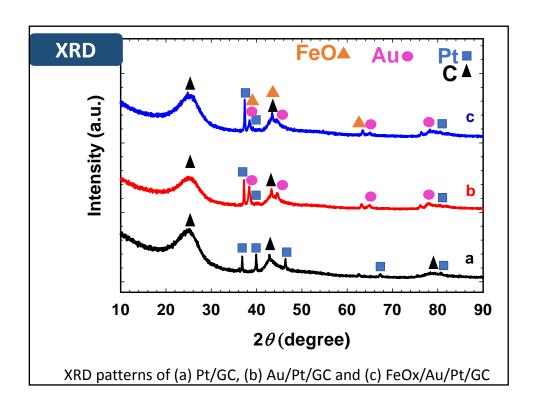



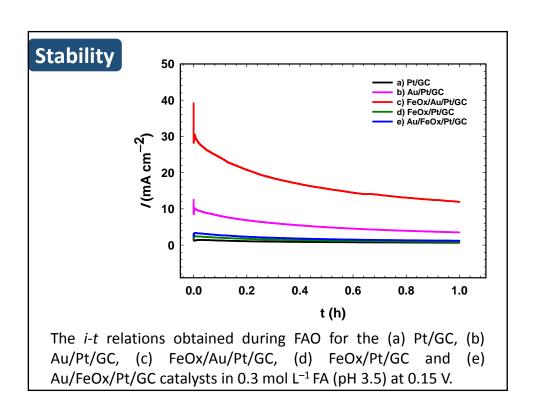



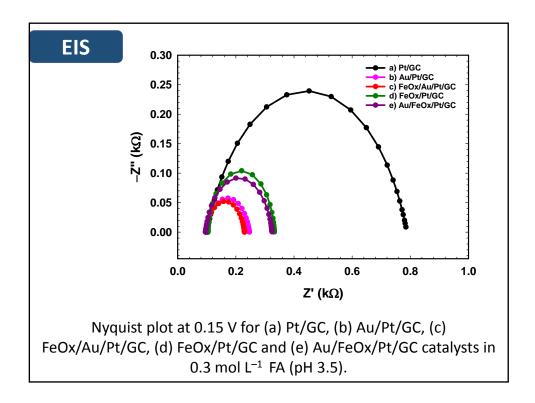





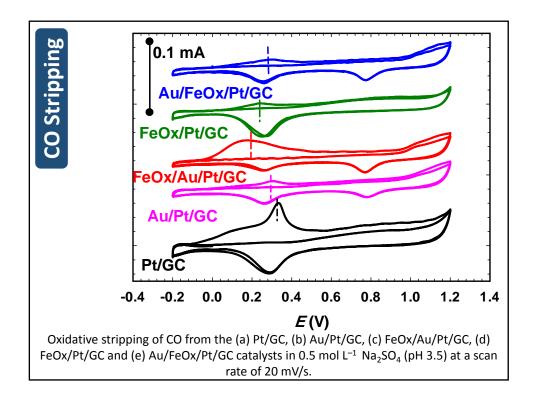

| EDV           | Element | Weight % | Atomic % | Error % |
|---------------|---------|----------|----------|---------|
| EDX           | CK      | 28.34    | 85.14    | 9.16    |
|               | OK      | 0.82     | 1.86     | 35.15   |
| Au/Pt/GC      | PtL     | 13.18    | 2.44     | 15.66   |
|               | AuL     | 57.65    | 10.56    | 7.88    |
|               | Element | Weight % | Atomic % | Error % |
|               | CK      | 68.72    | 87.77    | 6.18    |
|               | ОК      | 10.58    | 10.14    | 17.19   |
| FeOx/Pt/GC    | FeK     | 2.35     | 0.65     | 12.32   |
| <u> </u>      | PtL     | 18.35    | 1.44     | 14.2    |
|               | Element | Weight % | Atomic % | Error % |
|               | CK      | 42.55    | 85.71    | 8.2     |
|               | OK      | 4.71     | 7.12     | 16.76   |
| FeOx/Au/Pt/GC | FeK     | 2.2      | 0.95     | 11.09   |
|               | PtL     | 8        | 0.99     | 24.74   |
|               | AuL     | 42.54    | 5.22     | 11.06   |
|               | Element | Weight % | Atomic % | Error % |
|               | CK      | 44.79    | 90.47    | 8.22    |
|               | OK      | 1.77     | 2.68     | 30.15   |
| Au/FeOx/Pt/GC | FeK     | 0.81     | 0.35     | 23.51   |
|               | PtL     | 9.65     | 1.2      | 20.19   |
|               | AuL     | 42.98    | 5.29     | 11.78   |

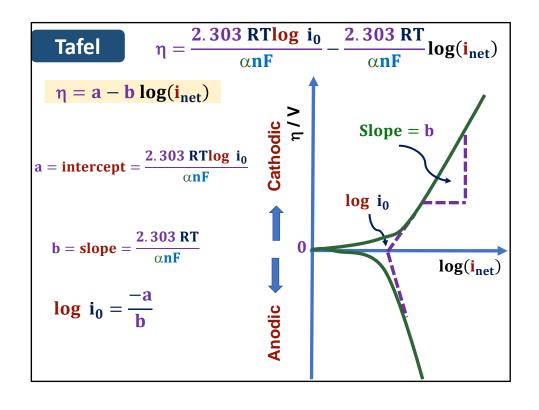


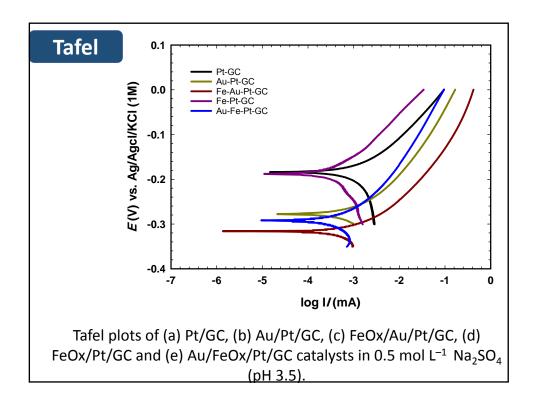




| Activity      |               |                                    |                                    |                        |                      |                |                         |
|---------------|---------------|------------------------------------|------------------------------------|------------------------|----------------------|----------------|-------------------------|
| Electrode     | ECSA<br>(cm²) | $I_p^d$ (mA cm $^{	extstyle -2}$ ) | $I_p^{ind}$ (mA cm <sup>-2</sup> ) | $I_b$ (mA cm $^{-2}$ ) | $I_p^d$ $/I_p^{ind}$ | $I_p^d$ $/I_b$ | E <sub>onset</sub> (mV) |
| Pt/GC         | 0.438         | 0.71                               | 0.72                               | 7.86                   | 0.99                 | 0.09           | 126                     |
| Au/Pt/GC      | 0.056         | 21.94                              | 2.0                                | 47.40                  | 10.97                | 0.46           | 10                      |
| FeOx/Au/Pt/GC | 0.028         | 83.71                              | 0.00                               | 129.28                 | ∞                    | 0.65           | -110                    |
| FeOx/Pt/GC    | 0.249         | 5.44                               | 0.80                               | 16.50                  | 6.80                 | 0.33           | 42                      |
| Au/FeOx/Pt/GC | 0.157         | 6.80                               | 1.8                                | 23.20                  | 3.78                 | 0.29           | -15                     |


| are     | Electrode     | $I_p^d/I_p^{ind}$ | $I_p^d/I_b$ | Ref.      |
|---------|---------------|-------------------|-------------|-----------|
| Compare | 6Pt/PVA       | 0.18              | 0.13        | [42]      |
| Cor     | Pt black      | 0.24              | 0.11        | [21]      |
|         | 6Pt/GO        | 0.26              | 0.15        | [42]      |
|         | Pt/C          | 0.29              | 0.20        | [21]      |
|         | 3Pt3Pd/PVA    | 0.49              | 0.26        | [42]      |
|         | Mn/Pt/GC      | 3.13              | 0.50        | [43]      |
|         | NiOx/Pt/GC    | 3.33              | 0.40        | [44]      |
|         | PtPd/GC       | 7.33              | 0.32        | [30]      |
|         | Pt/MWCNTs-GC  | 7.5               | 0.45        | [45]      |
|         | Au/Pt/GC      | 10.97             | 0.46        | This work |
|         | FeOx/Au/Pt/GC | ∞                 | 0.65        | This work |






| Electrode     | $R_s$ [k $\Omega$ ] | $R_{ct}$ [k $\Omega$ ] |
|---------------|---------------------|------------------------|
| Pt/GC         | 0.100               | 0.687                  |
| Au/Pt/GC      | 0.097               | 0.149                  |
| FeOx/Au/Pt/GC | 0.096               | 0.133                  |
| FeOx/Pt/GC    | 0.103               | 0.2284                 |
| Au/FeOx/Pt/GC | 0.095               | 0.2288                 |







# Tafel

| Electrode     | Anodic Tafel slope (mV/decade) | l <sub>0</sub><br>(mA) |
|---------------|--------------------------------|------------------------|
| Pt/GC         | 105.4                          |                        |
| Au/Pt/GC      | 99.2                           |                        |
| FeOx/Au/Pt/GC | 73.7                           | highest                |
| FeOx/Pt/GC    | 100.9                          |                        |
| Au/FeOx/Pt/GC | 83.2                           |                        |

### Mechanism

$$Fe(OH)_2 \leftrightarrow FeOOH + H^+ + e^-$$
 (1)

$$HCOOH_{ads} + FeOOH \rightarrow CO_2 + Fe(OH)_2 + H^+ + e^-(2)$$

COads + FeOOH + 
$$H_2O \rightarrow Fe(OH)_2 + CO_2 + H^+ + e^-(3)$$

#### Addition of Eqs. 1 and 2 gives:

$$HCOOH_{ads} \rightarrow CO_2 + 2H^+ + 2e^-$$
 (4)

Addition of Eqs. 1 and 3 gives:

$$CO_{ads} + H_2O \rightarrow CO_2 + 2H^+ + 2e^-$$
 (6)

### **Conclusion**

- nano-FeOx improved FAO bifunctionally via
  - providing the hydroxyl group moiety required to catalyze the CO oxidation of the indirect route of FAO
  - modifying the electronic structure of Pt surface.
  - o facilitating the **charge transfer** during the CO oxidation via a catalytic mediation with the **FeOOH/Fe(OH)**<sub>2</sub> reversible transformation.
- nano-FeOx geometrically favored the CO adsorption
- Nano-Au played the third-body role mitigating the CO adsorption and improving the electronic properties of Pt.

