



FUTURE WAY

الباب الثالث الاحمال الحرارية اليدوية



#### المحتويات

| ۲ | ٣- ١ - مقدمة                                                 |
|---|--------------------------------------------------------------|
| ٣ | ٢-٢- الحمل الحراريload estimation                            |
| ٣ | ٣-٢-١- مصادر الحمل الحراري.                                  |
| ٥ | cooling load estimation ــــــــــــــــــــــــــــــــــــ |
|   | ٣-٣- الملخص                                                  |
|   |                                                              |



#### ٣-١- مقدمة

ان مهمة جهاز التكييف هي الوصول لراحة الانسان عن طريق ضبط درجة الحرارة والرطوبة .

- ولتعيين قدرة جهاز التكييف يلزم معرفة ما هي الاحمال الحرارية التي يجب حسابها على جهاز التكييف لإزالتها وللوصول لدرجة الحرارة والرطوبة المطلوبة.
- وقبل البدء في التعريف بالأحمال الداخلية والخارجية يجب معرفة بعض المعلومات عن المبني او المكان المراد تكييفه مثل الاتي :
  - ١ موقع المبنى (مكانه الجغرافي) وكذلك اتجاه الشمال .
  - ٢-استخدام المبني هل هو مستشفى ام مبنى اداري ام سكنى ام مصنع ....الخ.
    - ٣- ابعاد المبني (طول + عرض).
    - ٤- اماكن الاعمدة والكمر في المبني.
  - ٥- ارتفاع السقف وكذلك المسافة بين السقف الحقيقي والسقف الساقط ان وجد .
  - ٦- مكونات الحوائط والسطح (الحوائط عامة عبارة عن طوب + محارة + دهان او سيراميك) اما السطح فهو عبارة عن
     (خرسانة ورمل واسمنت وبلاط).
    - ٧- الشبابيك وابعادها ونوع الزجاج.
      - ٨-الإضاءة.
    - ١ الاجهزة الموجودة داخل المكان وحملها بالواط.
    - ١١- كمية الهواء لكل شخص وتحدد حسب الاشخاص ونشاطهم داخل الغرف.



- وبهذه المعلومات سنري انها تفيدنا في حساب الاحمال الحرارية للمبني وهناك معلومات اضافية تهمنا كمهندس تصميم لتكييف فعليا مثل:
  - ١- الاماكن المسموح بوضع الاجهزة عليها (غرف الماكينات).
  - ٢- اماكن الحوائط المضادة للحريق وذلك بوضع ال Smoke fire damper.
    - ٣- مكان مصدر المياه.
    - ٤- مصدر بخار الماء.
  - ٥- الشكل النهائي للسقف الساقط لمعرفة نوعية الجريلات وابعادها ومخارج الهواء عموما .
    - ٦- اماكن الصرف لتوصيل صرف كل وحدة.

## الحمل الحراري load estimation

تعريف الحمل الحراري هو الحرارة المطلوب منزعها او اضافتها من المكان لتحقيق درجة الحرارة المطلوبة.

## ٣-٢-١- مصادر الحمل الحراري.

وتتلخص المصادر في مصد<mark>رين</mark> رئيسيين:

١- الحرارة المكتسبة المحسوسة sensible heat gain

#### و هي:

- 1- الحرارة التي تنتقل بالتوصيل conduction من خلال الحوائط والاسقف والابواب والشبابيك.
  - ٢- الحرارة التي تمتصها الحوائط والاسقف والشبابيك من الشمس.
- ٣- الحرارة المنتقلة من الحوائط التي تجاور غرف اخري بالمبني ليست مكيفة اوتختلف في درجات الحرارة وتسمي partitions.
  - ٤- الحرارة المكتسبة من الاضاءة والمواتير والعمليات الصناعية والبشر المتواجدون حسب نشاطهم.
  - ٥- الحرارة المكتسبة بالحمل convection نتيجة الهواء المتسرب من الشروخ بالابواب والشبابيك infiltration.
  - ٦- الحرارة المكتسبة في ممرات الهواء المكيف duct heat gained وذلك نتيجة مرورة في اماكن مختلفة درجة الحرارة.

### ١- الحرارة المكتسبة الكامنة latent heat gain



#### وهي:

- ١- الناتجة عن نسبة الرطوبة بالهواء المتسرب infiltration.
  - ٢- الناتجة عن عمليات صناعية مثل الطهور
    - ٣- الناتجة عن البشر المتواجدين بالمكان.
  - ٤- المنتقلة من الاماكن المجاورة الاعلى ضغطا.

والحمل الحراري المطلوب للجهاز او لملف التبريد هو مجموع الحمل المحسوس والكامن. ملحوظة:

تختلف البلدان دوائر العرض وهذا الاختلاف يغير في قيم كلا من:

- درجات الحرارة الخارجية ambient air temperature.
  - .Global solar radiation -
    - .Relative humidity -
      - .Wind velocity -



## cooling load estimation حساب الاحمال الحرارية ٢-٢-٣

١- الحرارة المكتسبة الشمسية الشبابيك- Window solar heat gain

Q=A\*sc\*q

الحرارة الناتجة عن الاشعاع (Q)

BTU/HR

- مساحة الشباك بالقدم المربع (A)
- المعامل الكلي للحرارة المكتسبة خلال الزجاج (shaded or not) (sc) ويعتبر ايضا معامل تصحيح حسب نوعية الزجاج المستخدمة.
- كمية الحرارة الناتجة عن الاشعاع لكل قدم مربع من مساحة الشباك (ordinary glass)



# - اولا: يتم تحديد ال sc من الجدول رقم ١٦، ص٢٥ من كتاب carrier ch1 load estimation وهو الجدول الاتي (وذلك طبقا لنوع الزجاج والتظليل shading):

#### TABLE 16-OVER-ALL FACTORS FOR SOLAR HEAT GAIN THRU GLASS

WITH AND WITHOUT SHADING DEVICES\*

Apply Factors to Table 15

Outdoor wind velocity, 5 mph-Angle of incidence, 30 - Shading devices fully covering window

|                                                                                                         | GLASS<br>FACTOR<br>NO                  | 45° h             | INSIDE<br>IETIAL BL<br>noriz. or ve<br>OLLER SH | ertical           | VENETI            | TSIDE<br>AN BLIND<br>oriz, slats         | OUTSI<br>SHADII<br>SCREE<br>17° horiz. | NG<br>N†          | AW                | ITSIDE<br>NING‡<br>ides & top |
|---------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------------------------------------|-------------------|-------------------|------------------------------------------|----------------------------------------|-------------------|-------------------|-------------------------------|
|                                                                                                         | SHADE                                  | Light<br>Color    | Medium<br>Color                                 | Dark<br>Color     | Light<br>Color    | Light on<br>Outside<br>Dark on<br>Inside | Medium**<br>Color                      | Dark§<br>Color    | Light<br>Color    | Med. or<br>Dark<br>Color      |
| ORDINARY GLASS                                                                                          | 1.00                                   | .56               | .65                                             | .75               | .15               | .13                                      | .22                                    | .15               | .20               | .25                           |
| REGULAR PLATE (1/4 inch)                                                                                | .94                                    | .56               | .65                                             | .74               | .14               | .12                                      | .21                                    | .14               | .19               | .24                           |
| HEAT ABSORBING GLASS†† 40 to 48% Absorbing 48 to 56% Absorbing 56 to 70% Absorbing                      | .80<br>.73<br>.62                      | .56<br>.53        | .62<br>.59<br>.54                               | .72<br>.62<br>.56 | .12<br>.11<br>.10 | .11<br>.10<br>.10                        | .18<br>.16<br>.14                      | .12<br>.11<br>.10 | .16<br>.15        | .20<br>.18<br>.16             |
| DOUBLE PANE Ordinary Glass Regular Plate 48 to 56% Absorbing outside; Ordinary Glass inside.            | .90<br>.80<br>.52                      | .54<br>.52<br>.36 | .61<br>.59<br>.39                               | .67<br>.65<br>.43 | .14<br>.12<br>.10 | .12<br>.11<br>.10                        | .20<br>.18<br>.11                      | .14<br>.12<br>.10 | .18<br>.16<br>.10 | .22<br>.20<br>.13             |
| 48 to 56% Absorbing outside;<br>Regular Plate inside.                                                   | .50                                    | .36               | .39                                             | .43               | .10               | .10                                      | .11                                    | .10               | .10               | .12                           |
| TRIPLE PANE Ordinary Glass Regular Plate                                                                | .83<br>.69                             | .48<br>.47        | .56<br>.52                                      | .64<br>.57        | .12<br>.10        | .11<br>.10                               | .18<br>.15                             | .12<br>.10        | .16<br>.14        | .20<br>.17                    |
| PAINTED GLASS Light Color Medium Color Dark Color                                                       | .28<br>.39<br>.50                      |                   |                                                 |                   |                   |                                          |                                        |                   |                   |                               |
| STAINED GLASS‡‡ Amber Color Dark Red Dark Blue Dark Green Greyed Green Light Opalescent Dark Opalescent | .70<br>.56<br>.60<br>.32<br>.46<br>.43 |                   |                                                 |                   |                   |                                          |                                        |                   |                   |                               |

Footnotes for Table 16 appear on next page.



- ثانيا: يتم تحديد قيمة q وذلك من الجدول q ، من كتاب carrier ch1 load estimation وذلك بحسب دوائر العرض والجدول التالي هو الجزء من جدول q الذي يخص دائرة عرض مصر q:

TABLE 15-SOLAR HEAT GAIN THRU ORDINARY GLASS (Contd)

30°

Btu/(hr) (sq ft sash area)

30°

| 30° NORI            | H LATITUDE         |     | AM   |        |             |          | Sυ       | N TI    | ME   |       |       |         | РМ  |     | 30° SOUTH         | LATITUDE      |
|---------------------|--------------------|-----|------|--------|-------------|----------|----------|---------|------|-------|-------|---------|-----|-----|-------------------|---------------|
| Time of Year        | Exposure           | 6   | 7    | 8      | 9           | 10       | 11       | Noon    | 1    | 2     | 3     | 4       | 5   | 6   | Exposure          | Time of Yes   |
|                     | North              | 33  | 29   | 18     | 14          | 14       | 14       | 14      | 14   | 14    | 14    | 18      | 29  | 33  | South             |               |
|                     | Northeast          | 105 | 139  | 130    | 97          | 55       | 19       | 14      | 14   | 14    | 14    | 12      | 10  | 5   | Southeast         | 1             |
|                     | East               | 108 | 156  | 161    | 143         | 98       | 44       | 14      | 14   | 14    | 14    | 12      | 10  | 5   | East              | _             |
|                     | Southeast          | 42  | 75   | 90     | 90          | 73       | 44       | 17      | 14   | 14    | 14    | 12      | 10  | 5   | Northeast         | 250 00        |
| JUNE 21             | South              | 5   | 10   | 12     | 14          | 15       | 19       | 21      | 19   | 15    | 14    | 12      | 10  | 5   | North             | DEC 22        |
|                     | Southwest          | 5   | 10   | 12     | 14          | 14       | 14       | 17      | 44   | 73    | 90    | 90      | 75  | 42  | Northwest<br>West | ⊣             |
|                     | West               | 5   | 10   | 12     | 14          | 14       | 14       | 14      | 19   | 98    | 97    | 161     | 156 | 108 | Southwest         | 1             |
|                     | Northwest          | 19  | 10   | 12     | 14          | 14       | 240      | 250     | 240  | 217   | 180   | 130     | 61  | 19  | Horizontal        | 1             |
|                     | Horizontal         |     | 61   | 131    | 180         | 217      |          |         |      |       | _     |         |     |     |                   | +             |
|                     | North              | 22  | 20   | 14     | 13          | 14       | 14       | 14      | 14   | 14    | 13    | 14      | 20  | 22  | South             | 1             |
|                     | Northeast          | 93  | 131  | 123    | 89          | 46<br>99 | 16       | 14      | 14   | 14    | 13    | 12      | 9   | 4   | Southeast<br>East | JAN 21        |
| JULY 23             | East               | 100 | 155  | 164    | 145         | 83       | 53       | 22      | 14   | 14    | 13    | 12      | 9   | 4   | Northeast         | - 3019 21     |
|                     | Southeast<br>South | 42  | 82   | 12     | 14          | 20       | 27       | 30      | 27   | 20    | 14    | 12      | 9   | 4   | North             |               |
| •                   | Southwest          | 4   | 9    | 12     | 13          | 14       | 14       | 14      | 53   | 83    | 100   | 100     | 82  | 42  | Northwest         | _             |
| MAY 21              | West               | 4   | 9    | 12     | 13          | 14       | 14       | 14      | 44   | 99    | 145   | 164     | 155 | 100 | West              | NOV 21        |
| MAIZI               | Northwest          | 4   | 9    | 12     | 13          | 14       | 14       | 14      | 16   | 46    | 89    | 123     | 131 | 93  | Southwest         | 1             |
|                     | Horizontal         | 15  | 66   | 123    | 176         | 214      | 236      | 246     | 236  | 214   | 176   | 123     | 66  | 15  | Horizontal        |               |
|                     | North              | 6   | 8    | 11     | 13          | 13       | 14       | 14      | 14   | 13    | 13    | 11      | 8   | 6   | South             |               |
| - 0                 | Northeast          | 55  | 108  | 100    | 66          | 27       | 14       | 14      | 14   | 13    | 13    | 11      | 8   | 2   | Southeast         |               |
| AUG 24              | East               | 66  | 147  | 165    | 148         | 102      | 46       | 14      | 14   | 13    | 13    | ii      | 8   | 2   | East              | FEB 20        |
| 700 24              | Southeast          | 37  | 98   | 127    | 129         | 112      | 82       | 39      | 15   | 13    | 13    | ii      | 8   | 2   | Northeast         | 1 1 1 1 1 1 1 |
| &                   | South              | 2   | 8    | 13     | 27          | 47       | 58       | 63      | 58   | 47    | 27    | 13      | 8   | 2   | North             |               |
|                     | Southwest          | 2   | 8    | 11     | 13          | 13       | 15       | 39      | 82   | 112   | 129   | 127     | 98  | 37  | Northwest         |               |
| APR 20              | West               | 2   | 8    | 11     | 13          | 13       | 14       | 14      | 46   | 102   | 148   | 165     | 147 | 66  | West              | OCT 23        |
|                     | Northwest          | 2   | 8    | 11     | 13          | 13       | 14       | 14      | 14   | 27    | 66    | 100     | 108 | 55  | Southwest         |               |
|                     | Horizontal         | 6   | 47   | 107    | 161         | 200      | 225      | 235     | 225  | 200   | 161   | 107     | 47  | 6   | Horizontal        |               |
|                     | North              | 0   | 5    | 10     | 12          | 13       | 14       | 14      | 14   | 13    | 12    | 10      | 5   | 0   | South             |               |
| 1                   | Northeast          | ő   | 74   | 90     | 40          | 15       | 14       | 14      | 14   | 13    | 12    | 10      | 5   | 0   | Southeast         |               |
| SEPT 22             | East               | 0   | 124  | 158    | 144         | 103      | 48       | 14      | 14   | 13    | 12    | 10      | 5   | 0   | East              | MAR 22        |
|                     | Southeast          | 0   | 98   | 131    | 152         | 141      | 113      | 67      | 25   | 13    | 12    | 10      | 5   | 0   | Northeast         | 7             |
| &                   | South              | 0   | 9    | 18     | 60          | 82       | 98       | 105     | 98   | 82    | 60    | 18      | 9   | 0   | North             | &             |
| ( <del>100</del> 1) | Southwest          | 0   | 5    | 10     | 12          | 13       | 25       | 67      | 113  | 141   | 152   | 131     | 98  | 0   | Northwest         |               |
| MAR 22              | West               | 0   | 5    | 10     | 12          | 13       | 14       | 14      | 48   | 103   | 144   | 158     | 124 | 0   | West              | SEPT 22       |
|                     | Northwest          | 0   | 5    | 10     | 12          | 13       | 14       | 14      | 14   | 15    | 40    | 90      | 74  | 0   | Southwest         |               |
|                     | Horizontal         | 0   | 25   | 81     | 135         | 179      | 202      | 212     | 202  | 179   | 135   | 81      | 25  | 0   | Horizontal        |               |
|                     | North              | 0   | 3    | 8      | -11         | 12       | 13       | 14      | 13   | 12    | 11    | 8       | 3   | 0   | South             |               |
| - 1                 | Northeast          | 0   | 33   | 39     | 18          | 12       | 13       | 14      | 13   | 12    | 11    | 8       | 3   | 0   | Southeast         | 1022 00       |
| OCT 23              | East               | 0   | 79   | 135    | 132         | 94       | 43       | 14      | 13   | 12    | 11    | 8       | 3   | 0   | East              | APR 20        |
| 25                  | Southeast          | 0   | 73   | 142    | 163         | 159      | 136      | 92      | 47   | 15    | 11    | -8      | 3   | 0   | Northeast         |               |
| &                   | South              | 0   | 18   | 57     | 92          | 121      | 139      | 145     | 139  | 121   | 92    | 57      | 18  | 0   | North             |               |
|                     | Southwest          | 0   | 3    | 8      | 11          | 15       | 47       | 92      | 136  | 159   | 163   | 142     | 73  | 0   | Northwest<br>West | AUG 24        |
| FEB 20              | West               | 0   | 3    | 8<br>8 | 11          | 12       | 13       | 14      | 43   | 94    | 132   | 135     | 33  | 0   | Southwest         | 700 24        |
|                     | Northwest          | 0   | 3    | 49     | 100         | 143      | 171      | 179     | 171  | 143   | 100   | 49      | 6   | 0   | Horizontal        |               |
|                     | Horizontal         | _   | 6    |        | -           | _        | _        |         | _    |       | _     | _       | _   | 0   | South             | +             |
|                     | North              | 0   |      | 6      | 9           | !!       | 12       | 12      | 12   | !!    | 9     | 6       |     | 0   | Southeast         | 1             |
|                     | Northeast          | 0   | 8 27 | 109    | Sec. 1977.2 | 83       | 12<br>35 | 12      | 12   | 11    | 9     | 6       |     | 0   | East              | MAY 21        |
| NOV 21              | East               | 0   | 28   | 127    | 116         | 162      | 143      | 104     | 64   | 23    | 9     | 6       | +   | 0   | Northeast         | - M^1 21      |
| Ł                   | Southeast<br>South | 0   | 10   | 68     | 109         | 137      | 154      | 159     | 154  | 137   | 109   | 68      | 10  | 0   | North             |               |
| α                   | Southwest          | 0   | 1 10 | 6      | 9           | 23       | 64       | 104     | 143  | 162   | 161   | 127     | 28  | ŏ   | Northwest         | 1 -           |
| JAN 21              | West               | Ö   | 1    | 6      | 9           | 11       | 12       | 12      | 35   | 83    | 116   | 109     | 27  | ŏ   | West              | JULY 23       |
| 3014 21             | Northwest          | 0   | i    | 6      | 9           | Lii      | 12       | 12      | 12   | 11    | 9     | 16      | 8   | 0   | Southwest         |               |
|                     | Horizontal         | ۱ŏ  | 2    | 27     | 71          | 109      | 136      | 145     | 136  | 109   | 71    | 27      | 2   | l ŏ | Horizontal        | 1             |
|                     | North              | 0   | 0    | 4      | 9           | 11       | 12       | 12      | 12   | 11    | 9     | 4       | 0   | 0   | South             | 1             |
|                     | Northeast          | ő   | 0    | 10     | 9           | ii       | 12       | 12      | 12   | iii   | 9     | 4       | Ö   | ŏ   | Southeast         | 1             |
|                     | East               | ő   | ő    | 92     | 105         | 80       | 32       | 12      | 12   | ii    | 9     | 4       | ő   | ő   | East              |               |
| - 1                 | Southeast          | ŏ   | ŏ    | 114    | 157         | 162      | 143      | 108     | 72   | 28    | 9     | 4       | Ö   | ŏ   | Northeast         |               |
| DEC 22              | South              | ŏ   | 0    | 64     | 113         | 142      | 159      |         | 159  | 142   | 113   | 64      | ő   | ő   | North             | JUNE 21       |
| 200 11              | Southwest          | ő   | ŏ    | 4      | 9           | 28       | 72       | 108     | 143  | 162   | 157   | 114     | ő   | ŏ   | Northwest         | 1211/02/2017  |
| t                   | West               | Ō   | 0    | 4      | 9           | II       | 12       | 12      | 32   | 80    | 105   | 92      | 0   | ő   | West              | 7             |
|                     | Northwest          | 0   | ō    | 4      | 9           | 11       | 12       | 12      | 12   | 11    | 9     | 10      | 0   | 0   | Southwest         |               |
|                     | Horizontal         | 0   | 0    | 19     | 60          | 97       | 122      |         | 122  | 97    | 60    | 19      | 0   | 0   | Horizontal        | 1             |
|                     | 10 (XXX-11)        | 1   |      |        | -           |          |          |         | -    |       | (A)   |         | -   |     |                   |               |
| Solar Gain          | Steel Sash, or     | -1  | н    | aze    |             |          | Altit    | ude     | - 1  |       | Dewpo |         |     |     | ewpoint           | South Lat     |
| Correction          | No Sash            |     |      |        |             | margae a |          |         | _    | Decre |       |         |     |     | se From 67 F      | Dec. or Jan   |
| POLLACTION          | X 1/.85 or 1.17    | - 1 | -15% | Ma     | x.)         | +0.7     | 1% DE    | er 1000 | Ft I | + 1   | 7% pe | er 10 F |     | - 7 | % per 10 F        | + 7%          |

Bold Face Values — Monthly Maximums

Boxed Values — Yearly maximums



## ملحوظة: اسفل الجدول السابق معاملات تصحيح تؤخذ في الاعتبار وهي:

- أ- مساحة الزجاج من اجمال مساحة التركيب (العرض الخشبي او المعدني) هي ٠,٨٥ ولذلك يجب القسمة علي ذلك الرقم لحساب مساحة الزجاج فقط.
  - ب- Haze و هو يعبر عن الضباب فاذا كان هناك ضباب بالبلد موقع الحساب وجب العمل به (يطرح من ال ١).
  - ت- Altitude و هو الخاص بالارتفاع حيث الارتفاع بالجدول ١٥ هو مستوي سطح البحر (يضاف الي ال١).
  - ث- Dew point الحسابات بالجدول عند wbt ٦٦,٨ وعند الاختلاف وجب اخذ المعامل في الاعتبار (يضاف او يطرح من ال ١).
    - ج- Atitude ويضاف عند وجود اختلاف بين دائرة عرض الجدول والخاصة بالمكان الي ال ١.

### ليكون الناتج النهائي من الجدول السابق كالاتي:

= قيمة جدول \*أ\*(١-ب)\*(١+٢)\*(١ (+r-) ث)\*(١+ج)

#### ملحوظة:

يوجد مايسمي بال glass block وهي كتل زجاجية بدون اي براويز تذكر ولها الجدول رقم ١٧ بcarrier.



## Solar & الحرارة المكتسبة من الشمس والمنتقلة الي الغرفة عن طريق الحوائط والاسقف Transmitted heat gain thru walls and roofs

 $Q_2=A*U*\Delta T$  (equivalent)

- الحرارة الناتجة عن التوصيل من خلال الحائط (Q)
- مساحة كل حائط على حدة مع اخذ الاتجاه في الاعتبار وهنا يتم طرح مساحة الشباك من مساحة الحائط (A)
- معامل انتقال الحرارة للحوائط وهنا يجب تكون معرفة نوع الحائط (U)
- $(\Delta T_{(equivalent)})$  درجة الحرارة المكافأة

و هو مصطلح يعبر عن فرق الحرارة اللحظية القادمة من الشمس الي الحائط او السقف والحرارة الصادرة عن الحائط مباشرتا و هما مختلفتان بسبب ان الحائط يختزن جزء من حرارة الشمس الواردة اليه.

- يتم تحديد قيمة U للحوائط وذلك من الجدول ٢١-٣٣، ص٦٦-٤٧ من كتاب carrier ch1 load estimation وذلك من الجدول التالي:

ملحوظة: الجدول القادم مثال من تلك الجداول ويلاحظ به ارقام بين الاقواس وهي وزن الحائط او السقف او ال partition (وسنتحدث عنه بعد الجدول) ورقم بدون اقواس وهو معامل انتقال الحرارة وكل ذلك حسب مكونات الحائط او السقف.



#### TABLE 21-TRANSMISSION COEFFICIENT U-MASONRY WALLS\*

#### FOR SUMMER AND WINTER

Btu/(hr) (sq ft) (deg F temp diff)

All numbers in parentheses indicate weight per sq ft. Total weight per sq ft is sum of wall and finishes.

|                              |                      |                                             |                          |                                 |                          |                          | INTERIO                    | R FINISH                        |                            |                                          |                          |                                          |
|------------------------------|----------------------|---------------------------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|----------------------------|---------------------------------|----------------------------|------------------------------------------|--------------------------|------------------------------------------|
|                              |                      | THICK-<br>NESS<br>(Inches)<br>and           | None                     | %" Gypsum Board (Plaster Board) | Pla                      | ś″<br>ster<br>Wall       | Plas                       | etal<br>ath<br>stered<br>urring | Gyps<br>Wood<br>Plas       | i"<br>um or<br>d Lath<br>tered<br>urring | Bo<br>Plai<br>Plas       | ating<br>ard<br>in or<br>tored<br>urring |
| EXTERIOR                     | rimism               | (ib per<br>sq ft)                           |                          | (2)                             | Sand<br>Aga<br>(6)       | Lt Wt<br>Agg<br>(3)      | 3/4"<br>Sand<br>Plaster(7) | 1/4"<br>Lt Wt<br>Plaster(3)     | 1/2"<br>Sand<br>Plaster(7) | 1/2"<br>Lt Wt<br>Plaster(2)              | 1/2"<br>Board<br>(2)     | 1"<br>Board<br>(4)                       |
| SOLID BRICK                  | Face &<br>Common     | 8 (87)<br>12 (123)<br>16 (173)              | .48<br>.35<br>.27        | .41<br>.31<br>.25               | .45<br>.33<br>.26        | .41<br>.30<br>.25        | .31<br>.25<br>.21          | .28<br>.23<br>.19               | .29<br>.23<br>.20          | .27<br>.22<br>.19                        | .22<br>.19<br>.16        | .16<br>.14<br>.13                        |
|                              | Common               | 8 (80)<br>12 (120)<br>16 (160)              | .41<br>.31<br>.25        | .36<br>.28<br>.23               | .39<br>.30<br>.24        | .35<br>.27<br>.23        | .28<br>.23<br>.19          | .26<br>.22<br>.18               | .26<br>.22<br>.18          | .25<br>.21<br>.18                        | .21<br>.18<br>.16        | .15<br>.14<br>.12                        |
| STONE                        |                      | 8 (100)<br>12 (150)<br>16 (200)<br>24 (300) | .67<br>.55<br>.47<br>.36 | .55<br>.47<br>.41<br>.32        | .63<br>.52<br>.45<br>.35 | .53<br>.46<br>.40<br>.32 | .39<br>.34<br>.31<br>.26   | .34<br>.31<br>.28<br>.24        | .35<br>.31<br>.28<br>.24   | .32<br>.29<br>.27<br>.23                 | .26<br>.24<br>.22<br>.19 | .18<br>.17<br>.16<br>.15                 |
| ADOBE-BLOCKS<br>OR BRICK     |                      | 8 (26)<br>12 (40)                           | .34<br>.25               | .30<br>.23                      | .32                      | .30<br>.23               | .25                        | .23<br>.18                      | .23<br>.18                 | .22<br>.18                               | 18                       | .12                                      |
| POURED<br>CONCRETE           | 140 lb/cu ft         | 6 (70)<br>8 (93)<br>10 (117)<br>12 (140)    | .75<br>.67<br>.61<br>.55 | .55<br>.49<br>.44<br>.40        | .69<br>.63<br>.57        | .58<br>.53<br>.49<br>.45 | .41<br>.39<br>.36<br>.34   | .36<br>.34<br>.32               | .37<br>.35<br>.33          | .34<br>.32<br>.31<br>.29                 | .27<br>.26<br>.25<br>.24 | .18<br>.17<br>.17                        |
|                              | 80 lb/cu ft          | 6 (40)<br>8 (53)<br>10 (66)<br>12 (80)      | .31<br>.25<br>.21        | .28<br>.23<br>.19               | .30<br>.24<br>.20        | .27<br>.23<br>.19        | .23<br>.19<br>.17<br>.15   | .21<br>.18<br>.16               | .22<br>.18<br>.15          | .21<br>.18<br>.14                        | .18<br>.16<br>.14<br>.12 | .14<br>.12<br>.11                        |
|                              | 30 lb/cu ft          | 6 (15)<br>8 (20)<br>10 (25)<br>12 (30)      | .13<br>.10<br>.08<br>.07 | .13<br>.10<br>.08<br>.07        | .13<br>.10<br>.08<br>.07 | .13<br>.10<br>.08<br>.07 | .12<br>.09<br>.08<br>.07   | .11<br>.09<br>.07               | .11<br>.09<br>.08<br>.06   | .11<br>.09<br>.07                        | .13<br>.10<br>.08<br>.07 | .09<br>.07<br>.06<br>.06                 |
| HOLLOW<br>CONCRETE<br>BLOCKS | Sand &<br>Gravel Agg | 8 (43)<br>12 (63)                           | .52<br>.47               | .44<br>.41                      | .48<br>.45               | .43<br>.40               | .33<br>.31                 | .29<br>.28                      | .30<br>.28                 | .28<br>.27                               | .23<br>.22               | .17<br>.16                               |
|                              | Cinder Agg           | 8 (37)<br>12 (53)                           | .39<br>.36               | .35<br>.33                      | .37<br>.35               | .34<br>.32               | .27<br>.26                 | .25<br>.24                      | .25<br>.23                 | .24<br>.23                               | .20<br>.19               | .15<br>.15                               |
|                              | Li Wi Agg            | 8 (32)<br>12 (43)                           | .35<br>.32               | .32<br>.29                      | .34<br>.31               | .31<br>.28               | .26<br>.24                 | .23<br>.22                      | .24<br>.22                 | .22<br>.21                               | .19<br>.18               | .15<br>.14                               |
| STUCCO ON<br>HOLLOW CLAY 1   | TILE                 | 8 (39)<br>10 (44)<br>12 (49)                | .36<br>.32<br>.29        | .32<br>.29<br>.27               | .34<br>.31<br>.28        | .32<br>.28<br>.26        | .26<br>.23<br>.22          | .24<br>.22<br>.20               | .24<br>.22<br>.21          | .23<br>.21<br>.20                        | .19<br>.18<br>.17        | .15<br>.14<br>.13                        |

1958 ASHAE Guide

Equations: Heat Gain, Btu/hr = (Area, sq ft) × (U value) × (equivalent temp diff, Table 19)
Heat Loss, Btu/hr = (Area, sq ft) × (U value) × (outdoor temp — inside temp)

## للحصول علي باقي الجداول يكون ذلك من مرجعنا carrier load estimation.

وزن الحوائط او الاسقف مهم بسبب انه يدخل في معامل تخزين الحوائط للحرارة ويكفي ان نعرف الان ان بالحصول علي ذلك الوزن من الجدول السابق لكل حائط مع ضرب كل قيمة من تلك في مساحة الحائط الخاص بها نحصل علي وزن الحائط

<sup>\*</sup>For addition of insulation and air spaces to above walls, refer to Table 31, page 75.



ويقسم الاجمالي للحوائط والسقف والارضية علي المساحة السطحية لارض الغرفة للحصول علي وزن المنشأة او building وهو ماسيتم استخدامه في الجداول القادمة.

carrier ch1 load يتم تحديد قيمة  $\Delta T_{(equivalent)}$  للحوائط وذلك من الجدول ١٩، ص ٢٦ من كتاب  $\Delta t_{(equivalent)}$  estimation

#### TABLE 19-EQUIVALENT TEMPERATURE DIFFERENCE (DEG F)

FOR DARK COLORED †, SUNLIT AND SHADED WALLS\*

Based on Dark Colored Walls; 95 F db Outdoor Design Temp; Constant 80F db Room Temp;

20 deg F Daily Range; 24-hour Operation; July and 40 N. Lat. †

|             | WEIGHTS    |          | SUN TIME  |                                                            |     |          |         |    |          |          |    |    |     |          |    |    |    |         |     |    |    |     |         |         |        |
|-------------|------------|----------|-----------|------------------------------------------------------------|-----|----------|---------|----|----------|----------|----|----|-----|----------|----|----|----|---------|-----|----|----|-----|---------|---------|--------|
| EXPOSURE    | OF WALL ‡  | Н        | _         | _                                                          | АМ  | _        | _       |    | Г        | _        | _  |    | OIV |          | M  | _  | _  | _       | _   |    | Г  | _   | ΑN      | Л       |        |
| EXI COOKE   | (lb/sq ft) | 6        | 7         | 8                                                          |     | 10       | 11      | 12 | 1        | 2        | 3  | 4  | 5   | 6        | 7  | 8  | 9  | 10      | 11  | 12 | 1  | 2   | 3       | 4       | 5      |
|             | 20         | _        | 45        | -                                                          | 23  | 24       | 19      | _  | 40       | -        | 13 | 14 | 14  | _        | 10 | _  | 8  | 6       | 4   | -  | 0  | - 2 | _       | - 4     | -2     |
| Northeast   | 60         | 5        | 15<br>- 2 | 22<br>- 2                                                  |     | 24       |         |    | 13<br>15 | 12<br>10 | 11 | 12 | 13  | 14<br>14 |    | 10 | _  | 10      | 8   | 2  | 4  | 2   | - 3     | 0       | - 1    |
| Northeast   | 100        | - 1      |           |                                                            | _   | - 1      |         |    |          |          |    |    |     |          |    |    |    |         | l - | 8  | ٠. | 6   |         | -       |        |
|             | 140        | 5        | 3<br>5    | 4                                                          | 4   | 4<br>6   |         | 6  | 15<br>10 |          |    |    |     |          |    | 12 |    | 10      | 10  | 10 | 7  | 9   | 8       | 5<br>7  | 5<br>7 |
|             | 20         | 0        | _         | 30                                                         |     | _        | 6<br>35 |    | _        | 14       | 16 | 14 | 12  | 10       | 10 |    | 10 | 10      | 4   | 2  | 0  | 9   | _       | - 3     | - 3    |
| East        | 60         | 1        | 17        |                                                            |     | 36<br>30 |         |    | 20       | 12       | 13 | 14 | 14  | 14       | 12 |    | 8  | 6<br>10 | 8   | 5  | 4  | 3   | - 2     | - 3     | 0      |
| EdSt        | 100        | - 1      | - 1       | 0                                                          |     |          |         |    | 19<br>25 |          |    | 12 |     |          |    | 12 |    |         | 11  |    | 4  | 8   |         | 7       | 6      |
|             | 140        | 11       | 5         | 6                                                          | 8   |          |         |    |          |          |    | 18 |     |          | 14 |    |    |         |     |    | -  | 13  | 12      | 1 1     |        |
|             |            | 11       | 10        | 10                                                         | 9   | 8        | 9       | 10 | 15       | 18       | 19 | 18 | 17  | 16       | 14 | 12 | 13 | 14      | 14  | 14 | _  | 13  | 12      | _       | 12     |
| Courthogast | 20<br>60   | 10       | 6         | 13                                                         | 19  | 26       | 27      | 28 | 26       | 24       | 19 | 16 | 15  | 14       | 12 | 10 | 8  | 6       | 4   | 2  | 0  | - 1 | - 1     | - 2     | -2     |
| Southeast   | 100        | 1        | 1         | 0                                                          |     | 20       |         |    | 26       |          | 21 | 18 |     |          |    | 12 |    | 10      | 8   | 6  | 5  | 9   | 3       | 3       | 2      |
|             | 140        | 7        | 1 1       | 6                                                          | 6   | 6        |         |    | 17       |          | 19 | 18 |     |          |    | 12 |    |         | 10  |    |    | ľ   | 8<br>10 | 8<br>10 | 7      |
|             |            | 9        | 8         | 8                                                          | 8   | 8        | 7       | 6  | 11       | 14       | 15 | 16 | 18  | _        | 15 | -  | 13 | 12      | _   | 12 | 11 | 11  | _       | -       | _      |
| South       | 20<br>60   | - 1      | - 2       | - 4                                                        | 1   | 4        | 14      |    | 27       | 30       | 28 | 26 | 20  |          | 12 |    | 7  | 6       | 3   | 2  | 1  |     | 0       | 0       | - 1    |
| South       | 100        | - 1      | -         |                                                            | - 3 | _        |         |    | 20       |          |    |    |     |          |    |    |    |         | 6   | 4  | 2  | 1   | 1       | 0       | - 1    |
|             | 140        | 4        | 4         | 2                                                          | 2   | 2        | 3       | 4  | 8        | 12       |    |    | 18  |          |    |    | 11 | 10      | 9   | 8  | 8  | 7   | 6       | 6       | 5      |
|             |            | 7        |           | 6                                                          | 5   | 4        | 4       | 4  | 4        | 4        | 7  | 10 | 13  |          | 15 |    | 16 | _       | 12  | _  | 10 | 9   | _       | 8       | 7      |
| Cauthunant  | 20         | - 2      | - 4       | - 4                                                        | - 2 | 0        | 4       | 6  | 19       | 26       | 34 | 40 | 41  |          | 30 |    | 12 | 6       | 4   | 2  | 1  | 1.  | 0       | - 1     | - 1    |
| Southwest   | 60         | 2        | 1         | 0                                                          | 0   | 0        | 1       | 2  | 8        | 12       |    |    |     |          |    | 34 |    | 10      |     | 6  | 5  | 4   | 4       | 3       | 3      |
|             | 100<br>140 | 7        | - 1       | 6                                                          | 5   | 4        | 5       | 6  | 7        | 8        | 12 | 14 |     |          |    | 24 |    |         | 15  |    |    |     | - 1     | 8       | 7      |
|             |            | 8        |           | 8                                                          | 8   | 8        | 7       | 6  | 6        | 6        | 7  | 8  | 9   | _        | _  | 18 |    | 20      | _   | 8  | 8  | 8   | 8       | 8       | 8      |
| Mont        | 20         | - 2      |           | - 4                                                        | - 2 | 0        | 3       | 6  | 14       | 20       |    |    |     |          |    | 22 |    | 8       | 5   | 2  | 1  | 0   | 0       | - 1     | - 1    |
| West        | 60         | 2        |           | 0                                                          | 0   | 0        | 2       | 4  | 7        | 10       |    |    |     |          |    | 36 |    |         |     | 6  | 5  | 4   | 3       | 3       | 2      |
|             | 100<br>140 | 7        | 1         | 7 6 6 6 6 6 7 8 10 12 17 20 25 28 27 26 19 14 12 11 10 9 8 |     |          |         |    |          |          |    |    |     |          |    |    |    |         |     |    |    |     |         |         |        |
|             |            | 12       |           | 10                                                         | 9   | 8        | 8       | 8  | 9        | 10       | 10 | 10 | 11  | 12       | 14 | 16 | 21 | 22      | 23  | 22 | 20 | 18  | 16      | -       | 13     |
| Nanthurant  | 20         | - 3      |           | - 4                                                        | - 2 | 0        | 3       | 6  | 10       | 12       | 19 | 24 | 33  |          |    | 34 | 18 | 6       | 4   | 2  | 0  | - 1 | - 1     | - 2     | - 2    |
| Northwest   | 60         | - 2      |           | - 4                                                        | - 3 | - 2      | 0       | 2  | 6        | 8        | 10 |    | 21  | 30       |    | 32 |    | 12      | 8   | 6  | 4  | 3   | 1       | 0       | - 1    |
|             | 100        | 5        |           |                                                            |     |          |         |    | 5        |          |    |    |     |          |    |    |    |         |     |    |    |     |         |         |        |
|             | 140        | 8        |           | 6                                                          | 6   | 6        | 6       | 6  | 6        | 6        | 6  | 6  | 7   | 8        | 9  | 10 | 14 | _       | _   | _  | _  | _   | -       | -       | 9      |
| N           | 20         | - 3      | 1         |                                                            | - 3 | - 2      | 1       | 4  | 8        | 10       | 12 | 14 | 13  |          | 10 |    | 6  | 4       | 2   | 0  | 0  | 13  |         | - 2     | - 2    |
| North       | 60         | - 3      | - 3       |                                                            | _   | -2       | -1      | 0  | 3        | 6        | 8  | 10 |     |          |    | 12 |    | 8       | 6   | 4  | 2  | - 1 | 0       |         | - 2    |
| (Shade)     | 100        | 1        | 1         | 0                                                          | 0   | 0        | 0       | 0  | 1        | 2        | 3  | 4  | 5   | 5        | 5  | 8  | 7  | 6       | 5   | 4  | 3  | 1   | 2       | 2       | 1      |
|             | 140        | _1       | 1         | 0                                                          | 0   | 0        | 0       | 0  | 0        | 0        | 1  | 2  | 3   | 4        | 5  | 6  | 7  | 8       | 7   | 6  | 4  | 3   | 2       | 2       | 1      |
|             |            | 6        | 7         | 8                                                          | 9   | 10       | 11      | 12 | 1        | 2        | 3  | 4  | 5   | 6        | 7  | 8  | 9  | 10      | 11  | 12 | 1  | 2   | 3       | 4       | 5      |
|             |            | AM PM AM |           |                                                            |     |          |         |    |          |          |    |    |     |          |    |    |    |         |     |    |    |     |         |         |        |
|             |            | SUN TIME |           |                                                            |     |          |         |    |          |          |    |    |     |          |    |    |    |         |     |    |    |     |         |         |        |

Equation: Heat Gain Thru Walls, Btu/hr = (Area, sq ft) X (equivalent temp diff) X (transmission coefficient U, Tables 21 thru 25)

For wall constructions less than 20 lb/sq ft, use listed values of 20 lb/sq ft.

<sup>\*</sup>All values are for the both insulated and uninsulated walls.

For other conditions, refer to corrections on page 64.

<sup>#&</sup>quot;Weight per sq ft" values for common types of construction are listed in Tables 21 thru 25.



## carrier ch1 load يتم تحديد قيمة $\Delta T_{(equivalent)}$ للاسقف وذلك من الجدول $\Delta T_{(equivalent)}$ وذلك من الجدول التالى:

#### TABLE 20-EQUIVALENT TEMPERATURE DIFFERENCE (DEG F)

FOR DARK COLORED<sup>†</sup>, SUNLIT AND SHADED ROOFS\*

Based on 95 F db Outdoor Design Temp; Constant 80 F db Room Temp; 20 deg F Daily Range; 24-hour Operation: July and 40 N. Lat.†

|         |            |     | 110 |     | ·   |     |     | _  |    | _  |    |    |    |     |    | ÷  |    |    |    |    |     |     |     |     |     |
|---------|------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|-----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
|         | WEIGHTS    |     |     |     |     |     |     |    | _  |    |    | S  | UN | TII | ИE |    |    |    |    |    | _   |     |     |     |     |
| CONDI-  | OF ROOF‡   |     |     |     | АМ  |     |     |    |    |    |    |    |    | Ρ   | M  |    |    |    |    |    |     |     | A١  | Л   |     |
| TION    | (lb/sq ft) | 6   | 7   | 8   | 9   | 10  | 11  | 12 | 1  | 2  | 3  | 4  | 5  | 6   | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   | 4   | 5   |
|         | 10         | - 4 | - 6 | - 7 | - 5 | - 1 | 7   | 15 | 24 | 32 | 38 | 43 | 46 | 45  | 41 | 35 | 28 | 22 | 16 | 10 | 7   | 3   | 1   | - 1 | - 3 |
| Exposed | 20         | 0   | - 1 | - 2 | - 1 | 2   | 9   | 16 | 23 | 30 | 36 | 41 | 43 | 43  | 40 | 35 | 30 | 25 | 20 | 15 | 12  | 8   | 6   | 4   | 2   |
| to      | 40         | 4   | 3   | 2   | 3   | 6   | 10  | 16 | 23 | 28 | 33 | 38 | 40 | 41  | 39 | 35 | 32 | 28 | 24 | 20 | 17  | 13  | 11  | 9   | 6   |
| Sun     | 60         | 9   | 8   | 6   | 7   | 8   | 11  | 16 | 22 | 27 | 31 | 35 | 38 | 39  | 38 | 36 | 34 | 31 | 28 | 25 | 22  | 18  | 16  | 13  | 11  |
|         | 80         | 13  | 12  | 11  | 11  | 12  | 13  | 16 | 22 | 26 | 28 | 32 | 35 | 37  | 37 | 35 | 34 | 34 | 32 | 30 | 27  | 23  | 20  | 18  | 14  |
| Covered | 20         | - 5 | - 2 | 0   | 2   | 4   | 10  | 16 | 19 | 22 | 20 | 18 | 16 | 14  | 12 | 10 | 6  | 2  | 1  | 1  | - 1 | - 2 | - 3 | - 4 | - 5 |
| with    | 40         | - 3 | - 2 | - 1 | - 1 | 0   | 5   | 10 | 13 | 15 | 15 | 16 | 15 | 15  | 14 | 12 | 10 | 7  | 5  | 3  | 1   | - 1 | - 2 | - 3 | - 3 |
| Water   | 60         | - 1 | - 2 | - 2 | - 2 | - 2 | 2   | 5  | 7  | 10 | 12 | 14 | 15 | 16  | 15 | 14 | 12 | 10 | 8  | 6  | 4   | 3   | 2   | 1   | 0   |
|         | 20         | - 4 | - 2 | 0   | 2   | 4   | 8   | 12 | 15 | 18 | 17 | 16 | 15 | 14  | 12 | 10 | 6  | 2  | 1  | 0  | - 1 | - 2 | - 2 | - 3 | - 3 |
| Sprayed | 40         | - 2 | - 2 | - 1 | - 1 | 0   | 2   | 5  | 9  | 13 | 14 | 14 | 14 | 14  | 13 | 12 | 9  | 7  | 5  | 3  | 1   | 0   | 0   | - 1 | - 1 |
|         | 60         | - 1 | - 2 | - 2 | - 2 | - 2 | 0   | 2  | 5  | 8  | 10 | 12 | 13 | 14  | 13 | 12 | 11 | 10 | 8  | 6  | 4   | 2   | 1   | 0   | - 1 |
|         | 20         | - 5 | - 5 | - 4 | - 2 | 0   | 2   | 6  | 9  | 12 | 13 | 14 | 13 | 12  | 10 | 8  | 5  | 2  | 1  | 0  | - 1 | - 3 | - 4 | - 5 | - 5 |
| Shaded  | 40         | - 5 | - 5 | - 4 | - 3 | - 2 | 0   | 2  | 5  | 8  | 10 | 12 | 13 | 12  | 11 | 10 | 8  | 6  | 4  | 2  | 0   | - 1 | - 3 | - 4 | - 5 |
|         | 60         | - 3 | - 3 | - 2 | - 2 | - 2 | - 1 | 0  | 2  | 4  | 6  | 8  | 9  | 10  | 10 | 10 | 9  | 8  | 6  | 4  | 2   | 1   | 0   | - 1 | - 2 |
|         |            | 6   | 7   | 8   | 9   | 10  | 11  | 12 | 1  | 2  | 3  | 4  | 5  | 6   | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   | 4   | 5   |
|         |            |     |     |     | ΑN  |     |     |    |    |    |    |    |    | Р   | M  |    |    |    |    |    |     |     | A۱  | Λ   |     |
|         |            |     |     |     |     |     |     |    |    |    |    | S  | UN | TI  | МE |    |    |    |    |    |     |     |     |     |     |

Equation: Heat Gain Thru Roofs, Btu/hr = (Area, sq ft) × (equivalent temp diff) × (transmission coefficient U, *Tables 27 or 28*)
\*With attic ventilated and ceiling insulated roofs, reduce equivalent temp diff 25%

For peaked roofs, use the roof area projected on a horizontal plane.

†For other conditions, refer to corrections on page 64.

‡"Weight per sq ft" values for common types of construction are listed in Tables 27 or 28.

ملحوظة: الجدولين السابقين تمت بناءا علي ماهو مذكور اعلهم واذا حدث اختلاف يتم عمل معامل التصحيح من الجدول carrier ch1 load estimation وهو التالى:

TABLE 20A-CORRECTIONS TO EQUIVALENT TEMPERATURES (DEG F)

| OUTDOOR   |     |     |     |     |     |     |     |        |       |      |     |     |     |     |     |     |     |
|-----------|-----|-----|-----|-----|-----|-----|-----|--------|-------|------|-----|-----|-----|-----|-----|-----|-----|
| DESIGN    |     |     |     |     |     |     |     |        |       |      |     |     |     |     |     |     |     |
| FOR MONTH |     |     |     |     |     |     |     |        |       |      |     |     |     |     |     |     |     |
| AT 3 P.M. |     |     |     |     |     |     | D   | AILY F | RANGE | (deg | F)  |     |     |     |     |     |     |
| MINUS     |     |     |     |     |     |     |     |        |       |      |     |     |     |     |     |     |     |
| ROOM TEMP |     |     |     |     |     |     |     |        |       |      |     |     |     |     |     |     |     |
| (deg F)   | 8   | 10  | 12  | 14  | 16  | 18  | 20  | 22     | 24    | 26   | 28  | 30  | 32  | 34  | 36  | 38  | 40  |
| -30       | -39 | -40 | -41 | -42 | -43 | -44 | -45 | -46    | -47   | -48  | -49 | -50 | -51 | -52 | -53 | -54 | -55 |
| -20       | -29 | -30 | -31 | -32 | -33 | -34 | -35 | -36    | -37   | -38  | -39 | -40 | -41 | -42 | -43 | -44 | -45 |
| -10       | -19 | -20 | -21 | -22 | -23 | -24 | -25 | -26    | -27   | -28  | -29 | -30 | -31 | -32 | -33 | -34 | -35 |
| 0         | - 9 | -10 | -11 | -12 | -13 | -14 | -15 | -16    | -17   | -18  | -19 | -20 | -21 | -22 | -23 | -24 | -25 |
| 5         | - 4 | - 5 | - 6 | - 7 | - 8 | - 9 | -10 | -11    | -12   | -13  | -14 | -15 | -16 | -17 | -18 | -19 | -20 |
| 10        | 1   | 0   | - 1 | - 2 | - 3 | - 4 | - 5 | - 6    | - 7   | - 8  | - 9 | -10 | -11 | -12 | -13 | -14 | -15 |
| 15        | 6   | 5   | 4   | 3   | 2   | 1   | 0   | - 1    | - 2   | - 3  | - 4 | - 5 | - 6 | - 7 | - 8 | - 9 | -10 |
| 20        | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4      | 3     | 2    | 1   | 0   | - 1 | - 2 | - 3 | - 4 | - 5 |
| 25        | 16  | 15  | 14  | 13  | 12  | 11  | 10  | 9      | 8     | 7    | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 30        | 21  | 20  | 19  | 18  | 17  | 16  | 15  | 14     | 13    | 12   | 11  | 10  | 9   | 8   | 7   | 6   | 5   |
| 35        | 26  | 25  | 24  | 23  | 22  | 21  | 20  | 19     | 18    | 17   | 16  | 15  | 14  | 13  | 12  | 11  | 10  |
| 40        | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24     | 23    | 22   | 21  | 20  | 19  | 18  | 17  | 16  | 15  |



# Transmitted heat gain thru - الحرارة المنتقلة عبر الزجاج او الابواب او الاسقف الزجاجية doors and skylights and windows

$$\mathbf{Q}_1 = \mathbf{A} \cdot \mathbf{U} \cdot \Delta \mathbf{T}$$

- الحرارة الناتجة عن التوصيل من خلال الشباك (Q)
- مساحة الشبابيك كلها و (لا يلزم الاتجاه) (A)
- معامل انتقال الحرارة بالتوصيل للزجاج (U)
- الفرق بين درجة حرارة الغرفة ودرجة الحرارة الخارجية ( $\Delta T$ )
  - اذا كان هناك زجاج بالسقف او skylight او حوائط زجاجية او شبابيك او عزل يتم تحديد قيمة ال U من الجدول carrier ch1 load estimation من كتاب من كتاب

## TABLE 32-TRANSMISSION COEFFICIENT U-FLAT ROOFS WITH ROOF-DECK INSULATION SUMMER AND WINTER

Btu/(hr) (sq ft) (deg F temp diff)

|                 | Dtu/(III | / (SQ IL) (I | aeg r tei    | np am,      |                   |     |
|-----------------|----------|--------------|--------------|-------------|-------------------|-----|
| U VALUE OF ROOF |          | Addi         | tion of Roof | f-Deck Insu | lation            |     |
| BEFORE ADDING   |          |              | Thickn       | ess (in.)   |                   |     |
| ROOF DECK       |          |              |              |             |                   |     |
| INSULATION      | 1/2      | 1            | 11/2         | 2           | 2 <sup>1</sup> /2 | 3   |
| .60             | .33      | .22          | .17          | .14         | .12               | .10 |
| .50             | .29      | .21          | .16          | .14         | .12               | .10 |
| .40             | .26      | .19          | .15          | .13         | .11               | .09 |
| .35             | .24      | .18          | .14          | .12         | .10               | .09 |
| .30             | .21      | .16          | .13          | .12         | .10               | .09 |
| .25             | .19      | .15          | .12          | .11         | .09               | .08 |
| .20             | .16      | .13          | .11          | .10         | .09               | .08 |
| .15             | .12      | .11          | .09          | .08         | .08               | .07 |
| .10             | .09      | .08          | .07          | .07         | .06               | .05 |



## TABLE 33-TRANSMISSION COEFFICIENT U-WINDOWS, SKYLIGHTS, DOORS & GLASS BLOCK WALLS

Btu/(hr) (sq ft) (deg F temp diff)

| Btar(iii) (eq it) (aeg i terrip aiii) |                |                                           |                |           |               |              |      |        |         |           |        |  |  |
|---------------------------------------|----------------|-------------------------------------------|----------------|-----------|---------------|--------------|------|--------|---------|-----------|--------|--|--|
|                                       | GLASS          |                                           |                |           |               |              |      |        |         |           |        |  |  |
|                                       |                |                                           | Ver            | tical Gla | ass           |              |      |        | Horizon | tal Glass |        |  |  |
|                                       | Single         | Single Double Triple Single Double (1/4") |                |           |               |              |      |        |         |           | (1/4") |  |  |
| Air Space Thickness (in.)             |                | 1/4                                       | 1/4 1/2 3/4 -4 |           |               | 1/2   3/4 -4 |      | Summer | Winter  | Summer    | Winter |  |  |
| Without Storm Windows                 | 1.13           | 0.61 0.55 0.53                            |                |           | 0.41 0.36 0.3 |              | 0.34 | 0.86   | 1.40    | 0.50      | 0.70   |  |  |
| With Storm Windows                    | 0.54 0.43 0.64 |                                           |                |           |               |              |      |        |         |           |        |  |  |

|                        | DOORS        |                 |
|------------------------|--------------|-----------------|
| Nominal Thickness      | U            | U               |
| of Wood (inches)       | Exposed Door | With Storm Door |
| 1, ,                   | 0.69         | 0.35            |
| 11/4                   | 0.59         | 0.32            |
| 11/2                   | 0.52         | 0.30            |
| 13/4                   | 0.51         | 0.30            |
| 2                      | 0.46         | 0.28            |
| 21/2                   | 0.38         | 0.25            |
| 3                      | 0.33         | 0.23            |
| Glass (3/4" Herculite) | 1.05         | 0.43            |

| HOLLOW GLASS BLOCK WALL                                                                               | S    |
|-------------------------------------------------------------------------------------------------------|------|
| Description*                                                                                          | U    |
| 5 <sup>3</sup> / <sub>4</sub> ×5 <sup>3</sup> / <sub>4</sub> ×37/8" Thick—Nominal Size 6×6×4 (14)     | 0.60 |
| 7 <sup>3</sup> / <sub>4</sub> ×7 <sup>3</sup> / <sub>4</sub> ×37/8" ThickNominal Size 8×8×4 (14)      | 0.56 |
| 11 <sup>3</sup> / <sub>4</sub> ×11 <sup>3</sup> / <sub>4</sub> ×37/8" Thick—Nominal Size 12×12×4 (16) | 0.52 |
| $7\sqrt[3]{4}\times7\sqrt[3]{4}\times37/8$ " Thick with glass fiber screen dividing the cavity (14)   | 0.48 |
| 113/4×113/4×37/8" Thick with glass fiber screen dividing the cavity (16)                              | 0.44 |

Equation: Heat Gain or Loss, Btu/hr = (Area, sq ft) × (U value) × (outdoor temp – inside temp)

ملحوظة: تم العمل بالحرارة المكافئة والتي بداخلها تعبير عن الحرارة المخزنة في جداول وحسابات الحوائط والاسقف اما الزجاج في اي مكان فتم الحساب فقط علي الفرق بين درجة الحرارة داخليا وخارجيا وذلك لان باخر جزء سيتم حساب الحرارة المخزنة عن طريق الشبابيك.

٤- الحرارة المنتقلة خلال البدرومات

وتنقسم الي حوائط وارضيات

Heat loss thru = area\*heat transfer coefficient  $U*(T_{basement}-T_{ground})$ 

- تحدد القيم المختلفة من الجداول ٣٥-٣٦-٣٧، ص ٨٠-٨١ من كتاب carrier ch1 load estimation وهي التاليه.

#### TABLE 35-TRANSMISSION COEFFICIENT U-MASONRY FLOORS AND WALLS IN GROUND

(Use only in conjunction with Table 36)

|                    | Transmission             |
|--------------------|--------------------------|
| Floor or Wall      | Coefficient U            |
|                    | Btu/(hr) (sq ft) (deg f) |
| *Basement Floor    | .05                      |
| Portion of Wall    |                          |
| exceeding 8 feet   | .08                      |
| below ground level |                          |

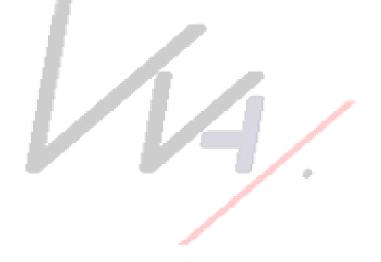
<sup>\*</sup>Italicized numbers in parentheses indicate weight in lb per sq ft.



# TABLE 36-PERIMETER FACTORS FOR ESTIMATING HEAT LOSS THROUGH BASEMENT WALLS AND OUTSIDE STRIP OF BASEMENT FLOOR

(Use only in conjunction with Table 35)

|                   | · · · · · · · · · · · · · · · · · · · |
|-------------------|---------------------------------------|
| Distance of Floor | Perimeter Factor                      |
| From Ground Level | (q)                                   |
| 2 Feet above      | .90                                   |
| At ground level   | .60                                   |
| 2 Feet below      | .75                                   |
| 4 Feet below      | .90                                   |
| 6 Feet below      | 1.05                                  |
| 8 Feet below      | 1.20                                  |


#### Equations:

Heat loss about perimeter, Btu/hr = (perimeter of wall, ft) × (perimeter factor) × (basement-outdoor temp).

#### TABLE 37-GROUND TEMPERATURES

FOR ESTIMATING HEAT LOSS THROUGH BASEMENT FLOORS

| Outdoor Design Temp (F) | -30 | -20 | -10 | 0  | +10 | +20 |
|-------------------------|-----|-----|-----|----|-----|-----|
| Ground Temp (F)         | 40  | 45  | 50  | 55 | 60  | 65  |

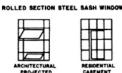




#### ٥- التسريب infiltration

يتم تحديد قيمة التسريب من الجدول ٢٤١، ص٨٩-٩٠ من كتاب carrier ch1 load estimation وذلك هو الجدول التالى:

#### TABLE 41-INFILTRATION THRU WINDOWS AND DOORS-SUMMER\* 7.5 mph Wind Velocity†


TABLE 41a-DOUBLE HUNG WINDOWS‡

|                         | CFM PER SQ FT SASH AREA |                       |            |               |         |            |  |  |  |
|-------------------------|-------------------------|-----------------------|------------|---------------|---------|------------|--|--|--|
| DESCRIPTION             |                         | Small-30 <b>X</b> "72 | "          | Large-54"X96" |         |            |  |  |  |
|                         | No W-Strip              | W-Strip               | Storm Sash | No W-Strip    | W-Strip | Storm Sash |  |  |  |
| Average Wood Sash       | .43                     | .26                   | .22        | .27           | .17     | .14        |  |  |  |
| Poorly Fitted Wood Sash | 1.20                    | .37                   | .60        | .76           | .24     | .38        |  |  |  |
| Metal Sash              | .80                     | .35                   | .40        | .51           | .22     | .25        |  |  |  |

TABLE 41b-CASEMENT TYPE WINDOWS ‡

|                           |                       |     |     | CFM F | ER SQ F | T SASH | AREA |      |     |      |
|---------------------------|-----------------------|-----|-----|-------|---------|--------|------|------|-----|------|
| DESCRIPTION               | Percent Openable Area |     |     |       |         |        |      |      |     |      |
|                           | 0%                    | 25% | 33% | 40%   | 45%     | 50%    | 60%  | 66%  | 75% | 100% |
| Rolled Section-Steel Sash |                       |     |     |       |         |        |      |      |     |      |
| Industrial Pivoted        | .33                   | .72 | -   | .99   | -       | -      | -    | 1.45 | -   | 2.6  |
| Architectural Projected   | -                     | .39 | -   | -     | -       | .55    | .74  | -    | -   | -    |
| Residential               | -                     | -   | .28 | -     | -       | .49    | -    | -    | -   | 6.3  |
| Heavy Projected           | -                     | -   | -   | -     | .23     | -      | -    | .32  | .39 | -    |
| Hollow Metal-Vertically   | .27                   | .58 | -   | .82   | -       | -      | -    | 1.2  | -   | 2.2  |
| Pivoted                   |                       |     |     |       |         |        |      |      |     |      |









REPRESENTATIVE TYPES OF WINDOWS (VIEWED FROM OUTSIDE)





#### TABLE 41-INFILTRATION THRU WINDOWS AND DOORS-SUMMER\* (Contd)

7.5 mph Wind Velocity†

#### Table 41c-DOORS ON ONE OR ADJACENT WALLS, CORNER ENTRANCES

|                                  | CFM PE | R SQ FT AREA** | CFM          |           |  |  |
|----------------------------------|--------|----------------|--------------|-----------|--|--|
| DESCRIPTION                      | No Use | Average Use    | Standir      | ng Open   |  |  |
|                                  |        |                | No Vestibute | Vestibule |  |  |
| Revolving Doors-Normal Operation | .8     | 5.2            | -            | -         |  |  |
| Panels Open                      | -      | -              | 1,200        | 900       |  |  |
| Glass Door-3/4" Crack            | 4.5    | 10.0           | 700          | 500       |  |  |
| Wood Door (3"X7")                | 1.0    | 6.5            | 700          | 500       |  |  |
| Small Factory Door               | .75    | 6.5            | -            | -         |  |  |
| Garage & Shipping Room Door      | 2.0    | 4.5            | -            | -         |  |  |
| Ramp Garage Door                 | 2.0    | 6.75           | -            | -         |  |  |

TABLE 41d-SWINGING DOORS ON OPPOSITE WALLS

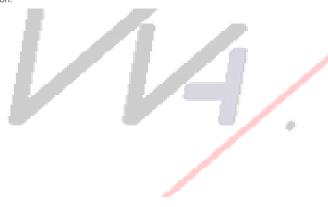

| % Time               | CFM PER PAIR OF DOORS   |             |      |      |        |  |  |  |
|----------------------|-------------------------|-------------|------|------|--------|--|--|--|
| 2 <sup>nd</sup> Door | % Time 1st Door is Open |             |      |      |        |  |  |  |
| is Open              | 10                      | 10 25 50 75 |      |      |        |  |  |  |
| 10                   | 100                     | 250         | 500  | 750  | 1,000  |  |  |  |
| 25                   | 250                     | 625         | 1250 | 1875 | 2,500  |  |  |  |
| 50                   | 500                     | 1250        | 2500 | 3750 | 5,000  |  |  |  |
| 75                   | 750                     | 1875        | 3750 | 5625 | 7,500  |  |  |  |
| 100                  | 1000                    | 2500        | 5000 | 7500 | 10,000 |  |  |  |

TABLE 41e-DOORS

|                          | CFM PER            | CFM PER PERSON IN ROOM PER DOOR |           |  |  |  |  |
|--------------------------|--------------------|---------------------------------|-----------|--|--|--|--|
| APPLICATION              |                    | 36" Swingi                      | ing Door  |  |  |  |  |
|                          | 72" Revolving Door | No Vestibule                    | Vestibule |  |  |  |  |
| Bank                     | 6.5                | 8.0                             | 6.0       |  |  |  |  |
| Barber Shop              | 4.0                | 5.0                             | 3.8       |  |  |  |  |
| Candy and Soda           | 5.5                | 7.0                             | 5.3       |  |  |  |  |
| Cigar Store              | 20.0               | 30.0                            | 22.5      |  |  |  |  |
| Department Store (Small) | 6.5                | 8.0                             | 6.0       |  |  |  |  |
| Dress Shop               | 2.0                | 2.5                             | 1.9       |  |  |  |  |
| Drug Store               | 5.5                | 7.0                             | 5.3       |  |  |  |  |
| Hospital Room            | -                  | 3.5                             | 2.6       |  |  |  |  |
| Lunch Room               | 4.0                | 5.0                             | 3.8       |  |  |  |  |
| Men's Shop               | 2.7                | 3.7                             | 2.8       |  |  |  |  |
| Restaurant               | 2.0                | 2.5                             | 1.9       |  |  |  |  |
| Shoe Store               | 2.7                | 3.5                             | 2.6       |  |  |  |  |

<sup>\*</sup>All values in *Table 41* are based on the wind blowing directly at the window or door. When the wind direction is oblique to the window or door, multiply the above values by 0.60 and use the total window and door area on the windward side(s).

<sup>\*\*</sup> Vestibules may decrease the infiltration as much as 30% when the door usage is light. When door usage is heavy, the vestibule is of little value for reducing infiltration.



لاكثر من ذلك يرجي الرجوع الي المرجع.

<sup>†</sup>Based on a wind velocity of 7.5 mph. For design wind velocities different from the base, multiply the above values by the ratio of velocities. ‡Includes frame leakage where applicable.



### ventilation load حمل التهوية

نحصل عليه من جدول ٥٤، ص٩٦ و هو التالي:

#### **TABLE 45-VENTILATION STANDARDS**

| APPLICATION                                       | SMOKING      | CFM PER           | CFM PER<br>SQ FT OF FLOOR |          |
|---------------------------------------------------|--------------|-------------------|---------------------------|----------|
| 711 2.67 (110.11                                  | omorano      | Recommended       | Minimum*                  | Minimum* |
| Average                                           | Some         | 20                | 15                        | -        |
| Apartment De Luxe                                 | Some         | 30                | 25                        | .33      |
| Banking Space                                     | Occasional   | 10                | 71/2                      | -        |
| Barber Shops                                      | Considerable | 15                | 10                        | -        |
| Beauty Parlors                                    | Occasional   | 10                | 71/2                      | -        |
| Broker's Board Rooms                              | Very Heavy   | 50                | 30                        | -        |
| Cocktail Bars                                     | Heavy        | 30                | 25                        | -        |
| Corridors (Supply or Exhaust)                     | -            | -                 | -                         | .25      |
| Department Stores                                 | None         | 71/2              | 5                         | .05      |
| Directors Rooms                                   | Extreme      | 50                | 30                        | -        |
| Drug Stores†                                      | Considerable | 10                | 71/2                      | -        |
| Factories‡§                                       | None         | 10                | 71/2                      | .10      |
| Five and Ten Cent Stores                          | None         | 7 <sup>1</sup> /2 | 5                         | -        |
| Funeral Parlors                                   | None         | 10                | 71/2                      | -        |
| Garage‡                                           | -            | -                 | -                         | 1.0      |
| Operating Rooms‡**                                | None         | -                 | -                         | 2.0      |
| Hospitals → Private Rooms                         | None         | 30                | 25                        | .33      |
| Wards                                             | None         | 20                | 15                        | -        |
| Hotel Roms                                        | Heavy        | 30                | 25                        | .33      |
| Restaurant†                                       | -            | -                 | -                         | 4.0      |
| Kitchen Residence                                 | -            | -                 | -                         | 2.0      |
| Laboratories†                                     | Some         | 20                | 15                        | -        |
| Meeting Rooms                                     | Very Heavy   | 50                | 30                        | 1.25     |
| General                                           | Some         | 15                | 10                        | -        |
| Office                                            | None         | 25                | 15                        | .25      |
| Private                                           | Considerable | 30                | 25                        | .25      |
| Cafeteria†                                        | Considerable | 12                | 10                        | -        |
| Restaurant \(\mathbb{L}\) Dining Room \(\dagger\) | Considerable | 15                | 12                        | -        |
| School Rooms‡                                     | None         | -                 |                           | -        |
| Shop Retail                                       | None         | 10                | 71/2                      | -        |
| Theater‡                                          | None         | 71/2              | 5                         | -        |
| Theater                                           | Some         | 15                | 10                        | -        |
| Toilets‡ (Exhaust)                                | -            | -                 | -                         | 2.0      |

 $<sup>^{\</sup>star}$ When minimum is used, use the larger.

§Use these values unless governed by other sources of contamination or by local codes.

\*\*All outdoor air is recommended to overcome explosion hazard of anesthetics.

 $H_S = 1.08 \times CFM \times \Delta T$ 

وتحدد قيمة الحرارة المفقودة لكل من التهوية والتسريب من العلاقة التالية:

<sup>‡</sup>See local codes which may govern.

<sup>†</sup>May be governed by exhaust..



## ۱nternal heat gain الاحمال الداخلية ٧-

- الناس people:

جدول ٤٨، ص ١٠٠

#### TABLE 48-HEAT GAIN FROM PEOPLE

|                          |                                    |                 | 17                            | (DLL 40-         | IILA I       | JAIN FRO         | JIVI FE      | OFLE             |               |                 |               |                  |               |
|--------------------------|------------------------------------|-----------------|-------------------------------|------------------|--------------|------------------|--------------|------------------|---------------|-----------------|---------------|------------------|---------------|
| DEGREE OF                | TYPICAL                            | Met-            | Aver-<br>age<br>Ad-<br>justed |                  |              |                  | ROOM         | DRY-BULE         | RTEMPE        | RATURE          |               |                  |               |
| ACTIVITY                 | APPLICATION                        | Rate<br>(Adult  | Met-<br>abolic                | 82               |              | 80               | F            | 78               | F             | 75              |               | 70               |               |
|                          |                                    | Male)<br>Btu/hr | Rate*<br>Btu/hr               | Btu/<br>Sensible | hr<br>Latent | Btu/<br>Sensible | hr<br>Latent | Btu.<br>Sensible | /hr<br>Latent | But<br>Sensible | /hr<br>Latent | Btu.<br>Sensible | /hr<br>Latent |
| Seated at rest           | Theater,<br>Grade School           | 390             | 350                           | 175              | 175          | 195              | 155          | 210              | 140           | 230             | 120           | 260              | 90            |
| Seated, very light work  | High School                        | 450             | 400                           | 180              | 220          | 195              | 205          | 215              | 185           | 240             | 160           | 275              | 125           |
| Office worker            | Offices, Hotels,<br>Apts., College | 475             |                               |                  |              |                  |              |                  |               |                 |               |                  |               |
| Standing, walking slowly | Dept., Retail, or<br>Variety Store | 550             | 450                           | 180              | 270          | 200              | 250          | 215              | 235           | 245             | 205           | 285              | 165           |
| Walking, seated          | Drug Store                         | 550             | 500                           | 180              | 320          | 200              | 300          | 220              | 280           | 255             | 245           | 290              | 210           |
| Standing, walking slowly | Bank                               | 550             |                               |                  |              |                  |              |                  |               |                 |               |                  |               |
| Sedentary work           | Restaurant†                        | 500             | 550                           | 190              | 360          | 220              | 330          | 240              | 310           | 280             | 270           | 320              | 230           |
| Light bench work         | Factory, light work                | 800             | 750                           | 190              | 560          | 220              | 530          | 245              | 505           | 295             | 455           | 365              | 385           |
| Moderate dancing         | Dance Hall                         | 900             | 850                           | 220              | 630          | 245              | 605          | 275              | 575           | 325             | 525           | 400              | 450           |
| Walking, 3 mph           | Factory, fairly<br>heavy work      | 1000            | 1000                          | 270              | 730          | 300              | 700          | 330              | 670           | 380             | 620           | 460              | 540           |
| Heavy work               | Bowling Alley‡<br>Factory          | 1500            | 1450                          | 450              | 1000         | 465              | 985          | 485              | 965           | 525             | 925           | 605              | 845           |

<sup>\*</sup>Adjusted Metabolic Rate is the metabolic rate to be applied to a mixed group of people with a typical percent composition based on the following factors:

Metabolic rate, adult female=Metabolic rate, adult male×0.85
Metabolic rate, children =Metabolic rate, adult male×0.75

الإضاءة lights

جدول ٤٩، ص ١٠٠

TABLE 49 - HEAT GAIN FROM LIGHT

| TYPE         | HEAT GAIN* Btu/hr            |
|--------------|------------------------------|
| Fluorescent  | Total Light Watts×1.25 +×3.4 |
| Incandescent | Total Light Watts×3.4        |

<sup>†</sup>Restaurant-Values for this application include 60 Bu per hr for food per Individual (30 Btu sensible and 30 Btu latent heat per hr).

<sup>‡</sup>Bowling-Assume one person per alley actually bowling and all others sitting, metabolic rate 400 Btu per hr; or standing, 550 Btu per hr.



## - الاجهزة appliances

جداول ٥٠-٥١-٥٢، ص ١٠٠-١٠١-١٠١

#### TABLE 50-HEAT GAIN FROM RESTAURANT APPLIANCES

NOT HOODED\*-ELECTRIC

|                           | OVERALL         | TYPE    |                       | MFR    | MAIN-<br>TAIN- |          | OM HEAT G |        |
|---------------------------|-----------------|---------|-----------------------|--------|----------------|----------|-----------|--------|
| APPLIANCE                 | DIMENSIONS      | OF      |                       | MAX    | ING            | Sensible | Latent    | Total  |
| ALLIANOE                  | Less Legs and   | CON-    | MISCELLANEOUS         | RATING | RATE           | Heat     | Heat      | Heat   |
|                           | Handles (In.)   | TROL    | DATA                  | Btu/hr | Btu/hr         | Btu/hr   | Btu/hr    | Btu/hr |
| Coffee Brewer-1/2 gal     | Tidifalos (III) | Man.    | D/ (I/ (              | 2240   | 306            | 900      | 220       | 1120   |
| Warmer-1/2 gal            |                 | Man.    |                       | 306    | 306            | 230      | 90        | 320    |
| 4 Coffee Brewing Units    |                 | 1110111 | Water heater—2000     |        |                |          |           |        |
| with 41/2 gal Tank        | 20×30×26 H      | Auto.   | watts                 | 16900  |                | 4800     | 1200      | 6000   |
| 9                         |                 |         | Brewers-2960 watts    |        |                |          |           |        |
| Coffee Urn3 gal           | 15 DiaX34H      | Man.    | Black finish          | 11900  | 3000           | 2600     | 1700      | 4300   |
| 3 gal                     | 12X23 oval X21H | Auto.   | Nickel plated         | 15300  | 2600           | 2200     | 1500      | 3700   |
| 5 gal                     | 18 Dia X37H     | Auto.   | Nickel plated         | 17000  | 3600           | 3400     | 2300      | 5700   |
| Doughnut Machine          | 22×22×57H       | Auto.   | Exhaust system to     |        |                |          |           |        |
|                           |                 |         | outdoors-1/2 hp motor | 16000  |                | 5000     |           | 5000   |
| Egg Boiler                | 10×13×25H       | Man.    | Med. ht550 watts      |        |                |          |           |        |
|                           |                 |         | Low ht-275 watts      | 3740   |                | 1200     | 800       | 2000   |
| Food Warmer with Plate    |                 |         | Insulated, separate   |        |                |          |           |        |
| Warmer, per sq ft top     |                 | Auto.   | heating unit for each | 1350   | 500            | 350      | 350       | 700    |
| surface                   |                 |         | pot. Plate warmer in  |        |                |          |           |        |
|                           |                 |         | base                  |        |                |          |           |        |
| Food Warmer without       |                 |         |                       |        |                |          |           |        |
| Plate Warmer, per sq ft   |                 | Auto.   | Ditto, without plate  | 1020   | 400            | 200      | 350       | 550    |
| top surface               |                 |         | warmer                |        |                |          |           |        |
| Fry Kettle111/2 lb fat    | 12 DiaX14H      | Auto.   |                       | 8840   | 1100           | 1600     | 2400      | 4000   |
| Fry Kettle—25 lb fal      | 16×18×12H       | Auto.   | Frying area 12"X14"   | 23800  | 2000           | 3800     | 5700      | 9500   |
| Griddle, Frying           | 18×18×8H        | Auto.   | Frying top 18"X14"    | 8000   | 2800           | 3100     | 1700      | 4800   |
| Grille, Meat              | 14X14X10H       | Auto.   | Cooking area 10"X12"  | 10200  | 1900           | 3900     | 2100      | 6000   |
| Grille, Sandwich          | 13×14×10H       | Auto.   | Grill area 12"X12"    | 5600   | 1900           | 2700     | 700       | 3400   |
| Roll Warmer               | 26×17×13H       | Auto.   | One drawer            | 1500   | 400            | 1100     | 100       | 1200   |
| Toaster, Continuous       | 15×15×28H       | Auto.   | 2 Slices wide         |        |                |          |           |        |
|                           |                 |         | 360 slices/hr         | 7500   | 5000           | 5100     | 1300      | 6400   |
| Toaster, Continuous       | 20×15×28H       | Auto.   | 4 Slices wide         |        |                |          |           |        |
|                           |                 |         | 720 slices/hr         | 10200  | 6000           | 6100     | 2600      | 8700   |
| Toaster, Pop-Up           | 6×11×9H         | Auto.   | 2 Slices              | 4150   | 1000           | 2450     | 450       | 2900   |
| Waffle Iron               | 12X13X10H       | Auto.   | One waffle 7" dia     | 2480   | 600            | 1100     | 750       | 1850   |
| Waffle Iron for Ice Cream | 14×13×10H       | Auto.   | 12 Cakes,             |        |                |          |           |        |
| Sandwich                  |                 |         | each 2 1/2"X3 3/4"    | 7500   | 1500           | 3100     | 2100      | 5200   |

<sup>\*</sup>If properly designed positive exhaust hood is used, multiply recommended value by .50.





## TABLE 51-HEAT GAIN FROM RESTAURANT APPLIANCES NOT HOODED\*--GAS BURNING AND STEAM HEATED

|                         |                 |       |                    |        | MAIN-  | REC      | OM HEAT G | SAIN   |
|-------------------------|-----------------|-------|--------------------|--------|--------|----------|-----------|--------|
|                         | OVERALL         | TYPE  |                    | MFR    | TAIN-  | F        | OR AVG US | E      |
| APPLIANCE               | DIMENSIONS      | OF    |                    | MAX    | ING    | Sensible | Latent    | Total  |
|                         | Less Legs and   | CON-  | MISCELLANEOUS      | RATING | RATE   | Heat     | Heat      | Heat   |
|                         | Handles (In.)   | TROL  | DATA               | Btu/hr | Btu/hr | Btu/hr   | Btu/hr    | Btu/hr |
| GAS BURNING             |                 |       |                    |        |        |          |           |        |
|                         |                 |       |                    |        |        |          |           |        |
| Coffee Brewer-1/2 gal   |                 | Man.  | Combination brewer | 3400   |        | 1350     | 350       | 1700   |
| Warmer-1/2 gal          |                 | Man.  | and warmer         | 500    | 500    | 400      | 100       | 500    |
| Coffee Brewing Units    |                 |       | 4 Brewers and 41/2 |        |        |          |           |        |
| with Tank               | 19×30×26 H      |       | gal tank           |        |        | 7200     | 1800      | 9000   |
| Coffee Urn-3 gal        | 15" DiaX34H     | Auto. | Black finish       | 3200   | 3900   | 2900     | 2900      | 5800   |
| Coffee Urn3 gal         | 12X23 oval X21H | Auto. | Nickel plated      |        | 3400   | 2500     | 2500      | 5000   |
| Coffee Urn5 gal         | 18 Dia X37H     | Auto. | Nickel plated      |        | 4700   | 3900     | 3900      | 7800   |
| Food Warmer, Values per |                 |       |                    |        |        |          |           |        |
| sq ft top surface       |                 | Man.  | Water bath type    | 2000   | 900    | 850      | 450       | 1300   |
| Fry Kettle—15 lb fat    | 12X20X18H       | Auto. | Frying area 10X10  | 14250  | 3000   | 4200     | 2800      | 7000   |
| Fry Kettle—28 lb fal    | 15×35×11H       |       | Frying area 11X16  | 24000  | 4500   | 7200     | 4800      | 12000  |
| Grill—Broil-O-Grill     | 22X14X17H       |       | Insulated          |        |        |          |           |        |
| Top Burner              | (1.4 sq ft)     | Man.  | 22,000 Btu/hr      | 37000  |        | 14400    | 3600      | 18000  |
| Bottom Burner           | grill surface)  |       | 15,000 Btu/hr      |        |        |          |           |        |
| Stoves, Short Order     |                 | Man.  | Ring type burners  | 14000  |        | 4200     | 4200      | 8400   |
| Open Top. Values        |                 |       | 12000 to 22000     |        |        |          |           |        |
| per sq ft top surface   |                 |       | Btu/ea             |        |        |          |           |        |
| Stoves, Short Order     |                 | Man.  | Ring type burners  | 11000  |        | 3300     | 3300      | 6600   |
| Closed Top. Values      |                 |       | 10000 to 12000     |        |        |          |           |        |
| per sq ft top surface   |                 |       | Btu/ea             |        |        |          |           |        |
| Toaster, Continuous     | 15×15×28H       | Auto. | 2 Slices wide      | 40000  | 40000  | 7700     | 0000      | 44000  |
|                         |                 |       | 360 slices/hr      | 12000  | 10000  | 7700     | 3300      | 11000  |
|                         |                 |       | STEAM HEATED       |        |        |          |           |        |
| Coffee Urn3 gal         | 15 DiaX34H      | Auto. | Black finish       |        |        | 2900     | 1900      | 4800   |
| 3 gal                   | 12X23 ovalX21H  | Auto. | Nickel plated      |        |        | 2400     | 1600      | 4000   |
| 5 gal                   | 18 DiaX37H      | Auto. | Nickel plated      |        |        | 3400     | 2300      | 5700   |
| Coffee Urn3 gal         | 15 DiaX34H      | Man.  | Black finish       |        |        | 3100     | 3100      | 6200   |
| 3 gal                   | 12X23 ovalX21H  | Man.  | Nickel plated      |        |        | 2600     | 2600      | 5200   |
| 5 gal                   | 18 DiaX37H      | Man.  | Nickel plated      |        |        | 3700     | 3700      | 7400   |
| Food Warmer, per sq ft  |                 |       |                    |        |        |          |           |        |
| top surface             |                 | Auto. |                    |        |        | 400      | 500       | 900    |
| Food Warmer, per sq ft  |                 |       |                    |        |        | 455      | 4455      | 4500   |
| top surface             |                 | Man.  |                    |        |        | 450      | 1150      | 1500   |

<sup>\*</sup>If properly designed positive exhaust hood is used, multiply recommended value by. 50.





## TABLE 52-HEAT GAIN FROM MISCELLANEOUS APPLIANCES NOT HOODED\*

|                                   | TYPE          |                                      | MFR                     | RECOM H                    | EAT GAIN FOR             | R AVG USE               |
|-----------------------------------|---------------|--------------------------------------|-------------------------|----------------------------|--------------------------|-------------------------|
| APPLIANCE                         | OF<br>CONTROL | MISCELLANEOUS DATA                   | MAX<br>RATING<br>Btu/hr | Sensible<br>Heat<br>Btu/hr | Latent<br>Heat<br>Btu/hr | Total<br>Heat<br>Btu/hr |
|                                   |               | GAS BURNING                          |                         |                            |                          |                         |
| Hair Dryer, Blower Type           |               | Fan 165 watts,                       |                         |                            |                          |                         |
| 15 amps, 115 volts AC             | Man.          | (low 915 watts, high 1580 watts)     | 5,370                   | 2,300                      | 400                      | 2,700                   |
| Hair Dryer, helmet type,          |               | Fan 80 watts,                        |                         |                            |                          |                         |
| 6.5 amps, 115 volts AC            | Man.          | (low 300 watts, high 710 watts)      | 2,400                   | 1,870                      | 330                      | 2,200                   |
| Permanent Wave Machine            |               | 60 heaters at 25 watts each,         |                         |                            |                          |                         |
|                                   | Man.          | 36 in normal use                     | 5,100                   | 850                        | 150                      | 1,000                   |
| Pressurized Instrument            |               | 44104441040011                       |                         | 40.000                     | 00.400                   | 05.400                  |
| Washer and Sterilizer             |               | 11"X11"X22"                          |                         | 12,000                     | 23,460                   | 35,460                  |
| Neon Sign, per                    |               | 1/2" outside dia<br>3/8" outside dia |                         | 30                         |                          | 30                      |
| Linear ft tube                    |               | 18"×30"×72"                          |                         | 1,200                      | 2.000                    | 4,200                   |
| Solution and/or<br>Blanket Warmer |               | 18"X24"X72"                          |                         | 1,200                      | 3,000<br>2,400           | 3,450                   |
| Sterilizer                        | Auto.         | 16"X24"                              |                         | 9,600                      | 8,700                    | 18,300                  |
| Dressing                          | Auto.         | 20"X36"                              |                         | 23,300                     | 24,000                   | 47,300                  |
| Sterilizer, Rectangular Bulk      | Auto.         | 24"X24"X36"                          |                         | 34,800                     | 21,000                   | 55.800                  |
| Sterilizer, Rectarigular Bulk     | Auto.         | 24"X24"X48"                          |                         | 41,700                     | 27,000                   | 68,700                  |
|                                   | Auto.         | 24"×36"×48"                          |                         | 56,200                     | 36,000                   | 92,200                  |
|                                   | Auto.         | 24"×36"×60"                          |                         | 68,500                     | 45,000                   | 113,500                 |
|                                   | Auto.         | 36"×42"×84"                          |                         | 161,700                    | 97,500                   | 259,200                 |
|                                   | Auto.         | 42"×48"×96"                          |                         | 184,000                    | 140,000                  | 324,000                 |
|                                   | Auto.         | 48"×54"×96"                          |                         | 210,000                    | 180,000                  | 390,000                 |
| Sterilizer, Water                 | Auto.         | 10 gallon                            |                         | 4,100                      | 16,500                   | 20,600                  |
|                                   | Auto.         | 15 gallon                            |                         | 6,100                      | 24,600                   | 30,700                  |
| Sterilizer, Instrument            | Auto.         | 6"X8"X17"                            |                         | 2,700                      | 2,400                    | 5,100                   |
|                                   | Auto.         | 9"×10"×20"                           |                         | 5,100                      | 3,900                    | 9,000                   |
|                                   | Auto.         | 10"×12"×22"                          |                         | 8,100                      | 5,900                    | 14,000                  |
|                                   | Auto.         | 10"X12"X36"                          |                         | 10,200                     | 9,400                    | 19,600                  |
|                                   | Auto.         | 12"X16"X24"                          |                         | 9,200                      | 8,600                    | 17,800                  |
| Sterilizer, Utensil               | Auto.         | 16"X16"X24"                          |                         | 10,600                     | 20,400                   | 31,000                  |
|                                   | Auto.         | 20"×20"×24"                          |                         | 12,300                     | 25,600                   | 37,900                  |
| Sterilizer, Hot Air               | Auto.         | Model 120 Amer Sterilizer Co         |                         | 2,000                      | 4,200                    | 6,200                   |
|                                   | Auto.         | Model 100 Amer Sterilizer Co         |                         | 1,200                      | 2,100                    | 3,300                   |
| Water Still                       |               | 5 gal/hour                           |                         | 1,700                      | 2,700                    | 4,400                   |
| X-ray Machines, for               |               | Physicians and Dentists office       |                         | None                       | None                     | None                    |
| making pictures                   |               |                                      |                         |                            |                          |                         |
| X-ray Machines,                   |               | Heat load may be appreciable         |                         |                            |                          |                         |
| for therapy                       |               | write mfg for data                   |                         |                            |                          |                         |
|                                   |               | GAS BURNING                          |                         |                            |                          |                         |
| Burner, Laboratory                |               | 7/16 dia barrel with                 |                         |                            |                          |                         |
| small bunsen                      | Man.          | manufactured gas                     | 1,800                   | 960                        | 240                      | 1,200                   |
| small bunsen                      | Man.          | 7/16 dia with nat gas                | 3,000                   | 1,680                      | 420                      | 2,100                   |
| fishtail burner                   | Man.          | 7/16 dia with not gas                | 3,500                   | 1,960                      | 490                      | 2,450                   |
| fishtail burner                   | Man.          | 7/16 dia bar with not gas            | 5,500                   | 3,080                      | 770                      | 3,850                   |
| large bunsen                      | Man.          | 1 ½ dia mouth, adj orifice           | 6,000                   | 3,350                      | 850                      | 4,200                   |
| Cigar Lighter                     | Man.          | Continuous flame type                | 2,500                   | 900                        | 100                      | 1,000                   |
| Hair Dryer System                 |               | Consists of heater & fan which       |                         |                            |                          |                         |
| 5 helmets                         | Auto.         | blows hot air thru duct system to    | 33,000                  | 15,000                     | 4,000                    | 19,000                  |
| 10 helmets                        | Auto.         | helmets                              |                         | 21,000                     | 6,000                    | 27,000                  |

<sup>\*</sup>If properly designed positive exhaust hood is used, multiply recommended value by. 50.



### - المواتير الكهربية

جدول ۵۳، ص ۱۰۶

## TABLE 53-HEAT GAIN FROM ELECTRIC MOTORS CONTINUOUS OPERATION\*

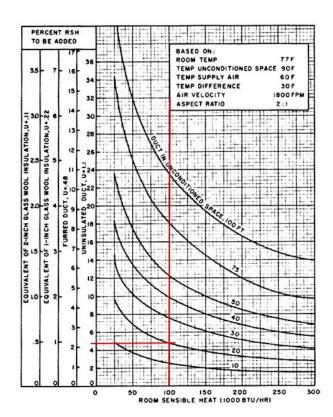
|                                    | CONTINUOUS OPERATION |                                       |                    |                    |  |  |  |  |  |
|------------------------------------|----------------------|---------------------------------------|--------------------|--------------------|--|--|--|--|--|
|                                    |                      | LOCATION OF EQUIPMENT WITH RESPECT TO |                    |                    |  |  |  |  |  |
|                                    |                      |                                       | IONED SPACE OR AIR |                    |  |  |  |  |  |
| NAMEPLATE†                         | FULL LOAD            | Motor In-                             | Motor Out-         | Motor In-          |  |  |  |  |  |
| OR                                 | MOTOR                | Driven Machine in                     | Driven Machine in  | Driven Machine out |  |  |  |  |  |
| BRAKE                              | EFFICIENCY           | HPX2545                               | HPX2545            | HPX2545 (1-% Eff)  |  |  |  |  |  |
| HORSEPOWER                         | PERCENT              | % Eff                                 |                    | % Eff              |  |  |  |  |  |
|                                    |                      |                                       | Btu per Hour       |                    |  |  |  |  |  |
| 1/20                               | 40                   | 320                                   | 130                | 190                |  |  |  |  |  |
| 1/12                               | 49                   | 430                                   | 210                | 220                |  |  |  |  |  |
| 1/8                                | 55                   | 580                                   | 320                | 260                |  |  |  |  |  |
| 1/6                                | 60                   | 710                                   | 430                | 280                |  |  |  |  |  |
| 1/4                                | 64                   | 1,000                                 | 640                | 360                |  |  |  |  |  |
| 1/3                                | 66                   | 1,290                                 | 850                | 440                |  |  |  |  |  |
| 1/3                                | 70                   | 1,820                                 | 1,280              | 540                |  |  |  |  |  |
| 3/4                                | 72                   | 2,680                                 | 1,930              | 750                |  |  |  |  |  |
| 1                                  | 79                   | 3,220                                 | 2,540              | 680                |  |  |  |  |  |
| 1 1/2                              | 80                   | 4,770                                 | 3,820              | 950                |  |  |  |  |  |
| 2                                  | 80                   | 6,380                                 | 5,100              | 1,280              |  |  |  |  |  |
| 3                                  | 81                   | 9,450                                 | 7,650              | 1,800              |  |  |  |  |  |
| 5<br>7 <sup>1</sup> / <sub>2</sub> | 82                   | 15,600                                | 12,800             | 2,800              |  |  |  |  |  |
| 7 1/2                              | 85                   | 22,500                                | 19,100             | 3,400              |  |  |  |  |  |
| 10                                 | 85                   | 30,000                                | 25,500             | 4,500              |  |  |  |  |  |
| 15                                 | 86                   | 44,500                                | 38,200             | 6,300              |  |  |  |  |  |
| 20                                 | 87                   | 58,500                                | 51,000             | 7,500              |  |  |  |  |  |
| 25                                 | 88                   | 72,400                                | 63,600             | 8,800              |  |  |  |  |  |
| 30                                 | 89                   | 85,800                                | 76,400             | 9,400              |  |  |  |  |  |
| 40                                 | 89                   | 115,000                               | 102,000            | 13,000             |  |  |  |  |  |
| 50                                 | 89                   | 143,000                               | 127,000            | 16,000             |  |  |  |  |  |
| 60                                 | 89                   | 172,000                               | 153,000            | 19,000             |  |  |  |  |  |
| 75                                 | 90                   | 212,000                               | 191,000            | 21,000             |  |  |  |  |  |
| 100                                | 90                   | 284,000                               | 255,000            | 29,000             |  |  |  |  |  |
| 125                                | 90                   | 354,000                               | 318,000            | 36,000             |  |  |  |  |  |
| 150                                | 91                   | 420,000                               | 382,000            | 38,000             |  |  |  |  |  |
| 200                                | 91                   | 560,000                               | 510,000            | 50,000             |  |  |  |  |  |
| 250                                | 91                   | 700,000                               | 636,000            | 64,000             |  |  |  |  |  |
| AF 1.1 111 1                       |                      |                                       |                    |                    |  |  |  |  |  |

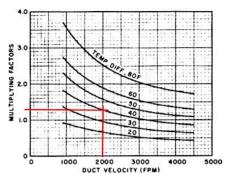
<sup>\*</sup>For intermittent operation, an appropriate usage factor should be used, preferably measured.

#### Maximum Service Factors

| Horsepower   | /20 - /8 | /6 - /3 | /2 - 3/4 | 1    | 1 /2 - 2 | 3 - 250 |
|--------------|----------|---------|----------|------|----------|---------|
| AC Open Type | 1.4      | 1.35    | 1.25     | 1.25 | 1.20     | 1.15    |
| DC Open Type |          |         |          | 1.15 | 1.15     | 1.15    |

<sup>†</sup>If motors are overloaded and amount of overloading is unknown, multiply the above heat gain factors by the following maximum service factors:





### - الممرات الهوائية duct heat gain

خریطة ۳، ص ۱۰۹

#### CHART 3- HEAT GAIN TO SUPPLY DUCT

Percent of Room Sensible Heat





### MULTIPLYING FACTORS FOR OTHER ROOM TEMPERATURES

| Room Temp | <b>Multiplying Factor</b> |
|-----------|---------------------------|
| 75        | 1.10                      |
| 76        | 1.06                      |
| 77        | 1.00                      |
| 78        | 0.97                      |
| 79        | 0.94                      |
| 80        | 0.92                      |

Q = UPI × 
$$\frac{2.165 \times AV}{(2.165 \times AV) + UPI}$$
  $(t_3-t_1)$ 

where:

Q = duct heat gain (Btu/hr)

U = duct heat transmission factor (Btu/hr-sq ft-F)

P = rectangular duct perimeter (ft)

1 = duct length (ft)

A = duct area (sq ft)

V = duct velocity (fpm)

t<sub>1</sub> = temperature of supply air entering duct (F)

t3 = temperature of surrounding air (F)

Based on formulas in ASHRAE Guide 1963, p. 184, 185.



#### ٨- الحرارة المخزنة

الحرارة الساقطة من الشمس علي المبني هي حرارة لحظية instantaneous ولكن الحمل الفعلي لجهاز التكييف المطلوب نزعة من الغرفة يكون الفرق بين تلك الحرارة اللحظية والحرارة المخزنة storage في جدران ومكونات المبني او الغرفة، ويعتمد ذلك علي ما يسمي بالسعة الحرارية للمبني وهي تساوي وزن المبني مقسوما علي الحرارة النوعية للمبني تكون غالبا (btu/hr.f •, ۲) وسبق ان اشرنا الي كيفية الحصول علي وزن كل مكون من مكونات الغرفة بالرجوع لجدول ٢١-٣٣، وكما ذكر ايضا بنفس البند يستخدم مصطلح وزن المبني للدخول الي الجداول المختلفة لتعيين القيم المطلوبة وهنا نستخدم ذلك العنصر للدخول الي جداول الي جداول الي جداول ٧-١٢، ص ٣١ والتالي مثال عليه:

# TABLE 7-STORAGE LOAD FACTORS, SOLAR HEAT GAIN THRU GLASS WITH INTERNAL SHADE\* 24 Hour Operation, Constant Space Temperature†

| EVECULE     | WEIGHT§           |     |     |     |     |     |     |     |     |     |     | S   | UN  | TII | ИE  |     |     |     |     |     |     |     |     |     |     |             |
|-------------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| (North Lat) | (lb per sq        |     |     |     | ΑМ  |     |     |     |     |     |     |     |     | Ρ   | М   |     |     |     |     |     |     |     | A۱  | Λ   |     | EXPOSURE    |
| (NOTH Lat)  | ft of floor area) | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 1   | 2   | 3   | 4   | 5   | (South Lat) |
|             | 150 & over        | .47 | .58 | .54 | .42 | .27 | .21 | .20 | .19 | .18 | .17 | .16 | .14 | .12 | .09 | .08 | .07 | .06 | .06 | .05 | .05 | .04 | .04 | .04 | .03 |             |
| Northeast   | 100               | .48 | .60 | .57 | .46 | .30 | .24 | .20 | .19 | .17 | .16 | .15 | .13 | .11 | .08 | .07 | .06 | .05 | .05 | .04 | .04 | .03 | .03 | .02 | .02 | Southeast   |
|             | 30                | .55 | .76 | .73 | .58 | .36 | .24 | .19 | .17 | .15 | .13 | .12 | .11 | .07 | .04 | .02 | .02 | .01 | .01 | 0   | 0   | 0   | 0   | 0   | 0   |             |
|             | 150 & over        | .39 | .56 | .62 | .59 | .49 | .33 | .23 | .21 | .20 | .18 | .17 | .15 | .12 | .10 | .09 | .08 | .08 | .07 | .06 | .05 | .05 | .05 | .04 | .04 |             |
| East        | 100               | .40 | .58 | .65 | .63 | .52 | .35 | .24 | .22 | .20 | .18 | .16 | .14 | .12 | .09 | .08 | .07 | .06 | .05 | .05 | .04 | .04 | .03 | .03 | .02 | East        |
|             | 30                | .46 | .70 | .80 | .79 | .64 | .42 | .25 | .19 | .16 | .14 | .11 | .09 | .07 | .04 | .02 | .02 | .01 | .01 | 0   | 0   | 0   | 0   | 0   | 0   |             |
|             | 150 & over        | .04 | .28 | .47 | .59 | .64 | .62 | .53 | .41 | .27 | .24 | .21 | .19 | .16 | .14 | .12 | .11 | .10 | .09 | .08 | .07 | .06 | .06 | .05 | .05 |             |
| Southeast   | 100               | .03 | .28 | .47 | .61 | .67 | .65 | .57 | .44 | .29 | .24 | .21 | .18 | .15 | .12 | .10 | .09 | .08 | .07 | .06 | .05 | .05 | .04 | .04 | .03 | Northeast   |
|             | 30                | 0   | .30 | .57 | .75 | .84 | .81 | .69 | .50 | .30 | .20 | .17 | .13 | .09 | .05 | .04 | .03 | .02 | .01 | 0   | 0   | 0   | 0   | 0   | 0   |             |
|             | 150 & over        | .06 | .06 | .23 | .38 | .51 | .60 | .66 | .67 | .64 | .59 | .42 | .24 | .22 | .19 | .17 | .15 | .13 | .12 | .11 | .10 | .09 | .08 | .07 | .07 |             |
| South       | 100               | .04 | .04 | .22 | .38 | .52 | .63 | .70 | .71 | .69 | .59 | .45 | .26 | .22 | .18 | .16 | .13 | .12 | .10 | .09 | .08 | .07 | .06 | .06 | .05 | North       |
|             | 30                | .10 | .21 | .43 | .63 | .77 | .86 | .88 | .82 | .56 | .50 | .24 | .16 | .11 | .08 | .05 | .04 | .02 | .02 | .01 | .01 | 0   | 0   | 0   | 0   |             |
|             | 150 & over        | .08 | .08 | .09 | .10 | .11 | .24 | .39 | .53 | .63 | .66 | .61 | .47 | .23 | .19 | .18 | .16 | .14 | .13 | .11 | .10 | .09 | .08 | .08 | .07 |             |
| Southwest   | 100               | .07 | .08 | .08 | .08 | .10 | .24 | .40 | .55 | .66 | .70 | .64 | .50 | .26 | .20 | .17 | .15 | .13 | .11 | .10 | .09 | .08 | .07 | .06 | .05 | Northwest   |
|             | 30                | .03 | .04 | .06 | .07 | .09 | .23 | .47 | .67 | .81 | .86 | .79 | .60 | .26 | .17 | .12 | .08 | .05 | .04 | .03 | .02 | .01 | .01 | 0   | 0   |             |
|             | 150 & over        | .08 | .09 | .09 | .10 | .10 | .10 | .10 | .18 | .36 | .52 | .63 | .65 | .55 | .22 | .19 | .17 | .15 | .14 | .12 | .11 | .10 | .09 | .08 | .07 |             |
| West        | 100               | .07 | .08 | .08 | .09 | .09 | .09 | .09 | .18 | .36 | .54 | .66 | .68 | .60 | .25 | .20 | .17 | .15 | .13 | .11 | .10 | .08 | .07 | .06 | .05 | West        |
|             | 30                | .03 | .04 | .06 | .07 | .08 | .08 | .08 | .19 | .42 | .65 | .81 | .85 | .74 | .30 | .19 | .13 | .09 | .06 | .05 | .03 | .02 | .02 | .01 | 0   |             |
|             | 150 & over        | .08 | .09 | .10 | .10 | .10 | .10 | .10 | .10 | .16 | .33 | .49 | .61 | .60 | .19 | .17 | .15 | .13 | .12 | .10 | .09 | .08 | .08 | .07 | .06 |             |
| Northwest   | 100               | .07 | .08 | .09 | .09 | .10 | .10 | .10 | .10 | .16 | .34 | .52 | .65 | .64 | .23 | .18 | .15 | .12 | .11 | .09 | .08 | .07 | .06 | .06 | .05 | Southwest   |
|             | 30                | .03 | .05 | .07 | .08 | .09 | .09 | .10 | .10 | .17 | .39 | .63 | .80 | .79 | .28 | .18 | .12 | .09 | .06 | .04 | .03 | .02 | .02 | .01 | 0   |             |
| North       | 150 & over        | .08 | .37 | .67 | .71 | .74 | .76 | .79 | .81 | .83 | .84 | .86 | .87 | .88 | .29 | .26 | .23 | .20 | .19 | .17 | 15  | .14 | .12 | .11 | .10 | South       |
| and         | 100               | .06 | .31 | .67 | .72 | .76 | .79 | .81 | .83 | .85 | .87 | .88 | .90 | .91 | .30 | .26 | .22 | .19 | .16 | .15 | .13 | .12 | .10 | .09 | .08 | and         |
| Shade       | 30                | 0   | .25 | .74 | .83 | .88 | .91 | .94 | .96 | .96 | .98 | .98 | .99 | .99 | .26 | .17 | .12 | .08 | .05 | .04 | .03 | .02 | .01 | .01 | .01 | Shade       |

Equation: Cooling Load, Btu/hr = [Peak solar heat gain, Btu/(hr) (sq ft), (Table 6)]

- X [Window area, sq ft]
- X [Shade factor, Haze factor, etc., (Chapter 4)]
- X [Storage factor, (above Table at desired time)]



### يوضح الشكل التالى منحنى الحرارة اللحظية ومنحنى الحرارة الحقيقية

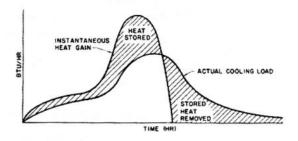



FIG. 3-ACTUAL COOLING LOAD, SOLAR HEAT GAIN, WEST EXPOSURE, AVERAGE CONSTRUCTION

#### ملاحظات هامة:

- يستخدم العامل السابق بان يضرب في الحمل الحراري الشمسي الواقع على الشبابيك او الحمل الحراري الخاص بالناس او الاجهزة او الإضاءة وذلك كما موضح بالمرجع وذلك لنحصل على القيمة الحقيقية الفعلية للحمل المطلوب نزعه.
- عند الحصول علي القيمة الخاصة لوزن ال partition نقسم علي ٢ لانها ليست معرضه لاشعة الشمس كالحوائط الخارجية.
  - للحوائط الداخلية partitions

 $T_o$  -  $T_{in}$  – 5 = الحرارة درجات الحرارة

 $T_o$  -  $T_{in}$  + 15 to 25= الغلايات المطابخ او الغلايات

المرجع ص٦٩.



# ٣-٣ الملخص الجدول التالي يوضح جدول لحسابات الاحمال الحرارية اليدوية بالصورة التقليدية:

| CHAP<br>REF | TABLE                                                                                                       | REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAP<br>REF |                                              | TA       | BLE REFE                  | ERENCES                         |                            |                        |
|-------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|----------|---------------------------|---------------------------------|----------------------------|------------------------|
|             | ITEM AREA OR QUANTITY                                                                                       | SUN GAIN OR<br>TEMP. DIFF. FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ESTIMATE FOR                                 |          | LOCAL TIME                | PEAK LOA                        | ID                         | LOCAL TIME<br>SUN TIME |
| 3<br>&<br>4 | GLASS WITH SO<br>GLASS STORAGE SO<br>GLASS WITHOUT                                                          | GAIN GLASS   FT X   Tels 687.8   X   Tels 16.17   FT X   PP 29.34   X   PP 52.54   FT X   Tels 15 CORR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2           | CONDITIONS OUTDOOR (OA) ROOM (RM) DIFFERENCE | Tecs 1-3 | -                         | % RH 23 X X X                   | DP X X X                   | GR/LB                  |
| 5           | SKYLIGHT   SC                                                                                               | FT X         PP 44-49         X         PP 44-49           GAIN—WALLS         F ROOF           FT X         X         TBLS 21-22           FT X         X         23.24 oR 25           FT X         P 62         X         PP 66-69           FT X         TBL 20         X         TBLS 27-28           FT X         P 63         X         71.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6           | OPEN                                         | ng Doors | PEOPLE :                  | CFM VENTIL                      | H/PERSON :                 | =                      |
| 6           | ALL GLASS         SC           PARTITION         SC           CEILING         SC           FLOOR         SC | Total   Tota |             | ESHF EFFEC SENS I FACT THE 6                 |          | PPARATUS  EFFE SYCH CHART | DEWPOII COTIVE ROOM FIG 33 P 11 | NT<br>SEHS. HE<br>TOTAL HE | AT =                   |



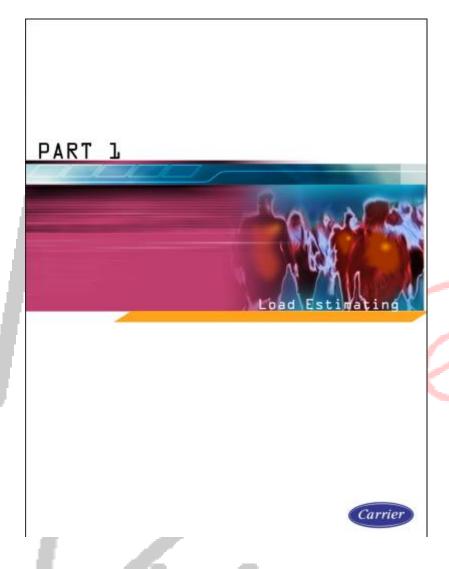


|          |                                                                                                             |   |                 | P 121 DEHUMIDIFIED AIR QUANTITY                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------|---|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | PEOPLE PEOPLE X 77 38.100                                                                                   |   | TEMP.<br>RISE   | (1BF) × (T <sub>AB</sub> F - T <sub>Abp</sub> F) =F                                                                                              |
| 8        | POWER HP on KW X Tal 53 p 105                                                                               |   | DEHUM.          | EFFECTIVE ROOM SENS. HEATCFM.DA                                                                                                                  |
| 7        | LIGHTS WATTS X 3.4 X PP 35.38 101                                                                           |   | · · ·           | 1.08 × F TEMP. RISE                                                                                                                              |
| 1 ′ 1    | APPLIANCES, ETC. TBLS 50-52 PP 101-103 X TBLS 50-52                                                         |   | QUTLET<br>TEMP. | ROOM SEMS. HEAT = F(SH-OUTLET AIR)*                                                                                                              |
| -        | ADDITIONAL HEAT GAINS TBLS 54-57 PP 107-109 X                                                               | 8 | Dirr.           | 1.08 × CFH AA                                                                                                                                    |
| 2        | TEMP SWING SUB TOTAL                                                                                        |   |                 | SUPPLY AIR QUANTITY                                                                                                                              |
| 8 3      | STORAGE SQ FT X TEL 14 P 38 X (- Tel 13)                                                                    |   | SUPPLY          | Danie Cana Mana                                                                                                                                  |
| - 3      | SUB TOTAL                                                                                                   |   | SUPPLY          | 1.08 × F DESIRED BATE                                                                                                                            |
|          | SAFETY FACTOR F 113 %                                                                                       |   | BYPASS          | ALIMO AND                                                                                                                                        |
| 7        | ROOM SENSIBLE HEAT                                                                                          |   | CFM             | Сги заСги за =Сги за                                                                                                                             |
|          | SUPPLY CHART 3 SUPPLY P 110 FAX TOL 59 DUCT P 110 DUCT P 110 FAX P 111 HEAT GAIR 96 + LEAR LOSS 96 + N.P. % |   |                 | RESULTING ENT & LYG CONDITIONS AT APPARATUS                                                                                                      |
| 8        | OUTDOOR AIR NOTE 3 CFM X NOTE 1F X P 121 BF X 1.08                                                          |   | EDB             | T <sub>BH</sub> F + F125 CFMT × (T <sub>OA</sub> F - T <sub>BH</sub> F) = T <sub>EOB</sub> F                                                     |
| $\vdash$ | EFFECTIVE ROOM SENSIBLE HEAT                                                                                |   | LDB             | TADPF +                                                                                                                                          |
| 6        | INFILTRATION NOTE 4 CFM × Nutt 2 Ga/La × 0.68                                                               |   |                 | FROM PSYCH. CHART: TemaF, TimeF                                                                                                                  |
| 3        | PEOPLE PEOPLE X TRUS 14.48; PP 38.100                                                                       | _ |                 |                                                                                                                                                  |
| 1 1      | STEAM P 107 Le/He X 1030                                                                                    |   | l               | HOTES                                                                                                                                            |
| &        | APPLIANCES, ETC. TOLS 50-52 PT 101-103 X CORR BELOW TELS                                                    |   |                 |                                                                                                                                                  |
| 7        | ADDITIONAL HEAT GAINS TEL 58 P 109                                                                          |   | 1. Use          | DRY-BULB (DB) TEMPERATURE DIFFERENCE FROM TOP OF ESTIMATE                                                                                        |
| 5_       | VAPOR TRANS. Se FT X 1/100 X North 2 Ge/Le X TSL 40 P 84                                                    |   | 2. Use          | MOISTURE CONTENT (GR. LB) DIFFERENCE FROM TOP OF ESTIMATE                                                                                        |
| 7        | SAFETY FACTOR P 113 %                                                                                       |   | 3. Nos          | RMALLY, USE "CFM VENTILATION" FOR "CFM OUTDOOR AIR." HOW-<br>R WHEN INSTITUTED IS TO BE OFFSET, REFER TO PAGE 92 TO<br>ERMINE "CFM OUTDOOR AIR." |
| '        | ROOM LATENT HEAT                                                                                            |   | 4. WH           | EN INTILITATION IS NOT TO BE OFFSET, AND "CFR VENTILATION" LESS THAN "CFR INFILTRATION" THEN THE EXCESS INFILTRATION                             |
| $\vdash$ | SUPPLY DUCT LEAKAGE LOSS PIIO %                                                                             |   | iš A            | LESS THAN "CIM INFILTRATION." THEN THE EXCESS INFILTRATION                                                                                       |
| 1 1      | OUTDOOR AIR NOTE 3 CFH X NOTE 2 COPLE X P 121 OF X 0.48                                                     |   | l               |                                                                                                                                                  |
| 1 1      | EFFECTIVE ROOM LATENT HEAT                                                                                  |   | l               |                                                                                                                                                  |
| 8        |                                                                                                             |   |                 | - Maria                                                                                                                                          |
| 1 1      | OUTDOOR AIR HEAT  SENSIBLE: Note 3 CFN x Note 1 F x (1 - # 1218F) x 1.08                                    |   |                 |                                                                                                                                                  |
|          | LATENT: NOTE 3 CFM X NOTE 2Garle X (1 - F 121BF) Y 0.68                                                     |   | l               |                                                                                                                                                  |
| $\vdash$ |                                                                                                             |   |                 |                                                                                                                                                  |
| 7        | HEAT GAIN % + LEAK, GAIN % 1 PUNP % + PIPE LOSS %                                                           |   | Twee an         | AT IN THE MINE, DETERMINE SOFFER CHE POR PERSON DEPARTMENT OF SEPTEM AND PROSENTAL.                                                              |
|          | GRAND TOTAL HEAT                                                                                            |   | *****           | PALLING SETURN AIR COLF, WAS DEMONIFIED CPW.                                                                                                     |

With Carrier Masthead Form E20. Without Carrier Mosthead Form E5024.

## الجدول التالي المعادلات المستخدمة في تحديد الاحمال الحرارية وذلك طبقا لما سابقا وكذلك بالجدول السابق:

| اسم الحمل الحراري-Load name                                                                                               | المعادلة-Equation                       |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| الحرارة المكتسبة الشمسية الشبابيك-Window solar heat gain                                                                  | Q=A*sc*q                                |
| الحرارة المكتسبة من الشمس والمنتقلة الي الغرفة عن طريق الحوائط والاسقف- &Solar Transmitted heat gain thru walls and roofs | $Q_2=A*U*\Delta T_{(equivalent)}$       |
| الحرارة المنتقلة عبر الزجاج او الابواب او الاسقف الزجاجية- Transmitted heat gain thru doors and skylights and windows     | $Q_1=A*U*\Delta T$                      |
| infiltration التسريب                                                                                                      | $H_S = 1.08 \times CFM \times \Delta T$ |
| حمل التهوية ventilation load                                                                                              | $H_S = 1.08 \times CFM \times \Delta T$ |




| internal heat gain الاحمال الداخلية |  |
|-------------------------------------|--|
| people الناس                        |  |
| الاضاءة lights                      |  |
| appliances الاجهزة                  |  |
| المواتير الكهربية                   |  |
| الممرات الهوائية duct heat gain     |  |
| الحرارة المخزنة                     |  |





## ٣-٤- المرجع



