
ENERGY& RENEWABLE ENERGY

At El-Sewedy Electric T&D Summer 2022

Energy in Egypt

4

Main Points

Total Installed Power

Energy Mix

Renewable

3.1 GW

Private sector

2.1 GW

Thermal

51 GW

Hydro

2.8 GW

Powerplants for Energy Mix

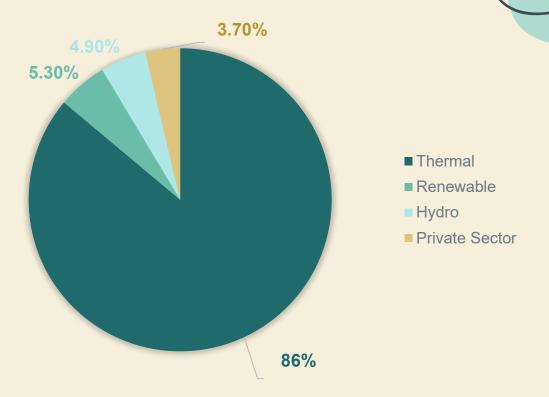
Thermal

• Beni Suef	(4800 MW)	Talkha	(1345 MW)
• Burullus	(4800 MW)	Banha	(750 MW)
•New Capital	(4800 MW)	Nubaria	(2250 MW
• Kuriemat	(1500 MW)	Ka fr El Dawar	(320 MW)
 Upper Egypt 	(350 MW)	Damanhour	(430 MW)
• West Assiut	(1500 MW)	Sid i Krir	(1390 MW
· South Helwan	(1300 MW)	Abo Krir	(2103 MW)

Hydro

• Aswan High Dam	(2100 MW)
• Aswan Low Dam	$(592 \mathrm{MW})$
•Nagaa Hammadi Dam	(64 MW)
•Esna	(86 MW)
• Assuit	(32 MW)

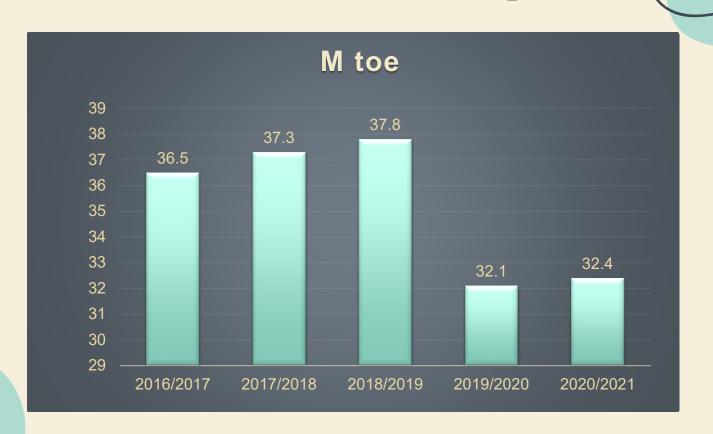
Renewable

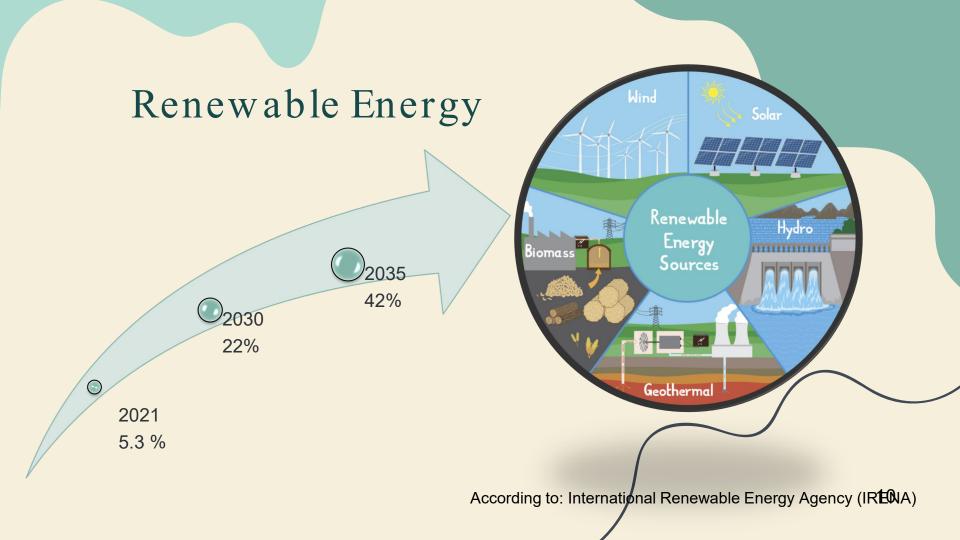

•Benban Solar Park	(980 MW)
•Kuriemat Solar	(140 MW)
•Zafarana Wind	(120 MW)
•3 Gabal El Zeit	(337 MW)

Private Sector

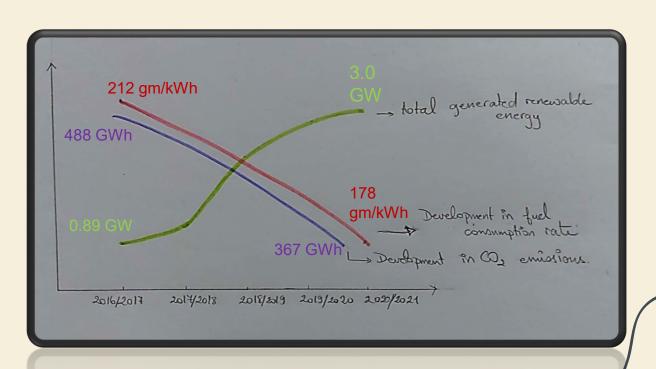
• Sid i Krir	(683 MW)
 Port Said East 	(683 MW)
• Suez Gulf	(683 MW)

According to: Egyptrol 2020


Energy Mix



Generated Energy



Total Fuel Consumption

In-Sync Curves

11

Interconnection Projects

Egypt with

Jordan

550 MW to 2000 MW Feasibility study

Greece

2000 MW Economical and technical studies

Saudi Arabia

3000 MW Operate in 2026

Interconnection Projects

Egypt with

Renewable Energy Projects

PV

El Nowa is Group
500 MW
Kom Ombo
Commercial operation at 2023

Wind

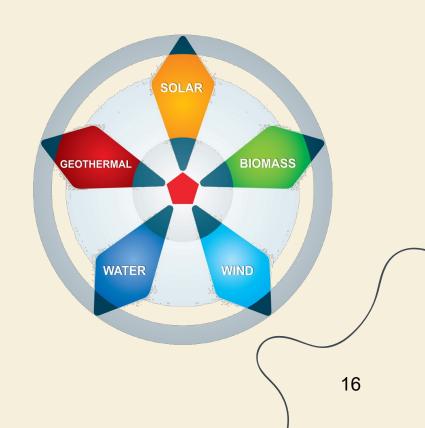
El Nowais Group 500 MW Suez Commercial operation at 2023

Smart Services

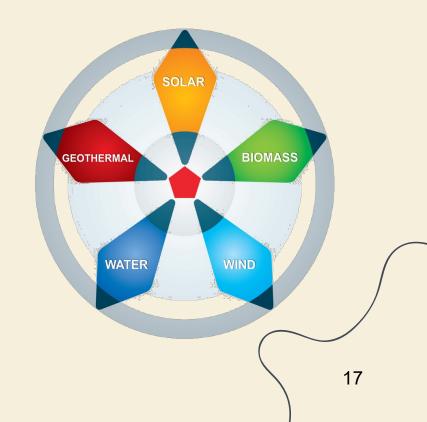
CID Consultancy

Improve Smart Services

Wasel


Aid for hearing disabilities' people

Pre - Paid Meters


Smart applications

Introduction to renewable energy

Introduction to renewable energy

Renewable energy is generated by sources that can be constantly replenished.

WHY RENEWABLE ENERGY

Health & Environment

Community

Economic

Solar energy

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity

Photovoltaic system

Concentrated solar power

Wind energy

Wind power or wind energy describes the process by which the wind is used to generate mechanical power or electricity.

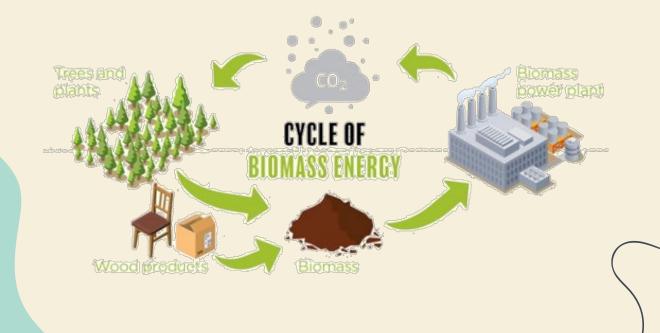
horizontal axis wind turbine

vertical axis wind turbine

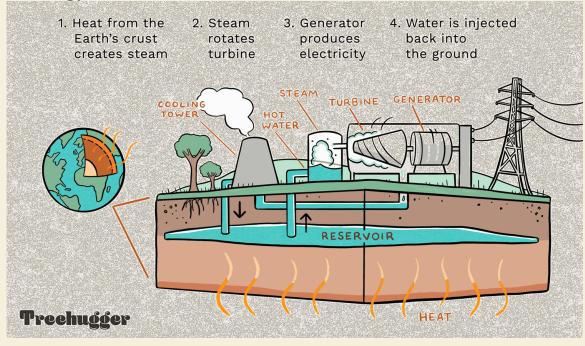
20

Hydropower energy

Hydropower uses moving water to generate electricity


Dams

Tidal type


Biomass

Biomass is a renewable energy source because we can always grow more trees and crops, and waste will always exist.

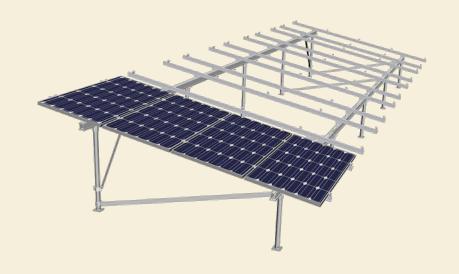
Geothermalenergy

Geothermal energy is heat derived within the sub-surface of the earth.

Applications of PV

Off-Grid domestic

Off-Grid non-domestic


Grid-connected distributed PV

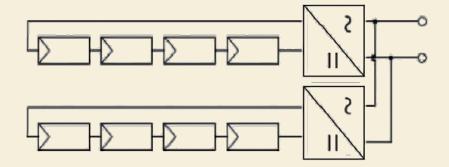
Grid-connected centralized PV

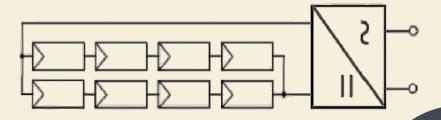
Solar PV module

Module Mounting (Fixed) or tracking systems

String Inverter

Or


Central Inverter

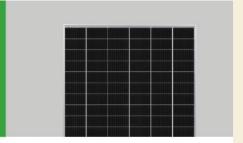


Inverter interconnection concepts

String Inverter

Central Inverter

Step up transformer



The Grid connection interface (Substation)

72M HC 520-540 Watt

Multi Busbar Solar Cell

MBB solar cell adopts new technology to Improve the efficiency of modules, offers a better aesthetic appearance, making it perfect for rooftop

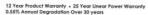
PID Resistance

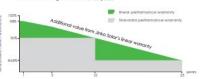
Excellent Anti-PID performance guarantee limited power degradation for

Higher Lifetime Power Yield:

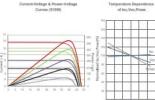
0.55% annual power degradation 25 year linear power warranty

Advanced glass and cell surface textured design ensure excellent performance In low-light environment.


Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).



Durability Against Extreme Environmental Conditions


High salt mist and ammonia resistance certified by TUV NORD.

LINEAR PERFORMANCE WARRANTY

Engineering Drawings

Voltage (V)

Electrical Performance & Temperature Dependence

Leigth: £2mm

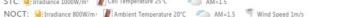
Water s2mm Height 52mm Row Pitch: 12mm

Back

Packaging Configuration

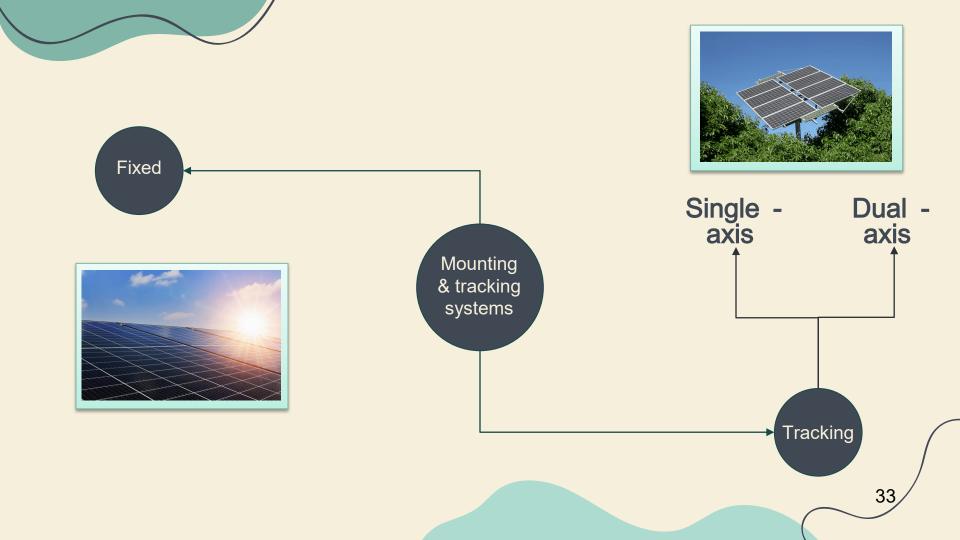
(+): 250mm. (-): 150 mm or Customized Length

CellTemperature(C)


Module Type	JKM520M-72HL4-V		JKM525M-72HL4-V		JKM530M-72HL4-V		JICM535M-72HL4-V		JKM540M-72HL4-V	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	520Wp	387Wp	525Wp	391Wp	530Wp	394Wp	535Wp	396Wp	540Wp	402Wp
Maximum Power Voltage (Vmp)	40.47V	37.63V	40.61V	37.78V	40.74V	37.92V	40.68V	38.05V	41.01V	38.19V
Maximum Power Current (Imp)	12.85A	10.28A	12.93A	10.34A	13.01A	10.40A	13.09A	10.46A	13.17A	10.52A
Open-circuit Voltage (Voc)	48.99V	48.24V	49.13V	45.37V	49.26V	46.50V	49.40V	45.639	49.53V	46.75V
Short-circuit Current (Isc)	13.53A	10.93A	13.61A	ARR.UE	13.69A	11.06A	13.77A	11.12A	13.85A	11.18A
Module Efficiency STC (%)	20.	20.17% 20.36%		16%	20.55%		20.75%		20.94%	
Operating Temperature(*C)					-401	C-+85°C				
Maximum system voltage		tsogyDC (EC)								
Maximum series fuse rating					25A					
Power tolerance					-+3%					
Temperature coefficients of Pmax				-0.	35%/℃					
Temperature coefficients of Voc				-0.	28%/°C					
Temperature coefficients of lsc				0.0	1481U/C					
Nominal operating cell temperatu	ne (NOCT)					8±2°C				

Reasons

High Efficiency


Higher Life Span

Best performance in low levels of sunlight

Plant Performance Parameters

Performance Ratio Capacity Factor

Specific Yield

Irradiation Types

Global Horizontal Irradiation (GHI)

Direct Normal Irradiation (DNI)

Diffuse Horizontal Irradiation (DHI)

Solar Resource Assessment

1. Satellite
Derived Data

Solar Resource Assessment

2. Land Based Measurement

ThermalPyranometer

Silicon Sensors

Losses in a PV Power Plant

Air Pollution **Auxiliary Power** Soiling DC Losses **AC Losses** Downtime Degradation

Power Plant Design

DC System

Array of PV modules

DC Cabling

DC Connectors

Junction Boxes

Combiner Boxes

Disconnects/Switches

Protection Devices

Earthing

Selection of PV Modules

Degradation

Nominal Power

Technology

Temperature Coefficient

Selection of Inverters

Project Size

THD

Reactive Power

Performance

Installation Location

Cable Selection and Sizing

AC System

Transformer

Switchgear

Substation

Thank You!

Any Questions?