PRODUCTION EQUIPMENT STATIONERY & ROTARY

OGS-ZTP-GT-TRM-0007

Hany F. Ismail

Consultant Engineer
Projects Control / Planning
Oil / Gas

B.Sc. Of Mechanical Engineering – Cairo University, 1975
Master Degree: Baroujia University – Italy
Member of American Society of Mechanical Engineering – ASME
Member of Projects Management Institute – PMI
Member of Federation of Arab Engineers
Member of Scientific Committee of Syndicate of Engineers
Who's Who in Science and Engineering
Projects Management Professional (PMP)
Man of the Year Excellent Certification, UAE

Relevant Experiences

Over 30 years of experience worked as a Consultant Engineer after holding various positions for Oil / Gas Industries in the field of Projects Control & Planning , Projects Commissioning and Management, Shutdown/Turnaround Integrated Planning & Management, Maintenance Planning and Construction/Commissioning of new Refineries and LNG Plants

MAIN TOPICS

- 1. Common Static Equipment used in Oil & Gas field
 - Separators
 - ✓ Storage Tanks
 - ✓ Slug Catcher
 - ✓ Gas Scrubber
 - ✓ Flare Knock out Drum
 - ✓ Towers and Columns
 - **✓** Heat Transfer Equipment
 - Heat Exchangers
 - ☐ Air Coolers
 - □ Plate Heat Exchangers
 - ✓ Pipes, valves & fittings

MAIN TOPICS

- 2. Rotating Equipment used in Oil & Gas field
 - ✓ Pumps
 - ✓ Compressors
 - ✓ Turbine
 - Engines

Part – 1 Static Equipment

Static Equipment related STD;

ASME Section VIII-1	Rules for Construction of Pressure Vessels
TEMA Class B	Pressure vessels for chemical process services
TEMA Class C	Pressure vessels for general commercial applications
TEMA Class R	Pressure vessels for the severe requirements of petroleum processing
API 650	Welded Steel Tanks for Oil Storage
API 620	Design and Construction of Large Welded Low Pressure Storage Tanks`
API 572	Inspection of Pressure Vessels (Towers, Drums, Reactors, Heat Exchangers, and Condensers)
API 521	Flare Knock out Drum (KOD) Design & Sizing

Static Equipment related STD;

ISO 16812 or API 660

ISO 13706 or API 661

ISO 15547 or API 662

API 598 & API 6D

API 520 & API 576

ANSI B31.3

ANSI B36.10

ANSI B16.5

ANSI B16.20

ANSI B16.21

Shell & Tube Heat Exchanger

Air Cooled Heat Exchangers

Plate Heat Exchangers for General Refinery

Services

Valves

PSV Selection & Inspection

Piping Code

Piping Specs

Flange Code

Metallic Gasket

Non Metallic Gasket

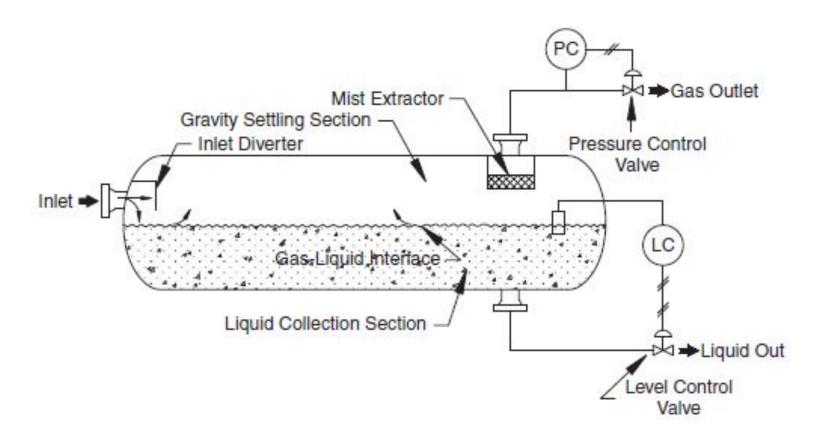
Separators

Separator are vessels is in which gas, oil and water are separated from each other. The principle of separation relies on gravity, gas, oil and water havig different densities

If solid particles are entrained in the fluid they will also be separated at the bottom of separator.

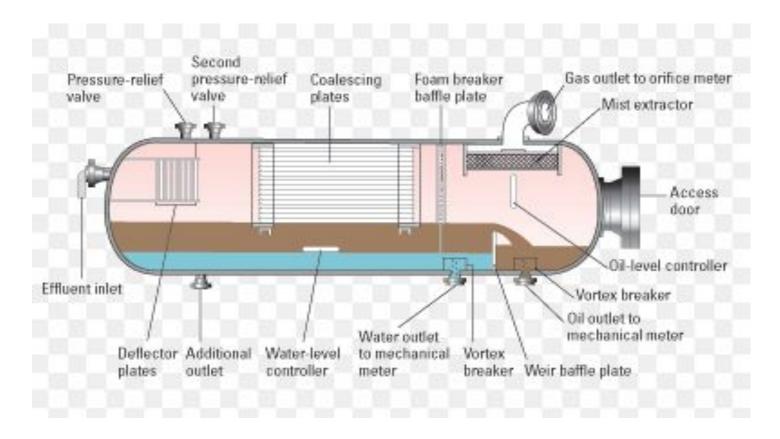
Separators Classification

Separators are classified according to the shape:

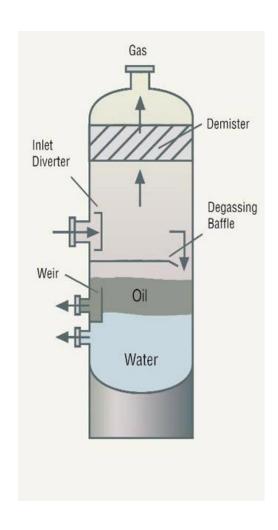

- ✓ horizontal
- ✓ vertical
- ✓ Spherical

Or Phases Separated:

- ✓ Two-phases
- ✓ Three-phases



Horizontal 2-Phases Separators



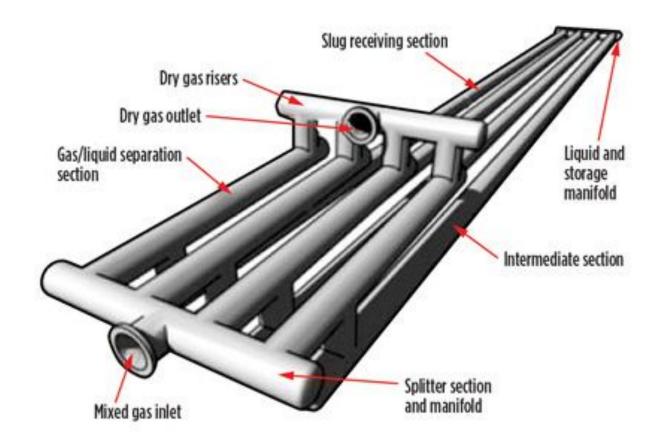
Horizontal 3-Phases Separator

Vertical Separators

Separation Quality;

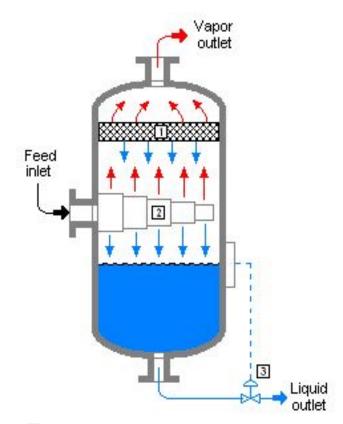
Separators are required to provide oil/gas streams that meet saleable pipeline specification.

Oil must have less than 1% (by volume) water. Water stream must have less than 20 ppm of oil.



Slug Catcher Vessel

Slug Catcher Finger-Type



Gas Scrubber

A device to remove dirt, water, foreign matter, or undesired liquids that are part of the gas flow stream.

A scrubber is used to protect downstream rotating equipment or to recover valuable liquids from gas.

- De-entrainment mesh pad
- Inlet diffuser (distributor)
- 3 Liquid level control valve

Flare Knockout Drum

The purpose of KOD to remove any liquid from the relieved gases & to ensure Flare gas is free from any liquid.

Knockout drum design and sizing basis as per API-521.

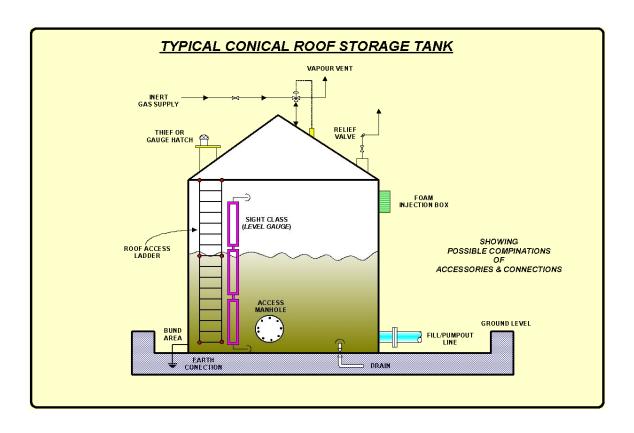
KOD MOH or SD is required plant total SD and to be considered as the critical path for the plant SD.

Pressure Vessels

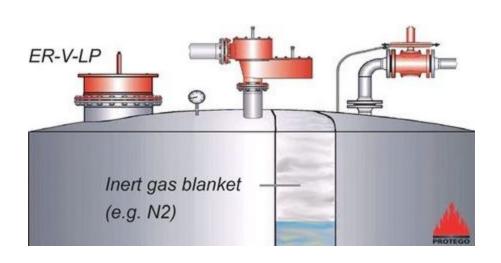
What is the 2-phases separators?

Storage Tanks

In industry, there are many different types of equipment used for the storage of liquids and gases

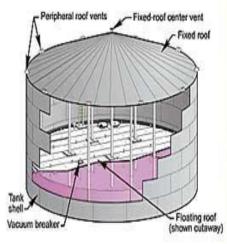

Storage Tanks can be:

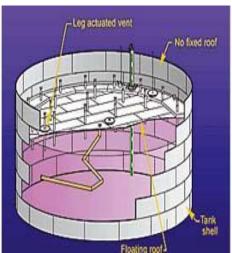
- ☐ Fixed or Floating Roof
- Vertical and Horizontal Cylindrical
- Spherical

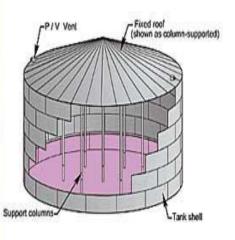

Storage Tanks

Fixed Roof

Fixed roof storage tanks pumping out or drain protection






Storage Tanks

☐ Floating Roof

Storage Tanks

Spherical Tanks

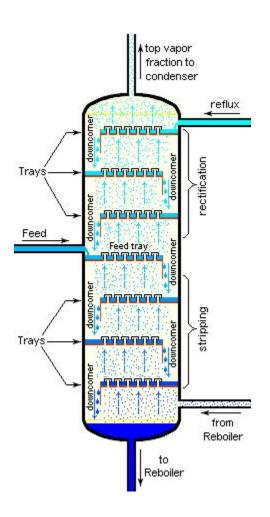
Storage Tanks

What are the protection devices in the storage Tank?

Towers and Columns

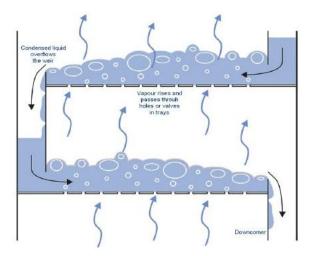
Towers are classified according to the type of "internals" in the tower, and according to the function performed by the tower.

Tower Dimensions: Towers typically range in diameter from 3 to 20 FEET and in height from 20 to 150 FEET.

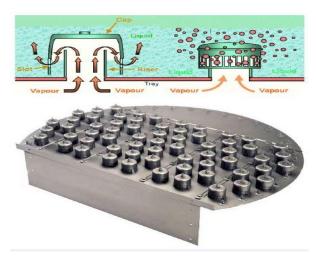


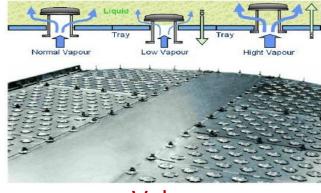
Towers and Columns "internals"

Towers may contain trays. If the tower contains trays, the vessel is called a tray tower, or synonymously a tray column.


Trays are generally divided into three categories:

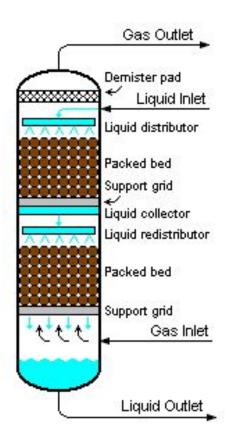
- Sieve Trays
- Valve Trays
- Bubble Cap Trays




Towers and Columns

Sieve Trays

Bubble Cap Trays



Valve

Towers and Columns "internals"

Tower may contain packing. If the tower contains a packing, the vessel is called a packed tower, or packed column.

Towers and Columns "internals"

Random Packings

Structured Packings

Towers and Columns "internals"

Packing Versus Trays:

A tray column that is facing throughput problems may be debottlenecked by replacing a section of trays with packings. This is because: Packings provide extra interfacial area for liquid/vapour contact efficiency of separation is increased for the same column height packed columns are shorter than trayed columns

Towers and Columns

Tower/Column Applications;

- Distillation
- Stripping
- Absorption
- Extraction.

Towers and Columns

What are the basis for Towers classification?

Part – 2 Static Equipment

Heat Transfer Equipment

The various types of heat transfer equipment are generally defined by the function fulfilled in a process. Following are typical heat transfer equipment used in processing industries.

As example for heat transfer equipment:

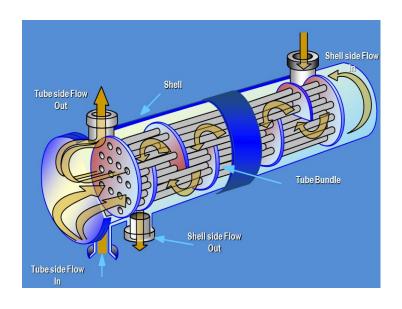
- ☐ Shell & Tube Heat Exchanger (ISO 16812 or API 660)
- □ Air Cooled Heat Exchangers (ISO 13706 or API 661)
- □ Plate Heat Exchangers for General Refinery Services. (ISO 15547 or API 662)

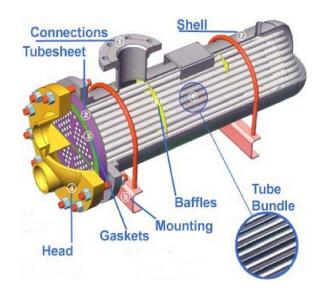
Heat Transfer Equipment

Heat Exchangers

Heat is exchanged between two streams. Exchangers are used to remove heat from streams which are required to be cooled, and transfer heat to streams which are required to be heated.

The basic design data:

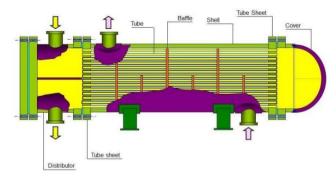

- Q = total heat transfer
- ΔT = temperature difference between the two media
- "U" is a function of many variables;
- "A" is the area of retaining wall between the two flowing media.

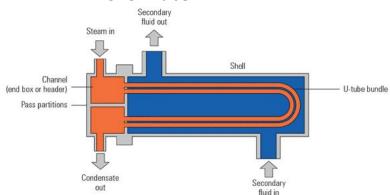


Heat Transfer Equipment

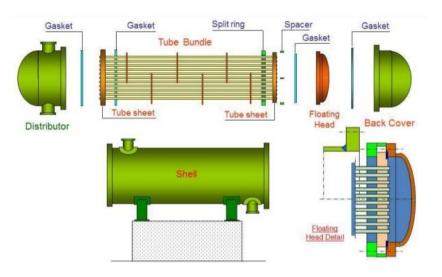
Main Types & Components of Heat Exchangers

A - Shell and Tube Heat Exchanger



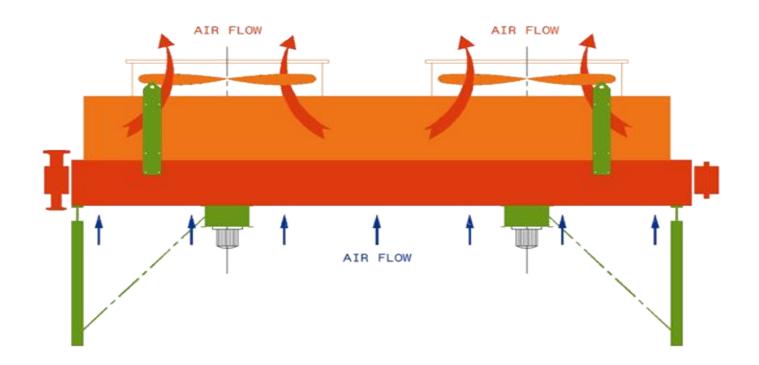

Heat Transfer Equipment

The shell and tube heat exchanger is further divided into three categories as


1. Fixed tube sheet

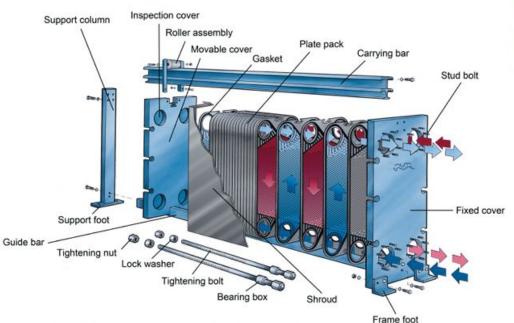
3. U - Tube

3. Floating head



Heat Transfer Equipment

B- Air Cooled Heat Exchangers


Cold air being blown over the tubes, which containing the process fluids for cooling.

Heat Transfer Equipment

C- Plate Heat Exchangers

Heat Transfer Equipment

What is the common types of Heat

What is the changers in O&G?

Pipes, valves & fittings

Pipe design

Pipes are designed according to:

- Maximum Steady State Pressure
- ✓ Temperature
- ✓ Flow rate
- Chemical characteristics of fluid

Pipes, valves & fittings

Pipes materials

Pipes materials can be:

- Metals and alloys
- ✓ Plastic
- ✓ Glass (for laboratory and special application)
- Composites

Selection bases;

- ✓ Design data (mechanical, chemical)
- Economics consideration

Pipes, valves & fittings - Piping Schedule

Nominal pipe size mm/ inch	OD mm	20	30	STD	40	60	XS	80	100	120	140	160	XXS
15	21.3			2.77 1.27	2.77 1.27		3.73 1.62	3.73 1.62				4.78 1.95	7.47 2.55
20 3/4	26.7			2.87 1.69	2.87 1.69		3.91 2.20	3.91 2.20				5.56 2.90	7.82 3.64
25 1	33.4			3.38 2.50	3.38 2.50		4.55 3.24	4.55 3.24				6.35 4.24	9.09 5.45
32 11/4	42.2			3.56 3.39	3.56 3.39		4.85 4.47	4.85 4.47				6.35 5.61	9.70 7.77
40 11/2	48.3			3.68 4.05	3.68 4.05		5.08 5.41	5.08 5.41				7.14 7.25	10.15 9.56
50 2	60.3			3.91 5.44	3.91 5.44		5.54 7.48	5.54 7.48				8.74 11.11	11.07 13.44
65 21/2	73.0			5.16 8.63	5.16 8.63		7.01 11.41	7.01 11.41				9.53 14.92	14.02 20.39
80 3	88.9			5.49 11.29	5.49 11.29		7.62 15.27	7.62 15.27				11.13 21.35	15.24 27.68
90 31/2	101.6			5.74 13.57	5.74 13.57		8.08 18.63	8.08 18.63				-	-
100 4	114.3			6.02 16.07	6.02 16.07		8.56 22.32	8.56 22.32		11.13 28.32		13.49 33.54	17.12 41.03
125 5	141.3			6.55 21.77	6.55 21.77		9.53 30.97	9.53 30.97		12.70 40.28		15.88 49.11	19.05 57.43
150 6	168.3			7.11 28.26	7.11 28.26		10.97 42.56	10.97 42.56		14.27 54.20		18.26 67.56	21.95 79.22
200 8	219.1	6.35 33.31	7.04 36.81	8.18 42.55	8.18 42.55	10.31 53.08	12.70 64.64	12.70 64.64	15.09 75.92	18.26 90.44	20.62 100.92	23.01 111.27	22.23 107.92
250 10	273.1	6.35 41.77	7.80 51.03	9.27 60.31	9,27 60,31	12.70 81.55	12.70 81.55	15.09 96.01	18.26 114.75	21.44 133.06	25.40 155.15	28.58 172.33	25.40 155.15

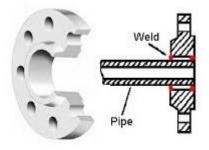
Pipes, valves & fittings

Flanges

Flanges are mechanical devices used to connect elements in piping system where it is necessary to disconnect equipment or parts of the piping for maintenance.

There are several types of flanges:

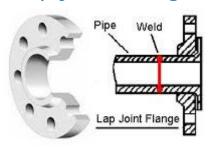
- Screwed
- ✓ Slip-on
- ✓ Welding neck
- ✓ Socket-weld flanges
- ✓ Lap joint (with free flange)
- ✓ Blind
- ✓ Spectacle Blind



Pipes, valves & fittings

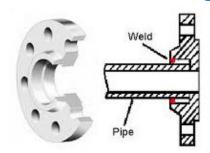
Flanges

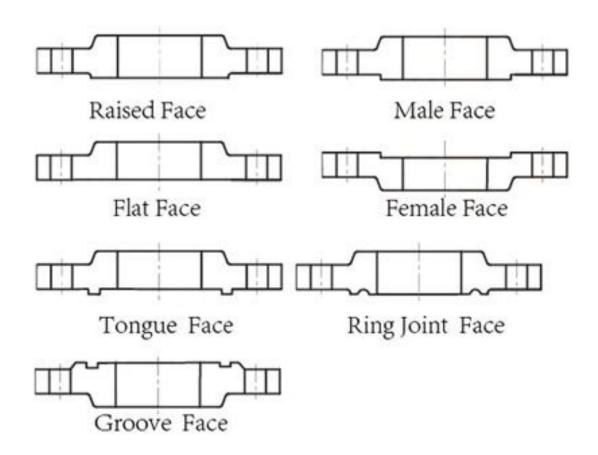
Slip-on Flange


Screwed Flange

WN Flange

Lap joint Flange

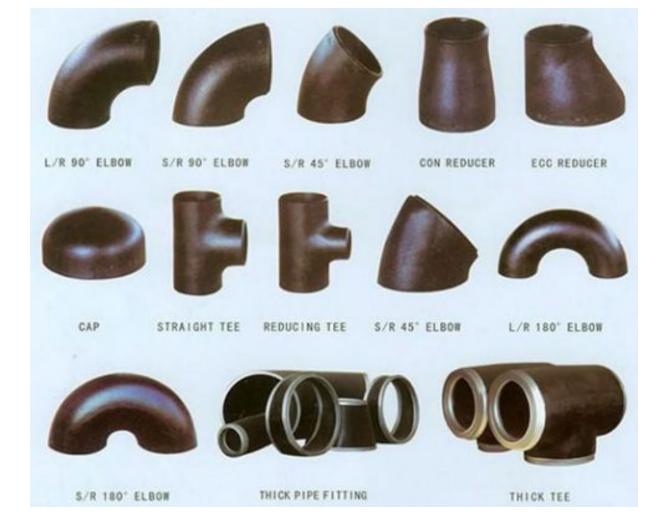



Socket-weld Flange

Pipes, valves & fittings

Flange Face

Pipes, valves & fittings


Pressure - Temperature Ratings

For Steel Pipe Flanges and Flanged Fittings American National Standard ANSI B16.5 - 1988

Class	150 1b.	300 1b.	400 1b.	600 1b.	900 1b.	1500 1b.	2500 1b.				
Pres psig	450	1125	1500	2225	3350	5575	9275				
Temp °F	Maximum Allowable Pres psig										
-20 to 100	285	740	990	1480	2220	3705	6170				
200	260	675	900	1350	2025	3375	5625				
300	230	655	875	1315	1970	3280	5470				
400	200	635	845	1270	1900	3170	5280				
500	170	600	800	1200	1795	2995	4990				
600	140	550	730	1095	1640	2735	4560				
650	125	535	715	1075	1610	2685	4475				
700	110	535	710	1065	1600	2665	4440				
750	95	505	670	1010	1510	2520	4200				
800	80	410	550	825	1235	2060	3430				
850	65	270	355	535	805	1340	2230				
900	50	170	230	345	515	860	1430				
950	35	105	140	205	310	515	860				
1000	20	50	70	105	155	260	430				

Pipes, valves & fittings

Fittings

Pipes, valves & fittings

Flange gasket

The types most commonly used are:

- ✓ Non-metallic flat type: it is the most used gasket in the field of low temperature and medium pressures.
- ✓ Metallic
- Ring-joint

Pipes, valves & fittings

Flange gasket

Non-metallic

Metallic

Ring-joint

Pipes, valves & fittings

Explain how to specify a WN Flange?

Valves

Valves are mechanical equipment designed to interrupt or regulate a fluid flow.

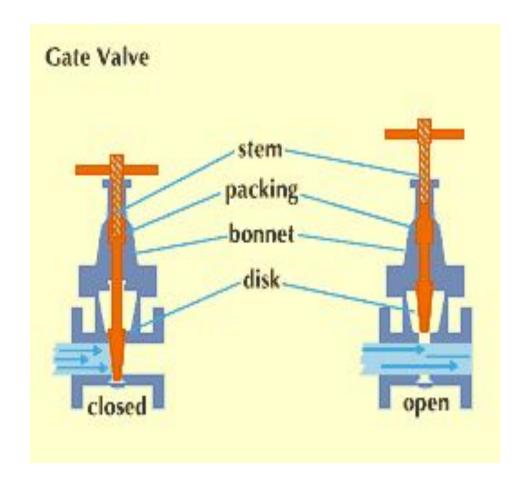
Common Valves types in O&G industry:

- Gate valves
- ✓ Globe valves
- ✔ Ball valves
- ✓ Butterfly valves
- ✓ Check valves
- ✔ Pressure Safety Valves

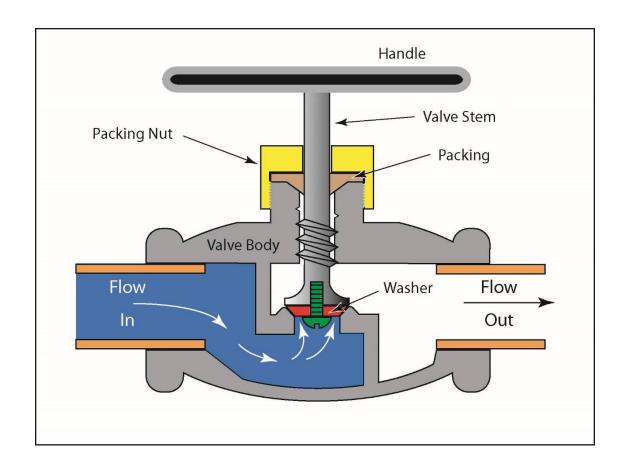
Valves

Selection of valves is carried out on the base of:

- ✓ Design Data (mechanical, chemical)
- ✓ Function Required (regulation, control, isolation, pressure relief)

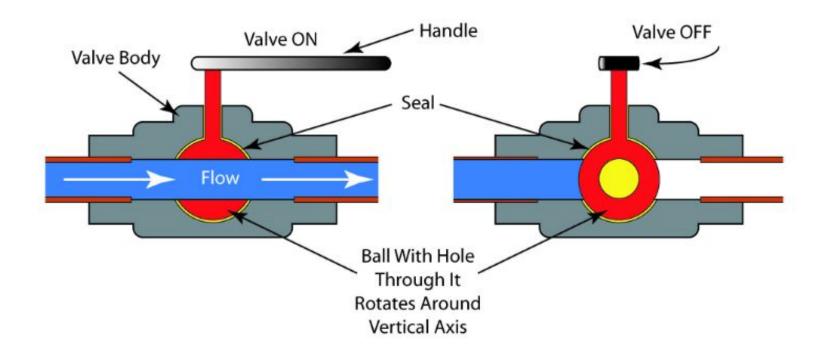


Gate Valves



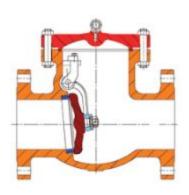
Gate Valves

Globe Valves

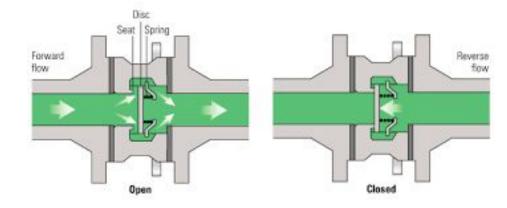


Ball Valves

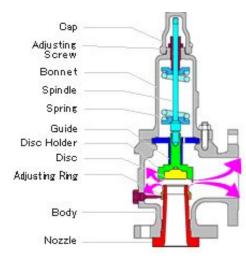
Ball Valves



Butterfly Valves



Check Valves



Pressure Safety Valves

Explain the different types of Valves &

End of Static Equipment

Thank You

Part - 1 Rotating Equipment

Rotating Equipment related STD;

API 610

API 674 & API 676

API 618

API 617

API 616

Centrifugal pumps

Positive displacement pumps

Reciprocating Compressors

Centrifugal Compressors

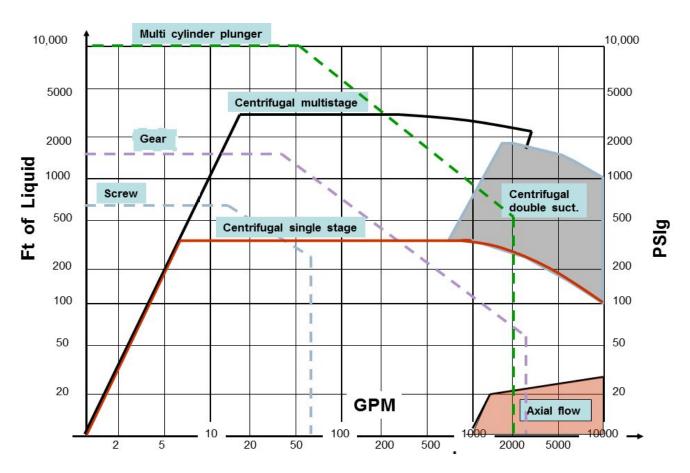
Gas Turbines

Pumps

Pumps are used to transform mechanical energy supplied by a driver (electric motor or combustion motor, or turbine) into hydraulic energy (mainly pressure). The increase in pressure of the propelled fluid usually serves to:

- Lift the fluid;
- Increase flow speed;
- Overcome back pressure;
- Overcome pressure drops.

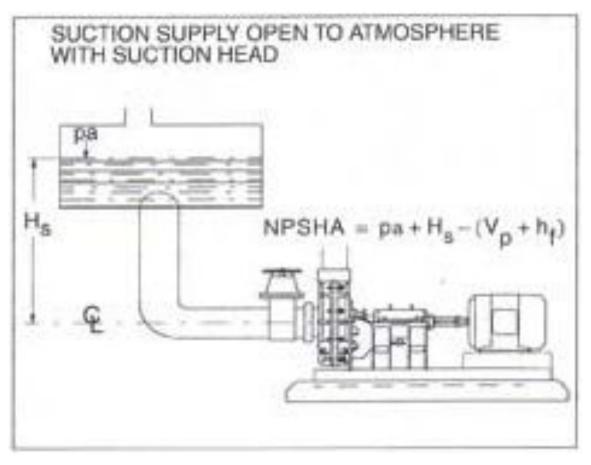
Pumps Types


Pumps divided into two main categories;

- Centrifugal pumps
- Positive displacement pumps
 - Reciprocating pumps
 - Rotary pumps.

Pumps classification

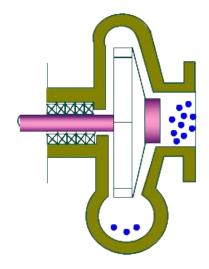
Typical range performance of common pump types

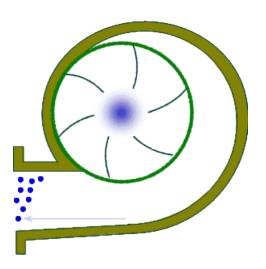


Pump Installation Characteristics

Hg = static head or total geodetic height ha = suction head hm = discharge head NPSH = net positive suction head Hg ha

Pump Net Positive Suction Head

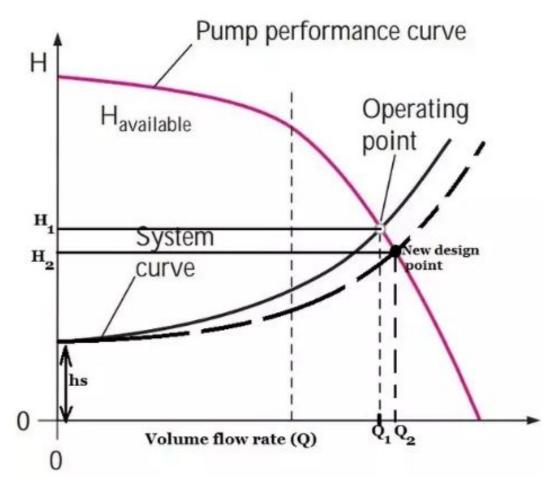




Pumps Types

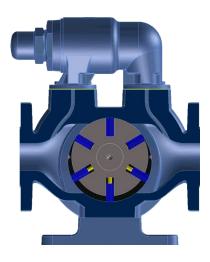
Centrifugal pump operating principle

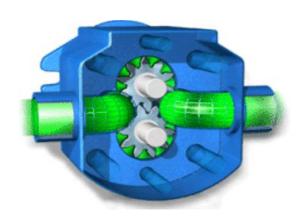
- 1. The liquid flows in along the axis of the pump via the distributor and the centrifugal force generated by the vanned wheel's rotation drives it toward the outside of the wheel.
- 2. It acquires high kinetic energy, which is converted into pressure energy in the manifold, where the cross-section increases.



Pumps Types

Centrifugal pump performance




Pumps Types

Positive displacement pumps

Rotary pumps consist of a moving part which rotates actuated by a rotational movement around an axis which itself rotates in the pump barrel and induces movement of the pumped liquid by displacement of the volume from the suction point to the discharge point.

Pumps Types

Positive displacement pumps

Reciprocating pumps

A reciprocating pump is one with forward and backward operating action.

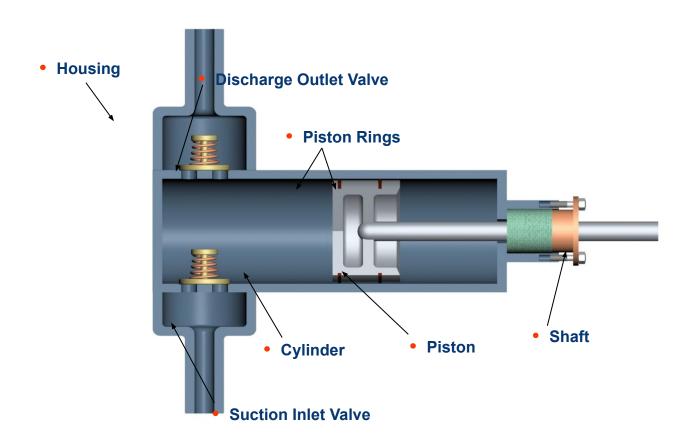
Types of reciprocating pumps:

- 1. Piston pump.
- 2. Plunger pump.
- 3. Diaphragm pump.

Pump Types

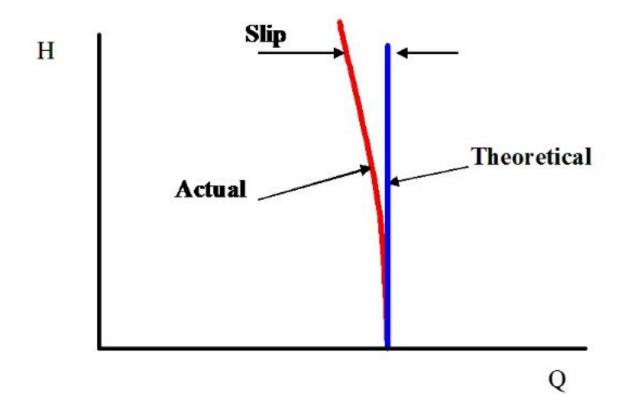
Positive displacement pumps

Reciprocating pumps (Piston pumps);


- 1. Single acting simplex pump
- 2. Single acting duplex pump.
- 3. Double acting duplex pump.
- 4. Single acting triplex pump.
- 5. Double acting triplex pump.

Pump Types

Positive displacement pumps


Reciprocating pumps

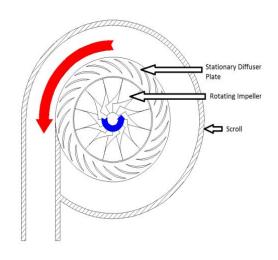
Pump Types

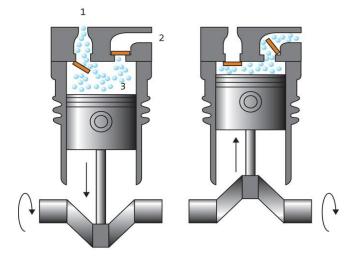
Positive displacement pumps Performance

Explain the Parameters affection centrifugal

Part - 2 Rotating Equipment

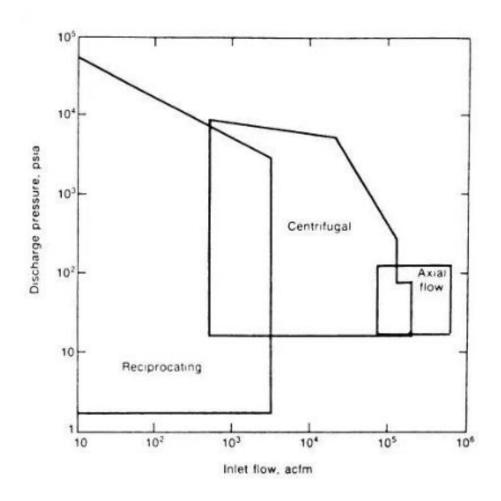
Compressors: a machine used to added energy to a gas


Why the gas is compressed?


- To move gases from place to place and to overcome friction in pipes & fittings.
- 2. To reduce the volume of vessels and equipment handling large amount of gas.
- 3. To liquefying the gas.
- 4. To increase the pressure of the gas to a level required in some chemical reactions.

Compressors

- 1. Continuous-Flow Compressors
 - Centrifugal Compressor
 - Axial Flow Compressor



2. Positive Displacement compressors

- Reciprocating Compressor
- Rotary Compressor

Compressors Selection Criteria

Centrifugal Compressor Process Design Parameters

"Design data" to select a centrifugal compressor:

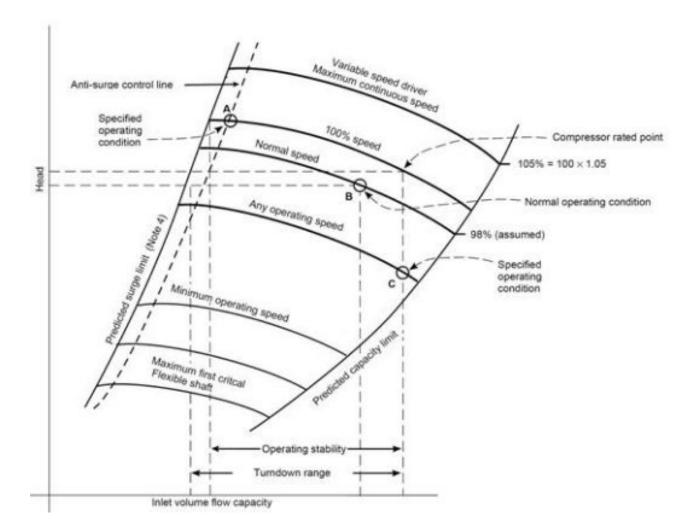
- Rotational speed
- Number of impellers
- Impeller diameters
- Compression efficiency
- Power absorbed
- Driver rating
- Performance characteristics
- Casing arrangement

- For variable speed drives the "normal speed" is usually 90-97% of the rated speed, allowing for contingencies.
- For constant speed drives, design is done for the *rated point*, i.e. on the 100% speed line.

Centrifugal Compressor Process Design Parameters

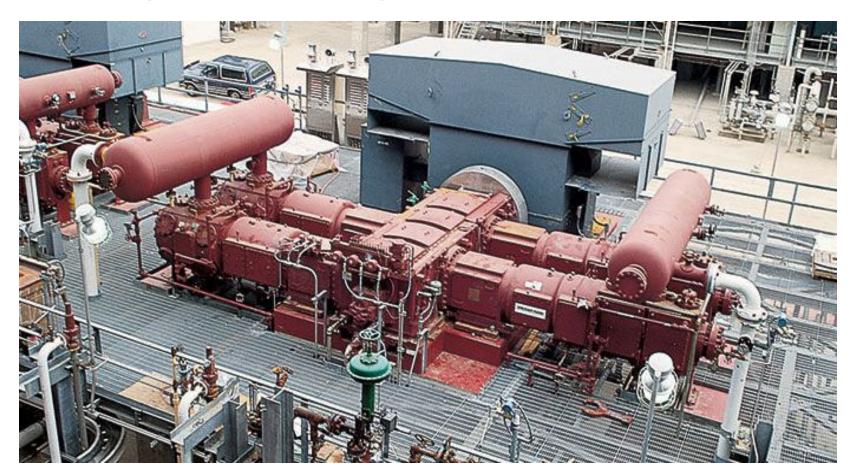
The "process design parameters":

- Flow rate
- Gas composition
- Inlet pressure and temperature
- Outlet pressure
- Train arrangement (series, parallel, etc)

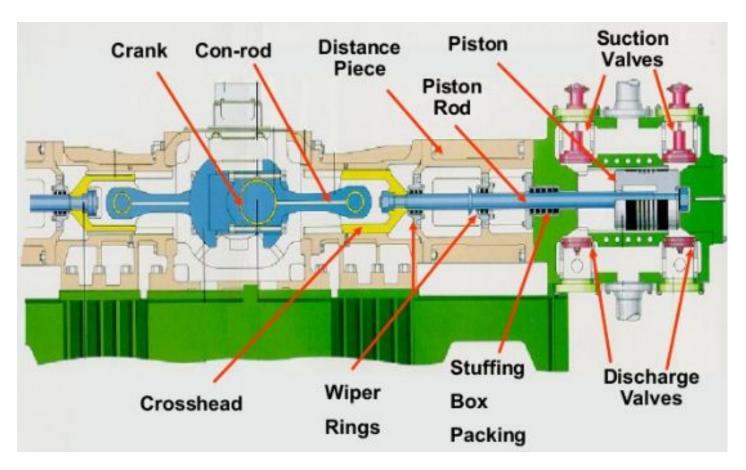

'Rated point' defined by API 617:

- Highest volumetric flow rate
- Lowest molecular weight
- Highest head or pressure ratio
- Highest inlet temperature

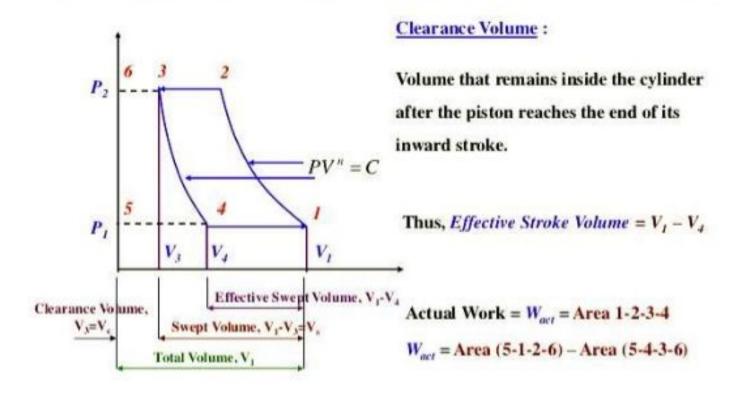
To avoid over-design, the usual practice is to select a "normal operating point" at which the machine is expected to operate for most of its life.



Centrifugal Compressor Performance

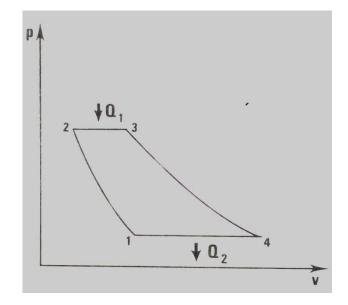


Multi Stage Reciprocating Compressor

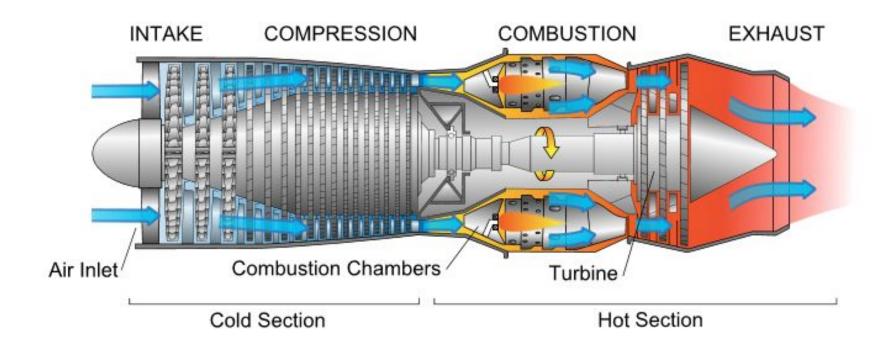

Reciprocating Compressor

Reciprocating Compressor

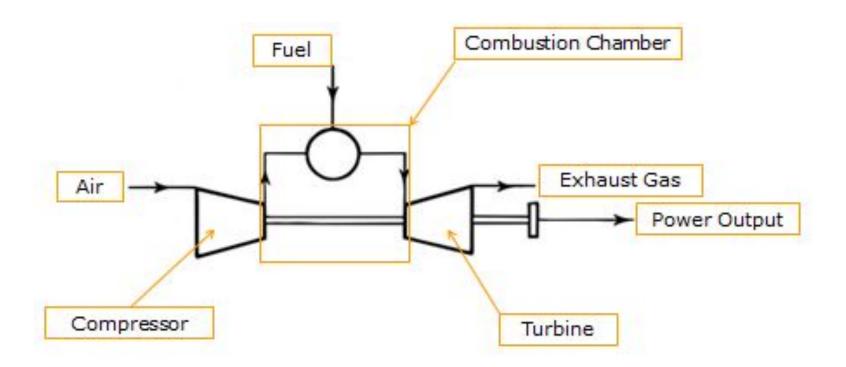
Reciprocating Compressor – Equation for Work


Explain the basis of Compressor

Gas Turbine


Gas turbines in which air is compressed, combustion occurs at constant pressure, and expansion over the turbine occurs back to the starting pressure.

Brayton cycle: thermodynamic ideal cycle.



Gas Turbine

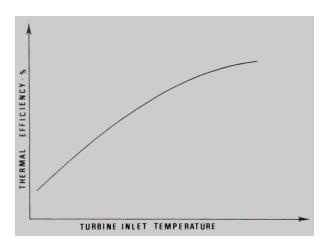
Gas Turbine Operating Parameters

Compressor, Air, Fuel, Combustion Chamber, Exhaust Gas, Power Output, Turbine

Gas Turbine Operating Parameters

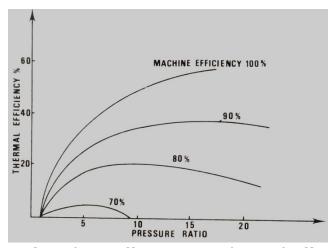
The performance of a gas turbine engine, meaning its power output and fuel consumption, is influenced by a variety of factors.

- Environmental factors
 - Ambient Pressure
 - Ambient Temperature
 - Humidity


- Inherent characteristics
 - Turbine inlet temperature
 - Pressure Ratio
 - Fuel Heating Value
 - Thermal Efficiency

Gas Turbine Operating Parameters

TURBINE INLET TEMPERATURE


• It is this value that determines the highest effective energy state of the working fluid within the turbine.

Thermal Efficiency vs. Turbine Inlet Temperature

PRESSURE RATIO

- Ratio of the discharged air pressure to suction air pressure.
- A measure of the internal energy imparted to the air by the compressor.

Effect of Machine Efficiency on Thermal Efficiency

Gas Turbine Operating Parameters

FUEL HEATING VALUE

- It is a measure of the available energy possessed by fuel.
- The ratio of HHV to LHV depends on the composition of the fuel.
- The greater the heating value, the smaller the quantity that must be burned for a given output.

THERMAL EFFICIENCY

 Ratio of the work output (W) to the heat input (Q₁) in the same energy units:

$$h = \frac{W}{Q_1}$$

 If Q₂=energy not converted into useful work :

$$W = Q_1 - Q_2$$

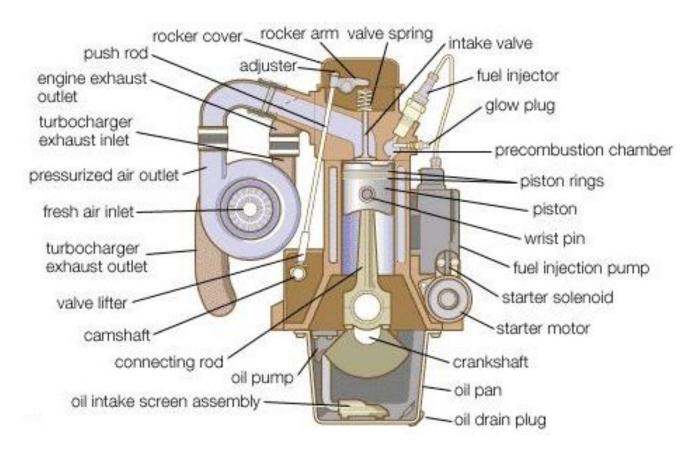
$$W = \frac{(Q_1 - Q_2)}{Q_1}$$



Explain the Gas Turbine Operating Parameters

Reciprocating Engines

- Diesel Engine
- ☐ Gas Engine



Diesel Engine

Reciprocating Engines

Diesel Engine

Reciprocating Engines

Diesel Engine operating systems;

- Fuel System
- Inlet Air System
- Exhaust System
- Lube Oil System
- Cooling System
- Starting System
- Protection System

Explain Diesel Engines main components

Thank You

