
الزراعة العضوية وتأثيرها على التغيرات المناخية (إصدار شهادات الكربون)

د. رامى محمد رمضان مدير المركز المصري للزراعة الحيوية COAE

تعريف بعض نظم الزراعة

الزراعة العضوية

تعتمد على مبادئ المحافظة على البيئة، تركز على خصوبة التربة وصحة النباتات ، لا تستخدم الكيماويات مطلقا .

الزراعة الحيوية

نوع من الزراعة العضوية تشتمل على بعد روحي

تحسين الزراعة السائدة مع استخدام كميات اقل من الأسمدة والكيماويات

Sir Albert Howard

السير ألبرت هوارد

- العلاقة بين خصوبة التربة وصحة النبات
 - •أهمية إدارة الدبال
 - 25سنة من البحوث في الهند
 - •تحسن التقنيات التقليدية
 - انتاج الكمبوست في المزرعة
 - •الآفات والحشائش كمؤشرات
- كتب: العهد الجديد للزراعة وكتاب الزراعة والبستنة للصحة أم للمرض

Masanobu Fukuoka

ماسانبو فوكوكا

- •لا حرث ، لا أسمدة ، لا مكافحة للحشائش ، لا للمبيدات
 - •طريقة لا تفعل شيئا في الزراعة الطبيعية
 - •الاستدامة والجدوى الاقتصادية
- استخدام القش ومخلفات المحصول السابق كغطاء للتربة
 - واستخدام البرسيم الأبيض كغطاء وعلف أخضر
 - الكتب: طريقة الزراعة الطبيعية وكتاب ثورة القش

العمل

المناخى

۱۳

العمل اللائق

31 الحياة تحت الماء

ونمو الاقتصاد

10 الحياة في البرّ

التعليم

الجيد

المساواة بين

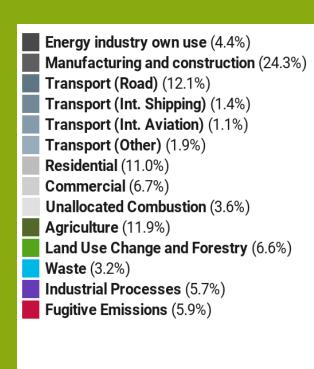
الجنسين

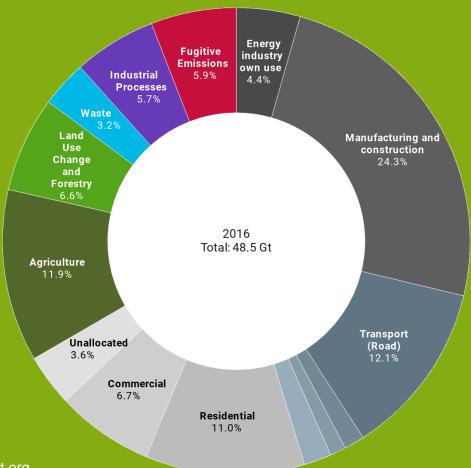
المياه النظيفة

الاستهلاك

المسؤولان

والإنتاج


والنظافة الصحية



Global Greenhouse Gas Emissions by Sector

SUMMARY

FACT AND FIGURES

HOW DO YOU FEEL

EXPLORE YOUR DATA

SOLUTIONS

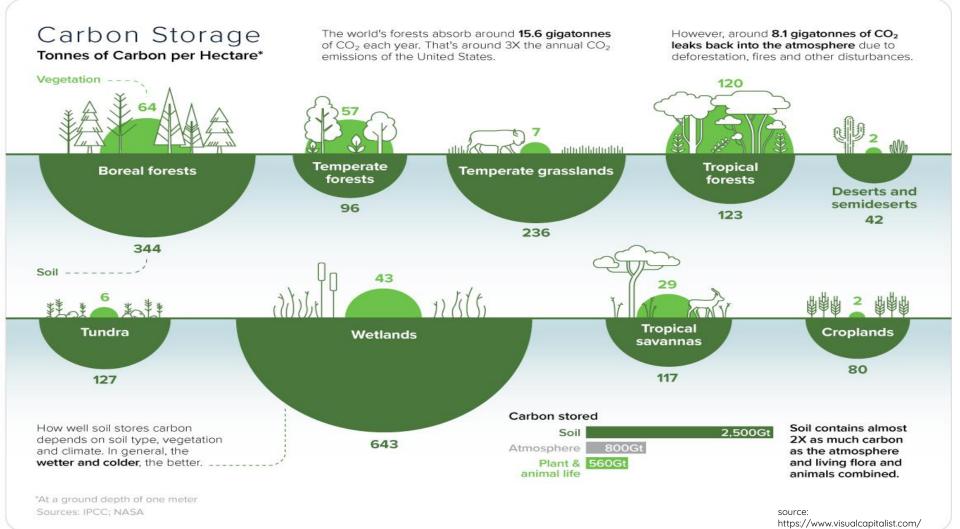
RESULTS

Your personal Earth Overshoot Day is:

[°] 22. Apr 🐽

If everyone lived like you, we would need

3.3 Earths

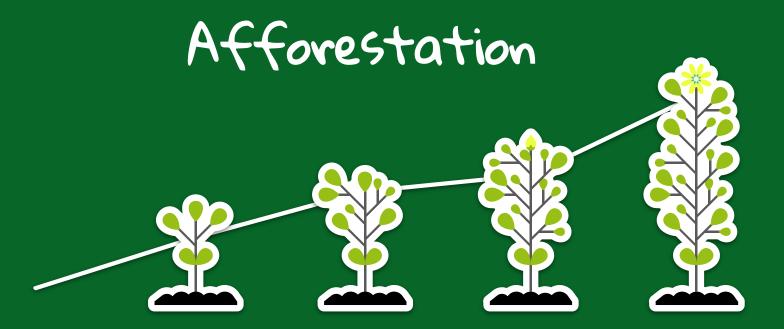

Source: Ecology Footprint web

The second biggest category of emissions is the sector that we rely on daily for the food we eat.

Methane from cows and other livestock contribute the most to emissions, at 5.8% total. These foods also have some of the highest carbon footprints, from farm to table.

Agriculture, Forestry & Land Use

Sub-sector	GHG Emissions Share
Livestock & Manure	5.8%
Agricultural Soils	4.1%
Crop Burning	3.5%
Forest Land	2.2%
Cropland	1.4%
Rice Cultivation	1.3%



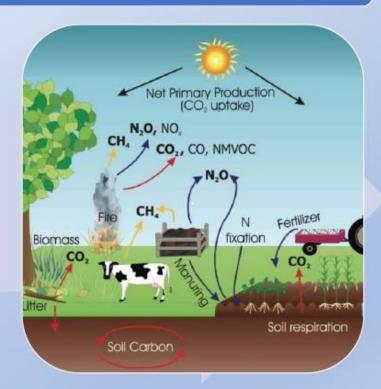
The sources of the carbon reduction on farms: (acc. to IPCC methodology and CDM);

- Trees
- Soil carbon sequestration
- Renewable energy
- Composting

The amount of carbon sequestration depends on the estimated growth rate during the project crediting period.

Composting

The project activity comprises measures to avoid the production of methane from biomass and other organic matter that would have otherwise been left to decay anaerobically partly in a solid waste disposal site without methane recovery, partly in uncontrolled dumping sites and partly burnt.


Renewable Energy

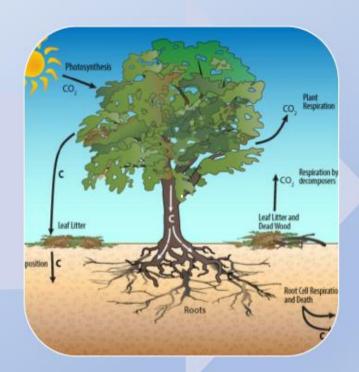
The baseline emissions are calculated based on the fuel consumption of the technology in use or that would have been used to generate the equivalent quantity of energy in the absence of the project activity

Carbon farming in Egypt

Carbon farming is referring to sequestering and storing carbon and/or reducing greenhouse gas emissions at farm level. It offers significant adaptation and mitigation potential which would deliver co-benefits to farmers and society.

Soil Carbon Sequestration

The methodology presents requirements to quantify changes in greenhouse gas (GHG) emissions and soil organic carbon (SOC) stocks through the adoption of improved agricultural practices. Activities can achieve avoidance of emissions as well as sequestration of carbon in the soil, both which result in increased SOC content.


Organic agriculture sequester carbon.(1.6 tco2e/fd)

Carbon Sequestration per tree

Forests sequester carbon by capturing carbon dioxide from the atmosphere and transforming it into biomass through photosynthesis.

Sequestered carbon is then accumulated steam, branches and wood (33kgco2/tree)

Avoidance of methane in composting

The project activity comprises measures to avoid the production of methane from biomass and other organic matter that would have otherwise been left to decay anaerobically partly in a solid waste disposal site without methane recovery, partly in uncontrolled dumping sites and partly burnt.

One ton compost saving carbon (0.6 tco2e/fd)

Saving carbon in renewable energy

The baseline emissions are calculated based on the fuel consumption of the technology in use or that would have been used to generate the equivalent quantity of energy in the absence of the project activity.

Carbon saving(1.35 tco2e/kw)

Carbon Saving Tons co2e

*numbers according to the Climate and Energy research Center assessment, validated by COAE 0.03/tree

TREE

0.6/+

Composting

Farm xx 2021

1200 ha, 336 ha has been reclaimed

190k trees have been planted

trees

Renewable

1.3 MW has been installed

5.8k tons compost have been used

	xx Farm Saved carbon 2021			
	Amount	carbon saving (tco2e)		
Soils	336 ha	2.14k CC		
Trees	190k tree	6.3k CC		
Composting	5.8k tons	3.5k CC		
RE	1.3 MW	1.7 k CC (Included in Soil)		
Total		11.93 k CC		

* CC: Carbon Credit: offsetting one tons cole

Small Farm Model

Example for one farm with a total area 2 ha in Egypt.

	Small farm model					
	Amount	carbon saving (tco2e)	Impact of CC (Euro)	Impact of CC (EGP)		
Soils	2 ha	8 CC	160 €	2,800 EGP		
Trees	600 tree	18 CC	360 €	6,300 EGP		
Compost ing	30 tons	18 CC	360 €	6,300 EGP		
RE	5 KW	5 CC (Included in Soil)				
Total		44 CC	880 €	15,400 EGP		

* CC: Carbon Credit: offsetting one tons cole

Implementation Process

Investment

Farmers need financial support

consulting

Carbon footprint assessment

certification

Validation certification body

marketing

Developing carbon market

Expected Results

	Farms	Acres	carbon saving (tco2e)	EGP	
Phase 1	Organic	280,000	3,180,908	1,325,454,609	
Phase 2	Desert	3,300,000	37,488,000	15,632,496,000	
Phase 3	Delta	5,800,000	65,888,000	27,455,845,472	
Phase 4	Ongoing	3,000,000	34,080,000	14,201,299,382	
	Total	9,380,000	106,556,800	44,402,729,402	

* total without ongoing farm

Agricultural Carbon Market in Egypt

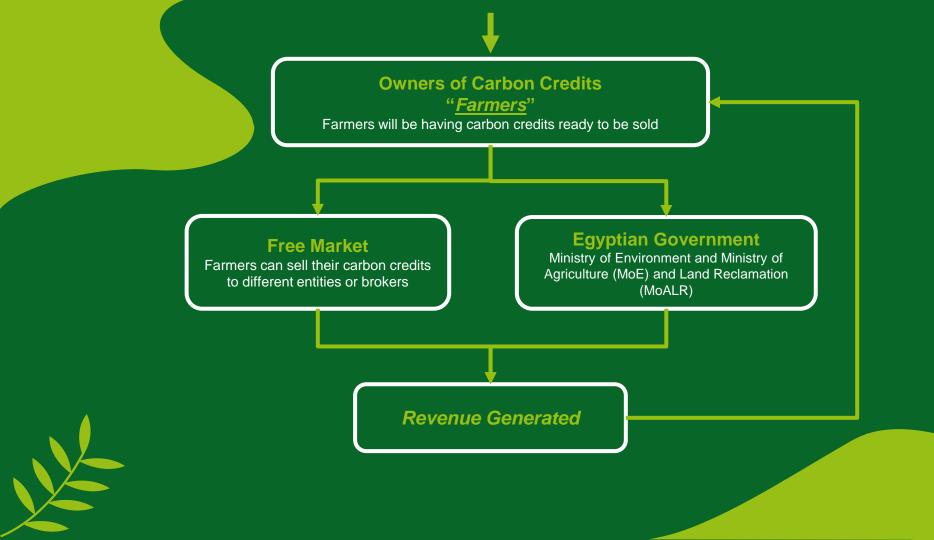
Steering Committee

Promoters

Role: To be responsible for promoting the concept and applications to farmers through awareness campaigns and stakeholders engagement activities

Farmers

Role: to apply the sustainable agricultural model to achieve emissions reductions, through applying Carbon Soil Sequestrations, Compost and Afforestation


Technical Advisory

Role: to provide technical assistance and technical support to farmers

Reviewers and Auditors

Role: to monitor, review and issue carbon credits, according to IPCC methodology and ISO 17065 certification by EGAC

UNDERLYING METHODOLOGY

IPCC principles and guidelines Methodology of IPCC and Cool Farm Tool for assessment of the farm crop rotation with the carbon sequestration in soil and trees

Greening the Desert

CERTIFICATE NUMBER

PROJECT REFERENCE NUMBER GTD 2209

The Carbon Footprint Center certifies that:

Clima4Future GmbH

neutralized

1

tons of CO2 emissions by supporting the certified COAE project

Desert project* in ______ Egypt.

Inspected by:

Center of Organic Agriculture in Egypt

Thoraga Seeda

CARBON FOOTPRINT CENTER, 2 Belbes Desert Road, 6:0. 2004, El Horraya Heliopolis, Cairo, Egypt Tel : (+290/20086124, Crest cfc9hu.eds.eg.

4 6

ECOSIA

Search the web to plant trees...

C

