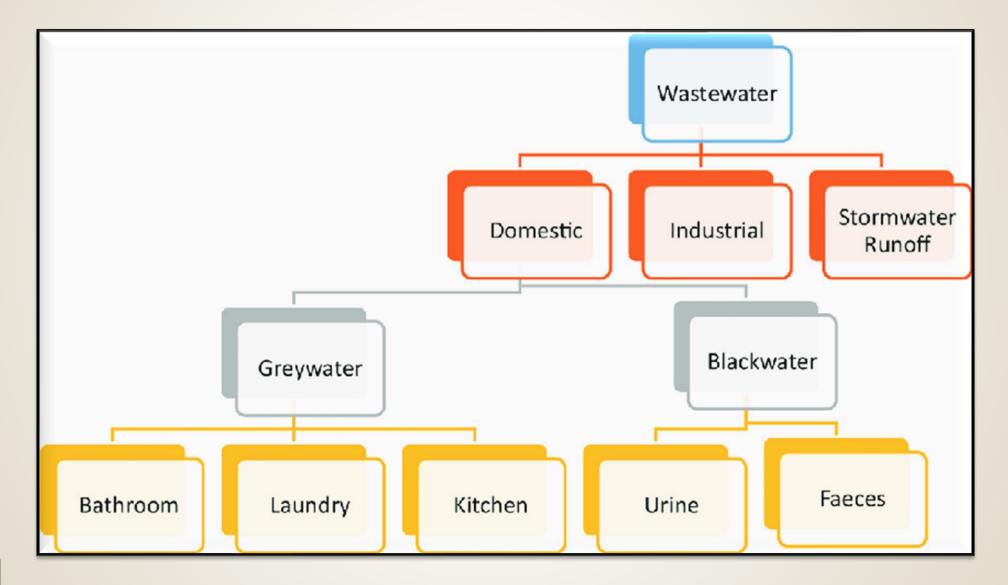


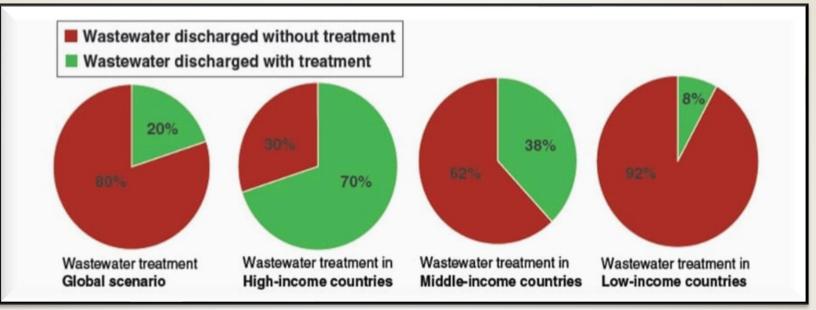
Industrial Wastewater Treatment

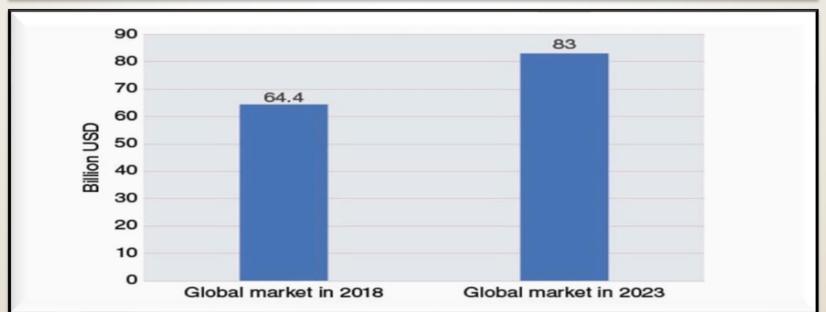
Course content



- □ Wastewater type
- ☐ Characteristics Of Wastewater
- Wastewater Treatment Market
- □ Industrial Wastewater
- □ Industrial Wastewater Treatment
- ☐ Characteristics Industrial Of Wastewater
- □ New Borg El-Arab City factories
- Wastewater Treatment Methods
- ☐ 1- Physical Treatment
- □ 2-Chemical Treatment
- ☐ 3- Biological Treatment
- ☐ Wastewater Treatment Stages
- Wastewater Treatment plants
- □ Wastewater Management

Wastewater type


Characteristics Of Wastewater


Physical characteristics	Chemical characteristics	Biological characteristic
Solids Total, suspended and dissolved, volatile and fixed or mineral solids	Organic contents BOD, COD, fats, phenols, surfactants, oil and grease, etc.	Animals
Colour	Inorganic contents alkalinity, chlorides, nitrogen, sulphur, phosphorous, heavy metals, pH, carbohydrates, etc.	Plants
Odour	Gases oxygen, methane, hydrogen sulfide	Protista
Temperature		Pathogenic organisms Viruses

Wastewater Treatment Market

Course content

- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- □ Industrial Wastewater
- □ Industrial Wastewater Treatment
- ☐ Characteristics Industrial Of Wastewater
- □ New Borg El-Arab City factories
- ☐ Wastewater Treatment Methods
- ☐ 1- Physical Treatment
- ☐ 2-Chemical Treatment
- □ 3- Biological Treatment
- ☐ Wastewater Treatment Stages
- Wastewater Treatment plants
- □ Wastewater Management

Industrial Wastewater Treatment

HORIZON — ACADEMY INDUSTRIAL TRAINING ACADEMY

Why ??

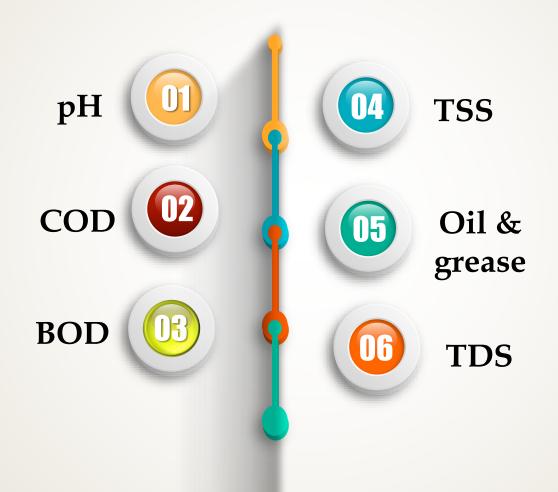
Protecting the environment

Protecting public health

Meeting regulatory requirements

Conserving water resources

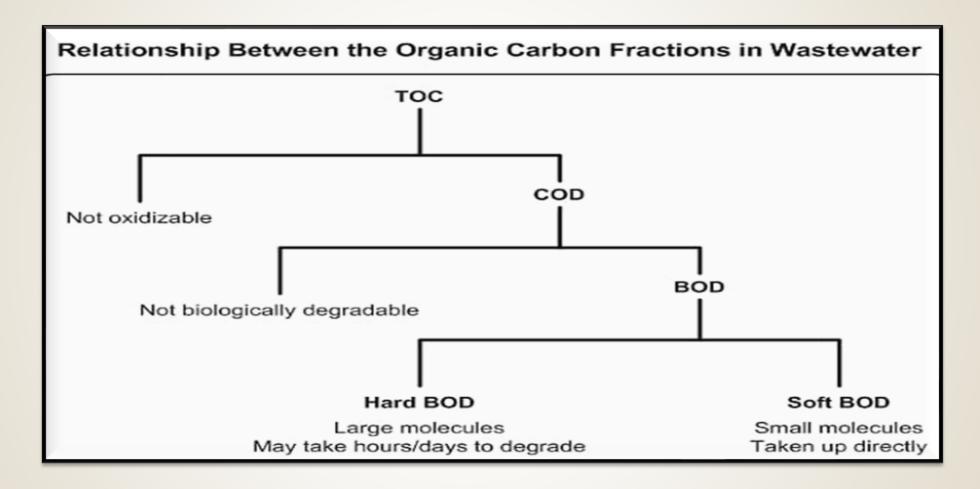
Improving economic efficiency


Industrial Wastewater

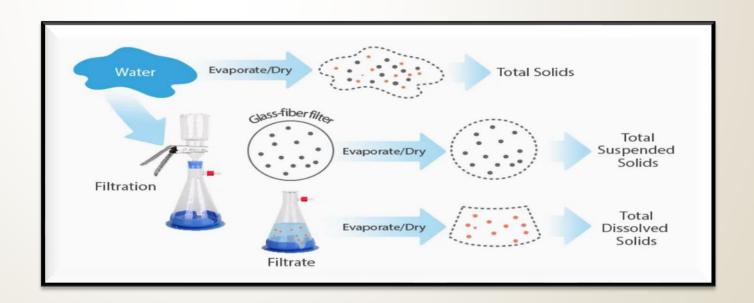
Nature Of Industrial Wastewater depends on The quality and quantity of pollutants produced by the industry vary widely from one industry to another and depend on several factors:

- Type of industry.
- Plant size, age and maintenance system.
- Factory work system, production volume and quality.
- Techniques used in industrial processes.
- The quality of fuel and raw materials used.

Total organic carbon (TOC) is the amount of carbon found in water.


is the amount of oxygen required to chemically oxidize organic matter in your wastewater into inorganic matter.

is the amount of oxygen required to biologically oxidize the organics in your sample.



TSS & TDS

total suspended solids (TSS) and total dissolved solids (TDS) affect the water quality, high TSS may decrease water's natural dissolved oxygen levels

Oils, grease and fats

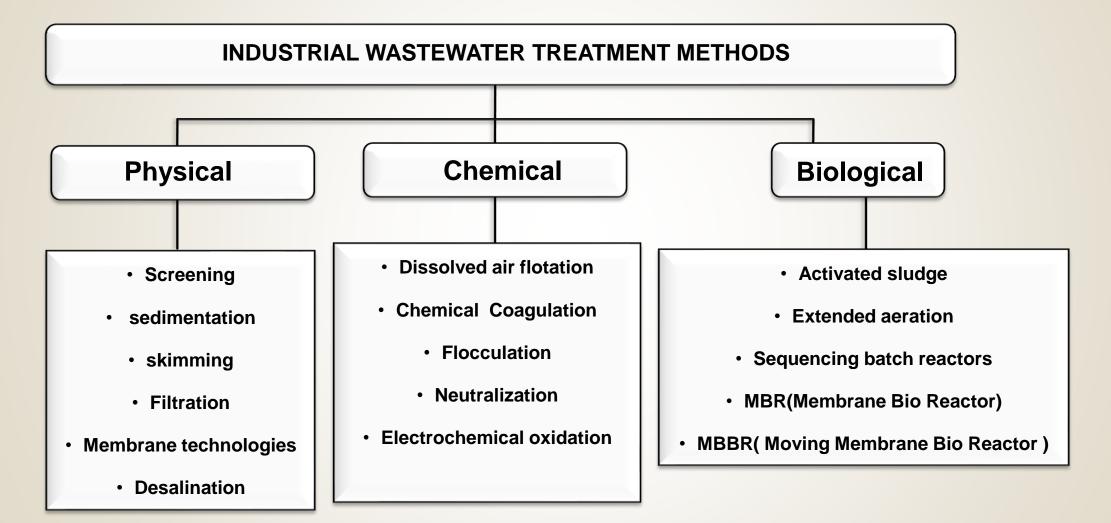
- Organic substances are difficult to decompose by bacteria
- It must be removed before biological treatment, where oxygen exchange between air and water is hampered
- Increase BOD Value

FATS Solid at room temperature: butter, shortening, margarine, peanut butter, meat trimmings, uncooked poultry skin, cheese, milk, cream, sour cream, ice cream.

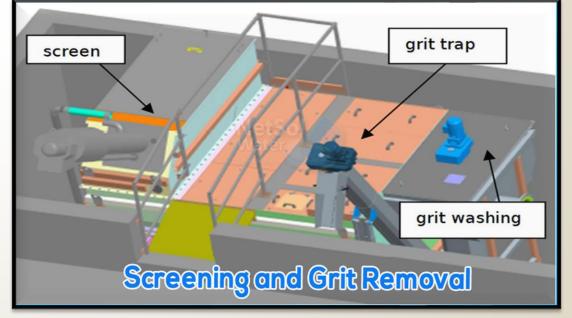
OILS Liquid at room temperature: vegetable oil, canola oil, olive oil, corn oil, salad dressings, cooking oils.

GREASE Liquid during cooking, solidified when cooled: gravy, mayonnaise, melted meat fat, bacon, sausage, boiled poultry skin, salad dressings.

- Hydrogen ion concentration is an important indicator of wastewater.
- The extent of proper concentration of the presence of most biological life is very small and critical.
- Over-the-range 6.5: 8.5 wastewater is difficult to process biologically, so if pH is not proper, it will adversely affect pH in natural water.


Course content

- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- ✓ Industrial Wastewater
- ✓ Industrial Wastewater Treatment
- ✓ Characteristics Industrial Of Wastewater
- ✓ New Borg El-Arab City factories
- Wastewater Treatment Methods
- ☐ 1- Physical Treatment
- ☐ 2- Chemical Treatment
- □ 3- Biological Treatment
- Wastewater Treatment Stages
- Wastewater Treatment plants
- □ Wastewater Management

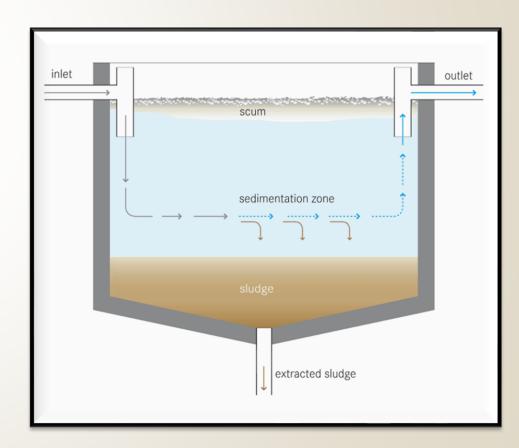


1- Physical Treatment

Screening

We remove large solids and grit from wastewater because these solids and grit can interfere with the

wastewater treatment processes.

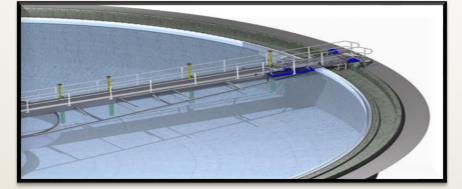


1- Physical Treatment

Sedimentation

Sedimentation is the process of allowing particles in suspension in water to settle out of the suspension under the effect of gravity. The particles that settle out from the suspension become sediment, and in water treatment is known as sludge.

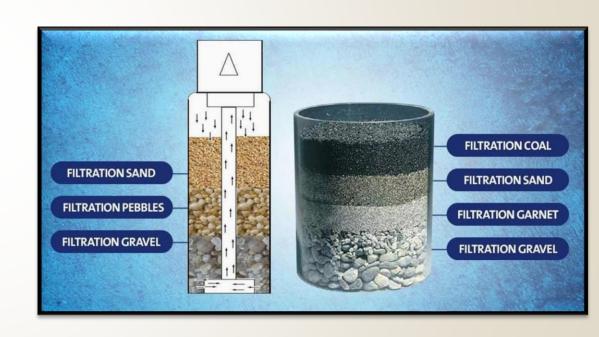




1- Physical Treatment

skimming

The skimmer removes the floatable solids and liquids like oil and grease so that the wastewater can be further processed. Q. In the aeration tank of a wastewater treatment plant, aerobic bacteria help in getting rid of some contaminants.



1- Physical Treatment

Filtration

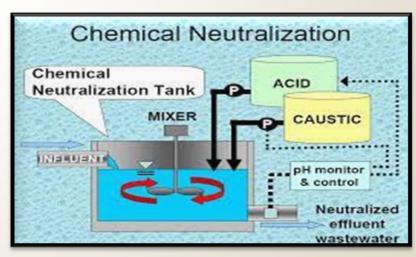
During filtration, the clear water passes through filters that have different pore sizes and are made of different materials (such as sand, gravel, and charcoal). These filters remove dissolved particles and germs, such as dust, chemicals, parasites, bacteria, and viruses.

Course content

- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- ✓ Industrial Wastewater
- ✓ Industrial Wastewater Treatment
- ✓ Characteristics Industrial Of Wastewater
- ✓ New Borg El-Arab City factories
- ✓ Wastewater Treatment Methods
- ✓ 1- Physical Treatment
- ☐ 2-Chemical Treatment
- ☐ 3- Biological Treatment
- ☐ Wastewater Treatment Stages
- Wastewater Treatment plants
- □ Wastewater Management

2- Chemical Treatment

- 1. Reaction to produce an insoluble solid.
- 2. Reaction to produce an insoluble gas.
- 3. Reduction of surface charge to produce coagulation of a colloidal suspension
- 4. Reaction to produce a biologically degradable substance from a non biodegradable substance.
- 5. Reaction to destroy or otherwise deactivate a chelating agent.
- 6. Oxidation or reduction to produce a non-objectionable substance or a substance that can be removed more easily by one of the previous methods.


2- Chemical Treatment

Neutralization

Chemical neutralization is important components of water and wastewater treatment.

Chemical neutralization is employed to balance the excess acidity or alkalinity in water.

- Caustic soda (NaOH)
- Sodium carbonate Soda Ash (Na₂CO₃)
- Calcium hydroxide (Ca(OH)₂)
- Hydrochloric acid (HCl)
- Sulfuric acid (H₂SO₄)

2- Chemical Treatment

Chemical Coagulation

chemical water treatment process used to remove solids from water, by manipulating electrostatic charges of particles suspended in water. This process introduces small, highly charged molecules into water to destabilize the charges on particles, colloids, or oily materials in suspension.

Industrial Wastewater

Coagulant

Coagulation

Flocculant

Flocculation

Destabilized Wastewater Particles

Sedimentation

Treated Wastewater

Wastewater

2- Chemical Treatment

Chemical Coagulation

Coagulation is a chemical process in which a chemical compound, a "coagulant", is added to the water, in order to destabilize the suspended particles and promote creation of flocs.

A 'Stable colloidal particle' is a colloidal particle that remains as a separate entity in the water, i.e. in a dispersed state.

The reason colloidal particles tend to remain in the dispersed state is because their surface is electrically charged, usually with a negative charge.

2- Chemical Treatment

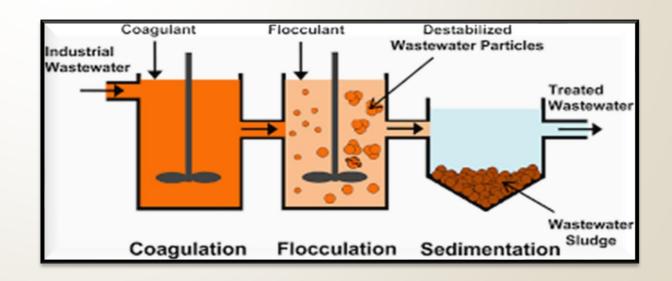
Chemical Coagulation

The factors that influence coagulation

- temperature
- pH
- effluent quality
- dosage and coagulant type
- Corrosivity

		IJ
	OBLZ	N
	ORIZO	
_	ACADEM	Y —
	STRIAL TRAINING	ACADEMY

	1				T	T	T		
S N o		Coagulant	Dosing	Optimum Alkalinity/pH	Temperature	Max. Mixing/rpm	Parameter	Remark	Author
1	Sugar Industries	(Al ₂ (SO ₄) ₃ +FeSO ₄) and Aluminium salt Al ₂ (SO ₄)	5mg/I	7.1	nm	nm	COD	75% AND 77% COD REDUCTION	Khan et al., 2003
2	Pulp and paper	Calcium benoite+alum	100mg/l+ 200mg/l	7	nm	120	color	88% of color reduction found	Dilek et al., 2001
3	Pulp and paper	polyaluminium chloride (PAC) as the chemical coagulant and bagasse fly ash (BFA)	3kg/1 PAC, 2kg FOR FLY	PAC=pH3 Fly ash =pH 4	nm	120	Color and COD	COD and colour to 87 % and 95 %, respectively	Srivastava et al., 2005
4	Pulp and paper	Poly-Aluminum- Silicate-Chloride	40mg/I	7	nm	200	Turbity and COD	93.13% and 91.12%	Kadhum et al., 2011
5	Pulp and paper	aluminium chloride, poly aluminium chloride and copper sulphate	PAC=8ml/I AICI;=5ml/I CuSO ₄ =5ml/I	PAC=pH5 AIC13=pH4 CuSO4=pH6	18	flash-mixed	COD and color	PAC= COD to 84 % and 92 % AIC13= 74 % COD and 86 % colour CuSO4= 76 % COD reduction and 78 %	Kumar et al., 2011
6	Textile Industry	PAC	25mg/I	7	nm	100	COD, TDS and turbidity	90.17, 74.09 and 93.47%	Sabur et al., 2012
7	Distillery (cane molasses based DWW, BDE, and the anaerobic lagoon effluent (LE).)	FeCl ₃ , AlCl ₃ and polyferric- hydroxysulfate	40mg/I	6	nm	150	Color, TOC	Polyferric- hydroxysulphate 32, 87, 94 % color reductions and 21 %, 73 %, 73 % TOC (total organic carbon) reductions	Migo et al., 1993

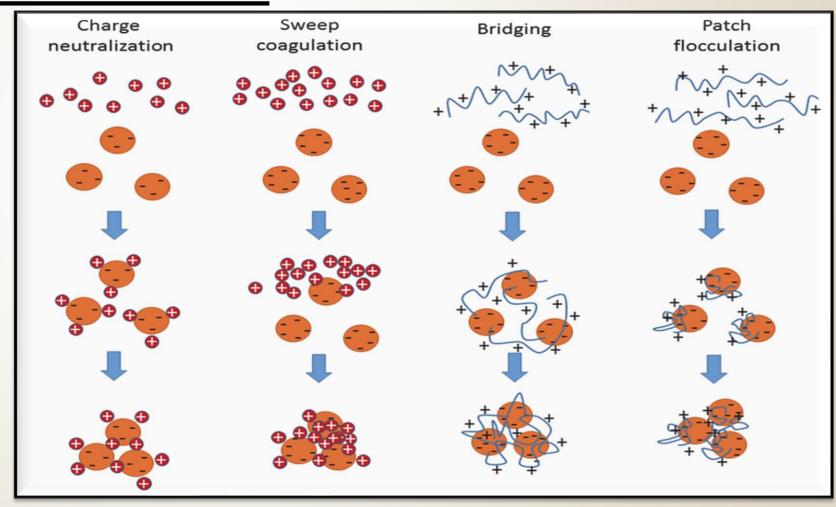

2- Chemical Treatment

Flocculation

Flocculation refers to the **process** by which fine particulates are caused to clump together into a floc. The floc may then **float** to the top of the liquid (creaming), **settle** to the bottom of the liquid (sedimentation),

Flocculants

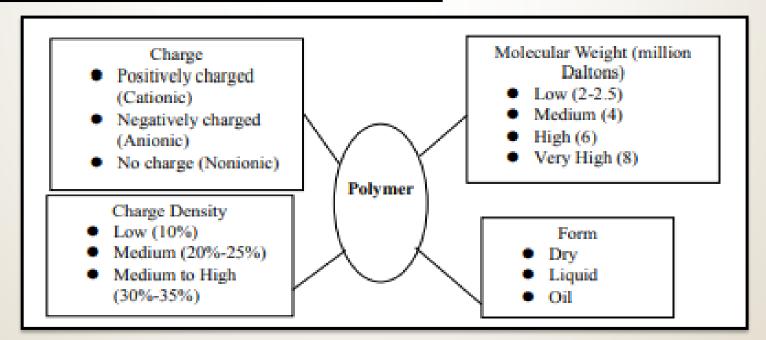
- polyacrylamide (PAM)
- sodium polyacrylate
- polyoxyethylene
- polyvinylamine
- polyvinyl sulfonate



2- Chemical Treatment

Flocculation

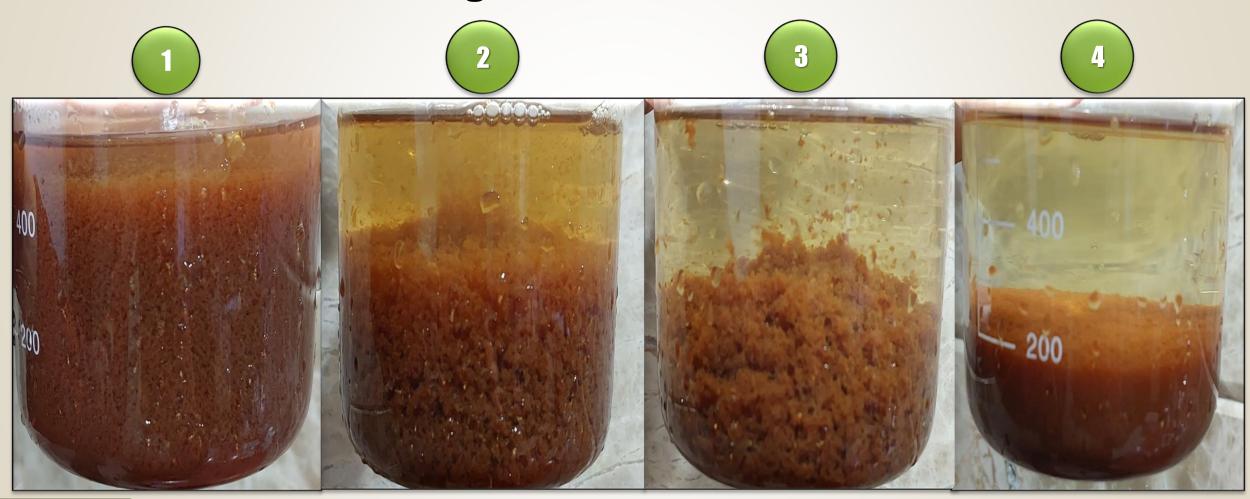
Flocculation is a process by which a chemical coagulant added to the water acts to facilitate bonding between particles, creating larger aggregates which are easier to separate.



2- Chemical Treatment

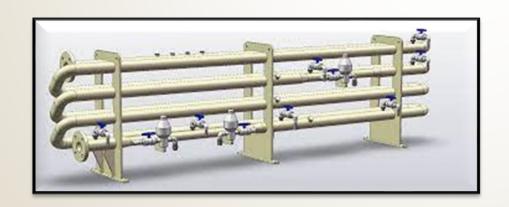
Chemical Flocculation

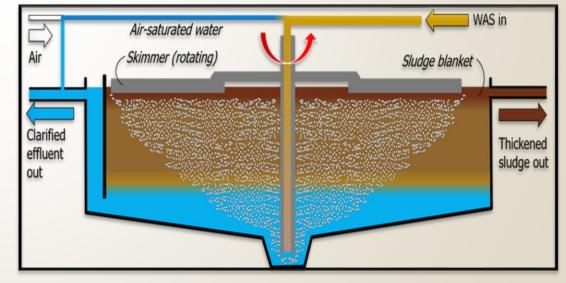
The factors that influence Flocculation


2- Chemical Treatment

	Coagulant		Polymer		TSS (mg/L)			
References		Dosage		Dosage			Removal	References
	Name	(mg/L)	Name/type	(mg/L)	Influent	Effluent	eff (%)	
	Aluminum							
Sarparastzadeh et	sulfate	80	N/A	N/A	77.5	24	69	Sarparastzadeh et
al. (2007)	Ferric							al. (2007)
	chloride	70	N/A	N/A	77.5	40.3	48	
Haydar & Aziz.	Aluminum				568-			Haydar & Aziz.
(2009)	sulfate	200-240	N/A	N/A	2130	N/A	94.3-97.1	(2009)
	Ferric		Poly acrylamide					
A do 1 (2006)	sulfate	500	polyelectrolyte	25	1620	97.2	94	Amuda et al.
Amuda et al. (2006)	Ferric							(2006)
	sulfate	500	N/A	N/A	1620	421.2	74	
Yu & Bourke	Ferric							Yu & Bourke
(2000)	chloride	50	Anionic PAM	0.5	N/A	N/A	85	(2000)
Wang et al. (2009)	N/A	N/A	PAC	100	N/A	N/A	76	Wang et al. (2009)
He et al. (2016)	N/A	N/A	PAC	35	N/A	N/A	90	He et al. (2016)
	Ferric							
Poon & Chu (1999)	chloride	30	Polyacrylamide	0.5	N/A	N/A	60-80	Poon & Chu (1999)
Johnson et al.	Ferric							Johnson et al.
(2008)	chloride	40	Anionic polymer	0.5	N/A	N/A	83	(2008)
	Ferrric							
Aiyuk et al. (2004)	chloride	50	Anionic polymer	10	N/A	N/A	85	Aiyuk et al. (2004)
(Ch. C. i) (2000)	Aluminum	9500	N/A	N/A	80	7.92	90.1	Ghafari et al.
Ghafari et al. (2009)	N/A	N/A	PAC	2000	80	7.84	90.2	(2009)

Coagulation & Flocculation

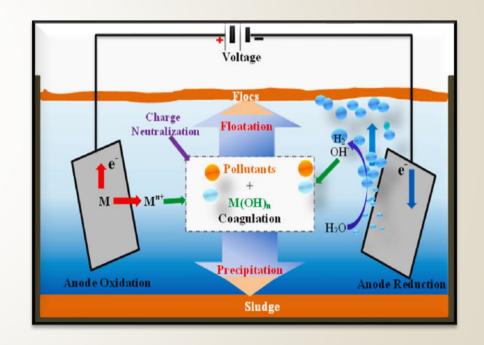




2- Chemical Treatment

Dissolved Air Flotation (DAF)

Dissolved Air Flotation is a proven and effective physical/chemical technology for treating a variety of wastewater streams. DAF systems are designed to remove total suspended solids (TSS), biochemical oxygen demand (BOD), and oils and greases (O&G) from a wastewater stream.



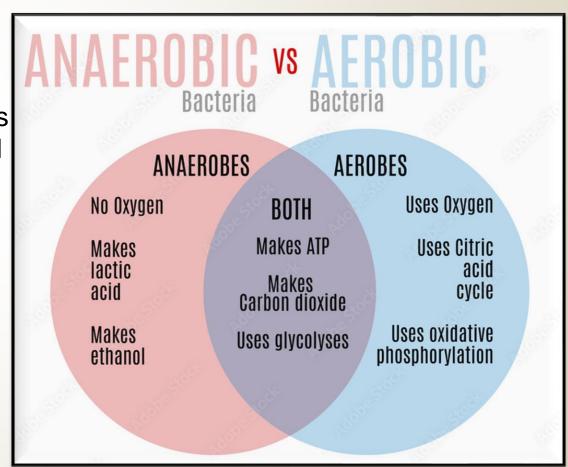
2- Chemical Treatment

Electrocoagulation

In the EC process, different metal hydroxide species are formed. The metal hydroxides (coagulant) aggregate the dispersed particles in the solution, which forms bigger flocs and then is removed by sedimentation. In most cases, EC is not able to reduce the stable persistent organic compounds to below the allowable discharge limits. Also, the EO process is an emerging process where contaminants are removed by oxidizing directly at the surface of the electrode or indirectly by generating oxidants in the solution

Course content

- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- ✓ Industrial Wastewater
- ✓ Industrial Wastewater Treatment
- ✓ Characteristics Industrial Of Wastewater
- ✓ New Borg El-Arab City factories
- ✓ Wastewater Treatment Methods
- ✓ 1- Physical Treatment
- ✓ 2-Chemical Treatment
- □ 3- Biological Treatment
- Wastewater Treatment Stages
- ☐ Wastewater Treatment plants
- ☐ Wastewater Management



3- Biological Treatment

Bacteria are exploited for the ability to:

Absorb the soluble and colloidal organic substances present in the wastewater, making them suspended and sedimentable (bio-flocculation).

Directly degrade the organic substances used for their metabolism, turning them into aggregates (new cells synthesys).



3- Biological Treatment

- Aerobic treatment is typically applied to efficiently treat low strength wastewater (COD <1000 mg/L) when the treatment requires the presence of oxygen.
- anaerobic treatment is typically applied to treat wastewater with higher organic loading (COD >4000 mg/L).

Wastewater Treatment Methods

HORIZON — ACADEMY INDUSTRIAL TRAINING ACADEMY

3- Biological Treatment

Aerobic activated sludge	Anaerobic degradation		
High energy intensive	Low energy intensive		
Large volume of sludge	Small volume of sludge		
Requires highly skilled operation and process control	Requires moderate skilled operation and process control		
Additional nutrients is required	No additional nutrients required		
Costly technical specifications	No costly technical specifications		
Poor solid settleability	Good solid settleabiblity		
Requires high hydraulic retention time (HRT)	Low HRT		
Low elimination rate	High elimination rate		

3- Biological Treatment

For their growth, bacteria need:

- Carbon source:
- Organic (heterotrophs).
- Inorganic (autotrophs).
- An electron acceptor:
- Free oxygen (aerobic processes).
- Bound oxygen (anoxic processes).
- An organic compound (fermentation).
- An energy source:
- Light (photosynthetics).
- Organic substances (heterotrophs).
- Inorganic substances (chemolithotrophs).

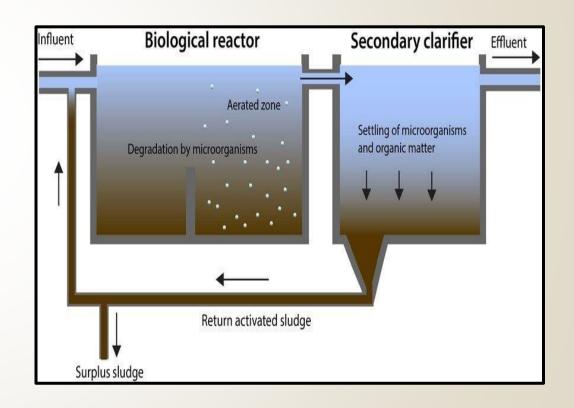
3- Biological Treatment

For their growth, bacteria need:

The presence of N and P is essential for proper **bacterial metabolism**. The following ratio in the influential slurry must be ensured:

BOD: N: P = 100: 5:1

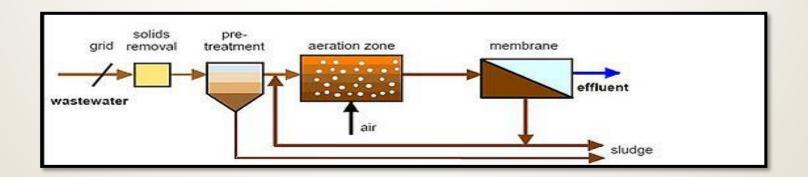
Deficiency of nutrients has to be integrated adding chemicals



3- Biological Treatment

Activated sludge

The activated sludge process is the most widely used biological wastewater treatment. As is well known, by its means, suspended-growth microorganisms are applied The general arrangement of an activated sludge process for removing carbonaceous pollution



3- Biological Treatment

MBR(Membrane Bio Reactor)

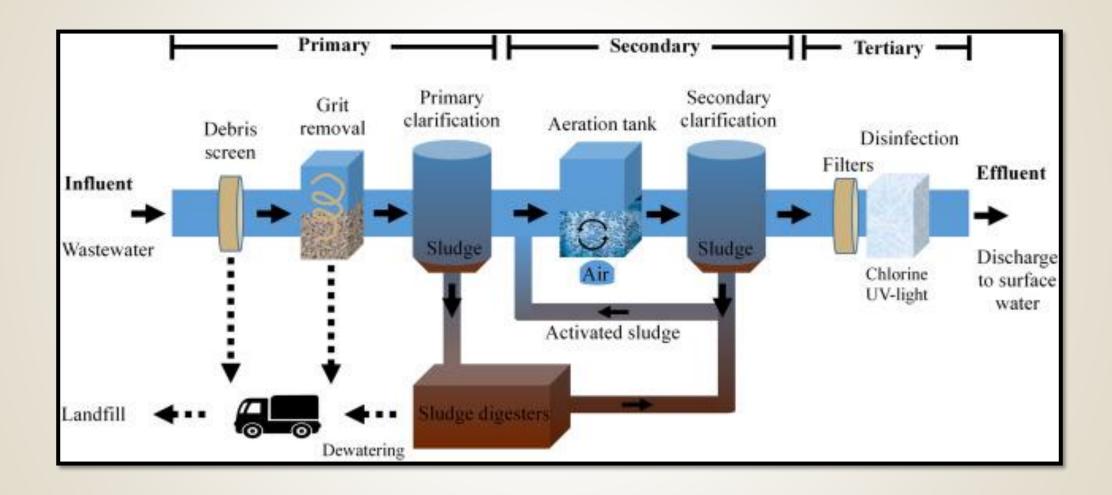
Membrane bioreactor (MBR) is the combination of a membrane process like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewater treatment

3- Biological Treatment

MBBR (Moving Membrane Bio Reactor)

Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process

Course content



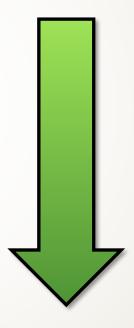
- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- ✓ Industrial Wastewater
- ✓ Industrial Wastewater Treatment
- ✓ Characteristics Industrial Of Wastewater
- ✓ New Borg El-Arab City factories
- ✓ Wastewater Treatment Methods
- √ 1- Physical Treatment
- ✓ 2-Chemical Treatment
- ✓ 3- Biological Treatment
- ☐ Wastewater Treatment Stages
- Wastewater Treatment plants
- □ Wastewater Management

Wastewater Treatment Stages

Wastewater Treatment Stages

Wastewater Treatment Stages Based On The Following:

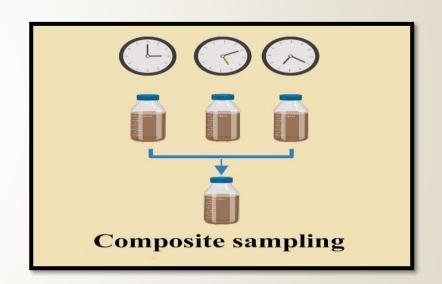
- Avoidance
- Re-use
- Re-cycling
- Recovery of energy
- Treatment
- Disposal
- The treating of wastewaters can take place at different points in the process.



Wastewater Treatment Stages

Characteristics Of Industrial Wastewater Removal

- 1. sedimentable Tss
- 2. Ph adjustment
- 3. Oil & Grease
- 4. Ph adjustment
- 5. non-sedimentable TSS
- 6. COD & BOD
- 7. TDS



Wastewater Treatment plants

Sample Collecting

Composite sampling consists of a collection of numerous individual discrete samples taken at regular intervals over a period of time, usually 24 hours

Wastewater Treatment plants

Jar test

Jar testing is a pilot-scale test of the treatment chemicals used in a particular water plant. It simulates the coagulation/flocculation process in a water treatment plant

Selection of Treatment System

- Daily flowrate
- Peak hour flowrate
- Available area
- Purpose of treatment
- Composite sampling analysis for COD, BOD, TSS, TDS, PH, Oil & Grease

Case study

Before

parameters	Unit	Results	
На		11.9	
Chemical oxygen demand ,COD	mgO ₂ /I	4100	
Biological oxygen demand ,BOD	mgO ₂ /l	2200	
Total suspended solids	mg/l	480	
Settleable matter at 10 min	ml/l	suspension	
Settleable matter at 30 min	m1/1	suspension	
Total dissolved solids	mg/l	4900	
Total nitrogen	mg/l	250	
Total phosphorus	mg/l	43	
Oil and grease	mg/l	47	

After

Parameter	Untreated WW
pH	11.8
Chemical Oxygen Demand, COD, mgO ₂ /l	1980
Soluble Chemical Oxygen Demand, COD, mgO ₂ /l	1130
Biological Oxygen Demand, BOD, mgO ₂ /l	1050
Total Suspended Solids, TSS, mg/l	140
Total Dissolved Solids, TDS, mg/l	2630

Case study

TSS	COD	TDS	Temp	PH	اسم العينة
3788	7744	1969	36.7	7.31	مصنع کرتون
1500/mil	1100/mil	800/mil	Up to 43	6.0 - 9.5	لنسب لقياسية

Course content

- ✓ Wastewater type
- ✓ Characteristics Of Wastewater
- ✓ Wastewater Treatment Market
- ✓ Industrial Wastewater
- ✓ Industrial Wastewater Treatment
- ✓ Characteristics Industrial Of Wastewater
- ✓ New Borg El-Arab City factories
- ✓ Wastewater Treatment Methods
- √ 1- Physical Treatment
- ✓ 2-Chemical Treatment
- ✓ 3- Biological Treatment
- ✓ Wastewater Treatment Stages
- ✓ Wastewater Treatment plants
- ✓ Wastewater Management

Any questions?

