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Abstract

Davis Balestracci recently wrote, “When I look at training materials or
books (on statistical process control), their tendency is to bog down heav-
ily in the mechanics of construction without offering a clue about inter-
pretation.” If you have been frustrated by very technical statistical process
control (SPC) training materials, then this is the book for you. This book
focuses on how SPC works and why managers should consider using it in
their operations rather than on how to calculate limits for control charts.
It provides the reader with a conceptual understanding of SPC so that
appropriate decisions can be made about the benefits of incorporating
SPC into the process management and quality improvement processes.
An extensive list of references is provided for those readers who wish to
dig deeper into the technical details of SPC.

SPC is designed to facilitate making better, more informed decisions
about processes. SPC can indicate whether a process should be adjusted
or left alone. It can also indicate when a process needs improvement to
meet requirements, often can indicate a starting point for improvement
projects, and can also provide documentation of the results of process
improvement activities.

SPC as we know it was developed by Walter Shewhart in the 1920s
and 1930s. Properly employed, SPC can be a significant factor in the
control and minimization of variation in the manufacture of products
and the delivery of services. It can greatly reduce the time it takes to rec-
ognize problems and provide information useful in the identification of
root causes of those problems. SPC is also useful in demonstrating that a
process is capable of consistently delivering what the customer wants. For
this reason, some organizations require their suppliers to use SPC in order
to become preferred suppliers. SPC also can provide conclusive evidence
for the effectiveness of continuous process improvement programs.

The concept of SPC is relatively simple and with today’s modern soft-
ware packages, the mechanics of using SPC are simple. But that simplicity
can lead to problems. With modern software packages anyone can create
control charts from data without understanding the key concepts that
make those control charts useful, how to interpret the charts they create,

or how to use the information the charts provide to improve processes.



The purpose of this book is to provide the necessary understanding to
effectively utilize SPC to improve quality and consistency of both prod-
ucts and services.

Because today there is little need to make the necessary calculations
by hand, the book focuses little attention on manual calculations. Rather,
the book primarily utilizes Minitab and NWA Quality Analyst, two of the
most popular statistical analysis software packages on the market. Links
are provided to the home pages of these software packages where trial ver-
sions may be downloaded for evaluation and trial use.

Unlike statistics and statistical quality control textbooks and manu-
als, this book does not address the tedious topic of how to construct
control charts by hand. Instead, it covers the basic statistical concepts
behind control charts to provide basic understanding of what is going
on and then discusses the basics of using software products to create the
charts.

The book also addresses the question of why SPC should be con-
sidered for use, the process of implementing SPC, how to incorporate
SPC into problem identification, problem solving, and the management
and improvement of processes, products, and services. Examples from my
25 plus years of experience with SPC are included to illustrate main
points in the book. References are also included for readers who wish to

delve more deeply into the technical aspects of SPC.
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Testimonial

‘This book is a must read for those who want to better understand and
improve their processes and it should have great value as a desk refer-
ence. The case studies very well illustrate how SPC is used in a variety of
industries. Sower shows that “data are all around us”— we just need to be
able to recognize the data and know how to apply it to statistical process
control (SPC). The discussion of uncertainty, precision, and accuracy is
well done. Not only does the book describe the SPC methodology, but
it also makes a good case for empowerment down to the lowest level. It
reminds us that empowerment really enhances team building and hope-

fully results in a better product.

—Richard Bozeman, Jr.

Author and Inventor

Retired Chief of the Propulsion and
Power Division Test Facilities
NASA






Preface

Advertising mogul David Ogilvy complained that the advertising business
tries to impress by using pretentious jargon. I have heard some business
people speak in the same way about statistics and in particular statistical
process control (SPC). They say that when they ask an expert about SPC,
they receive a response filled with statistical jargon, equations, and Greek
letters. Admittedly, to be an expert in SPC, one needs to understand the
statistical jargon, equations, and Greek letters, and every organization
using SPC needs at least one such expert. But not everyone in the organi-
zation needs to be an expert in order to take advantage of the remarkable
benefits that can be attained from implementing SPC.

This book is designed to introduce SPC to working professionals who
have little or no expertise in statistics. It uses very little statistical jargon,
few equations, and just the bare minimum of Greek letters. The chapters
contain many illustrations and examples to help the reader better concep-
tualize the material.

The objective of the book is to provide readers with a conceptual
knowledge of SPC and what it can do for organizations that implement
it. References are provided for readers who wish to acquire more depth in
the subject. But readers whose only acquaintance with SPC is just having
read this book will be better able to converse with the experts to under-
stand what the experts recommend and to take appropriate actions based
on those recommendations.

Appendix A consists of a bare bones introduction to statistical con-
cepts and terminology. Those with no background in statistics may wish
to read Appendix A before reading Chapter 3. The book incorporates the
use of SPC software to crunch the numbers instead of emphasizing how
to make the calculations by hand. It is important that users have knowl-
edge of what the software is doing, so the reader is advised not to rely
on software applications without having a firm grasp of the underlying
statistics when using SPC. Appendix B contains information about the
SPC software used in this book.
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CHAPTER 1

The Value SPC Can Add to
Quality, Operations, Supply
Chain Management, and
Continuous Improvement
Programs

We don’t like volatility. Nobody likes volatility.
—Lionel Guerdoux Managing Partner,

Capricorn Venture Partners

Uncertainty is something organizations struggle to deal with. A few
examples of how organizations cope with uncertainty include pro for-
mas, which are prepared for a variety of contingencies; forecasts that are
created with confidence intervals to assess the magnitude of uncertain-
ties; production planning, which often involves an attempt to predict
the range of unpredictable possibilities that render the plan obsolete on a
nearly daily basis; and order quantities that include safety stock.

Statistical process control (SPC) is defined by the American Society
for Quality as “the application of statistical techniques to control a pro-
cess.”! Properly employed, SPC can be a significant factor in the control
and minimization of variation and the resulting uncertainty in the manu-
facture of products and the delivery of services. It can greatly reduce the
time it takes to recognize problems and provide useful information for the
identification of root causes of those problems. The result often is better
quality and lower costs.

SPC is also useful in demonstrating that a process is capable of

consistently delivering what the customer wants. For this reason, some
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Figure 1.1 SPC adds value to business processes

organizations require their suppliers to use SPC in order to become pre-
ferred suppliers. SPC also can provide conclusive evidence for the effec-

tiveness of continuous process improvement programs (Figure 1.1).

From Chaos to Control

Often the first step in implementing SPC for a process is to construct a
control chart for the process as it currently exists. Frequently, this base
line control chart will show the process to be chaotic and unpredictable
or, to use SPC terminology, out of control. While this might come as a
surprise to management, it often is not surprising to those charged with
running the process, scheduling the process, and evaluating the quality
of the product resulting from the process. However, the real issue is that
prior to constructing the chart, the state of control of the process was
unknown. How can one possibly make forecasts, schedules, or predic-
tions about quality based on the unknown?

The control charts used by SPC to assess the state of control of a pro-
cess should be created when the process is performing as designed. The
team responsible for implementing SPC should assure that the equip-
ment is in good working order, is being operated by a trained operator,
the settings are correct, and the raw materials meet specifications. The

resulting control chart is an empirical statistical model of how the process
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can be expected to perform so long as it is operating as designed. The con-
trol chart reflects the expected level of variation for the process and we say
that the process is operating in control. When other sources of variation
occur, such as a defective lot of raw material, a machine malfunction, an
incorrect setting, or a poorly trained operator, the control chart typically
provides a signal indicating that the process is no longer performing as
designed and we say the process is operating out of control.

SPC is designed to be used in real time. This means that samples
(often referred to as subgroups) are taken from the process as the prod-
uct is being produced, the samples are inspected, the data plotted on a
control chart, and the state of control of the process assessed within as
short a time span as possible. A stable, predictable, in-control process
can drift out of control. However, with real-time SPC, the length of
time it takes to identify this condition and correct the problem can
be minimized. So, with SPC, we work with predictable processes and
monitor those processes in real time to ensure that they remain in con-
trol. In this way, SPC significantly minimizes the uncertainty associated

with those processes.

SPC and Production Scheduling

During the sales and operations planning process, production plans
are created to meet sales forecasts and other organizational objectives.
Production schedules are created to meet the production plans and are
often based on standards contained in manufacturing master files. While
these standards are sometimes based on historical averages, they are most
often based on engineering assessments of the effective capacity—that
is, the sustainable production rate with allowances for personal time
and maintenance>—for the process.Creating production schedules from
standards based on effective capacity assumes the process is behaving as it
was when the production rates were set. Production schedules based on
historical averages assumes the process is currently performing as it has
done in the past. Both assumptions are simply acts of faith (and often
vain hopes) when the state of control of the process is unknown. The only
way to systematically monitor and assess whether these assumptions are

valid is through the use of SPC.
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A process proven to be in control through the use of SPC is predict-
able. A process shown to be out of control using SPC is unpredictable.
A process running without SPC is an unknown quantity. So it should
not be surprising that production schedules for processes whose state of
control is unknown often are “not worth the paper they are printed on,”
as one production supervisor put it. Without the predictability that SPC
provides, there is more chaos and uncertainty, more stress, extra meetings,
missed schedules, and additional overtime, which contribute to increased
cost, reduced productivity, excessive built-in allowances for uncertainty,
and impaired employee satisfaction. Additionally, employee confidence
in management and those ultimately responsible for drafting unrealistic
production schedules may be affected.

SPC will not assure that a process always operates in a state of control
and thus be predictable. However, SPC is designed to be run in real time,
which will be discussed in more detail later in this chapter. This ensures
that out of control conditions are detected in a timely manner and cur-
rent information is made available to troubleshooters who are assigned
to find and correct the problems that SPC indicates are present. Timely
detection coupled with effective and timely troubleshooting and problem
correction can prevent the out of control condition from persisting for

long periods of time.

SPC and Forecasts

Forecasts are essential to organizational planning and decision making
and, the more accurate the forecasts, the more accurate the plans and
decisions. Inaccurate forecasts of revenue and profit can result in signifi-
cant loss of stock value for a corporation. Inaccurate production and labor
forecasts can cause significant disruptions within operations. The inaccu-
racies in operations forecasts can ultimately contribute to the inaccuracies
in forecasts of revenues and profics. If we fail to produce what we forecast,
revenues will suffer. If we fail to produce at the cost we forecast, profits
will suffer.

Forecasts based on time series analysis of past data assume that the
causal system that created variation in the value of what is being forecast

will continue to do so in the same way in the future. While SPC cannot
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affect the external influences that can alter the causal system (e.g., changes
in consumer taste, availability of new technologies), it can increase the
accuracy of forecasts by decreasing the variation in processes upon which
the forecasts are based. When the causal system underlying a forecast is
comprised of processes that are out of control, forecast accuracy is greatly
diminished. Indeed, a term used to describe such forecasts is not worth
the paper they are written on. How can a forecast based on unpredictable

processes be anything but inaccurate?

Example 1.1
Why are We Always Missing Deadlines?

Once again the question arises in the staff meeting: Why are we late
on so many shipments? The forecast called for the production of 100
products per hour by the process. Production records indicate this
forecast was met. Yet, the product is not ready to ship. Investigation
shows that much of the product produced is either awaiting inspection
or has been rejected and is awaiting rework.

One problem is that the forecast was based on standard produc-
tion rates, which assume and account for some standard defect rate.
However, since the process is in an unknown state of control, there is
considerable variation in defect rates, resulting in considerable varia-
tion in the rate of production of acceptable product ready to ship. In
this case, considerably more defective product was produced than the
forecast allowed for.

Late deliveries can be a source of customer dissatisfaction as well as
hurting the profitand loss (P&L). Often the answer is that the product
was produced on time according to the schedule based on the forecast.
Buct instead of being in the finished goods warchouse ready to ship,
some or all of the products are awaiting inspection by quality control
(QC) or has been rejected and is awaiting rework. Worse yet, the pro-
cess may be shut down while engineering and maintenance technicians
try to determine why so much defective products have been produced.
No wonder the production forecast wasn’t worth the paper it was writ-

ten on, and the actual P&L is worse than the pro forma.’
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Process instability and poor capability of the process to consistently
produce products that meet specifications can result in considerable
variation in product quality. Variations in the lag time between pro-
duction and inspection can make troubleshooting process problems
more difficult. Implementation of SPC brings processes into control
and can provide reliable estimates about the state of the processes. The
result will be more reliable standard production rates that can support
more accurate production forecasts. When combined with continuous
improvement activities, SPC can help minimize process variation and
increase the capability of the process to meet specifications resulting
in an increased ability to meet forecasts and shipment commitments.
More importantly, customers will be happier and the P&L will look

more like the pro forma.

When SPC is used to bring the causal system processes into control,
forecast accuracy will typically be increased as well. Because common cause
variation is still present in an in-control process, it is impossible to provide
perfect input to forecasting models. Perfection, while desirable as a goal,
cannot ever be achieved in a forecasting model. However, perfection in a
forecast is seldom necessary to achieve the objectives of the forecast. Most
would agree that an accurate but imperfect forecast provides a much better

basis for decision making than one not worth the paper it is printed on.

SPC and Quality Control

The output of processes must be assessed for quality in some way. Typical
end-of-line inspection processes where the output is collected into lots
and assessed using some form of acceptance sampling suffer from several
faws. The first flaw is the delay between the time a product was produced
until the time the inspection occurs. I have observed cases where the lag
period between production and inspection was measured in days. So, if a
problem is detected in a lot, the process that produced the lot may have
run in much the same way producing defective products throughout the
entire lag period. This can result in a considerable quantity of potentially

defective material, which must be subjected to more extensive inspection,
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possible rework, downgrade, or scrap. I have observed plants where a
great deal of space is occupied by pallets of material awaiting inspection.
Frequently, these plants have large rework departments to sort through
rejected lots of material and correct defects where possible. This excess
inventory and non-value-adding operations are the result of uncontrolled
processes and significant lag time between production and inspection.

A second flaw is that acceptance sampling plans simply provide a lot
disposition (accept or reject) and, unlike SPC, cannot provide evidence
about the state of control of the process that produced the lot. SPC,
unlike acceptance sampling, controls the quality of the output by provid-
ing information to allow control of the process. SPC provides the means
to develop capable and in control processes that produce product that is

more uniform and predictable in quality.

SPC and Lean Operations or Just-in-Time

ASQ defines lean as “producing the maximum sellable products or ser-
vices at the lowest operational cost while optimizing inventory levels” and
just-in-time (JIT) as “an optimal material requirement planning system
for a manufacturing process in which there is little or no manufactur-
ing material inventory on hand at the manufacturing site and little or
no incoming inspection.” These definitions make it clear that variation
can be the enemy of both lean and JIT In the words of quality expert
W. Edwards Deming, JIT “is sheer nonsense unless the process is stable.
Unless it is stable (in statistical control), nobody knows who is going to
need what or when he will need it.”®

Excess inventory leads to increased cost. In order to understand the
effect of SPC on lean and JIT, we must understand some of the reasons
why inventories are required.

Buffer stocks are needed to provide a decoupling between processes
so that variation in one process does not adversely affect the succeeding
processes. Decreasing variation in the processes through the use of SPC
decreases the need for buffer stocks.

Safety stocks are needed, in part, to protect against forecast errors and
variation in demand for parts by internal processes. We have previously

discussed the improvement in forecast accuracy as a result of using SPC.
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However, if we use an accurate demand forecast to set procurement quanti-
ties, we must consider what variation exists in demand for the parts by the
internal processes. If the standard scrap rate for a part is 2 percent, but the
variation in this scrap rate is highly variable due to out of control processes,
procurement of the forecast amount plus 2 percent will often lead to stock-
outs. To prevent this, excess safety stock is maintained. Using SPC to bring

processes into control can reduce the need for these excess safety stocks.

SPC and Supply Chain Management

Safety stock is also used to provide protection against late delivery and
receipt of defective materials from suppliers. In a supply chain, there are
usually multiple upstream members in series for each purchased prod-
uct. Variation in your direct supplier’s processes creates variation in lead
time, on-time delivery, and quality. Variation in each upstream supplier’s
processes has the same effect on their direct downstream customer. By
the time the product gets to your organization, it has been subjected to
multiple layers of variation creating the need for excessive safety stock.
Extra safety stock means extra cost.

When each member of the supply chain uses SPC to monitor and con-
trol processes, the total variation observed from end to end in the supply
chain is diminished, overall costs are reduced, quality is less variable, and
deliveries are more likely to arrive on time. Frequently incoming inspec-
tion can be significantly reduced when suppliers submit evidence that their
process are in control and capable. All of these benefits of SPC can increase
customer satisfaction both for internal customers to the supply chain and
to the ultimate customer. Because of this, a number of top manufacturing
companies have mandated that their preferred suppliers implement and use
SPC. This mandate should only be imposed after your company has imple-
mented SPC for its own processes and is in a position to provide technical

expertise and advice to suppliers as they work to comply with the mandate.

SPC and Costs

Implementing and operating a SPC program are not free. Resources must

be invested in training, software acquisition, and implementation projects
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in order to implement SPC, and processes whose base line control chart
shows they are not in control must be brought into a state of control.
This involves examining the entire process and correcting any problems
that are found. Often parts that are worn, but have not yet catastrophi-
cally failed, must be replaced. Sometimes obsolete control systems must
be updated. Greater consistency between lots of raw material might be
needed necessitating negotiating with the current suppliers or developing
new suppliers. Designed experiments may be required to optimize process
settings. Additional operator training may be required. All of these activi-
ties require resources.

These and other issues must be addressed to bring the process into
a state of control and all require resources and equipment downtime.
However, these costs should be considered to be investments. Done prop-
etly as a part of the SPC implementation project, there will be a positive
return on investment (ROI) derived from the reduction in variation in
the process, fewer unplanned disruptions, less rework, and more consist-

ent production output.

Near-Real-Time System

Several years ago I was assisting a client evaluate potential suppliers for
aluminum extrusions. Using publically available information I was able
to narrow the list of possible suppliers to three. I contacted each supplier
and requested that they send me a copy of their quality manuals. The best
candidate stated that they used SPC to control their processes and took
necessary corrective action to investigate out of control conditions.
While on a site visit to the candidate’s facility I asked the quality man-
ager about the company’s use of SPC. He took me to an operator station
on one of the extrusion lines where I observed the operator periodically
taking samples from the process, making measurements, and recording
the measurements on a sheet of paper, which listed the specifications for
the part being manufactured at the time. Upon further questioning, the
quality manager said that once a week or so he gathered all of the data
from the operator’s stations and plotted it on control charts. He offered
to show me the charts in his office. I asked what use the company made

of the charts. The quality manager said that copies were sent to customers
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who asked for them. Otherwise he kept them in a file in his office for
several months before discarding them.

I did not recommend this company to my client because they were
not really using SPC. They were plotting outdated data on control charts
to satisfy specific customers. The charts played no role in monitoring and
controlling the processes.

When operators or technicians take samples, make measurements in
a timely fashion, and then plot them on a control chart manually or via
computer, they have the information necessary to make a near-real time
decision about the state of control of the process. When the chart shows
that the process is in control, they know that no adjustment is neces-
sary. When the chart shows that the process is out of control, they can
take timely action to ascertain the nature of the problem and take the
appropriate corrective action. When the data are not plotted in a timely
fashion, long periods can elapse with the process running out of control.
When this condition is recognized days or weeks after the assignable cause

occurred, it is more difficult to trouble shoot the problem.

SPC and CQI Work Together

The successful implementation of SPC represents a significant improve-
ment to quality and operations. Once implemented, SPC can be of sig-
nificant value in identifying opportunities for continued improvement
as well as providing a measure of the effectiveness of the continuous
improvement projects. As the following example shows, it can also docu-
ment the ineffectiveness of continuous quality improvement (CQI) pro-

grams also.

Example 1.2
A Tale of Two Hospitals

Hospital A uses SPC to monitor and control patient satisfaction with
meal service. While the control chart showed the process to be in con-
trol and predictable, the average level of dissatisfaction with meals

was considered to be excessive and represented an opportunity for
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improvement. After collecting information from patients, dieticians,
and nursing staff, the hospital instituted a program designed to improve
patient satisfaction with meals. The control chart clearly indicated a
significant reduction in the proportion of patients not delighted with
their meals beginning at the period in which the improved process was
launched. The chart documented more than a 30 percent reduction
(from more than 10 percent to about 7 percent) in the proportion of
patients not delighted with their meals. This is a case of an out of con-
trol signal on a control chart being a good thing because it confirms
that the process was improved as the result of planned action. And not
only does the chart clearly document the effectiveness of the improve-
ment, but it provides a means of monitoring the process to assure that
the gain is sustained.

Hospital B boasts that it has practiced CQI for a number of years.
They also use SPC to monitor and control a number of processes in the
hospital. However, the control chart used in the hospital to monitor
overall patient satisfaction with the hospital shows that over the entire
three-year time period covered by the control chart, the process has
been stable. The hospital had initiated several quality improvement
projects designed to improve patient satisfaction—the parameter plot-
ted on the control chart. In this case, the control chart provides evi-
dence that none of the improvements were effective. In the presence of
a CQI program designed to improve a process, a stable control chart is

an indicator that something is wrong with the CQI program.

The control chart for Hospital A is included in Figure 8.2.

Control and Minimization of Variation

SPC is designed to control and minimize variation in processes. As previ-
ously discussed, unpredictable processes can increase the need for inven-
tory, increase variation in quality, reduce forecast accuracy, and increase
costs. However, there are other reasons to be concerned about the control
and minimization of process variation. The most important of these is
that process variation creates variation in the quality of the product pro-
duced by the process. The more variation in the process, the more varia-

tion in the quality of the product.
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Even when process variation does not result in the production of sig-
nificant amounts of a product that is out of specification, the part-to-
part and lot-to-lot variation within the specification can be troublesome
to customers. Genichi Taguchi famously developed what is called the
Taguchi loss function,” which quantifies the losses incurred by producing
products that are not exactly at the specification target value. He showed
that often unidentified losses are incurred when products are within spec-
ification but not exactly on target. The way to produce more products on
target is to utilize SPC to appropriately center the process on the target
value, reduce process variation, and monitor and control the process to

keep it operating as designed.

Example 1.3
Total Molded Products

An injection molding facility began implementation of SPC in their pro-
cesses. One process produced plastic panels for electronics enclosures.
The engineers determined that part weight was a good proxy for the over-
all quality of the molded part. They began with a pilot study that showed

the process to be out of control and yielded the following statistics:®

Mean part weight 43.86
Standard deviation 3.06

After completing the process of implementing SPC, the process was in

control and yielded the following statistics:

Mean part weight 43.69
Standard deviation 1.21

The plant found that the production efficiency for this process
increased as a result of the production of fewer defective parts and
decreased downtime to troubleshoot problems.

The plant’s customer for this product was delighted with the reduction
in the standard deviation, which documented a substantial reduction in
variation in the part. The customer employed an automated assembly
process and the reduction in panel variation resulted in fewer jams of

its assembly equipment and better fit and finish of the finished product.
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SPC and Employee Empowerment

An unexpected benefic to a properly implemented SPC program is
improved employee attitudes. SPC can be considered as a participative
approach to QC when employees are trained to collect the samples, make
the measurements, enter, or plot the data, assess the state of control of the
process, and take appropriate action when they detect an out of control
signal. Employees are empowered by SPC and experience a greater degree
of control over their work environment.

One study’ found some support for employees’ greater feeling of con-
trol over quality and an improved attitude toward management. During
implementation at the study facility, employees received training in SPC
including sampling and measurement procedures, control charting, prob-
lem identification, problem solving, and they assisted in the development
of standard operating procedures (SOP) for actions to take when out of
control signals were detected. Employees also participated with manage-
ment in developing SOPs for setting up and operating the process in order
to reduce process variation caused by operator-to-operator differences.
After SPC implementation, management emphasized the importance of
operating the process according to the jointly developed SOPs. With SPC
implemented in this way, it is not at all surprising that employees feel more
empowered and have an improved attitude toward management.

Other studies have reported mixed results, but this is probably due to
the method of implementation of SPC. An SPC program that is imple-
mented with little production employee involvement is unlikely to have
any effect on employee attitudes. However, one study' did find a num-
ber of effects associated with successful SPC implementations includ-
ing increased number of production employees inspecting their own
work, reduced production employee absenteeism, increased production
employee efficiency, increased teamwork among employees, and increased

employee participation in decision making.

Chapter Take-Aways

e SPC is not just a statistical tool. Its use can help organizations
move from chaos to control. SPC can also be a solid partner

with other organizational management approaches.
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* SPC can increase the accuracy of production schedules and
production forecasts.

* SPC is a powerful tool to help decrease process variation, prod-
uct quality variation, and thereby improve overall quality.

* SPC is an essential partner to lean and JIT.

¢ Integrated throughout, SPC can dramatically reduce variation
in lead time, on-time delivery, and product quality in supply
chains.

* SPC can help identify targets for improvement and document
the effectiveness of CQI programs.

* When used on-line and in real-time, SPC provides an oppor-
tunity to empower employees and give them more control
over the quality of their work. Empowerment has been shown

to improve employee attitude toward management.

Questions You Should be Asking About

Your Work Environment

o What activities in your organization would benefit most from
decreased uncertainty that SPC can provide?

o Can SPC help jump start existing quality and efficiency improve-
ment programs in your organization?

o Would your supply chain benefit from a reduction in variation?

Could SPC increase your organization’s ability to document the

effectiveness of improvement projects?



CHAPTER 2

Variation and What It
Means to be in Control and

Capable

10 make a thing the way we want to make it is one popular concep-

tion of control.

—Walter Shewhart

Why is it that there is so much variability in what we do? Why can’t we
better predict how our processes will perform from day-to-day or even
hour-to-hour? If you find yourself asking questions such as these, statisti-
cal process control (SPC) is a tool you will find useful. Let us begin with

a discussion of variation.

Variation

More than 70 years ago, Walter Shewhart, the father of SPC, asked, “What
can we say about the future behavior of a phenomenon acting under the
influence of unknown or chance causes? I doubt that, in general, we can
say anything.”! Shewhart went on to discuss two types of variation: assign-
able cause variation and chance cause variation. We will also refer to chance
cause variation as common cause variation and assignable cause variation
as special cause variation—the terms most frequently encountered today.
So, what is the difference between common and special cause variation?
Suppose you drive to work by the same route and at about the same
time every workday. Sometimes you are lucky and make every light.
Other days you miss most of them. Traffic is sometimes heavier on some
days than others. These are examples of common cause variation and they

can result in variation in the length of time it takes to drive to work. The
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American Society for Quality (ASQ) defines common “causes of varia-
tion (as those) that are inherent in a process over time. They affect every
outcome of the process and everyone working in the process.” It is the
variation that exists in a process when it is operating as designed and, in
the case of our example, these causes result in variation in travel time to
work but that variation is predictable. That is, we can predict that the
drive to work should fall within a certain range, which is determined by
the common cause variation.

Suppose that one day, in addition to the traffic lights, traffic, and
other common causes, we run out of gas. This additional source of vari-
ation is unusual and is referred to as an assignable cause. ASQ defines
assignable cause as “A name for the source of variation in a process that
is not due to chance and therefore can be identified and eliminated.
Also called special cause.”® Special causes can have a profound effect on a
process and make it unpredictable. The range of times established when
only common cause variation was present is out the window when one or
more assignable causes are also present. Thus you can no longer predict
how long it will take to get to work on a day when you run out of gas.
The length of the drive will depend on a number of additional factors. Is
there a gas station nearby? If not, how long will it take for your roadside
assistance service to send help? Will a policeman stop to offer assistance?
These additional factors are now paramount in how long it will take us

to make our commute.

Process Variation: In and Out of Control

We say that a process is in control when “the variations among the observed
sampling results can be attributed to a constant system of chance causes.”
That is, the variation in the length of the drive to work is due exclusively
to the identified common causes in the system, which include our luck
with traffic lights and the amount of traffic.

We say that a process is out of control when “the variations among
the observed sampling results cannot be attributed to a constant system
of chance causes.” That is, the variation in the length of the drive to work
is due to both the identified common causes IN ADDITION TO the

assignable causes such as running out of gas.
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So, we now understand the difference between common and assignable
cause variation and what it means to be in control or out of control. But,
what difference does it make? Let us continue with the driving to work
example. Suppose you keep a record of your drive times and determine
that on average it takes 57 minutes to get to work. There are two “outliers™
drive times that appear to be significantly higher than the others, which
you eliminate before doing your calculations so as not to overly affect the
average. The outliers appear to be due to assignable causes—you ran out
of gas twice while driving to work. With the outliers removed, you observe
that the longest drive time is 67 minutes and the lowest is 47 minutes.

When someone asks about the length of your commute, you might
respond that it is 57 minutes even though it would be more accurate to
say it is between 47 and 67 minutes. If you want to assure that you are
never late for work, you might decide to leave 67 minutes before start
time. By doing so you assure that you will be either early or on time every
day so long as only common cause variation is present.

But what about the outliers? If you really want to decrease the prob-
ability of arriving late for work, you should examine why these outliers
(assignable causes of variation) occurred. Once you determine that both
are due to your running out of gas, you might decide to change your refu-
eling system. Instead of refueling only when the low fuel light comes on
indicating your fuel level is alarmingly low, you might decide to check the
gauge every afternoon before leaving for home and refueling whenever
the gauge shows a quarter tank or less. This modification of the system

should assure that you will never again run out of gas on the way to work.

Example 2.1

Evaluating Worker Productivity

A few years ago I was given a tour of a new automated warchouse.
During the tour the warehouse manager showed me how he measured
and managed stock picker productivity. A large chart was prominently
displayed where each worker’s productivity was displayed. Workers

who fell below a specified number of picks per day were issued disci-

plinary warnings.
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As the tour progressed, we stopped at a picking station where sev-
eral conveyor belts moved overhead. Periodically the packages on one
belt jammed and the picker was required to use a broom handle to
clear the jam. The manager explained that this happened fairly often,
but wasn’t really a problem since the jams were easily cleared. Since
clearing the jams obviously took time away from the picking job, I
asked whether an adjustment was made in the picking standard for this
station to prevent the picker from being reprimanded for a system’s
problem over which he had no control. The manager replied that no
adjustment was necessary. Since the pickers were rotated daily, no one
picker would stay on this station often enough to receive enough rep-
rimands to trigger disciplinary action.

In this case, management was aware of a specific assignable cause yet
still treated the situation as if the variation was due to common causes
under the control of the picker. Does such a situation exist somewhere

in your organization?

Knowledge about whether a process is in or out of control has other,
more significant implications. Consider the heating, ventilating, and air
conditioning (HVAC) system in your office. It consists of a number of com-
ponents, but let us consider just the thermostat in this example. Suppose you
wish to maintain the temperature in the office at 72°F year round. When the
thermostat is operating in control, sampling the ambient temperature may
reveal that it varies between 70° and 74°. You notice one day that it is par-
ticularly hot in the office although the thermostat is still set at 72°. You check
the actual temperature and find it to be 80°. The maintenance technician
finds the assignable cause—the thermostat has malfunctioned—replaces the
device and brings the process back into control.

Suppose someone in the office is particularly sensitive to small varia-
tions in temperature. They are too warm when the temperature is 74° and
too cool when the temperature is 70°. They assume the process is out of
control and begin to manually manipulate the thermostat in an effort to
stay comfortable. When the temperature is 74°, they adjust the thermo-
stat to 68° to cool it down, Since the thermostat controls to within +2°,
it cools until the actual temperature reaches 66°. Now freezing, they

readjust the thermostat to 74°, which results in a peak temperature of
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76°. By overadjusting a process that is in control at between 70° and
74°(74° + 2), the process now is performing between 66° and 76° (72° +
6). The process variation is now three times greater than if the thermostat
had been left alone.* This is an example of what can happen if all varia-
tion is treated as if it has an assignable cause. If the organization is not
happy with the +2° common cause variation in the process, an appropri-
ate response would be to invest in a more precise thermostat that can
maintain a set temperature to within £1°.

W. Edwards Deming created an exercise to illustrate the dangers
associated with tampering with a process that is in control. It is called
Deming’s Funnel Experiment.® In the experiment, a marble is dropped
through a funnel onto a piece of paper on which a bull’s eye is marked,
and the location where the marble lands is marked on the paper. This is
repeated many times first without moving the funnel (Rule 1 in Deming’s
experiment). Typical results are shown in Figure 2.1a. Next the funnel is
adjusted after each drop according to one of several rules. In one rule, if a
marble lands one inch above the bull’s eye, the funnel is adjusted one inch
south of its original position (Rule 2 in Deming’s experiment). Rather
than decreasing the variation, this adjustment after each marble results in
a dramatic increase in variation as shown in Figure 2.1b. The same result
can be expected when an overzealous machine operator measures each
part that is produced by a machine operating in control and adjusts that
machine based on each measurement. The performance of the machine as
measured by the variation in the dimensions of the parts produced will be
much worse than if the operator had left the machine alone.

The primary tool for determining the state of control of a process
is the control chart. The control chart represents the process talking to
you—telling you about its state of control, and when it shows the process
is in control actually represents a kind of statistical model of the process.
This model allows one to make predictions about the process. Control

charts are discussed in Chapters 3-6.

* This actually happened and the company responded by providing each
employee with his or her own thermostat, which they could adjust at will. Every-
one agreed that they were more comfortable. No one told them that the thermo-

stats were dummies—not connected to the HVAC system.
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(a) Rule 1 no adjustment (b) Rule 2 adjust after each drop

Figure 2.1 Results of rules 1 and 2 of Deming’s funnel experiment

Source: A macro is available to conduct Deming’s Funnel Experiment using Minitab at http://
support.minitab.com/en-us/minitab/17/macros/macros-files/educational-macros/funnel/ .
A video of the Deming funnel experiment is available on line at http://www.youtube.com/

watch?v=9Z3064FAtvA

Having determined that a process is in control, the next step is to
determine how well the stable process is able to meet specifications. This

is referred to as process capability analysis.

Capable

It is important to note that simply because a process is in control does not
mean that process is capable of achieving the results we desire. A process
that produces 100 percent defective product may be in control and pre-
dictable; however, no one would consider that to be a satisfactory result.

ASQ defines process capability as “A statistical measure of the inher-
ent process variability of a given characteristic™” and assumes the process
is in control. We can think of capability as measuring the ability of an in
control process to meet specifications or expectations. We may derive a
first order estimate of the capability of our commuting example by using
the range. The current commuting example process is capable of provid-
ing a drive time between 47 and 67 minutes with an average of 57 min-
utes. The range for this process is 67 — 47 = 20 minutes.

But suppose we are not satisfied with having to leave 67 minutes
before start time each day in order to minimize the probability of being
late. We would like to spend more time with the family at breakfast.

To reduce the time you have to leave before work starts (i.e., make the
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process more capable), another change to the system is required. One
alternative to consider might be to use the Metro Park-and-Ride system.
You drive 10 minutes to a parking lot, board a bus that uses the high
occupancy vehicle (HOV) lane, and delivers you to the downtown sta-
tion in only 15 minutes. Your office is a 5-minute walk from the station.
Your total “drive” time is now reduced to an average of 30 minutes. The
new system also has a smaller range of transit times of 25-35 minutes or
10 minutes. To assure that you have the same on time arrival at work
performance with the new system as with the old, you should leave home
35 minutes instead of 67 minutes before start time. This allows you to
spend 32 additional minutes with your family and has the ancillary ben-
efic of allowing you to read the paper or work while riding the bus instead
of driving. We have improved the capability of the process by improving,
or in this case redesigning, the system.

So how do we know what type of variation is present in a process
and how do we measure process capability? These topics are discussed in

Chapters 3 and 7, respectively.

Measurement Variation

Humorist Evan Esar once defined statistics as the “science of producing
unreliable facts from reliable figures.” The more common problem encoun-
tered in SPC is associated not with unreliable facts but unreliable figures.
We are often too quick to assume that because we measured a value, it
is a fact. However, there are significant potential sources of error associ-
ated with measurement processes of all types. If we ignore these potential
sources of error, we are subject to the GIGO—garbage in; garbage out—
effect and we try to produce reliable facts from unreliable figures.

Perhaps you have, as I have, weighed yourself at home, at the fitness
center, and at the doctor’s office on the same day. Never are the three
weights the same. Consequently, I have doubts about knowing what I
really weigh—the figures are unreliable. With SPC, it is vital that we have
reliable data. So we conclude our discussion of variation with a discussion
of variation in measurement or measurement error.

When we measure something—physical dimensions, customers’ satis-

faction, numbers of errors—the number we obtain is actually a function
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of the actual value and the variation in measurement, often referred to as
measurement error. The study of the science of measurement is referred to
as metrology.® Measurement error consists of two parts. We refer to these
two parts of measurement error as accuracy and precision when talking
about physical measurement of things such as height, weight, and length.
When talking about qualitative measurement of things such as customer
satisfaction and employee attitudes, we refer to these parts as validity and

reliability.

Accuracy and Precision for Dimensional Measurements

Accuracy is the characteristic of a measurement that tells how close an
observed value is to a true value.” In the case of weighing myself on mul-
tiple scales and obtaining different weights, there is evidence that one
or more of the scales is inaccurate. My actual weight is a true value. My
weight as measured on my home scales may or may not be accurate. The
only way to minimize error due to inaccuracy is by calibration against an
accepted reference value. Were I to employ a certified technician who uses
a set of reference standard weights that are traceable to the National Insti-
tute of Standards and Technology (NIST) to calibrate my home scales, 1
would be assured that error due to inaccuracy would be minimized.
“Precision is the aspect of measurement that addresses repeatability or
consistency when an identical item is measured several times.”'® Precision, as
applied to instruments used to measure physical dimensions, is comprised
of two parts: repeatability and reproducibilicy (R&R). Repeatability is the
ability of a single operator to obtain the same measurement value multiple
times using the same measuring device on the same part. Reproducibility
is the ability of separate operators to obtain the same measurement value
multiple times using the same measuring device on the same part.!’ Preci-
sion for dimensional gauges is assessed through gauge R&R studies.'
Assuring the accuracy and precision of measurement systems is essen-
tial. Before beginning to collect data for SPC, examine the measurement
system to assure that it has been propetly calibrated and that a gauge R&R
study has demonstrated its suitability for the task. These checks should be
routine parts of the measurement process. Otherwise, you really have no

idea whether the reported value is fact or fiction.



VARIATION AND WHAT IT MEANS TO BE IN CONTROL AND CAPABLE 23

Example 2.2
Trendy Wire Company

A number of years ago I was working with a client that manufactured
wire products such as power cords, connecters, and wire harnesses for
consumer electronic devices. One process involved extruding a plastic
insulating coating onto copper wire. Since the thickness of the coating
determined how well the wire was insulated, it was a critical param-
eter that had to be controlled in order to maintain certification of the
products by Underwriters Laboratories (UL). The problem was that
the measurement data indicated there was excessive variation in the
thickness of the extruded coating that had resulted in hundreds of
miles of wire either being downgraded to a lessor standard and sold at
a much reduced price or being sold as scrap.

Plant records showed that this problem had surfaced about three
weeks previously and several process engineers had spent hours trying
to determine what had changed in the process at that time. To this
point, they had found nothing that seemed to correlate with the onset
of the problem.

At this time, the plant did not use SPC. Indeed I had been asked
to help them with SPC training and implementation. I thought that
this process might be a good place to start, so I began working with the
process engineers to determine the root cause of the problem.

We started by talking with the operators and assessing the measure-
ment process. Micrometers were used by the operators to make thick-
ness measurements which they used to make necessary adjustments to
the process. Records showed that the micrometers were in calibration
and that gauge R&R studies found that total RR was 10 percent of
tolerance—a value the company considered to be acceptable. However,
when I asked the operator to train me in making the measurements, I
was unable to obtain repeatable results on a sample of the wire. Further
investigation determined that the micrometer had been dropped about
three weeks before which resulted in damage to the instrument. The
operator did not notice any damage and failed to report the incident.

When the micrometer was replaced, the problem disappeared.
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Validity and Reliability for Qualitative Measurements

We often collect qualitative data from customers, suppliers, employees,
and others using some form of survey methodology such as mail survey,
telephone survey, on-line survey, or face-to-face interview. When doing
so, we must be concerned with the validity and reliability of our measure-
ment system. In this context, validity is the degree to which the method
used to collect data actually measures what it is intended to measure. Reli-
ability is the consistency of the method.'® For an example of how to assess
the validity and reliability of a survey instrument, the reader is directed to
Sower, Duffy, Kilbourne, Kohers, and Jones."

The use of previously validated scales is one way to address validity.
However, one must exercise care to assure that the previous validation
was conducted appropriately and that the constructs measured in its pub-
lished use are identical to those you plan to measure. Scales found in the
literature have generally been evaluated for reliability as well. However,
one should always measure reliability each time the scale is used since reli-
ability can vary with the population and sample being assessed.

Just as it is always dangerous to use dimensional measurement sys-
tems whose accuracy and precision are unknown, it is dangerous to use
measurement scales whose validity and reliability are unknown. Spurious
measurements incur two costs: the cost of making the measurement and
the cost of being wrong about the true value of what is being measured.
When using SPC, the cost of being wrong about the true value can be
substantial because decisions are made about the state of control of the
system being assessed. Spurious measurements can result in an organiza-
tion failing to detect shifts, for example, in customer satisfaction because
the survey instrument does not measure the key factors customers use to

determine the quality of the products and services they receive.

Example 2.3
Maddie’s Weenie Stand

Madeline Grace had experience in the food service industry and decided

to unleash her entrepreneurial ambitions and open her own restaurant.

She had leased a small storefront and opened Maddie’s Weenie Stand.
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She wanted to grow her business and realized that customer feedback
was an important input. She started by using customer feedback cards,
but very few customers bothered to fill them out. So she asked mem-
bers of the local Chamber of Commerce how they obtained customer
feedback. A local banker told her he used a survey he found on-line
to measure the quality of the services his bank offered. He selected a
random sample of residents from the telephone directory each month
and mailed them a survey. He suggested she do the same.

So Madeline substituted Maddie’s Weenie Stand for the bank’s
name on the survey form and began mailing 100 survey forms a
month. She was disappointed to find that only about 5 percent of the
forms were returned and the information they provided did not give
her a clear direction about how to improve her products and services.
So, she contacted the local university and ended up partnering with a
management class adopting her business as a class project.

The students contacted the individuals on Maddie’s mailing list and
invited them to participate in focus groups. Maddie agreed to provide cou-
pons for free hot dogs to all focus group participants. When the students
reported their results at the end of the semester, Maddie was astounded.

Among the top reasons recipients failed to respond to the survey
is that they were frustrated that the questions did not address the fac-
tors they considered important. Once this was discovered, the stu-
dents asked the participants what factors they considered important
in assessing the quality of a small specialty food restaurant such as
Maddie’s. One factor was product variety. Another was aesthetics—
how the product was presented. Another was product freshness. The
banker’s survey did not ask about any of these factors.

The next semester, Madeline partnered with another management
class to develop a survey instrument that addressed the factors that the
focus groups showed were important to her customers. At the end of the
semester the students presented Madeline with a survey instrument they
had developed and pilot tested to assure that it was valid and reliable.

The first thing that Madeline found was that her response rate more
than doubled with the new instrument. When she evaluated the infor-

mation the surveys provided she noticed that a common theme was
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that she did not offer enough product variety. She decided she would
begin launching a new product—often one suggested by customers—
each month. Those that sold well would become part of the standard
mix. Those that didn't would be phased out. Several of the respondents
to her survey had specifically mentioned Chicago-style hot dogs, so
that was her first new product.

Her new strategy paid off. Business began increasing at a more
rapid rate as shown by her run chart (Figure 2.2) and repeat custom-
ers increased dramatically. Asked what she learned from all of this, she
replied: “One size does not fit all in hot dogs or survey instruments.
You have to be sure you are asking the right questions of the right peo-
ple and that you react to the input you receive in an appropriate way.”
Put another way, you must always be sure that your survey instrument
is valid and reliable for your intended use then use the information it

provides to guide business decisions.
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First new product introduction
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Figure 2.2 Run chart of sales

Source: Made using Microsoft Excel™.

Assessing the validity and reliability of survey instruments requires
extensive knowledge and skills. In our example, Maddie was well advised

to seek assistance in assessing her survey instrument.
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Using measurement systems whose accuracy and precision or validity
and reliability have not been assessed can lead to considerable waste of
time in attempting to control and improve processes. In addition, they
may lead to poor decisions that may do more harm than good. When
employing SPC, always assure that you have propetly assessed the meas-

urement systems that will provide the data on which decisions are made.

Chapter Take-Aways

* All processes contain variation. Variation in processes can
result from common causes and assignable causes.

* A process with only common cause variation present is pre-
dictable and is referred to as being in control. Overadjusting
an in-control process increases variation.

* A process that contains assignable causes of variation is
unpredictable and is referred to as being out of control. The
root cause(s) of assignable variation must be determined and
appropriately addressed in order to bring an out-of-control
process into a state of control.

* In control does not mean that the process is meeting expecta-
tions. That is measured by process capability.

* Capability refers to the ability of an in-control process to
meet expectations.

* Measurement processes are also subject to variation. Mea-
surement variation is variation that derives from the process
used to measure a characteristic. For physical measurement
systems, accuracy and precision must be assessed. For qual-
itative measurement systems, validity and reliability must
be assessed. Using a measurement system whose variation is

unknown is akin to taking measurements with a rubber ruler.

Questions You Should be Asking About

Your Work Environment

*  How many of your processes can be said ro be predictable? If
less than 100 percent, what would be the value of making all

processes predictable?



28 STATISTICAL PROCESS CONTROL FOR MANAGERS

* Do all of your processes consistently meet all expectations? If not,
what would be the value of making all of your processes capable?

*  Are all of your measurement systems regularly assessed? If not, how
do you know that you are not being provided with “unreliable

Jacts” from those systems upon which you are basing decisions?



CHAPTER 3

Introduction to Control

Charts

Uncontrolled variation is the enemy of quality.
—W. Edwards Deming

A control chart is defined as a “chart with upper (UCL) and lower (LCL)
control limits on which values of some statistical measure for a series
of samples or subgroups are plotted. The chart frequently shows a cen-
tral line (CL) to help detect a trend of plotted values toward either con-
trol limit.”' Note the absence of any mention of specification limits in
this definition. Specifications represent the organization “talking” to the
process—that is, telling the process what the organizations desires. A con-
trol chart represents “the process talking to the organization”—telling the
organization what the process can do. Specifications should generally not
be included on a control chart. The general form of a control chart is
shown in Figure 3.1.

The CL represents the mean of the distribution for the statistical
measure being plotted on the control chart. The distance between the
UCL and LCL represents the natural variation in the process. The UCL
is generally set at 3 standard deviations (a measure of the variation in the
process output statistic plotted on the control chart—see Appendix A)
above the CL and the LCL is generally set at 3 standard deviations® below
the CL. The parameters upon which the control limits are based are esti-
mated from an in-control reference sample of at least 25 data points.

In Chapters 4, 5, and 6 we will discuss specific types of control charts,
how to select the appropriate control chart for the job, and how to use sta-
tistical process control (SPC) software such as Minitab 16 and Northwest
Analytical Quality Analyst 6.3 to construct and use the charts. In this

chapter, we will discuss the general idea—that is the theory—of control
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UCL

LCL

Figure 3.1 General form of the control chart

charts. To illustrate this discussion, we will use the control chart for indi-
vidual variable measurements, which is based on the normal (bell-shaped)
distribution, but the general theory we discuss in this chapter applies to
all types of control charts discussed in the subsequent chapters. We will
also discuss appropriate ways to go about implementing SPC.

Before beginning the next section of the chapter, readers with no pre-
vious training in statistics should read Appendix A, Bare Bones Introduc-
tion to Basic Statistical Concepts. Appendix A is short and to the point.
Reading it first will provide the necessary background to understand the
terminology and concepts discussed in the next section of this chapter

and in the succeeding chapters.

General Theory of the Control Chart

“A control chart is used to make decisions about a process.” Specifically,
a control chart is designed to determine what kind of variation exists
in the statistical measure being plotted. If that measure is a key process
characteristic, we can then say that a process is cither in control or out of
control relative to that characteristic. The term in control means there is
only common cause variation present. Out of control means that there is
assignable cause variation present in addition to the common cause vari-
ation. A process that is in control is predictable; a process that is out of
control process is not predictable.

When we collect data from a process in order to create a control chart,
we will find that some variation exists. This variation can be shown graph-
ically in the form of a distribution. Perhaps our data can be described by
the distribution shown in Figure 3.2.

This distribution is symmetrical, with half of the area on either

side of the highest point of the curve. The highest point of the curve is
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Figure 3.2 Normal distribution
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Figure 3.3 Normal distribution tipped on its side

located at the mean or arithmetic average of all of the individual values
in the distribution. Most of the values are clustered near the mean with
increasingly fewer values as we approach the tails of the distribution. We
can mark the lines that represent 3 standard deviations above and below
the mean on the distribution.” The majority of the values in the popula-
tion represented by this distribution can be expected to fall between the
3 standard deviation lines and generally be distributed equally on either
side of the mean. We will use the Greek letter sigma (o) to represent the
standard deviation.

In Figure 3.3 we tip the distribution on its side and extend the lines
marking the mean and 3 standard deviations above and below the mean.

Finally we remove the normal distribution, relabel the mean line as
the center line (CL), the +3 standard deviation line as the upper control
limit (UCL), the —3 standard deviation line as the lower control limit
(LCL) and we are left with a control chart as shown in Figure 3.4 (com-
pare Figure 3.4 with Figure 3.1). We refer to this control chart as a control
chart for individuals meaning that the chart is suitable for use with indi-

vidual values that are normally distributed.
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UCL

LCL

Figure 3.4 Control chart for individuals

Setting 36 UCL and LCL is a standard practice when using control
charts. However, it is possible to create control charts with UCL and LCL
set at 20, 40, or any other value the user determines to be best. When
setting control limits below 30, a greater number of false signals will be
obtained. However, when the cost of investigating a false signal is far less
than the cost of a missed signal, 26 control limits might be warranted.
When the cost of investigating a false signal greatly exceeds the cost of
missing a signal, then 46 control limits might be best. Changing control
limits to some value other than 36 should be the result of a clear rationale
and a careful analysis of the trade-offs involved.

Now, what should we plot on our chare? The first step in the process
of creating a control chart is to identify the statistical measure or meas-
ures that best represent the process. These are sometimes called key qual-
ity characteristics (KQC) or key performance indicators (KPI). There are
many characteristics in a process that can be monitored. The trick is to
identify the really significant ones that are good measures of the process
and are meaningful for our purposes.

Then we collect data from the process and examine the darta to deter-
mine the appropriate control chart to use and to check to be sure whether
the assumptions for that control chart are satisfied. At least 25 obser-
vations from the process should be used in this step although a larger
number of observations will result in a better estimate of the process
parameters.’

The next step is creating the control chart. Remember, for the pur-
pose of this discussion we will be using the control chart for individuals.
Subsequent chapters will discuss other types of control charts. Then we
construct the chart and plot the data on the chart. For our purposes, we
will use statistical analysis software to do this. There are several advantages

to using software rather than constructing and maintaining control charts
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by hand. So long as the data are entered correctly, the software will not
make calculation errors and all points will be accurately plotted on the
chart. Additional benefits include getting a professional looking chart and
the ability to do additional analysis of the data easily. The major drawback
to using software to construct control charts is that the software will cre-
ate charts and analyze data according to your instructions. If you lack
the knowledge to tell the software the right things to do, you will obtain

wrong and misleading results.

Example 3.1
The Tiny Mountain Coal Mine

Suppose you manage a small mining process that produces coal. The
only real characteristic of interest to you is how many tons of coal
are produced per week, so this is the statistical measure to be plotted.
You have been dismayed with what you consider to be the excessive
variation in the amount of coal produced per week. You would like to
decrease the variation and increase the total output per week. You have
determined that SPC is an appropriate tool to incorporate into your
improvement process. You have collected output data for 45 consecu-
tive weeks in Table 3.1 arranged chronologically.

Perhaps the only sense we can make of the data in this form is that
production seems to range from 6 to 14 or so. We now enter these
data into Minitab 16, a statistical analysis software package, in order
to learn more about what the data are telling us.

We believe that a control chart for individuals® would be the right
chart to use but we understand that this chart is sensitive to data that
are not distributed normally.” So we use Minitab 16 to examine the
distribution of the data, which is also shown in Figure 3.5. The his-
togram shows that data appear to be approximately normally distrib-
uted, so we will proceed with the construction of the control chart for
individuals shown in Figure 3.6. We can see from the chart CL that the
mean number of tons of coal produced during this 45-day period is
10.23. Most SPC software sets the UCL and LCL at 3 standard devia-

tions from the CL unless instructed otherwise, so the chart shows the
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UCL is 17.40 and the LCL is 3.06. The next question is “What else

does the chart tell us about the process?”

Table 3.1 Tons of coal produced per week arranged in time
series

Tons of Tons of Tons of
Day coal Day coal Day coal
1 7.2 16 12.0 31 9.6
2 8.5 17 11.6 32 10.5
3 12.1 18 9.9 33 13.8
4 10.0 19 11.1 34 10.4
5 14.3 20 6.4 35 8.9
6 11.6 21 10.4 36 7.2
7 9.1 22 8.8 37 10.0
8 9.7 23 12.6 38 12.1
9 7.5 24 9.9 39 9.5
10 11.6 25 4.5 40 11.3
11 8.8 26 10.4 41 6.7
12 13.5 27 9.4 42 10.5
13 10.2 28 114 43 8.4
14 11.7 29 10.4 44 9.7
15 10.5 30 15.5 45 11.5

Tons produced per week

Normal
10+ ) Mean 10.13
StDev  2.098
8- ) N 45
=
2 6 71 L(
L
=
oy
&
= 44
2_
O T T T T T
6 8 10 12 14
Tons

Figure 3.5 Data entry and histogram using Minitab 16

Source: Created using Minitab 16.
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Figure 3.6 Control chart for individuals for tons of coal per week
Source: Created Using Minitab 16.

Control Chart Signals

Control charts represent the process talking to you—telling you how it is
behaving. The value of a control chart depends upon our ability to read
and understand what the process is saying. The chart in Figure 3.6, for
example, is telling us that this process is in control—only common cause
variation is present. We know this because there are no signs or signals
that appear to be nonrandom. Because the control chart shows that the
process is in control, we are comfortable using these control limits to
monitor and control the process ongoing.

Are we 100 percent certain that this is a true message—that the pro-
cess is actually in control? The answer is no. There is the possibility that
nonrandom variation is also present and that we are missing it. However,
that risk is small, so we behave as if we know with certainty that the
process is in control. We should be aware of this risk, but trust the chart.

There are a number of sets of rules defining patterns on a control
chart for determining that a process is out of control. Most software prod-
ucts used for SPC allow the user to specify which rules to use as shown in
Figure 3.7. In this section, we will discuss the more commonly used rules

for judging whether a process is out of control. Using a combination of
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Example 3.2
Risk and Certainty

Often in our daily lives we behave as if we know something with
certainty when actually there is a measureable risk that what we think
we know is false. The smaller the risk, the more appropriate is this
behavior. After all, there are few certainties in life. Among them,
according to some sources, are death and taxes. In everything else,
there is uncertainty (risk) at some level.

Assume you are playing a game with a friend. He

flips a coin, and for every head you owe your friend a

dollar. For every tail he owes you a dollar. You know
that the odds of a tail (you win) for a fair coin are N
50/50 (probability = 0.50) for each flip. The first flip lands heads, so
you pay your friend a dollar. So does the second, and the third. After
how many successive flips resulting in heads will you decide that the
coin is not a fair coin? If you stop playing the game after 5 heads in
a row (and a payment of $5 to your friend), you have behaved as if
you know this to be certain even though there is 1 chance in 32 that
you are wrong. This probability is so low that you behave as if you
know with certainty that the coin is not fair. You are unwilling to risk
another dollar by continuing to play the game in the face of the results
you have observed.

The same logic applies to reacting to out-of-control signals on a
control chart. There is a probability that the signal is false, but because
the probability is low, we react as if we know with certainty that the

process is out of control.

the one-point rule and the pattern rules will minimize the probability of

reacting to a false signal or failing to react to a real signal.

The Single Point Rule

The basic out-of-control signal on a control chart is one point that is

above the UCL or below the LCL. Figure 3.8 shows a control chart used
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Figure 3.8 Process out of control—one point beyond UCL

Source: Created using Minitab 16.

by a recreational runner to monitor his time over the same two-mile
route. The 12th reading on the chart is above the UCL indicating the
process is out of control. The software has flagged this point by showing
it as a red square rather than a black dot. The runner has investigated the
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reason for the out of control signal and entered it as a comment on the
chart.

The types of problems triggering this signal tend to be those that
develop or manifest suddenly such as changing to a defective lot of mate-
rials, an inexperienced operator replacing a well trained one, catastrophic
failure of a machine part, change in a machine setting, or rapid change in
an environmental condition.

One point outside the control limits when the control limits are set at
36 above and below the mean will yield very few false signals. However,
it sometimes will fail to provide a signal when a significant change has
occurred in the process. For this reason, we supplement this rule with
additional rules referred to as run rules. Run rules are designed to detect
assignable cause variation even when there is not a single point outside

the control limits of the chart.

Run Rules

We will use two run rules. The first of these is a run of eight points on a
rising or falling trend. This rule can create an out-of-control signal even
if there are no points outside the UCL or LCL. Figure 3.9 illustrates
this rule for a falling trend in the part weight of an item produced by
a molding process. Points 10 through 17 show a falling trend in the
part weight, indicating the process is out of control. The operator has
investigated the reason for the out of control signal and entered it as a
comment on the chart. The rule works in exactly the same way for a
rising trend.

The types of problems triggering this signal tend to be those that
develop and worsen over a period of time such as a heater failing resulting
in a gradual drop in process temperature, a loose limit switch that changes
position slightly with each repetition, gradual operator fatigue, or gradual
buildup of waste material affecting the seating of parts in a fixture.

The second run rule we will use is a run of eight points above or below
the CL. This rule, sometimes referred to as a pattern rule, also can create
an out-of-control signal even if there are no points outside the UCL or
LCL. Figure 3.10 illustrates this rule for a eight points falling above the

CL in a chart plotting the monthly total output of silver from a refinery.
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Figure 3.9 Process out of control—eight points on falling trend

Source: Created using Minitab 16.
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Figure 3.10 Process out of control—eight points above CL

Source: Created using Minitab 16.

Points 10 through 17 all fall above the CL of the control chart, indicating
the process is out of control. The operator has investigated the reason for
the out-of-control signal and entered it as a comment on the chart. In this
case, since the signal represents a desired and planned improvement to the

process, the control limits should be recalculated using the data beginning
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at point 10. The rule works in exactly the same way for eight points falling
below the CL.

The types of problems triggering this signal tend to be associated with
significant shifts in some part of the process such as switching suppliers
for a key raw material, making a known change to the process, changes of

operator or shift, or failure of a machine part.

Zone Rules

The combination of using control limits set at 30, and using the sin-
gle point rule with the run rules discussed above usually is sufficient to
simultaneously minimize the probability of observing a false signal and
missing a true signal. There are additional rules referred to as zone rules
that are sometimes used to decrease the probability of missing a true sig-
nal. Caution must be taken not to impose such a large number of rules
that interpretation of the control charts in real time by operators becomes
overly complex.

To use the zone rules, the control chart area between the UCL
and LCL is divided into sections corresponding to 1o and 26 above
and below the CL. The 1o lines are the upper and lower inner limits
(uil/lil). The 20 lines are the upper and lower warning limits (uwl/Iwl).
One zone rule signal is when two of three consecutive points fall within
the 26 (uwl/Iwl) zone on either side of the CL. Figure 3.11 shows this
signal at point 6 (marked (a) on the chart). Another zone signal is where
four of five consecutive points fall within the 16 (uil/lil) and 26 (uwl/lwl)
zone on either side of the CL. Figure 3.11 shows this signal at point 34
(marked (b) on the chart).

Other Nonrandom Patterns

The previous sections of this chapter discussed well-defined rules for
determining that a process is most likely out of control. However, any
nonrandom pattern can also provide a valid out-of-control signal. Some-
times, these nonrandom patterns may exist without any of the formal rules

being violated. Sometimes, a formal rule is violated but the nonrandom
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Figure 3.11 Process out of control—zone rules

Source: Created using NWA Quality Analyst 6.3.

pattern provides extra insight into possible causes of the out-of-control
condition. Example 3.3 provides an example of a nonrandom pattern

coupled with six single point out-of-control signals.

Example 3.3
Shift-to-Shift Variation Pattern

An injection molding company had just started implementing SPC in
their processes, which ran 24 hours a day on three shifts. Typically, they
collected data to use to construct the control charts on first shift since
that was most convenient for the quality engineers. Before collecting
the data, a cross-functional team comprised of quality engineers, pro-
cess engineers, maintenance technicians, and operators inspected the
process to be sure that the equipment was in good working order, raw
materials were within specifications, and operators were trained.

The engineers were pleased that the process was in control when
they analyzed the first 25 data points. They used these data to con-
struct a control chart for the process. They provided operators train-

ing in sampling, testing, recording the data on the control charts, and
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detecting out-of-control signals. They then started a pilot implementa-
tion of SPC for this process.

After a few days, it was clear from the chart in Figure 3.12 that some-
thing was wrong. Instead of the nice, in-control chart they observed
initially, there were points beyond the control limits and a disturbing
cyclical pattern that was clearly nonrandom. The cycles correlated with
changing shifts. It appeared that second shift produced systematically
higher part weights and third shift produced systematically lower part
weights when compared with first shift.

The company employed a setup technician on each shift who was
responsible for setting up the molding machines and troubleshoot-
ing problems that might arise. All three setup technicians were very
knowledgeable, were known to be diligent workers, and had fairly long
tenures in the organization.

The first step the quality engineer took to get at the root cause of
the problem was to visit each shift and talk with the setup technicians.
Each setup technician related the same story when asked what the big-
gest problem they faced in doing their jobs. Each said that their biggest
problem was setting the machines properly at the start of each shift.

The previous shift always ran the machines incorrectly.

1 chart of molding process
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Figure 3.12 Pilot implementation control chart

Source: Created using Minitab 16.
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The cause of the problem was now clear. All three setup technicians
had their own ideas about how the machines should be run. Each
was very diligent about adjusting the machine settings until the pro-
cess was running optimally according to their idea about what optimal
meant. This was not a case of incompetency or lack of diligence. All
three setup techinicans was experienced and worked diligently to do
their best for the organization. Deming often said that doing your best
is not good enough. You must know what to do and all three setup
technicians thought they knew what to do. The problem was a lack
of coordination, which is a management issue and not an operator or
setup technician issue.

The next step was to get all three setup technicians together on one
shift. The quality engineer coordinated experiments designed to arrive
at the true optimal setup conditions for the process. Once these were
determined and agreed to, they were written up and signed by each
setup technician. These documents became the standard operating
procedures (SOP) for setting up this process.

The end result? The process was found to be in control. The prob-
lem with this process was solved and the quality engineer learned a les-

son that she now applied when implementing SPC on other processes.

Action to be Taken Upon Seeing an
Out-of-Control Signal

Whoever is responsible for taking samples, collecting the data, and enter-
ing that data on control charts must be taught not only how to read the
charts but what to do when they observe an out of control signal. There
is no standard SOP for this. Appropriate actions vary depending upon

organizational decisions and factors. Among these are:

* Who collects the data and plots it on the control charts—that
is, who controls the charts? Operators? Inspectors? Quality
technicians?

e What authority has management provided to the person

controlling the chart?
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Figure 3.13 Action plan for responding to an out-of-control signal

* What resources does the person controlling the chart have

available?

* How does the person controlling the chart communicate with

others who need to know and who are available to assist in

troubleshooting problems?

Figure 3.13 illustrates an example of a simple decision diagram to guide

an operator tasked with maintaining the control chart for a process.

Implementing SPC

Implementing SPC involves much more than just creating control charts.

When not properly implemented, results will be disappointing to the

organizations. Proper implementation is a key to the success of SPC. The

basic steps involved in implementing SPC are:

* Answer the questions: Why am [ interested in implementing

SPC? What is the purpose of the implementation? What do I

expect the results to be?
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* How will we run the SPC program? Will it be a quality
department effort where quality technicians periodically sam-
ple the process or will the process operators collect the data
and plot it on the control charts?

* Select and train the implementation team. The level of train-
ing will vary from basic SPC skills to advanced proficiency in
SPC. There should be at least one or more highly trained SPC
expert in the organization to support the initiative.

* Many organizations find that providing hands-on experience
is a vital component of training. This can be done by con-
ducting a pilot SPC implementation on a selected process as
part of the training.

* Select the process and identify the KQC(s) that is the best
measure of process performance.

* Insure that the measurement system to be used is accurate and
reliable.

* Determine the sampling frequency, sample size, and rational
subgroup.

o Sampling frequency is often a balance between efficiency
and effectiveness. Too frequent sampling can be expensive
and a wasteful use of resources. Samples taken at large
intervals can allow an out of control condition to persist
too long.

o Sample size also involves a balance between resources and
effectiveness. Larger samples provide better information,
but this must be balanced against the cost of sampling and
testing.

o Shewhart’s rational subgroup concept is usually satisfied by
taking consecutively produced samples for testing. Alterna-
tively, random samples may be taken from all of the output
of the process since the last sample was taken.

* A cross-functional team should examine the process to deter-
mine that it is operating as designed. The team should ensure
that the equipment is in good repair, adjusted properly, and
set up to design specifications, raw materials meet specifica-

tions, and that the operators are properly trained. Then collect
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real-time data from the process to construct the initial control
chart. At least 25 samples should be used.

* Examine the initial control chart for out-of-control signals. If
none are present, this chart represents the current state of the
process when operating in control. If signals are present, each
should be investigated, the assignable cause addressed, and a
new chart should be constructed using additional data.

* Establish the resulting chart as the “standard” chart for the
process and establish a set of rules for reacting to out-of-con-
trol conditions.

¢ Follow-up to insure that the SPC process is being maintained
properly and appropriate action is taken when an out of
control signal is detected.

* Assess the improvements gained from implementing SPC.
How do the improvements compare to the original
expectations?

* Incorporate what you have learned into plans for continuous
improvement of the process and plans for the expansion of
the use of SPC.

It is better to start implementing SPC on a single process rather than try-
ing to do so for all processes simultaneously. This provides the implemen-
tation team the opportunity to gain experience and confidence on a small
scale before tackling the entire operation. As the number of people with
SPC implementation knowledge and experience grows, it is much easier

to implement SPC on multiple processes simultaneously.

Chapter Take-Aways

A control chart contains upper (UCL) and lower (LCL)
control limits and a central line (CL). Values of some key
statistical measure for a series of samples or subgroups are
plotted on the chart.

* A control chart represents the process talking to the
organization—telling the organization what the process

can do.
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Specifications represent the organization talking to the
process—telling the process what the organizations desires.
Specifications should generally not be included on a control
chart.

Control charts are based on some probability distribution.
When an assignable cause variation is present in a process,
signals will be observed on the control chart that indicate the
process is out of control. Appropriate action should be taken
immediately to identify the root cause of the signal and elimi-

nate it from the process.

Questions You Should be Asking About

Your Work Environment

Are your processes talking to you? Is their message one of control or
chaos? If the latter, what would be the value of reducing the chaos
and replacing it with control?

Implementing SPC is not easy. The implementation process
requires resources and expertise. What would an investment in
SPC be expected to return in order to be considered a profitable

investment?






CHAPTER 4

Basic Control Charts
for Variables

The idea of control involves action for the purpose of achieving a
desired end.
—Walter Shewhart

Data used to create SPC control charts can be divided into two basic
types: attributes and variables. Attribute data are go/no-go or count infor-
mation. Examples include the number of defective units, the number
of complaints received from dissatisfied customers, and the number of
patients whose meals were delivered more than 15 minutes late. Control
charts for attribute data will be the subject of Chapter 6. Variable data are
continuous measurement information. Examples include measurements
of height, weight, length, concentration, and pressure (psig). Control
charts for variable data are the subject of this chapter and Chapter 5.

Individual and Moving Range Control Charts

Chapter 3 used the chart for individuals (I-chart) to illustrate the theory
of the control chart. The I-chart is a variable control chart. In this sec-
tion, we will add the moving range (MR) chart, which is often used in
conjunction with the chart for individuals. This section will also use a
different type of example to illustrate the range of uses for the I-chart.
There are many situations where the logical sample size for measure-

ment is a single value. Examples include:

* Measurements per unit of time of the output from a process.
Examples used in previous chapters were the volume of sales

per month, the number of tons of coal produced per week by
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a mine, the monthly output of silver from a refinery, and the
time to run 2 miles. Other examples include overtime costs
per week, and the number of gallons of gasoline sold

per week.

* Economic data. Examples include gross national product by
month, unemployment rates, and the Institute for Supply
Managements (ISM) Purchasing Managers Index (PMI).!

* Processes where a key quality characteristics (KQC) is mea-
sured for every item produced. Measurement of every unit
may occur because of long cycle times, or because of the
use of automated measurement systems. Examples include
measurements of wall thickness for molding processes that
take several hours per unit, and fill weight for food containers
from an automated process.

* Situations where measurements are dispersed over time. An
example would be the percentage of moisture in shipments
of solvent received from a supplier. Shipments may arrive on
an irregular basis with an average of 4 to 10 days between

shipments.

Control charts for individuals are sensitive to nonnormality. The data
should be analyzed to determine that the distribution is approximately
normal before using the I-chart.

The I-chart alone is superior to a run chart because the control lim-
its on an I-chart allow the user to determine when observed variation
is significant. That is, the I-chart allows the determination of the state
of control of the process while the run chart does not. A run chart is a
“chart showing a line connecting numerous data points collected from
a process running over time,”” and can be useful for visually depicting
changes in a process over time. The PMI is an indicator of the economic
health of the U.S. manufacturing sector published monthly by ISM.
Figure 4.1 shows a run chart of the PMI by month from November
2011 to April 2013. Some variability is evident, including some large
swings between points 10 and 12 and between points 18 and 20, but
there is no way to determine if these are significant. For this we need to

use an I-chart.
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Run chart-time series plot of PMI
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Figure 4.1 Run chart for PMI data

Source: Created using Minitab 16.

The I-chart for the same data used in Figure 4.1 is shown in
Figure 4.2. This chart indicates that the PMI data are in control—that is
only common cause variation is present.

However, in order to determine the variability of the process, another
chart is used. This is called the moving range chart. Usually the MR is
determined by calculating the difference between two successive points
on the individuals chart. To be most useful, both I-chart and MR chart
are used together. The MR chart plots the difference in successive individ-
ual values. Figure 4.2 shows the I-chart and the MR chart. The first point
plotted on the MR chart is the difference between points 1 and 2 on the
I-chart. The control charts show that the swings noted on the run chart
are not significant and the overall process is in control. Notice that the
distance between the central line (CL) and upper control limits (UCL)
is greater than that between the CL and LCL on the MR chart. This is
because the LCL cannot always be set at 3 standard deviations below the
CL because that would result in a negative value for the range, which is
mathematically impossible. In this case, the lower control limit (LCL) is
set at zero—the lowest possible value for the range.

Since the data plotted here are economic data and do not represent a

process where it is possible to control the inputs, the interpretation of the
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Figure 4.2 Individual and moving range (MR) charts for PMI data

Source: Created using Minitab 16.

charts in Figure 4.2 is different than what has been discussed previously.
Since both the I-chart and MR chart are in control, the conclusion can
be drawn that there have been no significant changes to the causal system
underlying the PMI for the 22-month period plotted on the charts. But
look what happens when we add the PMI data for the next four months
as shown in Figure 4.3.

With the added data, we have a single point out-of-control signal
on the MR chart at point 25, and single point out-of-control signals
on the I-chart at points 23, 25, and 26. The very large increase in PMI
from point 24 to point 25 is reflected in the out-of-control point on the
MR chart. This signal indicates an increase in the variation of PMI from
month to month and is very likely due to some change in the underlying
causal system. The I-chart is out of control—abnormally low—at point
23 then returns to normal at point 24. At point 25 the I-chart is out
of control—abnormally high—and remains out of control at point 26,
indicating that whatever change occurred in the causal system at point 25
likely remains that way at point 26.

It is important to note that when a pair of charts is used to monitor

the state of control of a process, an out-of-control signal on eizher chart



BASIC CONTROL CHARTS FOR VARIABLES 53

I'MR chart of PMI

56
1
(I UCL = 55.06

AN A
IS

aval LCL = 49.03

PMI

D o

4 KA ) UCL - 55.06

g LAY r/\

N
14 A4 ¥
: \/I \\'/IJ \\NI V - v \ LCL = 49.03
1 4

Moving range

T
7 10 13 16 19 22 25
Month

Figure 4.3 Individual and moving range charts for PMI data with
additional data

Source: Created using Minitab 16.

indicates the statistical measure being plotted is out of control. This is
more true for the x-bar and R and X-bar and s-charts, which will be
discussed in the next section, than it is for the I- and MR-charts. This
is because the points on the MR chart are correlated and many experts
argue that the MR chart actually provides little useful information about

changes in process variation.

X-Bar, Range, and Standard Deviation Control Charts

For many processes where the KQC is a variable, it is desirable to use
samples consisting of two or more units instead of a single unit. Since
the I-chart is designed to plot the data from a single unit, a new chart
is required when using samples consisting of more than one unit. When
this is the case, the control chart for means, called the x-bar chart (often
shown as the X chart), is the right control chart for the job. x-bar (%) is the
symbol for sample mean, which is the statistic that is plotted on an x-bar
chart. The x-bar chart is always used in conjunction with a control chart
that monitors the variability of the KQC just as we needed the MR chart
in addition to the I-chart. The range chart (referred to as the R-chart) is the
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appropriate control chart for variation for sample sizes up to 10. For sam-
ple sizes greater than 10, it is necessary to use the standard deviation con-
trol chart (referred to as the s-chart) rather than the R-chart in conjunction
with the x-bar chart. This is because with small sample sizes the range and
standard deviation are almost the same, but as sample sizes become larger,
the range diverges more and more from the standard deviation.

The points on an x-bar chart represent the means of each sample. The
points on an R-chart represent the range within each sample. The points
on an s-chart represent the standard deviation of each sample.

Figure 4.4 illustrates why it is important to use a control chart for
variation (either an R-chart or an s-chart) in conjunction with the control
chart for means (an x-bar chart). In Figure 4.4, the two dots represent the
means of two samples plotted on an x-bar chart. The vertical lines com-
ing from the data points represent the range of the data from which the
means were calculated. The end of the top line from each point represents
the largest individual value in the sample while the end of the bottom line
represents the value of the smallest individual value in the sample. As you
can see, both points are shown exactly the same on the x-bar chart—the
sample means are equivalent—even though their ranges are quite differ-
ent. Simply plotting a point on an x-bar chart is insufficient to capture
this difference in the variation between the two samples. Indeed, based on
the points alone, the process shown in Figure 4.4 appears to be in control
because neither point is outside the control limits.

Figure 4.5 shows the information from the same sample as in Figure
4.4 plotted on x-bar and R-charts. The x-bar chart shows that the sample
means are nearly unchanged while the R-chart clearly indicates a signifi-

cant shift in the variability of the data between the two samples.

UCL

LCL

Figure 4.4 Why the x-bar control chart needs a companion range
control chart for variation
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Figure 4.5 The x-bar control chart with its companion R control
chart

When the sample size is greater than 10, the range is no longer a good
measure of variation.® In this case, the standard deviation, or s-chart, is
used instead of the R-chart. Figure 4.6 illustrates why it is important to use
an s-chart in conjunction with the x-bar chart. The two dots represent the
means of two samples plotted on an x-bar chart and the normal curves show
the distribution of the data within each sample. As you can see, while the
points representing the sample means are the same, the variability in their
distributions is quite different. The variation in sample one is less than the
variation in sample two. Simply plotting a point on an x-bar chart is insuf-
ficient to capture this difference in the variation between the two samples.
Based on the x-bar chart alone, the process shown in Figure 4.6 appears to
be in control because neither point is outside the control limits. When the
s-chart is added, the process is shown to be out of control because the point
representing the standard deviation for sample 2 is above the UCL.

When using x-bar and R- or s-charts, care must be taken in determin-

ing the sampling procedure. The following questions must be addressed:

* How frequently should the process be sampled? Sampling
frequency is often a balance between efficiency and effective-

ness. Too frequent sampling can be expensive and a wasteful
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Figure 4.6 Why the x-bar control chart needs a companion standard
deviation control chart for variation s-chart

use of resources. Samples taken at large intervals can allow an
out-of-control condition to persist for too long.

* How large should the sample be? While in general, the larger
the sample size the better, economics come into play. If the
test is destructive, costly, or time-consuming, an economic
sample size should be taken. In practice, sample sizes of 3 to
10 are commonly used.*

* How should units be selected for inclusion in the sample?
Shewhart’s rational subgroup concept is usually satisfied by
taking consecutively produced samples for testing. Alterna-
tively, random samples may be taken from all of the outputs
of the process since the last sample was taken. Care must be
taken to ensure that the samples represent a single process.

Two machines that output units to a common conveyor, for
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example, should be treated as separate processes with sepa-
rate control charts. Sampling the combined output on the
conveyor will lead to unreliable chart results. Samples should

always be plotted on the control charts in time sequence order.

Example 4.1

x-bar and R-charts in Action

A manufacturer has instituted SPC for a process that produces approx-
imately 5,000 units per 8-hour shift. The KQC being monitored is
part weight and each measurement requires about 15 seconds. The
sampling plan is used to select four consecutive units from the process
about every two hours. The operator weighs each unit in the sample
and immediately enters the data into Minitab 16, which plots the data
on x-bar and R-charts. The operator has instructions to follow if an
out of control condition is found. The data collected during the past

24-hour period are shown in Table 4.1.

Table 4.1 Part weights for units in 12 samples

Sample Unit 1 Unit 2 Unit 3 Unit 4
number weight weight weight weight
1 20.10 19.97 20.03 20.05
2 20.00 19.97 19.96 19.99
3 20.10 20.06 19.99 20.03
4 19.94 20.09 20.02 20.01
5 20.08 20.08 20.00 20.12
6 20.03 20.01 19.98 19.92
7 20.11 20.03 20.09 20.00
8 20.06 20.09 20.08 20.00
9 19.89 19.94 20.02 19.96
10 20.06 20.10 19.95 20.05
11 19.88 20.01 19.98 19.96
12 20.09 20.00 20.11 19.95

The x-bar and R-charts for these data are contained in Figure 4.7. The

program creates the points to be plotted on the x-bar chart by calculat-

ing the average for each sample (20.0375 for sample 1 for example). The
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points plotted on the range chart are ranges for each sample (0.13 for

sample 1 for example). The control charts indicate that the process is in

control.
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Figure 4.7 x-bar and R-charts for data in Table 4.1

Source: Created using Minitab 16.

Example 4.2

x-bar and s-charts in Action

If instead of taking samples consisting of four consecutive units as in
Example 4.1, the organization decided to take samples consisting of
12 consecutive units, an s-chart should be used instead of an R-chart.
The program creates the points to be plotted on the x-bar chart by cal-
culating the average for each sample just as in Example 4.1. The points
plotted on the s-chart are standard deviations for each sample. Figure
4.8 shows the x-bar and s-charts for this process. The control charts
indicate that the process is out of control due to point 9 being below
the LCL of the x-bar chart. The operator followed the instructions for
reacting to an out-of-control signal, identified and corrected the root
cause of the problem, and the next sample shows that the process has

been brought back into a state of control.
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Figure 4.8 x-bar and s-charts for samples consisting of 12 units

Source: Created using Minitab 16.

When much of the science of SPC was being developed, computers
and electronic calculators were not available for doing the calculations.
For this reason, range charts were favored over standard deviation charts
because of the extra complexity of calculating the points to be plotted
on the s-chart. With the widespread availability of electronic calculators,
computers, and reasonably priced SPC software, it is as easy to construct
an s-chart as it is an R-chart. Since the range becomes less effective at
showing the variation within a sample as sample size increases, it is best
to use the s-chart than the R-chart when sample size is 11 or greater. The

s-chart may also be used with sample sizes less than 11.

Chapter Take-Aways

Figure 4.9 provides guidance for selecting among the control charts dis-

cussed in this chapter.

e Variable data are continuous measurement information.
Examples include measurements of height, weight, length,

concentration, and pressure (psi).
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Figure 4.9 Basic variables control chart selection guide

* While I-charts are sometimes used alone, generally, variables

control charts are employed in pairs. One chart monitors

the changes in the process average (mean) while the other

monitors changes in the process variation. The pairs of charts

discussed in this chapter are the I- and MR charts, the x-bar

and R-charts, and the x-bar and s-charts.

* The individuals chart alone is superior to a run chart because

the control limits allow the user to determine when observed

variation is significant. That is, the individuals chart allows

the determination of the state of control of the process while

the run chart does not.

e When using x-bar and R- or s-charts, care must be taken in

determining the sampling procedure. The following questions

must be addressed:

o How frequently should the process be sampled?

o How large should the sample be?

o How should units be selected for inclusion in the sample?
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* When using paired control charts, both charts must be in

contol to conclude that the process is in control.

Questions You Should be Asking About

Your Work Environment

o Which processes have KQCs that are measured using variables
data and are candidates for monitoring with variables control
charts?

o For the processes identified by the previous question, what would
be the value of monitoring those process using SPC?






CHAPTER 5

Advanced Control Charts
for Variables

If all you have is a hammer, everything looks like a nail.
—Abraham Maslow

While the control charts for variables discussed in Chapter 4 are sufficient
to cover most situations, there are a number of additional control charts
for variables that are better for certain applications. This chapter intro-
duces new control charts for variables and adaptations of charts we have
already discussed. Each expands the utility of control charts beyond that

discussed in the previous chapter.

The Delta Control Chart for Short Production Runs

There are many situations where items are produced in small lots, which
make the use of the variable control charts discussed in the previous chap-
ter more difficule. With small lot sizes, there may be an insufficient num-
ber of samples per lot to use pattern rules—run rules, zone rules—to
detect changes in the process over time. It is also more difficult to detect
other nonrandom patterns due to shift changes, raw material lot changes,
or operator changes. Modern mixed model production where a variety
of parts from a common part family is produced just-in-time (JIT) make
the traditional control charts for variables impossible to use. Figure 5.1
illustrates a production line where two different sizes (tall and short) of a
product are produced JIT. The delta control chart' is designed for use in
these short production run situations.

If a separate x-bar chart is used for each part produced by the pro-
cess in Figure 5.1, the operator will constantly be switching from chart

to chart to match the production mix. Often only a few points will be
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Figure 5.2 Equal variances but different targets

plotted on a chart before it is necessary to switch to a different one. But,
as shown in Figure 5.2, given that the variation in the key quality charac-
teristics (KQC) being monitored is not significantly different from part
type to part type—and this should be tested—a single delta chart can be
used for all of the parts produced by the process.

The delta control chart is known by a variety of names including the
DNOM chart, the Nom-I-Nal chart, the deviation from nominal chart,
and the code value chart. The delta chart functions in the same way as an
x-bar chart and, as with the x-bar chart, is used in conjunction with an
R- or s-chart. Because the target value of the KQC being plotted on the
delta chart changes from small lot to small lot, the values used to calculate
the sample mean to be plotted on the chart are the differences between
the measured value and the target value. This is called the delta statistic.

The delta statistic is easily calculated using a spreadsheet such as Excel
or within the SPC software used to create the control chart. Table 5.1

illustrates the calculation of the delta statistic where two parts per sample
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Table 5.1 Calculation of the delta statistic

Obser- | Obser- | Obser- | Obser-
Sample | Part vation | vation | vation | vation | Delta-
No. ID | Target | 1 raw | 1 delta | 2 raw | 2 delta | Bar
1 A 1.000 1.002 0.002 1.004 0.004 0.003
2 A 1.000 0.991 -0.009 1.009 0.009 0.000
3 B 1.500 1.497 -0.003 1.501 0.001 -0.001
4 B 1.500 1.501 0.001 1.503 0.003 0.002
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Figure 5.3 Delta and R-charts

Source: Created using Minitab 16.

are taken and where two different parts (A and B) are being produced by
the same process. The raw data are entered into the software that calculates
the delta statistic (Observation — Target). Delta-bar, which is the mean of
the delta statistics for each sample [for example (0.002 + 0.004)/2 = 0.003
Delta-bar for Sample No. 1)], is plotted on the delta chart.

The delta chart, shown in Figure 5.3 with its companion R-chart,
looks like the x-bar chart, but note that if all parts are, on average, exactly
centered on the target value, the central line (CL) of the delta chart will
be zero with the points evenly distributed on either side of the CL when

the process is operating in control.
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Example 5.1

Universal Machining

Universal Machining produces machine parts for the automotive
industry. Their customer requires frequent shipments of small lots
to be delivered to their production facilities. To accommodate their
customer, Universal has implemented mixed model production. Mill
#1 is dedicated to producing a particular part family that consists
of six similar parts with slightly different dimensions. One of those
dimensions is the KQC that is used to measure the quality of the
finished part.

Recently Universal Machining implemented SPC and began using
a separate x-bar and R-chart pair for each of the six parts produced on
Mill #1. The early results of the use of SPC were disappointing. There
had been shifts that occurred in the process that were not detected
by the control charts because the run lengths of each part were too
short. In addition, production supervisors were overheard complain-
ing about the large number of control charts that required maintaining
on the production floor. One commented that he felt he was produc-
ing control charts rather than product.

The quality engineer assisting in the SPC implementation decided
to use Mill #1 as the pilot process for switching from x-bar and
R-charts to delta and R-charts. Her first step was to collect sufficient
data from the process to confirm that the variances in the KQC for
the six parts produced on Mill #1 were not significantly different.
That being confirmed, her next step was to gather sufficient data to
construct the control charts and train the operators in the use of delta
and R-charts.

The switch was a great success. Patterns that had gone unnoticed in
the past were now evident in the delta chart. One new pattern indi-
cated a shift to shift variation in the delta statistic, which was corrected
through standardization of training for all of the mill’s operators. The
supervisors were encouraged at the reduction from six pairs of charts
to a single pair of charts. The next step was to evaluate the suitability

of using delta charts on other processes in the facility.
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Exponentially Weighted Moving
Average (EWMA) Chart

A variables control chart that is a good alternative to the I-chart is the
exponentially weighted moving average (EWMA) chart, which is often
used to detect small shifts in the process. The EWMA “is a statistic for
monitoring the process that averages the data in a way that gives less and
less weight to data as they are further removed in time”* and is much less
sensitive to non-normality than the I-chart. The EWMA control chart “is
useful for smoothing out short-term variance in order to detect longer
term trends.”® This smoothing effect makes the EWMA chart less sensi-
tive to individual points that are unusually large or small.

The plotted data points on all of the previously discussed control
charts are considered to be independent, and the decision made about
the state of control of the process using the single point signal depends
solely upon the last point plotted. The EWMA chart, however, uses an
exponential weighting system, which makes each plotted point a function
of the current observation plus some portion of previous observations.

The amount of weight given to previous points can be adjusted by
selection of the weighting factor (o). When the weighting factor is set
to one, no weight is given to prior points. As the value of the weighting
factor is made smaller, the amount of weight given to previous points
increases. Changing the weighting factor and the number of standard
deviations to set the upper control limits and lower control limits enables
the construction of an EWMA chart that can detect almost any size shift
in the process.

While various sources recommend specific weighting factors, in prac-
tice it is important to make this determination based upon the data and
what the organization is trying to accomplish by use of this chart. Smaller
weighting factors increase the sensitivity of the chart to out of control
signals, but also increase the number of false signals. Figure 5.4 shows
two EWMA control charts both constructed with the PMI data used in
Figure 4.3. Figure 5.4a uses a weighting factor of 0.10 while Figure 5.4b
uses a weighting factor of 0.40. The charts are quite different from the
I-chart in Figure 4.3 and quite different from each other which highlight

the importance of the appropriate selection of the weighting factor when
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Figure 5.4 EWMA charts using the same data but different weight-
ing factors

Source: Created using Minitab 16.

using EWMA charts. Weighting factor selection requires considerable
skill. If sufficient skill is lacking in the organization, it is best to use I- and
MR charts instead of the EWMA, because the utility of the EWMA chart
is highly dependent on weighting factor selection. A naive selection of the
weighting factor is likely to result in misleading conclusions being drawn
from the chart.

It is possible to use the EWMA control chart for sample sizes greater

than one, but this application is beyond the scope of the current discussion.



ADVANCED CONTROL CHARTS FOR VARIABLES 69

Variables Control Charts with Unequal Sample Size

There are many situations where it is desirable or logical to work with data

where the sample sizes are not equal. Examples include:

 Each day’s production is considered to be a sample and each
unit produced is tested. Production rates per day often vary.

* Measurement of a variable customer KQC where each day is
considered to be a sample and the number of customers varies
from day to day.

* Mixed model production where each unit is tested and lot

sizes for each model vary.

The control chart applications discussed to this point apply to samples of
the same size—that is, sample size does not vary. However, X-bar charts,
R-charts, s-charts, and delta charts can be adapted to operate to situations
where the sample size varies. When variable sample sizes are used, the
control limits are adjusted for sample size for each point plotted on the
control chart as shown in Figure 5.5.

The sizes of each of the 10 samples comprising the control chart in

Figure 5.5 are shown in Table 5.2. The pattern of the adjustments is

X-bar chart of C3, ..., C8

1047 _|_,—\_,_\_,—\_I_\— UCL = 10.3770

X =10.0349

Sample mean

9.7 J_\—’_\_,_\—'_\_,— LCL = 9.6928

Sample

Tests performed with unequal sample sizes

Figure 5.5 X-bar control chart with unequal sample size

Source: Created using Minitab 16.
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Table 5.2 Sample sizes for control chart in Figure 5.5

Sample number Sample size
1 3
2 5
3 4
4 6
5 3
6 6
7 4
8 5
9 3

10 4

clearly reflected in the variation in the sample sizes. When the sample size
increases, the control limits are adjusted to be closer to the CL. When the
sample size decreases, the control limits are adjusted to be farther from
the CL. For example, the sample size for sample number 2 is larger than
that for sample number 1. On the control chart that is reflected in the

control limits for sample 2 being closer to the CL than those for sample 1.

Example 5.2

Variable Sample Sizes: A Service Example

A retailer of high-end merchandise is interested in tracking purchases
by customers on a daily basis. The main purpose for the tracking is to
provide an estimate of the effectiveness of advertising and promotions
on purchase amounts per customer. The store manager plans also to
track total daily sales as another measure of the effectiveness of adver-
tising and promotions.

His first effort tracked daily sales and average sales per customer per
day on run charts. He found that he was never sure whether the fluc-
tuations he saw on the run charts were significant. His solution was to
use SPC control charts instead of run charts. But which charts to use?

With the help of a professor at a local university, he examined the

historical data and found that the daily sales data resembled a normal
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distribution, but did not fit exactly. He explained to the professor that
he was more interested in long-term trends than in short-term flucta-
tions. The professor recommended an EWMA control chart.

The professor further explained that a pair of control charts for vari-
ables should be used to plot the daily purchases by customer. Each day
would be defined as a sample, and the number of customers would be
the sample size. One chart would be used to track the process mean.
The x-bar chart with control limits adjusted for the varying sample
sizes would be appropriate for this application. Since the number of
customers was always much greater than 11, the s-chart, with control
limits adjusted for sample size, would be appropriate for tracking the
within sample variation.

This combination of control charts enabled the manager to better

assess the effectiveness of advertising and promotions.

Chapter Take-Aways

Figure 5.6 provides guidance for selecting among the control charts dis-

cussed in this chapter.

Questions You Should be Asking About

Your Work Environment

o Which processes in your organization have defied attempts to use
conventional control charts such as x-bar, range, and s-charts?

o Which of the processes identified in the previous question might
be better suited for one of the control charts discussed in this
chapter?

o What would be the value of monitoring those processes more

effectively using a control chart specifically developed for those
types of processes?
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CHAPTER 6

Control Charts for
Attributes

Defects are not free. Somebody makes them, and gets paid, for making them.
—W. Edwards Deming

The previous two chapters discussed control charts for variable data,
which are continuous measurement information such as height, weight,
length, concentration, and pressure. This chapter discusses control charts
for attribute data that are go or no-go or count information. Examples
include the number of defective units, the number of defects in a unit, the
number of complaints received from dissatisfied customers, and the num-
ber of patients whose meals were delivered more than 15 minutes late.
The theory supporting control charts for attributes is the same as has been
discussed in Chapter 3. However, while the control chart for individuals
used to illustrate that discussion is based on the normal distribution, con-
trol charts for attributes are based on different distributions. Signals that
indicate an out-of-control condition are the same for both variables and
actributes control charts.

All of the control charts in this chapter are for count data, but we
must be sure to clearly define what we are counting in order to select the
appropriate chart. The first two charts discussed in this chapter are for
counting nonconforming or defective products. A defective or noncon-
forming product or service is one that cannot be sold or delivered as is
because it does not meet the required specifications. Under this defini-
tion, a product exists in one of only two states: conforming or noncon-
forming (acceptable or defective).

The last two charts are for counting nonconformities or defects. A non-
conformity is defined as the “nonfulfillment of a specified requirement,”

and similarly, a defect is defined as a “product’s or service’s nonfulfillment
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of an intended requirement...”" A product may have a theoretically infinite
number of defects. Whether the presence of defects renders the product
nonconforming is determined by the specifications. For example, there may
be a limit to the number of minor defects that are allowed in a product
before it is rendered as nonconforming. The distinction between a defective
(nonconforming) product and a defect (a nonconformity) is significant and

is key to selecting the appropriate control chart for the job.

Proportion Defective Chart

The proportion defective control chart is also referred to as a percent
chart, a fraction nonconforming chart, a fraction defective chart, or sim-
ply as a p-chart. ASQ defines a p-chart as a “control chart for evaluating
the stability of a process in terms of the percentage (or proportion) of
the total number of units in a sample in which an event of a given clas-
sification occurs.”” Often the “event of a given classification” is whether
the unit being examined is conforming (acceptable) or nonconforming
(defective). The binomial distribution is the basis for the p-chart.

The p-chart is often used when large quantities of product are pro-
duced relatively quickly. For example, an injection molding process,
which produces small parts with short cycle times in multiple cavity
molds, would be a good candidate for a p-chart. One advantage of the
use of p-charts is that multiple key quality characteristics (KQCs) can be
combined using just one chart. When using control charts for variables,
each KQC must have its own chart or pair of charts. The disadvantages of
using p-charts compared to control charts for variables include the need
for sample sizes significantly larger than with control charts for variables,
and information about specific KQCs is not preserved on the p-chart as it

would be on a control chart tracking a specific variable.

Example 6.1
p-charts in Action

An injection molding operation was producing a plastic boot that

covers the end of an electronics cable. The parts were produced
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automatically on a large molding machine using a 50-cavity mold with
a short molding cycle. Many thousands of these parts were produced
during each hour of production. There are a number of attributes that
must be inspected for. A problem with any one attribute renders the
part nonconforming. Typically, the company considered each shift’s
production to be a lot and evaluated each lot using an acceptance sam-
pling plan. The major disadvantage of this plan is that problems that
occur early in a shift are not detected until well into the next shift.
Since a rejected lot must be inspected 100 percent (which was consid-
ered to be rework), considerable extra cost can be incurred as a result
of failing to identify a problem as early as possible.

This process was chosen as the organization’s pilot study for the
implementation of statistical process control (SPC). The implementa-
tion team decided to sample the process four times per shift using a
sample size of 200 with immediate inspection of the sample units. The
results of the inspection would be recorded on a p-chart. The expecta-

tions for this SPC implementation were:

* Quicker recognition of process problems so that corrective can
be taken more quickly with the result of fewer defective parts
produced.

* A savings in inspection costs since the SPC sampling plan would
require the inspection of 800 units per shift compared with the
1250 units per shift under the acceptance sampling plan.

e A savings in rework costs since the number of units subject to 100
percent inspection if a process problem is found would be about
one quarter as many as with the acceptance sampling plan. This
is because in this case we sample the output four times as often
using SPC as with acceptance sampling so the number of items
produced before a problem is detected is one-fourth as many as
with acceptance sampling.

* Reduced product variation, which should manifest as better qual-

ity as perceived by the customer.

The implementation team made sure that the process was set up

as designed and took 25 samples over the course of three shifts of
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production. They used the data from these samples to construct the
trial control chart shown in Figure 6.1. The process was shown to be
in control and SPC was instituted as the standard operating procedure
(SOP) for this process using the control limits established during the
trial period. About two months later, the implementation team revis-
ited the process and found that SPC was working as designed and that
all expectations were being achieved.
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Figure 6.1 Trial p-chart

Source: Created using NWA Quality Analyst 6.3.

Notice that the distance between the central line (CL) and upper con-
trol limit (UCL) in Figure 6.1 is greater than that between the CL and
lower control limit (LCL). This is because the LCL cannot always be set
at three standard deviations below the CL because that would result in a
negative proportion defective, which is impossible. In this case, the LCL
is set at the lowest level that is possible, which is zero.

P-charts can be used with both fixed and variable sample sizes.
Figure 6.1 illustrates an example using fixed sample size. However, there
are many instances where sample size will vary—particularly in the service
and healthcare sectors, which will be more specifically discussed in Chap-

ter 8. Whenever the sample consists of all the items produced during a
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period of time, it is likely that the sample size will vary. Even an automated
manufacturing process that produces relatively constant amounts of prod-
uct per day, all of which is subject to 100 percent automated inspection,
is subject to variation in the sampling intervals, which creates a situation
where sample size will vary. When the sample size varies, the control limits
are adjusted for each sample, which explains why the UCL and LCL in

Figure 6.2 are not straight lines but appear to have steps.

Example 6.2

p-chart for Varying Sample Size Leads to
Improvement Project

A manufacturing company uses an automated system to apply labels
to its products. Each labeled product is inspected using a pixel cam-
era system, which detects any missing, crooked, or torn labels and
removes the mislabeled product from the process flow. The inspec-
tion system automatically logs the number of units inspected and the
number of units rejected. This allows the calculation of the propor-
tion of the units inspected that are nonconforming. These data are
plotted hourly on a p-chart. Since the number of units inspected per
hour varies, the control limits for the control chart must be adjusted
based on the sample size as shown in Figure 6.2. The control chart
shows that the process is out of control because sample 25 is above
the UCL.

The first action the company took was to determine the root cause
for the out-of-control point. They then took appropriate corrective
action, followed by taking a new sample to verify that the corrective
action brought the process back into control.

The company also periodically reviews the control chart to deter-
mine how well the process is meeting expectations. The CL on this
control chart is 0.05251, indicating that more than 5 percent of the
labeled units are nonconforming. The organization in this case was
not satisfied with this level of nonconforming product and initiated
a planned improvement project with the goal of reducing the mean

number of nonconforming labels produced by the process.
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Number-Defective Chart

The number-defective control chart is also referred to as an np-chart. The
np-chart is an alternative to the p-chart. Adapting the definition of the
p-chart, the np-chart is a control chart for evaluating the stability of a
process in terms of the number of the total number of units in a sample
in which an event of a given classification occurs. As with the p-chart,
often the “event of a given classification” is whether the unit being exam-
ined is conforming (acceptable) or nonconforming (defective). Since the
np-chart uses the number rather than the proportion of nonconforming
units in each sample, sample size must remain constant. The binomial
distribution is the basis for the np-chart.

As with the p-chart, the np-chart is often used when large quanti-
ties of product are produced relatively quickly and provides the same
advantages and disadvantages as the p-chart. The main advantage of the
np-chart over the p-chart is ease of understanding. Since the number
of nonconforming units per sample is plotted on the chart, it provides
direct evidence for the amount of nonconforming product being pro-

duced in units. Line operators often find units easier to understand than
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proportions. A disadvantage of the np-chart compared to the p-chart is
the inability to handle variable sample sizes.

The bottom part of Figure 6.3 shows an np-chart using the same data
used to create the p-chart in Figure 6.1. The p-chart from Figure 6.1 is
reproduced on the top to provide a comparison. The patterns in the charts
are identical and both have equal power to respond to out of control con-
ditions in the process.

Both the p- and np-charts are based on defective or nonconform-

ing units—that is, units that are judged not to be in conformance with

p-chart
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Figure 6.3 Trial p- and np-charts using the same data
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specifications. The next set of charts, the c-chart and u-chart, are based on

the number of nonconformities or defects found in a unit.

Count Chart or Number of Nonconformities
in a Fixed-Size Sample

‘The count chart, also known as a number of nonconformities chart, is
a “control chart for evaluating the stability of a process in terms of the
count of events of a given classification occurring in a sample, and is
known as a ¢-chart.”® The events are generally nonconformities or defects.
When using the p-chart or np-chart we are unconcerned with how many
defects are present in a sample, just that for whatever reason or reasons,
some units in that sample are considered to be nonconforming. In the
case of c-charts we are concerned only with the number of defects that
are present in a sample and not with how many nonconforming units are
present. When using c-charts, the sample size should be constant. The
Poisson distribution is the basis for the c-chart.

Consider the final inspection of the finish of an automobile. If the
specification allows a specified number of minor defects in the finish,
then undil that limit is reached, the automobile being inspected is con-
sidered to be conforming even though some number of nonconformities
is present. A p-chart or np-chart would fail to capture the information
about the minor defects present in the finish. That is why the c-chart is

appropriate in this case.

Example 6.3
The np-chart versus the c-chart

Each automobile moving off the end of the assembly line is hand
inspected for minor defects in the paint finish. The specification
allows a maximum of eight minor defects per automobile. More
than eight minor defects render the automotive finish noncon-

forming or defective. The results of recent inspections are shown
in Table 6.1.
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Note that while there is a clear trend of increasing numbers of
defects in the samples over time, none of the samples would be consid-
ered to be nonconforming until the 10th sample. When plotted on an
np-chart, samples 1 through 9 would plot as zero defectives, indicating
no significant variation in the process. In fact, the process appears to
be absolutely stable with zero defective paint finishes until point 10.
Clearly the np-chart does not accurately depict the real state of control

of the process.

Table 6.1 Inspection record for automotive finishes

Sample number Number of defects
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8

10 9

The correct control chart to use in this situation is the c-chart. The
c-chart, shown in Figure 6.4 shows that the process is out of control at
point 8 using the “8 points in a row on a rising trend” run rule. The
c-chart clearly shows that the process is deteriorating over time. The
out-of-control signal at point 8 is received before we exceed the specifi-
cation limit of eight minor defects, which provides time to investigate
and correct the problem before we have produced a defective finish.
While this is a contrived example, it clearly illustrates the importance
of selecting the correct control chart for the job. When counting non-
conformities (defects) in samples of fixed size, the c-chart is the correct

control chart to use.
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Figure 6.4 Automotive paint finish inspection c-chart

Source: Created using NWA Quality Analyst 6.3.

Count Chart for Nonconformities per Unit Where
Sample Size May Vary

The count chart per unit, called a u-chart, is an adaptation of the c-chart
that evaluates the stability of a process in terms of the count of events of
a given classification occurring per unit in a sample. Unlike the c-chart,
which uses fixed-size samples, the u-chart allows for the use of variable size
samples. As with the c-chart, the events are generally nonconformities or
defects. And as with the c-chart, when using a u-chart we are concerned
only with the number of defects that are present in a sample and not with
how many nonconforming units are present. The Poisson distribution is
the basis for the u-chart.

There are many situations where the sample size varies. Many ser-
vice applications involve variable sample sizes and will be discussed in
more detail in Chapter 8. In manufacturing, when the entire popula-
tion is inspected rather than samples taken from the population, sample

size often varies. The u-chart handles this by calculating and plotting
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the number of defects per unit and adjusts the UCL and LCL for the

sample size.

Example 6.4
The u-Chart in Action

The manufacturer of coated polyester film uses an automatic inspec-
tion process to identify defects in the coating. The specific location
of these defects is automatically recorded so that the manufacturer
knows exactly where within the run the defects are located. Each hour,
the number of defects is recorded along with the length of the coated
product produced in linear feet. Data for 16 hours of production are

contained in Table 6.2.

Table 6.2 Inspection record for coating defects

Sample number | Number of defects | Linear feet produced
1 27 9,250
2 17 8,100
3 16 8,500
4 24 8,900
5 22 8,650
6 28 9,040
7 19 8,750
8 26 9,100
9 24 9,200

10 21 8,850

11 25 7,250

12 19 8,850

13 20 8,750

14 26 8,950

15 28 8,800

16 19 9,100
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Since we are tracking defects and sample size varies, the correct control
chart to use in this situation is the u-chart. The u-chart, shown in
Figure 6.5, indicates that the process is in control. Notice that the
UCL and LCL vary as a result of adjustments due to variations in
sample size. When counting nonconformities (defects) in samples of
variable size, the u-chart is the correct control chart to use.

The manufacturer was not happy with the level of defects in the
coated rolls. The CL on the u-chart is 0.002577835, indicating that
there are approximately 0.00258 defects per linear foot. Based on the
information on the u-chart in Figure 6.5, the manufacturer recognized
that the process was in control—operating as currently designed. So a
project to improve the process was initiated with a goal of reducing the
number of defects per linear foot by 25 percent within three months.
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Figure 6.5 Coating defect u-chart
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Chapter Take-Aways

Figure 6.6 provides guidance for selecting among the control charts dis-

cussed in this chapter.
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Figure 6.6 Attribute control chart selection guide

Questions You Should Be Asking About

Your Work Environment

o Which processes have KQCs that are measured using attribute
data and are candidates for monitoring with attribute control
charts?

o For the processes identified by the previous question, what would
be the value of monitoring those process using SPC?

»  What data thar are monitored by your organization might have
greater value for decision-making purposes if tracked using an

attribute control chart?






CHAPTER 7

Process Capability

Our work is the presentation of our capabilities.

—FEdward Gibbon

The debate over the true definition of quality is as strong as ever with
no resolution in sight." For the purposes of our discussion of process
capability, we will use a definition based on Juran’s fitness for use and
Feigenbaum’s best for certain customer conditions.” Edward Lawson built
on Juran’s and Feigenbaum’s work when he crafted his definition of qual-
ity as “the degree of excellence with which a product or service fulfills its
intended purpose.” The intended purpose is defined by the marketplace,
according to Lawson, and the intended purpose is translated into specifi-
cations that manufacturers use to assure the products they produce meet
the customers’ intended purpose—that is, they are of good quality. As
John Guaspari put it, “Customers aren’t interested in our specs. They’re
interested in the answer to one simple question, “Did the product do
what I expected it to do?™

Process capability assesses how well the process, when operating in
control, is able to meet the specifications. Process capability is important
because simply being in control is not sufficient. A process that consist-
ently produces nonconforming product can still be in control. Figure 7.1
illustrates a process operating in control with little variation but that fails
to produce products that meet specifications because the process is not
centered on the specification.

Figure 7.2 illustrates a process operating in control and that is cen-
tered on the specification that produces considerable amounts of noncon-
forming material because the process limits are too wide—that is, there
is too much variation. While the control charts (not shown) for both

illustrated processes indicate they are in control, neither of the processes
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shown in Figures 7.1 and 7.2 are capable since so much of the distribu-
tion is outside the specification limits. What is desired is a process that is
both in control and capable.

Measurement of process capability differs for variable and attribute

data. For that reason, we will deal with each separately.

Process Capability for Variable Data

There are several ways to measure process capability for variable data

that we will discuss in this chapter. Among these are the process capabil-
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ity indices Cp, Cpk, and Cpm. These indices compare specifications for a
product (what you desire the process to produce) to the processs per-
formance capability (what the process can achieve when operating in
control). Regardless of which of these statistical indices is used, the first
step in assessing process capability is to confirm that the specifications
accurately reflect the customers’ intended purpose. The second step is to
confirm that the process is in control. The third step is to compare the
variation of the in-control process to the spread of the specifications using
some form of an index.

When the process is not in control, some experts recommend using the
indices P and P | (known as process performance indices) to obtain an initial
measure of process capability before the process is brought into a state of
statistical control. However, if the process is not in control, these indices have
no predictive capability because the process is not predictable. Indeed many
experts’ regard the use of P and P asa “step backward in quantifying process
capability.” One expert® flatly states that P and P “are a waste of engineer-
ing and management effort—they tell you nothing.” Therefore, it is recom-
mended that the process first be brought into a state of control, then use C,
C,o or C, as measures of process capability rather than using P or P .

Because all of these indices are a ratio of the spread of the specifica-
tions (distance between the upper and lower specification limits) and the
variation in the process (+3 ), it is obvious that only two actions can
increase the value of the ratio: increase the spread of the specifications or
decrease the process variation.

The higher the value of the index the more capable is the process.
Standards for considering a process to be capable sometimes differ from
industry to industry and organization to organization. A general rule is
thata C_ index value of 1.33 is a minimum acceptable standard for capa-
bility. As Table 7.1 shows, this corresponds to 63 parts per million defec-
tive (ppmd), assuming a perfectly normal distribution, which is a 4 sigma
level of quality (See Table 7.1 footnote). In this context, 4 sigma refers to
the upper specification limic (USL) and lower specification limit (LSL)
coinciding with + 4 standard deviations from the process mean—a total
spread of 8 standard deviations. The larger the value of the capability ratio,
the larger the magnitude of an assignable cause event that can be tolerated

without generating large amounts of out-of-specification material.
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Table 7.1 Cp and ppm defective

Quality level C, ppm defective
3 sigma 1.00 2,700

4 sigma 1.33 63

5 sigma 1.67 0.57

6 sigma* 2.00 0.002

Source: Sower (2011); Adapted from Tadikamalla (1994).

*The Six Sigma quality program allows the distribution mean to drift by + 1.5 standard deviations.
Six sigma quality without the drift equates to 0.002 ppm defective. Six Sigma quality with the drift
allowed equates to the often quoted 3.4 ppm defective or 3.4 defective parts per million opportunities.

When the process is centered on the target value of the specification (T),
there are only two actions that can be taken to improve process capability

as shown in Figure 7.3:

* Decrease process variation

* Loosen the specification

If the process is not centered on the process specification, process capabil-
ity can also be improved by centering the process on the specification (see
Figure 7.6).

The equations for calculating the measures of process capability dis-

cussed in this section may be found in Table A.4 in Appendix A.

Example 7.1
Why Isn’t C = 1.00 Good Enough!?

A manufacturer of electronic toys aspired for a process that is in control
with a C_of 1.00. “After all, we're not producing space shuttles. I don't
think that 2,700 defective toys out of every million produced is so bad.
Thact is only about 1 defective product out of every 400 units produced,
which means that 99.73 percent or our products work properly. We
will just replace the defective ones that are returned by the customer.”
But assume that her toys are comprised of 100 components each
produced by processes that are in control and have a C = 1.00. If

any one of these components fails to work properly, the toy will fail
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(a) Baseline Process

(b) Improving process capability by decreasing variation

LSL USL

(c) Improving process capability by loosening the specifications

LSL USL

Figure 7.3 Improving process capability
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in about 14 defective toys per 100 produced.

to work. Each component has a probability of working properly of
0.9973. The probability of all of the components working properly
is 0.9973 x 0.9973 x 0.9973 ... 100 times or 0.9973'°, The result-
ing reliability is 0.7631. That means that about 24 out of each 100
products produced will be defective. This is hardly acceptable even for
toys. A higher standard is needed. At the minimum accepted standard
Cp = 1.33, the reliability of the toy would still be just 0.8591, resulting
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C

P

C, is defined by ASQ as the “ratio of tolerance to 6 sigma, or the USL
minus the LSL divided by 6 sigma. It is sometimes referred to as the
engineering tolerance divided by the natural tolerance.”” This definition
uses the term tolerance while this book uses the term specification to
mean the same thing. Note also that in this definition, 6 sigma refers to
a total spread of 6 standard deviations—3 standard deviations below the
mean plus 3 standard deviations above the mean. This does not have the
same meaning as Six Sigma referring to the quality program used by some
organizations to reduce process variation.

C is an appropriate measure of process capability when:
» pprop p pability

* The specification is two sided—that is it has both an upper
and a lower bound.

¢ The process is centered on the specification target value (see
Figure 7.2).

* The individual measurements of process output are approxi-
mately normally distributed.

* The process is in control.

Statistical process control (SPC) uses statistics derived from both sam-
ples and individuals. It is important to understand when to use each.
This is especially true when dealing with x-bar charts and process capabil-
ity analysis. Data are collected for the construction of x-bar charts using
rational subgroups (see Chapter 4) or samples consisting of two or more
observations. The sample means (x) are calculated along with the sample
ranges (R) or sample standard deviations (s). The mean of the sample
means is the grand mean (X), the mean of the sample ranges is R, and the
standard deviation of the sample means is o-. These statistics are used to
determine the UCL and LCL for the x-bar chart upon which the sample
means are plotted.

Usually these same data are used to determine a measure of process
capability such as CP or Cpk, but for process capability purposes, it is the
individual measurements rather than the sample statistics that are used.

For more detail about this topic, see Appendix A.
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Example 7.2

Using the Same Data for an X-Bar Chart
and Process Capability

Part weight data were collected from a molding operation for the pur-

pose of implementing SPC for the process. Twenty-five samples con-

sisting of four parts each were collected from the process as shown in

Table 7.2.

Table 7.2 Sample data

Sample no. Part 1 Part 2 Part 3 Part 4
1 19.97 20.03 20.05 20.10
2 19.97 19.96 19.99 20.00
3 20.06 19.99 20.03 20.10
4 20.00 20.02 20.01 19.94
5 20.08 20.00 19.84 20.08
6 20.01 19.98 19.92 20.03
7 20.03 20.06 20.00 19.98
8 20.03 20.02 20.00 20.08
9 19.94 20.02 19.96 19.89
10 19.92 19.95 20.05 20.06
11 20.01 19.98 20.02 19.88
12 19.90 20.00 19.95 20.09
13 19.97 20.03 20.05 20.10
14 19.97 19.96 19.99 20.00
15 20.06 19.99 20.03 19.92
16 20.03 20.02 20.01 19.94
17 20.08 20.00 20.08 20.08
18 20.01 19.98 19.92 20.03
19 20.03 20.00 20.00 19.94
20 20.03 20.04 20.00 19.94
21 19.94 20.02 19.96 19.89
22 19.98 19.95 20.02 20.06
23 20.01 19.98 19.96 20.06
24 20.00 20.11 19.95 20.09
25 19.97 19.98 19.99 20.00
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First, the sample means and sample ranges were calculated by the
SPC software package and used to construct x-bar and R-charts. Figure
7.4a shows that the process is in control. Next, the individual observa-
tions were analyzed and the process mean and standard deviation were
calculated and used to analyze process capability. Figure 7.4b shows
that the process distribution is approximately normal and reasonably
centered on the specification target. The organization uses a standard
of C at or above 1.33 to classify a process as being capable. Using this
standard, the process is capable since Figure 7.4b indicates Cp is 1.5458.

(a) Control charts using sample statistic
File: Part weight. DAT weight

ucl

20.05

20+

19.954

g
el 2
&
Icl
T T e o e~ 15
Xbar:  cl: 20.0013 wucl: 20.08232 lcl: 19.92028 Subgrp size: 4
Range: cl: 0.1112  ucl: 0.2537641 lcl: 0O < Rule violation
(b) Process capability analysis using individual statistics
File: Part weight. DAT weight
] Target
20 ] Mean
] LSL USL
15
10 A
5]
0 — T T T T — T
19.7 19.8 19.9 20 20.1 20.2 203
Samples: 100 C . 153717 3spLim:  (19.84,20.163)
Mean: 20.0013 Cp: 1.5458  Target: 20
Std Dev: 0.05391079 Cw“: 1.5453  Spec Lim: (19.75, 20.25)
Skewness:  —0.26003 Est% out:  (0.0002, 0.0002)

Figure 7.4 State of control and capability analysis using data in
Table 7.2

Source: Created using NWA Quality Analyst 6.3.
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Figure 7.4b shows a typical process capability report. From this report,
we can see that the process distribution is approximately normal and the
process mean almost exactly coincides with the target value of the speci-
fication. On the printout, samples = 100 indicates that 4 observations
from each of the 25 samples were used in this analysis (4 observations
per sample x 25 samples = 100 individual observations). Three process
capability indices are reported: C, C |, and C_ . The final entry on the
printout (Est. out) shows that over time, approximately 0.0002 percent
of the process output is expected to fall below the LSL and 0.0002 per-
cent is expected to fall above the USL for a total prediction of a long-term

average of 0.0004 percent of the output failing to meet specifications.

C

pk

When the second requirement for using Cp, “the process mean is centered
on the specification target” (see Figure 7.1), is not met, then the proper
index to use is C . Think of C | imposing a penalty on process capability
if the process is not centered on the specification target value. Cpk exam-
ines the distance between the USL and the process mean and the distance
between the LSL and the process mean. It calculates two ratios: (1) the
ratio of distance between the process mean and the LSL to 3 sigma and
(2) the ratio of the distance between the USL and the process mean to 3
sigma. The former ratio is referred to as CPl and the latter as Cpu. CPk is the
minimum of these two ratios.

Figure 7.5 illustrates a situation where the specification target value
is higher than the process mean (p). The distance between the LSL and
the process mean is smaller than the distance between the process mean
and the USL. Since each distance is divided by the same value, 3 sigma,
that means CPl will be smaller than CPu and Cpk would be set at the value
of the Cpl. As with Cp’ the higher the value of the Cpk the more capable
is the process. The general rule is that a C | value of 1.33 is a minimum
acceptable standard for capability although many organizations adopt a
different value of the index for their purposes.

When the process is perfectly centered on the specification target
value, Cp and Cpk will be identical. For un-centered processes, center-

ing the process on the specification target value will increase process
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Figure 7.5 C , C

" and Cpu—Process not centered on target value
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pk’

Process off-center Process more centered
and not capable and more capable

Figure 7.6 Process improvement through shifting of the mean

capability. Note in the process capability printout in Figure 7.4b, the pro-
cess is not exactly centered on the process mean. We can tell that because
C, is 1.5458 while C, s 1.5377—=close but not identical. We would use
C,, as the current capability of this process while the difference between
C,and C, represents the amount of improvement that could be achieved
by perfectly centering the process on the target value. Often shifting the
process mean to more closely align with the specification target value is
casier to accomplish than reducing process variation. For this reason,
shifting the mean so that it more closely coincides with the specifica-
tion target value should not be overlooked as a possible source of process

improvement as shown in Figure 7.6.

C

pm

C , exacts a penalty for the process not being centered on the specification
pk

target value, but the value of this penalty is small if the process variation
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is small enough so that the amount of out-of-specification product pro-
duced is small. Cpm is an index that is based on the Taguchi loss function,
which, in part, states that there is a loss to society when a process mean
is off target (ideal value) even if no out-of-specification product is pro-
duced.®’ Some consider Cpm to be the best overall “indicator of how your
customers experience the quality of your product or service.”"

While CP and Cpk use the process mean when calculating the spread
of the observations, C_uses the specification target value instead and
compares this spread with the distance between the USL and LSL. In the
left-hand illustration in Figure 7.6, the process is so far off target that it is
obvious that significant amounts of out-of-specification product will be
produced. C , penalizes for this. Figure 7.7 illustrates the situation where
the process is not centered, but the variation is small enough that lictle
out-of-specification product is produced. C_penalizes more than C | in
this situation. Most SPC software reports Cpm as well as Cp and CPk as part

of its process capability analysis routine (see Figure 7.4b).

Process Capability for Variables Data—One-Sided
Specification Limit

The previous discussions dealt with the situation where specifications are
two-sided—that is target value + some value representing the USL and
LSL, which is sometimes expressed as from LSL to USL. There are many
situations where the specification is one-sided—that is target + 0/—-0.002
or not to exceed USL where 0 is ideal. In these cases, the target value is not
midway between the LSL and USL. The target value is the LSL. In this
case, process capability is measured using Cpu or in more precise terms, we
measure process capability using C | where C,.=C,. The assumption of

normality in the process data must still be satisfied.

LSL T USL LSL T USL
Poor C,,; Good C, Good C,,; Good C,,

pm’ pm’

Figure 7.7 Improving Cpm through process centering
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Example 7.3
Process Capability for One-Sided Specifications

The Environmental Protection Agency maximum concentration level
for arsenic in potable water is 0.010 ppm."" The ideal or goal is 0 ppm
arsenic in the water. This is a situation where the target value is the
LSL (0 ppm).

A bottling company extracts water from a well which is then filtered,
sanitized using UV radiation, and bottled for sale. Samples from the
bottling line are taken periodically and tested for a variety of potential
contaminants. Among the tests is one to determine the amount of
arsenic present in the water. The process is in control and the distri-
bution of the individual observations is approximately normal. The
appropriate measure of process capability for this process would be
C,, = C,.- Because this is a critical statistic, the company uses a stand-
ard of C,. 22.00as their measure of process capability. The measured

value of C | is 2.05, which is above the standard, therefore the process

is considered to be capable.

Process Capability for Nonnormal Distributions

Theuse of C , C ,and C require that the process distribution is approx-
P’ Tpk pm

imately normal. There are many situations where this might not be the

case. It is possible to accommodate nonnormal distributions by identify-

ing the appropriate distribution and selecting it for use when determin-

ing process capability. Figure 7.8 shows the process capability parameter

selection screen for NWA Quality Analyst.

Example 7.4

Process Capability with Nonnormal Distribution

A manufacturing company tracks the time it takes to prepare ship-
ments from its factory. They use day as the rational subgroup and x-bar
and s-charts with variable sample sizes to determine the state of control

of the process. The control charts indicate the process is in control. The
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Figure 7.8 Probability distributions available for process capability
analysis in NWA Quality Analyst

company has set a goal of 5 minutes per shipment and an upper bound
of 10 minutes per shipment and wants to understand the process’s
capability to meet these specifications.

Their first attempt to assess process capability used the software’s
default setting of the normal distribution to model their process. The
output they obtained is in Figure 7.9.

By visual examination, we can see that the data do not fit the nor-
mal distribution, which renders C | meaningless. The shape of the dis-
tribution suggests instead a Weibull'* distribution.” Note that there
are statistical tests to determine how well data fit a specific distribu-
tion, but for the purpose of this book, we will rely on visual examina-
tion. They make the appropriate selection in NWA quality analyst (see
Figure 7.8) and obtain Figure 7.10.

Visually, the Weibull distribution is a much better fit for the data.
"The printout shows that C | =0.9988 while the company was targeting

aC, = 1.33 as their minimum standard. They conclude the process is
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not capable as currently designed and initiate an improvement project

to increase the capability of the process.

File: Packaging time.DAT

time to prepare shipment

Target
150
USL

100 A

50 4
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Samples: 550 Cye 06196 3sp Lim: (~1.8418, 7.8418)

Mean: 3 Cp: 1.0327  Target: 5

Std Dev: 1.613919 Cont 0.6482  Spec Lim: (0, 10)

Skewness:  0.34348 Est% out:  (3.1526, 0.0007)

Figure 7.9 Package preparation times modeled using the normal
distribution

Source: Created using NWA Quality Analyst 6.3.
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Skewness: ~ 0.34348 Est% out:  (0.1419, 0.0199)

Figure 7.10 Package preparation times modeled using the Weibull
distribution

Source: Created using NWA Quality Analyst 6.3.
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Process Capability for Attributes Data

Process capability for attributes data is less complex than for variables data.
One measure of process capability is the centerline value of the attribute
control charts. This works well for p-charts and u-charts, but less well for
np-charts and c-charts. To say that a process is capable of producing on
average a p = 0.002 has meaning as a standalone measure and can be used
as a predictor. We would expect the process, if it remains in control, to
continue to produce a proportion defective of 0.002. Similarly, a %= 0.10
also has meaning as a standalone measure. We would expect the process, if
it remains in control, to continue to produce 0.10 defects per unit.

Neither 7p (the central line for the np-chart) nor ¢ (the central line
for the c chart) work as well as standalone measures of process capability.
The sample size must be included in order for these measures of process
capability to be meaningful. The number of defective units in a sample
and the number of defects in a sample must have the sample size specified
in order to be meaningful. This is cumbersome.

Another popular approach to measuring process capability with attrib-
ute data is to use the measure “parts per million defective” sometimes
known as the number of defectives per million opportunities. The abbrevia-
tions parts per mission (ppm), defects per million opportunities (DPMO),
and parts per million defective (ppmd) are variously used with this measure.
This is a popular measure in the Six Sigma approach to quality.

Another popular approach involves the use of sigma notation. As
Table 7.1 showed, there is a relationship between ppm and the number of
standard deviations defining the spread of the specification limits relative
to the spread of the process distribution. Three sigma quality coincides to
2,700 ppmd for example. However, care must be taken when using this
approach. The Six Sigma quality program allows a + 1.56 shift in the pro-
cess mean when calculating this quality measure. Allowing for this shift,
30 quality now coincides with 65,000 ppmd instead of 2,700. The Six
Sigma program goal of making all processes Six Sigma capable is defined
as 3.4 ppmd when the 1.5 shift is allowed, but 0.002 ppmd when the
mean is not allowed to shift.

Regardless of the measure, the organization must determine the pro-

cess capability necessary to delight its customers. For some 2,700 ppmd is
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sufficient; for others, this would represent dreadful performance. Setting

the process capability goal is a management responsibility.

Chapter Take-Aways

When a process is centered on the specification target value, there are only

two actions that can improve process capability:

* Decrease process variation

* Loosen the specification

When the process is not centered on the specification target value, center-
ing the process can improve process capability.

The process for using process capability indices C, C , and C__is:

* Confirm that the specifications accurately reflect the custom-
ers’ intended purpose.

* Confirm that the process is in control.

* Verify that distribution of individual measurements is
approximately normal (or identify and use the appropriate
alternative distribution). This should be done using statistical
measures of goodness of fit.

* Compare the variation of the in-control process to the spread
of the specifications using the appropriate index.

* Determine whether the process capability index meets expec-
tations (e.g., CP =1.33 or Cp =2.00).

The larger the value of the capability ratio, the larger the magnitude of an
unexpected event that can be tolerated without generating large amounts
of out-of-specification material.

The goals of process capability are:

* To have all of the variable process indices equal to each other
(C =C , =C ), indicating the process is centered on the
P pk pmy
specification target value, and
* Greater than the organization’s standard for considering a

process to be capable (e.g., 1.33 or 2.00).
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Modern SPC software allows for the easy analysis of process capability for
processes that are not normally distributed.

Process capability using attributes data is usually defined in terms of
average proportion defective, average number of defects per unit, parts
per million defective, or the number of standard deviations defining
the spread of the specification limits relative to the spread of the process
distribution.

Process capability is useful in predicting the performance of processes
and customer satisfaction with the output of those processes. However,
the goals for process capability must be set by management to achieve the

level of performance demanded by customers.

Questions You Should be Asking About

Your Work Environment

*  How well do the specifications for your products and services
reflect customer requirements?

*  How many of your processes have established levels of process
capability?

* Apre all of your processes properly centered on the target value?

*  Have you established the level of process capability necessary to
meet customer requirements?

o Is improving process capability an integral part of your continu-
ous quality improvement program?

o What gains would accrue to your organization from increasing

process capability?






CHAPTER 8

SPC in Service Industries

When people ralk about successful (service providers) and those that
are not so successful, the customer determines at the end of the day who
is successful and for what reason.

—Jerry Harvey

There are a number of key differences between the design, production,
and delivery of a product and the design and delivery of a service. Some of
these differences can have an influence on the way statistical process con-
trol (SPC) is employed. While the underlying theory is the same, deploy-
ment of SPC in the service sector often differs in certain respects from
SPC deployment in the manufacturing sector.

Among the key differences between products and services' that might
affect SPC deployment are:

* Products are generally tangible, while services, even those
with a tangible component, tend to be intangible in terms of
customer focus.

* In many instances, services are created and delivered at the
same time and by the same people. Products tend to be
created in advance and different people do the manufacturing
and delivery. For this reason, service defects are more often
found by customers than in the case of manufacturing.

* Service processes tend to be more visible to customers than
manufacturing processes.

e Key quality characteristics (KQC) of services tend to be
less quantifiable and can be more subjective than KQC:s for

products.
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In this chapter, we will discuss how these differences manifest in the

use of SPC in services.

Defining Quality in Services

Because services tend to be intangible, there often is a human interaction
involved between the service provider and the customer, and there is a
greater tendency toward and attitude of “beauty being in the eye of the
beholder” in services than in manufacturing. For these reasons, defin-
ing quality is often more difficult in the service sector. If quality is ill
defined, how then are we to judge whether the service is conforming or
nonconforming?

A number of attempts have been made to define the dimensions of
service quality. Two of these are presented in Table 8.1. The definition
developed by Parasuraman et al.? seems to be particularly good at high-
lighting the increased difficulty of defining quality in services. Their defi-
nition is that quality of a service is the difference between the customers’
expectation and their perception of the quality of the service rendered.
Certainly there are aspects of this in product quality as well; however,
with products there are usually more objective KQCs such as dimensional

conformance that make defining quality somewhat more straightforward.

Table 8.1 Dimensions of service quality

Dimensions of service quality

SERVQUAL dimensions* for hospitals*
Tangibles Respect & caring
Reliability Effectiveness & continuity
Responsiveness Appropriateness
Assurance Information
Empathy Efficiency

Meals

First impression

Staff diversity
Efficacy

Sources: *Parasuraman, Zeithaml, and Berry et al. (1988).

*#* Sower et al. (2001).
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None appear to be universally applicable to all services. For this rea-
son, these attempts should be viewed as starting points for the determi-
nation for the true dimensions of quality for the particular services and

customers involved.

Rare Events

Some KQC:s in service applications are rare events. Examples include sur-
gical errors, lost time accidents, and erroneous tax returns prepared by a
certified public accountant CPA. Because these events are so rare, control
charts that track defectives (p-charts) and defects (u-charts) are not well
suited for these applications. If the rational subgroup (see Chapter 4) is
small (for example one work day), there will be many days where the con-
trol chart entry is zero. If the rational subgroup is large (for example one
month), it will take more than 2.5 years to collect sufficient data to create
control charts that fully characterize the process.

One solution is to not use control charts for rare events at all and to
treat each rare event as a special cause. Because these events are, by defi-
nition, rare, there is little risk of wasting time looking for an assignable
cause when only common cause variation is present. The investigation of
rare events, however, should take a systems perspective rather than sim-
ply attempting to identify and punish the “guilty party.” According to
Dr. Donna Cananiano, then surgeon-in-chief at Nationwide Children’s
Hospital, “I would like to know right away if we have an (rare) event
today...When you actually look at why the (healthcare professional)
makes an error in the first place, it’s a systems problem.” So, in this
approach, the same diligence and methodology should be brought to
bear on the investigation of a rare event as with an out of control signal
on a control chart.

An alternative solution is to track not the incidence of rare events but
the elapsed time between rare events and plot that data on individual and
moving range charts. The elapsed time between events can be transformed
to a Weibull distribution which is sufficiently approximated by a normal
distribution to allow the transformed data to be plotted on individual and
moving range control charts or exponentially weighted moving average

charts.* While this is a better approach for control charting than plotting
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the rare event frequency, if the event is truly rare and serious, usually it

is better to treat all rare events as if they were due to an assignable cause.

What Chart to Use?

Because services tend to be intangible, it is much more difficult to meas-
ure the KQC:s for services than for products. While important to product
quality, customer expectations and opinions tend to be more important
determinants of service quality. Hospitals, for example, are very concerned
with patients” opinions about the overall hospital experience during their
stays. Hospitals often go to great lengths using focus groups and other
tools to determine how patients form their opinions about quality and
what factors enter into these decisions. This is very important, because
simply measuring factors that are easy to measure without regard for how
those factors play into the customer’s opinion about quality provides a
result that may not be meaningful or useful for driving quality improve-
ment projects. Without this linkage to the customer, even very precise
measurements of irrelevant factors will be of little value.

Once the important factors are determined, they are often measured
using some form of survey instrument which must be assessed for validity
and reliability. A valid and reliable instrument can produce meaningful
data—Dbut how do we employ SPC in the evaluation of that data? Often
patients respond to survey questions by marking a scale of 1 to 5 or 1
to 7 with one end anchored with something like “Completely Agree”
and the other end anchored with something like “Completely Disagree.”
The responses are discrete data (only integer values are allowed), and are
bounded (responses beyond the values in the scale are impossible).

One approach taken by some hospitals is to define a month as a
rational subgroup. All of the responses for a particular month are analyzed
as one sample. This turns the data set into continuous data bounded by
the limits of the scale. The sample means are plotted on an x-bar chart
(with variable sample size) and the sample standard deviations are plotted
on an s-chart.

Another approach is to define a cutoff scale score that indicates a
respondent is dissatisfied. One approach might be to assign the scale mid-

point as the cutoff between a satisfied and a dissatisfied respondent as
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Typical survey response scale

Strongly Neither agre Strongly
disagree nor disagreee agree
I L R
1 2 3 4 5 6 7

Not satisfied Satisfied

A 4

A

Midscale cutoff

Figure 8.1 Typical survey response scale

shown in Figure 8.1. Other organizations that aspire to delight customers
might set the cutoff scale score higher. Each respondent can be classified
as a satisfied or dissatisfied customer and that data can be used to con-
struct a p-chart. Example 8.1 illustrates the use of a p-chart using survey

data in this way.

Examples of SPC Usage in Service Organizations

Example 8.1

Control Charts in Healthcare

A hospital launched a project to increase patient satisfaction with

meals. The effort was spurred by two things:

* Research by Dr. Susan Schiffman at Duke University Hos-
pital about the clinical importance of making meals more
palatable so that patients want to eat, and

* The success of initiatives at hospitals such as M.D.
Anderson Cancer Center and Medical Center Dallas to
place the patient in the center of what a hospital does by

offering more choice in meals.

Because the major commission that accredits healthcare organiza-

tions encourages the use of appropriate statistical tools in performance
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measurement, the hospital decided to incorporate SPC into the
project. Based on focus groups conducted with recently discharged
patients, the hospital developed a four-question survey they used to
obtain feedback from patients as they were discharged about food ser-
vice quality. The patients responded to the four statements using a
7-point scale, with 7 representing “strongly agree” and 1 represent-
ing “strongly disagree.” Any patient who responded to any one of the
three items with a scale score below 4 was considered to be dissatisfied
with the meal experience. The initial analysis revealed that more than
10 percent of patients were dissatisfied, and the most frequently cited
reason for dissatisfaction was food taste.

Analysis of the focus group information revealed that patients
judged the taste of the food by comparing it with their expecta-
tions. This led to two obvious ideas for decreasing the level of

dissatisfaction:

* Datients on a liquid or bland diet who have steak and
potatoes expectations were certain to be dissatisfied with
hospital meals. The hospital decided to have a representa-
tive of the dietetics department meet with each patient to
explain the diet specified by their physician and the neces-
sity for that diet. This helped align the patients’ expecta-
tions with the restrictions of their prescribed diets.

* The patients were offered choices within the scope of
their diets. No longer would a patient automatically
receive green gelatin and chicken broth. They could
choose from several flavors of gelatin and alternatives to
chicken broth. This gave them some control over their

dietary decisions.

As the control chart in Figure 8.2 shows, this project was very
effective. The proportion of patients dissatisfied with hospiral
meals was reduced from more than 10 to 7 percent—a 30 percent

improvement.
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P chart proportion of patients not delighted with meals
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Figure 8.2 p-chart for survey data

Source: Created using Minitab 16.

Example 8.2
Control Charts in Retail

A locally owned hardware store was concerned about competition
from the national chain building supply store that had recently located
in their market area. Since the chain store had significantly greater
buying power, price was not a feasible way to compete. Inspired by
a news story about a building supply store that offered extraordinary
guarantees, they decided that was one way they could beat the com-
petition. They settled on the following extraordinary guarantee: “We
guarantee that we will have what you want from our normal offerings
in stock or we will provide it to you free within 24 hours!”

Since the cost of expedited shipping and free merchandise associ-
ated with a stockout under this guarantee can be very high, they felt
they needed to assess how well their system was prepared to support it.
They collected data each day on the number of customers served and
the number of stockouts. They constructed a p-chart to analyze the
data and to assess how well their process was prepared for to support

the extraordinary guarantee.
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The p-chart shows that their process is in control; however, the
average percent (p = 0.04600) of customers who asked to purchase an
item that was out of stock was too high to be economically feasible to
support the extraordinary guarantee. The owners determined that the
process must be capable of achieving (7 < 0.01000) in order for the
extraordinary guarantee to be feasible. Projects to improve their fore-
casting and inventory management policies were instituted with a goal

process capability of (p < 0.01000) within 6 months.

P chart proportion of patients not delighted with meals

0.09
0.08 ~ UCL = 0.07902
0.07 4
0.06
0.05

R ]\./’\4 % |P = 0.04606
0.04 v
0.03 -

Proportion

0.02 1
0.01 4
0.00 -

LCL=0.01310

1 3 5 7 9 11 13 15 17 19 21 23 25
Sample
Tests performed with unequal sample sizes

Figure 8.3 p-chart for stockout data

Example 8.3

Control Charts in Finance

The accounts payable department of a large corporation processes
more than 1,000 invoices per day. On a randomly selected day each
week, 100 invoices are selected at random and reviewed for errors by
the assistant manager of the department. In the past, the information
was used to identify which accounting clerks were making errors. The
offending clerks were warned to pay closer attention to their jobs to
avoid further errors. Whenever the number of errors was above 4, all

of the clerks were warned that they must do better.
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A newly appointed assistant manager decided to use quality tools
to assess the entire process. She constructed a p-chart to analyze the
weekly sample of invoices. To her surprise, she found that the process
was in control, however the overall proportion of invoices with errors
in the samples was higher than she felt was necessary.

Further investigation revealed that the training process for newly
hired clerks and the continuing education process for existing clerks
were not as robust as she thought they should be. In addition, a num-
ber of invoices submitted for processing lacked critical information.

The assistant manager redesigned the training programs for the
clerks and held seminars for the departments that submitted invoices
for payment stressing the necessity for provision of complete and
accurate information. She also halted the practice of department-wide
meetings when errors exceeded an arbitrary limit. After a few months,
the assistant manager observed a signal of 8 points in a row below the
CL on the p-chart. This indicated that the changes she had made were

effective, and she revised the control limits to reflect the state of the

new process.

Chapter Take-Aways

e While there are key differences between the manufacture of
products and the delivery of services, SPC is equally applica-
ble in both sectors.

* Care must be taken when attempting to apply SPC to moni-
tor rare events. Traditional control charts may not be the best
option.

¢ Selection of the right control chart for a particular service
application might not be as straight forward as in manufac-
turing applications.

* Specific examples were provided for the use of SPC in health-

care, retail, and financial services applications.
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Questions You Should be Asking About

Your Work Environment

*  How do you define quality for the services you provide? Were
customers included in the discussion before the quality definition
was established?

*  How do you know whether you are satisfying or delighting your
customers?

* Have you resisted using SPC because it is a “manufacturing rool”
not applicable to services? How might you improve your operation
if you implemented SPC?

* Do you have a continuous improvement (CI) program in place?
How do you know how effective it is? Could you provide proof to

an outsider who asked about your CI program’s effectiveness?



APPENDIX A

Bare Bones Introduction to
Basic Statistical Concepts

I said at the beginning of this book that we would not get overly involved
with statistics and manual calculations. There are many books available to
those who wish to delve more deeply into the details of the statistics and
manual calculations of SPC. These include Montgomery,! Duncan,? and
Sower.? For our purposes, we will utilize statistical analysis software for
the calculations. However, it is important to understand some basic sta-
tistical concepts in order to make informed decisions about which tools
available in the software to use for specific situations and understand the
output received from the use of those tools. This section will focus on
basic statistical concepts from a conceptual perspective rather than from a

detailed theoretical and manual calculation perspective.

Distributions

When we collect data from a process periodically over time, the data are
arranged in a time series with the earliest data listed first as shown in Table
A.1. This is the data format used for creating run charts and control charts.

However, it is sometimes useful to reorganize the data based on the
frequency with which specific values occur in order to better understand
how the data are distributed. This is the data format used for process
capability analysis and to visually assess the nature of the distribution. A
good tool for showing the data in this latter format is the histogram as
shown in Figure A.1.

What can we learn from organizing the data in this way and depicting
it using a histogram? For one thing, we can see that the average or mean of
this distribution of values appears to be somewhere near 10. The most fre-

quently observed value (the value with the highest bar), called the mode,
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Table A.1 Data C1 arranged in time series

Time Observa- Time Observa- Time Observa-
period tion C1 period tion C1 period tion C1

1 7 16 12 31 9

2 8 17 11 32 10

3 12 18 9 33 13

4 10 19 11 34 10

5 14 20 6 35 8

6 11 21 10 36 7

7 9 22 8 37 10

8 9 23 12 38 12

9 7 24 9 39 9
10 11 25 4 40 11

11 8 26 10 41 6
12 13 27 9 42 10
13 10 28 11 43 8
14 11 29 10 44 9
15 10 30 15 45 11

Histogram of C1

Frequency

4 6 8 10 12 14
C1

Figure A.1 Frequency histogram for data C1

Source: Created using Minitab 16.

is 10. The maximum value is 15 and the minimum value is 4. Subtracting
the minimum from the maximum value (15 — 4 = 11) gives one measure
of the spread of the distribution called the range. The range is 11. The
larger the range, the greater the spread of the distribution. We also can
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see that shape of the distribution appears to be approximately normal or
bell-shaped. ASQ defines a normal distribution as one where “most of the
data points are concentrated around the average (mean), thus forming a
bell shaped curve.” In fact, we can have Minitab fit a normal curve to the
data set as shown in Figure A.2.

As you see, when we fit a normal curve to the histogram, Minitab
reports other information as well. The mean of the darta is 9.778, which is
close to the estimate we determined by examination of around 10. Instead
of the range, Minitab reports standard deviation (StDev) which, like the
range, is a measure of the spread of the data. As with the range, the larger
the value of the standard deviation, the greater the spread of the data. The
standard deviation of the data is 2.152. Minitab also reports that there are
45 individual data points in this data set. We can also see that the fit of the
normal curve to the data is not perfect. The fit can be assessed quantitatively
using Minitab, which, however, is beyond the scope of this section. Suffice
it to say that by eye, the fit appears to be pretty good but not perfect.

It is important to recognize that the normal curve is not a good fit
for all data distributions. To assume that all data are normally distributed
is a fundamental error in statistics. Indeed, there are many data sets that

cannot be accurately modeled using any standard distribution. However,

Histogram of C1

Normal
10 4 __
0 Mean 9.778
]S\]tDCV 2.1%2
8 4 74’\— 4
[
s 64
L
3
=)
I
B4
2
O T T T T T T
0 3 6 9 12 15 18
C1

Figure A.2 Frequency histogram for data set C1 with normal curve

fitted

Source: Created using Minitab™.
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the concepts we discuss here using the normal curve are applicable to all
standard distributions.

The normal distribution is a probability distribution, which means we
can use the information it provides to determine the proportion of the
total data set which can be expected to be found in different regions of the
curve as defined by the standard deviation. This is a very useful feature for
SPC. Figure A.3 shows a normal probability distribution for a population
with the area under the curve divided into regions based on the number
of standard deviations above and below the mean. In this figure, we use
the Greek letter mu () to represent the population mean or average and
the Greek letter sigma (o) to represent the population standard deviation.
(I know I promised to limit my use of Greek letters, but trust me, these
are important.) The mean and the standard deviation of a sample taken
from a population are represented by x and s, respectively.

Statistical theory tells us that we can use the area under the normal
probability distribution to estimate the percentage of observations that
will fall within a certain number of standard deviations on either side of
the mean. This is called the empirical rule. This is illustrated using the
values for the mean and standard deviation taken from Figure A.2. For
example, we can say that about 99.73 percent of all of the values in the
normal distribution fall in the area between p — 36 and p + 30. Theo-
retically, the normal distribution stretches from negative infinity (—oo) to

positive infinity (+0). Therefore about 0.27 percent (1 — 99.73%) of the

N

| |
36 -26  -lo +lo +20 +3c

Figure A.3 The normal distribution with standard deviations shown
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Table A.2 The empirical rule applied to the distribution in Figure A.2

Standard deviations

Range of values

% of population

p+lo 7.626 - 11.930 ~ 68.26%
p+2o 5.474 -14.082 ~95.46%
n+30 3.322-16.234 ~99.73%

values in the distribution will fall outside the p + 36 range—that is, in the
tails of the distribution from +36 to +eo and from —36 to —eo. Since the
normal probability distribution is symmetrical, half of that 0.27 percent
falls in each tail. Additional statistical theory also tells us that this general
concept applies in the same conceptual way to other standard probability

distributions.’

Example A.1
Using the Empirical Rule

Using the normal distribution in Figure A.2 and the empirical rule in
Table A.2, we see that 68.26 percent of the values can be expected to
fall between 16 of the mean. One standard deviation below the mean
is 9.778 — 2.152 = 7.626. One standard deviation above the mean is
9.778 + 2.152 = 11.930. Therefore, we can say that 68.26 percent of
the values in this distribution can be expected to fall between 7.626
and 11.930.

Samples and Individuals

SPC uses statistics derived from both samples and individuals. It is
important to understand when to use each. This is especially true when
dealing with x-bar charts and process capability analysis as discussed in
Chapter 7. Figure A.4 illustrates the relationship between the distribu-
tion of sample means and the distribution of the individual observations
that comprise the samples. While the means will be the same, the spread,
measured by the range or standard deviation, of the distribution of indi-
viduals will always be greater than the standard deviation of the distribu-

tion of sample means.
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Distribution of individual observations

Distribution of sample means

Figure A.4 Sample statistics versus process statistics

The process standard deviation (¢ ) is calculated for comparison to
the tolerance or specification limits when calculating process capability.
The process standard deviation (¢ )(the standard deviation of the indi-
vidual observations) will always be larger than the standard deviation of
the sample means (¢.). The standard deviation of the sample means (g.) is
used when calculating control limits for the x-bar chart. It is very impor-
tant to use the appropriate standard deviation for the intended purpose.

Figure A.5 illustrates this point by providing a numerical example to
illustrate the relationship between the distribution of sample means and
the distribution of the individual observations.

There is a mathematical relationship between the standard deviation
of the sample means and the standard deviation of the individual obser-
vations. To obtain an estimate of the standard deviation of the sample
means (o), divide the standard deviation of the individual observations

(¢,) by the square root of the sample size (V) as shown below.
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Obsv.

? Sample Mean = 8 The mean of the 9 observations = 8.44
8 The mean of the 3 sample means = 8.44
10

8 Sample Mean =9

9

g The range of the 9 observations = 3.00
8 Sample Mean = 8.33

9 The range of the 3 sample means = 1.00

Figure A.5 Mean and standard deviation comparison—individuals
versus sample means

Since the square root of the sample size for all sample sizes is greater
than 1, mathematically, the standard deviation of the distribution of the
sample means will always be smaller than the standard deviation of the

distribution of the individual observations.

Control Chart Calculations

Chapters 4 through 6 discuss the selection and use of a variety of control
charts for both variable and attribute data. The formulas for calculating
the control limits for the control charts discussed in these chapters are in
Table A.3 where:

UCL = upper control limit
LCL = lower control limit
CL = central line
o= standard deviation of the individual observations
o, = standard deviation of the sample means
n = the number of observations in each sample or subgroup
k = the number of samples or subgroups
x = the sample mean
¥ = the mean of the sample means; the grand mean
A = Delta statistic (measured value — nominal value)
EWMA = ay + (1 —a) EWMA_|
o = EWMA weighting factor
7y, = the individual observation at time t

7 = the mean of the individual y,
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EWMA,__ = the previous period’s EWMA
v
?

proportion of defective or nonconforming units in a sample

= the mean of the sample proportion defective or noncon-
forming units; the grand average proportion defective or
nonconforming
np = the number of defective or nonconforming units in a sample
7p = the mean number of defective or nonconforming units
per sample; the grand average number defective or
nonconforming
¢ = the number of defects or nonconformities in a sample
¢ = the mean number of defects or nonconformities per sample;
the grand average number of defects or nonconformities
per sample
u = the number of defects or nonconformities per unit in a
sample
% = the mean number of defects or nonconformities per unit;
the grand average number of defects or nonconformities

per unit

Process Capability Calculations

Chapter 7 discusses the selection and use of different index measures
of process capability. The formulas for calculating these indexes are in
Table A.4 where:
USL = upper specification limit
LSL = lower specification limit
T = specification target value
J1 = process mean
o, = standard deviation of the individual observations

7 = number of observations



BARE BONES INTRODUCTION TO BASIC STATISTICAL CONCEPTS

Table A.3 Control limit calculations

123

Control
chart UCL LCL
Individual |CL=%x= UCL=%+30, LCL =% - 30,

UCL = MR+ 30,

*LCL = MR - 30,

UCL =%+ 30,

Moving CL=MR= X
range k
X-Bar CL ===

Range CL=R=

UCL =R+ 30,

Standard Cl=v=
deviation

UCL =5+ 30,

Delta CL = Z

UCL = A+ 30,

EWMA Cl=3=

UCL =7+ 30,

UCL =P + 30,

UCL =np +30,

P

Total Defects

UCL =7 + 30,

P CL=p=
np CL=np=
c CL=t=
u CL=u=

UCL=7+30,

LCL =% 30,
+LCL = R - 30,
LCL =7 - 30,
*LCL = A- 30,
LCL=7-30,
“LCL= f -3,
*LCL = np - 30,
*LCL =7 - 30
+*LCL =730,

* Set LCL to zero if negative.

Note: In this table, the formulas for UCL and LCL are for control limits set at 36 above and
below the central line. If it is desired to set control limits at other than 3, simply replace the 3
with the number of standard deviations (o) desired.
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Table A.4 Process capability indexes

Index Equation
C —
) c - USL-LsL
60,
Ca _ u—LSL
C,= 3
Ux
C _
c.- USL — 1
30,
K C,, = minimum(C,;,C,,)
Con c = USL-LSL

N
n (xK—T)
6 21:1 n—1

Appendix Take-Aways

In this appendix, we reviewed some statistical concepts that are keys to
SPC. We did not delve deeply into statistical calculations and statistical
theory—in fact to say that we have merely scratched the surface is a sig-
nificant understatement. See the references listed at the beginning of this

section for more detail.

Statistical Terms®

* Binomial distribution—A frequency distribution that
“describes the behavior of a count variable x if the following
conditions apply: (1) The number of observations n is fixed;
(2) Each observation is independent; (3) Each observation
represents one of two outcomes (‘success’ or ‘failure’); (4) The
probability of ‘success’ (p) is the same for each outcome.”

* Histogram—"A graphic summary of variation in a set of data.
The pictorial nature of a histogram lets people see patterns

that are difficult to detect in a simple table of numbers.”
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* Mean—"“A measure of central tendency; the arithmetic aver-
age of all measurements in a data set.”

° Population mean—symbol p (also applied to process mean)
o Sample mean—symbol x
o Grand mean (mean of all the sample means)—symbol X

e Normal distribution—“The charting of a data set in which
most of the data points are concentrated around the average
(mean), thus forming a bell-shaped curve.”

* Poisson distribution—"A discrete probability distribution that
expresses the probability of a number of events occurring in a
fixed time period if these events occur with a known average
rate, and are independent of the time since the last event.”

* Range—“The measure of dispersion in a data set (the differ-
ence between the highest and lowest values).” Symbol R.

* Standard deviation—“A computed measure of variability indi-
cating the spread of the data set around the mean.”

° Population standard deviation—symbol &
o Sample standard deviation—symbol s
o Standard deviation of the sample means—symbol a_

o Standard deviation of the individuals—symbol 7_
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SPC Software Used to
Illustrate this Book

Minitab 16

Full-featured statistical analysis package with full SPC capability.
Easy to use, menu driven, spreadsheet-like data input.

Home Page: htep://www.minitab.com/en-US/default.aspx
30-day free trial at: http://www.minitab.com/en-US/prod-

ucts/minitab/

NWA Quality Analyst 6.3

SPC package with some additional statistical analysis capability.
Easy to use, menu driven, spreadsheet-like data input.

Home Page: http://www.nwasoft.com/products/nwa-quality-
analyst

30 day free trial at: http://marketing.nwasoft.com/acton/fs/
blocks/showLandingPage/a/1578/p/p-0055/t/page/fm/0
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Figure B.2 Screen shot of NWA quality analyst 6.3. Showing data entry, pull down menu, and control

chart
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Notes

Abstract

. Balestracci (2014).

Chapter 1

ASQ (n.d.).

Stevenson (2009), p. 188.

A pro forma P&L is a forecast for the expected profit and loss that an organi-
zation expects to make in a specified period.

ASQ (n.d.).

Sower and Bimmerle (1991, March).

Walton (1986), p. 75.

Taguchi, Chowdhury, and Wu (2005), pp. 133-138.

The terms mean and standard deviation are discussed in Appendix A.
Sower (1990).

Sower (1993), pp. 41-45.

Chapter 2

Shewhart (1931).

ASQ Online Quality Glossary (n.
ASQ Online Quality Glossary (n.
ASQ Online Quality Glossary (n.
ASQ Online Quality Glossary (n.
Deming (1986), pp. 327-332.
ASQ Online Quality Glossary (n.d.).

For a more complete discussion of metrology see Chapter 9 in Sower (2011);
ASQ Measurement Quality Division (2004).

ASQ Online Quality Glossary (n.d.).

ASQ Online Quality Glossary (n.d.).

Sower (2011).

For a more complete discussion of gauge R&R study see Chapter 9 in Sower
(2011); ASQC Automotive Division (1986).

Sower (2011).

Sower, Dufly, Kilbourne, Kohers, and Jones (2001).

d)
d.).
d.).
d.)



132

B =

NOTES

Chapter 3

ASQ Online Quality Glossary (n.d.).

Standard deviation is a measure of the variation (spread) of the data around
the mean. See Appendix A.

ASQC Statistics Division (1983), p. 30.

While it is most common to use 3 standard deviations for control charting,
sometimes it is appropriate to use other values, for example 2 or 4 standard
deviations, instead of 3. This choice depends upon a number of things the
most important of which is the relative cost for missing an out of control sig-
nal versus obtaining a false signal. Further discussion of this point is beyond
the scope of this book. The reader is directed to the references—particularly
to Montgomery (2009), Duncan (1986), and Sower (2011).

Sower (2011), p. 232; Montgomery (2009), p. 198.

The next three chapters will provide guidance for determining what type of
control chart to use for different types of data.

Borror, Montgomery, and Runger (1999).

Western Electric (1956).

Chapter 4

Institute for Supply Management (n.d.).
ASQ Online Quality Glossary (n.d.).
Duncan (1986); Sower (2011).

Evans and Lindsay (2005).

Chapter 5

Sower, Motwani, and Savoie (1994).
National Institute for Standards and Technology (n.d.).
Okes and Westcott (2001), p. 107.

Chapter 6

ASQ Online Quality Glossary (n.d.).
ASQ Online Quality Glossary (n.d.).
ASQ Online Quality Glossary (n.d.).
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Chapter 7

Sower and Fair (2012), pp. 4-9.
Sower (2011), p. 6.

Schmidt (2013), p. 24.

Guaspari (1985), p. 68.

Kotz and Lovelace (1998).
Montgomery (2009).

ASQ Online Quality Glossary (n.d.).
Taguchi, Chowdhury, and Wu (2005).
Roy (1990).

DataNet Quality Systems (n.d.).

. EPA (n.d.).

. 'The Weibull distribution is a continuous distribution related to the expo-

nential distribution. It is most widely used to model failure rates, but can
sometimes be used to model data such as that in this example.

Note: Even though the individual data fit a Weibull distribution, the sample
means are distributed approximately normally. This is not unexpected since
statistical theory says that the means of large samples drawn from a non-
normal distribution will tend to be distributed normally. For this reason and
because the X-bar chart has been shown to be robust to nonnormality, the

choice of x-bar and s-charts is appropriate for this process.

Chapter 8

Stevenson (2009).

Parasuraman, Zeithaml, and Berry (1988).
Sower, Duffy, and Kohers (2008), pp. 115, 121.
Montgomery (2009).

Appendix A

Montgomery (2013).

Duncan (1986).

Sower (2011).

ASQ Online Quality Glossary (n.d.).

For more information see Chebyshev’s Theorem at http://www.oojih.com/
show/statl/cheby_empirical/

Except where noted, all definitions from ASQ Online Quality Glossary (n.d.).

Department of Statistics (n.d.).
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