

# PIPE THICKNESS CALCULATIONS AS PER ASME B31.3

Calculation of minimum wall thickness of a given pipe diameter and selection of actual thickness is one of the most basic design considerations for any projects. The designers need to find out the required piping thickness as per ASME B31.3 to resist internal line pressure. The important equation for calculation of pipe thickness (t < D/6) is:.

$$t = \frac{PD}{2(SEW + PY)}$$

$$t_m = t + c$$

- = Pressure design thickness, as calculated in accordance with internal pressure or external pressure.
- Sum of mechanical allowances (thread or grove depth) plus corrosion and erosion allowance.
- **D** = Outside diameter of the pipe as listed in tables of standards or specifications or as mentioned.
- **E** = Quality factor from <u>Table A-1B</u>.
- = Internal Design Pressure gauge.
- = Allowable stress value for material from <u>Table A-1</u>.
- = Minimum required thickness, including mechanical, corrosion and erosion allowances.
- = Weld strength reduction factor in accodance with <u>Table 302.3.5</u>.
- Y = Coefficient from Table 304.1.1.



## Let us calculate for the following scenario:

 Material of Construction: Carbon Steel - ASTM A106 Gr.B

• NPS(Nominal Pipe Size) - 2 inch

• Type of Pipe(SMLS/EFSW) - SMLS(Seamless)

• Design Pressure(psi) - 275 Psig

Design Temperature - 100 °F

Mechanical, Corrosion and erosion allowance - 1.5 mm

 Mill Tolerance - 12.5% of the thickness

### **Given Data:**

We know from the problem scenario,

P = 145 Psig

 $T = 100^{\circ}F$ 

NPS = 2 inch

Outer diameter = 60.33 mm



Now, refer to the table A-1 of ASME B31.3 to get the Allowable Stress (S) for our material Carbon Steel (ASTM A 106 Gr.B).

From the table, For our Problem Scenario.

T=100°F, Material = ASTM A106 Gr. B

The allowable stress S = 20 ksi or 20000 psi

|             |          |                | Table A     | -1 Basic A                     | ASI<br>Ilowable Si | ME B31.3-2   |           | on for Met               | als (Cor | nt'd)                              |                         |                                                                                           |      |
|-------------|----------|----------------|-------------|--------------------------------|--------------------|--------------|-----------|--------------------------|----------|------------------------------------|-------------------------|-------------------------------------------------------------------------------------------|------|
| Numb        | ers in F | aren           | theses Refe | er to Notes                    | for Appendi        | ix A Table:  | s: Specif | ications Are             | ASTM Un  | Specified<br>Min.<br>Strength, ksi |                         | Basic Allowable<br>Stress, S, ksi,<br>at Metal<br>Temperature,<br>'F [Notes (1),<br>(4a)] |      |
| Material    |          | Type/<br>Grade | UNS No.     | Class/<br>Condition/<br>Temper |                    | P-No.<br>(5) | Notes     | Min.<br>Temp.,<br>°F (6) |          |                                    | Min.<br>Temp.<br>to 100 | 200                                                                                       |      |
| arbon Steel |          |                | d Tubes     |                                |                    |              |           |                          |          |                                    |                         |                                                                                           |      |
|             | A53      | В              |             | K03005                         | -                  | _            | 1         | (57) (59)                | В        | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
| *           | A106     | В              |             | K03006                         | ***                | -            | 1         | (57)                     | В        | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | A333     | 6              |             | K03006                         | -                  | -            | 1         | (57)                     | -50      | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | A334     | 6              |             | K03006                         |                    | -            | 1         | (57)                     | -50      | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | A369     | FPB            |             | K03006                         | -                  | -            | 1         | (57)                     | -20      | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | A381     | Y35            |             | •                              | -                  | -            | 1         | ***                      | A        | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | API SL   | В              |             |                                | -                  | -            | 1         | (57) (59)<br>(77)        | В        | 60                                 | 35                      | 20.0                                                                                      | 20.0 |
|             | A139     | C              |             | K03004                         | -                  | -            | 1         | (8b)                     | A        | 60                                 | 42                      | 20.0                                                                                      | 20.0 |
|             | A139     | D              |             | K03010                         |                    | -            | 1         | (8b)                     | A        | 60                                 | 46                      | 20.0                                                                                      | 20.0 |
|             | API 5L   | X42            |             | •••                            |                    |              | 1         | (55) (77)                | A        | 60                                 | 42                      | 20.0                                                                                      | 20.0 |
|             | A        |                |             |                                |                    |              |           | 43 43                    |          |                                    |                         |                                                                                           |      |





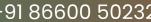


#### ASME B31.3-2020

### Table A-1 Basic Allowable Stresses in Tension for Metals (Cont'd)

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

Basic Allowable Stress, S, ksi, at Metal Temperature, \*F [Notes (1), (4a)]


| 300  | 400  | 500  | 600  | 650  | 700  | 750  | 800  | 850 | 900 | 950 | 1,000 | 1,050  | 1,100  |         | ype/<br>rade Spec. No |
|------|------|------|------|------|------|------|------|-----|-----|-----|-------|--------|--------|---------|-----------------------|
|      |      |      |      |      |      |      |      |     |     |     | Ca    | rbon S | teel — | Pipes a | and Tubes (Cont'd     |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | В       | A53                   |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | В       | A106                  |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | 6       | A333                  |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | 6       | A334                  |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | FPB     | A369                  |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | Y35     | A381                  |
| 20.0 | 19.9 | 19.0 | 17.9 | 17.3 | 16.7 | 13.9 | 11.4 | 8.7 | 5.9 | 4.0 | 2.5   | 1.6    | 1.0    | В       | API SL                |
|      |      |      |      |      |      |      |      |     |     |     |       |        |        |         |                       |
| 20.0 |      |      |      | _    |      | -    |      | -   |     |     |       |        |        | C       | A139                  |
| 20.0 | ***  | -    | ***  | _    | ***  | -    | ***  | -   | *** | *** | ***   | ***    | ***    | D       | A139                  |
| 20.0 | 20.0 | ***  | ***  | _    | ***  |      | ***  | _   | *** | *** | ***   | ***    | ***    | X42     | API 5L                |
| 20.0 | 20.0 |      | •••  | -    | •••  | -    | •••  | -   |     | ••• | •••   | •••    | ***    | Y42     | A381                  |



Quality Factors for Longitudinal Weld joints in Pipes(E) are used in Pressure Design and applied at Longitudinal and Spiral Weld Joints and for Castings. The maximum value of quality factors is 1.0. Since our pipe is seamless without any welds, our value will be 1. The value of E can be found from Table A-1B of ASME B31.3.

|            |                    | y factors applicable in special cases. Specifications, except API, are AST  | E,         | Appendix A |
|------------|--------------------|-----------------------------------------------------------------------------|------------|------------|
| Spec. No.  | Class (or Type)    | Description                                                                 | [Note (2)] | Notes      |
| Carbon Ste | el                 |                                                                             |            |            |
| API SL     |                    | Seamless pipe                                                               | 1.00       |            |
|            |                    | Electric fusion welded pipe, 100% radiographed                              | 1.00       | •          |
|            |                    | Electric resistance welded pipe                                             | 0.85       |            |
|            |                    | Electric fusion welded pipe, double butt seam                               | 0.95       |            |
|            |                    | Continuous welded (furnace butt welded) pipe                                | 0.60       | •          |
| A53        | Type S             | Seamless pipe                                                               | 1.00       |            |
|            | Type E             | Electric resistance welded pipe                                             | 0.85       |            |
|            | Type F             | Furnace butt welded pipe                                                    | 0.60       | •          |
| A106       |                    | Seamless pipe                                                               | 1.00       |            |
| A134       |                    | Electric fusion welded pipe, single butt, straight or spiral (helical) seam | 0.80       |            |
| A135       | _                  | Electric resistance welded pipe                                             | 0.85       | -          |
| A139       |                    | Electric fusion welded pipe, straight or spiral (helical) seam              | 0.80       |            |
| A179       | -                  | Seamless tube                                                               | 1.00       |            |
| A333       | _                  | Seamless pipe                                                               | 1.00       |            |
|            |                    | Electric resistance welded pipe                                             | 0.85       |            |
| A334       |                    | Seamless tube                                                               | 1.00       |            |
| A369       |                    | Seamless pipe                                                               | 1.00       |            |
| A381       | ••                 | Electric fusion welded pipe, 100% radiographed                              | 1.00       | ***        |
|            |                    | Electric fusion welded pipe, spot radiographed                              | 0.90       | (19)       |
|            |                    | Electric fusion welded pipe, as manufactured                                | 0.85       |            |
| A524       | _                  | Seamless pipe                                                               | 1.00       |            |
| A587       | -                  | Electric resistance welded pipe                                             | 0.85       |            |
| A671       | 12, 22, 32, 42, 52 | Electric fusion welded pipe, 100% radiographed                              | 1.00       | -          |
|            | 13, 23, 33, 43, 53 | Electric fusion welded pipe, double butt seam                               | 0.85       |            |
| A672       | 12, 22, 32, 42, 52 | Electric fusion welded pipe, 100% radiographed                              | 1.00       |            |
|            | 13, 23, 33, 43, 53 | Electric fusion welded pipe, double butt seam                               | 0.85       |            |
| A691       | 12, 22, 32, 42, 52 | Electric fusion welded pipe, 100% radiographed                              | 1.00       |            |
|            | 13, 23, 33, 43, 53 | Electric fusion welded pipe, double butt seam                               | 0.85       |            |







Weld Joint Strength Reduction Factor(W): The weld joint strength reduction factor, W, is the ratio of the nominal stress to cause the failure of a weld joint to that of the corresponding base material for an elevated temperature condition of the same duration. It only applies at weld locations in longitudinal or spiral (helical seam) welded piping components. Weld Joint Strength Reduction Factors are used because at elevated temperatures the weld joint creep rupture strength can be lower than the base metal. The value of W can be found in table 302.3.5. It is applicable only for welded pipes. For our problem, the pipe is seamless so, the value is <u>W=1</u>.

|                                                                                                             |                                   |              | Tabl         | e 302.3      | .5 Weld        | Joint Str      | ength R        | eduction       | Factor,        | W              |                |                |                |                |              |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|
|                                                                                                             | Component Temperature, T, °C (°F) |              |              |              |                |                |                |                |                |                |                |                |                |                |              |
| Steel Group                                                                                                 | ≤427<br>(≤800)                    | 454<br>(850) | 482<br>(900) | 510<br>(950) | 538<br>(1,000) | 566<br>(1,050) | 593<br>(1,100) | 621<br>(1,150) | 649<br>(1,200) | 677<br>(1,250) | 704<br>(1,300) | 732<br>(1,350) | 760<br>(1,400) | 788<br>(1,450) | 816<br>(1,50 |
| Carbon Steel                                                                                                | 1                                 | _1_          | _1_          | _1_          | 1              | 1              | 1              |                |                |                |                |                |                |                | ***          |
| CrMo<br>[Notes (1)–(3)]                                                                                     | 1                                 | 0.95         | 0.91         | 0.86         | 0.82           | 0.77           | 0.73           | 0.68           | 0.64           |                |                |                |                |                |              |
| CSEF (N + T)<br>[Notes (3)-(5)]                                                                             | ***                               |              | -            | 1            | 0.95           | 0.91           | 0.86           | 0.82           | 0.77           | •••            | -              | •=             | ***            |                |              |
| CSEF [Notes (3) and (4)] (Subcritical PWHT)                                                                 | ***                               | ***          | 1            | 0.5          | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            | ***            | -              |                | ***            | •••            |              |
| Autogenous welds in austenitic<br>stainless grade 3xx, and N088xx<br>and N066xx nickel alloys<br>[Note (6)] | ***                               | -            | -            | 1            | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1            |
| Austenitic stainless grade 3xx and<br>NO88xx nickel alloys<br>[Notes (7) and (8)]                           | ***                               | ***          |              | 1            | 0.95           | 0.91           | 0.86           | 0.82           | 0.77           | 0.73           | 0.68           | 0.64           | 0.59           | 0.55           | 0.9          |
| Other materials [Note (9)]                                                                                  |                                   |              |              |              |                |                |                |                |                | -              |                |                |                |                |              |









The factor "Y" depends on temperature. At elevated temperatures, factor Y increases leading to a decrease in the calculated required pipe wall thickness.

Refer to Table 304.1.1 of ASME B31.3 for finding the value of Y, It is Valid for t < D/6 and materials shown below The value of Y may be interpolated for intermediate temperatures. For material A106 Gr. B, Y is <u>given 0.4.</u>

|                                                                    | Tabl                   | e 304.1.1    | Values o       | of Coefficie   | nt Y for t <   | D/6            |                |                          |  |  |
|--------------------------------------------------------------------|------------------------|--------------|----------------|----------------|----------------|----------------|----------------|--------------------------|--|--|
|                                                                    | Temperature, °C (°F)   |              |                |                |                |                |                |                          |  |  |
| Material                                                           | 482 (900)<br>and Below | 510<br>(950) | 538<br>(1,000) | 566<br>(1,050) | 593<br>(1,100) | 621<br>(1,150) | 649<br>(1,200) | 677 (1,250)<br>and Above |  |  |
| Ferritic steels                                                    | 0.4                    | 0.5          | 0.7            | 0.7            | 0.7            | 0.7            | 0.7            | 0.7                      |  |  |
| Austenitic steels                                                  | 0.4                    | 0.4          | 0.4            | 0.4            | 0.5            | 0.7            | 0.7            | 0.7                      |  |  |
| Nickel alloys<br>UNS Nos. N06617,<br>N08800, N08810,<br>and N08825 | 0.4                    | 0.4          | 0.4            | 0.4            | 0.4            | 0.4            | 0.5            | 0.7                      |  |  |
| Gray iron                                                          | 0.0                    |              |                |                |                |                |                |                          |  |  |
| Other ductile metals                                               | 0.4                    | 0.4          | 0.4            | 0.4            | 0.4            | 0.4            | 0.4            | 0.4                      |  |  |

Steps for calculation:

Step 1. Insert all the values in the Pipe Thickness equation.

$$t = \frac{PD}{2(SEW + PY)}$$

$$t = \frac{(275) (60.33)}{\{2(20000 \times 1 \times 1 + 275 \times 0.4)\}}$$

$$t = 0.41 \text{ mm}$$



Step 2: Add the corrosion allowance to the calculated thickness..

$$t_m = t + c$$
  
 $t_m = 0.41 + 1.5$   
 $t_m = 1.91 \text{ mm}$ 

Step 3: Add the mill tolerance to the t<sub>m</sub>

The above tm is the thickness required after 12.5% of mill tolerance. It means the specified thickness by the designer may decrease up to 12.5% during the manufacturing process. So, it is the designer's duty to provide additional cushion of 12.5% for the tolerance. Even after reducing 12.5%, pipe thickness should not be less than t<sub>m</sub>

Add the Mill Tolerance 12.5% to the tm

100% - 12.5% = 87.5% = 1.91 mm

 $t_{required} = 1.91 / 0.875 = 2.18 \text{ mm}$ 

Nominal Thickness after Mill tolerance

 $t_{required} = 2.18 mm$ 

Step 4: Check the ordering thickness available in ASME B36.10M which is near to our thickness.

| NPS<br>[Note (1)] |                             | ustomary Unit             | 5                             | Identification<br>(Standard (STD),                     |                 |                  | SI Units                   |                          |                            |  |  |
|-------------------|-----------------------------|---------------------------|-------------------------------|--------------------------------------------------------|-----------------|------------------|----------------------------|--------------------------|----------------------------|--|--|
|                   | Outside<br>Diameter,<br>in. | Wall<br>Thickness,<br>in. | Plain End<br>Weight,<br>Ib/ft | Extra-Strong (XS),<br>or Double Extra<br>Strong (XXS)) | Schedule<br>No. | DN<br>[Note (2)] | Outside<br>Diameter,<br>mm | Wall<br>Thickness,<br>mm | Plain End<br>Mass,<br>kg/m |  |  |
| 2                 | 2.375                       | 0.065                     | 1.61                          |                                                        | 5               | 50               | 60.3                       | 1.65                     | 2.39                       |  |  |
| 2                 | 2.375                       | 0.083                     | 2.03                          |                                                        |                 | 50               | 60.3                       | 2.11                     | 3.03                       |  |  |
| 2                 | 2.375                       | 0.109                     | 2.64                          |                                                        | 10              | 50               | 60.3                       | 2.77                     | 3.93<br>4.48               |  |  |
| .2                | 2.375                       | 0.125                     | 3,01                          |                                                        | 30              | 50               | 60.3                       | 3.18                     | 4.48                       |  |  |
| 2                 | 2.375                       | 0.141                     | 3.37                          |                                                        |                 | 50               | 60.3                       | 3.58                     | 5.01                       |  |  |
| 2                 | 2.375                       | 0.154                     | 3.66                          | STD                                                    | 40              | 50               | 60.3                       | 3.91                     | 5.44                       |  |  |
| 2                 | 2.375                       | 0.172                     | 4.05                          | ,                                                      |                 | 50               | 60.3                       | 4.37                     | 6.03                       |  |  |
| 2                 | 2.375                       | 0.188                     | 4.40                          |                                                        |                 | 50               | 60.3                       | 4.78                     | 6.54                       |  |  |
| 2                 | 2.375                       | 0.218                     | 5.03                          | xs                                                     | 80              | 50               | 60.3                       | 5.54                     | 7.48                       |  |  |
| 2                 | 2.375                       | 0.250                     | 5.68                          |                                                        |                 | 50               | 60.3                       | 6.35                     | 8.45                       |  |  |
| 2                 | 2.375                       | 0.281                     | 6.29                          |                                                        |                 | 50               | 60.3                       | 7.14                     | 9.36                       |  |  |
| 2                 | 2.375                       | 0.344                     | 7.47                          |                                                        | 160             | 50               | 60.3                       | 8.74                     | 11.11                      |  |  |
| 2                 | 2.375                       | 0.436                     | 9.04                          | XXS                                                    |                 | 50               | 60.3                       | 11.07                    | 13.44                      |  |  |