

Clean Agent Fire Suppression System

الإطفاء الذاتي بالغازات النظيفة NOVEC 1230 , FM 200

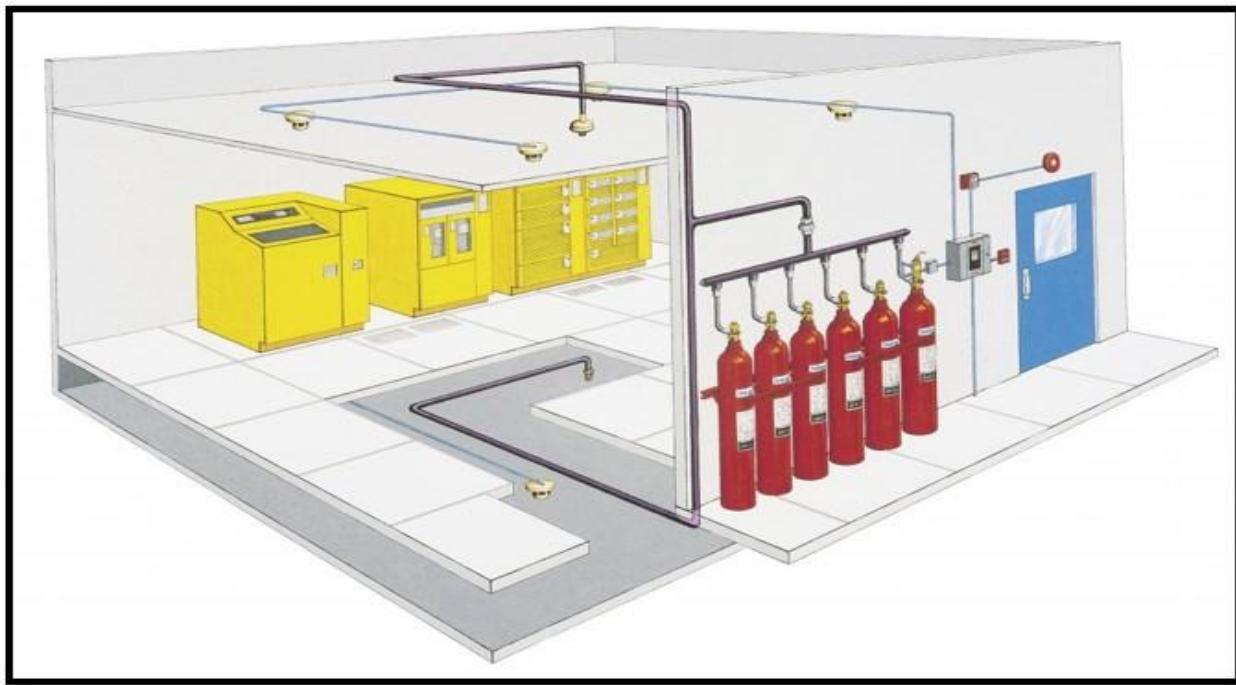
Prepared by:
Eng.Khaled Mohsen

Table of content

	<i>page</i>
Fire Suppression Systems أنظمة الاطفاء الذاتي	2
NOVEC 1230 & FM-200 تعریف غازات الإطفاء النظیفة	3
Fire Classification تصنیف الحریق للمواد وقابلیتها للاشتعال	5
System Component مكونات النظم	7
System Detectors حساسات النظم	17
Control Panel لوحة التشغیل والتحكم	18
System Operating Sequence تسلسل تشغیل النظم	22
Room Requirement متطلبات الغرفة	26
Installation Inspection فحص التركیبات	28
System Operational Tests اختبارات تشغیل النظم	31
Room Integrity Test اختبارات التسرب للغرفة	32
System Integration Tests اختبارات تکامل الأنظمة	33
References from NFPA (2001, 72) المرجع من الكود	34

لمشاهدة فيديو شرح المذکورة باليوتيوب https://youtu.be/-dlg_zci7ow YouTube Video

لمتابعتنا على اليوتيوب <https://lnkd.in/eTvxmjw6> YouTube Channel


لتحميل جميع مذكرات الشرح لمواضيع ومحفوی القناة [Download all PDF Lectures](https://lnkd.in/drCD_siJ)

https://lnkd.in/drCD_siJ

أنظمة الإطفاء الذاتي Fire Suppression Systems

تحكم أنظمة الإطفاء الذاتي في الحرائق باستخدام المواد الكيميائية الجافة وثاني أكسيد الكربون والغازات النظيفة مثل NOVEC 1230 و FM200 وغازات أخرى حيث يتم تصميم كل من هذه الأنظمة واعتمادها خصيصاً للاستخدام في خطر حريق معين.

Fire suppression systems control fire using agents such as dry chemical, CO2, and NOVEC, FM200 etc. Each of these systems must be specifically designed and approved for use on a particular fire hazard.

تقوم البرمجة الخاصة بلوحة الكونترول الخاصة بالنظام panel release control بإطلاق الأجهزة (as solenoids, actuators, etc.) والمتعلقة بمجموعة من الأسطوانات التي تحتوي على الغاز وذلك عند تنشيط أجهزة الإنذار من خلال جهاز الاستشعار الدخان الالكتروني smoke detectors حيث تقوم بتنشيط أجهزة التحكم وتحريك انطلاق الغاز من الأسطوانة وتفرغ غاز الإطفاء.

the programmed agent release system, it controls releasing devices (as solenoids, actuators, etc.) that are connected to a set of storage tanks containing the agent. When alarm activation is detected, the Auto Pulse activates the releasing devices and discharges the extinguishing agent.

تعريف غازات إطفاء النظيفة Clean Agent

هي غازات اطفاء حريق متطايرة أو غازية غير موصولة للكهرباء ولا تترك بقايا عند التبخّر ولا تؤثّر بالضرر على المواد أو المعدات التي تقوم بحمايتها في حالة حدوث الحريق.

Clean agent definition

As per NFPA 2001 Clean Agent Volatile or gaseous fire extinguishant that is **electrically nonconducting** and that **does not leave a residue upon evaporation**.

الإطفاء بالغازات النظيفة FM-200 و NOVEC 1230

غاز NOVEC 1230 لإطفاء الحريق

تم تصميم نظام إطفاء الحرائق بغاز NOVEC 1230 كبديل لمركبات الكربون الهيدروفلورية وبدائل للهالون. يتم تخزينه كسائل ولكن يتم تصرفه كغاز غير سام على عكس أنظمة إخماد الحرائق الأخرى التي تحل محل الأكسجين مثل (الإطفاء باستخدام غاز ثاني أكسيد الكربون) أو نظام رشاشات المياه والذي قد تؤدي المياه بطبعتها لأتلاف المستندات أو المعدات ذات الأهمية بالغرفة وذلك حيث ان غاز Novec 1230 عبارة عن غاز بدون ماء ويقطع النار عن طريق امتصاص الحرارة وهو غير موصل للكهرباء ولا يترك أي بقايا وآمن للاستخدام البشري.

غاز NOVEC 1230 يشار إليه بـ FK-5-1-12 في كود NFPA 2001 وهو عبارة عن كيتون مفلور (أو فلورو كيتون) بتركيبة كيميائية $CF_3CF_2C(O)CF_3$ (CF3 CF2 C (O) CF3). (إنه سائل صاف، عديم اللون، ذو رائحة منخفضة، ذو ضغط فائق بالنتروجين ويتم تخزينه في أسطوانات عالية الضغط)

NOVEC 1230

The NOVEC 1230 fire suppression system was designed as an alternative to hydrofluorocarbon and a replacement for halon. It's stored as a liquid but discharged as a non-toxic gas. Unlike other fire suppression systems that displace oxygen or drown fires in water, the NOVEC 1230 clean agent system is a waterless gas that interrupts a fire by absorbing the heat. This disruption quickly breaks the chemical chain reaction that a fire needs to thrive. The NOVEC 1230 system is electrically non-conductive, leaves no residue, and is safe for human occupancy.

NOVEC 1230 Fire Protection Fluid, referenced as FK-5- 1-12 in NFPA 2001, is a fluorinated ketone (or fluoro ketone) with a chemical structure of $CF_3CF_2C(O)CF(CF_3)_2$. It is a clear, colorless, low odor, liquid that is super-pressurized with nitrogen and stored in high-pressure cylinders

<ul style="list-style-type: none">FM-200 (HFC-227ea) (heptafluoropropane)NOVEC 1230 (FK-5-1-12) (Fluroketone)		
	Novec 1230	FM-200
Type of Compound	A fluorinated ketone containing carbon, fluorine, and oxygen	A hydrofluorocarbon (HFC) compound containing hydrogen, fluorine, and carbon
Storage	Stored as a liquid	Stored as a liquefied compressed gas
Discharge Time	10 seconds	10 seconds

غاز FM200 لإطفاء الحرائق

غاز FM-200 عبارة عن عامل نظيف لإطفاء الحرائق يهدف إلى العمل كبديل للهالون هو مركب هيدروفلوروكربون معروف أيضًا باسم HFC-227ea يتم تصريفه كغاز عديم اللون وعديم الماء وغير سام. تكون أنظمة إخماد الحرائق FM-200 من الكربون والفلور والهيدروجين والتي تعمل معًا أيضًا لقطع التفاعل الكيميائي المتسلسل للحرائق وإزالة الحرارة التي توقف الحريق بعد ذلك قبل أن تتح لها فرصة الانتشار. نظام العامل النظيف FM-200 هو أيضًا غير موصل كهربائيًا آمن للاستخدام البشري.

FM-200

The FM-200 fire suppression system is clean agent fire suppression that's intended to act as a halon alternative. It's a hydrofluorocarbon compound that's also known as HFC-227ea. It's discharged as a, waterless, colorless, non-toxic gas. FM-200 fire suppression systems are comprised of carbon, fluorine, and hydrogen which work together to also interrupt a fire's chemical chain reaction and remove the heat which then stops a fire before it ever has a chance to spread. The FM-200 clean agent system is also electrically non-conductive and safe for human occupancy

تصنيف الحريق للمواد وقابليتها للاشتعال

Class A Fire حريق في المواد العادي القابلة للاحتراق، مثل الخشب والقماش والورق والمطاط والعديد من البلاستيك.

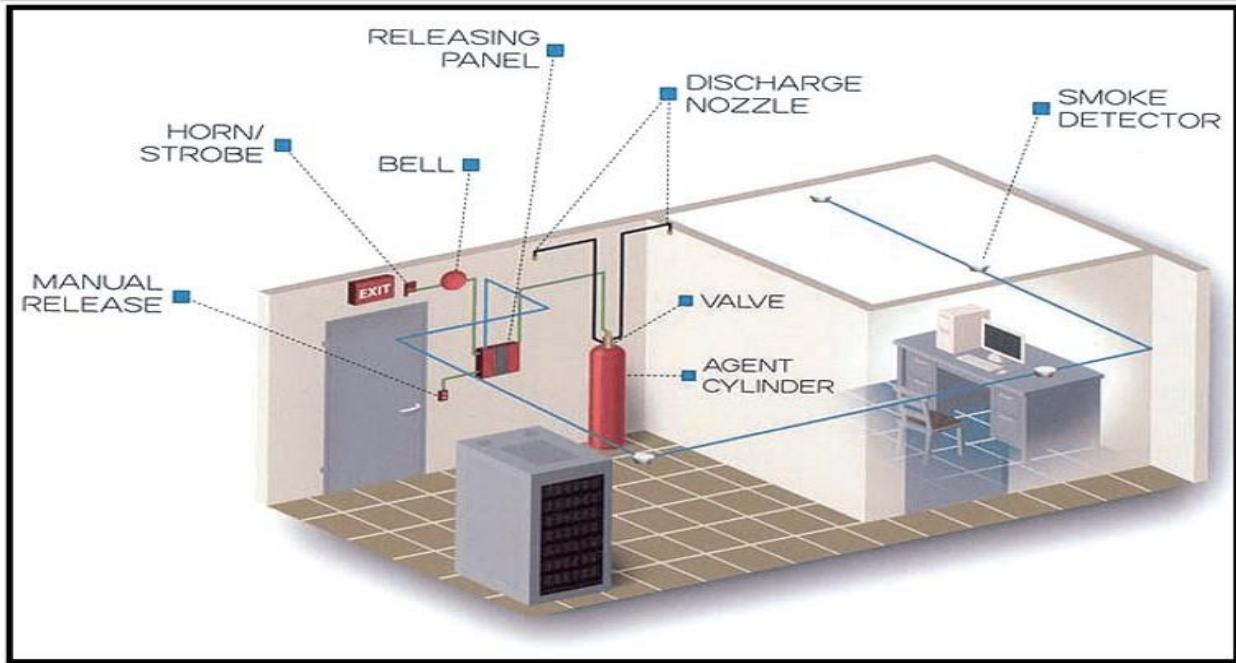
Class B Fire حريق في السوائل القابلة للاشتعال والسوائل القابلة للاشتعال والشحوم البترولية والقطران والزيوت والدهانات الزيتية والمذيبات والورنيش والكحول والغازات القابلة للاشتعال.

Class C حريق يشتمل على معدات كهربائية نشطة.

Classification fire

Class A Fire. A fire in ordinary combustible materials, such as wood, cloth, paper, rubber, and many plastics.

Class B Fire. A fire in flammable liquids, combustible liquids, petroleum greases, tars, oils, oil-based paints, solvents, lacquers, alcohols, and flammable gases.


Class C Fire. A fire that involves energized electrical equipment.

استخدامات وتطبيق نظام الاطفاء بغاز NOVEC 1230 , FM 200

كلا النظامين فعالان في إخماد حريق الأنواع A و B و C. في أي مكان توجد به مخاطر حريق A و B و C يعد مثاليًا لأي من هذه المركبات.

يستخدم كلا النظامين بشكل عام في نفس الأنواع من المجالات والصناعات مثل حيث يتم تطبيق نظام الإطفاء بالغازات النظيفة في الغرف والمناطق ذات طبيعة خاصة تطلب الحفاظ على الأجهزة أو الوثائق الموجودة بالمكان دون خسائر ولذلك فيوجد الكثير من التطبيقات والتي ذكر منها على سبيل المثال:

مراكز البيانات وغرف تكنولوجيا المعلومات ومرافق الاتصالات وغرفة الكمبيوتر وغرف التحكم والمتاحف وتخزين الأرشيف التاريخي والمرافق الصيدلانية والطبية والمخابرات والمكتبات ومرافق الرعاية الصحية والتطبيقات العسكرية، والتطبيقات البحرية.

typically used areas

Both of these systems are efficient at suppressing types A, B, and C fires. Anywhere that A, B, and C fire hazards exist is ideal for either of these compounds.

Both systems are generally used in the same types of areas and industries like data centers, IT rooms, Telecommunication facilities, Computer room, Control rooms, Museums, Historical archive storage, Pharmaceutical and medical facilities, laboratories, libraries, healthcare facilities, military applications, and marine applications.

Both NOVEC 1230 and FM-200 are electrically non-conductive which allows them to suppress fire while not disrupting machinery or electronics.

طريقة تفعيل النظام وتشغيله لإطفاء الحريق

أولاً: الطريقة الآوتوماتيكية :-

طريقة عمل النظام عند حدوث الحريق يعمل كاشف الدخان على ارسال اشارة إلى لوحة التحكم والتي تقوم بدورها على تشغيل اجهزة التنبيه (السارينية - الفلاشر) بعدها يعمل كاشف اخر على ارسال اشارة إلى لوحة التحكم تأكيداً على وجود الحريق بعدها بعده ثوانٍ تقوم لوحة التحكم بإرسال إشارة إلى المشغل الكهربائي Electric actuator لتفعيله حيث يعمل على تشغيل Cylinder Valve والسماح للغاز للخروج ليتدفق عبر مواسير إلى مكان الحريق من خلال ال nozzles

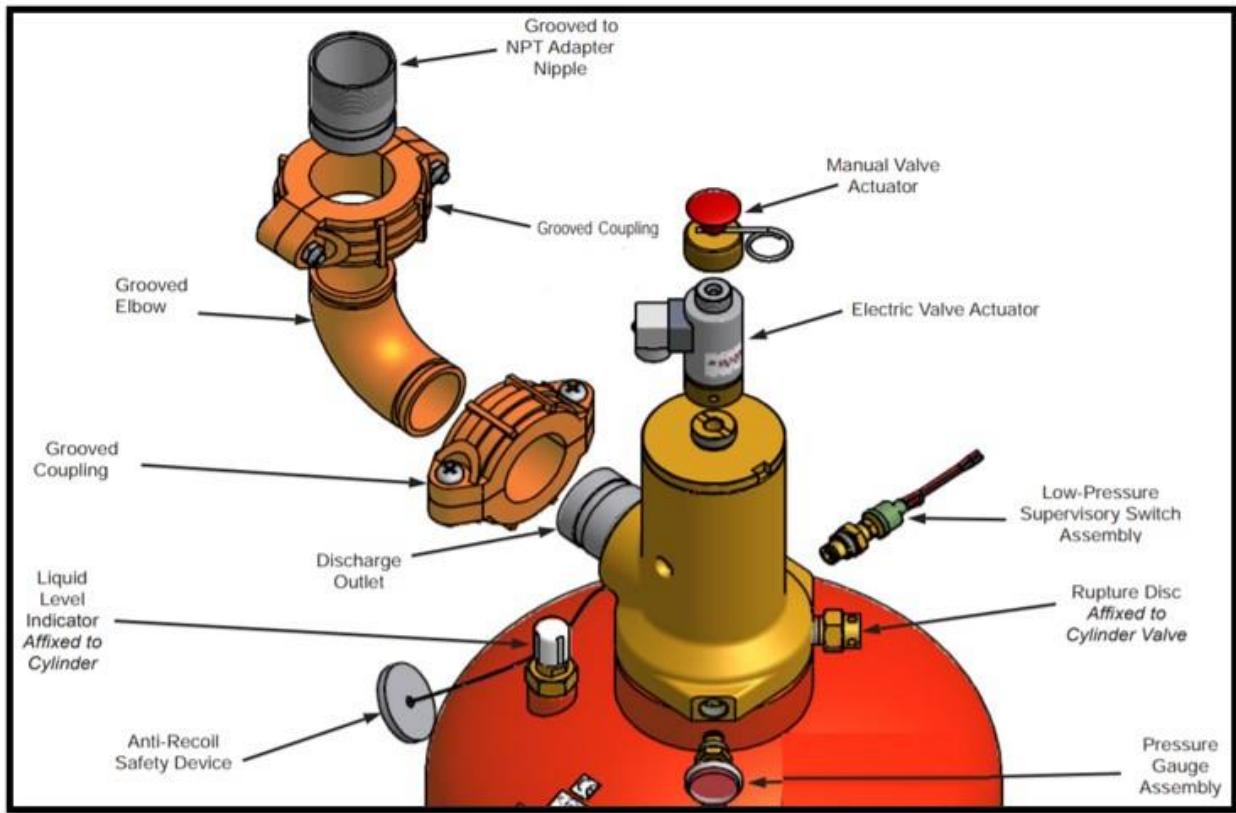
في بعض الأنظمة يكون موجود أسطوانة نيتروجين صغيرة Pilot Cylinder يتم فتحها عن طريق إشارة كهربائية من النظام ليقوم الضغط الخارج منها بفتح الأسطوانة الرئيسية.

ثانياً: الطريقة اليدوية:-

من خلال تشغيل مفتاح كهربائي Pull Station يعطي لنظام التحكم إشارة لاكتشاف أحد العاملين لحرائق وبالتالي يعمل على إصدار أمر لتشغيل الصمام الكهربائي Solenoid Valve.

كما توجد طريقة يدوية أخرى وهي طريقة ميكانيكية توجد على أسطوانة النيتروجين وتعمل على فتح الأسطوانة دون الحاجة لتشغيل الصمام الكهربائي Solenoid Valve

ملاحظة: يجب ان لا تزيد المدة من بدأ انطلاق غاز الأسطوانات وحتى تواجد الغاز بكميته التصميمية بالمكان المراد حمايته عن 10 ثوانٍ & وان يظل الغاز متواجد داخل الحيز (الغرفة) لمدة 10 دقائق بعد انطلاق الغاز من الأسطوانات ولذلك فيجب التأكد من إغلاق كامل فتحات الغرفة وغلق أنظمة سحب الدخان والتكييف (MFSD-CLOSED) لحظة انطلاق الغاز


مكونات النظام System component

الأسطوانات CONTAINERS

الأسطوانات يجب ان تتوافق مع اختبارات UL و معتمدة من FM ومناسبة للغاز النظيف السائل لتوفير تفريغ سريع وفعال في 10 ثوانٍ أو أقل.

تكون الأسطوانات مناسبة لإعادة التعبئة وأن تكون مزودة بمجموعة صمام تفريغ، وصمام أمان، وتخفيض الضغط الزائد، ومنفذ تعبئة، ومقاييس ضغط، ومفتاح إشرافي للضغط المنخفض، ومؤشر لمستوى السائل، سعة تخزين الغاز النظيف.

Containers shall be UL listed, FM approved and suitable for the liquid clean agent to provide a quick and effective discharge in 10 seconds, or less. Each agent storage container shall be suitable for refilling and shall be equipped with a discharge valve assembly with fast acting rupture disc, safety plug, overpressure relief, fill port, pressure gauge, low pressure supervisory switch and liquid level indicator. Capacity of Clean Gas Agent storage. Include minimum working-pressure rating that matches system charging pressure, valve, pressure switch, and pressure gage.

- يجب مراعاة الحد الأدنى للضغط التصميمية والتي ستتحملها المكونات الأخرى مثل الصمامات، ومقاييس الضغط، ومقاييس الضغط.
- يجب ان تكون الاسطوانة داخل المبنى وغير معرضة للعوامل الجوية بحيث لا تتعرض لأشعة الشمس المباشرة و في مكان سهل الوصول إليه للقيام بأعمال الفحص و الصيانة و عدم تركيب الأسطوانات في مكان قد تتعرض فيه لأخطار حريق أو انفجار تركيب الأسطوانات بحيث يمكن إزالتها بسهولة لإعادة شحنها (التعبئة).

- They must not be located where they will be exposed to a fire or explosion in the hazard.
- The tanks should be installed so that they can be easily removed for recharging.
- Tanks must be installed indoors. Do not install the tanks where they are exposed to direct sunrays

تكون الأسطوانة مزودة بالتالي

لوحة معدنية على جسم الأسطوانة يوضح عليها نوع مادة الإطفاء وزن الغاز داخل الأسطوانة والوزن الكلي للأسطوانة اسم الشركة المصنعة - تاريخ التصنيع

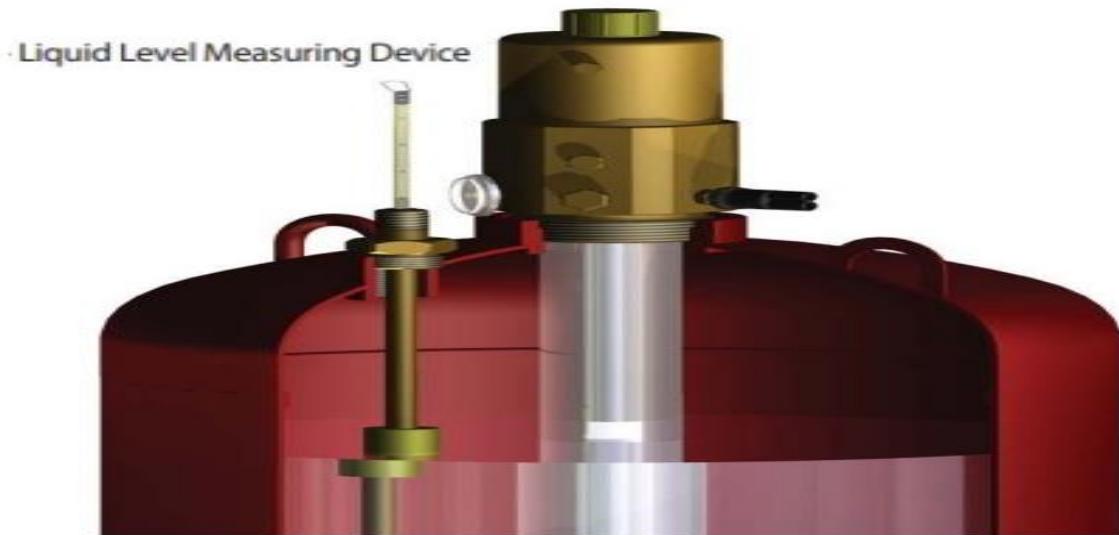
ركائز لزوم تثبيت الأسطوانة جيدا **Cylinder brackets**

Fixing Bracket (Strap Style)

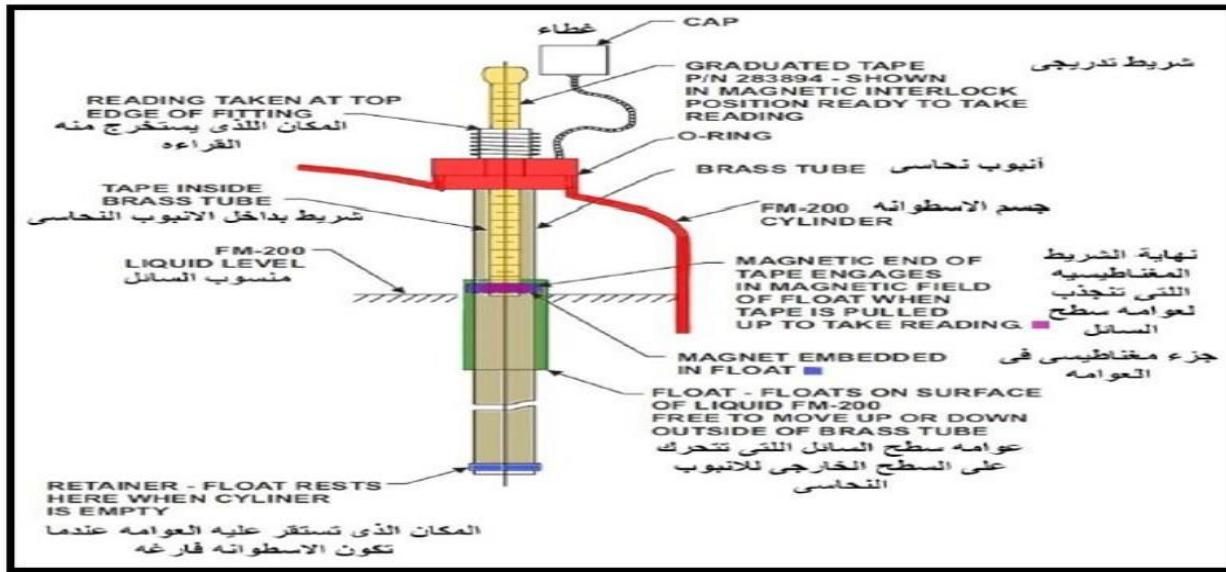

The cylinder is equipped with the following

Name Plate A metal plate on the body of the cylinder showing the type of extinguishing agent, the weight of the gas inside the cylinder, and the total weight of the cylinder, the name of the manufacturer - the date of manufacture

Cylinder brackets It is necessary to fix the cylinder well Valve Cylinder


➤ **Burst Disc Safety Relief**

مفتاح أمان يعمل على تصريف الضغط الزائد من الأسطوانة عند زيادة ضغط الغاز بداخلها في حالات ارتفاع درجة الحرارة تجنبًا لحدوث انفجار للأسطوانة


Safety Relief - Burst Disc A safety switch that works to discharge excess pressure from the cylinder when the gas pressure inside it is increased in cases of high temperature in order to avoid an explosion in the cylinder

➤ Liquid Level Indicator

مبين منسوب السائل في الأسطوانة يستخدم في الكشف الدوري على محتوى الأسطوانة حيث يكون منسوب السائل مؤشراً لكمية السائل داخل الأسطوانة

Page | 10

the indicator of the level of the liquid in the cylinder is used in the periodic inspection of the content of the cylinder, where the level of the liquid is an indicator of the amount of liquid inside the cylinder

➤ Electric Actuator

مشغل كهربائي هو عبارة عن Solenoid Valve يأخذ إشارة من لوحة التحكم للسماح للغاز بالمرور وقت حدوث الحريق حيث يستخدم كوسيلة أساسية للتفعيل الآلي للنظام ومزود بجزء لتفعيل اليدوي.

An electric actuator is a Solenoid Valve that takes a signal from the control panel to allow gas to pass at the time of the fire. It is used as a primary means of automatic activation of the system and is provided with a part for manual activation.

➤ Manual Control Head

رأس التفعيل اليدوي يستخدم كوسيلة يدوية للتفعيل.

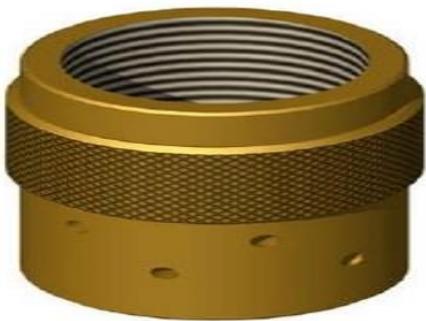
The manual activation head is used as a manual means of activation.

➤ Flexible Discharge Hose

خرطوم تصريف الحريق تكون الأسطوانة مزودة بخرطوم تصريف للغاز من المطاط و ذلك حالة وجود أكثر من أسطوانة بالنظام

If there is more than one cylinder in the system, the cylinder shall be equipped with a rubber gas discharge hose.

➤ Distribution Piping


شبكة مواسير يجب أن تكون المواسير من مواد غير قابلة للاحتراق و غير قابلة للصدأ و تتحمل ضغط الغاز

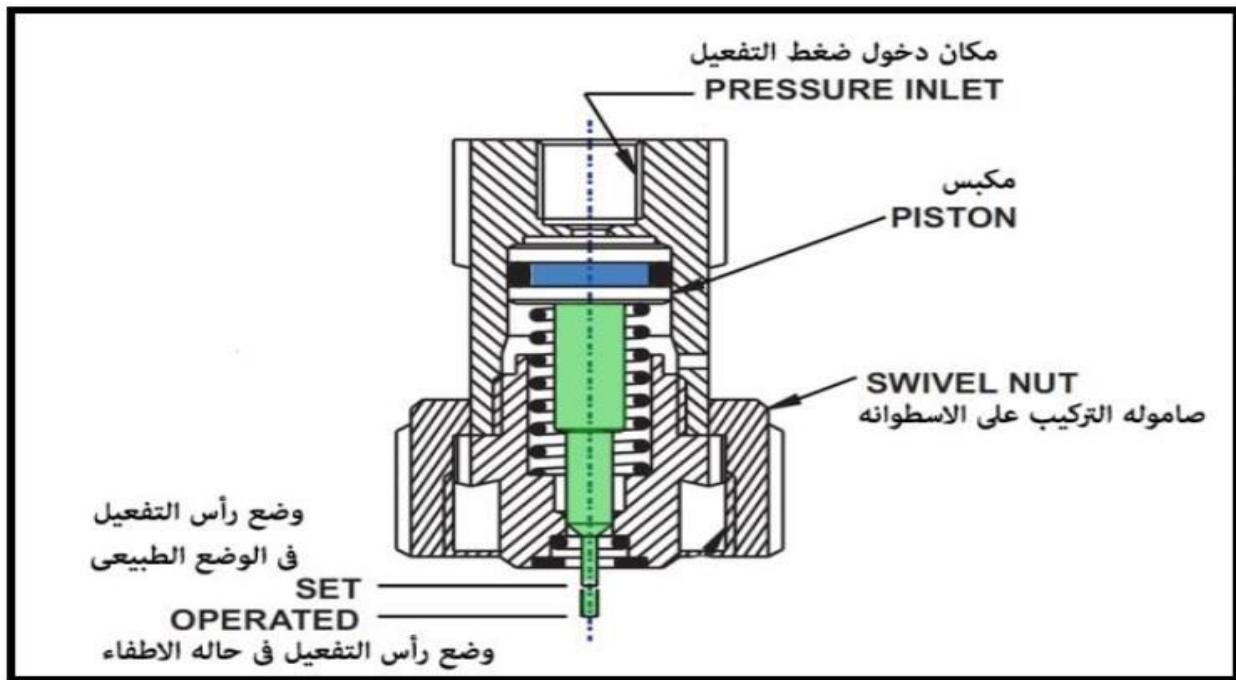
Distribution Pipes must be made of non-combustible materials, Pipe shall be of material having physical and chemical characteristics such that its integrity under stress can be predicted with reliability. Special corrosion-resistant materials or coatings shall be required in severely corrosive atmospheres.

➤ Discharge Nozzles

تعمل على توزيع الغاز الخارج منها بالغرفة المطلوب حمايتها وتصنع من مواد مقاومة للصدأ و تتحمل درجات الحرارة العالية لمقاومة الحرائق

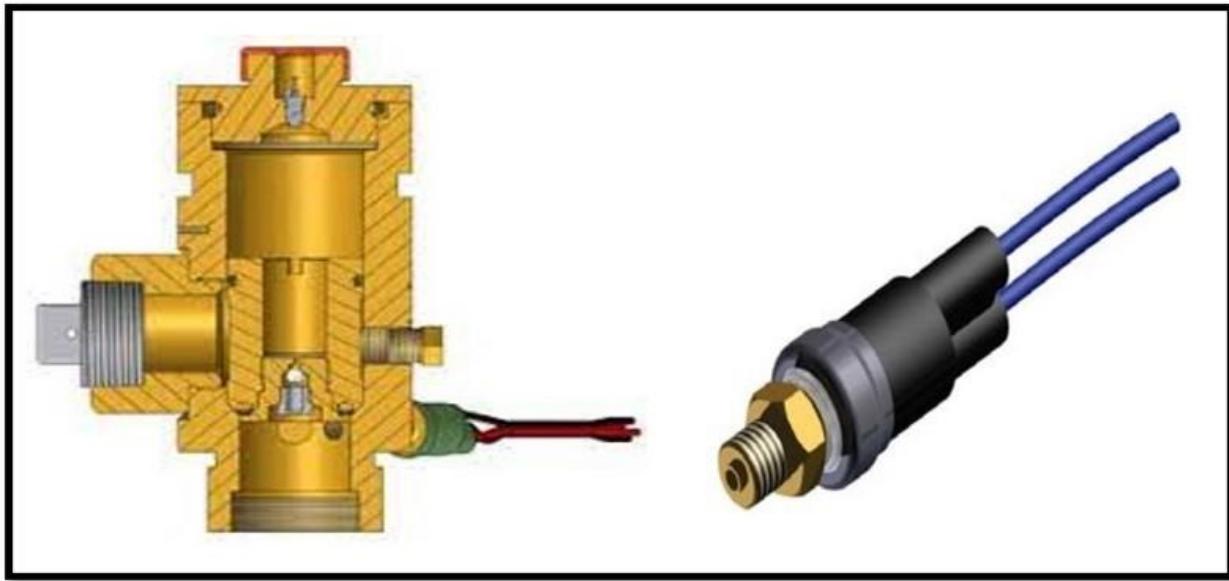
Discharge Nozzles work on distributing the gas out of it in the room to be protected. They are made of rust-resistant materials and can withstand high temperatures to resist fire.

➤ Pressure Gauge

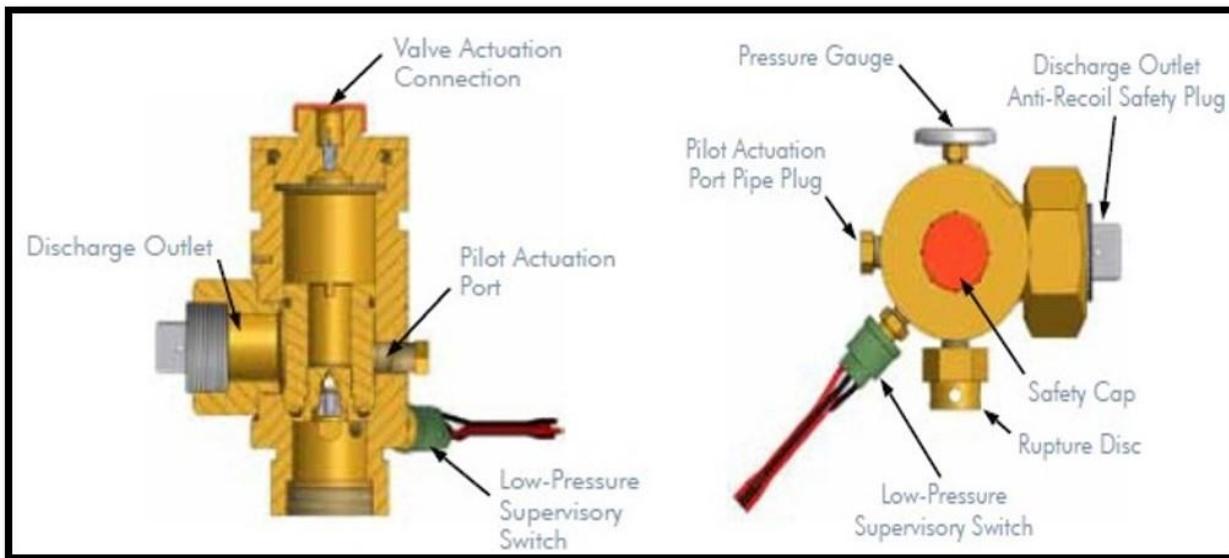

تزود كل أسطوانة بعداد لبيانات ضغط الغاز داخل الأسطوانة كما تزود بفتحة لمراقبة ضغط الأسطوانة

Pressure Gauge Each cylinder is provided with a gauge for the gas pressure gauges inside the cylinder and a switch for monitoring the cylinder pressure.

➤ Pressure operated control head

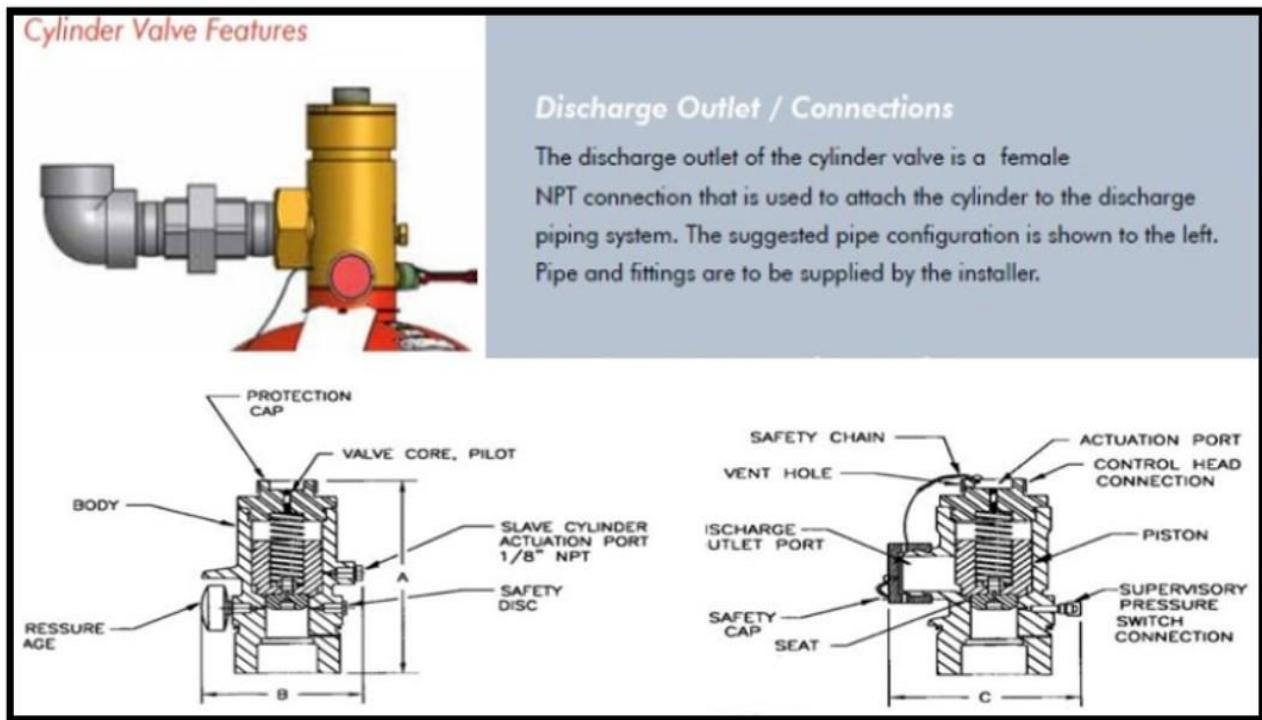

رأس التفعيل الذي تعمل بالضغط يستخدم كوسيلة تفعيل تعمل بضغط أسطوانة النيتروجين Pilot وتعتمد فكره العمل على وجود مكبس يقوم بتجميع الضغط القادم من أسطوانة النيتروجين إلى قوه دفع تقوم بتحريك رأس التفعيل إلى وضع التشغيل الذي يتم على إثره تفريغ الأسطوانة.

Pressure operating control head Pilot. Pressure operating control head the idea of work depends on the presence of a piston that collects the pressure coming from the nitrogen cylinder into a driving force that moves the activation head to the operating position, after which the cylinder is unloaded.


➤ Pressure Operated Switch

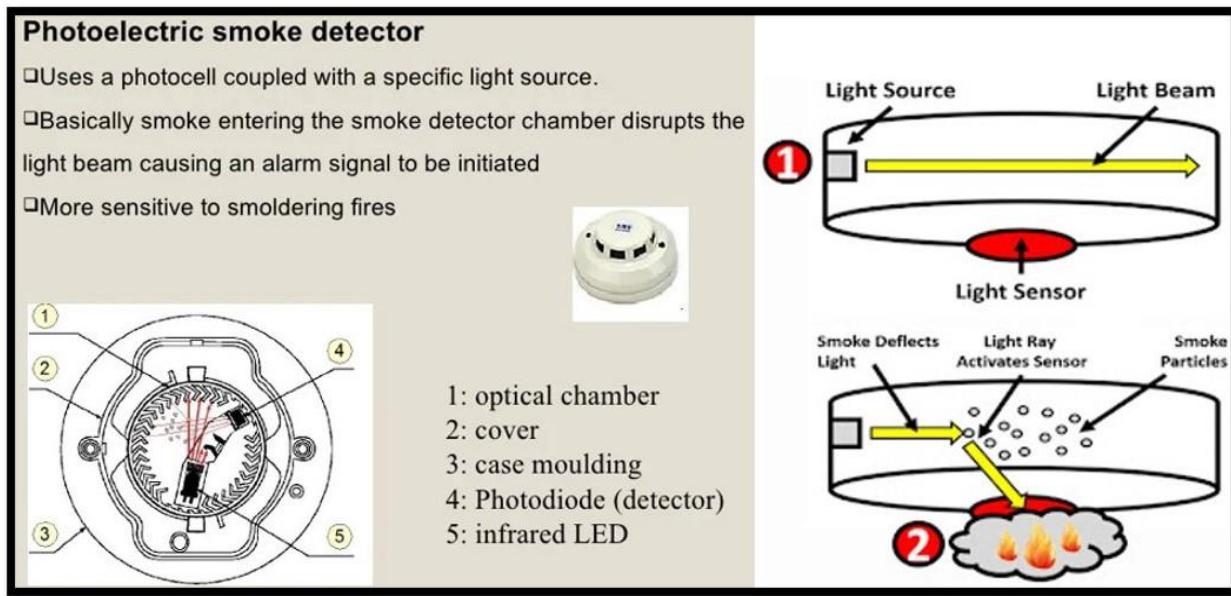
يستخدم كوسيله لإرسال معلومة Feedback عن بدء عملية الإطفاء إلى نظام مكافحة الحريق علماً بأن عملية الإطفاء من الممكن أن تبدأ بطريقه يدوية أو أوتوماتيكية.

Pressure operating switch used as a means of sending feedback information about the start of the extinguishing process to the firefighting system, bearing in mind that the extinguishing process can start manually or automatically.


➤ Discharge Head

يوجد على كل أسطوانة والتي تتمكنك من تركيب المشغل اليدوي أو الكهربائي أو المشغل الذي يعمل بالضغط ومزود ببطء لحماية الأسطوانة أثناء عمليات النقل والتركيب.

The cylinder head is located on each cylinder, which enables you to install the manual, electric or pressure actuator and is equipped with a cover to protect the cylinder during transportation and installation operations.

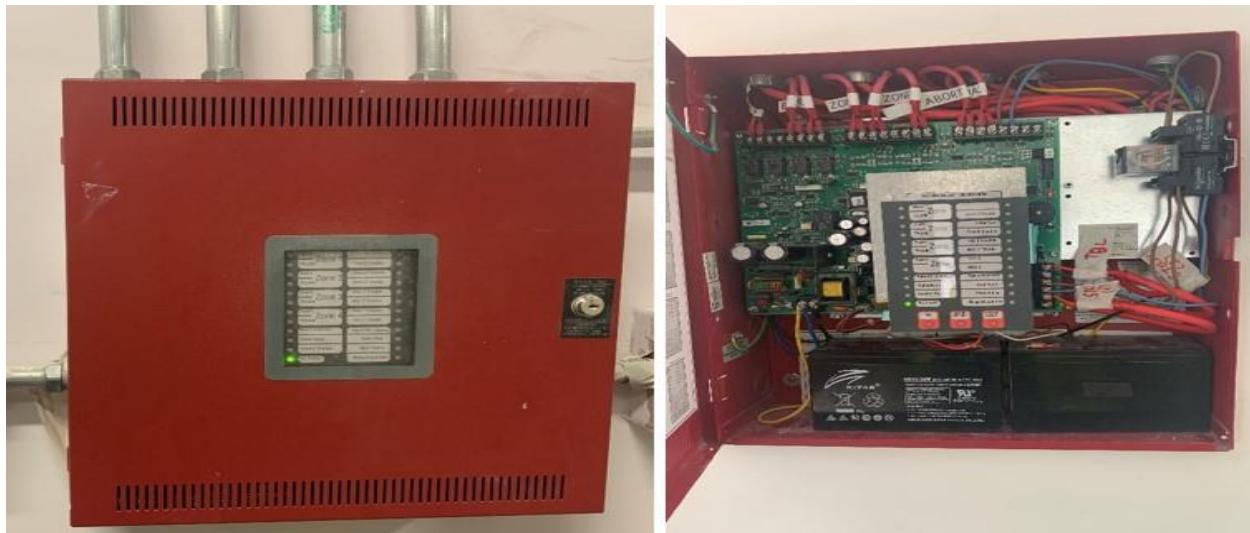


حساسات النظام System Detectors

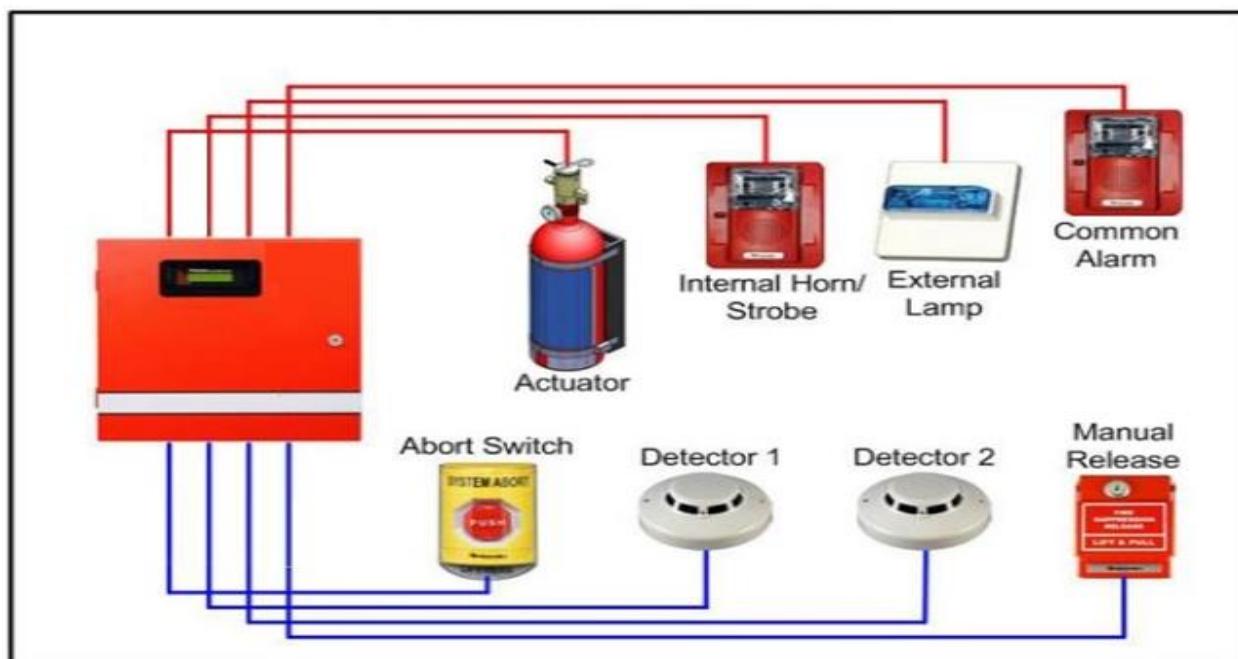
(Smoke –Heat –Flame) حساسات الحرائق والدخان واللهم والتي تعمل على إعطاء إشارة إلى لوحة التحكم وقت حدوث الحرائق ويختلف عددهم واحتياراتهم حسب طبيعة وظروف المكان المراد حمايته.

Heat, smoke and flame sensors, which work to give a signal to the control panel at the time of the fire, and their number and choices vary according to the nature and conditions of the place to be protected.

When applications for system design for 2 smoke detector sensors are installed, in the case of smoke sensing by only one sensor, initiates the first alarm will start and if the second sensor sensing smoke, the second alarm is confirmed by confirming the occurrence of the fire and the start of activating the system to work after the delay programming period to evacuate the place before the gas is released.



في غالب الاستخدامات بالمباني وتطبيقات غرف الاتصالات او الكهرباء الصغيرة يتم تركيب 2 حساس دخان ويقوم الحساس الاول في حالة استشعار الدخان ببدء الانذار الأول وفي حالة استشعار الحساس الثاني الدخان يتم الانذار الثاني بتأكيد حدوث الحرائق وبدء تفعيل النظام للعمل بعد فترة التعطيل المؤقت لأخلاء المكان قبل انطلاق الغاز .


فكرة التأكيد على حدوث الحرائق باستخدام الحساس الثاني هي حتى لا يعمل النظام في حالة الانذار الخاطئ والذي قد ينبع من تعطل الحساس او استشعار أحد الحساسات للدخان من مصدر غير الحرائق وبالتالي عدم تشغيل النظام دون داعي.

لوحة التسغيل والتحكم Control Panel

تتصل بها مكونات النظام مثل الكواشف والجرس والسرينة والفلasher، تعمل على السماح للغاز بالخروج عن طريق إعطاء إشارة إلى مفتاح التشغيل الكهربائي وذلك عند حدوث الحريق

The components of the system such as detectors, bells, sirens and flashers are connected to it and it's work to allow the gas to release by giving a signal to the solenoid actuator start switch when a fire occurs

ويمكن تركيبها داخل الحائط (جزئي) أو تثبيت مباشر على الجدار
SEMI-FLUSH MOUNTING
SURFACE MOUNTING

يجب أن تبرز 1.5 بوصة من الحائط للسماح بفتح باب اللوحة.

Cabinets can either be surface-mounted directly to a wall or recessed into the wall (semi-flush mounting).

SURFACE MOUNTING Surface mounting the cabinet involves screwing it directly to a wall.

SEMI-FLUSH MOUNTING

Semi-flush mounting involves recessing the cabinet into a wall and attaching it directly to the wall's studs. At a minimum, 1.5 inches of the cabinet must protrude from the wall to allow for clearance of the panel door.

متطلبات تركيب اللوحة Control Panel Installation

- ✓ تثبيت اللوحة على الحائط حسب الارتفاعات المطلوبة من منسوب التشطيب
- ✓ موقع تركيب اللوحة يكون جيد التهوية ونظيف وخالي من الغبار.
- ✓ عدم تعرض اللوحة لمصادر الحرارة بما في ذلك أشعة الشمس المباشرة.
- ✓ يراعى ان يكون مكان التركيب بعيداً عن مصادر الاهتزازات أو تعرض اللوحات للضرر.
- ✓ التركيب بعيداً عن مصادر تداخل الترددات اللاسلكية (RFI)، مثل محطة قاعدة جهاز إرسال والاستقبال اللاسلكي.
- ✓ معزولة عن مصادر المعدات ذات الاهتزازات القوية مثل مكيفات الهواء والمراوح الكبيرة
- Well ventilated, clean, and dust free.
- Away from sources of heat, including direct sunlight.
- Away from sources of vibration or physical shock.
- Away from sources of Radio Frequency Interference (RFI), such as a radio transceiver base station or hand-held unit.
- Isolated from sources of strong electromagnetic fields, such as air conditioners, large fans, and large electric motors.

مفتاح التفعيل (تشغيل النظام) اليدوي Manual Release Switch

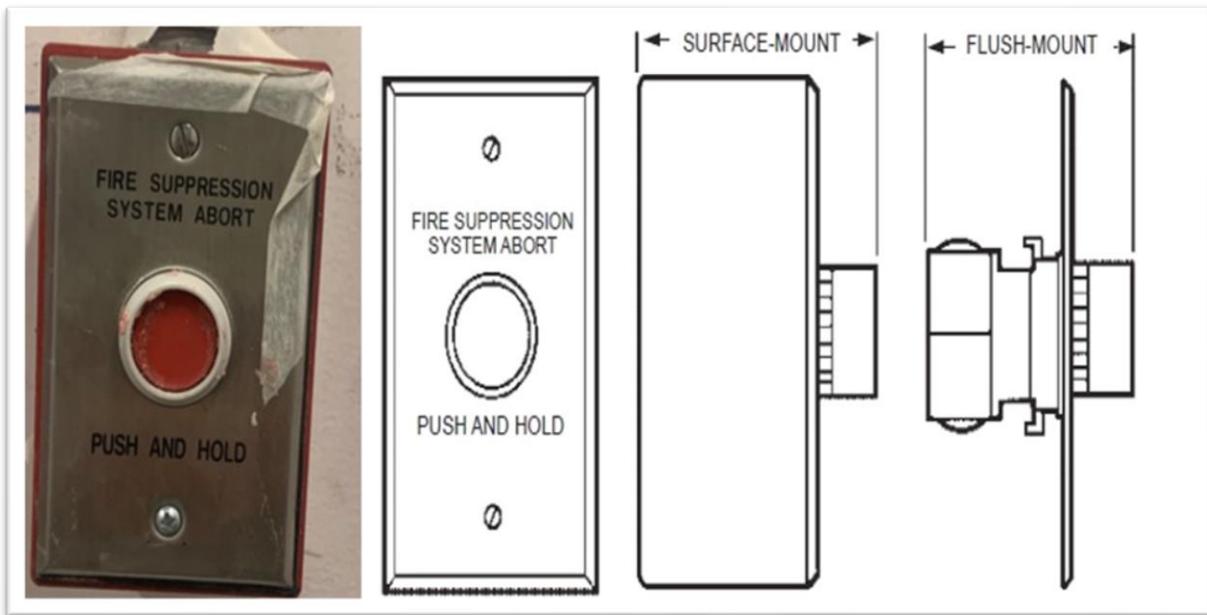
هو مفتاح يدوى يمكن من خلاله تشغيل النظام بطريقة يدوية حالة مشاهدة الحريق وفي هذه الحاله لا يتم تفعيل النظام اوتوماتيك من خلال حساسات الدخان او الحرارة

MANUAL RELEASE SWITCH For systems intended clean agent release, a pre-discharge must be configured to warn building of the impending discharge. The setting of the release timer selects the duration of the pre-discharge signal.

قبل ان تتم عملية التفريغ للغاز يجب حدوث تحذير مسبق وتشغيل أجهزة إنذار الحريق (المسموعة والمرئية) للتحذير قبل انطلاق الغاز ويتم تحديد وبرمجة إعدادات المؤقت الخاص بمدة إشارة ما قبل التفريغ وانطلاق الغاز.

عند تنشيط مفتاح التشغيل اليدوي، سيقوم النظام بتنشيط دوائر التحرير عند انتهاء مدة الانتظار والهدف من فترة الانتظار قبل انطلاق الغاز هو التحذير لأخلاء المكان قبل بدء عملية مكافحة الحريق

في حالة ان المدة الزمنية لتشغيل النظام اوتوماتيكي عن طريق الحساسات ونظام الكوترول سوف يستغرق وقت اكبر من المدة المطلوبة لتشغيل النظام عن طريق مفتاح التشغيل اليدوي manual release (فترة تأخير أطلاق الغاز) فسيتم تفعيل وأطلاق الغاز بعد انتهاء مدة التأخير للإنذار لمفتاح التشغيل اليدوي .


Upon activation of the Manual Release switch, the system will activate the applicable releasing circuits when the Manual Release timer expires. The system will also activate the applicable releasing circuits upon expiration of a previously active automatic release timer, if the remaining time on the automatic release timer is less than the programmed Manual Release timer.

مفتاح تعطيل انطلاق الغاز Abort Switch

يستخدم لإيقاف مؤقت لانطلاق الغاز في حالة الانذار الخاطئ او السيطرة على الحريق وذلك باستمرار الضغط عليه حتى يتم عمل rest للوحة

في خلال المدة من انطلاق الانذار الثاني وقبل انطلاق الغاز من الأسطوانة يتم تفعيل أمكانية استخدام معطل الأطلاق Abort Switch في حالة عدم وجود حريق.

Abort switch definition as a system control that, when operated during the releasing panel's release delay countdown, extends the delay in accordance with a predetermined. so, an operator can prevent the release of the suppression agent by pressing the abort switch at any time **between when the automatic releasing sequence starts and the solenoid is activated.**

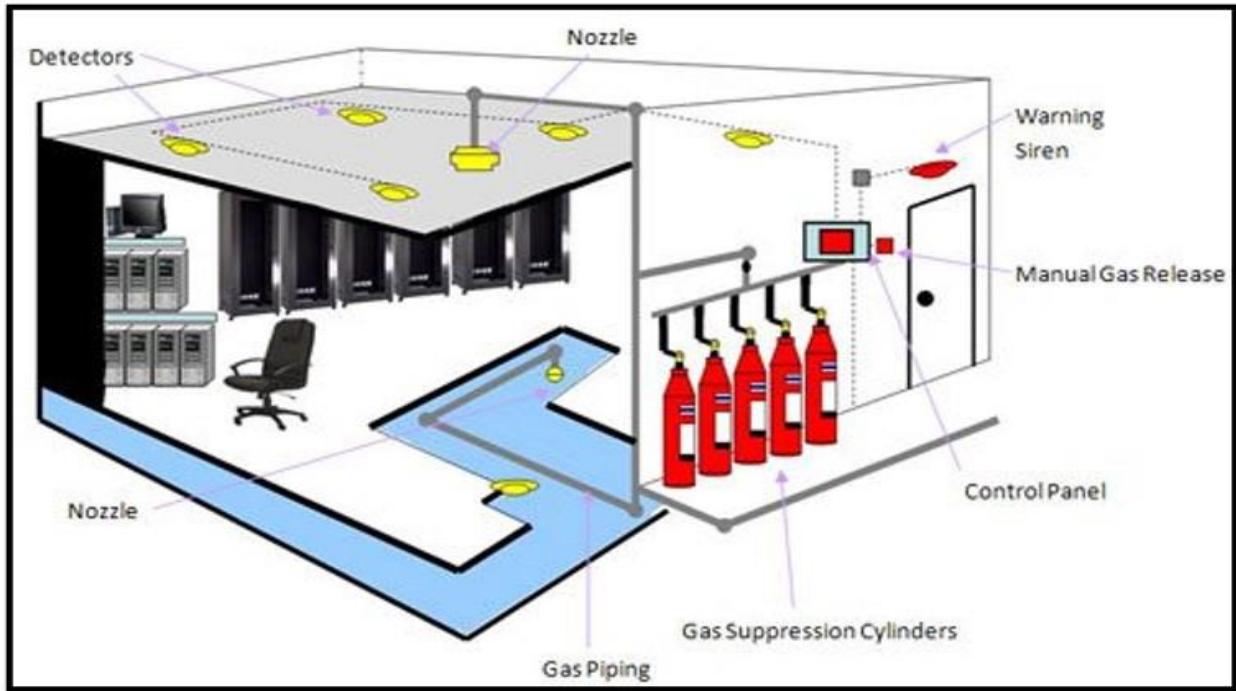
لا يوجد وقت محدد لتعطيل تحرير الغاز طالما ان المستخدم مستمر بالضغط على المفتاح ولكن في حالة في حالة ازالة الضغط على مفتاح تعطيل الأطلاق Abort Switch وتحrir الغاز قبل عمل rest للوحة الكونترول سيتم أطلاق الغاز بعد 10 ثواني.

الهدف من مدة 10 ثواني لتشغيل النظام بعد تحرير الضغط على مفتاح Abort Switch ان يسمح بمعادرة الغرفة قبل انطلاق الغاز

في حالة الضغط على المفتاح بعد انطلاق الغاز وتفرغ الأسطوانات لن يتم توقف النظام

No agent release occurs while the abort switch is held in.

- The abort switch has **no effect** on an activated **releasing**, pressing the switch will not stop the release).


- the abort switch **must be pressed** and held **before the second alarm (delay timer finish)** and activation occurs to prevent release.

- **When the abort switch is released, one of the following occurs:**

- If the alarm conditions clear and a system reset occurs before the switch is released, no agent release occurs.
- If the alarm conditions are not clear and the delay timer is still running, no agent release occurs until the timer expires.
- If the alarm conditions are not clear and the delay timer has expired, agent release occurs.

Notes: Manual release stations override the abort switch. In other words, if a manual release station is activated while the abort switch is held in, agent release occurs

تسلسل تشغيل النظام System Operating Sequence

- تشغيل الحساس الأول: إعطاء إشارة مرئية على لوحة التنبية، وتنشيط الإنذار، وأعطاء إشارة للوحة تحكم الحريق الرئيسية للمبني لإغلاق أنظمة تكيف الهواء والتهوية التي تخدم المنطقة المحمية، وتحرير الأبواب المغلقة في المنطقة المحمية وإرسال إشارة إلى نظام إنذار الحريق.

- تشغيل الحساس والإنذار الثاني: إعطاء إشارة مرئية على لوحة التنبية، وتنشيط الإنذار المسموع، وبده عمل مؤقت التأخير الزمني لتفرير الأسطوانات من غاز الإطفاء لمدة 30 ثانية او 60 ثانية حسب ما تم برمجته بلوحة الكونترول، وبعد انتهاء وقت التأخير يبدأ الغاز بالتحرر من الأسطوانات والانطلاق لأطفاء الحريق.

ملاحظة: يتم في حالة الإنذار الثاني أغلاق أي نظام لسحب الدخان من الغرفة واغلاق جميع الدنابر حتى يتمكن الغاز بعد الأطلاق بالتواجد داخل الغرفة لمدة لا تقل عن 10 دقائق.

- سوف يؤدي تفريغ غاز الإطفاء إلى تشغيل إنذارات مسموعة ومرئية.

- ستعمل **Manual Pull Station** العاملة على تفريغ الغاز النظيف عند تنشيطها بتشغيل أنظمة الإنذار وتحرير الغاز بعد فترة تعطل لتشغيل الإنذار السماح بأخلاء المكان قبل انطلاق الغاز

- ستؤدي مفاتيح **Abort Switch** إلى تأخير تحرير الغاز أثناء التنشيط والضغط عليه بعد الإنذار الثاني، ويجب عمل rest للوحة الكونترول لمنع انطلاق وتحرير الغاز حيث سيؤدي تحرير المفتاح واصلة الضغط عليه إلى تحرير الغاز والانطلاق بعد 10 ثواني .

- يجب تثبيت المواسير والكعيان وجميع توصيلات شبكة المواسير والرشاشات NOZEL جيدا Rigid لتحمل الضغط التشغيلي للنظام Support

- مدة تفريغ غاز الأسطوانات: يجب تصميم الغاز للتحرير وتفريغ الأسطوانات في غضون 10 ثوانٍ أو أقل.

- يجب أن يشتمل النظام على طاقة احتياطية طارئة emergency power supply والتي توفر الطاقة البديلة في حالة انقطاع التيار الكهربائي العادي من خلال مولدات أو وجود بطاريات طاقة للشحن داخل اللوحات.

- في حالة وجود معدات تعمل بالطاقة الكهربائية داخل الغرفة وطبيعة هذه المعدات قد تؤدي إلى حدوث شراراً او زيادة الاشتعال والحريق فيجب أن يؤدي تفريغ الغاز إلى إلغاء وفصل الطاقة عن الأجهزة داخل الغرفة مع التنبية على ان لوحات الكونترول للنظام يتم ربطها بمصدر طاقة بديل في حالة انقطاع التيار الأساسي.

ملاحظة هامة : فترات ووقت التعطل للنظام Delay Time قد تختلف عما سبق توضيحة حيث انه قد يأخذ في اعتبارات التشغيل تطبيقات الاستخدام والمساحات وطبيعة المواد الموجودة بالغرفة المطلوب حمايتها

- **Actuating first detector:** Give visual indication on annunciator panel, energize audible alarm, shut down air-condition and ventilating systems serving protected area, release and closed doors in protected area and send signal to fire alarm system.
- **Actuating second detector:** Give visual indication on annunciator panel, energize audible alarm, shut down power to protect equipment, actuate timer delay for extinguishing-agent discharge before release extinguishing agent.
- Extinguishing-agent discharge will **operate audible alarms and strobe lights.**
- **Operating manual-release stations** will discharge Clean Agent when activated after a delay programmed period to allow people to leave the place before gas release
- **Operating abort switches** will delay Clean Agent discharge while being activated, and switches must be reset to prevent Clean Agent discharge. Release of switch will discharge Clean Agent.
- **At tees, elbows and nozzle points should be clamped properly** (piping shall be installed with rigid support)
- **Design discharge:** clean agent shall be designed to discharge within 10 seconds or less.
- The system shall include an **emergency power back-up.**
- Energized electrical equipment that could provide a prolonged ignition source should be **de-energized** prior to or during agent discharge.

تأخير أو تعطيل فترات الأطلاق وتحrir الغاز من الأسطوانة

الهدف من إنذارات ما قبل التفريغ وأوقات التأخير هو منع تعرض الإنسان للغاز والسماح بأخلاء المكان قبل بدء مكافحة الحريق.

• الموقت اليدوي لتأخير التحرير. Manual Release Delay Timer

تحدد مدة التأخير بين تنشيط المفتاح وبدء انطلاق الغاز من الأسطوانة حتى يتمكن الموجودين بالمكان للإخلاء قبل انطلاق الغاز.

- **الموقت التلقائي بالنظام لتأخير تحرير وانطلاق الغاز Automatic Release Delay Timer**

هي المدة الزمنية من بداية تأكيد الإنذار (عمل الإنذار الثاني) وحتى انطلاق الغاز من الأسطوانات وعند انتهاء الموقت، يتم تنشيط الأجهزة الخاصة بفتح وتحرير الغاز من داخل الأسطوانة (على افتراض أن مفتاح التعطيل abort switch غير نشط).

- **"Abort Release Time Delay"**

عندما يتم إزالة الضغط وتحرير مفتاح التعطيل abort switch ولم يتم عمل rest لللوحة البرمجة سيتم انطلاق الغاز بعد 10 ثواني حتى يتمكن المتواجدون بالغرفة من الخروج قبل تفريغ الغاز بالغرفة

DELAY TIMERS

the following three programmable timers

- **Manual Release Delay Timer.**

The Manual Release Time Delay is a programmable timer that specifies the delay between the activation of a manual release switch and the activation of releasing appliances. The default setting for this timer is 10 seconds. A setting of 0 causes the releasing appliances to immediately activate after a manual release switch activates.

- **Automatic Release Delay Timer.**

The Automatic Release Time Delay is programmable timer that delays the activation of the releasing appliance circuits. This timer starts immediately after receiving a confirming alarm (cross-zoned system) or a first alarm (single alarm system). When the timer expires, the releasing appliances activate (assuming the abort switch is not active).

- **Abort Release Time Delay.**

The Abort Release Time Delay specifies the action that occurs when the abort switch is released. This option applies only to Agent Release and combination Agent Release.

متطلبات الغرفة Room Requirement

- ❖ غلق جميع المنافذ الموجودة بالجدران حول المواسير وتركيبات التكييف وغيرها من الخدمات التي تمر داخل الغرفة باستخدام مواد مقاومة للحرق fire stop sealant

Close all outlets in the walls around the pipes, air conditioning installations and other services that pass inside the room using fire-resistant materials.

- ❖ التأكد من الأغلاق التام للفراغات من النوافذ والأبواب خاصة في حالة تركيب أرضيات جاهزة فيجب إغلاق جميع منافذ وجدران وابواب الغرفة ب الكامل تحت الارضيات raised floor

Ensure that the voids from windows and doors are completely closed, especially in the case of installing raised floors, all walls and doors of the room must be closed

- ❖ تكون الحوائط والابواب من النوع المقاوم للحرق والمعتمد كما أنه يجب تركيب وسائل الاغلاق الذاتي لابواب الغرفة Door Holder للتأكد من اغلاق الغرفة أثناء تفعيل النظام وانطلاق الغاز

The walls and doors shall be of the approved fire-resistant type and room door holder is required to insure closing case in fire.

- ❖ تركيب منافذ ترکيبات التكييف او سحب الدخان بالغرفة حتى يتمكن النظام من اغلاقها جميعاً لعدم تسرب الغاز من الغرفة بعد الانطلاق

Installing Motorize Fire Smoke Damper HVAC air Duct in the room so that the system can close all of them to prevent gas leakage from the room after gas release

- ❖ التأكد من عدم وجود أي معوقات بالغرفة لمكان الأسطوانات ولوحات الكوتروف ومقاتيح التحكم

Ensure that there is no obstruction for cylinders, control panels and switches.

الاختبارات وتشغيل النظام System Operational Test and Inspection

فحص التركيبات Installation Inspection

- ✓ يجب التأكد من التثبيت الصحيح للأسطوانات والتوصيلات الخاصة برأس الأسطوانة مثل supervisor pressure switch ومراجعة البيانات المكتوبة على شرط البيان Name Plate بالأسطوانات
- ✓ التأكد من أن أنواع مواد المواسير المستخدمة كما هو بالاعتمادات الفنية بالمشروع وان تثبيت المواسير يتوافق مع مخططات ال installation detail
- ✓ التأكد من التوصيلات الخاصة ب Flex Connection التي يتم توصيلها مع مخرج الأسطوانات وقراءة عداد الضغط

Ensure correct installation of cylinders and cylinder head connections such as supervisor pressure switch and review the data written on the Name Plate of the cylinders

Ensure that the types of pipe materials used are as per the technical approvals of the project and that the pipe installation is in accordance with the installation detail drawings.

Verify the connections of the Flex Connection that are connected to the outlet of the cylinders and read the pressure gauge

- ✓ التأكد من توزيع الرشاشات بالغرفة كما هو مطابق للمخططات المعتمدة وعدم وجود أي معوقات لعملها
- ✓ التثبيت الجيد للمواسير Fixed Support

Ensure that the sprinklers are distributed in the room in accordance with the approved plan drawing and that there is no obstruction to their operation

Installation of Fixed Support pipes and at the ends of sprinkler branches to withstand the operating pressures of the system

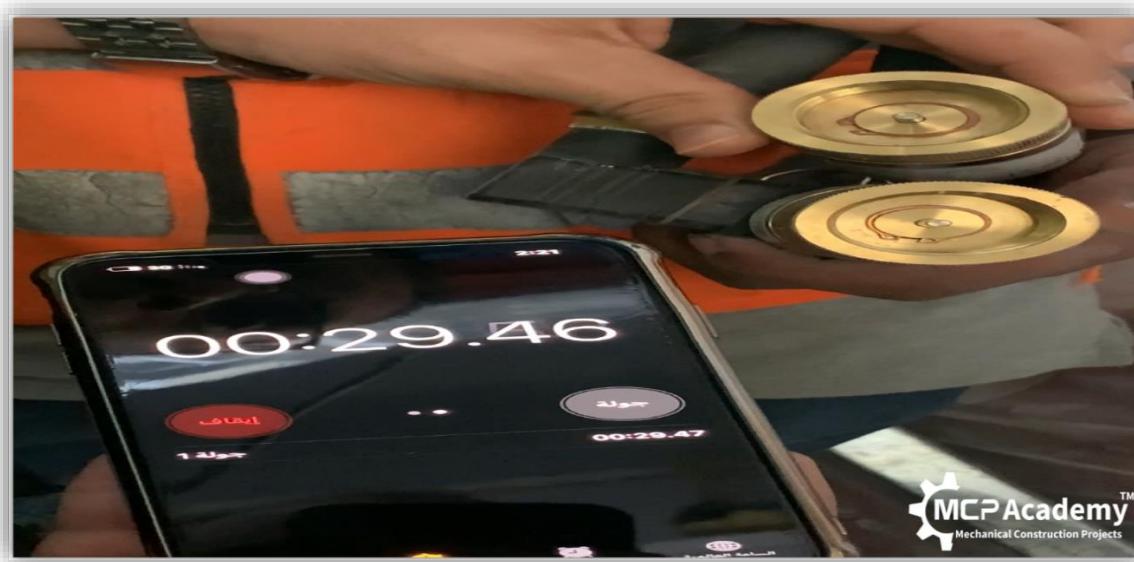
- ✓ التأكد من إغلاق جميع الفتحات بين خطوط الصاج والمواسير او الكهرباء التي تخترق جدران الغرفة باستخدام مواد مناسبة لمقاومة الحريق Fire Stop Sealant
- ✓ تركيب دنابر MFSD على خطوط الصاج حتى يتم إغلاقها الكترونيا حاله حدوث الحريق وقبل انطلاق الغاز

Ensure that all openings between the duct lines, pipes or electrical cable trunk that penetrate the walls of the room are closed using suitable materials to resist fire. Fire Stop Sealant

Installing MFSD dampers on the duct so that they are closed by control in case of a fire

✓ التأكد من الترتكيبات والتوصيلات الكهربائية مثل أماكن لوحات الكهرباء وارتفاعات التركيب للكلا من Manual Release وال Abort Switch كما يجب عدم وجود أي معوقات لاستخدامها

✓ تركيب أجهزة الإنذار المسموعة والمرئية وتركيب أبواب يمكن ان تقوم بالإغلاق الذاتي باستخدام ما يمنع ترك الباب مفتوح وأغلاقه في حالة انطلاق الغاز Door Holder



Ensure that the electrical installations and connections such as the locations of the electrical panels and the installation heights for both the Abort Switch and the Manual Release, and that there should be no obstacles to their use

Installing audible and visual alarms, and installing doors that can self-close using the Door Holder, which prevents the door from being left open case in fire in the event of a gas release

➤ System operational tests اختبارات تشغيل النظام

- ✓ التأكد من فترات ومدة التأخير بالنظام حيث يتم تفعيل أجهزة الإنذار من حساسات الدخان بالنظام وبدء اختبار أداء صمام التشغيل الكهربائي الذي يتم تركيبه على رأس الأسطوانة actuator
- ✓ ثم يتم تفعيل النظام من خلال مفتاح ال Manual Release والتأكد من عمل المشغل الكهربائي
- ✓ التأكد من فعالية مفتاح ال Abort Switch وانه يمكنه القيام بوظيفته وعمل Hold لأطلاق الغاز لعمل Rest للوحات

Ensure the periods and duration of delays in the system, where the alarms are activated from the smoke sensors in the system, and start testing the performance of the electric operating valve that is installed on the actuator cylinder head.

Then the system is activated through the Manual Release Switch, making sure that the electric actuator is working

Ensure the effectiveness of the Abort Switch and that it can do its job and hold to release the gas to make rest for the control panel

- ✓ يتم إعادة الاختبارات مره أخرى على الأسطوانات ال Reserve الموجودة بالنظام والتي يتم تفعيلها من مفتاح خاص كما هو موضح بالصورة والهدف من الأسطوانات التوأمة كبديل عن الأسطوانات الرئيسية في حالة الصيانة أو إعادة شحن الأسطوانات في حالة عملها

The tests are repeated again on the Reserve cylinders in the system, which are activated by a special key as shown in the picture. The aim of the cylinders is to be a stand by for the main cylinders in the event of maintenance or to recharge the cylinders in their working condition

➤ اختبارات التسريب للغرفة Room Integrity Test

- ✓ يتم استخدام الأجهزة الموضحة بالصورة لتضغط الغرفة والحصول على قراءات ثم تحرير الغرفة من الضغط Depressurized والمقارنة بين القراءات للتتأكد من عدم وجود تسربات للهواء وبالتالي للغاز في حالة حدوث الحريق
- ✓ يتم إجراء الاختبارات من خلال الشركات المتخصصة بالقياسات وتسلیم تقریر Test Report بقراءات التسريب للغرفة

The devices shown in the picture are used to pressurized the room, obtain readings, then release the room from depressurized room air, and compare the readings to ensure that there are accepted reding for air leaks so that not to release gas outside the room case of fire

Tests are conducted by companies specialized in balancing measurements and a Test Report is submitted by the leakage accepted calculation which can be keep gas inside the room for at least 10 minutes case of fire

➤ اختبارات تكامل الأنظمة System Integration Tests

التأكد في ربط اللوحة الخاصة بالنظام باللوحة التحكم والمراقبة بالحريق الرئيسية والتي يتم برمجتها من خلال مخططات الحدث والتأثير Cause and effect matrix التي Sequences of operation تقوم بتفعيل الأنظمة الأخرى مثل أجهزة الإنذار بالمبني وفتح أبواب الهروب Access Control Release وتوقف المصاعد وتشغيل مرواح تضغيط السلام ومراوح سحب الدخان وتم هذا البرمجة على حسب الأنظمة الموجودة بالمبني وظروف التشغيل حسب طبيعة المبني وظروف الاخلاع

Ensure that the system control panel is connected with the main building fire control panel, which is programmed by the Sequences of operation through the (cause and effect matrix) diagram drawing, which activate other systems such as building alarms, access control release doors, elevator stops, stair pressure fans and smoke exhaust fans. This programming is according to the systems in the building and the operating conditions according to the nature of the building and the evacuation plan.

References from NFPA 2001 Clean Agent Fire Extinguishing Systems

➤ Fire Classification and Clean Agent Definition

3.3.4 Class A Fire. A fire in <u>ordinary combustible materials, such as wood, cloth, paper, rubber, and many plastics.</u>
3.3.5 Class B Fire. A fire in <u>flammable liquids, combustible liquids, petroleum greases, tars, oils, oil-based paints, solvents, lacquers, alcohols, and flammable gases.</u>
3.3.6 Class C Fire. A fire that involves energized electrical equipment.
3.3.7* Clean Agent. Volatile or gaseous fire extinguishant that is electrically nonconducting and that does not leave a residue upon evaporation.

➤ Extinguishing Agent Maximum fill density and minimum container design level working pressure, total gauge pressure level

Table A.5.1.4.1 Storage Container Characteristics			
Extinguishing Agent	Maximum Fill Density (lb/ft ³)	Minimum Container Design Level Working Pressure (Gauge) (psi)	Total Gauge Pressure Level at 70 °F (psi)
FK-5-1-12	90	500	360
HCFC Blend A	56.2	500	360
HCFC-124	71	240	195
HFC-125	58	320	166.4 ^a
HFC-227ea	72	500	360
HFC-23	54	1800	608.9 ^a
FIC-1311	104.7	500	360
IG-01	N/A	2120	2370
IG-100 (300)	N/A	3600	4061
IG-100 (240)	N/A	2879	3236
IG-100 (180)	N/A	2161	2404
IG-541	N/A	2015	2175
IG-541 (200)	N/A	2746	2900
IG-55 (2222)	N/A	2057	2222 ^b
IG-55 (2962)	N/A	2743	2962 ^c
IG-55 (4443)	N/A	4114	4443 ^d
HFC Blend B	58	400	195 ^e
HB-55	81.5	500	360
HB-55	81.0	500	500

➤ Clean agent Minimum Design Concentration

Table A.7.2.2.3(b) Class A Flame Extinguishing and Minimum Design Concentrations Tested to UL 2166 and UL 2127			
Agent	Class A MEC	Class A Minimum Design Concentration	Class C Minimum Design Concentration
FK-5-1-12	3.3	4.5	4.5
HFC-125	6.7	8.7	9.0
HFC-227ea	5.2	6.7	7.0
HFC-23	15.0	18.0	20.3
IG-541	28.5	34.2	38.5
IG-55	31.6	37.9	42.7
IG-100	31.0	37.2	41.9

Note: Concentrations reported are at 70°F (21°C). Class A design values are the greater of (1) the Class A extinguishing concentration, determined in accordance with 7.2.2.1.1, times a safety factor of 1.2; or

➤ Clean agent requirement for minimum design quantity

8.3 Clean Agent Requirements. The quantity of clean agent required for local application systems shall be based on the rate of discharge and the time that the discharge must be maintained to ensure complete extinguishment. The minimum design quantity shall be no less than 1.5 times the minimum quantity required for extinguishment at any selected system discharge rate.

➤ discharge time for halocarbon agents

7.5 Distribution System.

7.5.1* Initial Discharge Time.

7.5.1.1* For halocarbon agents, the discharge time shall not exceed 10 seconds or as otherwise required by the authority having jurisdiction.

7.5.1.2 For inert gas agents, the discharge time shall not exceed 60 seconds for Class B fuel hazards, 120 seconds for Class A surface-fire hazards or Class C hazards, or as otherwise required by the authority having jurisdiction. (See A. 7.5.1.1.)

➤ Discharge Time condition

3.3.13 Discharge Time. The time required to discharge from the nozzles 95 percent of the agent mass [at 70°F (21°C)] necessary to achieve the minimum design concentration based on a 20 percent safety factor for flame extinguishment.

➤ Period of flame extinguishing within the hazard

7.4* Duration of Protection.

7.4.1 For flame-extinguishing systems, a minimum concentration of 85 percent of the minimum design concentration shall be held at the highest height of protected content within the hazard for a period of 10 minutes or for a time period sufficient to allow for response by trained personnel.

➤ **Piping System fittings design requirement**

Table A.5.2.2.2(a) Piping Systems Fittings

Clean Agent	Pressure in Agent Container at 70°F (21°C) (up to and including)		Fitting Minimum Design Pressure ^a		Minimum Acceptable Fittings	Maximum Pipe Size (NPS)
	psi	kPa	psi	kPa		
All halocarbon agents (except HFC-23)	360	2,482	432	2,979	Class 300 threaded malleable iron Class 300 threaded ductile iron Groove type fittings ^b	3 in. All 6 in.
	600	4,137	820	5,654	Class 300 flanged joints Class 300 threaded malleable iron Class 2,000 threaded/welded forged steel Class 400 flanged joint	All 4 in. All All

➤ **Nozzle selection and maximum permitted time to extinguish a fire**

8.4 Nozzles.

8.4.1 Nozzle Selection. The basis for nozzle selection shall be listed performance data that clearly depict the interrelationship of agent quantity, discharge rate, discharge time, area coverage, and the distance of the nozzle from the protected surface.

8.4.1.1* The maximum permitted time to extinguish a fire with a halocarbon agent shall be 10 seconds.

8.4.1.2* The maximum permitted time to extinguish a fire with an inert gas agent shall be 30 seconds.

➤ **Containers / cylinder brackets and installation requirement**

13.4.5 In addition to the requirements of 5.1.3.4, containers shall be secured with a minimum of two brackets to prevent movement from vessel motion and vibration.

➤ Storage cylinder location

13.4.2.1 Except in the case of systems with storage cylinders located within the protected space, pressure containers required for the storage of the agent shall be in accordance with 13.4.2.2.

13.4.2.2 Where the agent containers are located outside a protected space, they shall be stored in a room that shall be situated in a safe and readily accessible location and shall be effectively ventilated so that the agent containers are not exposed to ambient temperatures in excess of 130°F (55°C). Common bulkheads and decks located between clean agent container storage rooms and protected spaces shall be protected with A-60 class structural insulation as defined by 46 CFR 72. Agent container storage rooms shall be accessible without having to pass through the space being protected. Access doors shall open outward, and bulkheads and decks, including doors and other means of closing any opening therein, that form the boundaries between such rooms and adjoining spaces shall be gastight.

➤ Leakage Control

D.2.9 Leakage Control.

D.2.9.1 Leakage Identification.

D.2.9.1.1 While the enclosure envelope is being pressurized or depressurized, a smoke pencil or other smoke source should be used to locate and identify leaks.

The smoke should not be produced by an open flame or any other source that is a potential source of fire ignition. Chemical smoke should be used only in small quantities, and consideration should be given to the corrosive nature of certain chemical smokes and their effects on the facility being tested.

D.2.9.1.2 Leakage identification should focus on obvious points of leakage, including wall to floor slab joint, wall to ceiling slab joint, penetrations of all kinds, HVAC ductwork, doors, and windows.

(f) After the end of system discharge, the enclosure is to remain sealed for 10 minutes. After the 10-minute soak period, the crib is to be removed from the enclosure and observed to determine whether sufficient fuel remains to sustain combustion and to detect signs of re-ignition.

➤ Room Requirement for wall and under raised floor closing

D.2.9.2 Leakage Alteration.

D.2.9.2.1 Procedure.

D.2.9.2.1.1 Protected areas should be enclosed with wall partitions that extend from the floor slab to the ceiling slab or from the floor slab to the roof.

D.2.9.2.1.2 If a raised floor continues out of the protected area into adjoining rooms, partitions should be installed under the floor directly under above-floor border partitions. These partitions should be caulked top and bottom. If the adjoining rooms share the same under-floor air handlers, then the partitions should have dampers installed in the same manner as is required for ductwork.

D.2.9.2.1.3 Any holes, cracks, or penetrations leading into or out of the protected area should be sealed, including pipe chases and wire troughs. All walls should be caulked around the inside perimeter of the room where the walls rest on the floor slab and where the walls intersect with the ceiling slab or roof above.

➤ Room Windows installation requirement

D.2.9.2.1.6 Windows should have solid weather stripping around all joints.

➤ Room Door installation requirement

D.2.9.2.1.5 All doors should have door sweeps or drop seals on the bottoms and weather stripping around the jambs, latching mechanisms, and door closer hardware. In addition, double doors should have a weather-stripped astragal to prevent leakage between doors and a coordinator to ensure proper sequence of closure.

➤ Room air Leakage method by door fan measurement

D.2.7 Door Fan Measurement.

D.2.7.1 Total Enclosure Leakage Method.

D.2.7.1.1 This method determines the leakage of the entire enclosure envelope. It is determined by measuring the enclosure leakage under both positive and negative pressures and averaging the absolute values of the readings. This approach is used to minimize the influence of bias pressures on the leakage calculation.

➤ **Power Requirement**

13.5.2 Automatic Detection.

13.5.2.1 Electrical detection, signaling, control, and actuation system(s) shall have at least two sources of power. The primary source shall be from the vessel's emergency bus. For vessels with an emergency bus or battery, the backup source shall be either the vessel's general alarm battery or an internal battery within the system. Internal batteries shall be capable of operating the system for a minimum of 24 hours. All power sources shall be supervised.

References from NFPA 72 National Fire Alarm and Signaling Code

➤ **Fire Alarm Control Panel**

3.3.108* **Fire Alarm Control Unit (FACU).** A component of the fire alarm system, provided with primary and secondary power sources, which receives signals from initiating devices or other fire alarm control units, and processes these signals to determine part or all of the required fire alarm system output function(s). (SIG-PRO)

3.3.108.1 Master Fire Alarm Control Unit. A fire alarm control unit that serves the protected premises or portion of the protected premises as a local fire alarm control unit and accepts inputs from other fire alarm control units. (SIG-PRO)

3.3.108.2 Protected Premises (Local) Control Unit. A fire alarm control unit that serves the protected premises or a portion of the protected premises. (SIG-PRO)

3.3.108.2.1* **Dedicated Function Fire Alarm Control Unit.** A protected premises fire alarm control unit that is intended to operate specifically identified emergency control function(s). (SIG-PRO)

3.3.108.2.2 Releasing Service Fire Alarm Control Unit. A protected premises fire alarm control unit specifically listed for releasing service that is part of a fire suppression system and which provides control outputs to release a fire suppression agent based on either automatic or manual input. (SIG-PRO)

N.A.23.6.3.6.2 Primary and backup power should meet the requirements of NFPA 72. Life safety equipment and their connected equipment (Class N transport devices when not powered by the FACU) should utilize dedicated branch circuits for primary power. This is to prevent other loads from tripping a circuit breaker connected to the FACU and to prevent inadvertent disconnecting of primary power to the FACU.

The branch circuit disconnecting means (circuit breakers) should be clearly labeled and made only accessible to authorized personnel.

FACUs are required to have a secondary power source that must last for 24 hours of standby (nonalarm) power followed by either 5 (non-voice systems) or 15 (voice systems) minutes of alarm power. This is typically accomplished by backup batteries or by an emergency generator. All transport equipment not powered by the FACU has the same requirement. The analysis should document the calculation of all power requirements (standby and alarm) of the FACU and transport equipment to ensure that the system can meet this requirement. To meet this requirement, non-life safety systems could be disconnected from the secondary power source.

➤ Abort Switch Predetermined

A.3.3.1 Abort Switch. The effect of an abort switch is typically a programmable configuration of the releasing panel, such that any of several modes of operation can be used. Typical options include the following:

- (1) Engaging the abort switch pauses the countdown for as long as the switch remains engaged. The countdown resumes when the switch is released.
- (2) Engaging the abort switch resets the timer to a predetermined value (e.g., the initial value or 30 seconds) and pauses the countdown for as long as the switch remains engaged. The countdown restarts when the switch is released.
- (3) Engaging the switch permits the timer to continue counting down until it reaches a predetermined value (e.g., 10 seconds), then it pauses for as long as the switch remains engaged. The countdown resumes from the predetermined value when the switch is released.

➤ Abort Switch Installation

10.6.14.6 The operable part of an abort switch shall be not less than 42 in. (1.07 m) and not more than 48 in. (1.22 m) from the finished floor.

10.6.14.7 Manual pull stations shall always override abort switches.

➤ Manual Pull Station

10.6.12 Manual Pull Stations.

10.6.12.1 Manual pull stations shall be securely mounted.

10.6.12.2 The operable part of a manual pull station shall be not less than 42 in. (1.07 m) and not more than 48 in. (1.22 m) from the finished floor.

10.6.12.3 Manual pull stations shall be installed so that they are conspicuous, unobstructed, and accessible.

10.6.12.4* All manual pull stations shall be identified as to the hazard they protect, the function they perform, and their method of operation.

10.6.12.5 All manual stations used to release agents shall require two separate and distinct actions for operation.

thanks for your interest

Follow us

MCP Engineering Academy

نحن مهندسون متخصصون لدينا الخبرة على مدار العديد من السنوات في مجال الهندسة الميكانيكية
وتقديم الدعم الفني والاستشارات الهندسية لمشروعات كبرى بالوطن العربي بجانب الخبرات العملية
ب مجال المقاولات ودراسه المشاريع والتصميم والتى يستطيع المتدرب التعرف عليها تفصيلا من خلال زياره
الصفحه الشخصيه للبنكdan الخاصه بالمحاضر كما اننا نسعى من خلال برامجنا التدريبية تأهيل المهندسين
للمستوى الاحترافي المطلوب لمنافسه سوق العمل

Contact Us

- 📞 +201020414881
- ✉️ info@mcp-academy.com
- 🌐 WWW.MCP-ACADEMY.COM

تواصل معنا

إعداد :
م/خالد مرسن