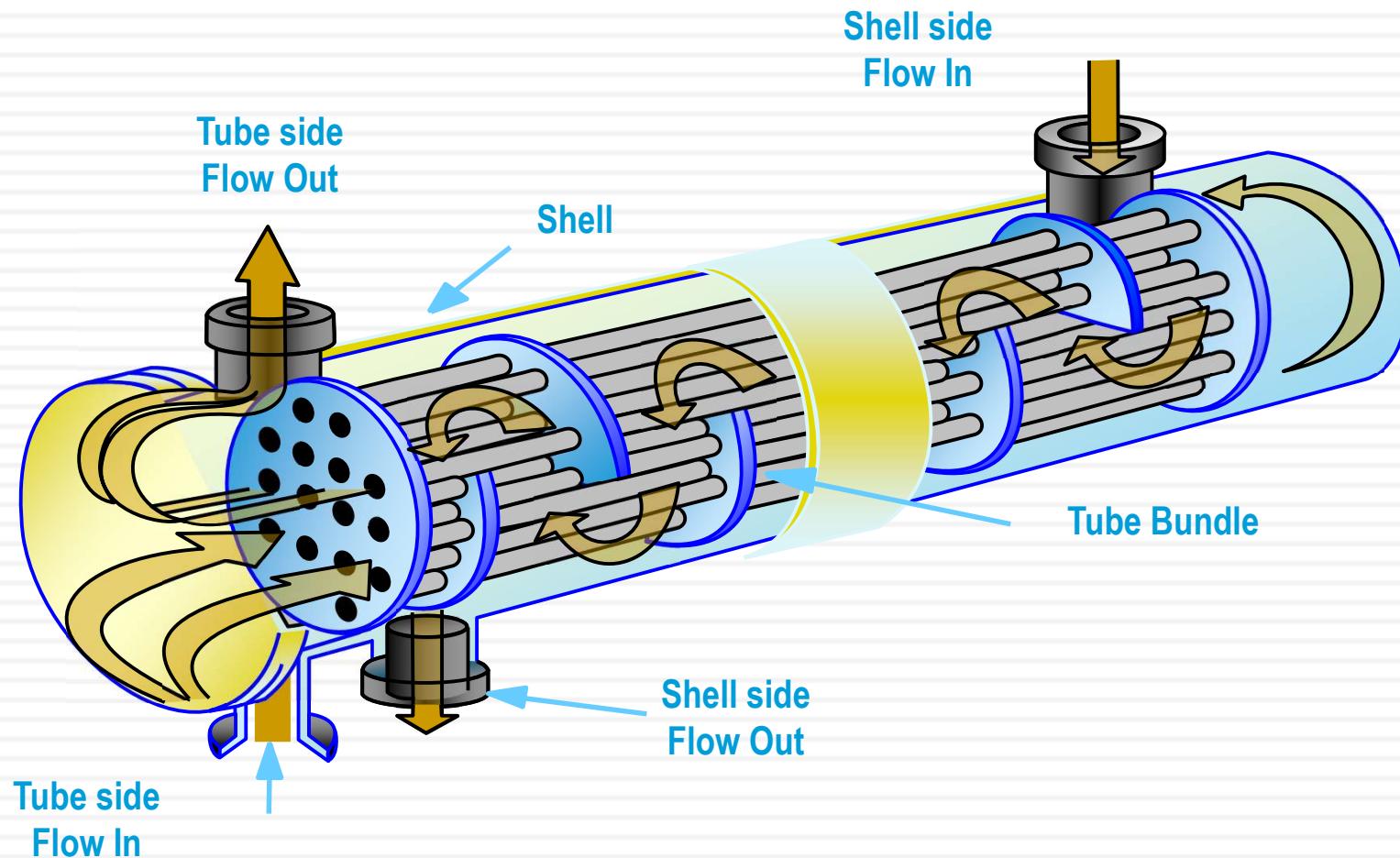


SHELL & TUBE HEAT EXCHANGERS

PREPARED BY: Vartika Agarwal

CONTENTS

- INTRODUCTION
- WORKING PRINCIPLE/GOVERNING EQUATION
- OTHER TYPES OF HEAT EXCHANGERS
- APPLICATIONS OF HEAT EXCHANGERS
- DIFFERENT PARTS OF HEAT EXCHANGERS
- TEMA FRONT / REAR HEAD TYPES
- TEMA SHELL TYPES
- ALLOCATION OF STREAMS
- MAJOR PRACTICAL PROBLEMS IN HEAT EXCHANGERS
- THERMAL DESIGNING & RATING OF HEAT EXCHANGERS
- HTRI OUTPUT/RESULTS INTERPRETATION

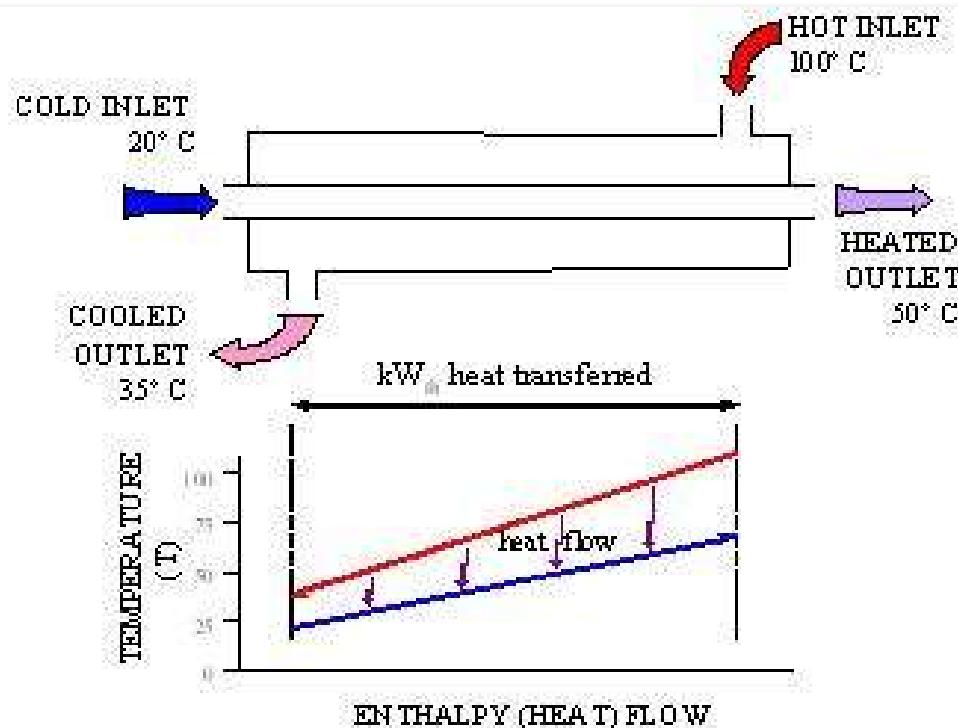

INTRODUCTION

- The shell-and-tube heat exchanger is by far the most common type of heat exchanger used in industry.
- It can be fabricated from a wide range of materials both metallic and non-metallic.
- Design pressures range from **full vacuum to 6,000 psig**.
- Design temperatures range from **-250°C to 800°C**.
- The shell-and-tube design is more rugged than other types of heat exchangers. It can stand more (physical and process) abuse.
- Shell & Tube Heat Exchangers can be used as condensers, reboilers, process heaters and coolers.

FLOW PATTERN IN A SIMPLE SHELL & TUBE HEAT EXCHANGER

4

19-Jan-2011 Wednesday


WORKING PRINCIPLE / GOVERNING EQUATION

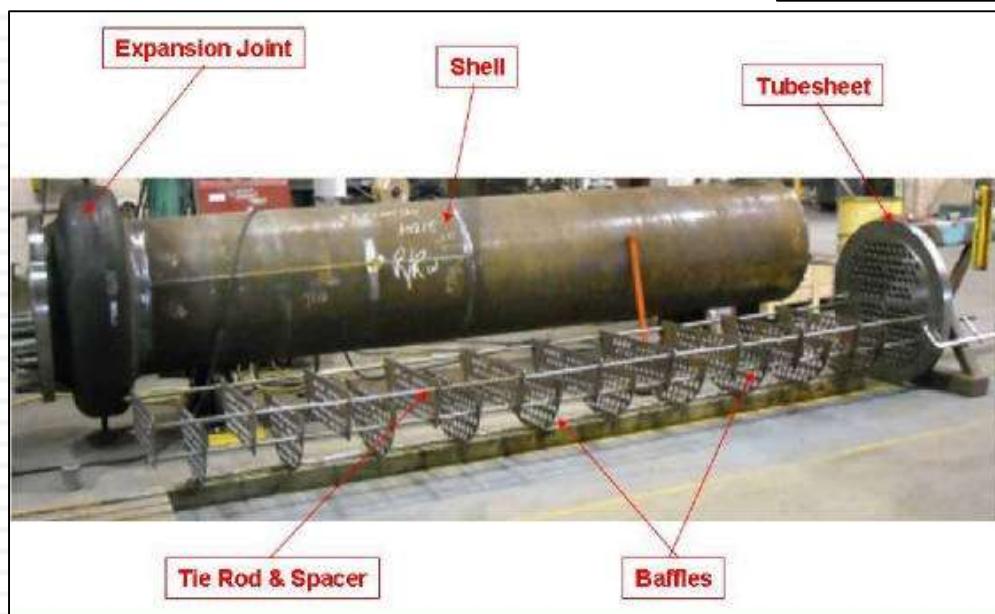
5

19-Jan-2011 Wednesday

Simplified heat exchanger concepts :

- Heat exchangers work because heat naturally flows from higher temperature to lower temperatures. Therefore if a hot fluid and a cold fluid are separated by a heat conducting surface , heat can be transferred from the hot fluid to the cold fluid.

- The rate of heat flow at any point (kW/m² of transfer surface) depends on:
 - 1) Heat transfer coefficient (U), itself a function of the properties of the fluids involved, fluid velocity, materials of construction, geometry and cleanliness of the exchanger
 - 2) Temperature difference between hot and cold streams
- Total heat transferred (Q) depends on:
 - 1) Heat transfer surface area (A)
 - 2) Heat transfer coefficient (U)
 - 3) Average temperature difference between the streams, strictly the log mean (ΔT_{LM})
- Thus total heat transferred : **$Q = UA \Delta T_{LM}$**


But the larger the area the greater the cost of the exchanger

Therefore there is a trade-off between the amount of heat transferred and the exchanger cost

HEAT EXCHANGER:PICTORIAL VIEW

7

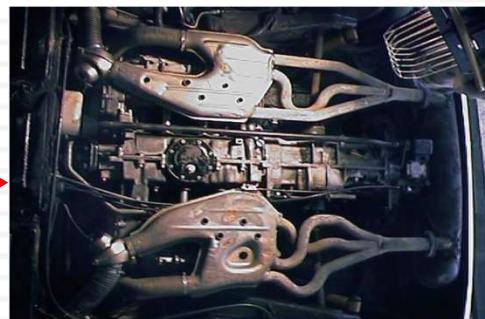
19-Jan-2011 Wednesday

OTHER TYPES OF HEAT EXCHANGERS

8

19-Jan-2011 Wednesday

- Gasketed / Welded plate and frame heat exchanger
- Spiral heat exchanger
- Tubular heat exchanger
- Plate coils heat exchanger
- Scraped surface heat exchanger


APPLICATIONS OF HEAT EXCHANGERS

9

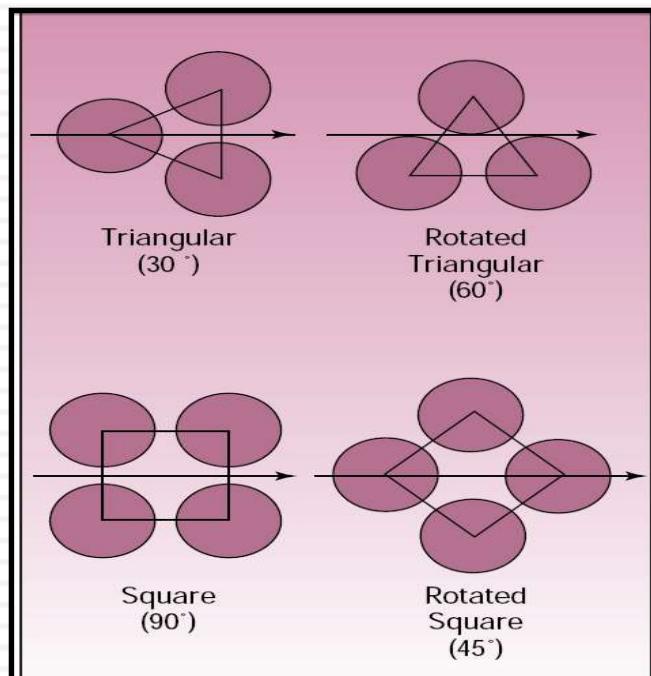
19-Jan-2011 Wednesday

Heat exchangers are used in Industry for heat transfer

Heat Exchangers prevent car engine overheating and increase efficiency

Heat exchangers are used in AC and furnaces

DIFFERENT PARTS OF A TYPICAL HEAT EXCHANGER


10

19-Jan-2011 Wednesday

- **SHELL** – The Shell is simply a container for the shell side fluid. The shell cylinder can be fabricated from rolled plate or from piping (up to 24 inch diameters).
- **TUBES / TUBE BUNDLE -**
 - 1) Tubing may be seamless or welded.
 - 2) Normal tube diameters are 5/8 inch, 3/4 inch and 1 inch.
 - 3) The normal tube wall thickness ranges from 12 to 16 BWG (from 0.109 inches to 0.065 inches thick).
 - 4) Tubing may be finned to provide more heat transfer surface.

□ TUBESHEETS -

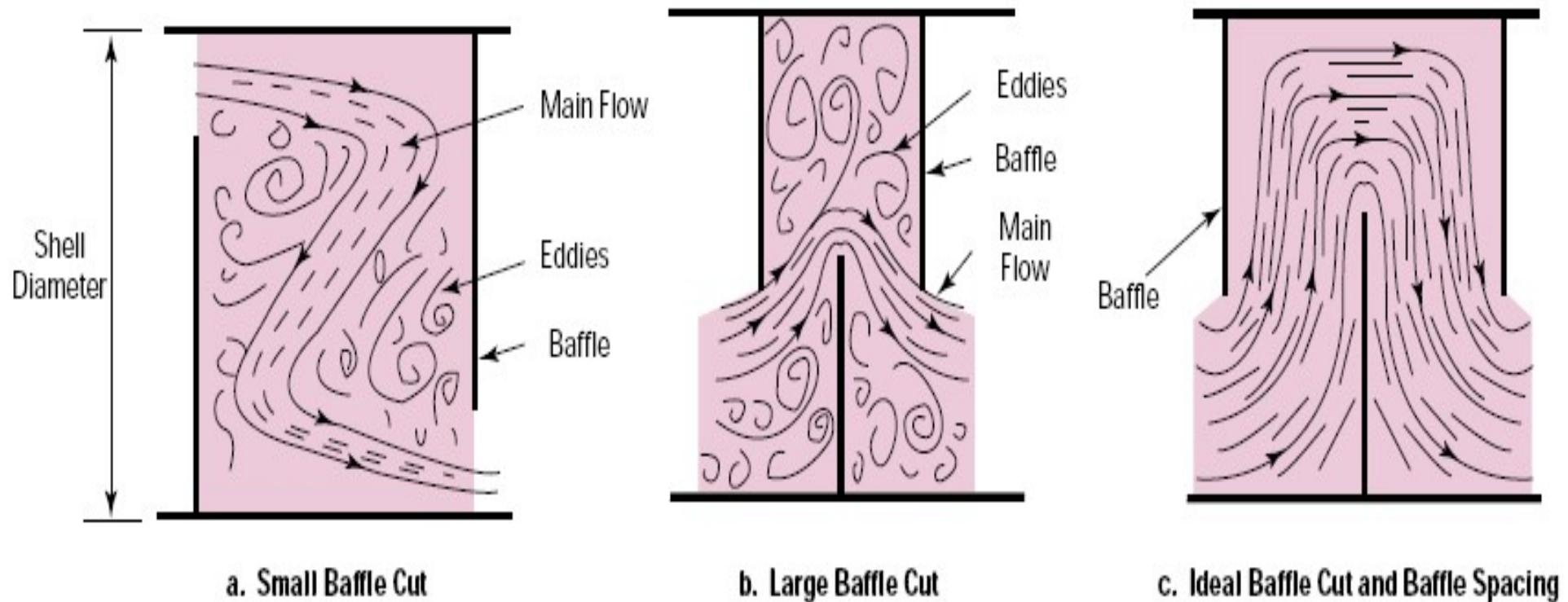
- 1) Tubesheets are plates or forgings drilled to provide holes through which tubes are inserted.
- 2) Tubes are appropriately secured to the tubesheet so that the fluid on the shell side is prevented from mixing with the fluid on the tube side.
- 3) The distance between the centers of the tube hole is called the **tube pitch**; **normally the tube pitch is 1.25 times the outside diameter of the tubes.**

Square Pitch – When the shell side fluid is fouling and mechanical cleaning is required.

Triangular Pitch – When the shell side fluid is clean.

Rotated Triangular Pitch – Seldom used. Offers no advantage over triangular pitch.

Rotated Square Pitch – When higher turbulence is required i.e. when Reynolds Number is low (< 2000)

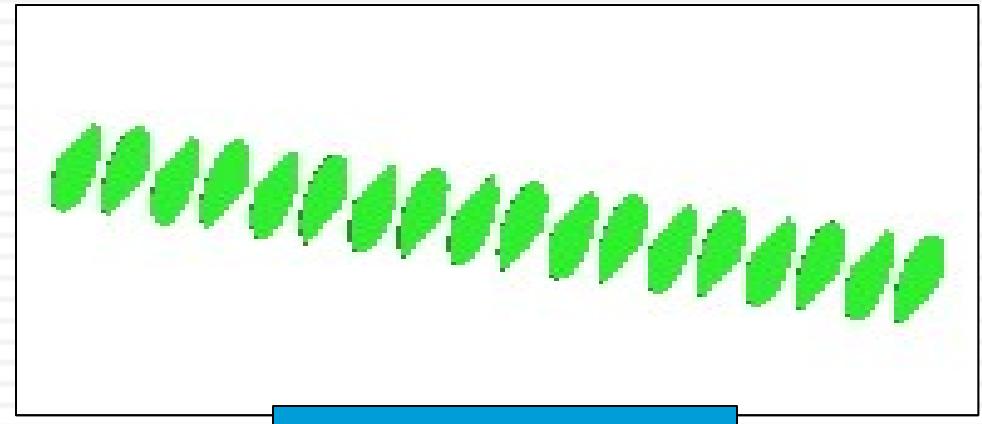

□ BAFFLES –

- 1) Baffles serve three functions:
 - ✓ Support the tube.
 - ✓ Maintain the tube spacing.
 - ✓ Direct the flow of fluid in the desired pattern through the shell side.
- 2) A segment, called the baffle cut, is cut away to permit the fluid to flow parallel to the tube axis as it flows from one baffle space to another.
- 3) The spacing between segmental baffles is called the **baffle pitch**.
- 4) When the **shell side heat transfer is sensible** heating or cooling with no phase change, the **baffle cut should be horizontal**. This causes the fluid to follow an up-and-down path and prevents stratification with warmer fluid at the top of the shell and cooler fluid at the bottom of the shell.
- 5) For **shell side condensation**, the baffle cut is **vertical** to allow the condensate to flow towards the outlet without significant liquid holdup by the baffle. For **shell side boiling**, the baffle cut may be either **vertical or horizontal**.

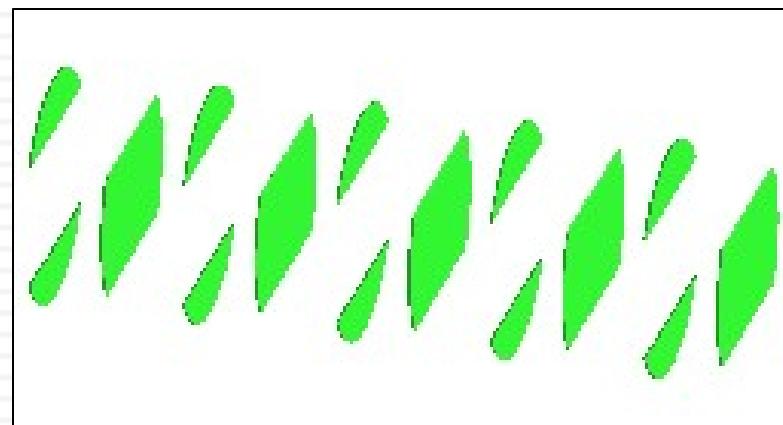
EFFECTS OF BAFFLE CUT

13

19-Jan-2011 Wednesday

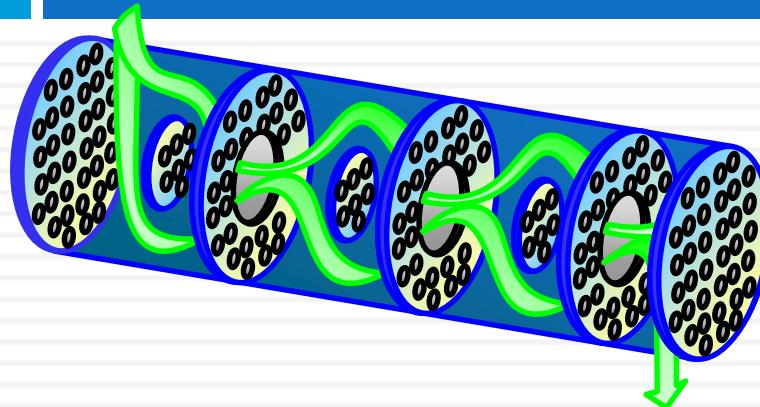

TYPES OF BAFFLE ARRANGEMENT

14

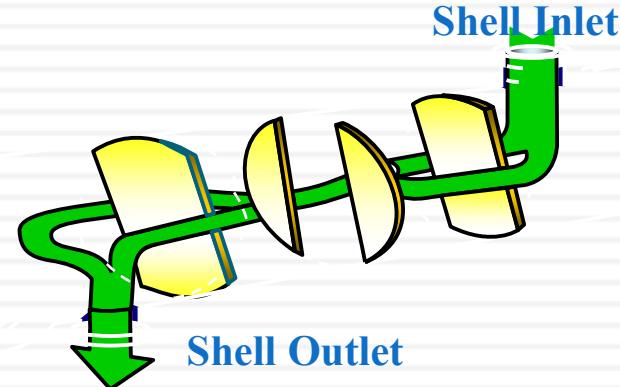

19-Jan-2011 Wednesday

PARALLEL

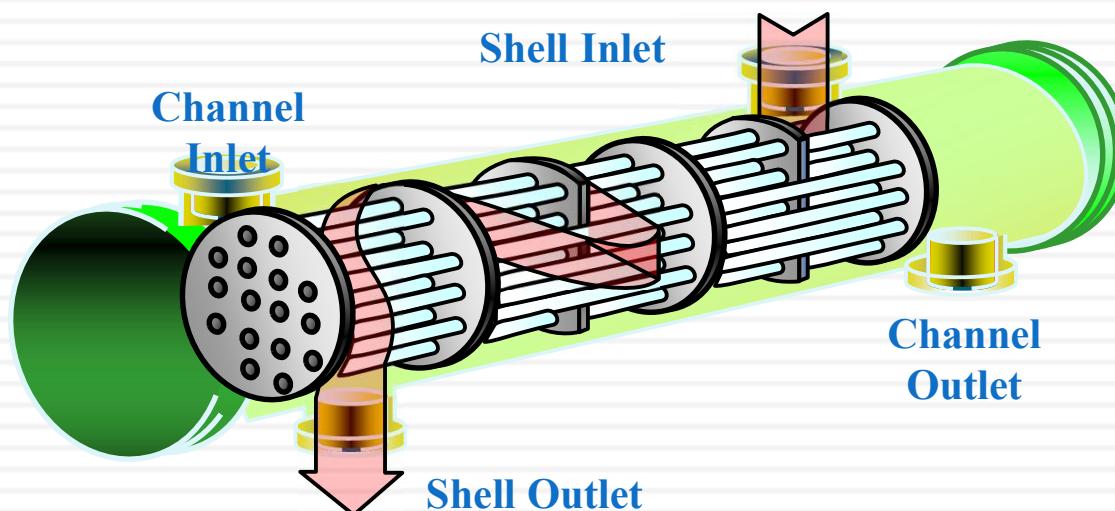
PERPENDICULAR



DOUBLE SEGMENTAL


FLOW PATTERN IN DIFFERENT TYPES OF BAFFLES

15


19-Jan-2011 Wednesday

Doughnut and Disc Type Baffles

Double Segmental Transverse Baffles

Single Segmental Transverse Baffles

TYPES OF BAFFLES

16

19-Jan-2011 Wednesday

ROD BAFFLE

SPIRAL BAFFLE

DOUBLE SEGMENTAL BAFFLE

EM BAFFLE

□ **TIE RODS & SPACERS** - Tie rods and spacers are used for two reasons:

- 1) Hold the baffle assembly together
- 2) Maintain the selected baffle spacing.

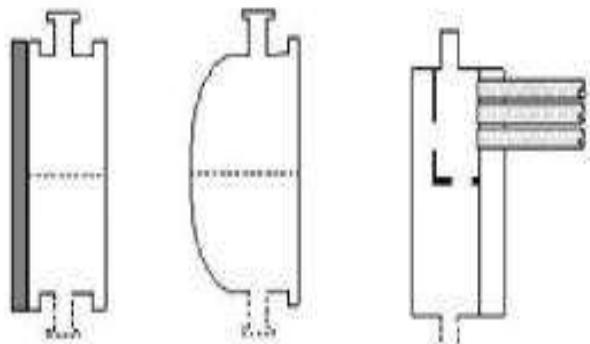
□ **CHANNELS (HEADS) –**

- 1) Channels or heads are required for shell-and-tube heat exchangers to contain the tube side fluid
- 2) To provide the desired flow path.
- 3) The three (3) letters TEMA (Tubular Exchanger Manufacturers Association) designation is the standard method for identifying the type of channels and the type of shell of shell-and-tube heat exchangers.
- 4) The channel type is selected based on the application.
- 5) The most commonly used channel type is the **bonnet**. It is used for services which do not require frequent removal of the channel for inspection or cleaning.
- 6) **Removable cover** channels are provided when frequent cleaning is required.

TEMA CLASS FOR CHANNELS

18

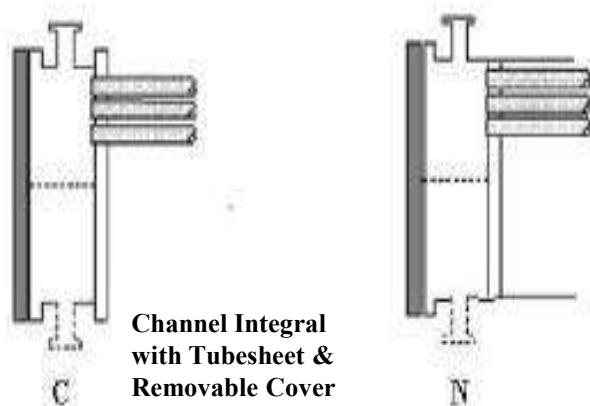
19-Jan-2011 Wednesday


TEMA CLASS FOR CHANNELS	APPLICATION
R	Severe requirements of petroleum and related process applications
C	Moderate requirements of commercial and general process applications
B	Chemical process service

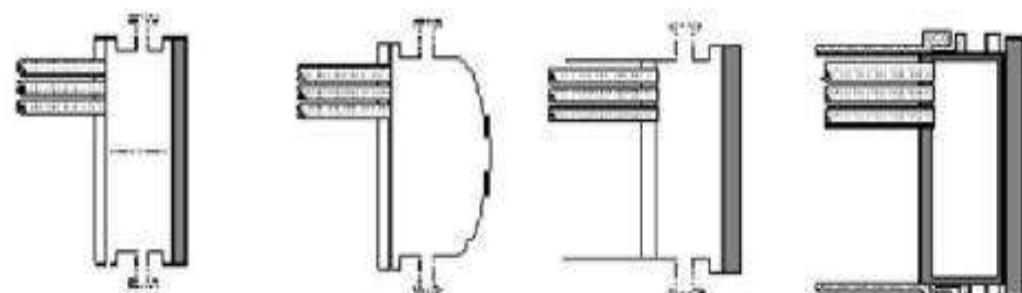
TEMA FRONT & REAR HEADS

19

19-Jan-2011 Wednesday


TEMA FRONT HEAD

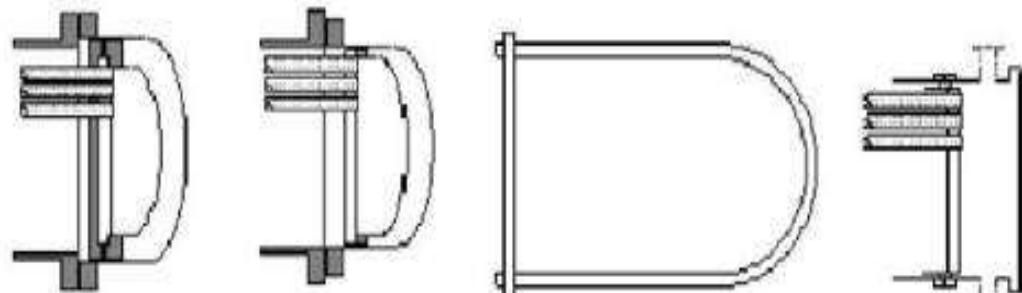
A
Channel &
Removable
Cover


B
Bonnet
(Integral Cover)

D
Special High
Pressure Closure

C
Channel Integral
with Tubesheet &
Removable Cover

TEMA REAR HEAD



L
Fixed Tubesheet
Stationary Head

M
Fixed Tubesheet
Stationary Head

N
Fixed Tubesheet
Stationary Head

P
Outside Packed
Floating Head

S
Floating Head with
Backing Device

T
Pull Through
Floating Head

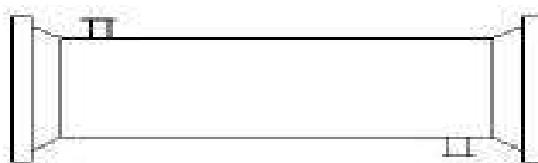
U
U-Tube Bundle

W
Externally Sealed Floating Tubesheet

SELECTION OF HEADS

20

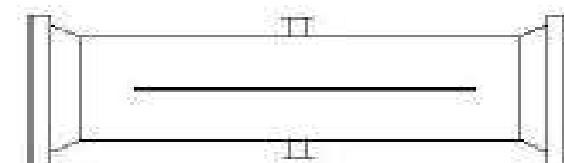
19-Jan-2011 Wednesday


TEMA Front Head Selection	
A	Easy to open for tube side access. For low pressure applications.
B	For Higher-pressure applications, preferred with clean tube side fluid. It is less expensive than Type A.
C	Tube side is corrosive, toxic or hazardous and when removable tube bundle is required. It is normally used for low-pressure operations.
N	For application where tube side is corrosive, toxic or hazardous and shell side fluid is clean and any leakage possibility is to be eliminated.
D	Very High-pressure applications.
TEMA Rear Head Selection	
L,M,N	Fixed Head , Should be used when thermal differential expansion of the shell and tubes is low and shell side fluid is clean.
L	For low pressure applications.
M	For Higher-pressure applications, not requiring frequent maintenance.
N	For application where tube side is Corrosive, toxic or hazardous and where leakage of shell to tube side fluid and vice versa, is to be eliminated.
U	For thermal differential expansion of the shell and tubes is higher and tube side fluid is clean. For high-pressure applications or, with hazardous/ toxic fluid on shell side.
P,S,T,W	Should be used when shell side fluid or both shell and tube side fluid are Dirty.
P	Pressure is low and shell side fluid is not toxic or hazardous. Where risk of internal flange leakage is to be avoided.
S	Normal Pressure requirements, relatively lesser maintenance requirements .
T	High-pressure requirements, frequent need to takeout the tube bundle.
W	For low-pressure application.

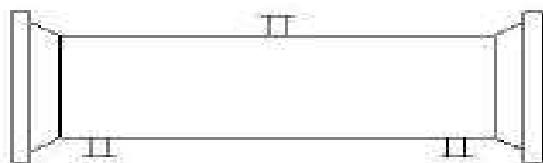
TEMA SHELL TYPES

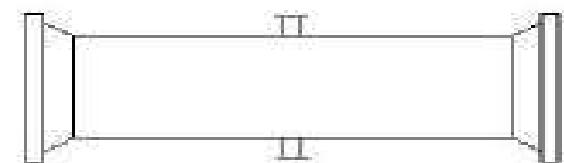
21

19-Jan-2011 Wednesday


TEMA SHELL TYPES


E
One Pass Shell


F
Two Pass Shell with
Longitudinal Baffle


G
Split Flow

H
Double Split Flow

J
Divided Flow

X
Cross Flow

Common TEMA type of Shell & Tube Heat Exchangers :

- ✓ AES
- ✓ BEU
- ✓ BHU
- ✓ BXU
- ✓ BEM
- ✓ AKU
- ✓ AET
- ✓ AEL

SELECTION OF SHELL

TEMA Shell Selection	
E	The E shell is the most common as it is inexpensive and simple.
F	F shell is rarely used in practice because there are many problems associated with the design. It is difficult to remove/replace the tube bundle, problems of fabrication and maintenance, internal leakage, unbalanced thermal expansion in case of large temperature difference between inlet & outlet.
G & H	To accommodate high inlet velocities. They are used as horizontal thermosiphon reboilers, condensers, and other phase-change applications.
J	Used for low pressure drop applications such as a condenser in vacuum.
K	The K shell is used for partially vaporizing the shell fluid. It is used as a kettle reboiler in the process industry and as a flooded chiller in the refrigeration industry. They are used when essentially 100% vaporization is required.
X	It is used for gas heating and cooling and for vacuum condensation. It is also used when shell flows are large.

ALLOCATION OF STREAMS

23

19-Jan-2011 Wednesday

- ❑ **HIGH PRESSURE** – If one of the stream is at a high pressure, it is desirable to put that stream **inside the tubes**. In this case, only the tubes and tube side fittings need to be designed to withstand high pressure, whereas the shell may be made of lighter weight metal.
- ❑ **CORROSION** – Corrosion generally dictates the choice of material of construction, rather than exchanger design. However, since most corrosion resistant alloys are more expensive than the ordinary materials of construction, the corrosive fluid will normally be placed **inside the tubes** to reduce the cost by avoiding use of corrosion resistant alloys for the shell side.
- ❑ **VISCOSITY** – Highly viscous fluid is placed at **shell side** so that turbulence can be induced by introducing baffles in shell side.

- **FOULING** – Fouling enters into the design of almost every process exchanger to a measurable extent, but certain streams foul so badly that the entire design is dominated by features which seek a) to minimize fouling or b) to facilitate cleaning .
- **LOW HEAT TRANSFER COEFFICIENT** – If one stream has an inherently low heat transfer coefficient (such as low pressure gases or viscous liquids), this stream is preferentially put on the **shell side**.
- **FLOW RATE** – Generally smaller flow rate fluid is placed on the **shell side**. This facilitates provision of adequate turbulence by increasing number of baffles.
- **PHASE OF FLUID** – Two phase fluid should be placed in **shell side**.

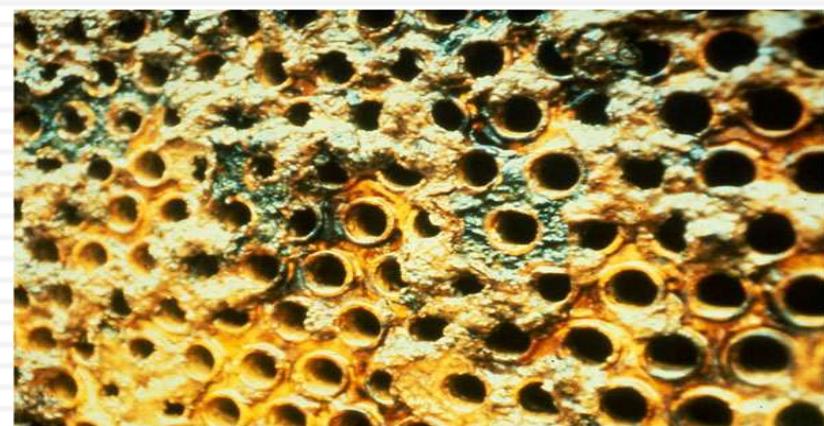
MAJOR PRACTICAL PROBLEMS ENCOUNTERED IN HEAT EXCHANGERS

25

19-Jan-2011 Wednesday

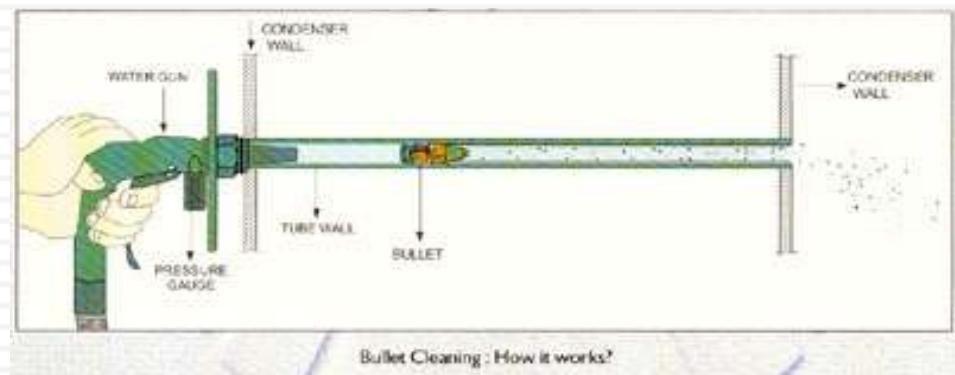
□ **FOULING** - Fouling is generally defined as the accumulation of unwanted materials on the surfaces of processing equipment. It has been recognized as a nearly universal problem in design and operation and affects the operation of equipment in two ways:

- 1) The fouling layer has a low thermal conductivity. This increases the resistance to heat transfer and reduces the effectiveness of heat exchangers – increasing temperature.
- 2) As deposition occurs, the cross-sectional area is reduced, which causes an increase in pressure drop across the exchanger.


Fouling can be caused by :

- 1) Frequent use of the heat exchanger
- 2) Not cleaning the heat exchanger regularly
- 3) Reducing the velocity of the fluids moving through the heat exchanger
- 4) Over-sizing of the heat exchanger

FOULED HEAT EXCHANGER TUBES


26

19-Jan-2011 Wednesday

- **FOULING TREATMENT** - Tubular heat exchangers can be cleaned by such methods as chemical cleaning, sandblasting, high pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing is used to minimize fouling of the heat exchanger.

FOULING RESISTANCES FOR INDUSTRIAL FLUIDS

28

19-Jan-2011 Wednesday

Oils:	
Fuel Oil #2	0.002
Fuel Oil #6	0.005
Transformer Oil	0.001
Engine Lube Oil	0.001
Quench Oil	0.004
Gases And Vapors:	
Manufactured Gas	0.010
Engine Exhaust Gas	0.010
Steam (Non-Oil Bearing)	0.0005
Exhaust Steam (Oil Bearing)	0.0015-0.002
Refrigerant Vapors (Oil Bearing)	0.002
Compressed Air	0.001
Ammonia Vapor	0.001
CO ₂ Vapor	0.001
Chlorine Vapor	0.002
Coal Flue Gas	0.010
Natural Gas Flue Gas	0.005
Liquids:	
Molten Heat Transfer Salts	0.0005
Refrigerant Liquids	0.001
Hydraulic Fluid	0.001
Industrial Organic Heat Transfer Media	0.002
Ammonia Liquid	0.001
Ammonia Liquid (Oil Bearing)	0.003
Calcium Chloride Solutions	0.003
Sodium Chloride Solutions	0.003
CO ₂ Liquid	0.001
Chlorine Liquid	0.002
Methanol Solutions	0.002
Ethanol Solutions	0.002
Ethylene Glycol Solutions	0.002

All Values in HR FT² °F / BTU

FOULING RESISTANCES FOR CHEMICAL PROCESSING STREAMS

29

19-Jan-2011 Wednesday

Gases And Vapors:	
Acid Gases	0.002-0.003
Solvent Vapors	0.001
Stable Overhead Products	0.001
Liquids:	
MEA And DEA Solutions	0.002
DEG And TEG Solutions	0.002
Stable Side Draw And Bottom Product	0.001-0.002
Caustic Solutions	0.002
Vegetable Oils	0.003

Fouling Resistances For Natural Gas-Gasoline Processing Streams

Gases And Vapors:	
Natural Gas	0.001-0.002
Overhead Products	0.001-0.002
Liquids:	
Lean Oil	0.002
Rich Oil	0.001-0.002
Natural Gasoline And Liquified Petroleum Gases	0.001-0.002

FOULING RESISTANCES FOR OIL REFINERY STREAMS

30

19-Jan-2011 Wednesday

Atmospheric Tower Overhead Vapors			0.001			
Light Naphthas			0.001			
Vacuum Overhead Vapors			0.002			
Crude And Vacuum Liquids:						
Crude Oil						
0 to 250 ° F VELOCITY FT/SEC			250 to 350 ° F VELOCITY FT/SEC			
	<2	2-4	>4	<2	2-4	>4
DRY	0.003	0.002	0.002	0.003	0.002	0.002
SALT*	0.003	0.002	0.002	0.005	0.004	0.004
350 to 450 ° F VELOCITY FT/SEC			450 ° F and over VELOCITY FT/SEC			
	<2	2-4	>4	<2	2-4	>4
DRY	0.004	0.003	0.003	0.005	0.004	0.004
SALT*	0.006	0.005	0.005	0.007	0.006	0.006

*Assumes desalting @ approx. 250 ° F

Gasoline	0.002
Naphtha And Light Distillates	0.002-0.003
Kerosene	0.002-0.003
Light Gas Oil	0.002-0.003
Heavy Gas Oil	0.003-0.005
Heavy Fuel Oils	0.005-0.007

Asphalt And Residuum:

Vacuum Tower Bottoms	0.010
Atmosphere Tower Bottoms	0.007

Cracking And Coking Unit Streams:

Overhead Vapors	0.002
Light Cycle Oil	0.002-0.003
Heavy Cycle Oil	0.003-0.004
Light Coker Gas Oil	0.003-0.004
Heavy Coker Gas Oil	0.004-0.005
Bottoms Slurry Oil (4.5 Ft/Sec Minimum)	0.003
Light Liquid Products	0.002

Catalytic Hydro Desulfurizer:

Charge	0.004-0.005
Effluent	0.002
H.T. Sep. Overhead	0.002
Stripper Charge	0.003
Liquid Products	0.002
HF Alky Unit:	
Alkylate, Deprop. Bottoms, Main Fract. Overhead Main Fract. Feed	0.003
All Other Process Streams	0.002

Catalytic Reforming, Hydrocracking And Hydrodesulfurization Streams:

Reformer Charge	0.0015
Reformer Effluent	0.0015
Hydrocracker Charge And Effluent*	0.002
Recycle Gas	0.001
Hydrodesulfurization Charge And Effluent*	0.002
Overhead Vapors	0.001
Liquid Product Over 50 ° A.P.I.	0.001
Liquid Product 30 - 50 ° A.P.I.	0.002

*Depending on charge, characteristics and storage history, charge resistance may be many times this value.

Light Ends Processing Streams:

Overhead Vapors And Gases	0.001
Liquid Products	0.001
Absorption Oils	0.002-0.003
Alkylation Trace Acid Streams	0.002
Reboiler Streams	0.002-0.003

Lube Oil Processing Streams:

Feed Stock	0.002
Solvent Feed Mix	0.002
Solvent	0.001
Extract*	0.003
Raffinate	0.001
Asphalt	0.005
Wax Slurries*	0.003
Refined Lube Oil	0.001

*Precautions must be taken to prevent wax deposition on cold tube walls.

Visbreaker:

Overhead Vapor	0.003
Visbreaker Bottoms	0.010

Naphtha Hydrotreater:

Feed	0.003
Effluent	0.002
Naphthas	0.002
Overhead Vapors	0.0015

FOULING RESISTANCE FOR WATER

Temperature Of Heating Medium	Up To 240° F		240 to 400° F	
Temperature Of Water	125 °F		Over 125° F	
	Water Velocity Ft/Sec		Water Velocity Ft/Sec	
	3 and Less	Over 3	3 and Less	Over 3
Sea Water	0.0005	0.0005	0.001	0.001
Brackish Water	0.002	0.001	0.003	0.002
Cooling Tower And Artificial Spray Pond:				
Treated Make Up	0.001	0.001	0.002	0.002
Untreated	0.003	0.003	0.005	0.004
City Or Well Water	0.001	0.001	0.002	0.002
River Water:				
Minimum	0.002	0.001	0.003	0.002
Average	0.003	0.002	0.004	0.003
Muddy Or Silty	0.003	0.002	0.004	0.003
Hard (Over 15 Grains/Gal.)	0.003	0.003	0.005	0.005
Engine Jacket	0.001	0.001	0.001	0.001
Distilled Or Closed Cycle				
Condensate	0.0005	0.0005	0.0005	0.0005
Treated Boiler Feedwater	0.001	0.0005	0.001	0.001
Boiler Blowdown	0.002	0.002	0.002	0.002

- **VIBRATIONS** - Fluid flowing through a heat exchanger can cause the heat exchanger tubes to vibrate.

Different types of vibration mechanisms are as follows:

- 1) **FLUID ELASTIC INSTABILITY** : Fluid elastic instability is important for **both gases & liquids**. This occurs above a critical flow velocity. There are different methods to avoid fluid elastic instability such as:
 - ✓ Decreasing the span lengths
 - ✓ Increasing the tube diameter
 - ✓ Reducing clearance between tube & baffle
 - ✓ Increasing tube pitch also helps in minimizing tube vibrations
 - ✓ Tubes in the window region can be removed so that all tubes are supported.
- 2) **VORTEX SHEDDING** : Vortex shedding is caused by the periodic shedding of the vortices from the tubes and can lead to damage of tubes if vibrations coincide with the tube natural frequency. Some measures such as changing span lengths can be taken to avoid vibrations.

- 3) **ACOUSTIC RESONANCE** : Acoustic resonance is very **important in case of gases**. It occurs when the frequency of an acoustic wave in the heat exchanger coincides with tube natural frequency. Even if acoustic wave does not cause any vibrations, it can lead to intolerable noise. It can be avoided by changing span lengths. Generally deresonating baffles are placed in all cross passes of the heat exchanger parallel to both the direction of crossflow and the centerline of the tubes, which increases the acoustic frequency of the acoustic wave thus, eliminating acoustic vibration problem.
- 4) **TURBULENT BUFFETING** : Turbulent buffeting mechanism is very **important in case of two-phase flow**. The turbulence in the flowing fluid contains a broad range of frequencies and can coincide with the tube natural frequency to cause tube vibrations.
- 5) **FLOW PULSATION** : Flow pulsation is because of periodic variations in the flow. This can become very **important in case of two-phase flow**.

TABLE FOR SELECTION

34

19-Jan-2011 Wednesday

Shell and Tube Exchanger Selection Guide (Cost Increases from Left to Right)

Type of Design	"U" Tube	Fixed Tubesheet	Floating Head Outside Packed	Floating Head Split Backing Ring	Floating Head Pull-Through Bundle
Provision for differential expansion	individual tubes free to expand	expansion joint in shell	floating head	floating head	floating head
Removeable bundle	yes	no	yes	yes	yes
Replacement bundle possible	yes	not practical	yes	yes	yes
Individual tubes replaceable	only those in outside row	yes	yes	yes	yes
Tube interiors cleanable	difficult to do mechanically, can do chemically	yes, mechanically or chemically	yes, mechanically or chemically	yes, mechanically or chemically	yes, mechanically or chemically
Tube exteriors with triangular pitch cleanable	chemically only	chemically only	chemically only	chemically only	chemically only
Tube exteriors with square pitch cleanable	yes, mechanically or chemically	chemically only	yes, mechanically or chemically	yes, mechanically or chemically	yes, mechanically or chemically
Number of tube passes	any practical even number possible	normally no limitations	normally no limitations	normally no limitations	normally no limitations
Internal gaskets eliminated	yes	yes	yes	no	no

THERMAL DESIGNING & RATING OF HEAT EXCHANGERS

35

19-Jan-2011 Wednesday

- Designing & Rating of Heat Exchangers is carried out by using following softwares :
 - 1) HTRI Exchanger Suite
 - 2) HTFS - Heat Transfer and Fluid Flow Service
 - 3) CC THERM
- HTRI Exchanger Suite 5.0 (latest version) is developed by Heat Transfer Research Inc.

Input Summary

- + Geometry
- + Piping
- + Process
- + Hot Fluid Properties
- + Cold Fluid Properties
- + Design
- + Control

Case Mode

Rating Simulation Design

Exchanger Configuration

Exchanger service

Process Conditions

Flow rate	Hot Shell	<input type="text"/>	Cold Tube	<input type="text"/>	1000-kg/hr
Inlet/outlet Y	<input type="text"/>	/	<input type="text"/>	/	Weight fraction vapor
Inlet/outlet T	<input type="text"/>	/	<input type="text"/>	/	C
Inlet P/allow dP	<input type="text"/>	/	<input type="text"/>	/	kgf/cm ² / kgf/cm ²
Fouling resistance	<input type="text"/>		<input type="text"/>		m ² ·hr·C/kcal

Shell Geometry

TEMA type
ID mm
Orientation
Hot fluid

Baffle Geometry

Type
Orientation
Cut % ID
Spacing mm

Tube Geometry

Type Wall thickness mm
Length mm Layout angle degrees
Tube OD mm Tubepasses
Pitch mm Tubecount

<< Previous Next >>

□ **INPUTS REQUIRED** - Before proceeding in either designing or rating of Heat Exchangers, there are some essential inputs required from the client. These are :

- 1) Complete and latest Process datasheet . Also, old Process datasheet in case of rating of Heat Exchanger. Essential data includes:
 - ✓ Total Heat Duty
 - ✓ Flowrates , temperatures, pressures for both sides
 - ✓ Fluid properties including: density, specific heat, thermal conductivity, and viscosity for at least two points.
 - ✓ For condensers and evaporators, data such as a condensing curve, boiling point elevation, and/or other parameters may be required.
 - ✓ Process conditions and limitations such as fouling resistance, pressure drop limitations, MOC etc.
- 2) Specifications and other special requirements/limitations.
- 3) Exchanger drawings & old TEMA datasheet in case of rating of Heat Exchanger.

- **OUTPUTS DELIVERED -** When an Exchanger is designed following are the deliverables to the client :
 - 1) TEMA Datasheet
 - 2) Rating Report stating the adequacy of the Heat Exchanger

HTRI OUTPUT / RESULTS INTERPRETATION

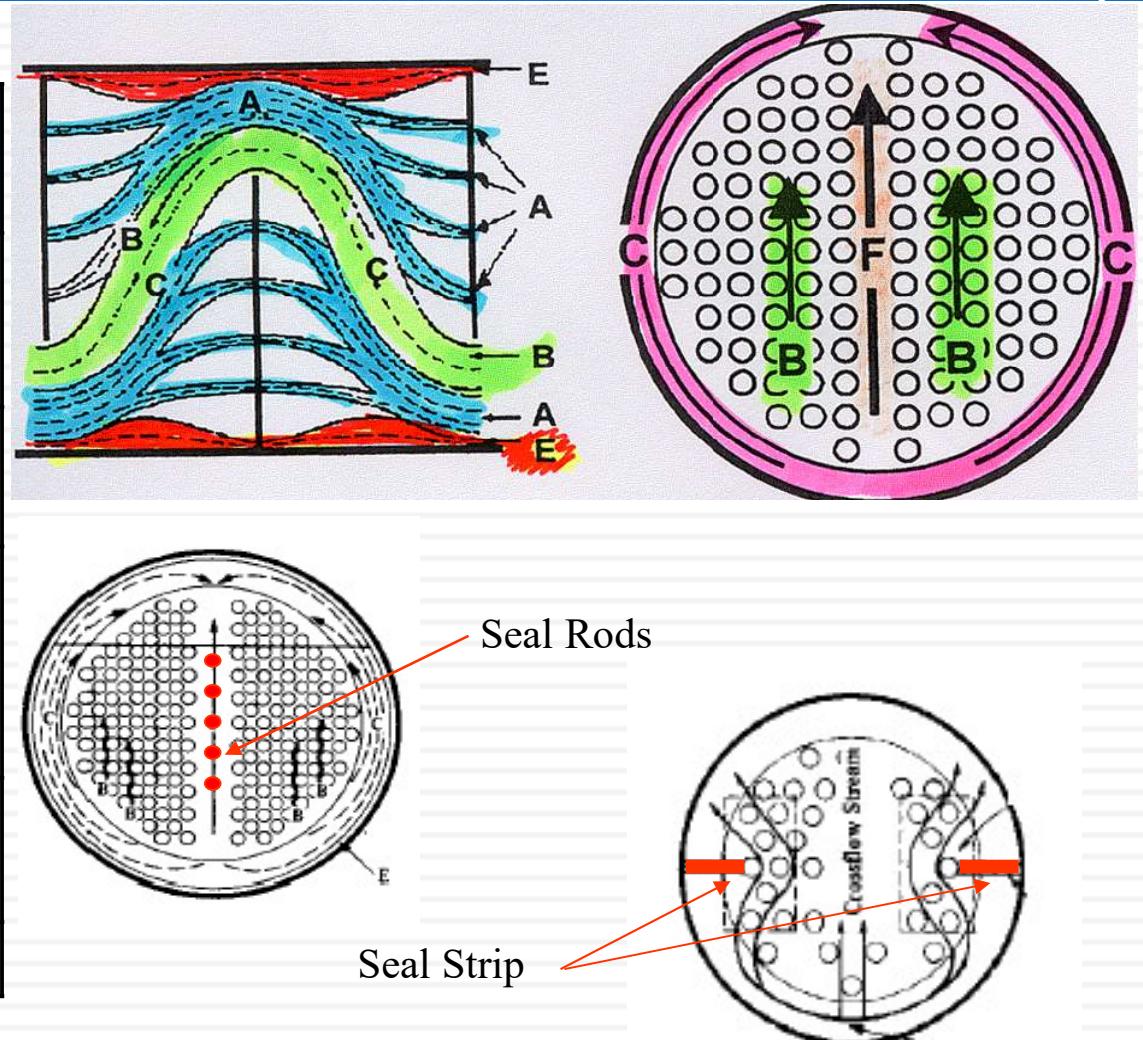
39

19-Jan-2011 Wednesday

- Output of HTRI is interpreted in various ways depending upon the type of problem i.e. type of service, type of exchanger, any special guideline/limitation from the client, etc. Normally, an output is studied for the following parameters :
 - 1) Heat duty
 - 2) Allowable pressure drop
 - 3) B & F flow fractions
 - 4) Vibrations
 - 5) Shell side, Tube side, Cross flow, Wind flow velocities
 - 6) Overdesign percentage
 - 7) Runtime messages (if any)
 - 8) Rho-V² values

- Output Summary
 - Run Log
 - Runtime Messages
 - Final Results
 - Shellside Monitor
 - Tubeside Monitor
 - Vibration
 - Rating Data Sheet
 - TEMA Spec Sheet
 - Property Monitor
 - Stream Properties
- Input Reprint

See Runtime Message Report for Warning Messages.


Process Conditions		Hot Shellside		Cold Tubeside	
Fluid name		Process Gas		Cooling Water	
Flow rate	(kg/s)		17.9277 *		127.554 *
Inlet/Outlet Y	(Wt. frac vap.)	0.785	0.779	0.000	0.000
Inlet/Outlet T	(Deg C)	60.00	35.00	29.00	32.00
Inlet P/Avg	(kPa)	2751.36	2742.22	501.332	488.050
dP/Allow.	(kPa)	18.279	20.000	26.565	50.001
Fouling	(m ² -K/W)		0.000086		0.000345
Exchanger Performance					
Shell h	(W/m ² -K)	1152.31	Actual U	(W/m ² -K)	586.47
Tube h	(W/m ² -K)	6950.66	Required U	(W/m ² -K)	465.70
Hot regime	(-)		Shear	(MegaWatts)	1.6001
Cold regime	(-)		Sens. Liquid	Area (m ²)	261.809
EMTD	(Deg C)	13.1		Overdesign (%)	25.93
Shell Geometry			Baffle Geometry		
TEMA type	(-)	AES	Baffle type	(-)	Double-Seg.
Shell ID	(mm)	720.000	Baffle cut	(Pct Dia.)	25.50
Series	(-)		Baffle orientation	(-)	Parallel
Parallel	(-)		Central spacing	(mm)	206.226
Orientation	(deg)	0.00	Crosspasses	(-)	18
Tube Geometry			Nozzles		
Tube type	(-)	Plain	Shell inlet	(mm)	325.425
Tube OD	(mm)	19.050	Shell outlet	(mm)	325.425
Length	(m)	5.000	Inlet height	(mm)	123.860
Pitch ratio	(-)	1.3333	Outlet height	(mm)	119.900
Layout	(deg)	30	Tube inlet	(mm)	298.451
Tubecount	(-)	456	Tube outlet	(mm)	298.451
Tube Pass	(-)	2			
Thermal Resistance, %		Velocities, m/s		Flow Fractions	
Shell	50.89	Shellside	5.45	A	0.095
Tube	10.51	Tubeside	1.55	B	0.429
Fouling	30.27	Crossflow	6.59	C	0.173
Metal	8.328	Window	7.16	E	0.221
				F	0.082

FLOW FRACTIONS/STREAMS

41

19-Jan-2011 Wednesday

STREAM/ FLOW FRACTION	DESCRIPTION
A	Through gap between tube & baffle.
B	Between tubes across the bundle. Most effective stream for heat transfer.
C	Through gap between bundle & shell.
E	Through gap between baffle & shell.
F	Through pass partition lane

File Edit View Reports Tools Window Help

Output Summary

- Run Log
- Runtime Messages
- Final Results
- Shellside Monitor
- Tubeside Monitor
- Vibration
- Rating Data Sheet
- TEMA Spec Sheet
- Property Monitor
- Stream Properties
- Input Reprint

Fluid name	Process Gas		Cooling Water				
Fluid condition	Cond.	Vapor	Sens.	Liquid			
Total flow rate	(kg/s)	17.9277	-	127.554			
Weight fraction vapor, In/Out	(--)	0.785	0.779	0.000			
Temperature, In/Out	(Deg C)	60.00	36.00	29.00			
Temperature, Average/Skin	(Deg C)	47.5	37.39	30.5			
Wall temperature, Min/Max	(Deg C)	31.13	44.05	30.74			
Pressure, In/Average	(kPa)	2751.36	2742.22	501.332			
Pressure drop, Total/Allowed	(kPa)	18.279	20.000	26.565			
Velocity, Mid/Max allow	(m/s)	5.45	-	1.55			
Mole fraction Inlet	(--)	-	0.777	-			
Average film coef.	(W/m ² -K)	-	1152.31	6950.66			
Heat transfer safety factor	(--)	-	1.000	1.000			
Fouling resistance	(m ² -K/W)	-	0.000086	0.000345			
Overall Performance Data							
Overall coef., Reqd/Clean/Actual	(W/m ² -K)	465.70	/	841.00			
Heat duty, Calculated/Specified	(Megawatts)	1.6001	/	586.47			
Effective overall temperature difference	(Deg C)	13.1	-	-			
EMTD = (MTD) * (DELTA) * (F/G/H)	(Deg C)	13.89	-	0.9446			
See Runtime Messages Report for warnings.							
Exchanger Fluid Volumes							
Approximate shellside (L)	1387.3						
Approximate tubeside (L)	1003.2						
Shell Construction Information							
TEMA shell type	AES	Shell ID	(mm)	720.000			
Shells Series	1	Parallel	2	Total area (m ²)	272.900		
Passes Shell	1	Tube	2	Eff. area (m ² /shell)	130.904		
Shell orientation angle (deg)	0.00	Impingement present			Rectangular plate	Imp. length/width (mm)	356 / 356
Pairs seal strips	2				Passline seal rods (mm)	No. 4	
Shell expansion joint	No				Head to support distance (mm)	-	
Weight estimation Wet/Dirty/Bundle	9641.1	/	7252.3	/	2234.0	(kg/shell)	
Baffle Information							
Type	Parallel	Double-Seg.	Baffle cut (% dia)		25.50		
Crosspasses/ShellPass	18	-	No. (Pot Area)	(mm) to C.L.	-		
Central spacing (mm)	206.226	-	1	39.86	176.400		
Inlet spacing (mm)	762.000	-	2	16.04	44.406		
Outlet spacing (mm)	735.138	-	Baffle overlap (mm)		131.994		
Baffle thickness (mm)	4.763	-					
Tube Information							
Tube type	Plain	Tube count per shell			456		
Overall length (m)	5.000	Pot tubes removed (both)			20.83		
Effective length (m)	4.797	Outside diameter (m)			19.050		
Total tubesheet (mm)	101.600	Wall thickness (mm)			1.880		
Area ratio (dust/s)	1.2455	Pitch (mm)			25.4000		
Tube metal	Alloy 2205 (S31803)	Ratio			1.3333		
Tube pattern (deg)					30		

< << Prev Next >> > 1 - Final Results 2 3 /

Input Reports Graphs Drawings Shells-in-Series Design Session

For Help, press F1

File Edit View Reports Tools Window Help

Output Summary

Run Log

Runtime Messages

Final Results

Shellside Monitor

Tubeside Monitor

Vibration

Rating Data Sheet

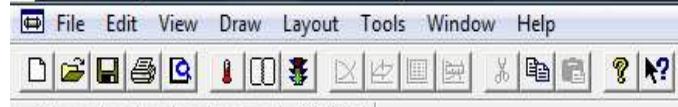
TEMA Spec Sheet

Property Monitor

Stream Properties

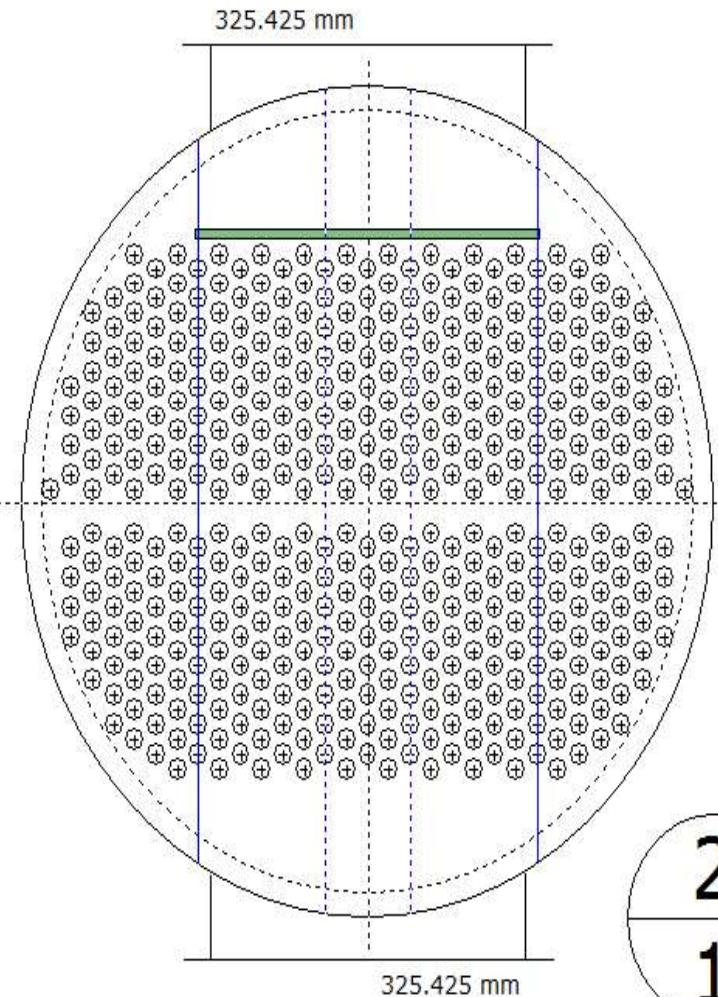
Input Reprint

Xist Ver. 4.00 SP3 07-03-2008 14:17 SN: 1500211261 SI Units


Process Gas Trim Cooler
100 % LPG Case
Rating - Horizontal Multispan Flow TEMA AES Shell With Double-Segmental Baffles

Shellside condition	Cond. Vapor	(Level 2.2)	Added mass factor
Axial stress loading (Mpa)	0.000		1.495
Beta	5.000		
Position in The Bundle	Inlet	Center	Outlet
Length for natural frequency (m)	0.968	0.412	0.941
Length/TEMA maximum span (—)	0.635	0.271	0.618
Number of spans (—)	*	*	*
Tube natural frequency (Hz)	85.6 +	260.9	90.2
Shell acoustic frequency (Hz)			
Flow Velocities	Inlet	Center	Outlet
Window parallel velocity (m/s)	6.87	6.50	6.35
Bundle crossflow velocity (m/s)	1.65	5.40	1.48
Bundle/shell velocity (m/s)	1.65	5.86	1.61
Fluidelastic Instability Check	Inlet	Center	Outlet
Log decrement (HTRI)	0.025	0.033	0.025
Critical velocity (m/s)	17.19	105.71	17.49
Baffle tip cross velocity ratio (—)	0.090	0.051	0.085
Average crossflow velocity ratio (—)	0.090	0.051	0.085
Acoustic Vibration Check	Inlet	Center	Outlet
Vortex shedding ratio (—)			
Chen number (—)			
Turbulent buffeting ratio (—)			
Tube Vibration Check	Inlet	Center	Outlet
Vortex shedding ratio (—)	0.216	0.754	0.207
Turbulent buffeting ratio (—)	0.290	1.013	0.278
Parallel flow amplitude (mm)	0.001	0.001	0.001
Crossflow amplitude (mm)	0.006	0.005	0.005
Turbulent buffeting amplitude (mm)	0.000	0.000	0.000
Tube gap (mm)	6.350	6.350	6.350
Crossflow RHO-V-SQ (kg/m-s ²)	36.49	471.09	36.22
Bundle Entrance/Exit (analysis at first tube now)	Entrance	Exit	
Fluidelastic instability ratio (—)	0.469	0.336	
Vortex shedding ratio (—)	0.768	0.560	
Crossflow amplitude (mm)	0.10912	0.09100	
Crossflow velocity (m/s)	5.51	4.01	
Turbulent buffeting amplitude (mm)	0.000	0.000	
Tubesheet to Inlet/Outlet support (mm)	None	None	
Shell Entrance/Exit Parameters	Entrance	Exit	
Impingement plate	Yes		
Flow area (m ²)	0.107	0.127	
Velocity (m/s)	5.51	4.29	
RHO-V-SQ (kg/m-s ²)	462.79	303.40	
Shell type	AES	Baffle type	Double-Seg.
Tube type	Plain	Baffle layout	Parallel
Pitch ratio	1.3333	Tube diameter, (mm)	19.050
Layout angle	30	Tube material	Alloy 2205 (S31803)
Supports/baffle space			
Program Messages			
+ Frequency ratios are based upon lowest natural or acoustic frequency			
- Items with asterisk exceed a conservative lower limit for vibration-free design. Review your case			

< << Prev Next >> >


Input Reports Graphs Drawings Shells-in-Series Design Session

For Help, press F1

A

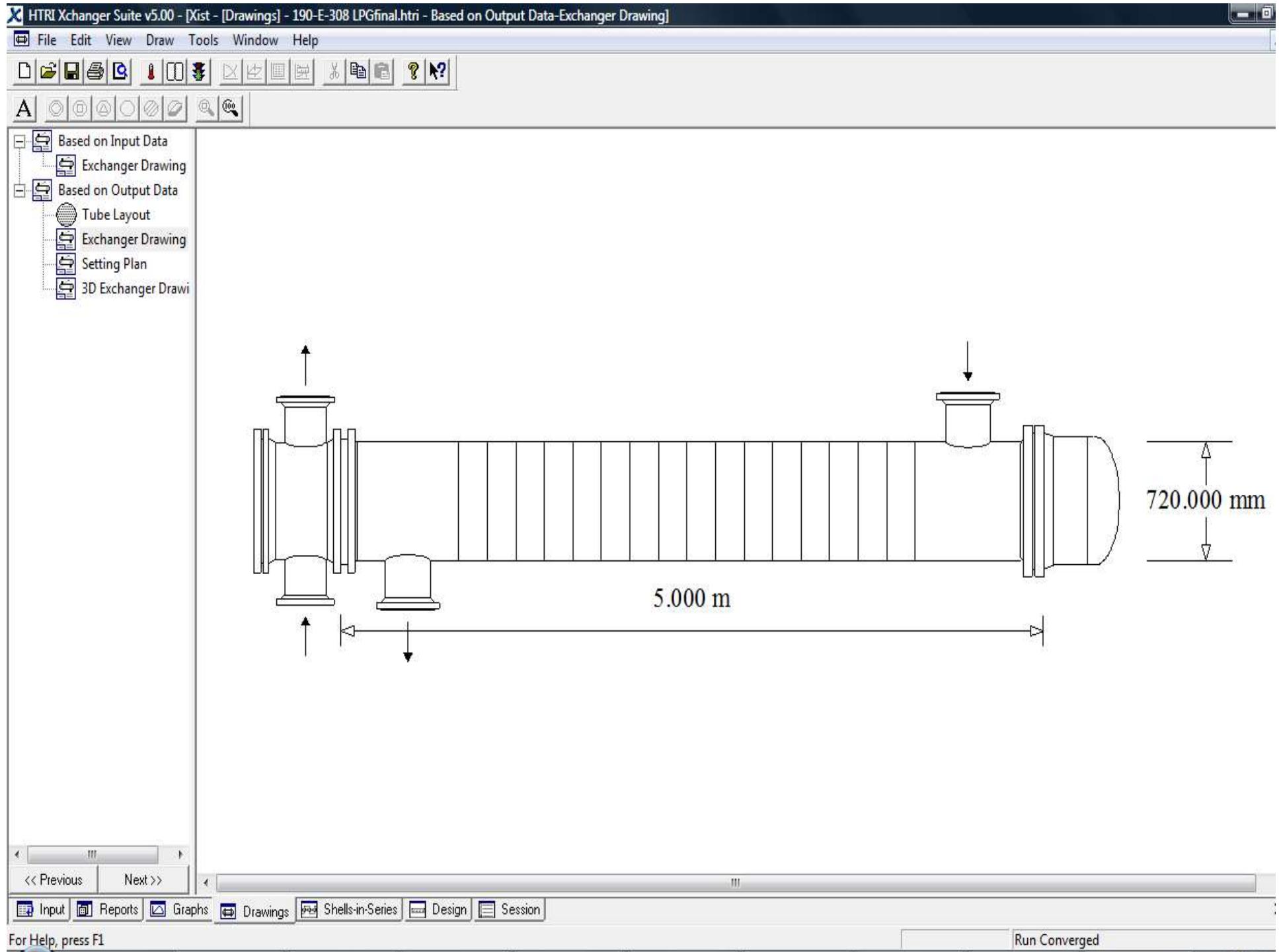
- Based on Input Data
 - Exchanger Drawing
- Based on Output Data
 - Tube Layout
 - Exchanger Drawing
 - Setting Plan
 - 3D Exchanger Drawi

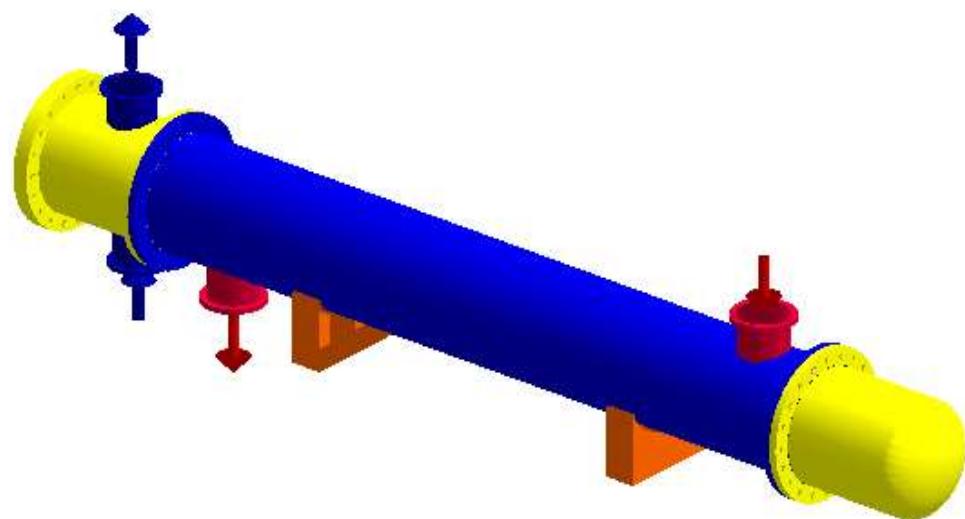
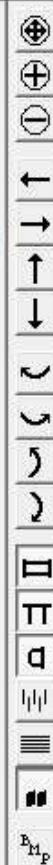
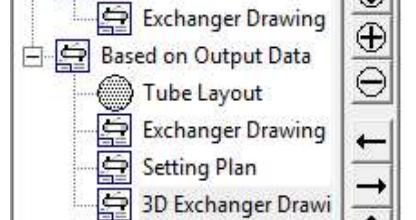
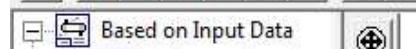
Item number	190-E-308
TEMA type	AES
Shell diameter	720.000 mm
Outer tube limit	679.311 mm
Height under inlet nozzle	123.860 mm
Height under outlet nozzle	119.900 mm
Tube diameter	19.050 mm
Tube pitch	25.400 mm
Tube layout angle	30
Number of tubes (specified)	456
Number of tubes (calculated)	456
Number of tie rods	6
Number of seal strip pairs	2
Number of passlane seal rods	4
Number of passes	2
Parallel passlane width	19.050 mm
Baffle cut % diameter	25.5

TUBEPASS DETAILS

Pass	Rows	Tubes	Plugged
1	17	228	0
2	17	234	0

SYMBOL LEGEND


- Tube
- Plugged tube
- Tie rod
- Impingement rod
- Dummy tube
- Seal rod
- Seal strip/Skid bar





<< Previous Next >>

Input Reports Graphs Drawings Shells-in-Series Design Session

For Help, press F1

Run Converged

<< Previous Next >>

THANK
YOU