

# Hazard and Operability (HAZOP) Study





#### A Scenario...

One family are on a road trip by using a car in the middle of the night. Driver were replying a text message while driving at 100 km/h and it was raining heavily. The car hits a deep hole and one of tire blows. Driver hit the brake, but due to slippery road and car tire thread was thin, the car skidded and was thrown off the road.



## **Points to ponder**

What is the cause of the accident?

What is the consequence of the event?

What can we do to prevent all those things to happen in the first place?



What other possible accidents might happen on the road trip?

Can we be prepared before the accident occurs?



# Can we make it more systematic?

| Parameter            | Guideword                | Possible<br>Causes                                     | Consequences                 | Action                                                      | Safeguard                                |
|----------------------|--------------------------|--------------------------------------------------------|------------------------------|-------------------------------------------------------------|------------------------------------------|
| Car speed            | Too fast<br>Too slow     | Rushing                                                | Skidded when emergency brake | - Slow down<br>- Speed up                                   | -ABS brake system -Safety belt - Air bag |
| Tire                 | No thread<br>Less thread | Tire too old, often<br>speeding and<br>emergency break | Car skidded                  |                                                             | - Check frequently - Have spare tire     |
| Window<br>visibility | Low<br>Very low          | Rain                                                   | Cannot see the road          |                                                             |                                          |
| Car light            | Dim<br>No light          |                                                        |                              | -Stop car<br>-Go to nearest garage<br>-Use emergency signal |                                          |
| Road                 | With holes<br>Rocky      | 是 解 地                                                  | Breaks the car tire          |                                                             | - Put a signboard<br>-Street lights      |
| Travel time          | Night<br>Foggy           | No street light                                        |                              |                                                             | -Travel during daylight                  |

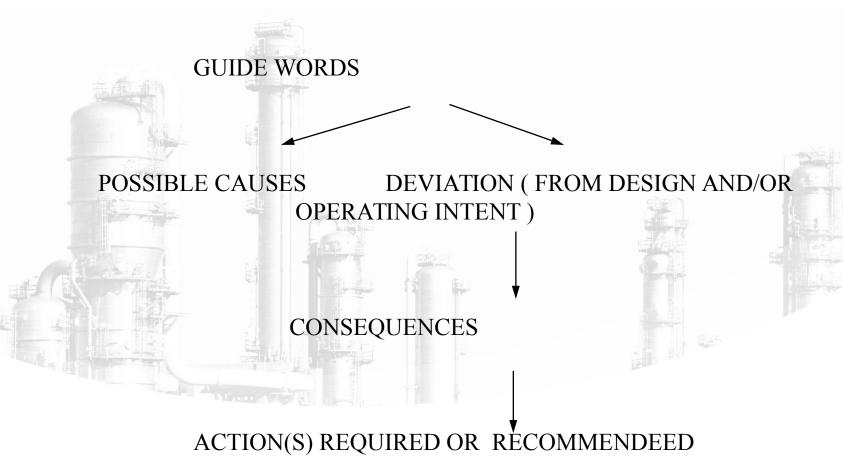


#### What is HAZOP?

- > Systematic technique to IDENTIFY potential Hazard and Operating problems.
- A formal systematic rigorous examination to the process and engineering facets of a production facility.
- A qualitative technique based on "guide-words" to help provoke thoughts about the way deviations from the intended operating conditions can <u>lead to</u> hazardous situations <u>or operability problems.</u>
- HAZOP is basically for safety
  - Hazards are the main concern.
  - Production rate, profit).
- Considerable engineering insight is required engineers working independently could develop different results.



#### **HAZOP Methodology**


required.

The questioning is sequentially focused around a number of guide words which are derived from method study techniques.

The main advantage of this technique is its systematic thoroughness in failure case identification. The method may be used at the design stage, when plant alterations or extensions are to be made, or applied to an existing facility.



# **HAZOP Study Procedure**





**NONE** 

No forward flow when there should be

**MORE** 

More of any parameter than there should be, *e.g.* more flow, more pressure, more temperature, etc.

LESS

As above, but "less of" in each instance

**PART** 

System composition difference from what it should be

MORE THAN

More "components" present than there should be for example, extra phase, impurities

**OTHER** 

What needs to happen other than normal operation, e.g. start up, shutdown, maintenance

9



#### **NONE**

e.g., NO FLOW caused by blockage; pump failure; valve closed or jammed: leak: valve open; suction vessel empty; delivery side over - pressurized: vapor lock; control failure.

#### **REVERSE**

*e.g.*, REVERSE FLOW caused by pump failure: NRV failure or wrongly inserted; wrong routing; delivery over pressured; back-siphoning; pump reversed.

#### MORE OF

e.g., MORE FLOW caused by reduced delivery head; suction pressurized; controller failure; valve stuck open leak; incorrect instrument reading.



MORE OF

MORE TEMPERATURE, pressure caused by external fires; blockage; shot spots; loss of control; foaming; gas release; reaction; explosion; valve closed; loss of level in heater; sun.

LESS OF

e.g., LESS FLOW caused by pump failure; leak; scale in delivery; partial blockage; sediments; poor suction head; process turndown.

PART OF

Change in composition high or low concentration of mixture; additional reactions in reactor or other location; feed change.



#### MORE THAN

Impurities or extra phase Ingress of contaminants such as air, water, lube oils; corrosion products; presence of other process materials due to internal leakage; failure of isolation; start-up features.

#### **OTHER**

Activities other than normal operation start-up and shutdown of plant; testing and inspection; sampling; maintenance; activating catalyst; removing blockage or scale; corrosion; process emergency; safety procedures activated; failure of power, fuel, steam, air, water or inert gas; emissions and lack of compatibility with other emission and effluents.



# **Sequence of Examination**

The main elements under consideration are:

- **intention**
- **→** deviation
- causes
- consequences
  - hazards
  - > operating difficulties
- Safeguards/corrective action.



#### **HAZOP Effectiveness**

#### The effectiveness of a HAZOP will depend on:

- the accuracy of information (including P&IDs) available to the team information should be complete and up-to-date.
- the skills and insights of the team members.
- how well the team is able to use the systematic method as an aid to identifying deviations.
- the maintaining of a sense of proportion in assessing the seriousness of a hazard and the expenditure of resources in reducing its likelihood.
- the competence of the chairperson in ensuring the study team rigorously follows sound procedures.



#### The HAZOP Team

- Chairperson
- HAZOP secretary
- Project Engineer
- Mechanical Design engineer
- Process engineer
- Electrical engineer
- Instrument engineer
- Operations manager
  - Plant Engineer/manager
  - Shift Engineer
  - Chemist



# Responsibility of HAZOP Team Members

#### **HAZOP** leader

- Plan sessions and timetable
- Control discussion
- Limit discussion
- Encourage team to draw conclusion
- Ensure secretary has time for taking note
- Keep team in focus
- Encourage imagination of team members
- Motivate members
- Discourage recriminations
- Judge importance issues



#### **Checklist for HAZOP Leader**

- Always prepare study program in advance.
- Agree on the format or form to be used.
- Prepare follow up procedures.
- ➤ Brief members about HAZOP during first meeting.
- Stop the team trying to redesign the process.
- ► HAZOP is a team exercise. Do not let anybody (including the leader himself to dominate).



#### **Checklist for HAZOP Leader**

- If conflict arises, handle with care.
- Avoid long discussions by recording areas which need to be resolved outside meeting.
- Leader must be strong, yet diplomatic.
- Speak clearly. Make you point.
- Better have experience working as team member previously.
- Do not skip anything....some time small things may cause big accident.



## **HAZOP Secretary**

- Take adequate notes
- Record documentations
- Inform leader if more time required in taking notes
- If unclear, check wording before writing
- Produce interim lists of recommendations
- Produce draft report of study
- Check progress of chase action
- Produce final report



## **Process Engineer**

- Provide a simple description
- Provide design intention for each process unit
- Provide information on process conditions and design conditions
- Provide a simple description
- Provide design intention for each process unit
- Provide information on process conditions and design conditions



# **Mechanical Design Engineer**

- Provide specification details.
- Provide vendor package details.
- Provide equipment and piping layout information.

# **Instrument Engineer**

- Provide details of control philosophy.
- Provide interlock and alarm details.
- Provide info on shutdown, safety features.



## Plant Engineer or Manager

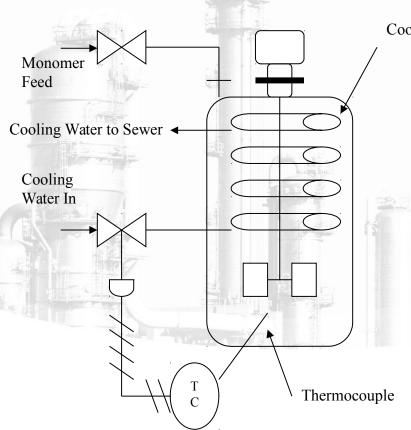
- Provide information on compatibility with any existing adjacent plant.
- Provide details of site utilities and services.
- Provide (for study on existing plant) any update on maintenance access and modifications.

## **Shift Operating Engineer or Supervisor**

- Provide guidance on control instrumentation integrity from an operating experience view point.
- Provide (for study on existing plant) information on plant stability at the specified control parameters.
- Provide information on experienced operability deviations of hazard potential.



#### **Chemist**


- Provide details of process chemistry
- Provide details of process hazards (polymerizations, byproducts, corrosion etc)

# **Project Engineer**

- Provide details of cost and time estimation and also budget constraints.
- Ensure rapid approval if required.



#### **HAZOP Example: Reactor**



Cooling Coils

Refer to reactor system shown.

The reaction is exothermic. A cooling system is provided to remove the excess energy of reaction. In the event of cooling function is lost, the temperature of reactor would increase. This would lead to an increase in reaction rate leading to additional energy release.

The result could be a runaway reaction with pressures exceeding the bursting pressure of the reactor. The temperature within the reactor is measured and is used to control the cooling water flow rate by a valve.

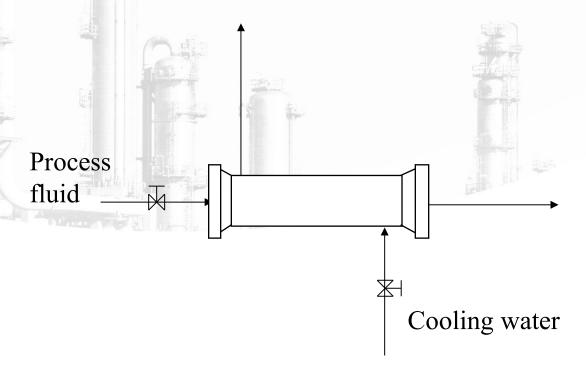
Perform HAZOP Study



# **HAZOP** on Reactor - Example

| Guide Word | Deviation                              | Causes                                             | Consequences                    | Action                                     |
|------------|----------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------------|
| NO         | No cooling                             |                                                    | Temperature increase in reactor |                                            |
| REVERSE    | Reverse cooling flow                   | Failure of water source resulting in backward flow |                                 |                                            |
| MORE       | More cooling flow                      |                                                    |                                 | Instruct operators on procedures           |
| AS WELL AS | Reactor product in coils               |                                                    |                                 | Check maintenance procedures and schedules |
| OTHER THAN | Another material besides cooling water | Water source contaminated                          |                                 |                                            |




## **HAZOP On Reactor: Answer**

| Guide Word | Deviation                              | Causes                                                        | Consequences                                           | Action                                                                                     |
|------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|
| NO         | No cooling                             | Cooling water valve malfunction                               | Temperature increase in reactor                        | Install high<br>temperature alarm<br>(TAH)                                                 |
| REVERSE    | Reverse cooling flow                   | Failure of water source resulting in backward flow            | Less cooling, possible runaway reaction                | Install check valve                                                                        |
| MORE       | More cooling flow                      | Control valve failure, operator fails to take action on alarm | Too much cooling, reactor cool                         | Instruct operators on procedures                                                           |
| AS WELL AS | Reactor product in coils               | More pressure in reactor                                      | Off-spec product                                       | Check maintenance procedures and schedules                                                 |
| OTHER THAN | Another material besides cooling water | Water source contaminated                                     | May be cooling inefffective and effect on the reaction | If less cooling, TAH will detect. If detected, isolate water source. Back up water source? |



# **HAZOP Example: Shell & Tube Heat Exchanger**

 Using relevant guide works, perform HAZOP study on shell & tube heat exchanger





# **HAZOP** on Heat Exchanger: Answer 1

| Guide Word    | Deviation                           | Causes                                          | Consequences                                  | Action                                 |
|---------------|-------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|
| Less          | Less flow of cooling water          | Pipe blockage                                   | Temperature of process fluid remains constant | High Temperature<br>Alarm              |
| More          | More cooling flow                   | Failure of cooling water valve                  | Temperature of process fluid decrease         | Low Temperature<br>Alarm               |
| More of       | More pressure on tube side          | Failure of process fluid valve                  | Bursting of tube                              | Install high pressure alarm            |
| Contamination | Contamination of process fluid line | Leakage of tube<br>and cooling water<br>goes in | Contamination of process fluid                | Proper maintainance and operator alert |
| Corrosion     | Corrosion of tube                   | Hardness of cooling water                       | Less cooling and crack of tube                | Proper maintenance                     |



# **HAZOP** on Heat Exchanger – Answer 2

| Guide Word    | Deviation                   | Causes                                        | Consequences                                         | Action                                                                            |
|---------------|-----------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|
| NONE          | No cooling water flow       | Failure of inlet cooling water valve to open  | Process fluid temperature is not lowered accordingly | Install Temperature indicator before and after the process fluid line Install TAH |
| MORE          | More cooling water flow     | Failure of inlet cooling water valve to close | Output of Process fluid temperature too low          | Install Temperature indicator before and after process fluid line Install TAL     |
| LESS          | Less cooling water          | Pipe leakage                                  | Process fluid temperature too low                    | Installation of flow meter                                                        |
| REVERSE       | Reverse process fluid flow  | Failure of process fluid inlet valve          | Product off set                                      | Install check valve<br>(whether it is crucial<br>have to check?)                  |
| CONTAMINATION | Process fluid contamination | Contamination in cooling water                | Outlet temperature too low                           | Proper maintenance and operator alert                                             |







# **HAZOP Case Study: Distillation Colum**

#### Aims:

The purpose of this study is to identify potential hazards and problems in order to reduce the occurrence of hazards which may impact the safety of plant operators and personnel or cause delays in plant operation. Proper consideration of operating pressures, temperatures, and flow rates was crucial to designing a process control system that can anticipate and correct for deviations from safe and ideal conditions. An analysis of each of the main components of the plant's distillation column (column itself, reboiler, condenser, reflux pump, and feed and product control valves) was performed to determine the necessary controllers, transmitters, and alarms to ensure safe and efficient performance.



#### **Description of Facility**

At ideal conditions, the plant operates with a saturated liquid feed mixture of 50 mol/hr of methanol, 50 mol/hr of ethanol, and 50 mol/hr of water, entering a distillation column at 1 atmosphere. The column operates at a reflux ratio of 1.2 with a 1.2 psi pressure drop across the column. 95% of the ethanol fed and at most 5% of the water fed is to be outputted overhead, with the remaining water and entirety of the methanol feed to be taken below. The column is accompanied by feed and product valves, a pump, and reboiler and condenser associated with the distillation process.



#### **Plant Overview**

#### **Start-up Procedures**

- Begin supplying heat to the distillation column up to the desired operating temperature, then open feed control valve to allow feed mixture to enter distillation column.
- •Conditions at start-up must be monitored carefully to ensure the plant safely arrives at its ideal operating conditions. Careful attention must be paid to the temperature and pressure of the distillation column; it must be allowed to safely reach and maintain its operating temperature and pressure before allowing the feed mixture to enter.

#### **Emergency Shutdown Procedures**

All functioning transmitters and controllers report directly to the flow controller of the feed control valve and to the temperature controller of the distillation column. In the event of an emergency shutdown, flow through the feed control valve is stopped and heat ceases to be supplied to the distillation column, allowing the process to empty and cool and reduce the likelihood of an explosion.



# **Analysis of Main Findings**

## 1. Node Description: Feed control valve

| Guide Word | Deviation | Causes                                | Consequences                                                                                                                | Action                                                                        |
|------------|-----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| More       | High Flow | Flow Controller Fault                 | •Column level, temperature, and pressure increase. •over pressurization of column. Column controls will attempt to correct. | Flow indicator with high flow and temperature alarms, emergency feed shutdown |
| Less       | Low Flow  | •Feed Pump Failure •Jammed feed valve | Reduced column<br>temperature and rate<br>of reaction                                                                       | Flow indicator with low flow alarm.                                           |
| No         | No Flow   | •Feed Pump Failure •Jammed feed valve | No reaction                                                                                                                 | Flow indicator with low flow alarm.                                           |



# 2. Node Description: Distillation Column

| Guide Word | Deviation           | Causes                                             | Consequences                                                              | Action                                                  |
|------------|---------------------|----------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|
| More       | High temperature    | Temperature controller fault, reboiler malfunction | Reaction rate increase<br>Pressure increases<br>Off-spec product.         | High and low temperature alarm need to be install       |
| Less       | Low<br>Temperature  | Temperature controller fault, reboiler malfunction | Reduced column<br>temperature and rate of<br>reaction<br>Off-spec product | High and low<br>temperature alarm<br>need to be install |
| No         | Zero<br>temperature | Temperature controller fault, reboiler malfunction | No reaction                                                               | High and low<br>temperature alarm<br>need to be install |

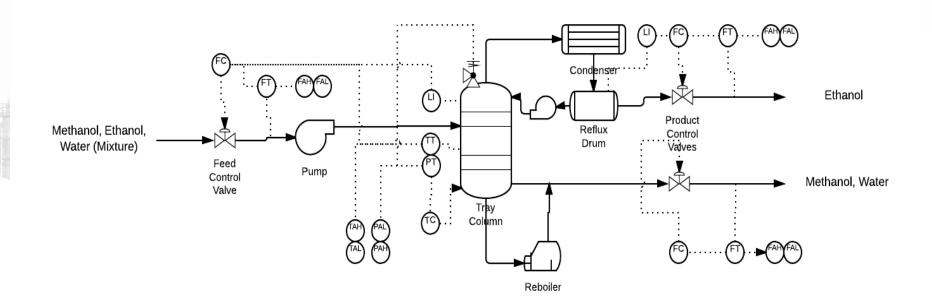


| Guide Word | Deviation     | Causes                                  | Consequences                                                                    | Action                                                                                        |
|------------|---------------|-----------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| More       | High Pressure | Flow controller fault, Temperature      | Column level,<br>temperature, and<br>pressure increase. Over<br>pressurization. | Pressure indicator reporting to feed control valve and to Pressure Safety Valve (open-to-air) |
| Less       | Low Pressure  | Feed pump failure;<br>jammed feed valve | Reduced column<br>temperature and rate of<br>reaction                           | Flow indicator with low flow alarm                                                            |
| No         | Zero Pressure | Feed pump failure; jammed feed valve    | Flow indicator with low flow alarm                                              | Flow indicator with low flow alarm                                                            |



# 3. Node Description: Product Control Valves

| Guide Word | Deviation | Causes                                | Consequences                                                                                           | Action                                                                        |
|------------|-----------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|            |           |                                       |                                                                                                        |                                                                               |
| More       | High Flow | Flow Controller Fault                 | Column level,<br>temperature, and<br>pressure decrease.<br>Column controls will<br>attempt to correct  | Flow indicator with high flow and temperature alarms, emergency feed shutdown |
| Less       | Low Flow  | •Feed Pump Failure •Jammed feed valve | Increased column<br>level, temperature, and<br>pressure. Over<br>pressurization. Risk of<br>explosion. | Flow indicator<br>with low flow<br>alarm                                      |
| No         | No Flow   | •Feed Pump Failure •Jammed feed valve | Increased column level, temperature, and pressure. Over pressurization. Risk of explosion.             | Flow indicator<br>with low flow<br>alarm                                      |




## **Action Arising from the HAZOP**

Deviations from proper operating conditions for temperature, pressure, and flow were analyzed in order to develop recommendations for controllers, transmitters, and alarms to monitor and control these parameters during operation. These findings can be found in the Analysis of Main Findings section. The recommended transmitters, controllers, and alarms are indicated in the P&ID. The main hazards include dangerously high temperatures and pressures inside the column, which could result in over pressurization events and explosions if not controlled. The proposed process control system should be implemented and tested before the plant begins normal operation.



#### **PFD With Controls**





#### **HAZOP - Hazard and Operability**

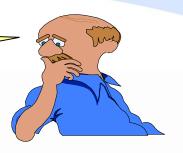
#### **ATTITUDE CHECK**

All of these terms! This stupid table! I hate HAZOPS. Why don't we just learn the engineering?

**Nodes** 

**Parameters** 




Consequence

**Guide** words

**Deviation** 



I suppose that I should have done that HAZOP Study!











