GUIDE FOR FIRE PROTECTION AND DETECTION SYSTEM CALCULATIONS

FM-200/ Novec-1230/CO2 System

Prepared by: Mehboob Shaikh

M. Tech.(ISFT) || B.Eng. || CFPS || CFI || AMIE

GAS-BASED FIRE SUPPRESSION SYSTEM HFC-227ea & FK-5-1-12 (FM200 & NOVEC 1230) CO2 System A Step-by-Step design Procedure

Design Process

- Define the Hazard
- 2. Determine Design Concentration
- Determine the Net Hazard Volume
- 4. Determine Extinguishing agent Quantity
- 5. Check the maximum reach concentration
- 6. Determine number and size of agent containers
- 7. Establish maximum Discharge time
- 8. Determine nozzle size and quantity to deliver required concentration at required discharge time to ensure mixing
- Determine pipe sizes and pipe run(Pipe Sizing & Flow Calculation)
- 10. Evaluate compartment over/underpressurization and provide venting if required.
- 11. Establish minimum agent hold requirements and evaluate compartments for leakage.

Example Project -1: A Computer Room Plan view 8 Meter 2.5 mtr **Elevation view** 8 Mtr. Training | Engineering | Inspections info@mitionline.com MITI Consultancy

Step -1: Define Hazard

Type of Hazard: Computer Room (Surface Class A)

Min. Hazard Temprature: 20 C

Max. Hazard Temprature: 30 C

<u>Step -2 : Determine Design Concentration</u>

					Ratio Class A	Ratio Class A
	Heptane MEC	Class A design	Ratio Class A	Class A design	design concen.	design NFPA
	(NFPA 2001,	concen. NFPA	design to	concen. (ISO	to MEC	2001 to ISO
Agent	2008) (%)	2001/UL (%)	MEC (NFPA)	14520) (%)	(ISO 14520)	14520
Halon 1301	3.4ª	5 ^b	1.47	-	-	-
CO ₂	23 ^a	>34°	1.48	_	-	_
HFC-227ea	6.7	6.25-7.0	0.93-1.04	7.9	1.2	0.79-0.88
HFC-125	8.7	8.0	0.92	11.2	1.3	0.71
HFC-23	12.9	16.8-18	1.3-1.4	16.3	1.26	1.03-1.1
FK-5-1-12	4.5	4.2	0.93	5.3	1.17	0.79
IG-541	31	34.2	1.1	36.5	1.17	0.94
IG-55	35	37.9	1.08	40.3	1.15	0.94
IG-01	42	-	-	41.9	1.0	-
IG-100	31	_	_	40.3	1.3	_

Design Concentraction © = Min. Concentraction*1.2

 $C = 7 \times 1.2 = 8.4 \%$

Select min Design Concentraction from this table based appropriate design standard

For our example we will select NFPA 2001 and design concentraction of 7 % (as we should select highter of extinguishing concentration)

Step -3: Determine Net Hazard Volume

V = I x b x h

 $V = 8 \times 4.25 \times 2.5$

V(Gross)= 85 Cubic Meter.

Volume of Any Impermiable Member such as Fixed Solid objects etc.

V1 = 0 Cubic Meter (assuming there is no such member in the room)

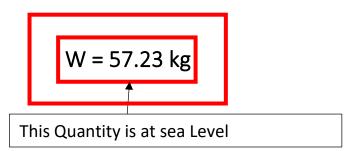
V(net) = V - V1 = 85 - 0 = 85 Cubic Meter.

Altitude: 1500 Mtr.

Specific Volume(S)= k1+k2xT

 $S = 0.1268 + 0.0005133 \times 20$

S = 0.136266

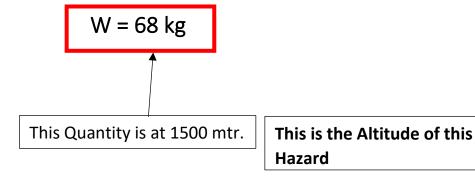

		k_I	k_2	k_I	k_2
Generic name	Trade name	English units	English units	SI units	Sl units
Halocarbons					
Halon 1301	Halon 1301	2.2062	0.005046	0.1478	0.00057
HFC-23	FE-13	4.7302	0.010699	0.3168	0.0011942
HFC-125	FE-25	2.722	0.006376	0.1828	0.0007085
HFC-227ea	FM 200	1.879775	0.0046625	0.1268	0.0005133
HFC-236fa	FE-36	2.0978	0.00514	0.1413	0.00058
FK-5-1-12	Novec-1230	0.9856	0.002441	0.0664	0.0002743
Inert gases					
IG-01	Argon	8.40299	0.018281	0.5612	0.002054
IG-55	Argonite	9.8809	0.0214956	0.65979	0.0024134
IG-100	NN-100	11.976	0.02606	0.7997	0.002927
IG-541	Inergen	9.858	0.02143	0.659	0.00241

Step -4: Determine Agent Quantity

Agent Quantity (w) =
$$\frac{v}{s} \left(\frac{c}{100-c} \right)$$

Agent Quantity (w) =
$$\frac{85}{0.1362} \left(\frac{8.4}{100-8.4} \right)$$

Agent Quantity (w) =
$$(624.08)x (0.09170)$$



Altitude			
Feet	Meters	Correction factor	
3000	914	0.90	
4000	1219	0.86	
5000	1524	0.83	Agent
6000	1829	0.80	
7000	2134	0.77	
8000	2438	0.74	
9000	2743	0.71	
10,000	3048	0.69	
11,000	3353	0.66	
12,000	3658	0.64	
13,000	3962	0.61	
14,000	4267	0.59	
15,000	4572	0.56	

Quantity @ 1500 mtr.

$$W = 57 / 0.83$$
 [aboveTable]

$$W = 68 \text{ kg}.$$

MITI Consultancy

<u>Step -5 : Check reached concentration @ Min. & Max Tempratures.</u>

$$C = 100 \frac{\left(\frac{wxs}{V}\right)}{\left(\frac{wxs}{V}\right) + 1}$$

Where;

Q = Agent quantity supplied from the system [kg]

V = hazard volume [m³]

s = specific vapor volume [m³/kg] = k1+k2*T

T = Min./Max. hazard temperature [°C]

S = k1+k2xT

S = k1 + k2x20

 $S = 0.1268 + 0.0005133 \times 20$

S = 0.1362 for min. Temp.

S = k1+k2xT

S = k1 + k2x30

 $S = 0.1268 + 0.0005133 \times 30$

S = 0.1423 for Max. Temp.

$$C = 100 \frac{\left(\frac{68x0.1326}{85}\right)}{\left(\frac{68x0.1326}{85}\right) + 1}$$

$$C = 100 \frac{(0.08424)}{(0.08424) + 1}$$

c = 7.7% @ 20 C Min. Temp.

$$C = 100 \frac{\left(\frac{54x0.1423}{85}\right)}{\left(\frac{54x0.1423}{85}\right) + 1}$$

$$C = 100 \frac{(0.09040)}{(0.09040) + 1}$$

c = 8.29% @ 30 C Max. Temp

Lets check if this concentraction is Safe for occupied space

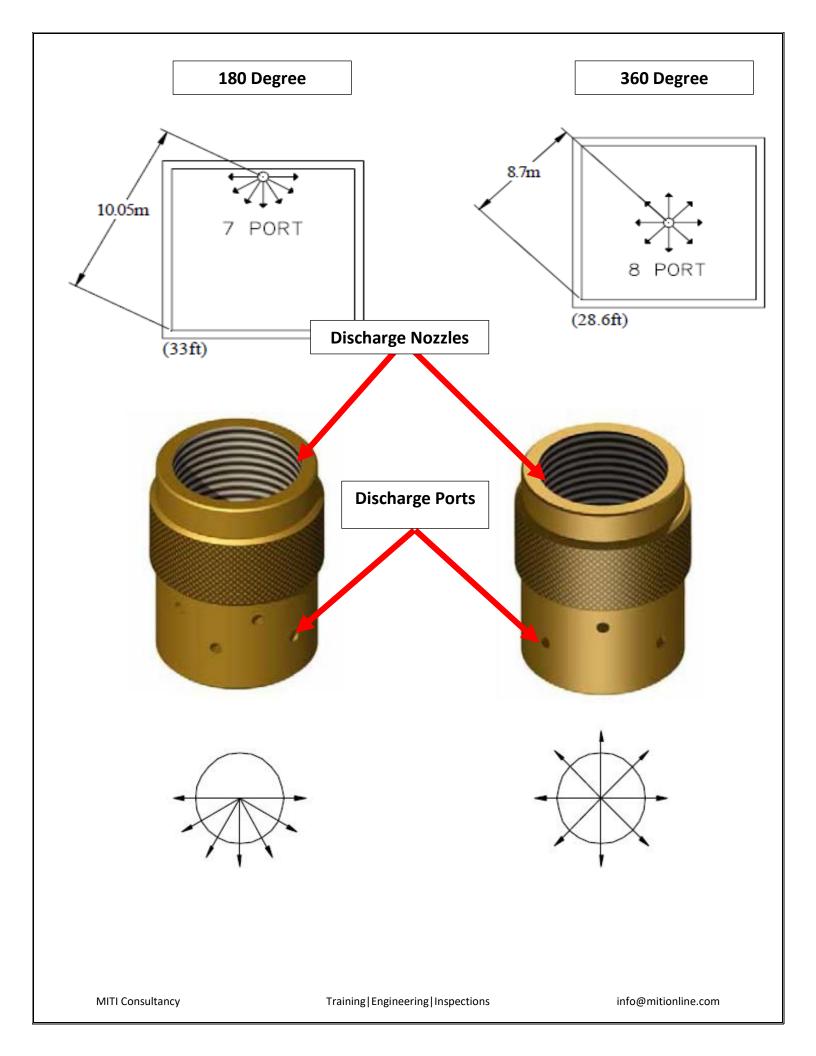
TABLE 17.7.6 NOAEL and LOAEL Values for Halocarbon Clean Agents

Halocarbon Clean Agent	NOAEL (Agent % by Volume)	LOAEL (Agent % by Volume)
FC-3-1-10	40.0	>40.0
FK-5-1-12	10.0	>10.0
HCFC Blend A	10.0	>10.0
HFC Blend B	5.0	7.5
HCFC-124	1.0	2.5
HFC-125	1.5	10.0
HFC-227ea	9.0	>10.5
HFC-23	30.0	>30.0
HFC-236fa	10.0	15.0
FIC-13I1	0.2	0.4

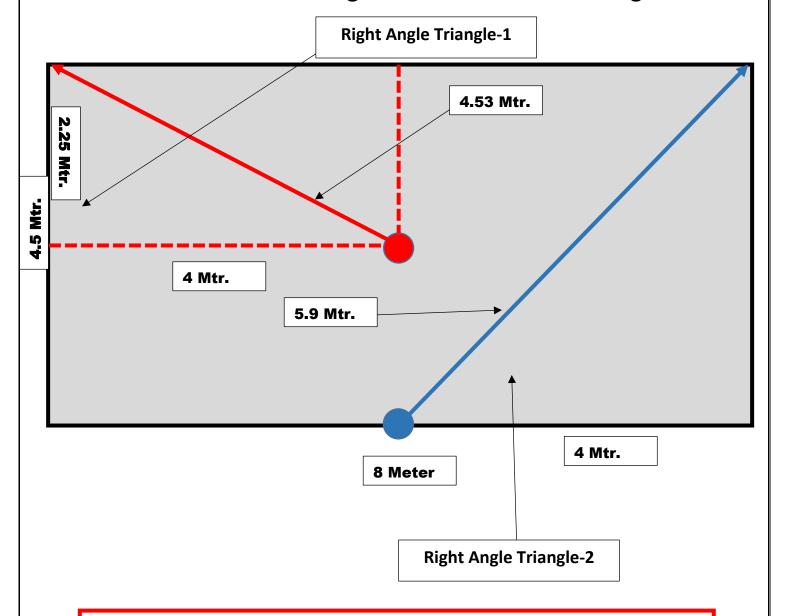
Concentration @ 30°C is less than NOAEL (9%) — okay for occupied space.

Step-06: Determination of number & Size of Container

Using DOT Container chart


Part No.	Minimu Maximu		Val Si:		floor to	t from o outlet ninal)	Diam	neter	Ta	ninal ire ight
(Nominal Volume)	kg	(lbs)	mm	(in)	mm	(in)	mm	(in)	kg	(lbs)
303.205.026 (4.5 litre)	2.3 to 4.5	(5 to 10)	25	(1")	280	(11")	178	(7")	7.7	(17)
303.205.015 (8 litre)	4.0 to 8.0	(9 to 18)	25	(1")	304	(12")	254	(10")	14.8	(32.6)
303.205.016 (16 litre)	8.0 to 16.0	(18 to 35)	25	(1")	502	(19.8")	254	(10")	18.4	(40.6)
303.205.017 (32 litre)	16.0 to 32.0	(35 to 71)	25	(1")	833	(32.8")	254	(10")	26.1	(57.5)
303 205 030 (40 litro) *	20.0 to 40.0	(44 to 88)	50	(2")	1352	(53.2")	227.2	(9")	52.2	(115)
303.205.018 (52 litre)	26.0 to 52.0	(58 to 115)	50	(2")	596	(23.5")	406	(16")	49.1	(108.3)
303.205.031 (67.5 litre) *	33.8 to 67.5	(75 to 149)	50	(2")	1526	(60")	265	(10.4")	81.6	(180)
303.205.032 (80 litre) *	40.0 to 80.0	(88 to 176)	50	(2")	1685	(66.3")	276	(11")	95.3	(210)
303.205.019 (106 litre)	53.0 to 106.0	(117 to 234)	50	(2")	1021	(40.2")	406	(16")	71.8	(158.3)
303.205.020 (147 litre)	73.5 to 147.0	(162 to 324)	50	(2")	1354	(53.3")	406	(16")	89.9	(198.2)
303.205.021 (180 litre)	90.0 to 180.0	(198 to 397)	50	(2")	1634	(64.3")	406	(16")	105.8	(233.2)
303.205.022 (343 litre)	171.5 to 343	(378 to 756)	80	(3")	1466	(57.7")	610	(24")	207	(456)

Note: Unless a hydraulic flow calculation is done, approximate 80% of the max. filling should be used to determine a container size (Recommanded practices from Manufacturers)


1 x 52 litre containing 41 kg of FM 200 is selected

Step-07,08: Establish maximum Discharge time & Determine nozzle size and quantity to deliver required concentration at required discharge time to ensure mixing

	180 Deg Pattern	360 Deg. Pattern
No. of Ports	7	8
Available Size	15/20/2	22/32/40/50 mm
Max area of Coverage	95.3 Sq. Mtr	95.3 Sq. Mtr
Max Discharge Radius	10.05 Mtr	8.7 Mtr.
Max. Coverage Height	4.87 Mtr.	4.87 Mtr.
Min. Void height (Sub-floors &	300 mm	300 mm
false ceilings)		
Max. Distance from wall (Measured	300mm	
from centre of the nozzle to the		
wall.)		
Min Distance from Wall(Measured	50mm	
from centre of the nozzle to the		
wall.)		
Max. Distance below the ceiling	300mm	300mm
Max. Distance between Nozzle and	9.1 Mtr	9.1 Mtr.
Container outlet (if nozzles are		
located only above the container)		
Max. Distance between Nozzle and	9.1 Mtr	9.1 Mtr.
Container outlet (if nozzles are		
located only below the container)		

Actual Coverage Radius is within Max. allowed Coverage Radius

4.53 Mtr for 360° - Okay

5.9 Mtr for 180° - Okay

Check Height of Hazard Area vs Max. Allowed coverage height:

1 Nozzle 180° or 1 nozzle 360° is possible

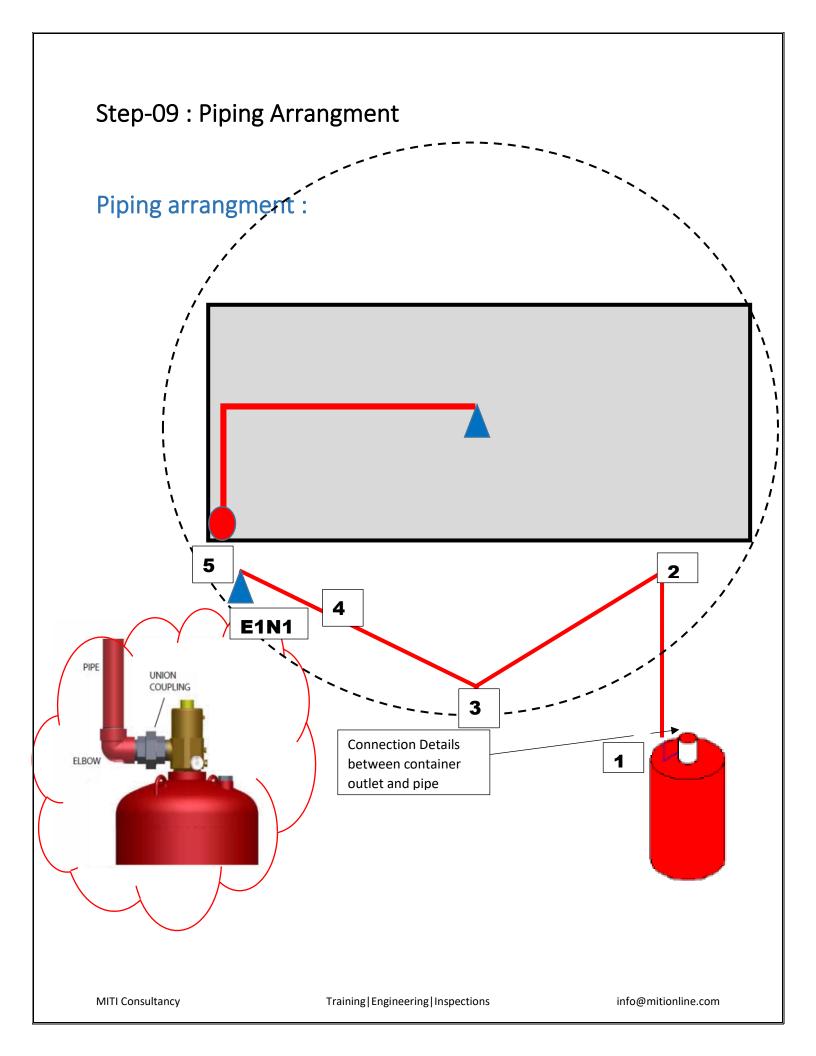
Determine Size of Pipe & Number of Nozzles :

Number of Nozzles =
$$\frac{Volume of Hazard}{Coverage Area of Each Nozzole}$$

Number of Nozzles (360° or 180°) = $\frac{85}{95.3}$

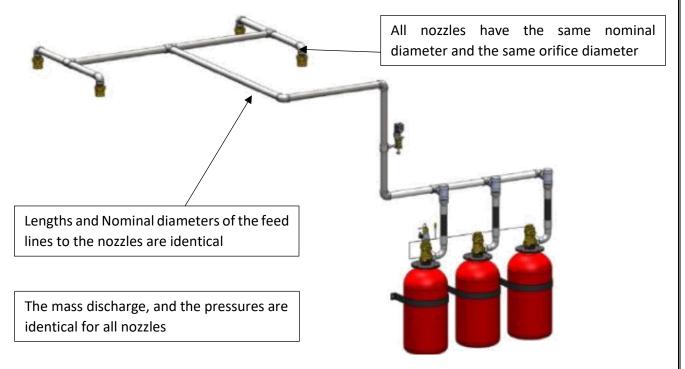
Number of Nozzles(360° or 180°) = 0.89 Say 1 Nos

Discharge Time = 10 Sec.


Agent Quantity = 48 Kg

Select higher size than required Discharge rate using table

Discharge rate = 4.8 kg/ Sec.←


Pipe Size mm	Minimum flow	Maximum flow
	. 1 / (11 /)	
(in)	rate kg/s (lb/s)	rate
		kg/sec.(lb/s)
10 (3/8)	0.272 (0.60)	0.907 (2.00
15(1/2)	0.454 (1.00)	1.361 (3.00)
20 (3/4)	0.907 (2.00)	2.495 (5.50)
25 (1)	1.588 (3.50)	3.855 (8.50)
32 (1 1/4)	2.722 (6.00)	5.67 (12.50)
40 (1 1/2)	4.082 (9.00)	9.072 (20.00)
50 (2)	6.35 (14.00)	13.61 (30.00)
65 (2 1/2)	9.072 (20.00)	24.95 (55.00)
80 (3)	13.61 (30.00)	44.92 (99.00)
100 (4)	24.95 (55.00)	56.7 (125.00)
125 (5)	40.82 (90.00)	90.72 (200.00)
150 (6)	54.43 (120.00)	136.1 (300.00)

Estimated pipe size = 32 mm (1¼")

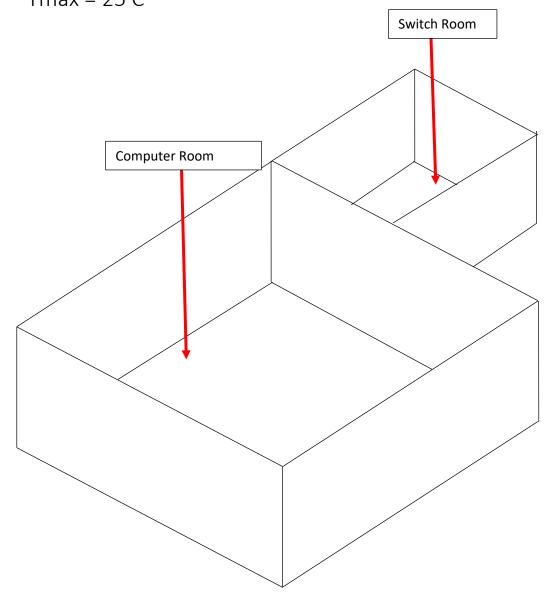
Important Parameters:

Piping System must be balanced (A balanced system has the actual and equivalent pipe lengths from container to each nozzle within 10% of each other and has equal design flow rates at each nozzle)

- 80% maximum agent in pipe
- 4.87 bar (70.6 psi) minimum nozzle pressure
- Between 6 10 seconds discharge time.
- 10 30 % side tee split.
- 30 -70 % bull tee split.
- 0.5 kg/L(31.2lbs/ft3) 1.0 kg/L(62.4lbs/ft3) fill density.
- Max. liquid arrival time imbalance of 1.0 seconds.
- Maximum liquid run out time of 2.0 seconds.
- Maximum nozzle height is 4.87m (16.0ft)

- Minimum of 10% agent in pipe before first tee.
- Maximum of 20 nozzles per system.
- Maximum of 10 enclosures per system.
- The ratio between the nozzle area and the pipe cross sectional area immediately preceding the nozzle is limited to a minimum of 0.20 (20%) and a maximum of 0.80 (80%).

Example Project -2 Plan view 20 Mtr. Min. Temp = 20 C Max. Temp. = 54 C **False Ceiling** HVAC Duct = 5% of total volume **Elevation** 3 Mtr. MITI Consultancy Training | Engineering | Inspections info@mitionline.com


Example Project -3

Calculation for two rooms with the following dimensions:

Switch Room: $6.9 \times 7 \times 2.5 = 120.7 \text{m}$

Computer Room: $12 \times 16 \times 2.83 = 543.3 \text{ m}$

Tmin = 20 CTmax = 25 C

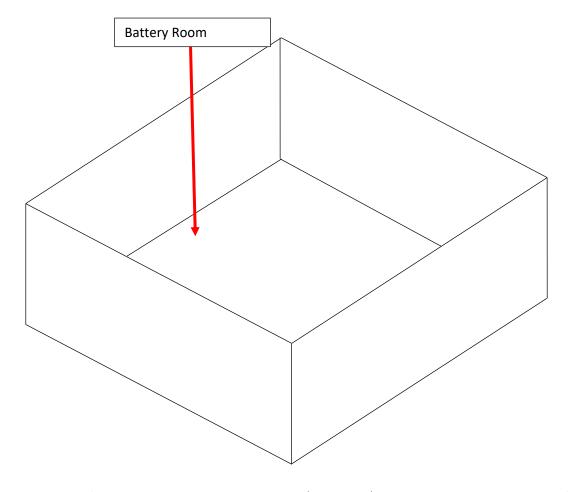
MITI Consultancy

Training | Engineering | Inspections

info@mitionline.com

Example Project -4

Calculation for a Battery room with the following dimensions & details:


Room to be Protected by Novec 1230 (FK-5-1-12/Propellant N2)

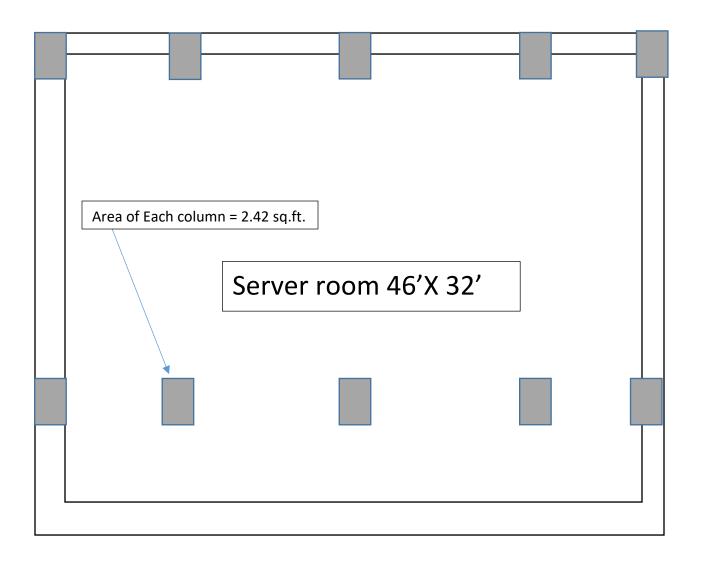
Computer Room Volume: = 170.70 m3

Non Permeable Volume = 0 m3

Tmin = 21 C

Tmax = 21 C

MITI Consultancy

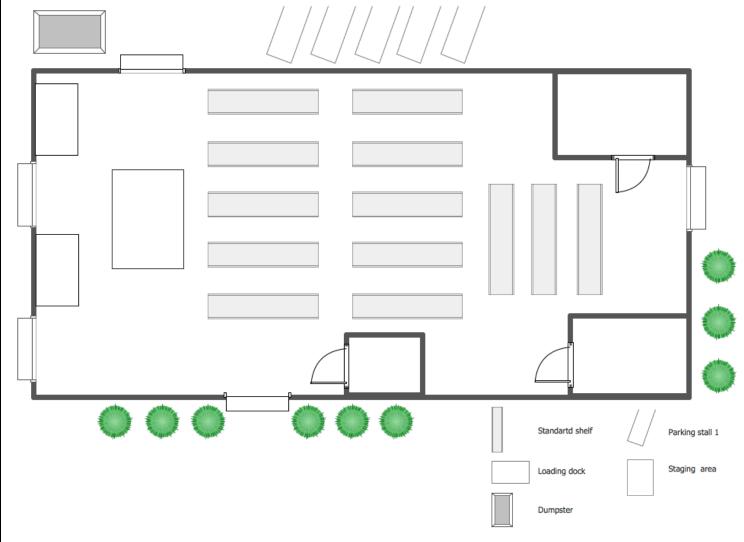

Training | Engineering | Inspections

info@mitionline.com

Example Project -5

Calculation for a Server room with the following dimensions & details:

Room to be Protected by Novec 1230 (FK-5-1-12/Propellant N2)


CO2 DESIGN QUANTITY FOR SURFACE FIRES

- Define the Hazard
- 2. Determine Min. Extinguishing Concentration(MEC)
- 3. Determine Design Concentration(DC)
- 4. Determine the Net Hazard Volume
- 5. Determine Base Design Quantity
- 6. Determine additional CO2 quantity for special condition.
- 6a. Material Conversion Factor (MCF)
- 6b. Uncloseable Openings
- 6c. Ventilation System
- 6d. Temprature Extereme
- 7. Determine Final Design Quantity.

CO2 DESIGN QUANTITY FOR DEEP SEATED FIRES(Smoldering Combustion)

- Define the Hazard
- 2. Determine Min. Extinguishing Concentration(MEC)
- 3. Determine Design Concentration(DC)
- 4. Determine the Net Hazard Volume
- 5. Determine Base Design Quantity
- 6. Determine additional CO2 quantity for special condition.
- 6a. Material Conversion Factor (MCF)
- 6b. Uncloseable Openings
- 6c. Ventilation System
- 6d. Temprature Extereme
- 7. Determine Final Design Quantity.

Example Project-1(Total Flooding Type)

Volume of Space: 500 Cubic Meter

Type of Combustible : Ethyl Alcohol

Determine Design quantity and Rate of Discharge ...?

Step -1: Define Hazard

Surface Flame Spread

<u>Step -2 :Determine Min. Extinguishing Concentration(MEC)</u>

Step -3 :Determine Design Concentration(DC)

Table 45.14 Minimum extinguishing and design concentrations for selected flammable liquids

Material	MEC, vol.%	DC, vol.%
Acetone	27 ^a	34
Acetylene	55	66
Carbon disulfide	60	72
Ethyl alcohol	36	43
Hexane	29	35
Methyl alcohol	33	40
Propane	30	36

Step -4: Determine Net Hazard Volume (Vnet)

Vnet = 500 Cubic Mtr.

Step -5 : Determine Base Design Quantity(mBD)

Base Design Quantity (mBD) = Vnet x FF

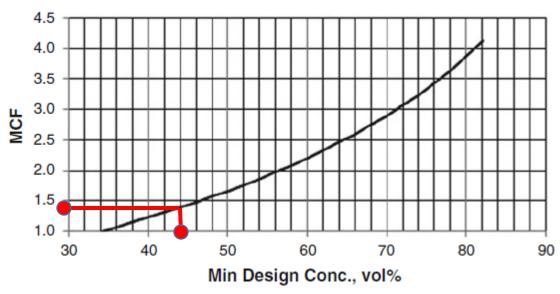

 $mBD = 500 \times 0.8 = 400 \text{ kg}$

Table 45.15 Flooding factors vs. hazard volume

Protected volume (V _P), m3	Flooding factor, kg/m ³	Minimum quantity, kg	
≤3.96	1.15	_	
3.97–14.15	1.07	4.5	
14.16-45.28	1.01	15.1	
45.29-127.35	0.9	45.4	
127.35 1415	0.8	113.5	
>1415	0.74	1135	

Step -6: Determine additional Quantity

Material Conversion Factor: 34 % < MDC < 82 %

Material Conversion Factor = 1.4

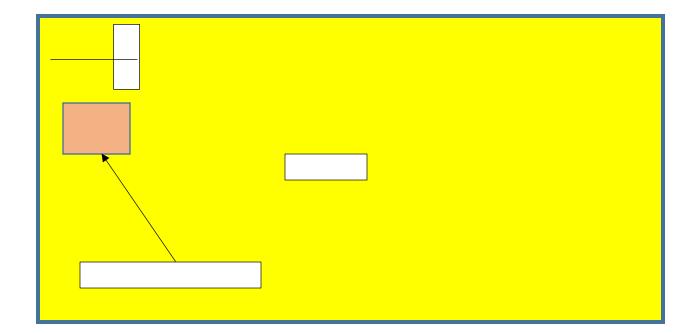
Modified Quantity = mBD x MCF

$$= 400 \times 1.4$$

Adjustment for leakage in system(mlo) = 0 kg

Adjustment for ventilation(mlv) = 0 kg

Adjustment for Temprature Extreme(mT) = 0 kg

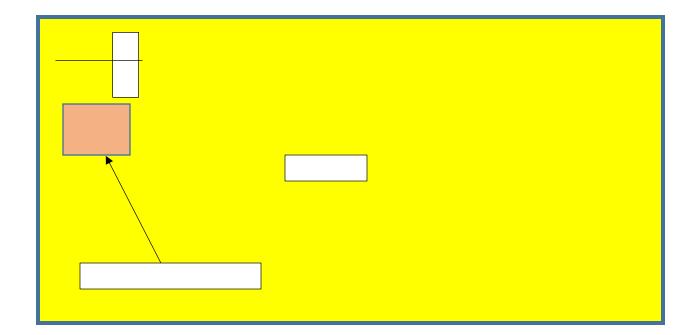

Final Design Quanity (mFD) = mD+mlo+mlv+mT = 560+0+0+0

mFD = 560 kg

Discharge Time (t) = 1 Min.

Discharge Rate (w) = 560 kg/Min.

Example Project-2(Total Flooding Type)

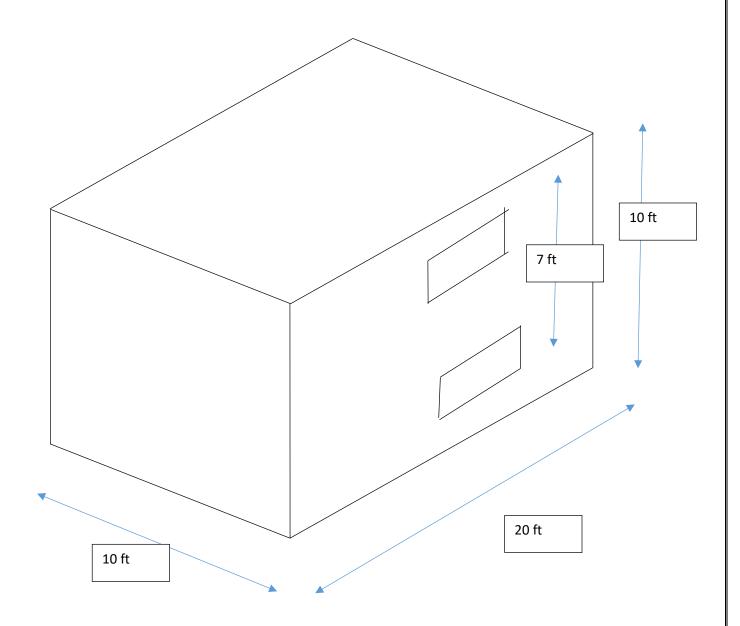


Volume of Space: 60 Cubic Meter

Type of Combustible : Petroleum spirit

Determine Design quantity and Rate of Discharge ...?

Example Project-3(Total Flooding Type)



Volume of Space: 300 Cubic Meter

Type of Combustible: Ethylene Oxide

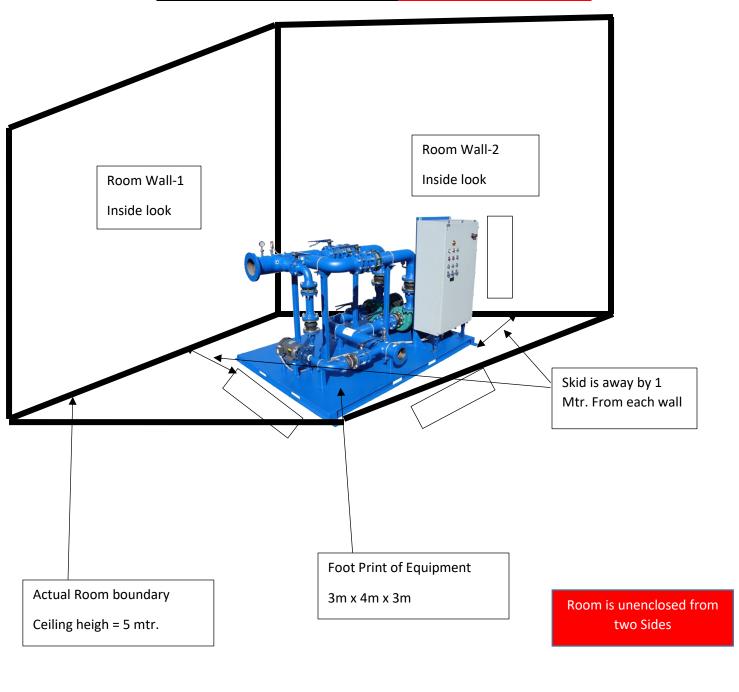
Determine Design quantity and Rate of Discharge ...?

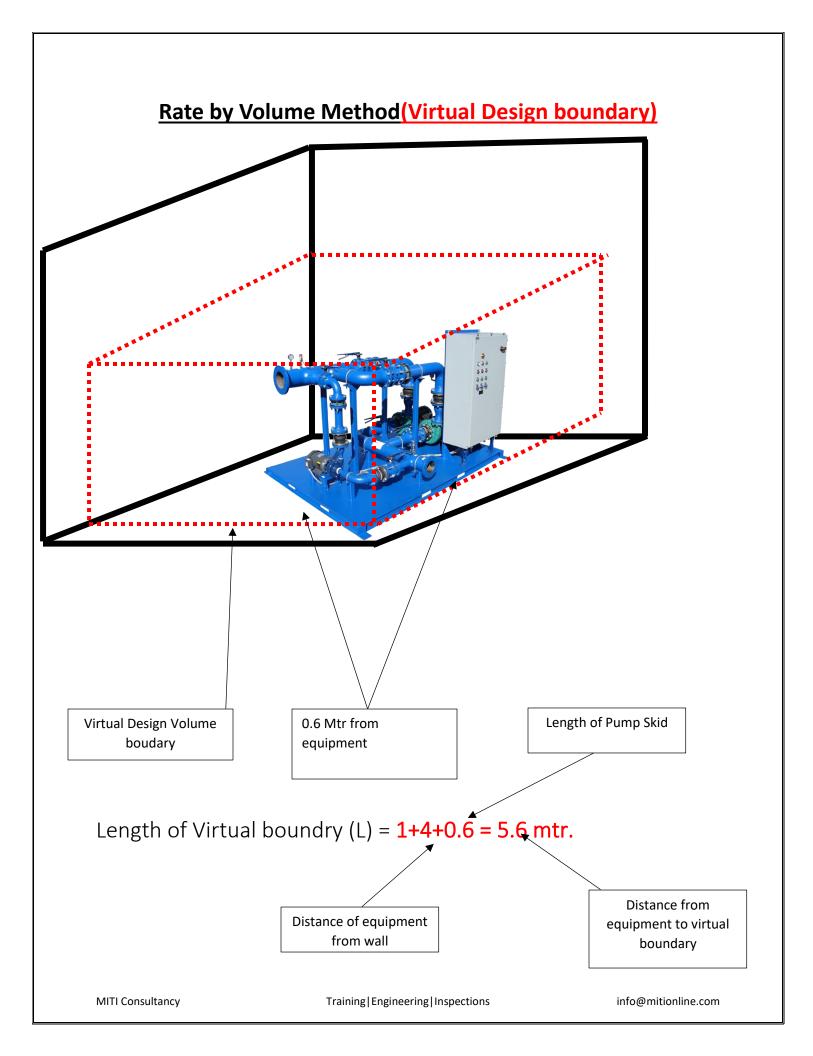
Example Project-4(Total Flooding Type)

Type of Combustible : Gasoline

Area of Openings: 5 Sq. Ft. Each

MITI Consultancy


Training | Engineering | Inspections


info@mitionline.com

<u>Example Project-1 – Local Application System</u>

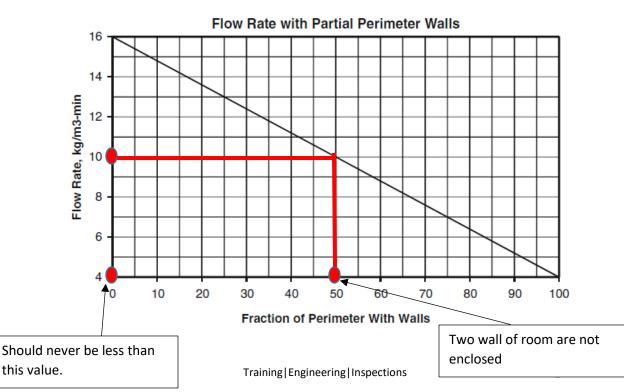
Diesel Fuel Pumping Skid

Rate by Volume Method(Placement of Skid)

Width of Virtual boundry (W) = 1+3+0.6 =4.6 Mtr.

Height of Virtual boundry (H) = 3+0.6 = 3.6 Mtr.

Size of Protected Volume (V) = L x Wx H = $5.6 \times 4.6 \times 3.6$


V = 92.73 Cubic Mtr.

Perimeter of Protected Space = Sum of all Sides

$$= 2((1+4+0.6)+(1+3+0.6))$$

$$= 2(10.2)$$

= 14.8 Mtr.

Total discharge rate of a basic System = 16 kg/min. Cubic mtr.

The discharge rate may be reduced by as much as $12 \text{ kg/min} \cdot \text{m3}$ in proportion to the fraction of the perimeter of the virtual volume that consists of permanent and continuous walls that extend at least 0.6 m above the hazard, and provided that the walls are not actually part of the protected hazard.

Therefore, Design Rate of CO2 = Protected Volume x Flow rate (from above graph) = 97.5 cubic Mtr x 10 kg/ Cubic Mtr x Min.

Design flow rate = 970 Kg/Min.

Duration of Liquid Discharge = 30 Sec

Therefore,

Design Quantity of CO2 = Rate of Discharge x Discharge Time x High pressure efficiency factor(For high pressure systems increase gas quantity by 40% as only 70% of cylinder is effective)

 $= 927 \times 0.5 \times 1.4$

Design Quantity of CO2 = 649 kg

The number of 45.4 kg high pressure CO2 Cylinder = 649/45.4 = 14.3 say 15

Number of Cylinder = 15

<u>Example Project-2 – Local Application System</u> <u>Paint Spray Booth</u>

Dimensions

Length = 2.13 m

Width = 2.44 m (open Front)

Height = 1.83 m

Determine the Design Quantity of CO2 and Discharge Rate...?

<u>Example Project-3 – Local Application System</u> <u>Printer</u>

Four Sides are opened (no continuous solid walls) Dimensions

L = 1.52 mW = 1.22 m

H = 1.22

Determine the Design Quantity of CO2 and Discharge Rate...?

Pipe Size & Orifice Size Determination

1. Determine the Terminal Pressure for a low Pressure System Consisting of single 2 inch. Sch. 80 pipeline with an equivalent length of 500 ft. and flow rate of 1000 lb/min.

Solution:

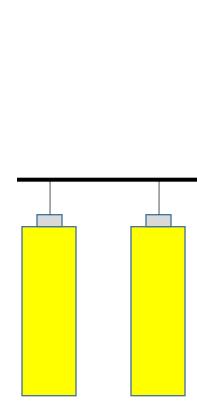
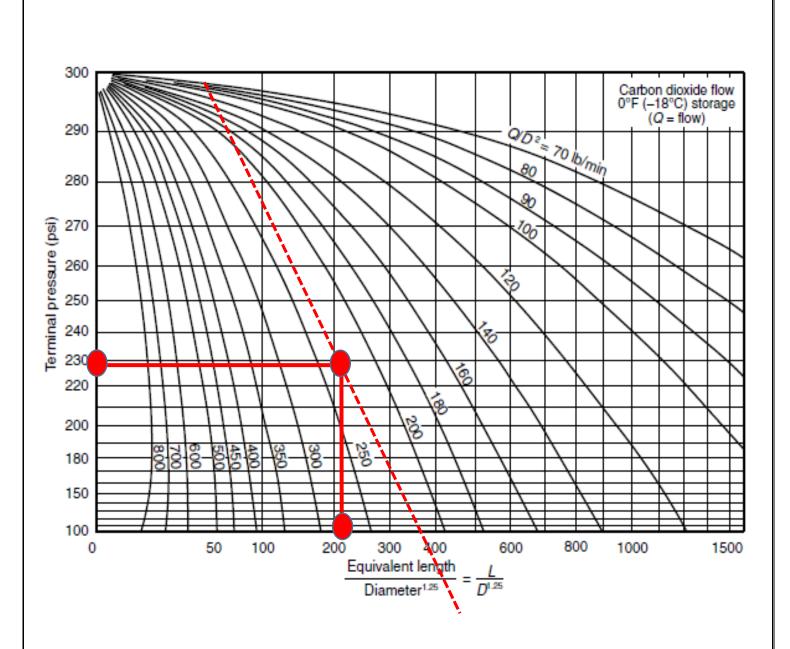


Table C.1(c) Values of $D^{1.25}$ and D^2 for Various Pipe Sizes

Pipe Size and Type	Inside Diameter (in.)	$D^{1.25}$	D^2
½ Std.	0.622	0.5521	0.3869
3/4 Std.	0.824	0.785	0.679
1 Std.	1.049	1.0615	1.100
1 XH	0.957	0.9465	0.9158
$1\frac{1}{4}$ Std.	1.380	1.496	1.904
11/4 XH	1.278	1.359	1.633
$1\frac{1}{2}$ Std.	1.610	1.813	2.592
1½ XH	1.500	1.660	2.250
2 Std.	2.067	2.475	4.272
2 XH	1.939	2.288	3.760
$2\frac{1}{2}$ Std.	2.469	3.09	6.096
$2\frac{1}{2}$ XH	2.323	2.865	5.396
3 Std.	3.068	4.06	9.413
3 XH	2.900	3.79	8.410
4 Std.	4.026	5.71	16.21
4 XH	3.826	5.34	14.64
5 Std.	5.047	7.54	25.47
5 XH	4.813	7.14	23.16
6 Std.	6.065	9.50	36.78
6 XH	5.761	8.92	33.19

Take following ratios,


$$\frac{Q}{D^2} \frac{1000}{4.28} = 234 \text{ lb/min.in2}$$

$$\frac{L}{D^{1.25}} \frac{500}{2.48} = 201 \text{ lb/min.in2}$$

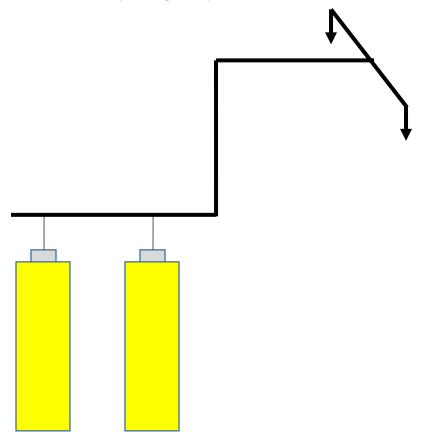
MITI Consultancy

Training | Engineering | Inspections

info@mitionline.com

Considering single nozzle termination.

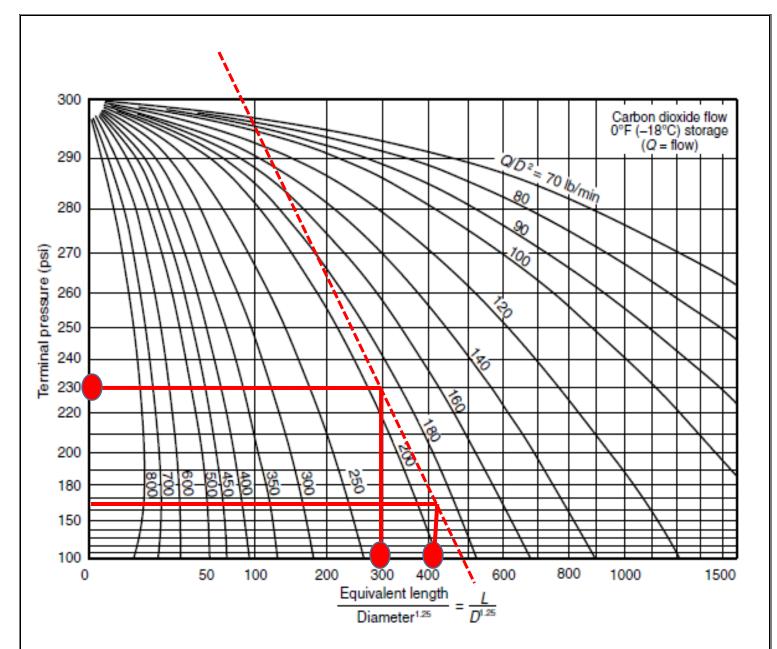
And refering to table 4.7.5.2.1 of NFPA 12


Table 4.7.5.2.1 Discharge Rate per Square Inch of Equivalent Orifice Area for Low-Pressure Storage [300 psi (2068 kPa)]

Orifice Pressure		Discha	rge Rate
psi	kPa	lb/min⋅in.²	kg/min·mm²
300	2068	4220	2.970
290	1999	2900	2.041
280	1931	2375	1.671
270	1862	2050	1.443
260	1793	1825	1.284
250	1724	1655	1.165
240	1655	1525	1.073
230	1586	1410	0.992
220	1517	1305	0.918
210	1448	1210	0.851
200	1379	1125	0.792
190	1310	1048	0.737
180	1941	977	0.688
170	1172	912	0.642
160	1103	852	0.600
150	1034	795	0.559

Equivalent Orifice area = $\frac{1000}{1410}$ = 0.709 Sq. Inch(Diameter will be 0.95 inch.)

Nozzle Diameter = 0.95 Inch.


2. Modifying previous example, Determine the Terminal Pressure for a low Pressure System Consisting of the pipeline branched into two smaller pipelines the branch lines are equal and consist of 1-1/2 in. Schedule 40 pipe with equivalent lengths of 200 ft (61 m) and that the flow in each branch line is to be 500 lb/min (227 kg/min).

Take following ratios,

$$\frac{Q}{D^2} \frac{500}{2.592} = 193 \text{ lb/min.in2}$$

$$\frac{L}{D^{1.25}} \frac{200}{1.813} = 110 \text{ lb/min.in2}$$

New
$$\frac{L}{D^{1.25}}$$
 = 110+300 = 410 ft/Sq. inch.

Terminal Pressure with new equivalent length = 165 psi

Equivalent Orifice area = $\frac{500}{912}$ = 0.5482 Sq. Inch(Diameter will be 0.83 inch.)

Nozzle Diameter = 0.83 inch.