Electrical Basics & Classic Control

COURSE CONTENTS

Part One Electrical Basics & Control Circuits

Chapter 1 Electrical Basics

Chapter 2 Types of Control System

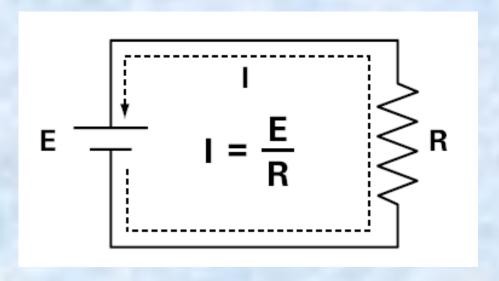
Chapter 3 Classic control components

Chapter 4 Motor Name Plate

Chapter 5 Types of AC Motors

Chapter 6 Different types of Control Circuits

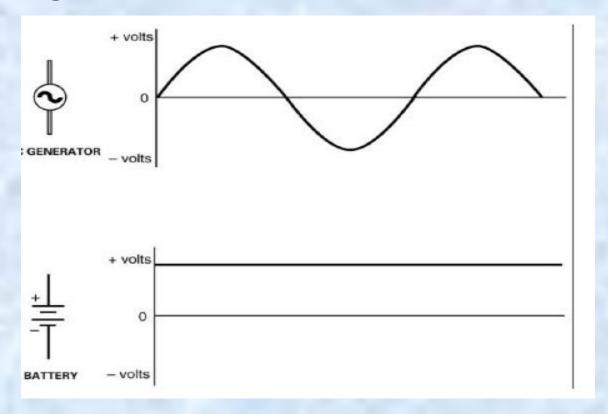
Chapter 7 Types of Starter for Induction motors


Chapter 8 Testing of Induction Motor

Chapter 9 Typical Motor Failure & Protection

CHAPTER 1 Electrical Basics

Electric Circuit


A simple electric circuit consists of a voltage source, some type of loads, and conductors to allow electrons to flow between the voltage source and the load.

Direct & Alternating current

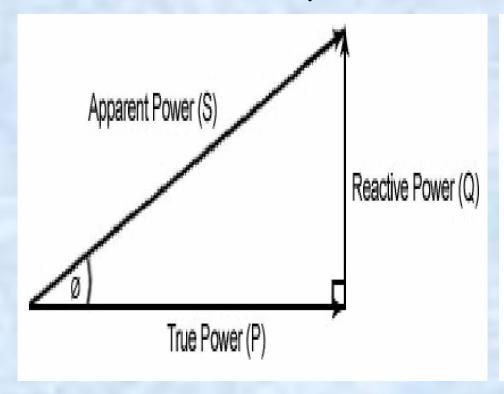
There are two methods that voltage forces current to flow:

- > Direct Current
- > Alternating Current

peak = RMS x 1.414

Direct & Alternating current

DC (Thomas Edison)


Unidirectional (one way street)

AC (Nicolas Tesla)

Bidirectional (HZ) (number of alternating in a second 50 HZ === It is alternated 50 times in a second.

Electric Power

The apparent power is a combination of both reactive power and true power. True power is a result of resistive components and reactive power is a result of capacitive and inductive components.

P = true power
$$P = 1^2 R$$
 $P = \frac{E^2}{R}$

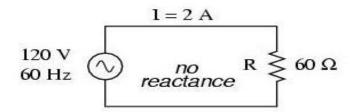
Measured in units of Watts

Q = reactive power
$$Q = I^2X$$
 $Q = \frac{E^2}{X}$
Measured in units of **Volt-Amps-Reactive (VAR)**

S = apparent power
$$S = 1^2Z$$
 $S = \frac{E^2}{Z}$ $S = 1E$

Measured in units of Volt-Amps (VA)

Formula Cheatsheet


- 1. Impedance Z = R or $X_{Lor} X_{C}$ (if only one is present)
- 2. Impedance in series only $Z = \sqrt{(R^2 + X^2)}$ (if both R and one type of X are present)
- 3. Impedance in series only $Z = \sqrt{(R^2 + (|X_L X_C|)^2)}$ (if R, X_L , and X_C are all present)
- 4. Impedance in any circuit = R + jX (j is the imaginary number √(-1))
- Resistance R = I / ΔV
- 6. Inductive reactance $X_L = 2\pi f L = \omega L$
- 7. Capacative reactance $X_C = \frac{1}{2\pi fC} = \frac{1}{\omega C}$

Resistive load only:

$$P = true power = 1^2 R = 240 W$$

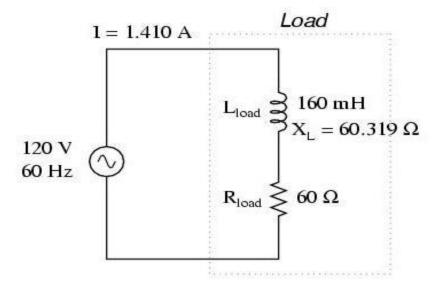
$$Q = reactive power = I^2X = 0 VAR$$

$$S = apparent power = 1^2Z = 240 VA$$

Reactive load only:

$$P = true power = 1^2 R = 0 W$$

$$Q = reactive power = 1^2 X = 238.73 VAR$$


$$S = apparent power = 1^2Z = 238.73 VA$$

1 = 1.989 A

120 V
60 Hz

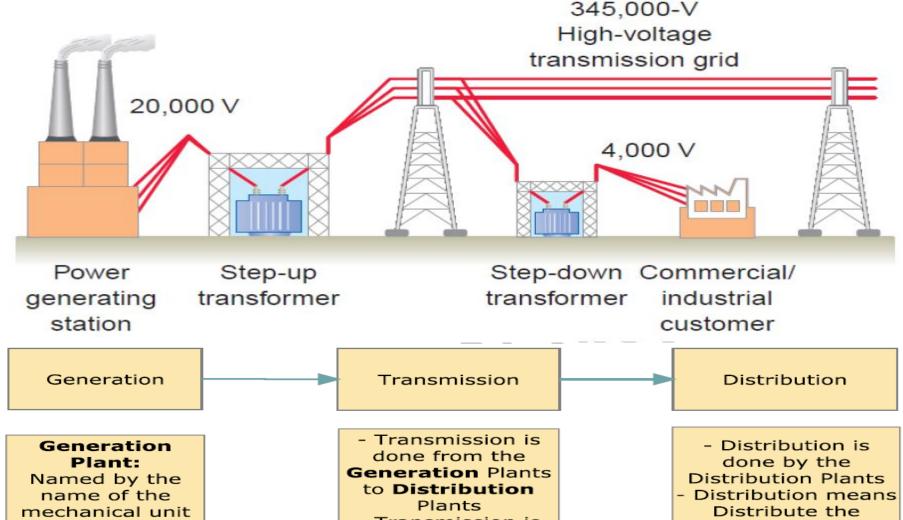
$$resistance$$
 $resistance$
 res

Resistive/reactive load:

$$P = true power = 1^2R = 119.365 W$$

$$Q = reactive power = 1^2X = 119.998 VAR$$

$$S = apparent power = I^2Z = 169.256 VA$$


Magnetic field VS Electric field

<u>Magnetic fields</u> are created whenever there is a flow of electric current. This can also be thought of as the flow of water in a garden hose. As the amount of current flowing increases, the level of magnetic field increases. Magnetic fields are measured in milliGauss (mG).

<u>An electric field</u> occurs wherever a voltage is present. Electric fields are created around appliances and wires wherever a voltage exists. You can think of electric voltage as the pressure of water in a garden hose – the higher the voltage, the stronger the electric field strength. Electric field strength is measured in volts per meter (V/m). The strength of an electric field decreases rapidly as you move away from the source. Electric fields can also be shielded by many objects, such as trees or the walls of a building.

	Electric Field	Magnetic Field
Nature	Created around electric charge	Created around moving electric charge and magnets
Units	Newton per coulomb, volts per meter	Gauss or Tesla
Force	Proportional to the electric charge	Proportional to charge and speed of electric charge
Movement In Electromagnetic field	Perpendicular to the magnetic field	Perpendicular to the electric field
Electromagnetic Field	Generates VARS (Capacitive)	Absorbs VARS (Inductive)

Power Flow

turbine

Gas Station

Steam Station

Hydraulic
Station

that move the

to Distribution
Plants
- Transmission is
done by
Underground
Cables
Over Head
Transmission
Line (OHTL)

Distribution is done by the Distribution Plants
 Distribution means Distribute the Electric Source on the Electric Loads
 Domestic Loads
 Industrial Loads
 Commercial Loads

تعريفة عنام ٢٠١٥ / ٢٠١٦ للاستخداميات المختلفة

المستخدامات الطاقة على الجهد الغالف (۱۰۰ مترسد سعر الطاقة (۱۰۰ مترسد سعر الطاقة الفيلة (۱۰۰ مترسد سعر الطاقة على الجهد الغافق (۱۳۰ – ۱۳۰ ك. ف) المستخدامات الطاقة على الجهد الغافق (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ المستخدامات الطاقة على الجهد العالى (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ المستخدامات الطاقة على الجهد العالى (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ ۱۰٫۰ ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ – ۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ فواصط المتوسط (۱۳۰ ك. ف) ۱۰٫۰ المستخدامات الطاقة على الجهد المتوسط (۱۳۰ ك. ف) ۱۰٫۰ المستخدامات المتوسط (۱۳۰	,												
استخدامات الطاقة على الجهد الفائق (۲۰۰ – ۱۳۱ ك . ف) المناعات الطاقة على الجهد العائق (۲۰۰ – ۱۳۱ ك . ف) المناعات الكليفة (۲۰ – ۱۳۱ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة (۲۰ – ۲۳ ك . ف) المناعات الكليفة على الجهد المتوسط (۲۲ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۲ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات الطاقة على الجهد المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف) المنتخدامات المتوسط (۲۰ – ۲۱ ك . ف)		مقابل القدرة (٢)	متوسط سعر الطاقة (1)	خارج الذروة ^(۲) داخل الذروة ^(۲)									
کیدا - ۷,2 مکرو (الاتفاق - ۰,61 ۲,77 ۸,30 الصناعات الكثيثة (*) ۰,01 ۴,77 ۸,30 <th></th> <th></th> <th></th> <th colspan="4"></th>													
المستخدامات العلقة على الجهد العالى (١٦ - ١٩ ١ ١٠ ١ ١٠ ١ ١٠ ١ ١٠ ١ ١٠ ١ ١٠ ١ ١٠	استخدامات الطاقة على الجهد الفائق	4 177 – 77 • 3	٠. ف										
الصناعات الكثيلة (*) المناعات الكثيلة (*) المستخدامات الطاقة على الجهد العالى (٦٠ - ٢٢ ك . ف) المستخدامات الطاقة على الجهد العالى (٦٠ - ٢٢ ك . ف) المناعات الكثيلة (*) المناعات الكثيلة (*) المناعات الكثيلة (*) المناعات الكثيلة على الجهد المتوسط (٢٣ - ١١ ك . ف) المستخدامات الطاقة على الجهد المتوسط (٢٣ - ١١ ك . ف) المستخدامات الطاقة على الجهد المتوسط (٢٠ - ١١ ك . ف) الري الر	كيما	-		٧	í,								
يقى المشتركين (١٠ - ٢٢ ك (١٠ - ٢٠ ٢) (٢٠ - ٢٠ ٢ ك (١٠ ١ ١ ٢٠ ٢ ك (١٠ ١ ١ ٢٠ ٢ ك (١٠ ١ ١ ٢٠ ٢ ٢ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١		-		,•	1.4								
استخدامات الطاقة على الجهد العالى (٦٠ - ٢٦ ك . ف) استخدامات العلقة على الجهد العالى (٦٠ - ٢٢ ك . ف) الصناعات العلقة على الجهد المتوسط (٢٠ - ١١ ك . ف) استخدامات الطاقة على الجهد المتوسط (٢٠ - ١١ ك . ف) استخدامات الطاقة على الجهد المتخفض (٢٠٠٠ فواعت) استخدامات الطاقة على الجهد المتخفض (٢٠٠٠ فواعت) الترى	الصناعات الكثيفة (١)	10,.	84,1	41,1	0 £ , A								
مترو الإثفاق	باقى المشتركين	10,.	44,4	Y £ , A	44,4								
الصناعات الكثيقة (۱) المنتخدامات الطاقة على الجهد المتوسط (۲۲ - ۱۱ ك . ف) المتخدامات الطاقة على الجهد المتوسط (۲۲ - ۱۱ ك . ف) المتخدامات الطاقة على الجهد المتفض (۲۰۰ فولت) المتخدامات الطاقة على الجهد المتفض (۲۰۰ فولت) التخدامات الطاقة على الجهد المتفض (۲۰۰ فولت) التخدامات الطاقة على الجهد المتفض (۲۰۰ فولت) التربي القرائع على الجهد المتفلاك (ك.و.س / شهر) المتخدامات المتزلية المتفلاك (ك.و.س / شهر) المتخدامات المت	استخدامات الطاقة على الجهد العالى	ات الطاقة على الجهد العالى (٦٦ – ٢٢ ك . ف)											
القى المشتركين ۲۲. (۲۲ - ۲۲ - ۲۲ - ۲۲ - ۲۲ - ۲۲ - ۲۲ -	متزو الأتفاق	_		٥.	۲.,								
الستخدامات الطاقة على الجهد المتوسط (۲۲ – ۱۱ ك . ف) جميع المشتركين (۲۰۰ فولت) الرى المشتركين الطاقة على الجهد المنخفض (۲۰۰ فولت) الرى المشتركين المشتركين المشتركين المشتركين المشتركين المشتركين المشتركين المشتركين المستخدامات المتراتية الاستخدامات المتراتية الاستخدامات المتراتية المستجدات المتحداث المتحدا	الصناعات الكثيفة (١)	۲٦,٠	٤١,١	44.4	01,4								
جميع المشتركين (٢٠٠٠ فولت) الستخدامات الطاقة على الجهد المنخفض (٢٨٠ فولت) الرى المشتركين (٢٠٠٠ فولت) إلا المشتخدامات المشتركين (٢٠٠٠ فولت) الاستخدامات المشتركين (٢٠٠٠ فولت) الاستخدامات المشتركين (٢٠٠٠ فولت) الاستخدامات المشتركين (٢٠٠٠ فيلت) الاستخدامات المشتركين (٢٠٠٠ فيلت) الاستخدامات الشجارية (٢٠٠٠ فيلت)	باقى المشتركين	**,.	44.1	Y 7, 4	٤٠,٣								
استخدامات الطاقة على الجهد المنخفض (۱۸۰ فولت) الرى الرى الرى الرى الرى الرى الرى الرى	استخدامات الطاقة على الجهد المتوس	۵ ۱۱ – ۲۲ ₎ ۵	(네.네11-77)										
الرى الرى الرى الإى المشتركين الإستخدامات المنزلية الاستخدامات المنزلية الاستخدامات المنزلية الرائح الاستهلاك (ك.و.س / شهر) الإستخدامات المنزلية الإستخدامات المنزلية الإستخدامات المنزلية الإستخدامات المنزلية الاستخدامات المنزلية الإستخدامات المنزلية ا	جميع المشتركين	۳٠,٠	17,0	1.,7 £.,7									
باقی المشترکین													
إنرة علمة الاستخدامات المنزلية الاستخدامات المنزلية شرائح الاستهلاك (ك.و.س / شهر) قرش / ك.و.س من ١٠ و الى ١٠٠ من ١٠٠ و الى ١٠٠ من ١٠٠ و الى ١٠٠ من ١٠٠ و الى ١٠ و الى ١٠٠ و الى ١٠٠ و الى	الزى			**,*									
الاستخدامات المغزلية شرائح الاستهلاك (ك.و.س / شهر) شرائح الاستهلاك (ك.و.س / شهر) من ١٠ إلى ١٠٠ (الى ١٠	باقى المشتركين			,•	£٦								
شرانح الاستهلاك (ك.و.س / شهر) شرانح الاستهلاك (ك.و.س / شهر) من ١٥ إنى ١٠٠ ١١٠ إلى ١٠٠ ١٠٠ إلى ١٠٠ ١٥٠ ألى ١٠٠ ١٥٠ شرانح الاستهلاك (ك.و.س / شهر) من ١٠٠٠ ١٠٠ من ١٠٠٠ ١٠٠ من ١٠٠٠ إلى ١٠٠ ١٠٠ إلى ١٠٠ ١٠ إلى ١٠٠ إلى ١٠ إ	إنارة عامة			٥٨,٠									
من • • من ا	الاستخدامات المنزلية												
من ۱۰ إلى ۱۰۰	شرانح الاستهلاك (ك.و.س / شهر)		قرش/ ا	ن و س									
• إلى ٠٠٠ ١٠٠ إلى ٠٥٠ ١٥٠ إلى ٠٥٠ ١٥٠ إلى ٠٠٠ ١٥٠ إلى ٠٠٠ ١٤٠ إلى ٠٠٠ ١٠٠ إلى ١٠٠٠ من ١٠٠٠ من ١٠٠٠ إلى ٠٠٠ ١٠٠ إلى ٠٠٠ ١٠٠ إلى ٠٠٠	من ٠ ــ ٥٥		, 0	٧									
۱۰۲ إلى ٥٠٠ ١٥٣ إلى ٥٠٠ ١٥٠ إلى ١٠٠٠ ١٥٠ إلى ١٠٠٠ ١٥٠ إلى ١٠٠٠ ١٥٠ إلى ١٠٠٠ قرش / ك.و.س قرش / ك.و.س من ١٠٠ إلى ١٠٠ ١٠٠ إلى ١٠٠ ١٠٠ إلى ١٠٠	من ۵۱ إلى ۱۰۰		٥, ٥	١									
۱۰۳ إلى ۱۰۰ (الله ۱۰۰ (۱۰ (۱۰ (۱۰ (۱۰ (۱۰ (۱۰۰ (۱۰ () ((((١,٠	١.									
۱۰۰ إلى ۱۰۰ م.۱۰ الكثر من ۱۰۰۰ أكثر من ۱۰۰۰ من التجارية شرائح الاستهلاك (ك.و.س / شهر) فرش / ك.و.س من ۱۰۰۰ من ۱۰۰۰ ألى ۱۰۰ الى ۱۰۰ ألى ۱۰ ألى ۱۰۰ ألى ۱۰ ألى			۰,۰	٣									
اكثر من ١٠٠٠ الاستخدامات المتجارية الاستخدامات المتجارية الاستخدامات المتجارية الاستخدامات المتجارية الاستخدامات المتجارية الاستغلاك (ك.و.س / شهر) القرش / ك.و.س من ١٠٠٠ من ١٠٠٠ من ١٠٠٠ اللي ١٠٠٠ من ١٠٠١ اللي ١٠٠٠ الله ١٠٠ الله ١٠٠٠ الله ١٠٠ الله ١٠٠٠ الله ١٠٠ الله ١٠٠٠ الله ١٠٠ اله ١٠٠ الله			.,0	í									
الاستخدامات التجارية شرانح الاستهلاك (ك.و.س / شهر) قرش / ك.و.س من ٠ ـ ـ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠			١,.	٧									
شرانح الاستهلاك (گ.و.س / شهر) قرش / ك.و.س من ٠ ــ ١٠٠ من ٠ ــ ٢٠٠ من ١٠٠ إلى ١٠٠	أكثر من ١٠٠٠		í,.	٨									
من ۰ ــ ۱۰۰ من ۰ ــ ۲۰۰ من ۱ - ۲۰ إلى ۲۰۰ ۱۰ ق إلى ۱۰۰	الاستخدامات التجارية												
من ٠٠٠٠ من ١٠٠٠ من ١٠٠٠ من ١٠٠٠ من ١٠٠٠ الله ١٠٠ الله ١٠٠٠ الله ١٠٠٠ الله ١٠٠٠ الله ١٠٠ الله ١٠٠٠ الله ١٠٠٠ الله ١٠٠ الله	شرانح الاستهلاك (ك.و.س / شهر)	قرش / ك.و.س											
من ۲۰۱ إلى ۲۰۰		**,.											
۱۰۰ إلى ۱۰۰۰		٥.,.											
			١,٠	٦.									
أكثر من ۱۰۰۰			١,٠	٨									
	أكثر من ١٠٠٠	A1, •											

تعريفة الكهرباء لعام ٢٠١٧/٢٠١٦ للاستخدامات المختلفة

	مقابل القدرة (٢) (جنيه / ك.و.شهر)	متوسط سعر الطاقة (٤) (قرش/ك.و.س)	خارج الذروة(٣) (قرش/ك.و.س)	داخل الذروة(٣) (قرش/ك.و.س)			
دامات الطاقة على الجهد الفائق(٢٢٠-١٣٢ ك.ف)			,				
كيما	_			٩,٤			
مترو الأتفاق	_		۳.,.				
الصناعات الكثيفة(١)	۲٥,٠	£7,0	٤٢,٩	7 £ , £			
باقى المشتركين	۲٥,٠	٤١,٩	* A, V	٥٨,١			
خدامات الطاقة على الجهد العالى (٣٦ ك.ف)							
مترو الاتفاق	-		•	٣٢,٠			
الصناعات الكثيفة(١)	٣٥,٠	٤٩,٠	10,7	٦٧,٨			
باقى المشتركين	٣٥,٠	£ £ , 7	٤١,١	71,4			
فدامات الطاقة على الجهد المتوسط (٢٢-١١ ك.ف)							
جميع المشتركين	٤٥,٠	٥٢,٠	٤٨,٠	٧٢,٠			
خدامات الطاقة على الجهد المنخفض (٣٨٠ فولت)							
الري			YV,1				
باقى المشتركين			ŧ	٦٤,			
انارة عامة		٧٠,٠					
خدامات المنزئية							
ح الاستهلاك (ك.و.س / شهر)		قرش/ك.و	س.				
من ۰ ـ ۰ ه		11,.	16				
من ۱۰۱لی ۱۰۰		19,.					
من ١٠ الى ٢٠٠		Y1,0	The state of the s	Al————————————————————————————————————			
من ۲۰۱ الی ۳۰۰	_	٤٢,٠					
من ۳۰۱ الی ۳۰۰		٥٥,٠					
من ۲۰۱ الی ۱۰۰۰		90,.	3				
من صفر لأكثر من ١٠٠٠		90,.					

			W2000	
يوليو"٢٠١٤		501 71 501 511	النوع	رقم العداد
الثابت الاستهلاك		القراءة السابقة القراءة الـ ٢٠١٤-٠٠ - ٢٠١٤		
· ·				
			فعال ١صفحة ٢٦	7706697
1977	1 1 1 1 1 1 1 1 1	71V	فعال ٢صفحة ٢٦	7377176
£79 1			اجمالي الاستهلاك	
7490	Ü	ك.و.س	يخصم الانسارة	
11970			تهلاك القوى المحركة اجمالي قيمة القوى المحركة	
7777.70		ı	-	اولاً
1449.41		مغة نوعية للقوى ال	. •	
	ى المحركة	رق دمغة نوع <u>بةللقو</u> ; سابق +مقابل خدمة ال	ص بل القدره خلال العام الـ ده	مقا
1 / I	ملاء ۲۰جنیه شهریا	سعات ورسوم	4.3	جمالي مطالبة القوى المصركة
			اجمالي قيمة الانسارة	
V#1VA7.11 #Y97.17			الإنسارة الإنسارة ١١٩٧٥	تاتيأ
77.90	مليم	ك و ، س اذاعه ٢		V4050VV
409.70	۳ ملیم	دمغه نوعية . دمغات ورسو		جمالى مطالبة الانـــــــــــــــــــــــــــــــــــ
١٠.٤١				
#7V7_V£	•	ثعانية ومعسون جنيما و ٨٨ مرينا لاتير)	قدرة سبعمائة خمسة و ثلاثون النفا و أربعمائة : المطالبة قبل الدحوى النذا	حوظة 1: يراعي عدم اجراء اي تعديل في هذه حوظة 7: لاتعتبر هذه المطالعة مخالصة ع
V4050VVV			المطالبة قبل الرجوع الينا . بالغ سابقة مستحقة للشركة المصرية لنقل الكهرب	<u> حوظة ٢:</u> لأتعتبر هذه المطالبة مخالصة عن م

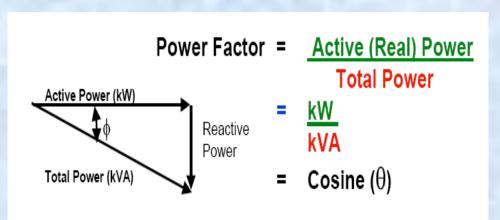
الاجمالي	الثابت	القراءة الحالية	رقم المحاولة	نوع العداد	رقم العداد
٤٠٠٠	١	٤	٦٨	قياس اقصى حمل اثناء الذروة	رم ،ــــــ
٨٣٥	7170	77010A. V11	= -	الطاقة المستهلكة خلال الشهر عدد ساعات الشهر	توسط الحمل الشهرى
		WWYW.Y0	= _	1	توسط الحمل الشهرى
		-	11	وة عن ١٠٥% من متوسط الحمل الشهرى	اء على الفقرة (ج) من البند الرابع م حالة زيادة الحمل الأقصى خلال فترة الذر
۸۳۵				، منوسط الحمل السهري	زم المنتفع بأداء مايقابل كامل الزيادة عن معر قدره ٢جنيه / كيلو وات
177					فروق الاحمال قيمة فروق الاحمال
HT.	en.			ستمائة و سبعون جنيها و ١ ؛ قرش لاغير.)	. مغات ورسوم احمال المطالبة (فقط وقدرة ألف و

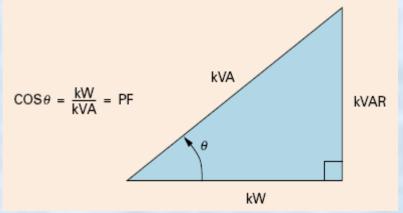
مقابل القدرة

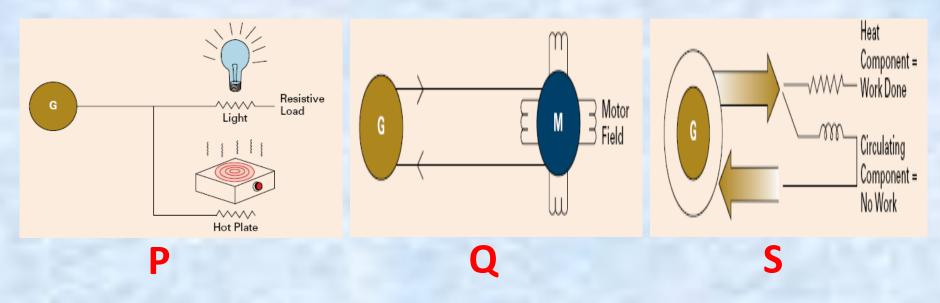
اقصى حمل x 35 ج

نحيط سيادتكم علما أن مقابل القدره الذى تم المحاسبة عليه خلال الفترة من أكتوبر ٢٠١٦/ ديسمبر ٢٠١٦ أعلى أقصى حمل هو ١٣٥٠ ك.و (أسترشادى من الفترة السابقة) وحيث أنه تم تسجيل أقصى حمل وصلت إليه شركتكم فعلى خلال الفترة من أكتوبر ٢٠١٦ حتى ديسمبر ٢٠١٦هو ٨٣٠ ك.و(فعلى) ٠

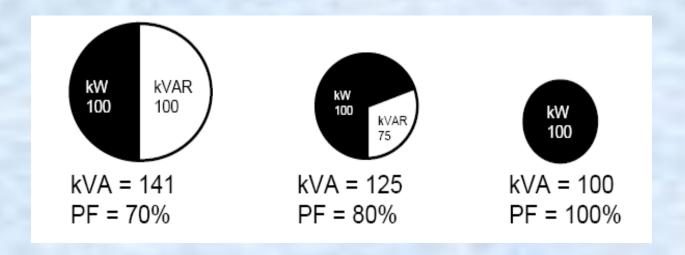
نتشرف بأن نرفق لسيادتكم التسوية الخاصة بفرق حساب مقابل القدره عن الفترة من ٢٠١٦/١٠/١ حتى ٢٠١٦/١٠/١ كالأتى:


القيمة ٣شمور	القيمة شهريا	السعر	أقصى حمل	ماتم المحاسبة عليه
1 1 1 1 0	٤٧٢٥٠.٠٠	٣٥.٠٠	140.	
القيمة ٣شهور	القيمة شهريا	السعر	أقصى حمل	مايجب المحاسبة عليه
AY10	44.0	٣٥.٠٠	۸٣.	



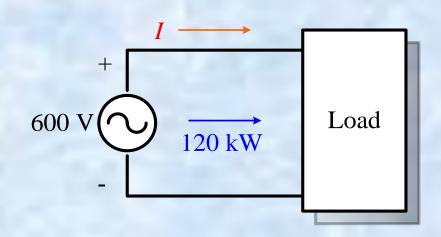

الفرق المستحق لشركتكم من فرق مقابل القدره الذي تم المحاسبة عليه ١٠٠٠٠٠

Power factor


Power Factor is the ratio of Active Power to Total Power

The effect of PF on current drawn is shown below:

Decreasing size of conductors required to carry the same 100kW load at P.F. ranging from 70% to 100%

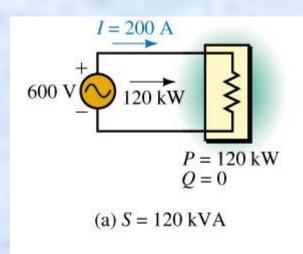

Why is Power Factor Important?

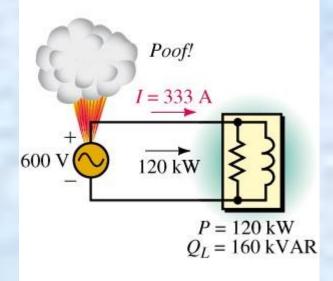
Consider the following example: A generator is rated at 600 V and supplies one of two possible loads.

Load 1: P = 120 kW, PF = 1

Load 2: P = 120 kW, PF = 0.6

How much current (I) is the generator required to supply in each case?

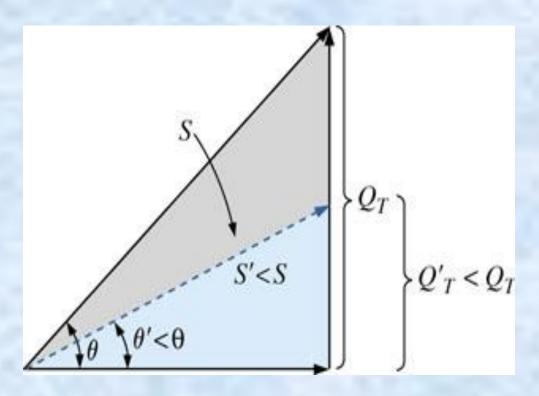



Why is Power Factor Important?

For the load with PF = 0.6, the generator had to supply 133 more amperes in order to do the same work (P)!

Larger current means larger equipment (wires, transformers, generators) which cost more.

Larger current also means larger transmission losses (think I^2R).



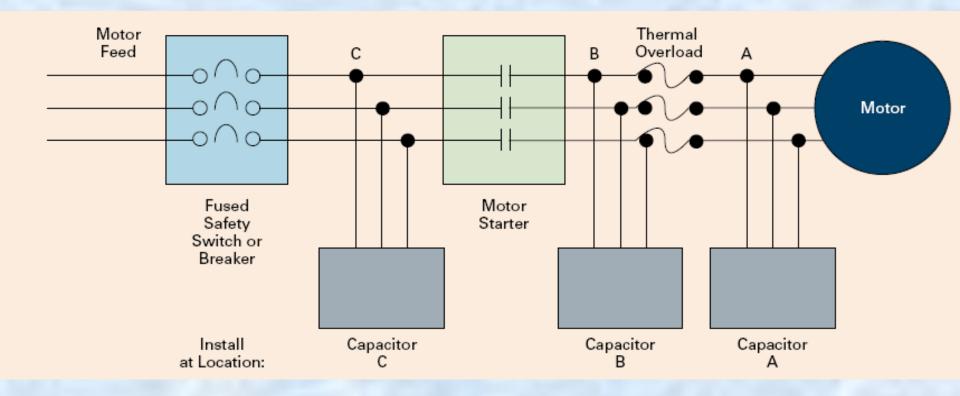
(b)
$$S = \sqrt{(120)^2 + (160)^2} = 200 \text{ kVA}$$

The generator is overloaded

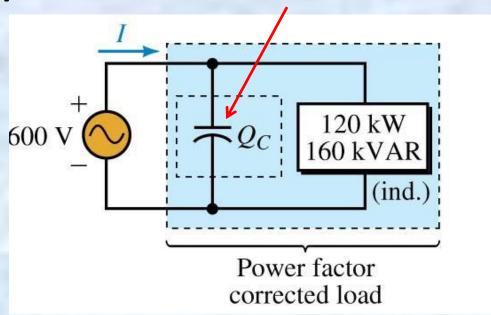
Is it possible to change the power factor of the load?

Demonstrating the impact of power-factor correction on the power triangle of a network.

Almost all loads are inductive.


In order to cancel the reactive component of power, we must add reactance of the opposite type. This is called **power factor correction**.

P.F Regulator



Capacitor bank in shipboard power panel for PF correction

In practice, almost all loads (commercial, industrial and residential) look *inductive* (due to motors, fluorescent lamp ballasts, etc.).

Hence, almost all power factor correction consists of adding *capacitance*.

Power Factor Correction Solution Steps

- Calculate the reactive power (Q) of the load
- Insert a component in parallel of the load that will cancel out that reactive power

e.g. If the load has Q_{LD} =512 VAR, insert a capacitor with Q_{C} =-512 VAR.

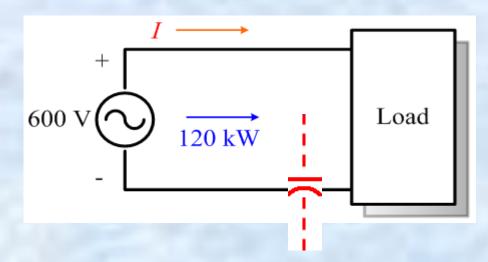
- Calculate the reactance (X) that will give this value of Q Normally the $Q=V^2/X$ formula will work
- Calculate the component value (F or H) required to provide that reactance.

 $Q_c = P (tan (cos^{-1} \Theta_1) - tan (cos^{-1} \Theta_2))$

Existing																					
Power	Desired Power Factor [Proposed / Target P.F (Cos0 ₂)] Copy right @ http://electricaltechnology.org/													ra/							
Factor								[Propo	sed /	Target	P.F	$\cos\theta_2$	1	copy 11	gut ev t	tttp://e	ecuric	antecnn	ology.o	rg/
Cose ₁	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
0.50	0.982	1.008	1.034	1.060	1.086	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1,403	1.442	1.481	1.529	1.590	1.732
0.51	.937	.962	.989	1.015	1.041	1.067	1.094	1.120	1.147	1.175	1.203	1.231	1.261	1.292	1.324	1.358	1.395	1.436	1.484	1.544	1.687
0.52	.893	.919	.945	.971	.997	1.023	1.050	1.076	1.103	1.131	1.159	1.187	1.217	1.248	1.280	1.314	1.351	1.392	1.440	1.500	1.643
0.53	.850	.876	.902	.928	.954	.980	1.007	1.033	1.060	1.088	1.116	1.144	1.174	1.205	1.237	1.271	1.308	1.349	1.397	1.457	1.600
0.54	.809	.835	.861	.887	.913	.939	.966	.992	1.019	1.047	1.075	1.103	1.133	1.164	1.196	1.230	1.267	1.308	1.356	1.416	1.559
0.55	.769	.795	.821	.847	.873	.899	.926	.952	.979	1.007	1.035	1.063	1.090	1.124	1.156	1.190	1.228	1.268	1.316	1.377	1.519
0.56	.730	.756	.782	.808	.834	.860	.887	.913	.940	.968	.996	1.024	1.051	1.085	1.117	1.151	1.189	1.229	1.277	1.338	1.480
0.57	.692	.718	.744	.770	.796	.822	.849	.875	.902	.930	.958	986	1.013	1.047	1.079	1.113	1.151	1.191	1.239	1.300	1.442
0.58	.655	.681	.707	.733	.759	.785	.812	.838	.865	.893	.921	.949	.976	1.010	1.042	1.076	1.114	1.154	1.202	1.263	1.405
0.59	.618	.644	.670	.696	.722	.748	.775	.801	.828	.856	.884	912	.939	.973	1.005	1.039	1.077	1.117	1.165	1.226	1.368
0.60	.584	.610	.636	.662	.688	.714	.741	.767	.794	.822	.850	.878	.905	.939	.971	1.005	1.043	1.083	1.131	1.192	1.334
0.61	.549	.575	.601	.627	.653	.679	.706	.732	.759	.787	.815	.843	.870	.904	.936	.970	1.008	1.048	1.096	1.157	1.299
0.62	.515	.541	.567	.593	.619	.645	.672	.698	.725	.753	.781	.809	.836	.870	.902	.936	.974	1.014	1.062	1.123	1.265
0.63	.483	.509	.535	.561	.587	.613	.640	.666	.693	.721	.749	.777	.804	.838	.870	.904	.942	.982	1.030	1.091	1.233
0.64	.450	.476	.502	.528	.554	.580	.607	.633	.660	.688	.716	.744	.771	.805	.837	.871	.909	.949	.997	1.058	1.200
0.65	.419	.445	.471	.497	.523	.549	.576	.602	.629	.657	.685	.713	.740	.774	.806	.840	.878	.918	.966	1.027	1.169
0.66	.388	.414	.440	.466	.492	.518	.545	.571	.598	.626	.554	.682	.709	.743	.775	.809	.847	.887	.935	.996	1.138
0.67	.358	.384	.410	.436	.462	.488	.515	.541	.568	.596	.624	.652	.679	.713	.745	.779	.817	.857	.905	.966	1.108
0.68	.329	.355	.381	.407	.433	.459	.486	.512	.539	.567	.595	.623	.650	.684	.716	.750	.788	.828	.876	.937	1.079
0.69	299	.325	.351	.377	.403	429	.456	.482	.509	.537	.565	.593	.620	.654	.866	.720	.758	.798	.840	.907	1.049
0.70	.270	.296	.322	.348	.374	.400	.427	.453	.480	.508	.536	.564	.591	.625	.657	.691	.729	.769	.811	.878	1.020
0.71	.242	.268	.294	.320	.346	.372	.399	.425	.452	.480	.508	.536	.563	.597	.629	.663	.701	.741	.783	.850	.992
0.72	.213	.239	.265	.291	.317	.343	.370	.396	.423	.451	.479	.507	.534	.568	.600	.634	.672	.712	.754	.821	.963
0.73	.186	.212	.238	.264	290	.316	.343	.369	.396	.424	.452	.480	.507	.541	.573	.607	.645	.685	.727	.794	.936
0.74	.159	.185	.211	.237	.263	.289	.316	.342	.369	.397	.425	.453	.480	.514	.546	.580	.618	.658	.700	.767	.909

 $Q_c = P * Multiplier (get from table 0.536 if 0.7 to be 0.9)$

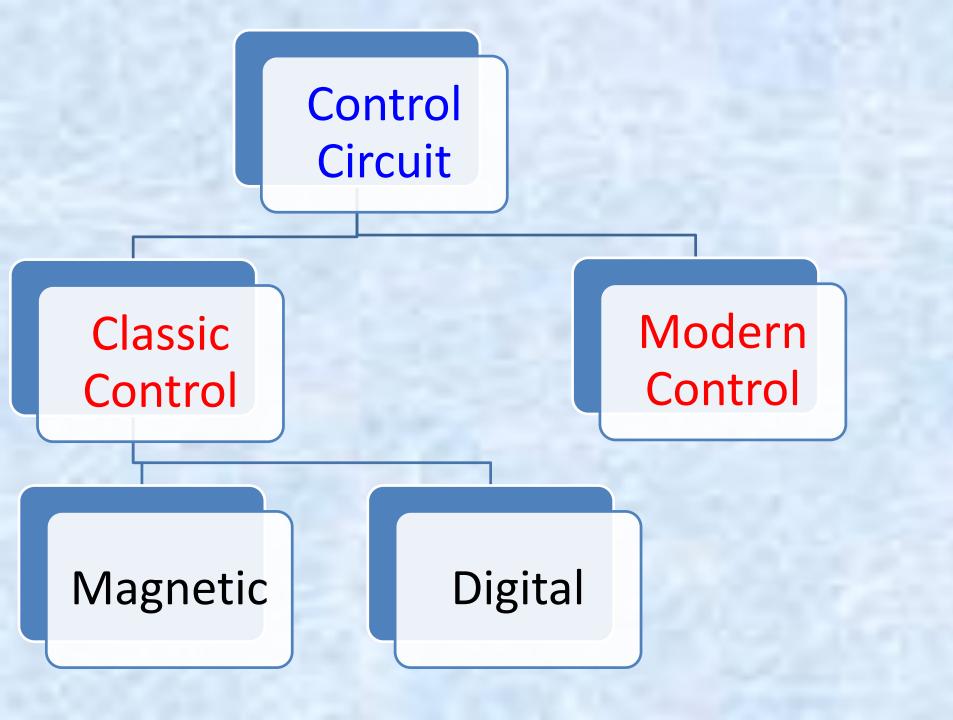
Power Factor penalty

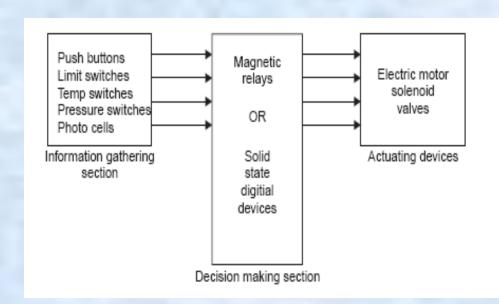

If PF desire is 0,9 Actual PF = 0,87 D(PF) = 0,03

Penalty (LE) = $D(PF) \times LE/KWH \times (KWH)$

Example

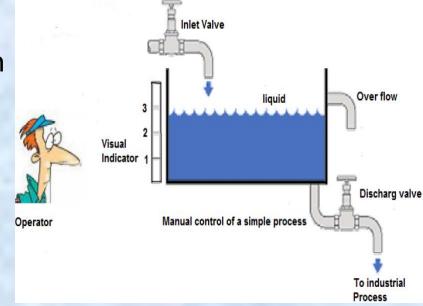
The 600 V (60 Hz) generator is connected to a load with P_{LD} = 120 kW and Q_{LD} = 160 kVAR.

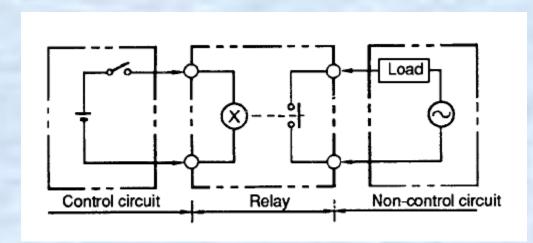

- a. Determine the power factor of the load.
- b. Determine the Capacitance (in Farads) required to correct the power factor to unity.


Other Examples

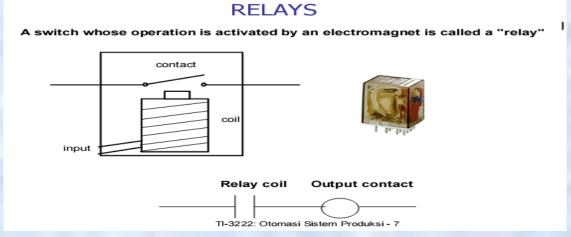
http://www.electricaltechnology.org/2013/11/How-to-Calculate-Suitable-Capacitor-Size-for-Power-factor-Improvement.html

CHAPTER 2 Types of Control System


1- Classic control

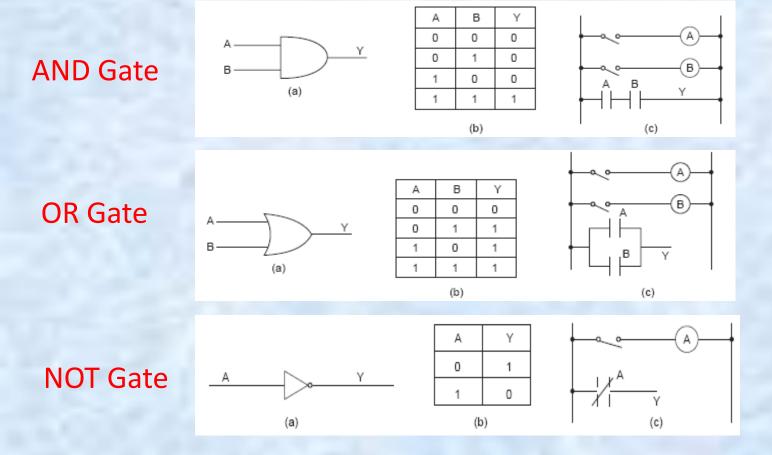

An industrial control system, whether it is magnetic control or static control can be divided into three

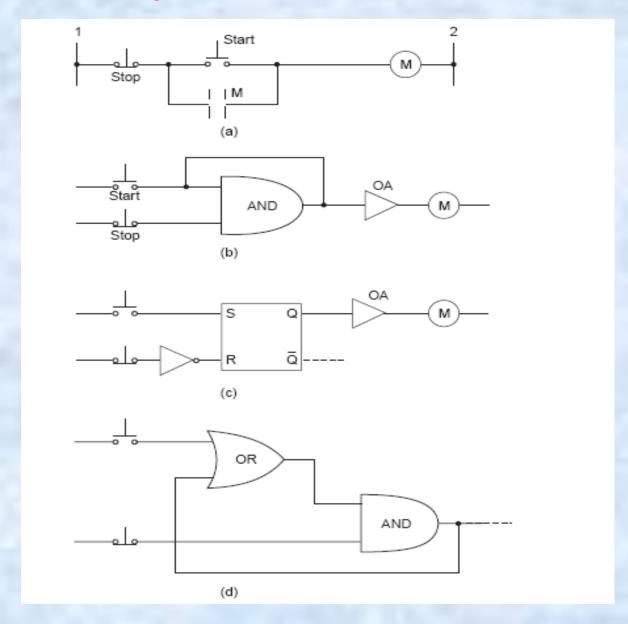
- (i) input section
- (ii) logic section
- (iii) output section



A- Relay control System

A relay is defined as a device in which predefined changes occur rapidly in single or multiple electrical output circuits, when the control electrical input circuit fulfills a certain condition





B- Digital control System

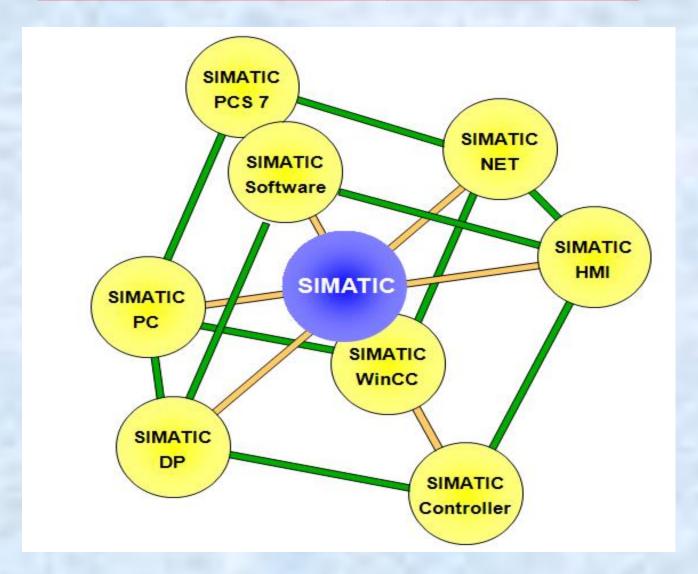
- Digital ICs processing information through various logic gates
- Operate at much higher speeds & less power than relay circuit
- Advantage of small size but it cannot switch higher power signal

Example of both system

Other logic gates

AND	OR	NOT	NAND	NOR	EOR(XOR)	ENOR
A AND X	A OR X	<u>A</u> X	<u>A</u> X	$\frac{A}{B}$ \times	A Output B Output	AO
A B X 0 0 0 0 1 0 1 0 0 1 1 1	A B X O O O O 1 1 1 O 1 1 1 1	A X 0 1 1 0	A B X 0 0 1 0 1 1 1 0 1 1 1 0	A B X O O 1 O 1 O 1 O O 1 1 O	A B Output 0 0 0 0 1 1 1 0 1 1 1 0	A B O 0 0 1 0 1 0 1 0 0 1 1 1
Serial	Parallel	NOT	NAND	NOR	A A B B XOR	A A B B XNOR

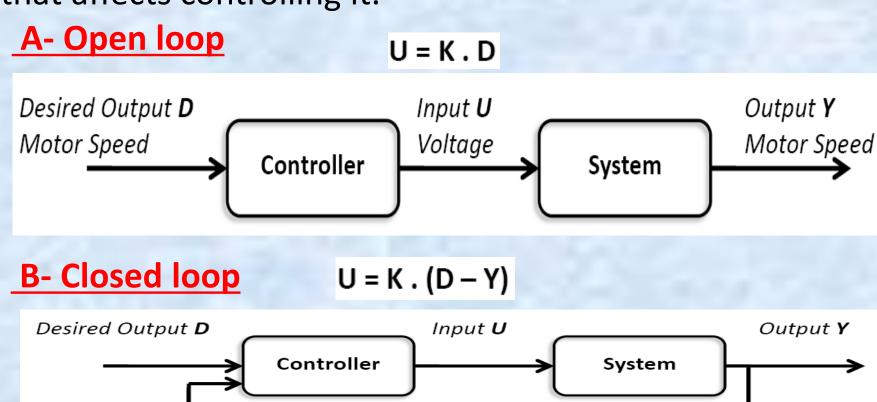
2- Modern control


The early history of the PLC & DCS goes back to the 1960's when control systems were still handled using relay control. During this time the control rooms consisted of several walls containing many relays, terminal blocks and mass of wires. The problems related to such kind of systems were many, among those one could mention:

- The lack of flexibility
- Troubleshooting.

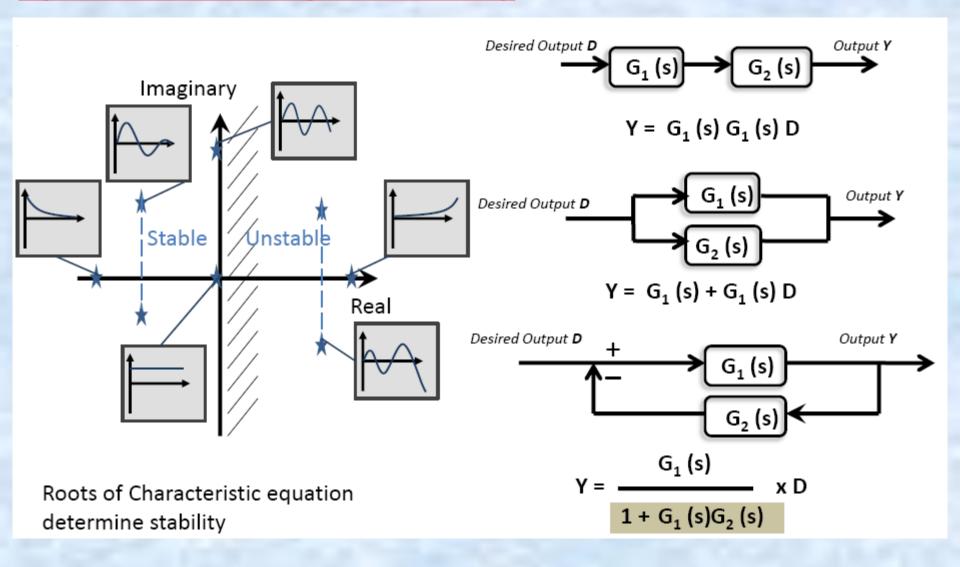
"necessity is the mother of invention"

The SIMATIC S7 System Family

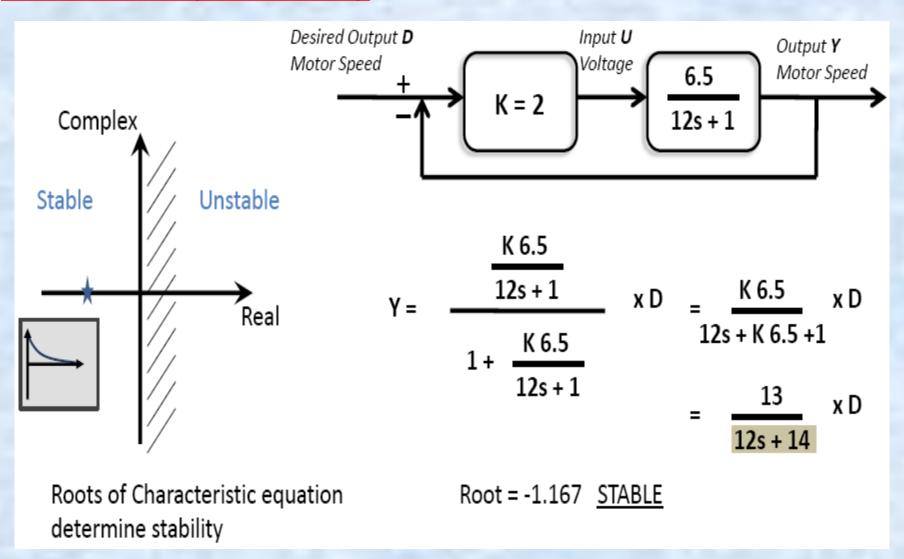


Control System

Classic Control Intelligent Control


1- Classic control

the designer constructs a mathematical model of the system. This model contains all the dynamics of the plant that affects controlling it.



Sensor

System modeling & Stability

Closed Loop Stability

Control Requirement PID

Proportional Gain

Applicable to Error between setpoint & output

Larger values - faster response

Very large values -> process instability and oscillation.

Results in Steady State Error

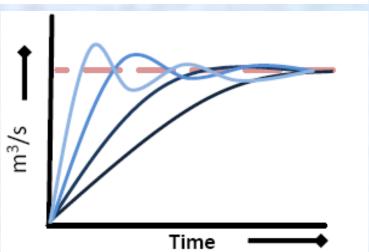
Integral Gain

Proportional to integral of Error between setpoint & output

Larger values -> steady state errors rapidly eliminated.

Overshoot may lead to instability

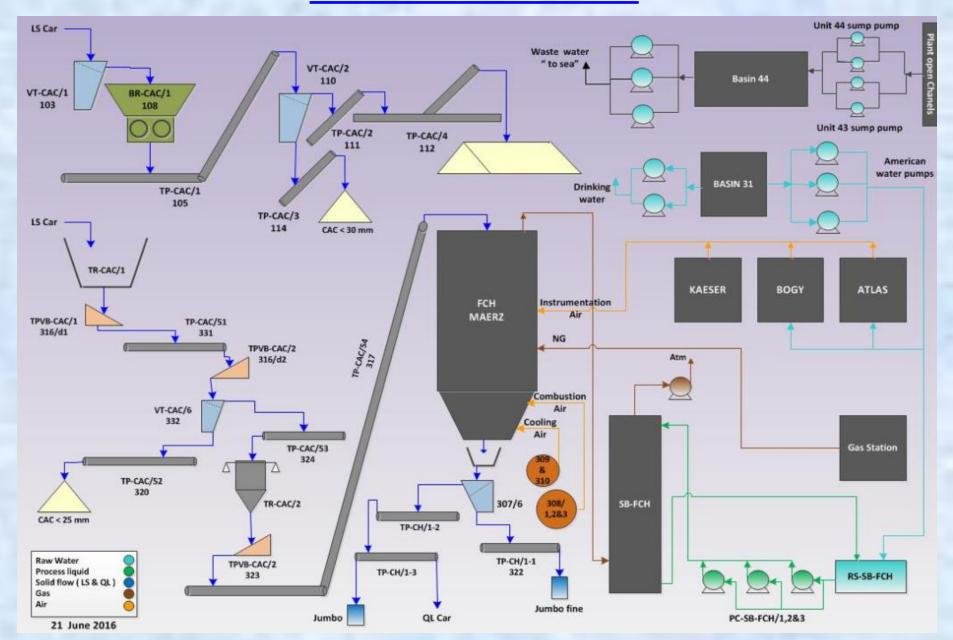
Zero Steady State Error


Derivative Gain

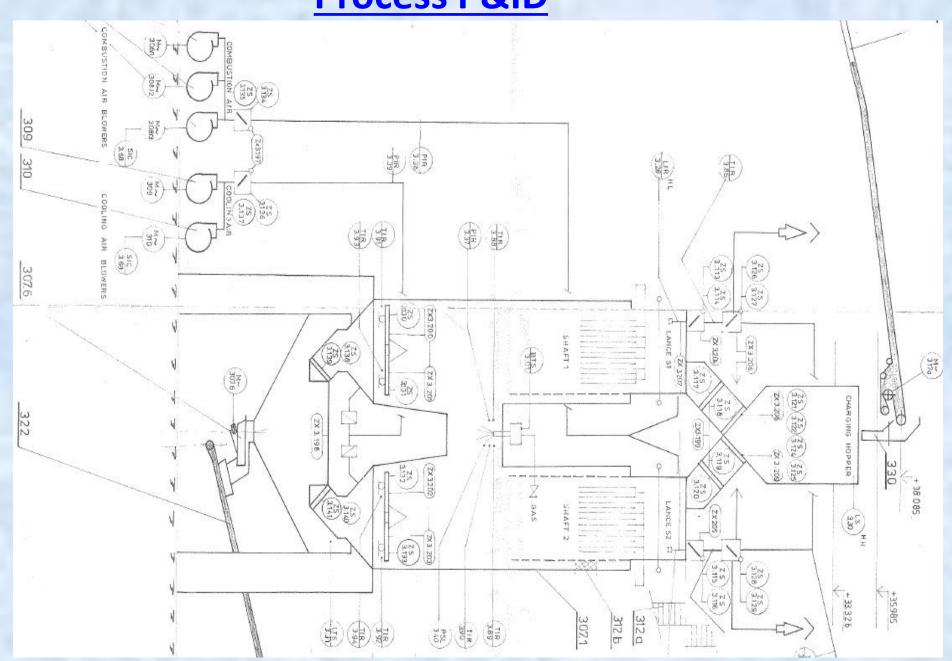
Proportional to derivative of Error between setpoint & output

Larger values -> decreased overshoot, but slower transient response

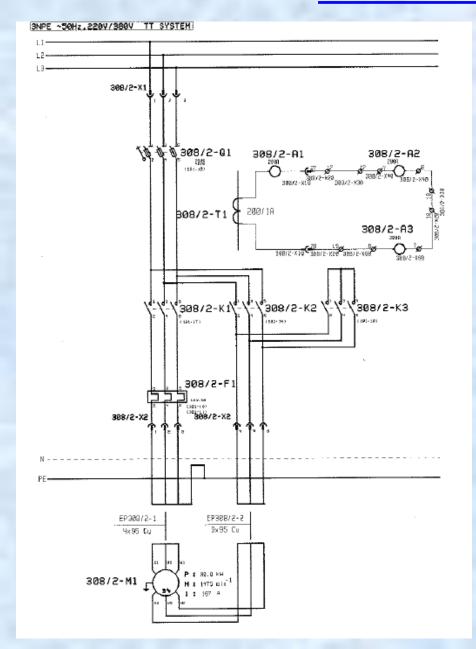
May lead to instability due to signal noise amplification in the differentiation of the error

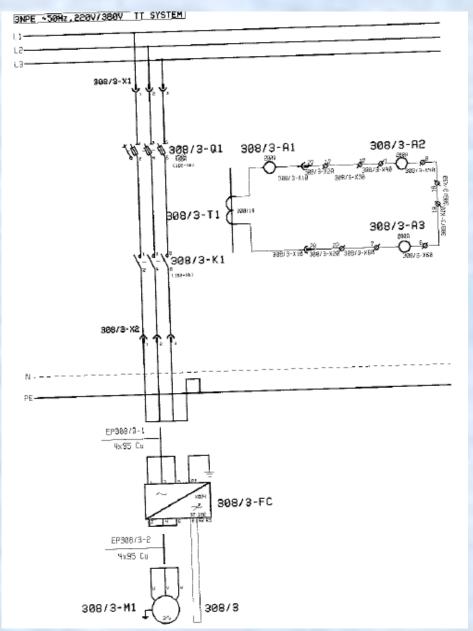


Explain this video

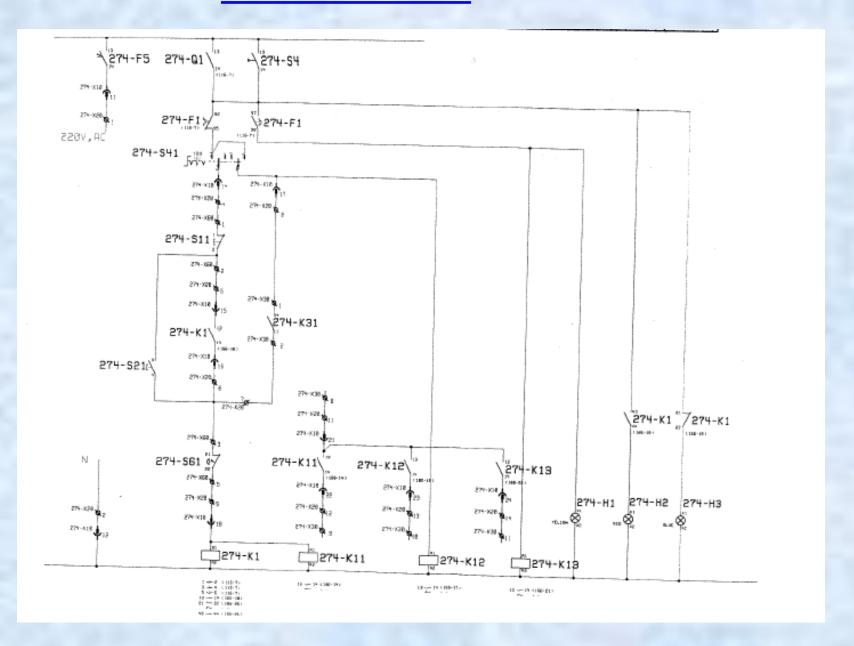


CHAPTER 3 Classic Control Components

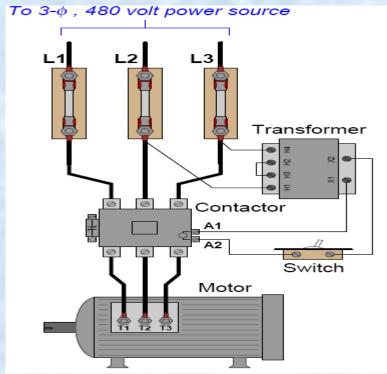

Process flow sheet

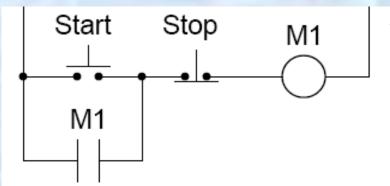


Process P&ID

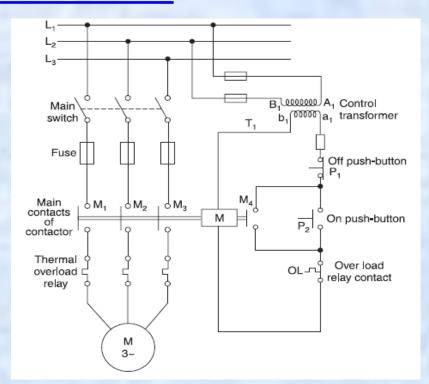


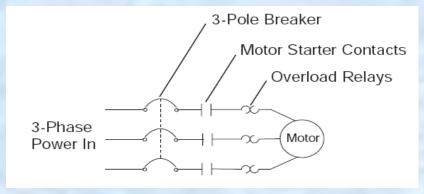
Power circuit



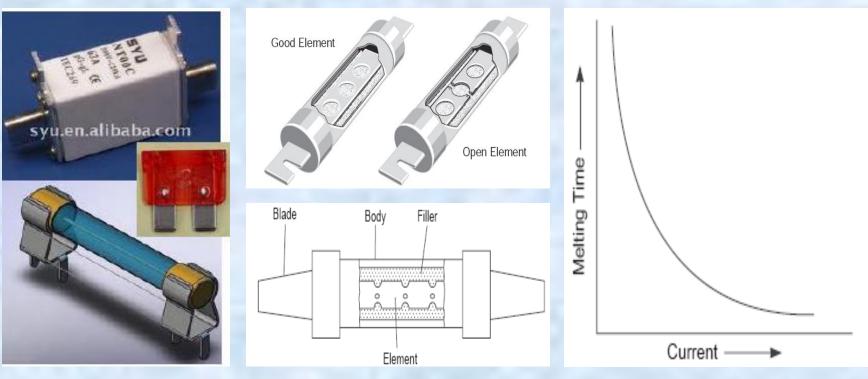


Control circuit

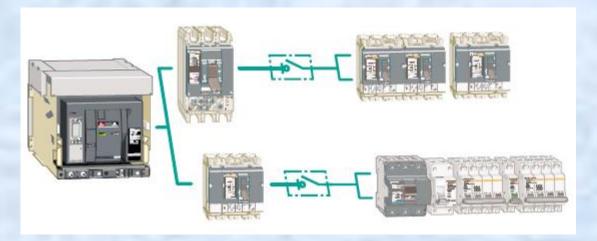


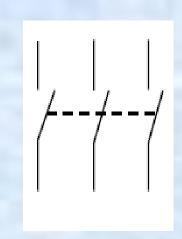

Power & control circuit

Control circuit

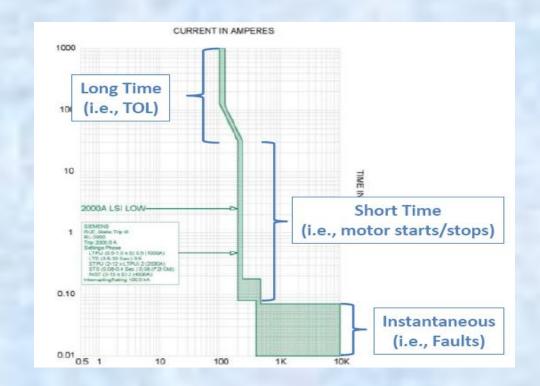


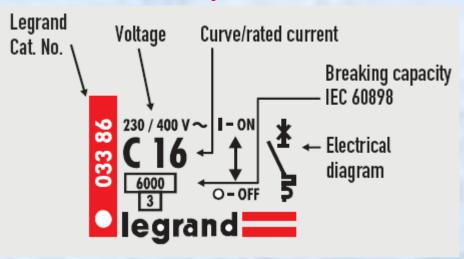
Power circuit


Power circuit components

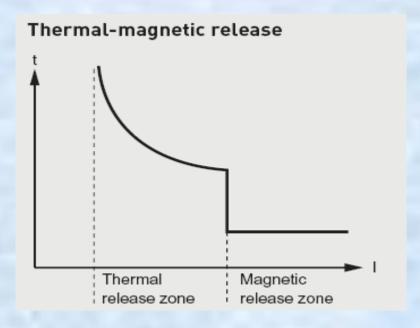

Fuses

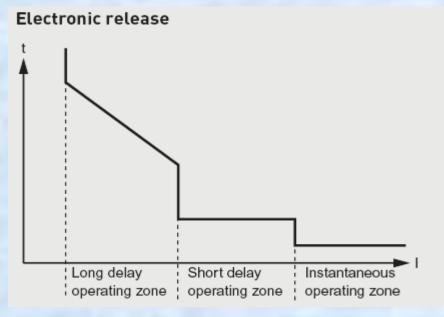
The fuse element can sustain small overloads for longer duration but in case of large overloads and short circuits the small cross-section of the fuse element melts quickly and opens the circuit.


Circuit Breaker

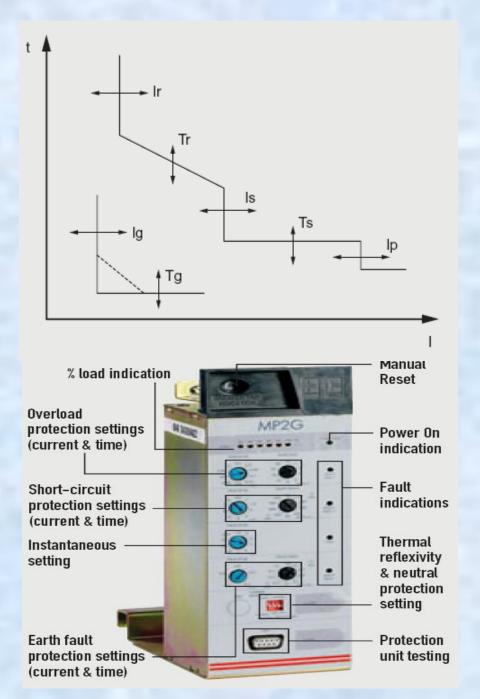


An MCCB automatically isolates an electrical circuit under sustained overloads or short circuits.

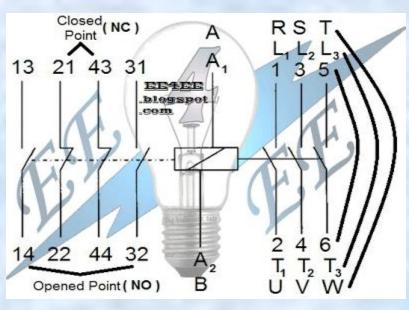


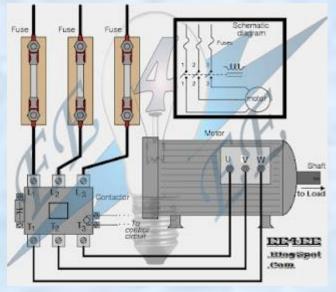


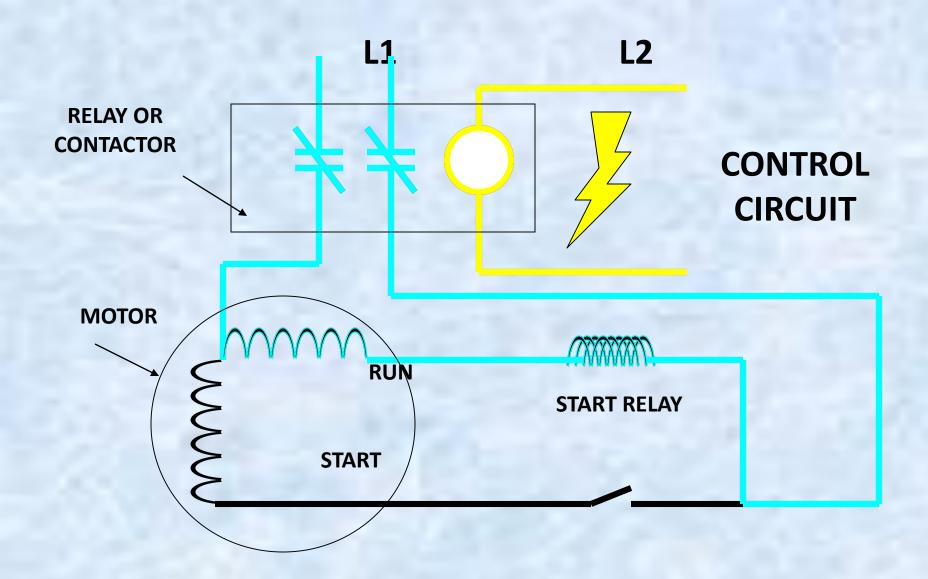
Name plate

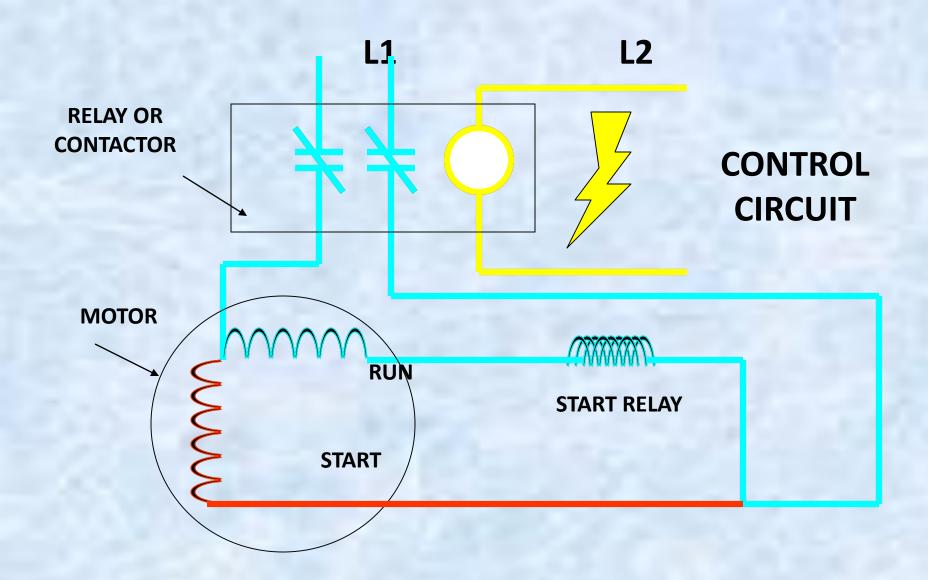

Tripping curve

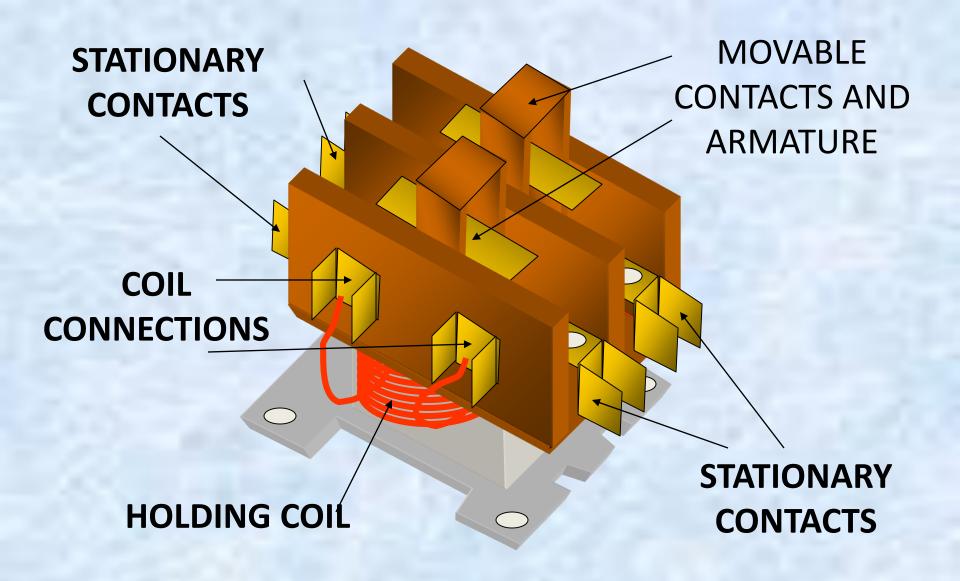
Adjustment

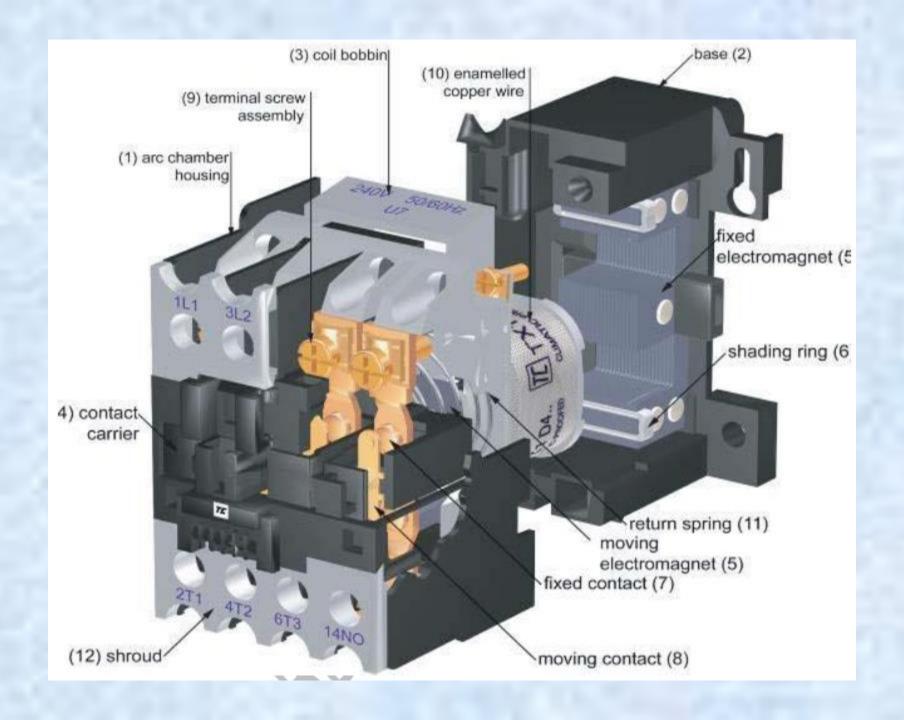

	Settings		
	lr	lr = ln ×	0.4 - 0.5 - 0.6 0.7 - 0.75 - 0.8 0.85 - 0.9 0.95 - 1
Overload	Tr	Time delay in s at 6 x Ir	0.5 - 1 - 2 - 4 6 - 8 - 12 - 18 24 - 30
	Neutral protection	I _N = Ir ×	0 % - 50 % - 100 %
	ls	ls = ln ×	0.6 - 1 - 1.5 2 - 3 - 4 - 6 8 - 9 - 10
Short-circuit	.	Time delay in ms at 10 × In - I ² t Off	20 - 100 - 200 300 - 400
	Ts	Time delay in ms at 10 × In - I ² t On	20 - 100 - 200 - 300 - 400
Instantaneous	lp	lp = lr ×	1.5 - 2 - 3 - 4 5 - 6 - 8 - 10 12 - Max.
	lg	Ig = Ir ×	0.2 - 0.3 - 0.4 0.5 - 0.6
Earth fault	Ta	Time delay in s I ² t Off	0.1 - 0.2 - 0.3 0.4 - 1 - Off
	Tg	Time delay in s - I ² t On	0.1 - 0.2 - 0.3 0.4

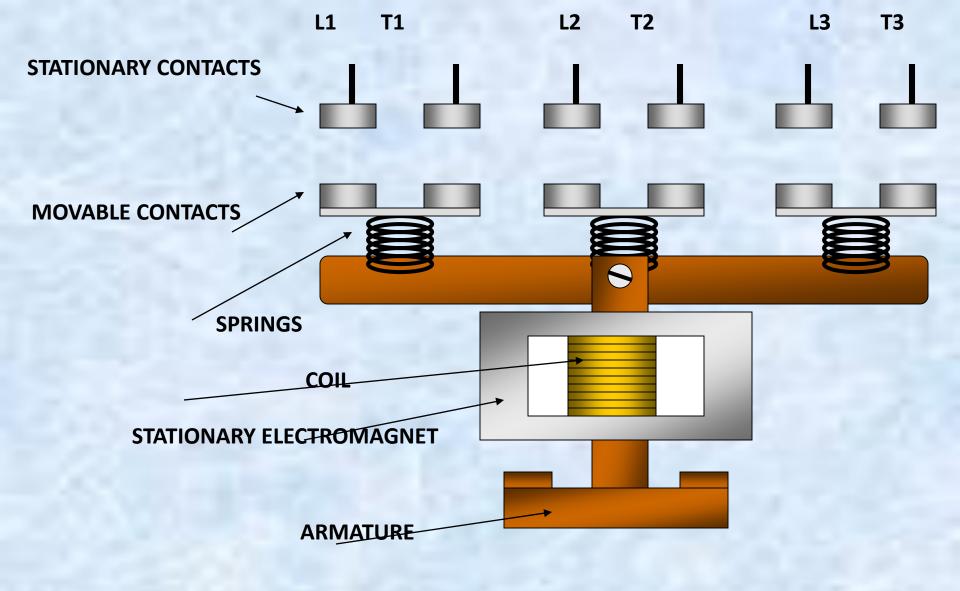

Contactor

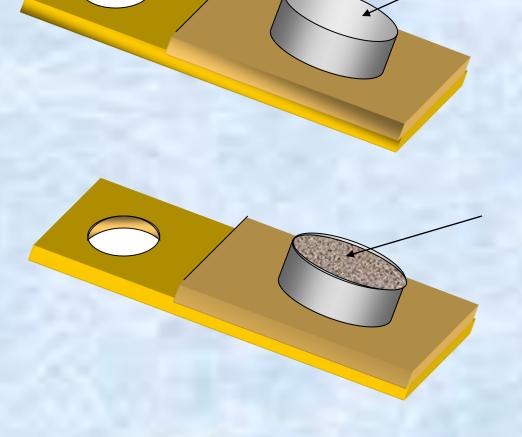


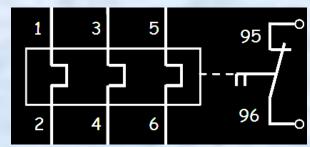




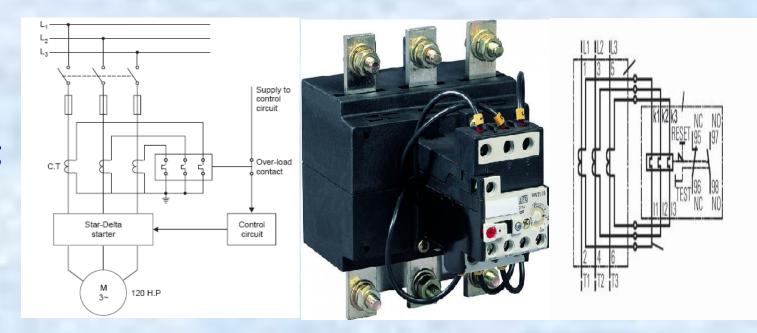

Cate	gory	Type of Duty	
AC	AC,	Non Inductive or slightly inductive loads, resistance furnaces.	
	AC ₂	Starting of slip ring motors, Reverse current breaking	
	AC ₃	Starting of squirrel cage motors, switching off motors during running.	
	AC4	Starting of squirrel cage motors, plugging, inching.	
DC	DC,	Non inductive and slightly inductive loads, resistance furnaces.	
	DC ₂	Starting shunt motors, switching off shunt motors during running.	
	DC ₃	Starting shunt motors, plugging, inching	
	DC_4	Starting series motors, switching of series motors during running.	
	DC,	Starting series motors, plugging, inching	



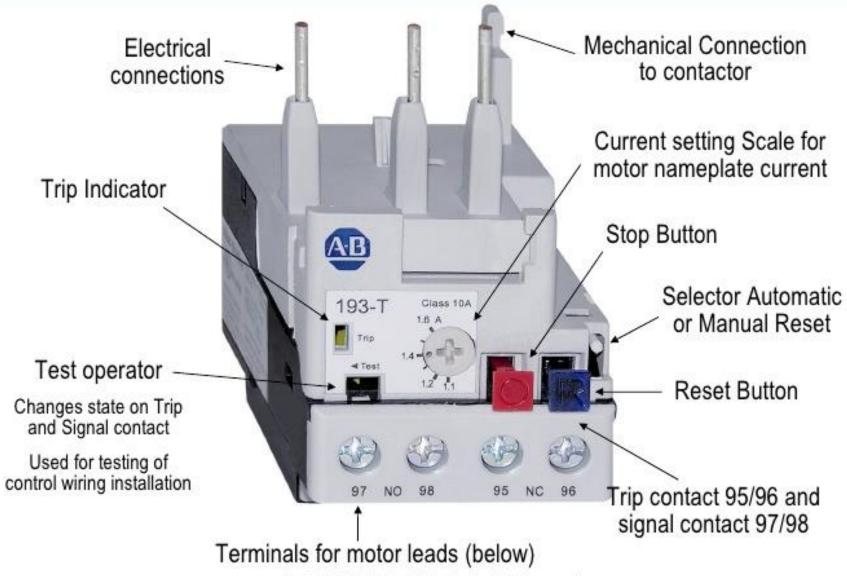




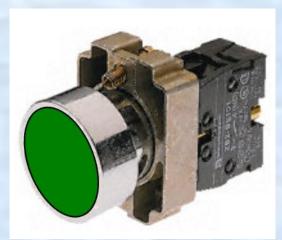
DIRTY, PITTED CONTACT

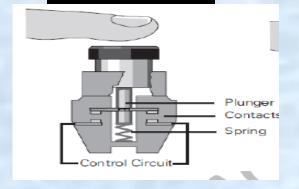

Overload

For low rating

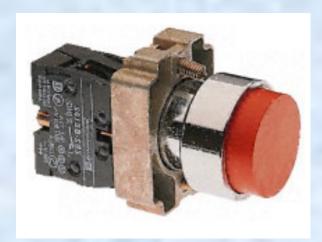

For high rating

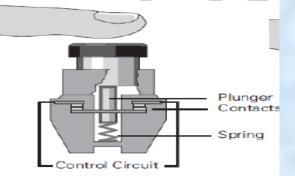
IEC Bimetallic Overload Relay




Control circuit components

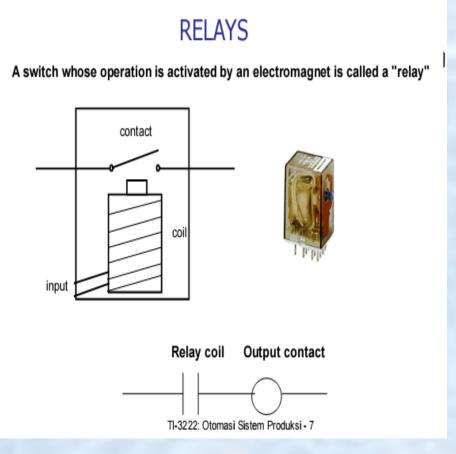
Start and Stop pushbuttons


Start button is green

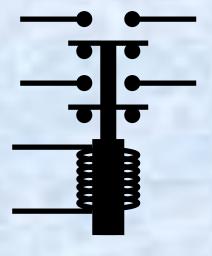


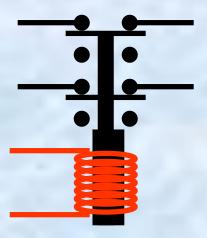
Stop button is red

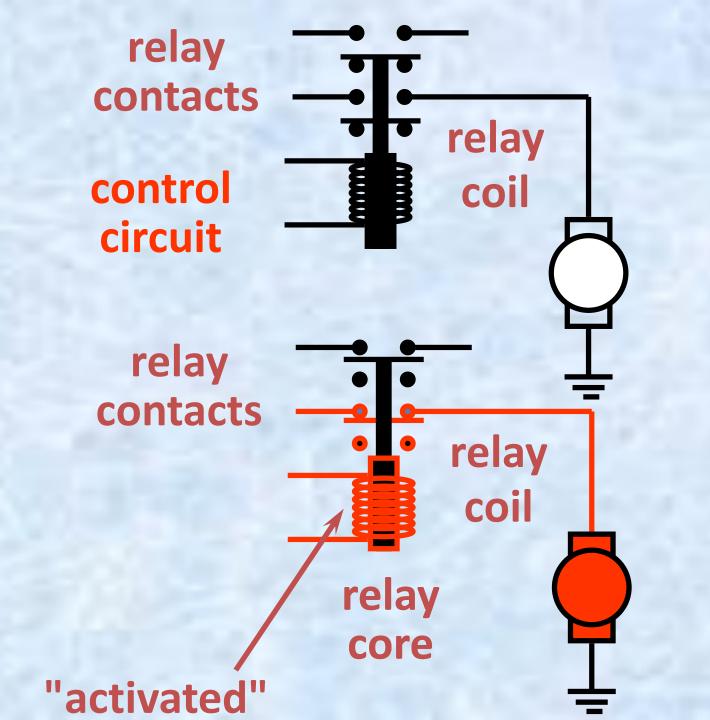
Emergency Stop button has a red mushroom head which latches in and must be turned to release

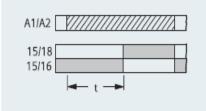

Selector 2 position

Relays

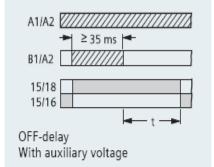

- Input & Output contacts in series and/or parallel
- Combinations of logic
 elements create complex
 control plans


Control Relay


relay not activated relay contacts


relay activated

relay contacts

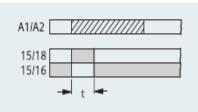


Electronic Timer

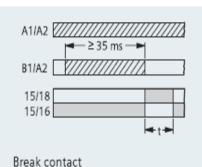
ON-delay

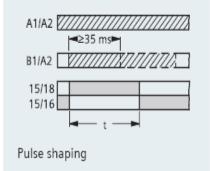
A1/A2

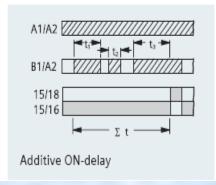
B1/A2

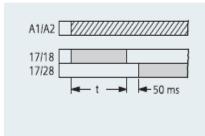

15/18

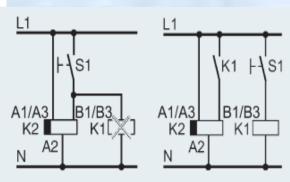
15/16


ON + OFF delay
(t = t_{ON} = t_{OFF})


Flashing (Cyclic) (Pulse interval 1:1)




Make Contact



Star delta

Electronic Timer

Function	Operation	Timing Chart
ON DELAY Delay on Make Delay on Operate	Upon application of input voltage, the time delay (t) begins. At the end of the time delay (t), the output is energized. Input voltage must be removed to reset the time delay relay & de-energize the output.	OUTPUT t t
INTERVAL ON Interval	Upon application of input voltage, the output is energized and the time delay (t) begins. At the end of the time delay (t), the output is de-energized. Input voltage must be removed to reset the time delay relay.	INPUT VOLTAGE OUTPUT t t
OFF DELAY Delay on Release Delay on Break Delay on De- Energization	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the output is energized. Upon removal of the trigger, the time delay (t) begins. At the end of the time delay (t), the output is de-energized. Any application of the trigger during the time delay will reset the time delay (t) and the output remains energized.	INPUT VOLTAGE TRIGGER OUTPUT t <t t<="" td=""></t>
SINGLE SHOT One Shot Momentary Interval	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the output is energized and the time delay (t) begins. During the time delay (t), the trigger is ignored. At the end of the time delay (t), the output is de-energized and the time delay relay is ready to accept another trigger.	INPUT VOLTAGE TRIGGER OUTPUT t t
FLASHER (Off First)	Upon application of input voltage, the time delay (t) begins. At the end of the time delay (t), the output is energized and remains in that condition for the time delay (t). At the end of the time delay (t), the output is de-energized and the sequence repeats until input voltage is removed.	OUTPUT t t t <

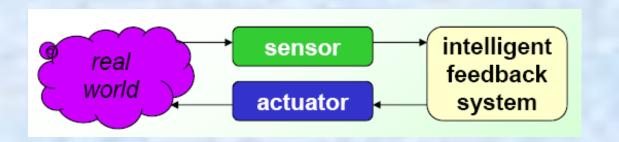
Electronic Timer

Function	Operation Timin	ng Chart
FLASHER (Off First)	Upon application of input voltage, the time delay (t) begins. At the end of the time delay (t), the output is energized and remains in that condition for the time delay (t). At the end of the time delay (t), the output is de-energized and the sequence repeats until input voltage is removed.	OUTPUT t t t t <
FLASHER (On First)	Upon application of input voltage, the output is energized and the time delay (t) begins. At the end of the time delay (t), the output is de-energized and remains in that condition for the time delay (t). At the end of the time delay (t), the output is energized and the sequence repeats until input voltage is removed.	OUTPUT t t t t
ON/OFF DELAY	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the time delay (t1) begins. At the end of the time delay (t1), the output is energized. When the trigger is removed, the output contacts remain energized for the time delay (t2). At the end of the time delay (t2), the output is de-energized & the time delay relay is ready to accept another trigger. If the trigger is removed during time delay period (t1), the output will remain deenergized and time delay (t1) will reset. If the trigger is re-applied during time delay period (t2), the output will remain energized and the time delay (t2) will reset.	TRIGGER OUTPUT * For TD-7 catalog numbers, t1 & t2 are the same length of time.
SINGLE SHOT FALLING EDGE	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the output remains de-energized. Upon removal of the trigger, the output is energized and the time delay (t) begins. At the end of the time delay (t), the output is deenergized unless the trigger is removed and re-applied prior to time out (before time delay (t) elapses). Continuous cycling of the trigger at a rate faster than the time delay (t) will cause the output to remain energized indefinitely.	INPUT VOLTAGE TRIGGER OUTPUT t <t t<="" td=""></t>

Electronic Timer

Function	Operation Time	ng Chart
WATCHDOG Retriggerable Single Shot	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the output is energized and the time delay (t) begins. At the end of the time delay (t), the output is de-energized unless the trigger is removed and re-applied prior to time out (before time delay (t) elapses). Continuous cycling of the trigger at a rate faster than the time delay (t) will cause the output to remain energized indefinitely.	INPUT VOLTAGE TRIGGER OUTPUT t <t t<="" th=""></t>
TRIGGERED ON DELAY	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the time delay (t) begins. At the end of the time delay (t), the output is energized and remains in that condition as long as either the trigger is applied or the input voltage remains. If the trigger is removed during the time delay (t), the output remains de-energized & the time delay (t) is reset.	INPUT VOLTAGE TRIGGER OUTPUT t
REPEAT CYCLE (OFF 1st)	Upon application of input voltage, the time delay (t1) begins. At the end of the time delay (t1), the output is energized and remains in that condition for the time delay (t2). At the end of this time delay, the output is deenergized and the sequence repeats until input voltage is removed.	OUTPUT t1 t2 t1 t2 <t1< td=""></t1<>
REPEAT CYCLE (ON 1st)	Upon application of input voltage, the output is energized and the time delay (t1) begins. At the end of the time delay (t1), the output is de-energized and remains in that condition for the time delay (t2). At the end of this time delay, the output is energized and the sequence repeats until input voltage is removed.	OUTPUT t1 t2 t1 t2 <t1< td=""></t1<>
DELAYED INTERVAL Single Cycle	Upon application of input voltage, the time delay (t1) begins. At the end of the time delay (t1), the output is energized and remains in that condition for the time delay (t2). At the end of this time delay (t2), the output is de-energized. Input voltage must be removed to reset the time delay relay.	OUTPUT t1 t2 t1 t2

Electronic Timer


Function	Operation Timin	ng Chart
TRIGGERED DELAYED INTERVAL Single Cycle	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the time delay (t1) begins. At the end of the time delay (t1), the output is energized and remains in that condition for the time delay (t2). At the end of the time delay (t2), the output is de-energized & the relay is ready to accept another trigger. During both time delay (t1) & time delay (t2), the trigger is ignored.	INPUT VOLTAGE TRIGGER OUTPUT t1 t2 t1 t2
TRUE OFF DELAY	Upon application of input voltage, the output is energized. When the input voltage is removed, the time delay (t) begins. At the end of the time delay (t), the output is de-energized. Input voltage must be applied for a minimum of 0.5 seconds to assure proper operation. Any application of the input voltage during the time delay (t) will reset the time delay. No external trigger is required.	INPUT VOLTAGE OUTPUT t t
ON DELAY/ TRUE OFF DELAY	Upon application of input voltage, the time delay (t1) begins. At the end of the time delay (t1), the output is energized. When the input voltage is removed, the output remains energized for the time delay (t2). At the end of the time delay (t2), the output is de-energized. Input voltage must be applied for a minimum of 0.5 seconds to assure proper operation. Any application of the input voltage during the time delay (t2) will keep the output energized & reset the time delay (t2). No external trigger is required.	OUTPUT t1 t2 t1 t2
SINGLE SHOT- FLASHER	Upon application of input voltage, the time delay relay is ready to accept a trigger. When the trigger is applied, the time delay (t1) begins and the output is energized for the time delay (t2). At the end of this time delay (t2), the output is de-energized and remains in that condition for the time delay (t2). At the end of the time delay (t2), the output is energized and the sequence repeats until time delay (t1) is completed. During the time delay (t1), the trigger is ignored.	INPUT VOLTAGE TRIGGER OUTPUT t2 t2 t2 t2 <t2< td=""></t2<>

Electronic Timer

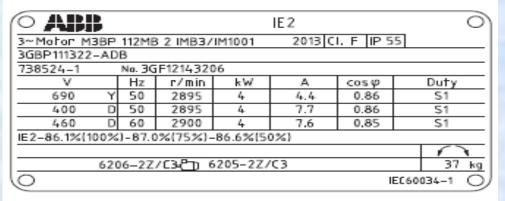
Function	Operation Ti	ning Chart
ON DELAY- FLASHER	Upon application of input voltage, the time delay begin (t1). At the end of the time delay (t1), the output is energized and remains in that condition for the time delay (t2). At the end of this time delay (t2), the output is de-energized and remains in that condition for the time delay (t2). At the end of the time delay (t2), the output is energized and the sequence repeats until input voltage is removed.	OUTPUT t1 t2 t2 t2 <t2< td=""></t2<>
PERCENTAGE	Upon initial application of input voltage, the output is energized and time delay (t1) begins. Time Delay (t1) is adjustable as a percentage of the overall cycle time (t2) At the end of time delay (t1), the output is de-energized for the remainder of overall cycle (t2-t1). The sequence then repeats until input voltage is removed. If input voltage is removed and reapplied, the timing cycle will continue from where it left off when the input voltage was removed. A setting of 100% energizes the output continuously while a setting of 0% de-energizes the output continuously.	OUTPUT ON OFF ON OFF ON
PERCENTAGE (NO MEMORY)	Upon initial application of input voltage, the output is energized and time delay (t1) begins. Time Delay (t1) is adjustable as a percentage if the overall cycle time (t2). At the end of time delay (t1), the output is de-energized for the remainder of overall cycle (t2-t1). The sequence then repeats until input voltage is removed. If input voltage is removed and reapplied, the timing cycle will be reset. A setting of 100% energizes the output continuously while a setting of 0% de-energizes the output continuously.	OUTPUT ON OFF ON OFF ON

Transducers

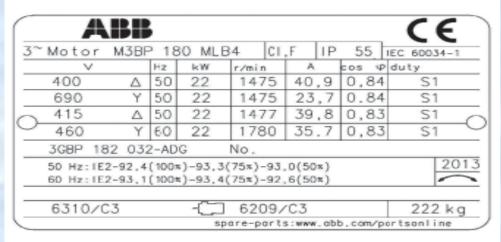
- A device which converts 1 form of energy into another.
- In a process industry 4 basic and very important parameters to be measured and controlled are:
- 1) Flow
- 2) Temperature
- 3) Pressure
- 4) Level

Sensor (e.g., thermometer)

- Device that detects/measures a signal
- Acquires information from the "real world"


Actuator (e.g., heater)

Device that generates a signal or stimulus


CHAPTER 4 Motor Name Plate

AB	B		IE2 C€)					
3~Mator	· M3	BP 9	DSLB /	4 IMB3/I	M1001			734278-2
3GBP092322-ASB441			No.	3GF1214	1567	Cl. F IP 55		
	V		Hz	r/min	kW	A	cosΨ	Duty
0	400	Υ	50	1435	1.1	2.3	0.80	S1 (
_	230	D	50	1435	1.1	3.9	0.80	S1
	460	Υ	60	1740	1.1	2.0	0.77	S1
IE2-50H	IE2-50Hz-83.6%(100%)-84.5%(75%) / IE2-60Hz-85.4%(100%)							
6205-2Z/C3 - 6204-2Z/C3					2013 25 kg			
$\overline{\mathcal{L}}$								IEC 60034-1

Motor sizes 71 to 90

Motor sizes 100 to 132

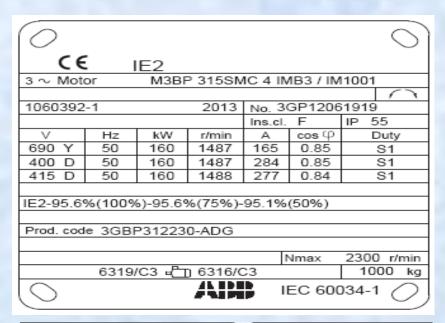
M3BP 160MLC 3GBP 161 033 - ADG

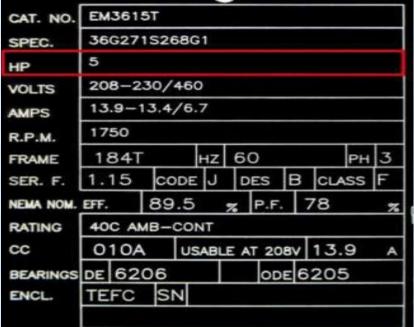
003, etc.

	1 2 3 4 5 6 / 6 9 1		
Positio	ns 1 to 4		
3GBP:	Totally enclosed fan cooled squirrel cage motor with cast iron frame		
Position	ns 5 and 8		
IEO size			
71:	71		
80:	80		
90:	90		
10:	100		
12:	112		
13:	182		
16:	180		
18:	180		
20:	200		
22:	225		
25:	250		
28:	280		
31:	815		
35:	855		
40:	400		
45:	450		
Positio	17		
Speed (Pole pairs)		
1:	2 poles		
2:	4 poles		
3:	6 poles		
4:	8 poles		
5:	10 poles		
8:	12 poles		
7:	> 12 poles		
8:	Two-speed motors for fan drive motors for constant torque		
9:	Multi-speed motors, two-speed		
Positions 8 to 10			
Serial number			
Position 11			
- (dash)			

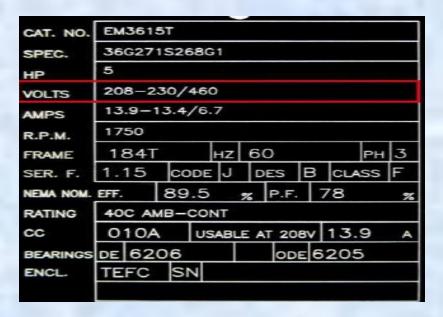
Position	Position 12			
Mounting	g arrangement			
A:	Foot-mounted, top-mounted terminal box			
R:	Foot-mounted, terminal box RHS seen from D-end			
L:	Foot-mounted, terminal box LHS seen from D-end			
В:	Flange-mounted, large flange			
0:	Flange-mounted, small flange (sizes 71 to 112)			
H:	Foot- and flange-mounted, terminal box top-mounted			
J:	Foot- and flange-mounted, small flange with tapped holes			
S:	Foot- and flange-mounted, terminal box RHS seen from D-end			
T:	Foot- and flange-mounted, terminal box LHS seen from D-end			
V:	Flange-mounted, special flange			
F:	Foot- and flange-mounted. Special flange			
Position	13			
Voltage a	and frequency			
Single-s	peed motors			
B:	880 V∆ 50 Hz			
D:	400 VΔ, 415 VΔ, 890 VY 50 Hz			
E:	500 V∆ 50 Hz			
F:	500 VY 50 Hz			
8:	280 VΔ, 400 VY, 415 VY 50 Hz			
T:	880 V∆ 50 Hz			
U:	690 V∆ 50 Hz			
X:	Other rated voltage, connection or frequency, 690 V maximum			
Two-speed motors				
A:	220 V 50 Hz			
B:	880 V 50 Hz			
D:	400 V 50 Hz			
E:	500 V 50 Hz			
8:	280 V 50 Hz			
X:	Other rated voltage, connection or frequency, 690 V maximum			
Remark:	For voltage code X the variant code "209 Non-standard voltage or			
	frequency (special winding)* must be ordered.			
Position				

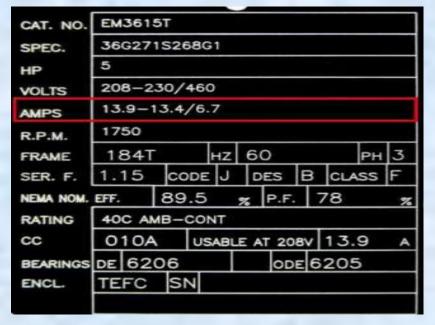
A, B, O...G...K: The product code must be, if needed, followed by variant codes.


Generation code

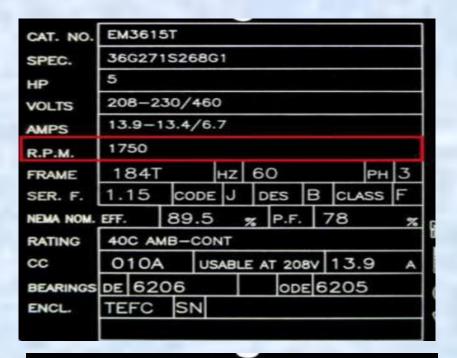

- **≻**Manufacturer type
- **≻**Rated horsepower
- **➤** Rated voltage and amps
- **≻**Rated full-load amps
- ➤ Rated full-load speed
- Frequency
- **≻**Service Factor
- > Frame Size
- >Insulation class
- **Efficiency**

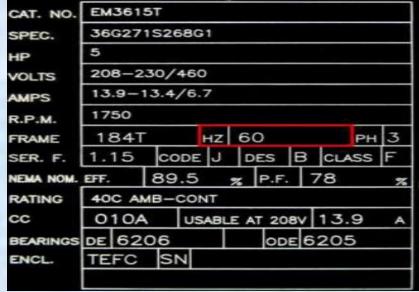
>Manufacturer type


> Rated horsepower

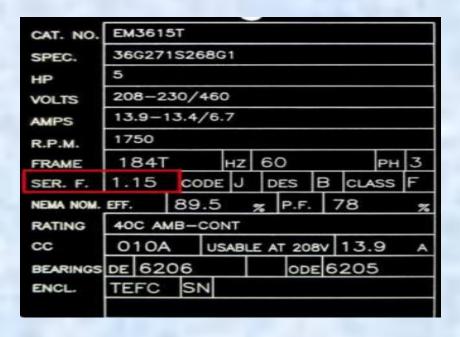


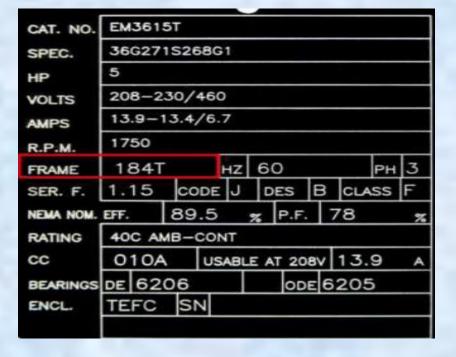
≻Rated voltage

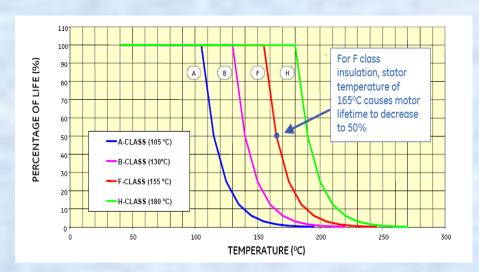

> Rated full load current



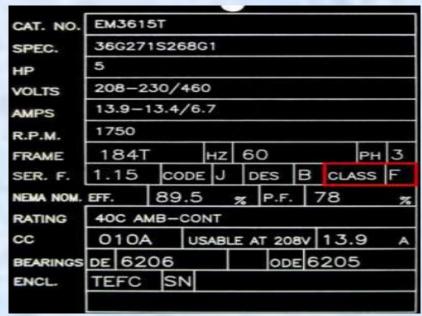
≻Rated speed

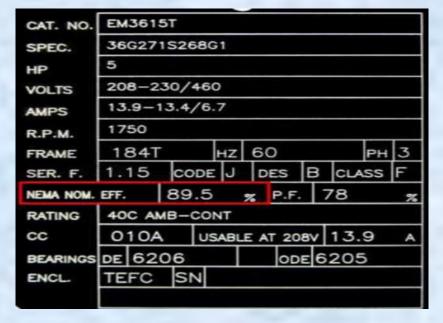

≻Frequency




≻Service factor

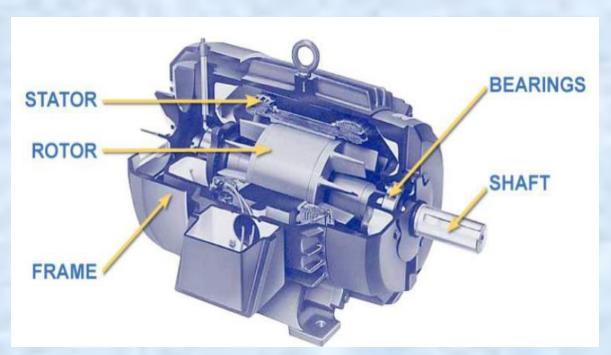
> Frame size

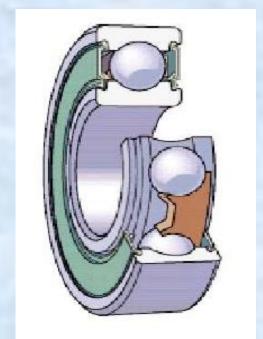




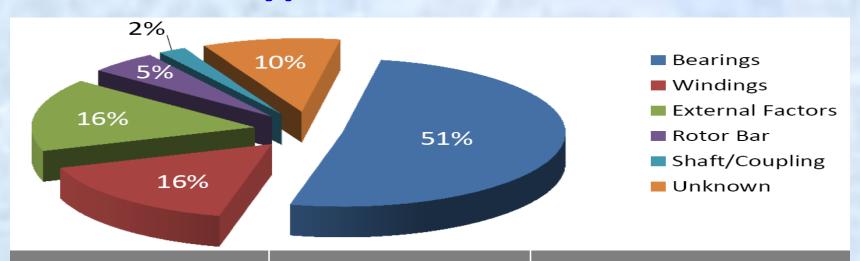
>Insulation class

≻Efficiency

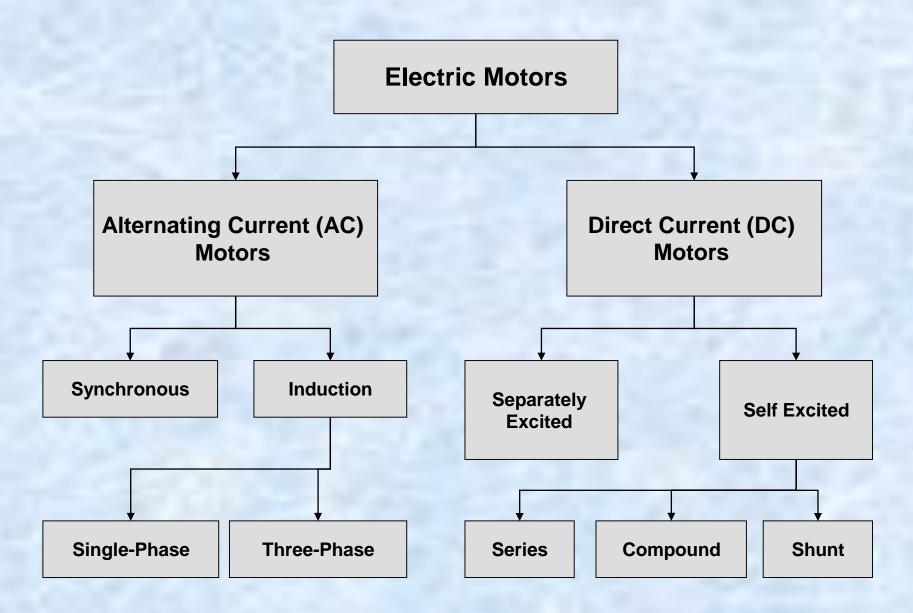


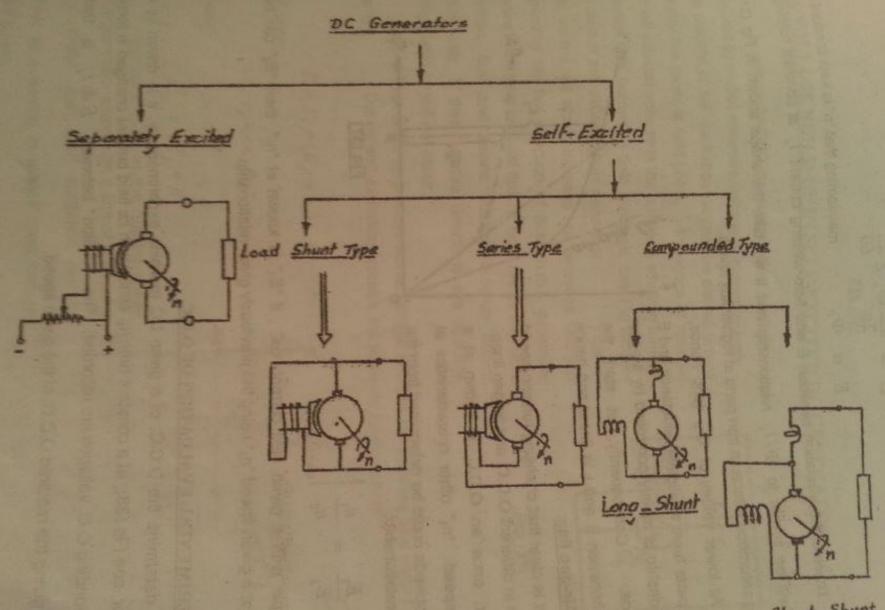

≻Roll Bearing

DE – Drive End (output shaft end)


ODE = Opposite Drive End (fan end or rear of motor)

Note: Last 2 number * 5 except 00,01,02,03 (6205 inner diameter 25 mm)


Typical motor failure



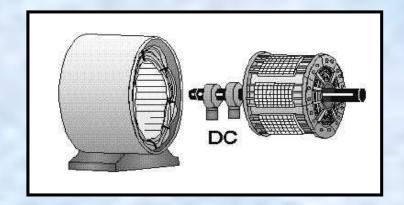
Component	% Failures	Potential Cause
Bearings	51%	Lubrication, mechanical, shaft currents, contamination
Windings	16%	Overvoltage, water, overload, undervoltage, environment
External Factors	16%	Environmental or load related
Rotor Bar	5%	Overload, locked rotor, vibration
Shaft/Coupling	2%	Mechanical, overload
Unknown	10%	No root cause determined

CHAPTER 5 Types of AC Motors

Classification of Motors

Short- Shunt

What is the difference between an AC motor and a DC motor ?


While both A.C. and D.C. motors serve the same function of converting electrical energy into mechanical energy, they are powered, constructed and controlled differently. The most basic difference is the power source. A.C. motors are powered from alternating current (A.C.) while D.C. motors are powered from direct current (D.C.), such as batteries, D.C. power supplies or an AC-to-DC power converter. D.C wound field motors are constructed with brushes and a commutator, which add to the maintenance, limit the speed and usually reduce the life expectancy of brushed D.C. motors.

A.C. induction motors do not use brushes; they are very rugged and have long life expectancies. The final basic difference is speed control.

The speed of a D.C. motor is controlled by varying the armature winding's current while the speed of an A.C. motor is controlled by varying the frequency, which is commonly done with an adjustable frequency drive control.

AC Motors

- > Two parts: stator and rotor
 - > Stator: stationary electrical component
 - > Rotor: rotates the motor shaft
- Speed difficult to control
- Two types
 - > Synchronous motor
 - > Induction motor

Synchronous motor

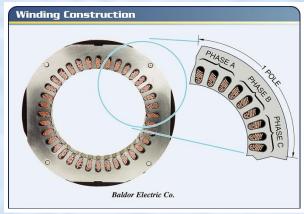
- Constant speed fixed by system frequency
- DC for excitation and low starting torque: suited for low load applications
- Can improve power factor: suited for high electricity use systems
- > Synchronous speed (Ns):

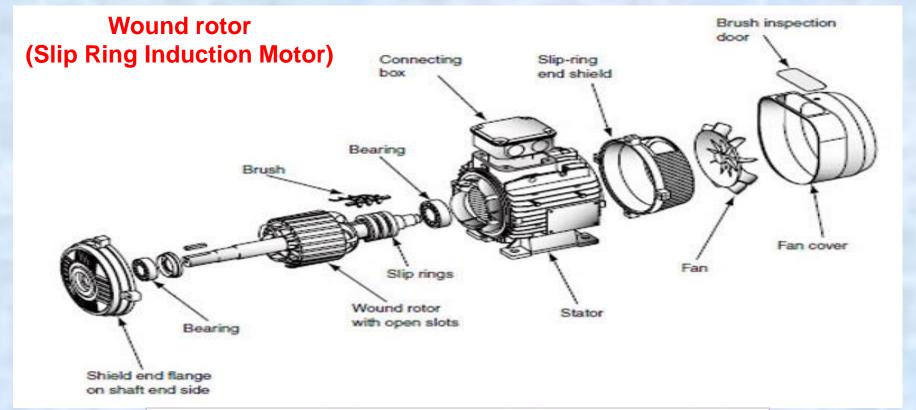
Ns = 120 f / P

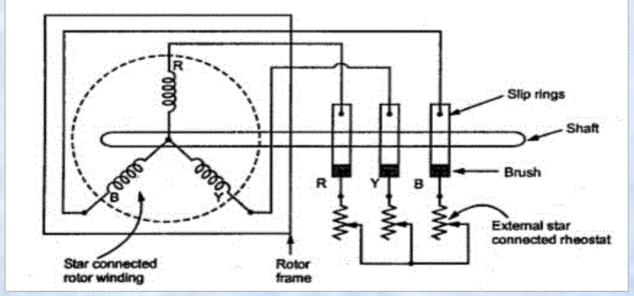
F = supply frequency P = number of poles

Induction motor

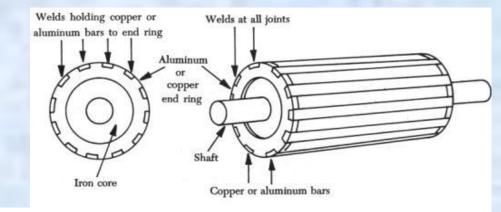
Components

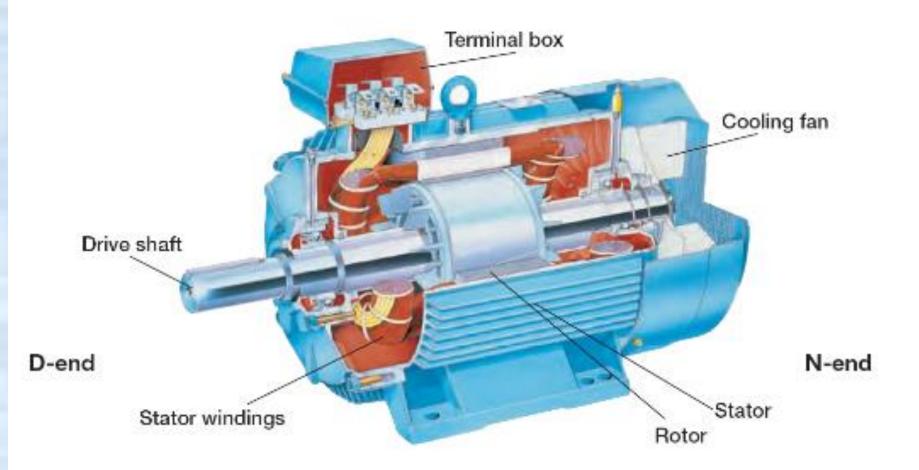

- > Rotor
 - Squirrel cage: conducting bars in parallel slots





- >Wound rotor: 3-phase, distributed winding
- >Stator
 - **>** Stampings with slots to carry 3-phase
 - >Wound for definite number of poles


Electrical Degrees		
Poles per Phase	Electrical Degrees per Revolution	
2	2 × 180 = 360	
4	4 × 180 = 720	

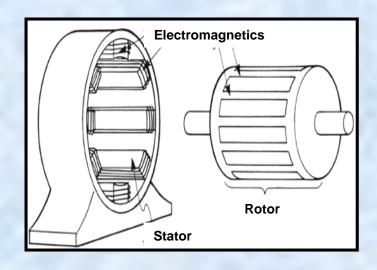


Squirrel cage Induction Motor

What is the difference between a slip ring and a squirrel cage?

Both are the types of Asynchronous machines(Induction Machines), difference is that in Slip ring we can change the starting torque by simply varying the external resistance connected to rotor, this is not possible in case of squirrel cage induction motor.

Although Squirrel cage is easy to maintain and cost effective as compared to slip ring as it has slip rings, brushes.


Application of slip ring: Hoist, Elevators, pumps where high starting torque is required.

Application of Squirrel cage: motor used in industries because there is need of high torque production by motor.

How induction motors work

- > Electricity supplied to stator
- Magnetic field generated that moves around rotor
- Current induced in rotor

- Rotor produces second magnetic field that opposes stator magnetic field
- Rotor begins to rotate

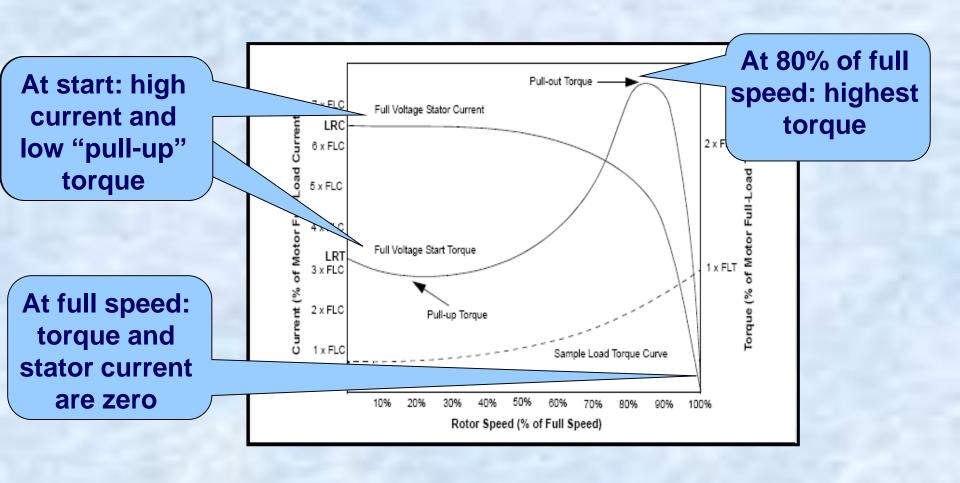
Types of Induction motor

> Single-phase induction motor

- > Single-phase power supply
- > Squirrel cage rotor
- > Require device to start motor
- > 3 to 4 HP applications

Three-phase induction motor

- > Three-phase supply produces magnetic field
- > Squirrel cage or wound rotor
- > Self-starting
- > 1/3 to hundreds HP applications: pumps, compressors, conveyor belts, grinders

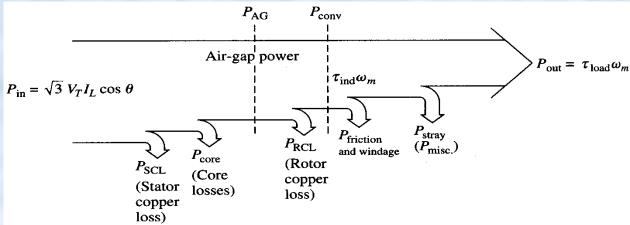

Speed and slip

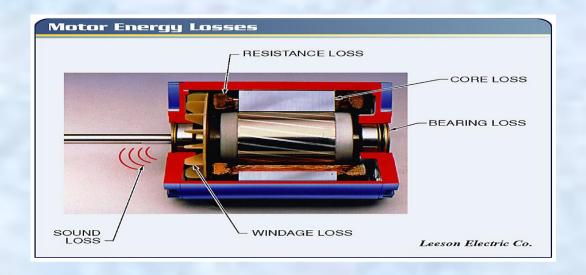
- Motor never runs at synchronous speed but lower "base speed"
- > Difference is "slip"
- > Calculate % slip:

% Slip =
$$\frac{\text{Ns} - \text{Nr}}{\text{Ns}}$$
 x 100

Ns = synchronous speed in RPM Nr = rotor speed in RPM

Relationship load, speed and torque


Efficiency of Electric Motors


Motors loose energy when serving a load

- Fixed loss
- Rotor loss
- Stator loss
- Friction and

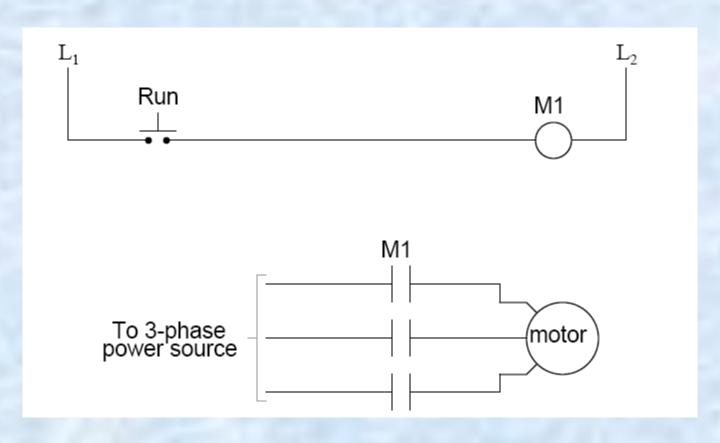
rewinding

Stray load loss

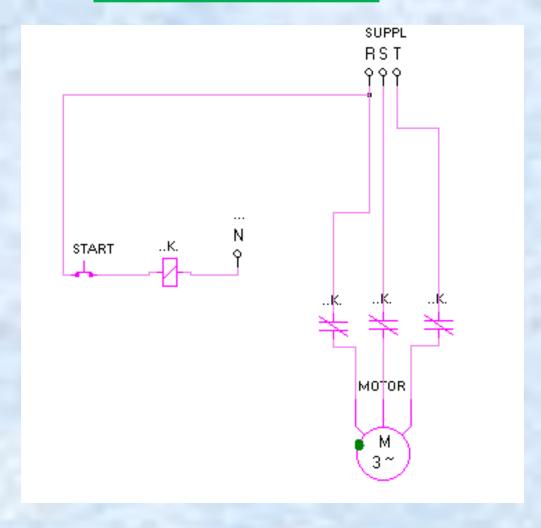
Maintenance

Checklist to maintain motor efficiency

- >Inspect motors regularly for wear, dirt/dust
- >Checking motor loads for over loading
- >Lubricate appropriately
- > Check alignment of motor and equipment
- Ensure supply wiring and terminal box and properly sized and installed
- >Provide adequate ventilation

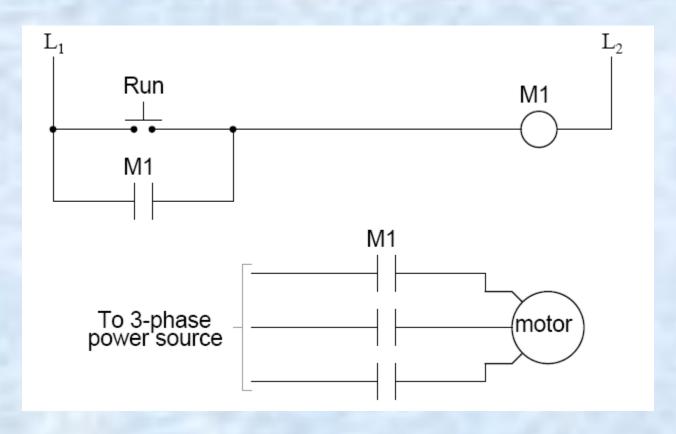

Speed & Torque control of Induction Motor

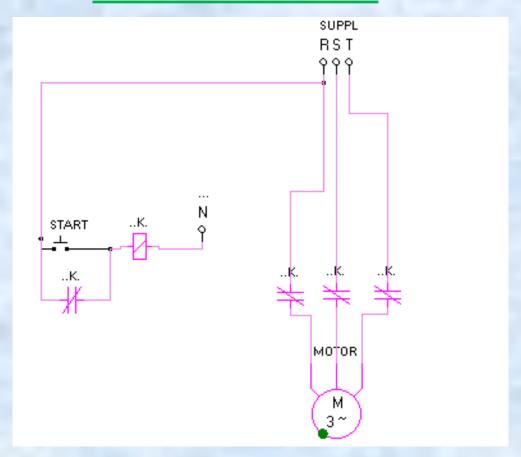
- Multi-speed motors
 - **≻Limited speed control: 2 4 fixed speeds**
- > Wound rotor motor drives
 - **➤ Variable resistors to control torque performance**
- Variable speed drives (VSDs)
 - > Reduce electricity by >50% in fans and pumps
 - ➤ Convert 50Hz incoming power to variable frequency and voltage: change speed


CHAPTER 6 Different types of Motor Control Circuit

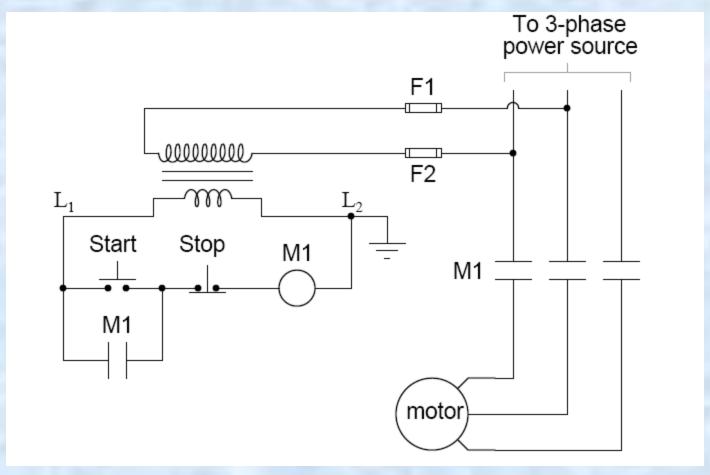
1- Motor control circuit

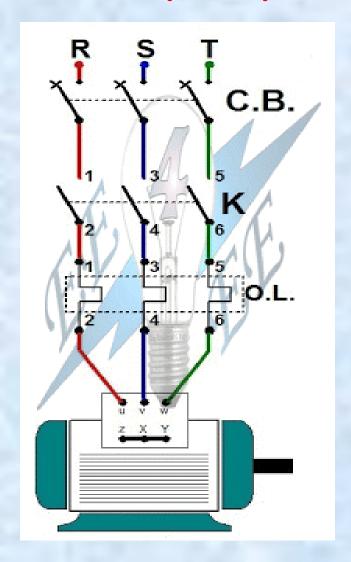
1-Wire control

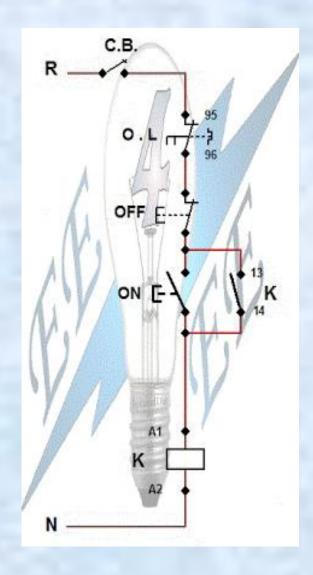



EKTS Simulation

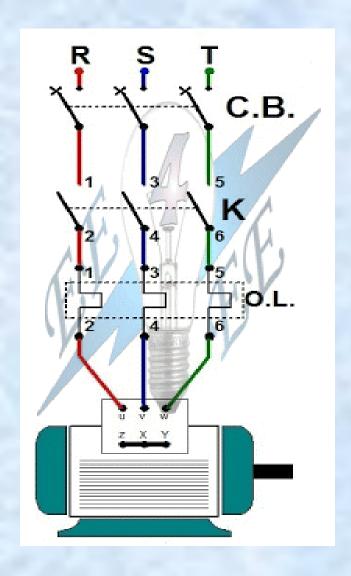
2- Motor control latched circuit

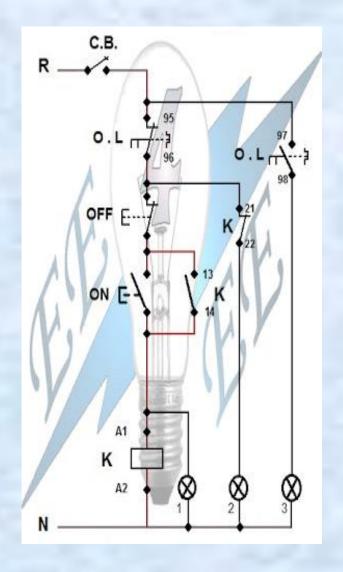

2-Wire control

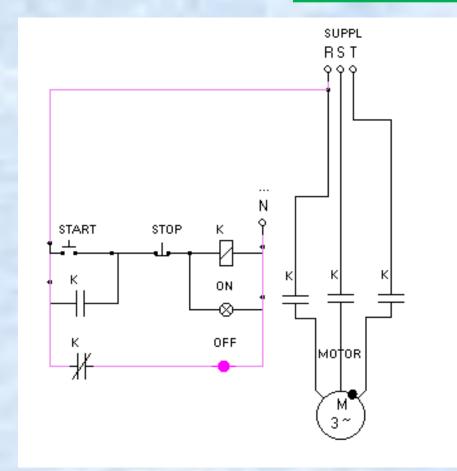


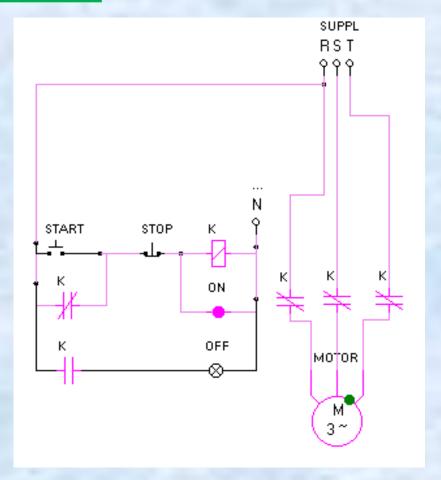

3- Start stop motor circuit


3-Wire control (380 V)

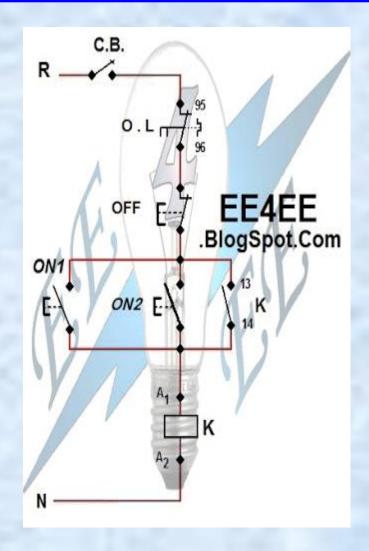

3-Wire control (220 V)

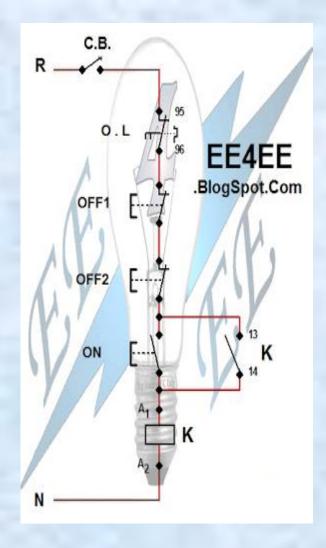


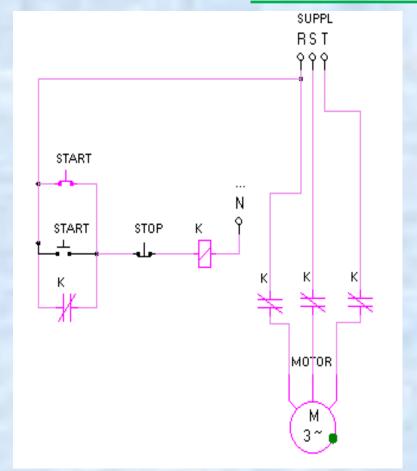


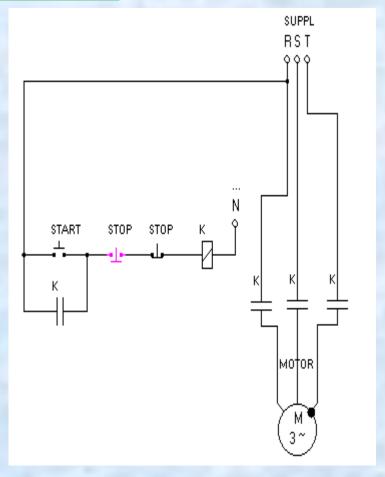


4- ON-OFF-Fault motor circuit

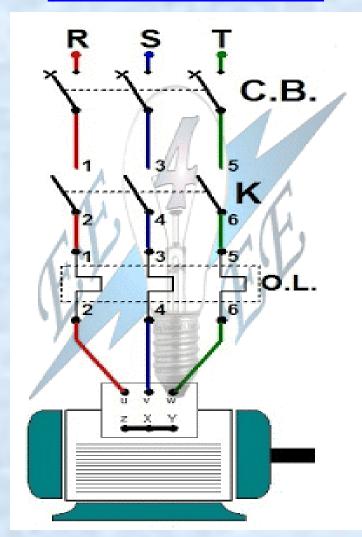


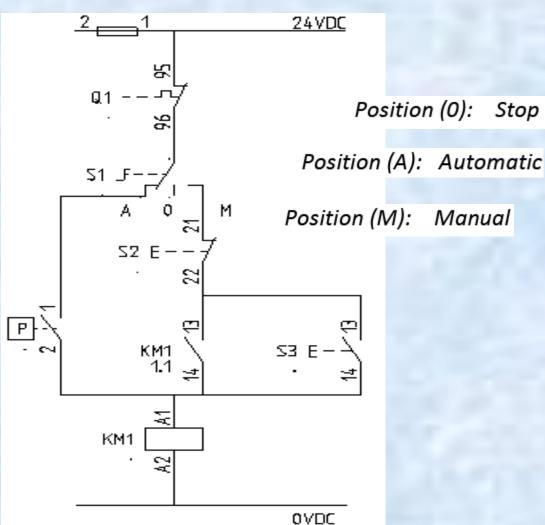


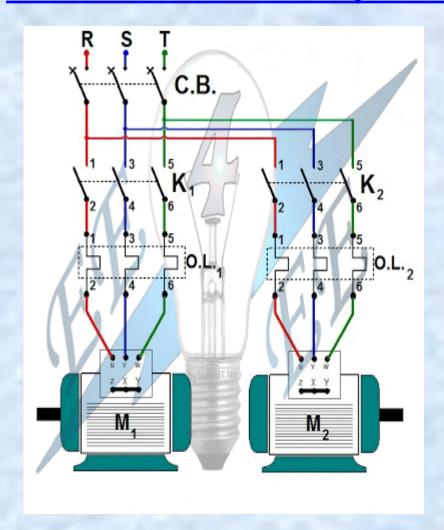


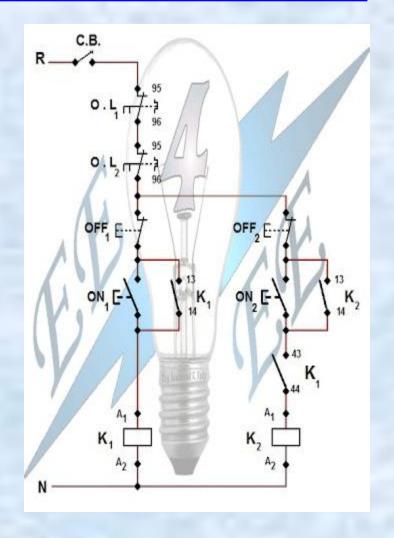


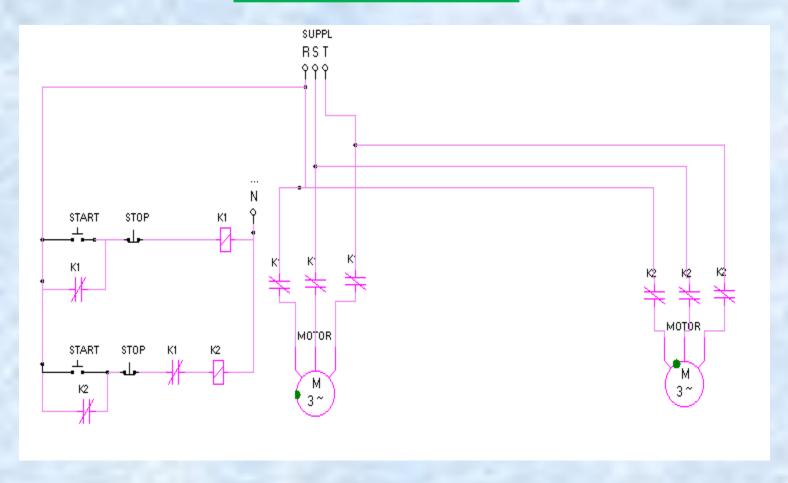
5- Different location controlling motor circuit

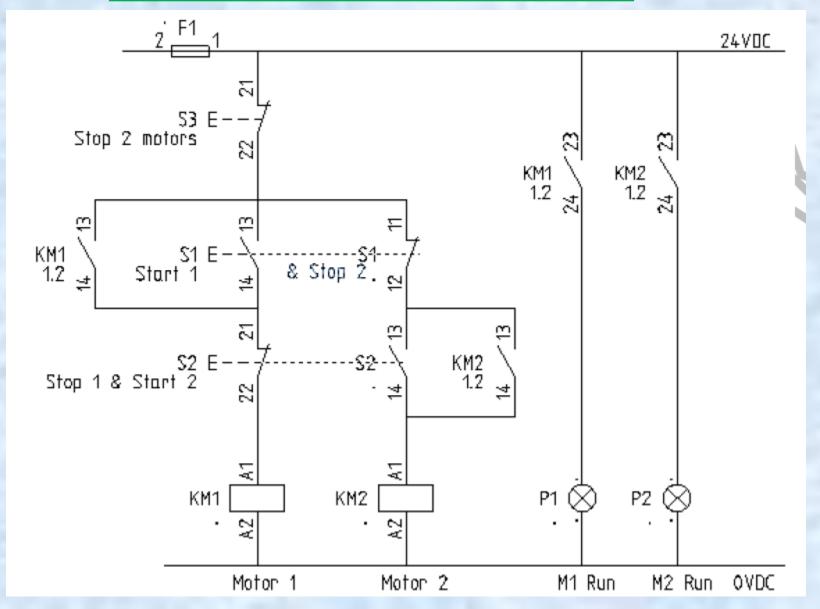


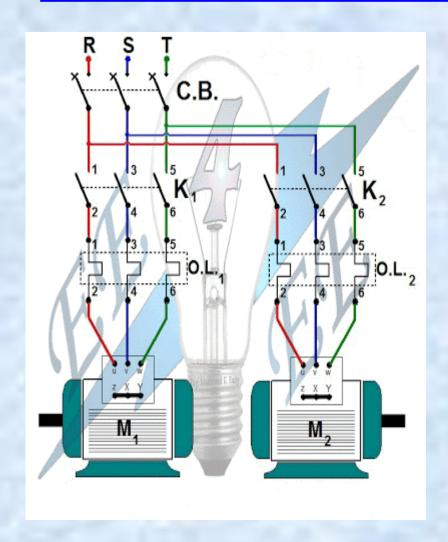


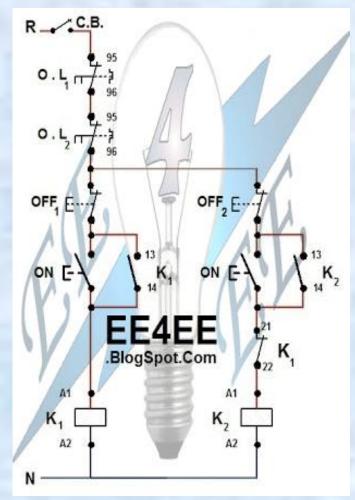


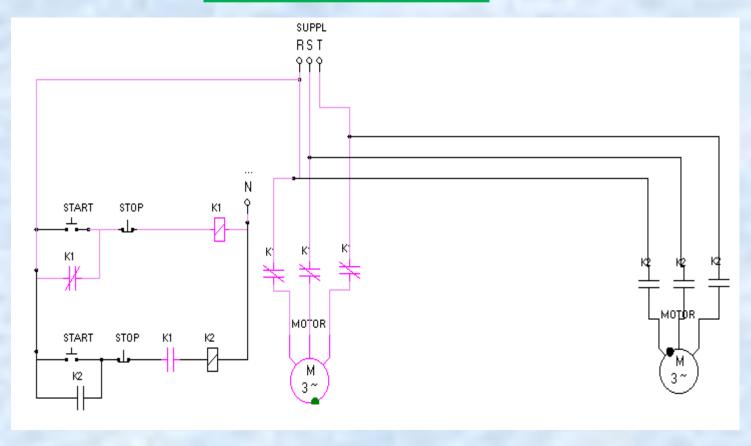

6- Manual & Automatic pump control using pressure switch

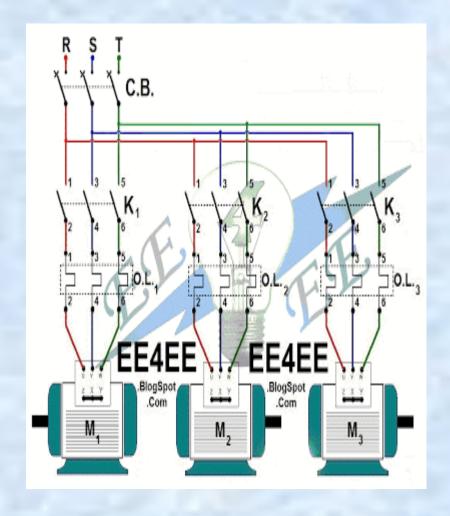


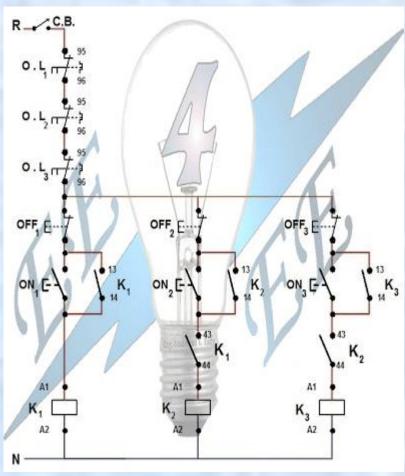

7- Second motor depend on first motor circuit

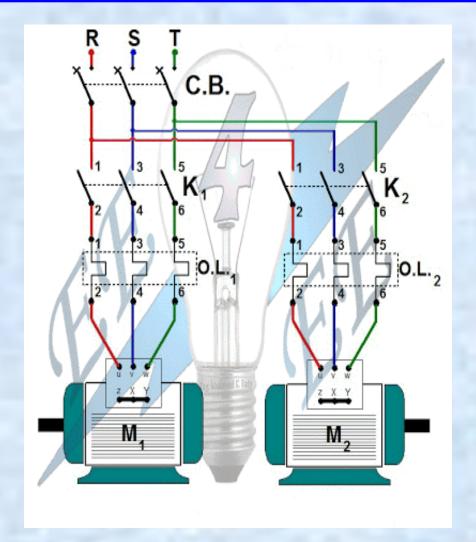


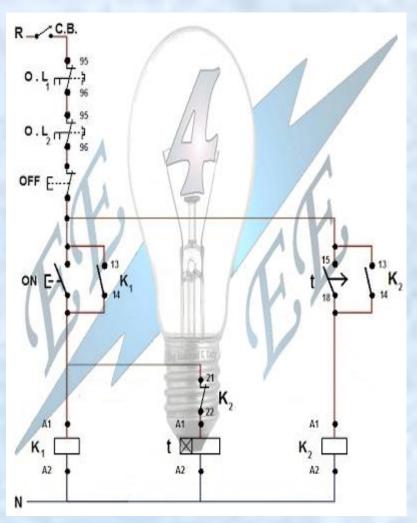


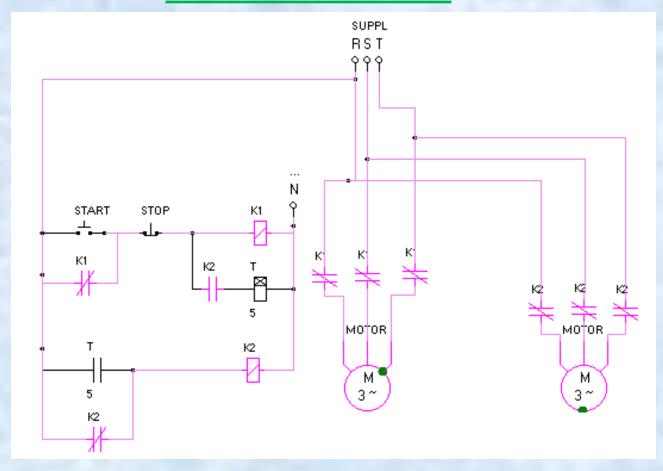

Think what does it mean ????

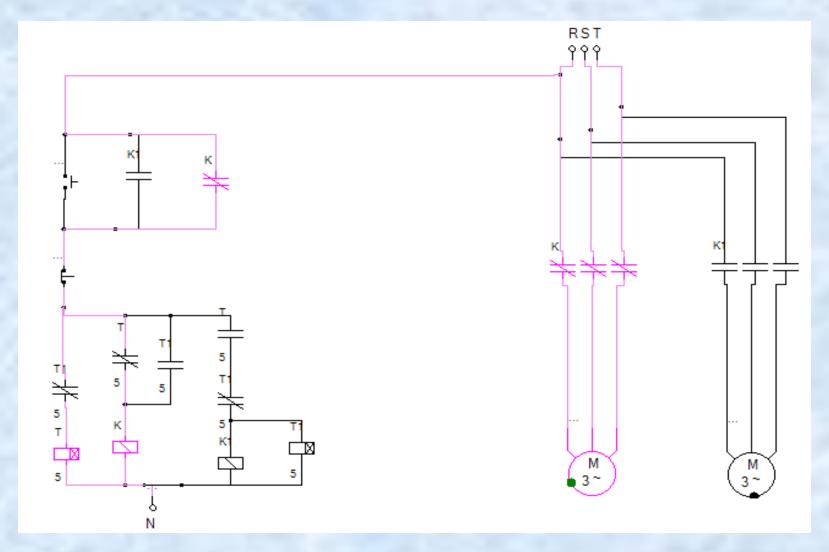

8- One out of two motor circuit

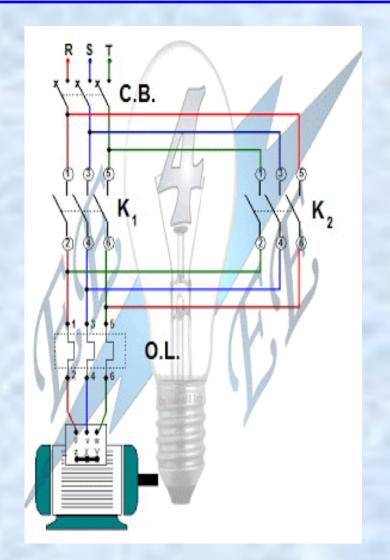


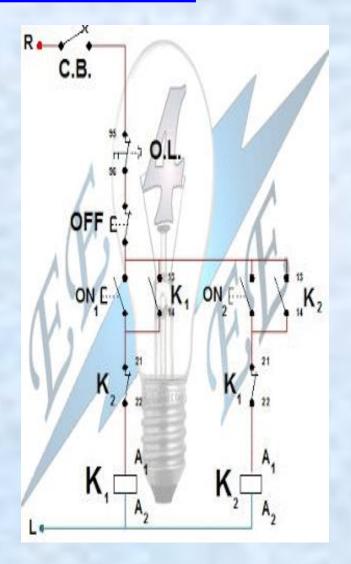

9- Sequence of conveyors motor circuit

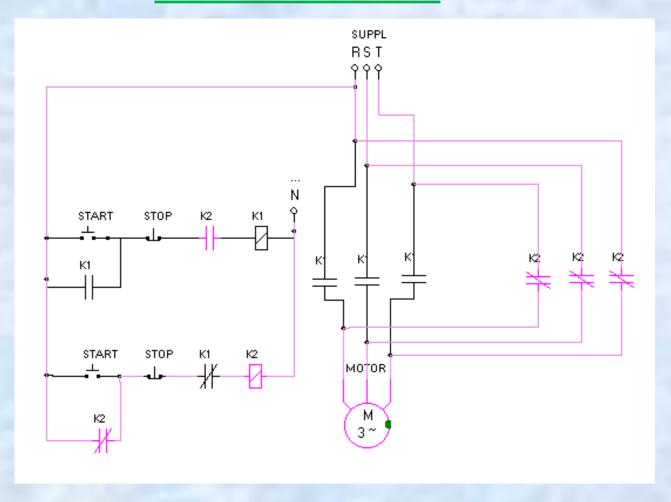


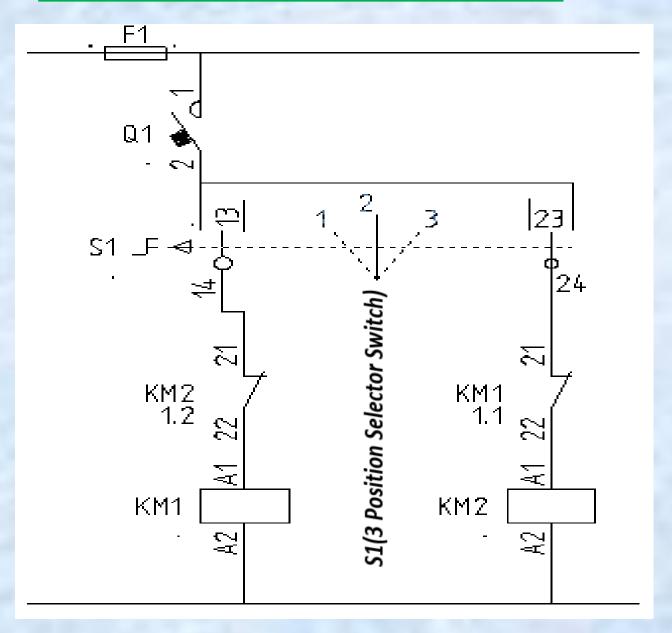


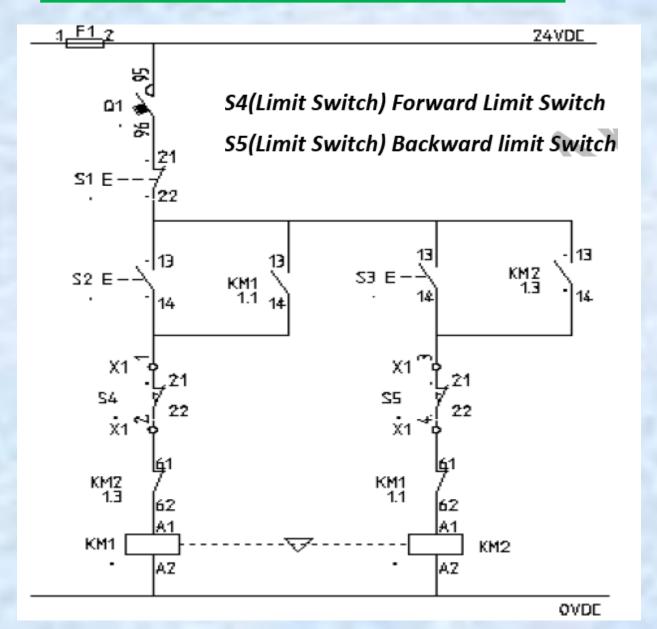

10- Automatic control with time delay motor circuit





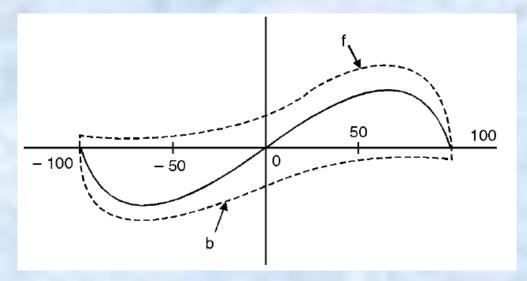

11- Automatic control of two motor with time delay motor circuit


12- Forward Reverse motor circuit

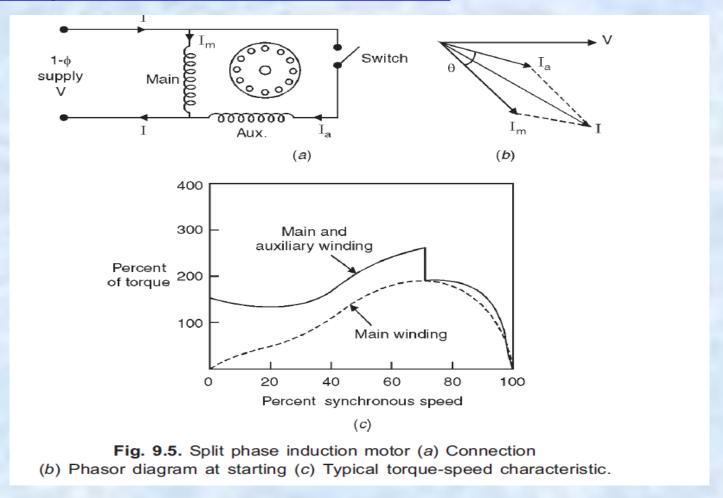


Think what does it mean ????

Think what does it mean ????

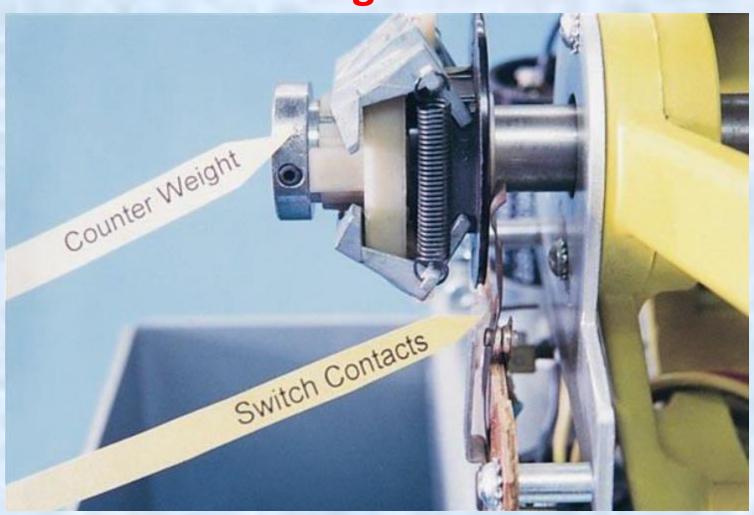

CHAPTER 7 Types of Starter for Induction motors

Function of starter

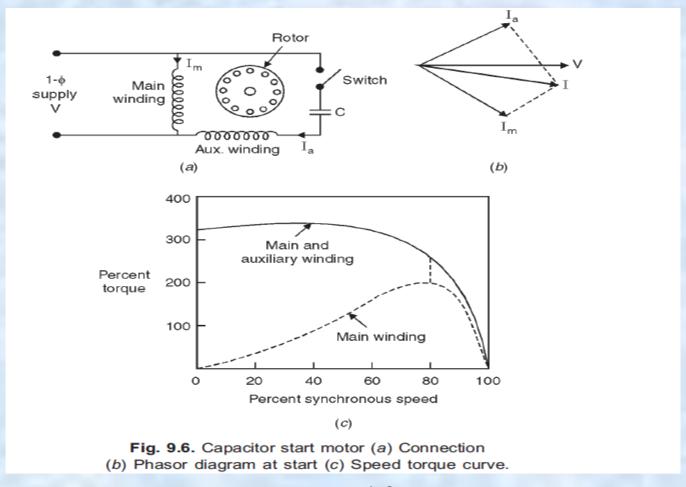

- ☐ Start and stop the motor.
- ☐ Limit inrush current where necessary.
- ☐ Permit automatic control when required
- □ Protect motor and other connected equipments from over voltage, no voltage, under voltage, single phasing etc.

Types of 1Ф I.M starter

- ☐ Split-phase induction motor.
- Capacitor start induction motor.
- Capacitor run induction motor.
- Capacitor start capacitor run motor.
- Shaded pole induction motor.



1- Split-phase induction motor



The split phase induction motors are used for fans, blowers, centrifugal pumps and office equipment.

Centrifugal Switch

2- Capacitor start induction motor

The capacitor start motors are used for compressors, pumps, refrigeration and air-conditioning equipment and other hard to start-loads (25 μ F/HP).

3- Capacitor run induction motor

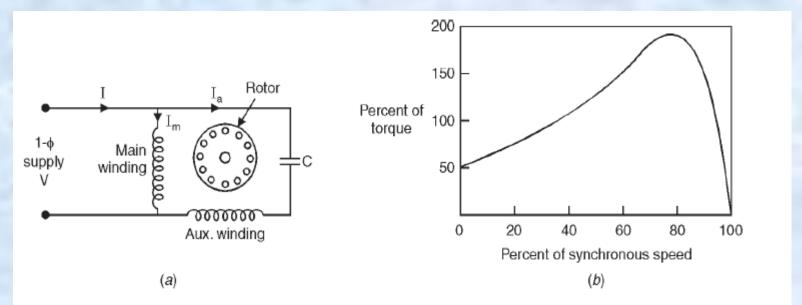
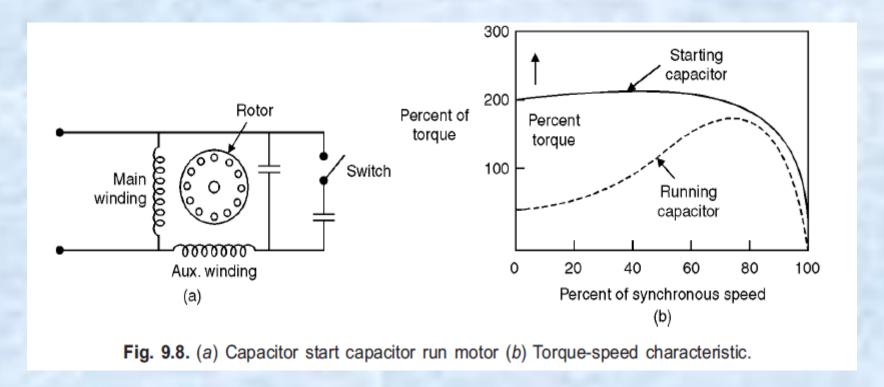
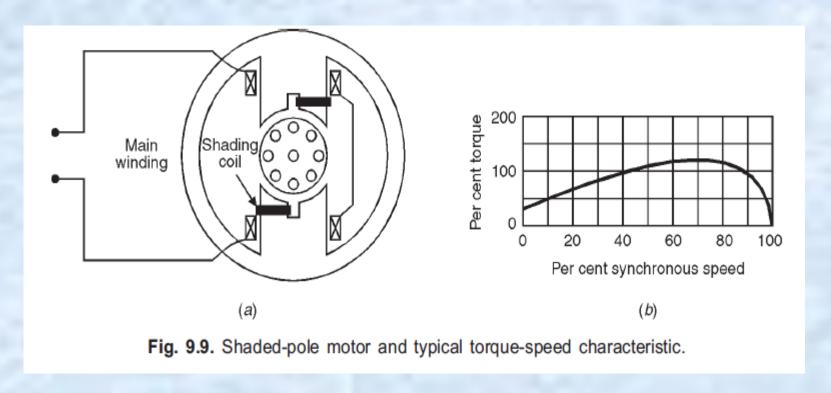
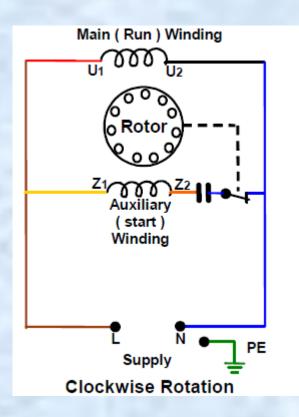



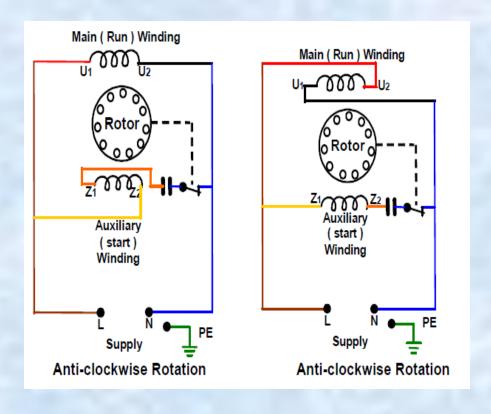
Fig. 9.7. Permanent split capacitor motor (a) Connection (b) Torque-speed characteristic.


The capacitor run induction motors are used for direct connected fans, blowers, centrifugal pumps and loads requiring low starting torque (1.5 to 100 μ F).

4- Capacitor start capacitor run motor

The capacitor start capacitor run motors are used in compressors, conveyors, pumps and other high torque loads.

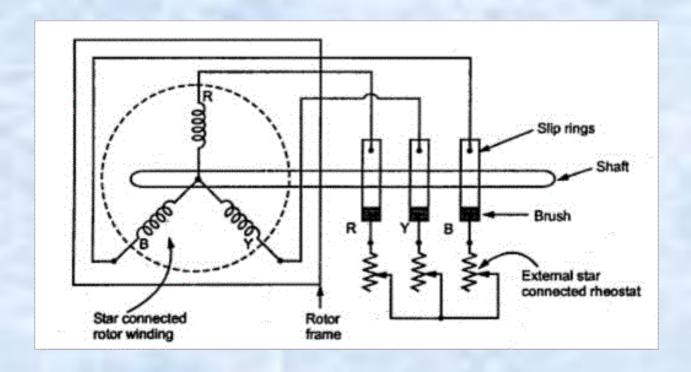

5- Shaded pole induction motor



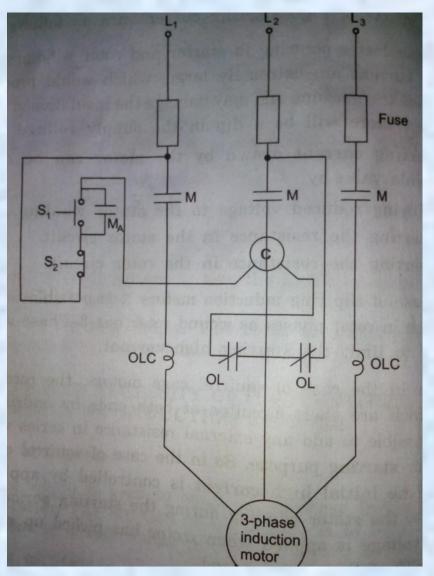
The shaded pole motors are used in toys, hair driers, desk fans etc.

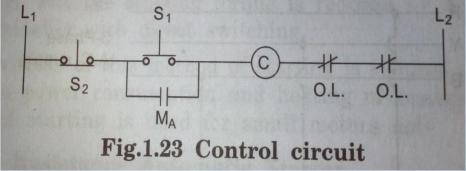
Reversing the Direction of Rotation

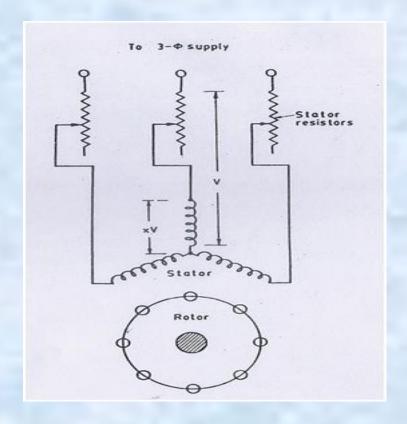
- ➤ Reversing the direction of rotation can be accomplished by reversing either the run windings or the start windings
- > Reversing the start winding connections is more common



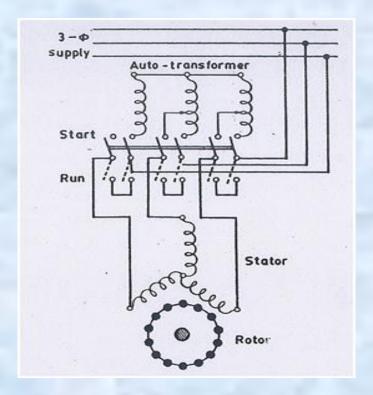
Types of 3Ф I.M starter


- **For slip-ring induction motors:**
- ☐ Rotor rheostat starter
- > For squirrel cage induction motors:
- D.O.L starter
- ☐ Primary resistance starter
- ☐ Auto transformer starter
- ☐ Star delta starter
- > Other starters:
- ☐ Soft starters
- ☐ Variable speed drive


1- Rotor rheostat starter

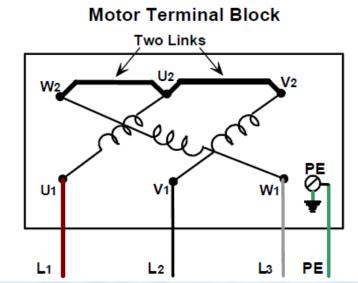

□ The rotor circuit resistance is gradually cut out, as the motor speeds up and during normal running condition, the rotor circuit resistance is completely cut out and the slip rings are short circuited (Starting with high resistance value then decrease gradually Tmax at S=Rext/X2)).

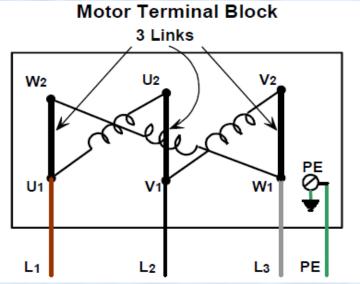
2- Direct-on-Line Starter (DOL)



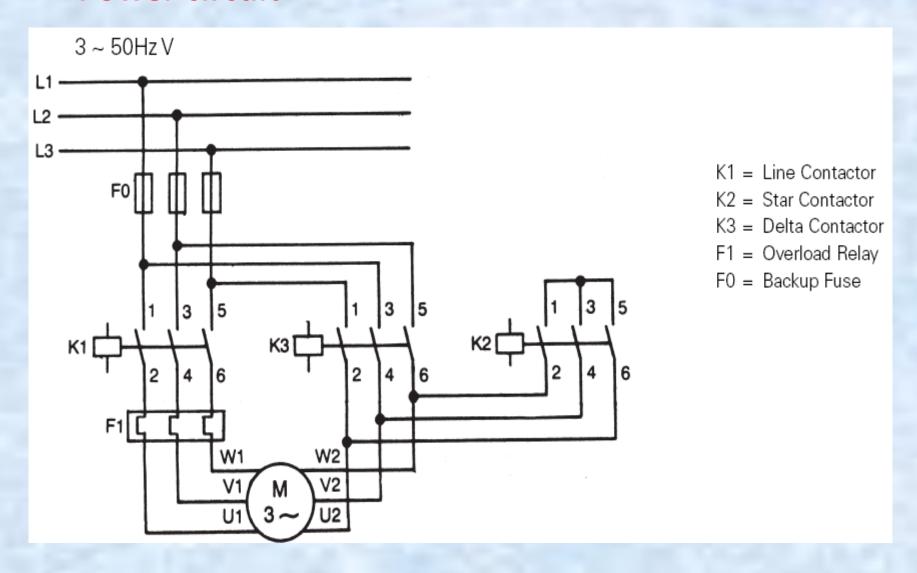
3- Primary resistance starter

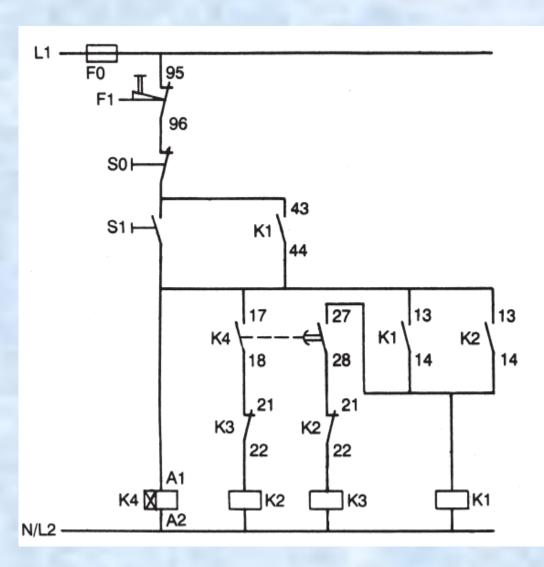

The purpose of primary or starting resistors is to drop some voltage and hence reduce the voltage applied across the motor terminals.


4- Auto-Transformer Starting



□An auto-transformer starter makes it possible to start squirrelcage induction motors with reduced starting current, as the voltage across the motor is reduced during starting.


5- Star delta starting



> Power circuit

> Control circuit

S0 = Push Button OFF (1NC)

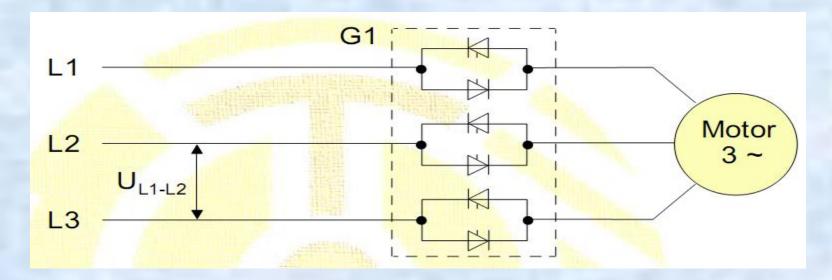
S1 = Push Button ON (1NO)

K1 = Line Contactor with 2NO Auxiliary Contacts.

K2 = Star Contactor with 1NO + 1NC Auxiliary Contacts.

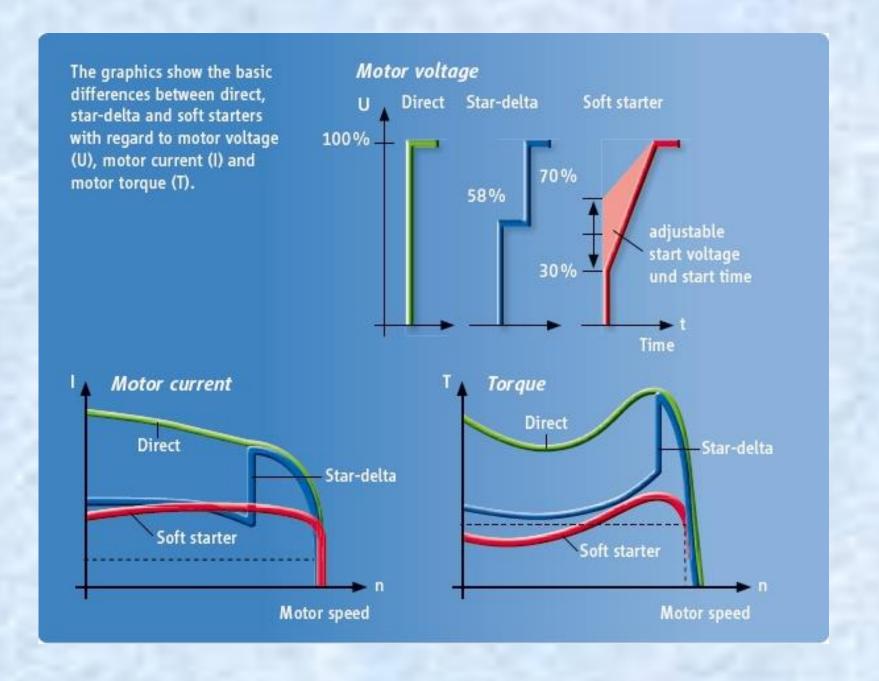
K3 = Delta Contactor with 1 NC Auxiliary Contacts.

K4 = Star Delta Timer with 1NO instantaneous and 1NO delayed Auxiliary Contacts.

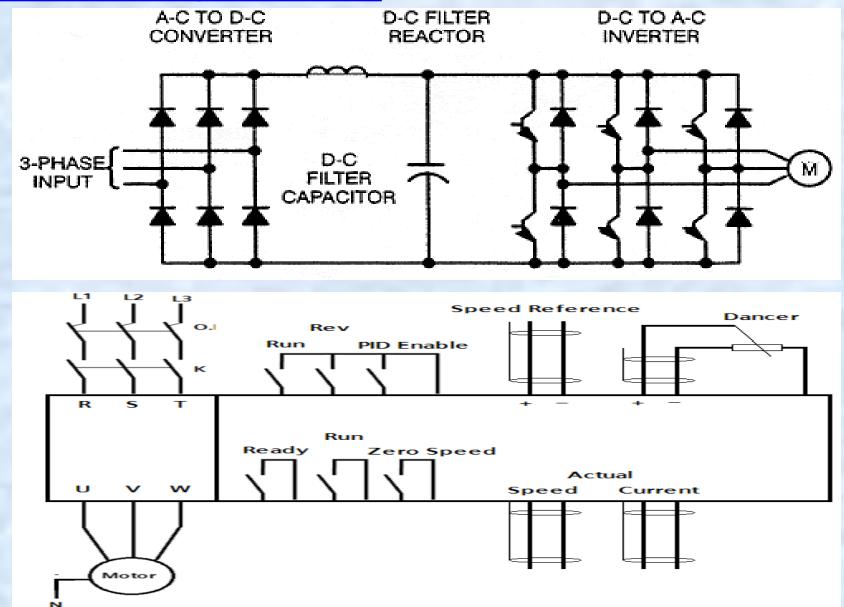

F1 = Overload Relay.

F0 = Backup Fuse.

<u>Difference between DOL/Star delta</u> <u>/Autotransformer</u>


Sr.	DOL Starter	Star delta starter	Auto transformer starter
1	Used up to 5 HP	Used 5 HP to 20HP	Used above 20 HP
2	Does not decrease the starting current	Decreases the starting current by 1/3 times	Decreases the starting current as required
3	It is cheap	It is costly	It is more costly
4	It connects directly the motor with supply for starting as well as for running	It connects the motor first in star at the time of starting in delta for running	It connects the motor according to the taping taken out from the auto transformer

6- Soft starter starting



By using six SCR's in a back to back configuration, the soft starter is able to regulate the voltage applied to the motor during starting from 0 volts up to line voltage.

- ☐ Frequency do not change as in VSD
- ☐ Only the voltage and current changes

7- Variable speed drive

CHAPTER 8 Testing of Induction Motor

Testing of Induction Motor

Visual Tests

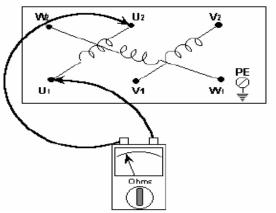
- Check that motor frame is mechanically sound.
- Remove terminal cover plate and check for ingress of foreign material, moisture etc.
- Check for signs of overheating, arcing or burning.
- Check ventilation is clear.

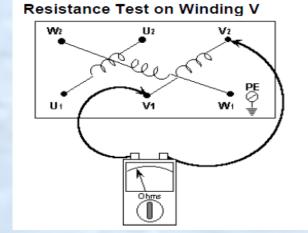
Electrical Tests

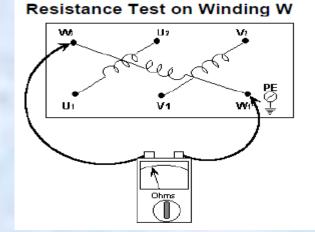
- Identify windings using a continuity tester.
- Measure the resistance of the windings (3 identical readings).
- Measure the insulation resistance between each winding and between windings and frame.

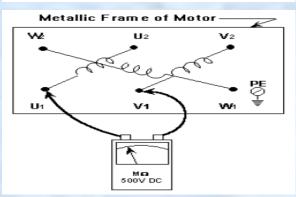
Mechanical Tests

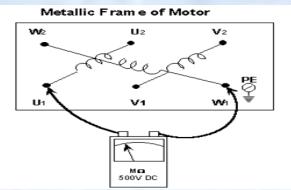
- Check that the rotor is free to rotate and does so smoothly / quietly.
- Check that motor interior is free of dirt, dust, water and oil.
- Check for play in bearings.

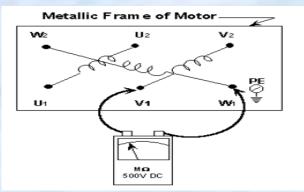

Tests when Running

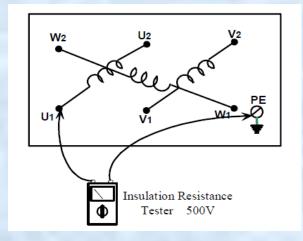

- Check run currents (If uneven check voltage at motor terminals).
- Check speed of motor at no load and full load.
- Check vibration levels and noise levels.
- Check for temperature hot spots.

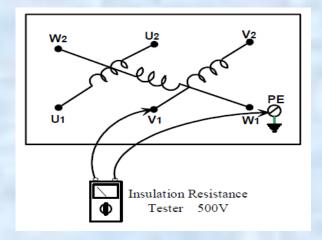

Testing of Three-Phase Stator Windings

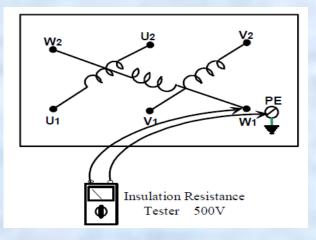

- Step 1: Isolate the motor electrically, and if necessary, mechanically.
- Step 2: Identify the way the motor terminal block is connected.
- Step 3: Identify the 3 stator windings usually labelled U1-U2, V1-V2, and W1-W2.
- Step 4: Measure and record the resistance of each winding.

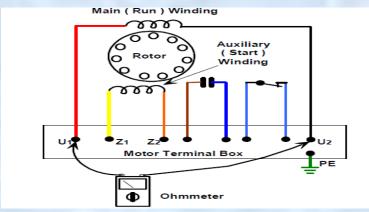

Resistance Test on Winding U

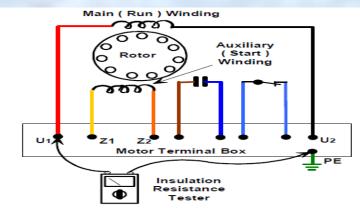


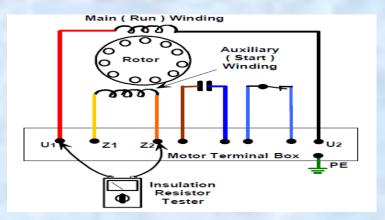


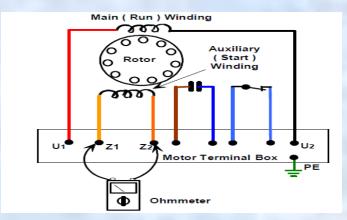


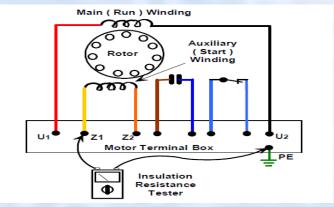


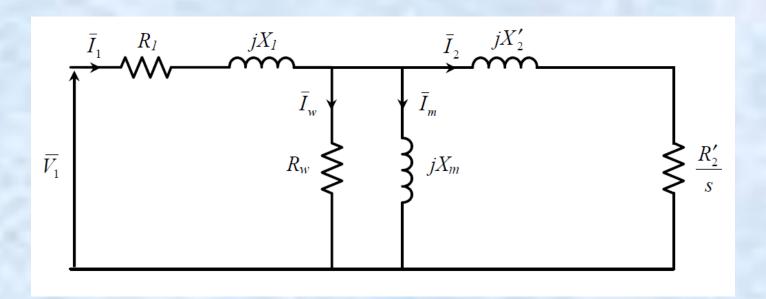







Testing of Single Phase Stator Windings


- Step 1: Isolate the motor electrically, and if necessary, mechanically.
- Step 2: Identify the way the motor terminal block is connected.
- Step 3: Identify the 2 stator windings usually labelled U1-U2 and Z1-Z2.
- > Step 4: Measure and record the resistance of each winding.



<u>Determination Of Equivalent Circuit Parameters</u> <u>Of Three Phase Induction Motor</u>

It is possible to find the parameters of the equivalent circuit of the three phase induction motor experimentally

1- The DC Test:

The DC resistance of the stator can be measured by applying DC current to the terminals of the winding of each phase and taking the reading of the voltage and the current (or using ohmmeter) and determine the DC resistance as fallows:

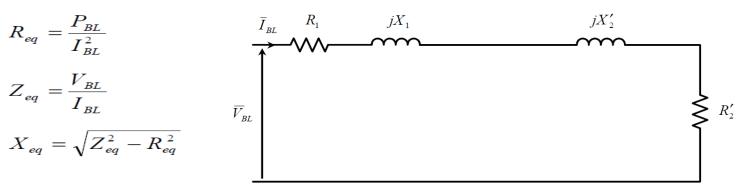
$$R_{iDC} = \frac{V_{iDC}}{I_{iDC}}$$
, where *i* represents the number of the winding *i* (*i* = 1, 2, 3). (1)

After that, the average of the readings can be calculated as:

$$R_{DC} = \frac{R_{1DC} + R_{2DC} + R_{3DC}}{3} \tag{2}$$

Then, the AC resistance is given by:

$$R_1 = 1.15 R_{DC}$$
 (3)


2- The Locked Rotor Test

When the rotor is locked (i.e. prevented from running), s is equal to 1. The secondary impedance becomes much less than the magnetizing branch and the corresponding equivalent circuit becomes that of Fig.2. The readings to be obtained from this test are:

- a) Three phase power $P_{3\phi BL}$
- b) Line voltage $V_{L BL}$
- c) Line current I_{RL}

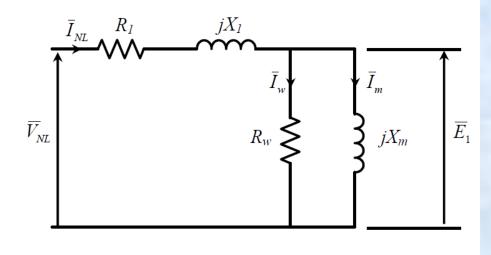
Then, R_{eq} , Z_{eq} , and X_{eq} can be obtained using the following equations:

$$\begin{split} R_{eq} &= \frac{P_{BL}}{I_{BL}^2} \\ Z_{eq} &= \frac{V_{BL}}{I_{BL}} \\ X_{eq} &= \sqrt{Z_{eq}^2 - R_{eq}^2} \end{split}$$

Separation of X_1 , X_2' , R_1 , and R_2' can be done as follows:

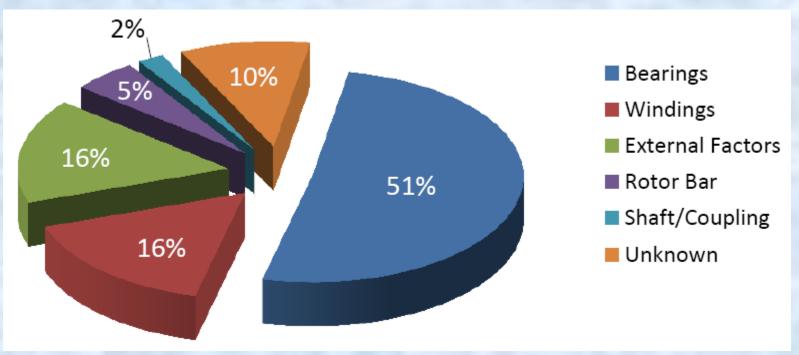
$$X_1 = X_2' = \frac{1}{2} X_{eq}$$

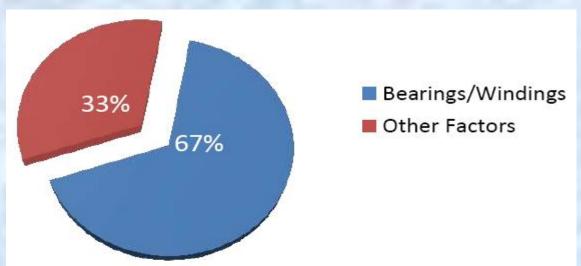
 $R_2' = R_{eq} - R_1$


3- The No Load Test

- d) Three phase power $P_{3\phi_NL}$
- e) Line voltage V_{L_NL}
- f) Line current I_{NL} Then, R_w , and X_m , can be obtained as fallows:

$$\begin{split} P_{core+mechanical} &= P_{NL} - I_{NL}^2 \ R_1 \\ \overline{E}_1 &= \overline{V}_{NL} - \overline{I}_{NL} \left(R_1 + jX_1 \right) \end{split}$$


Note:
$$(\bar{I}_{NL} = I_{NL} \angle -\theta, \quad \theta = \cos^{-1} \frac{P_{NL}}{V_{NL} I_{NL}})$$


$$\begin{split} R_w &= \frac{\left|E_1\right|^2}{P_{core+mechanical}} \\ I_w &= \frac{\left|E_1\right|}{R_w} \\ I_m &= \sqrt{I_{N\!L}^2 - I_w^2} \\ X_m &= \frac{\left|E_1\right|}{I} \end{split}$$

CHAPTER 9 Typical Motor Failure & Protection

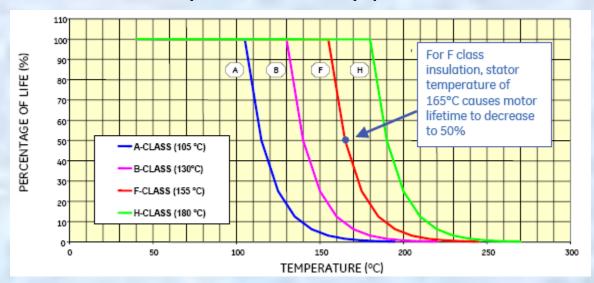
Typical motor failures

Motor failures by component

Component	% Failures	Potential Cause
Bearings	51%	Lubrication, mechanical, shaft currents, contamination
Windings	16%	Overvoltage, water, overload, undervoltage, environment
External Factors	16%	Environmental or load related
Rotor Bar	5%	Overload, locked rotor, vibration
Shaft/Coupling	2%	Mechanical, overload
Unknown	10%	No root cause determined

Bearing

Cooling


Ventilation

Motor Protection

1- Thermal Overload

- Process Caused (Excessive load)
- High Ambient Conditions (Hot, Blocked Ventilation)
- Power Supply Issues (Voltage/Current Unbalance, Harmonics)

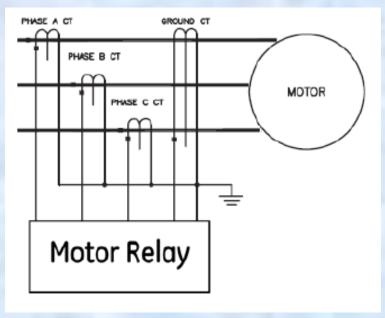
Insulation lifetime decreases by half if motor operating temperature exceeds thermal limit by 10°C for any period of time

2- Overvoltage Protection

- The overall result of an overvoltage condition is a decrease in load current and poor power factor.
- The overvoltage element should be set to 110% of the motors nameplate.

3- Undervoltage Protection

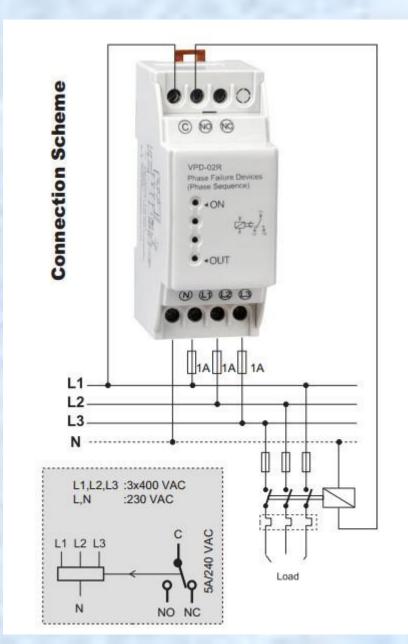
- The overall result of an undervoltage condition is an increase in current and motor heating and a reduction in overall motor performance.
- ➤ The undervoltage trip should be set to 80-90% of nameplate.


Over/Under voltage relay

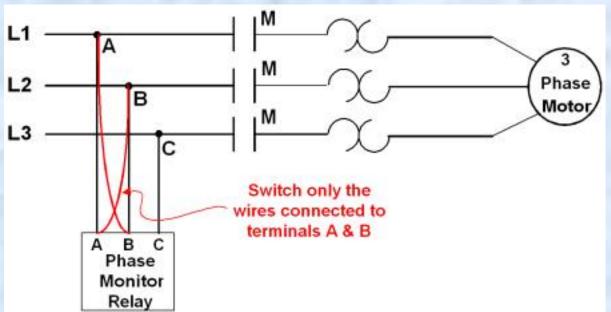
4- Ground Fault Protection

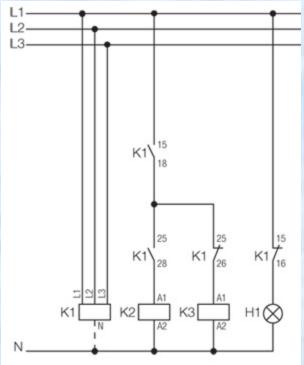
- A ground fault is a fault that creates a path for current to flow from one of the phases directly to the neutral through the earth bypassing the load
- ➤ When its phase conductor's insulation is damaged for example due to voltage stress, moisture or internal fault occurs between the conductor and ground

Zero Sequence CT Connection

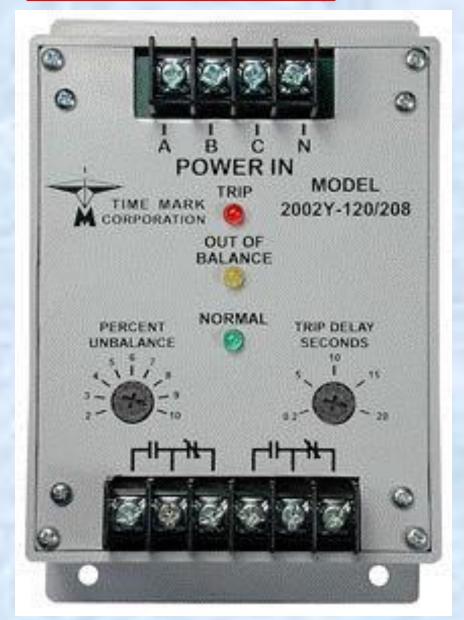

5- Differential Protection

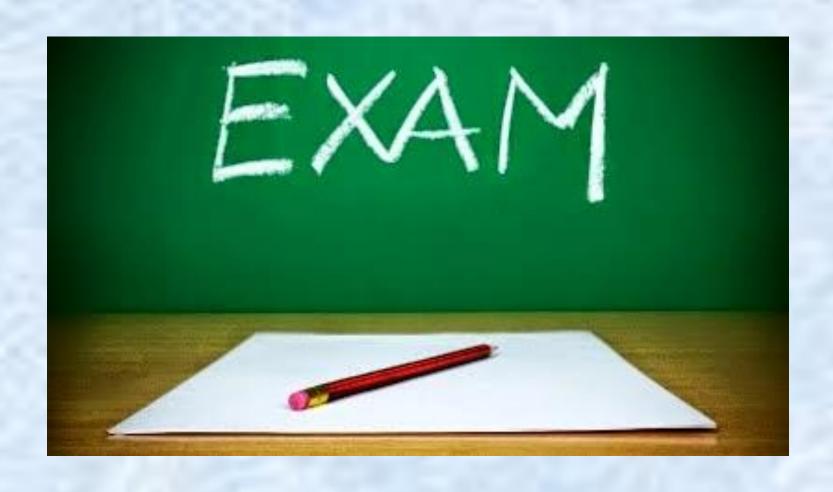
➤ Differential protection may be considered the first line of protection for internal phase-to-phase or phase-to-ground faults. In the event of such faults, the quick response of the differential element may limit the damage that may have otherwise occurred to the motor.


MOTOR DIFF. PHASE C CT DIFF. PHASE C CT MOTOR RELAY


Summation method with six CTs

6- Phase sequence relay





7- Unbalance relay

