

Corrosion, erosion & fouling in Heat Exchangers

pramod_dixit@yahoo.com

What is fouling?

- Deposition of unwanted material on a heat transfer surface.
- It was a problem at invent of process plants & it is a problem even now.

Effects of Fouling

Loss of production:

Downtime or running plant at reduced capacity

Loss of Energy:

Increase in power consumption of associated pumps/compressors. Partial or total by-pass of downstream heat recovery equipments.

Increased Capital Costs:

Over-sizing of exchanger and associated pumps / compressors to take care of reduced heat transfer after fouling.

Increased Maintenance Costs:

Periodic maintenance, cleaning of equipment & chemicalcleaning

Categories of fouling

- 1. Chemical reaction fouling.
- 2. Bio-fouling
- 3. Precipitation (scaling) cooling water
- 4. Corrosion fouling (of tube material)
- 5. Particulate fouling (Settlement)

Type of fouling

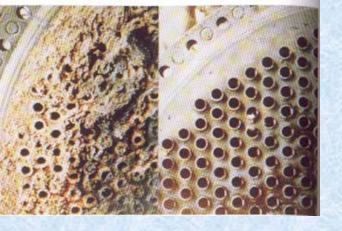
- 1. <u>Chemical fouling</u>: chemical changes within the fluid like salts depositing onto the heating elements as the solubility of the salts reduce with increasing temperature.
- 2. <u>Biological fouling</u>: Growth of organisms within the fluid which deposit out onto the surface.
- 3. <u>Scaling</u>: Deposition of water hardness on the surface w.r.to time usage.
- 4. <u>Corrosion fouling</u>: where a layer of corrosion products builds up on the surface of the tube forming an extra layer of high thermal resistance material.
- 5. <u>Settlement fouling</u>: due to lower flow velocities. Mounting the heat exchanger vertically can also minimise the effect as gravity would separate particles from the heat transfer surface.

Fouling is a combined result of

- Heat transfer thru tubes
- 2. Material deposition on surface
- 3. Momentum of flow
- 4. Chemical reaction.
- 5. Surface roughness
- 6. Congealing / coating etc.

Sedimentation fouling

- Sedimentation can take place due to salt formation at higher temperature.
- Deposition of foreign particles due to low flow velocities
- Sedimentation mostly takes place in liquid services.
- It can also take place in gas phase with heavy density particles
- Sedimentation can be avoided by keeping a watch on temperature control.
- Check on fluid velocities, viscosity & metal roughness


 pramod dixit@yahoo.com

Corrosion in Heat Ex

1. It is a chemical reaction of metal parts of exchanger components with the process fluid.

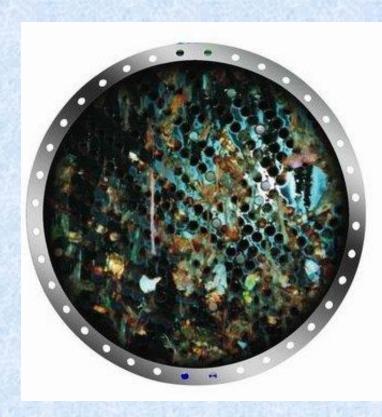
2. Reasons:

- Formation of oxides / chlorides / Sulphates etc. or other type of salts.
- Surface pitting
- Stress corrosion cracking
- Galvanic corrosion
- Crevice corrosion (in between tube to tube sheet joint)

Deposition properties

- Thickness of deposit increases with time.
- Mechanical strength of the deposit increases due to change in crystalline structure or chemical composition of deposit.
- It can be reduced by introduction of suitable chemical additive or intermittent chemical cleaning.
- Aging can work both ways some time may strengthen or weaken fouling deposits. But in any case it retards the heat transfer.

Particulate fouling


- Accumulation of finely divided solids suspended in the process fluid on the heat transfer surface
- Some time settling by gravity due to lower flow velocities, resulting in sedimentation fouling
- Frequently superimposes on precipitation and corrosion being caused by certain types of chemical reaction

Bio-fouling (organic)

It is attachment of macro-organisms and/or micro-organisms to a heat transfer surface, along with the adherent fluid properties often generated by the latter.

Mostly in cooling water applications

Bio-fouling (organic)

- Combines or superimposes on precipitation and particulate fouling.
- Mostly occurs in condensers with cooling water. Degree varies with water source and season.
- Bacterial growth can usually be controlled by chlorination & temperature.

Corrosion fouling

- The heat transfer surface itself reacts to produce corrosion products which foul the surface.
- These fouled layers if not removed by external forces protect the surface from further corrosion..

Corrosion fouling

- Heavy HC streams at temperature about 290C and higher cause corrosion of CS tubes and other components due to hightemperature sulfur corrosion.
- Often difficult to clean. Some times possible by chemical cleaning.

Precipitation

- Precipitation is higher with higher temperature.
- It increases With superheat of the substances.
- The precipitation of dissolved substances takes place on the heat transfer surface

Chemical reaction fouling

- Deposits formed at the heat transfer surface by chemical reaction in which the surface material itself is not a reactant.
- Such fouling results in oil sludge, organic polymers and insoluble decomposition products.
- Chemical reaction fouling is sensitive to Surface temperature of the exchanger body parts.

Parameters which affect fouling

- Nature of fluid
- Fluid velocity high velocity minimizes all modes but requires more pumping power. However one has to be careful about mechanical erosion due to increase in velocity.
- Wall temperature affects scaling, bio-fouling, chemical reaction rates
- Tube material surface roughness

The stages of fouling

Step 1	Initiation	Delay, nucleation, induction,
		incubation, surface conditioning
Step 2	Transport	Mass transfer
Step 3	Attachment	Surface integration, sticking,
		adhesion, bonding
Step 4	Removal	Release, re-entrainment,
		detachment, erosion, spalling
Step 5	Ageing	Aging with respect to time

Taking care of fouling in design

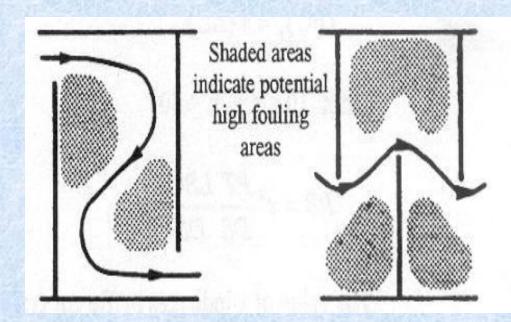
- 1. Fouling allowance provides margin for additional surface area.
- Percentage additional area is worked out on shell side as well as tube side
- 3. For a newly commissioned plant impact of additional surface area needs careful analysis.
- 4. <u>Too much over margin It is not always desired as it changes the product temperature from process consideration.</u>
- 5. Fouling resistance should cater only to fouling and not to uncertainties in design, future plant capacity increase, etc. pramod dixit@yahoo.com

Selection of fouling resistance

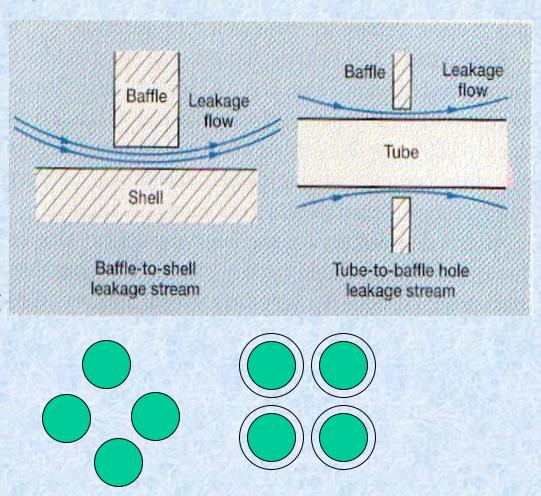
Considering complexity of the process it is important to monitor fouling

- By recording and analyzing system pressure drop. But it is tedious & time consuming.
- Fouling resistance in design is picked up by using past experience & operations feedback.

choosing right type of exchanger to minimize fouling


- Use heat exchanger types that foul less like :
 - 1) Plate,
 - 2) Spiral,
 - 3) Helixchangers
 - 4) Twisted Tube.

- Tube side easier to clean, hence dirty fluids are mostly taken to tube side.
- Trade-off between initial cost and operating cost.


In case dirty fluid on shell side

- Use floating-head or U-tube design.
- Use square or rotated square tube layout.
- Minimize dead spaces by optimum baffle design.
- Maintain high velocity shell side

In case dirty fluid on shell side

- Use larger tube pitch for very dirty services.
- Check pressure drop with zero clearances or fouling layer thickness
- Use square or rotated square pitch.

Fouling – Formation of non-metal layer

- Formation layer in side / out side of tubes
- Deposition of solids in Channel & or Shell.
- Chocking of tubes / inlet / outlet nozzles.

Fouling Inside tube decreases:

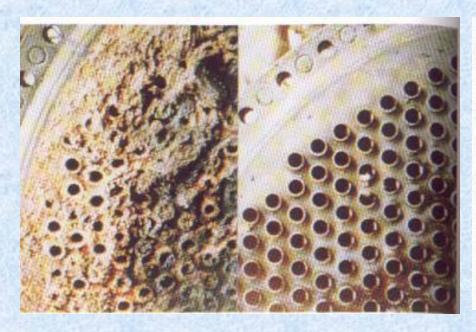
- Reduction in flow area
- Increase in Tube side pressure drop
- Increase in tube side velocity
- Reduction in heat transfer through tube wall

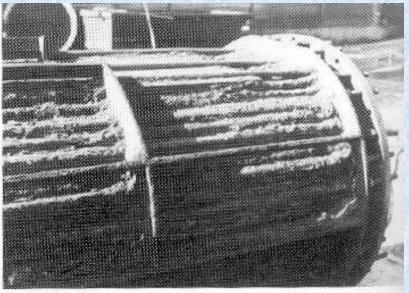
Designing for Fouling service (contd.)

- Use Plate type or Spiral exchangers these heat exchangers have inherent characteristics to handle fouling fluids .
- Corrugated plates / stubs (in case of Spiral) create high turbulence which helps on avoiding build-up of deposits.
- Removable plate / cover design ensures complete and thorough cleaning

Designing for Fouling service

- Use Helix exchanger, with fouling fluid on shell side.
- For S & T exchanger, allocate the fouling fluid to tube side.
 - Use higher diameter tubes
 - Maximize tube side velocity with increased tube passes / more shells in series
 - Consider on-line chemical cleaning.
 - Use spare tube bundle / spare shell.


Physical cleaning of tubes by drilling



Fouled tube bundle

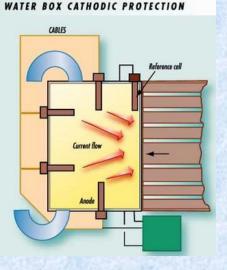
Scaled Tube sheet

Fouled Exchanger Bundle

Galvanic corrosion

Problems associated with cooling water

- ❖ Sea water based condensers, have the worst corrosion characteristics in comparison to River water or under ground water .
- ❖ Besides all the cooling water is dozed with acids and chemicals (Sodium Hypochlotite, Chlorine etc.) to avoid Bacterial and micro-organism growth.

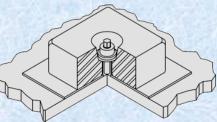

Problems associated with cooling water

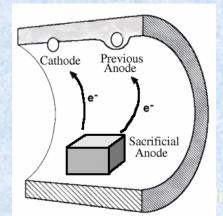
- Generally in Coolers tubes are made of stainless steel / brass / bronze/ Cupronickel / Titanium depending severity of corrosion.
- Currently use of copper bearing alloys is not recommended in new projects due to environmental concerns of toxic copper alloys mixing with discharge water.
- Titanium condenser tubes are usually the best technical choice, however very expansive.

Problems associated with cooling water

- The tube to tube sheet joint is always in contact with circulating water, most vulnerable for various type of corrosion.
- ❖ The dozing chemicals make water more corrosive in nature and it works as electrolyte. Recirculation of cooling water makes it more corrosive. (periodic discharge & fresh make up is needed)
- This results in electrolytic corrosion (or Galvanic Corrosion)...
- To overcome this galvanic corrosion, Cathodic protection is provided in side Channel boxes of exchangers, by providing sacrificial anodes.

FIGURE 4




Sacrificial anodes

- Anodes are made of Zinc / Mg / Al alloys.
- Mounted by bolting to pass-partition plates.
- These anodes require periodic inspection and replacement.
- As a secondary protection channel side is also protected inside by epoxy paint.

HDPE tube inserts

Tube to tube sheet joint is most vulnerable part for galvanic corrosion. It is due to:

- Dissimilar metals tube (Copper based)

 and tube sheet CS).
- Eddy formation at the tube inlet causes erosion of tube to tube sheet joint.
- Most of the sea water condensers these tube inserts are used to protect the joint from erosion.

Erosion in Heat Exchangers

Erosion in Heat Exchangers

- Erosion is gradual removal of material causing thinning of material.
- Most of the erosion takes place in tubes in side, exchanger inlet and exit nozzles.
- Erosion near Tube to tube sheet joint
- External erosion of tubes due to high inlet and exit velocities on shell side.

Reason for Erosion

- Presence of suspended solids in the fluid stream.
- Tube flow velocities higher.
- Higher pv2 causing gradual removal of material (pitting) & thinning of material.
- In order to reduce inlet and exit erosion:
 - (a) Impingement plates are used to protect tubes
 - (b) Inlet and out let nozzles size is kept larger than connection pipe size.

Metal Erosion

- Exceeding Fluid velocity on either shell or tube side wears metal from the tube surfaces.
- 2. At lower velocities corrosion makes a protective layer, however higher velocities remove this protective layer & erosion is accelerated.
- 3. Metal erosion occurs most often inside tubes, in U bends in bend portion & near the tube entrances.
- 4. Attached photo is tube erosion due to flashing on "U" bend.

Metal Erosion

- Shell side entrance areas often experience severe metal loss due to high-velocity fluid hitting & entering the heat exchanger.
- 2. When a single stream divides into smaller streams, turbulence results with a very high localized velocity & thus erosion.
- 3. This can be prevented by inserting an impingement baffle as well as increasing the inlet nozzle size.

Thank you