CENTRIFUGAL PUMP FORMULA

	CENTRIF	UGAL PUMP FORM	ULA
Parameter	Metric unit	US unit	Application and Significance
 Head ↔ Pressure 	$H = \frac{10.2 \times P}{SG}$	$H = \frac{2.31 \times P}{SG}$	 Centrifugal pump develops fixed head at given operating point irrespective of fluid type Instruments are designed to measure pressure
• Volumetric flow ↔ Mass flow	$Q = \frac{M}{SG}$	$Q = \frac{M}{500 \times SG}$	 Process people follow mass flow rate to balance various chemical processes Pump curves is based on volumetric flow rate
Hydraulic KW / HP	$P_{hyd} = \frac{Q \times H \times SG}{367}$	$P_{hyd} = \frac{Q \times H \times SG}{3960}$	 Evaluate pump performance Trouble shoot pump performance issues Estimate actual operating point on Q-H curve
• Pump KW or HP ↔ Efficiency	$P_{bkw} = \frac{Q \times H \times SG}{367 \times \eta_p}$	$P_{bhp} = \frac{Q \times H \times SG}{3960 \times \eta_p}$	 Estimate product specific gravity while the same pump being handled for different product Define set points for interlock to protect plant,
• Motor input current ↔ Power	$P_{bkw} = \frac{\sqrt{3} \times VI \cos \emptyset \times \eta}{1000}$	$P_{bhp} = \frac{\sqrt{3} \times VI \cos \emptyset \times \eta}{1340}$	 equipment or process Implement automatic control system Trouble shoot driver or power supply related issues
• NPSH _a at Suction flange	$NPSH_a = \frac{10.2 (P_s - P_v)}{SG}$	$NPSH_a = \frac{2.31 (P_s - P_v)}{SG}$	 Protect pump from cavitation Protect mechanical seal or magnetic drive pump from dry running Provide estimated set points for interlock
 Seal box pressure (Please refer my exclusive post on this topic for more info) 	$P_{seal} = P_s + 0.25 P_{diff}$ Impeller with back vanes $P_{seal} = P_s + 0.10 P_{diff}$ impeller with balance holes $P_{seal} = P_s$ - Double suction or Suction side of multistage $P_{seal} = P_d$ - Vertical pump VS1,2,3,6,7 $P_{seal} = P_{atm}$ - Vertical pump VS4 and VS5		 It is required to select suitable seal plan Estimate seal flush or barrier fluid pressure Ensure seal faces sees liquid phase at all the times Trouble shoot and RCA of seal failure
Symbol	Metric Unit	US Unit	Symbol stand for
P_s , P_d , P_{seal} , P_{atm} , P_v – Pressure	Bar	PSI	Suction, discharge, seal box, atmospheric and vapor pressure
P_{hyd} , P_{bkw} , P_{bhp} – Power	KW	НР	Hydraulic power, Pump power KW, Pump power HP
SG – Specific gravity	NA	NA	
Q – Volumetric flow rate	M^3 / Hr	GPM	
M – Mass flow rate	Tonn/Hr	Lbm/Hr	
V – Supply voltage	Volts	Volts	
I – Current	Amps	Amps	
$oldsymbol{\eta}$, $oldsymbol{\eta}_p$ – efficiency motor, pump	NA	NA	

CENTRIFUGAL PUMP FORMULA

Parameter	Formula and other information			Application and Significance	
Specific speed	$N_S=rac{{ m N}\sqrt{Q}}{(H)^{3/4}}$ Specific speed derived by SI units X 51.64 = specific speed in US units.	20 30 40 Radial	speed (SI units) 50 60 70 80 100 150 200 300 Mixed flow Axial	 For multistage pump, head to be considered per stage. Head per stage = Total head / No. of stage. For double suction impeller flow to be considered half of total flow. Specific speed is an index used to predict desire pump performance and the general shape of a pump's impeller. 	
Suction specific speed			0	Suction Specific Speed defines pump's suction	
	Nss < 120 (SI units) or 6000 (U cavitation. Nss > 210 (SI units) or 11,000 possibility of casing,Impeller of Higher Nss → Possibly narrow	(US units) → Operati erosion, Shaft deflect	of recirculation and on below 60-70% of BEP → ion, Bearing and Seal failure	 characteristics. In particular, a value indicates the tendency of a pump to become unstable as a result of suction recirculation and cavitation. It can also be used to assess the safe operating 	
Affinity law	Formulas for Refiguring Pump Performance with Impeller Diameter or Speed Change		Predict pump flow, head and power with the nev		
	Diameter Change Only	Speed Change Only	Diameter and Speed Change	 impeller diameter Predict pump flow, head and power with the ne operating speed 	
	$Q_2 = Q_1 \left(\frac{D_2}{D_1} \right) $	$Q_2 = Q_1 \left(\frac{N_2}{N_1} \right)$	$Q_2 = Q_1 \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1} \right)$	 Applying smart pumping through variable frequency drive. 	
	$H_2 = H_1 \left(\frac{D_2}{D_1} \right)^2$	$H_2 = H_1 \left(\frac{N_2}{N_1}\right)^2$	$H_2 = H_1 \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1} \right)^2$	 Troubleshoot performance related issue due to driver speed or impeller diameter 	
	$bhp_2 = bhp_1 \left(\frac{D_2}{D_1}\right)^3$	$bhp_2 = bhp_1 \left(\frac{N_2}{N_1}\right)^3$	$bhp_2 = bhp_1 \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1} \right)^3$	Applying Correction factor	
		1 27	(2)	Actual required impeller diameter A can be	
	Q_1 , H_2 , bhp_1 , D_1 , and $N_1 = Initial$ Q_2 , H_2 , bhp_2 , D_2 , and $N_2 = New$		rsepower, diameter, and speed.	derived as $A = 16.2 + 0.838C$	
Symbol			rsepower, diameter, and speed.	·	
Symbol <i>Q – Volumetric flow</i>	Q_2 , H_2 , hhp_2 , D_2 , and $N_2 = New$		rsepower, diameter, and speed. sepower, diameter, and speed.	derived as A = 16.2 + 0.838C C is required percentage of impeller diameter	
<u> </u>	Q_2 , H_2 , bhp_2 , D_2 , and $N_2 = New$ Metric Unit		rsepower, diameter, and speed. iepower, diameter, and speed. US Unit	derived as A = 16.2 + 0.838C C is required percentage of impeller diameter Symbol stand for	
Q – Volumetric flow	Q_2 , H_2 , bhp_2 , D_2 , and $N_2 = New$ Metric Unit M^3 / S		rsepower, diameter, and speed. epower, diameter, and speed. US Unit GPM	derived as A = 16.2 + 0.838C C is required percentage of impeller diameter Symbol stand for BEP flow rate per Impeller eye	