

## **Fast Facts**

Established:

**Employees:** 

**Production sites:** 

SKF presence:

Distributors/deal ers:

Global certificates:

1907

46,039

More than 40 in

SKF Pakistan

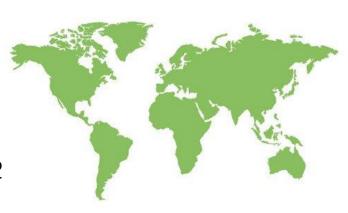
around 130 in 32

countries

in over 130

countries

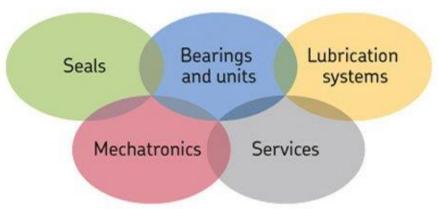
15,000 locations


5 distributors in

Pakistan

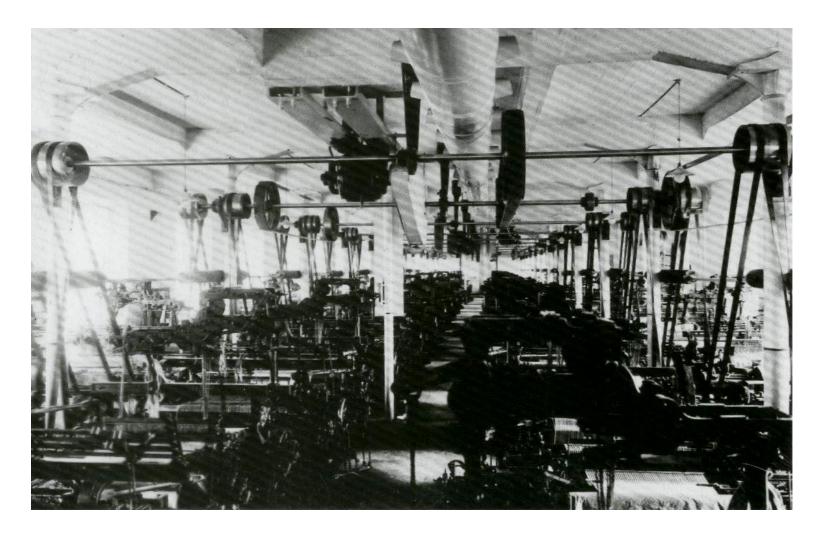
ISO 14001

OHSAS 18001


certification



#### Competence

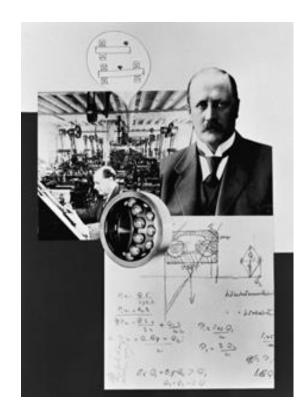

#### SKF's five technology platforms are

- Bearings and Units
- Seals
- Mechatronics
- Services and
- Lubrication Systems

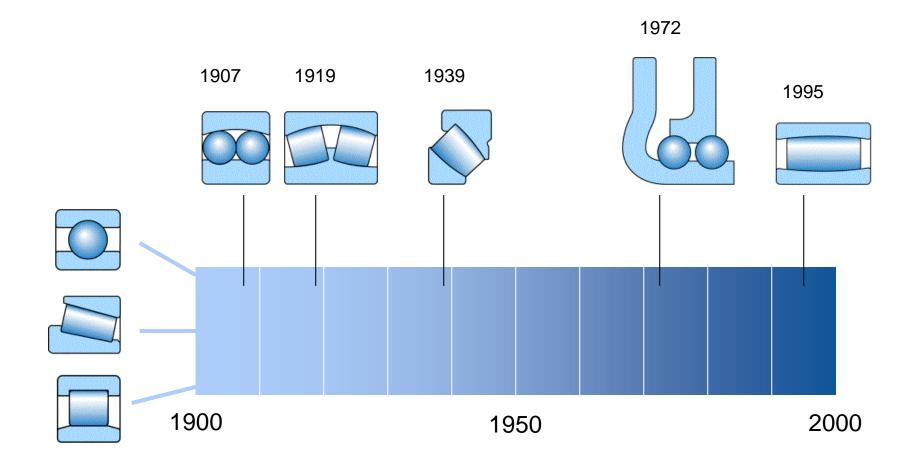


By utilizing these capabilities SKF develops tailor-made offers for each industry.

## Example of shaft misalignment

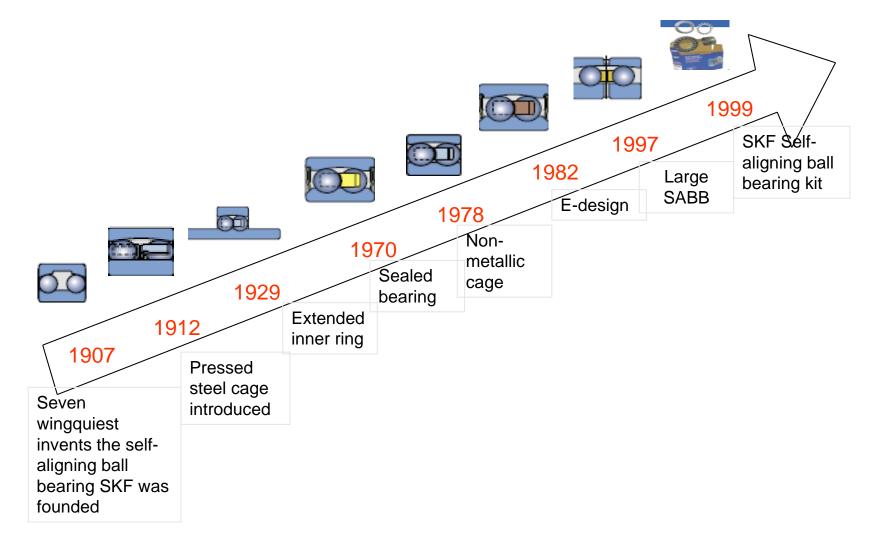



2013-09-12 ©SKF Slide 4 [Code]


#### The Foundation Story 1907

A ground-breaking innovation In 1899, the young swede Sven Wingquist (1876-1953) started work as an engineer and maintenance supervisor at a textile mill in Gothenburg. Constant machinery problems caused by fragile bearings led Wingquist to become almost obsessed with the challenging task of contracting sustainable bearing.

In 1907, Wingquist constructed the first self-aligning ball bearing, and SKF was founded on 16<sup>th</sup> February, 1907, with the inventor as president.




## **Bearing Innovations**

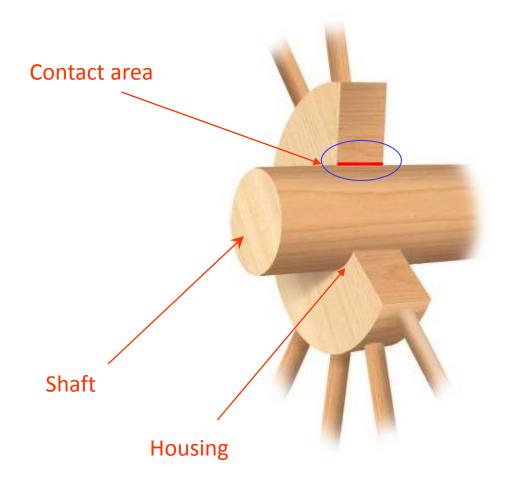


2013-09-12 ©SKF Slide 6 [Code]

#### Self-Aligning Ball Bearing



2013-09-12 ©SKF Slide 7 [Code]


# Bearing Basics – Why bearings?

- •What is a Bearing?
- Bearing types
- Bearing parts & material

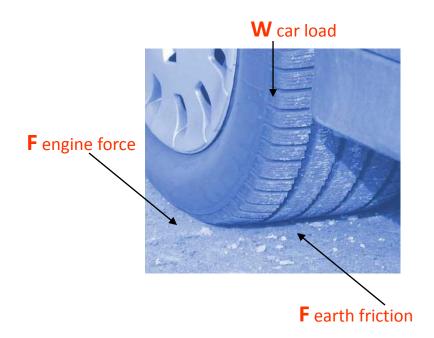


## What is Bearing?

The simple bearing consists of a rotating shaft and hole or housing, both having contact with each other






#### **Functions and Parts**

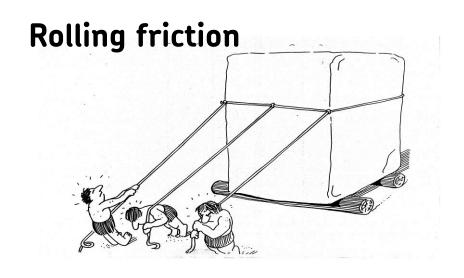
#### **Friction**

(A resistive force that prevents slippage between two bodies)

In most machines, however, friction is undesirable since it causes power loss, heat generation, wear and noise.

**SKF** bearings help reduce friction.



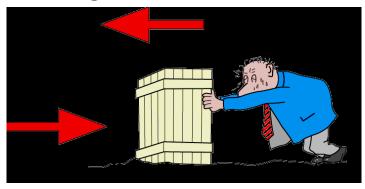



#### **Friction**

#### Sliding friction



- ✓ Direct surface to surface contact takes place
- ✓ High friction forces due to larger contact area

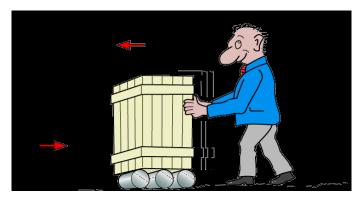



- **✓** Rolling element is introduced between the contacting surfaces
- ✓lower friction forces due to lesser contact area

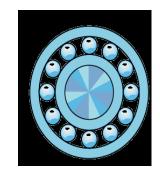
2013-09-12 ©SKF Slide 11 [Code]

## Bearing classification w.r.t. nature of contact

#### Sliding friction




sliding contact bearing or plain bearing

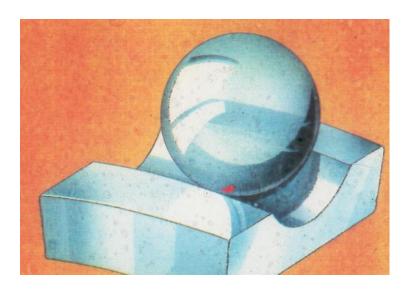





Rolling friction

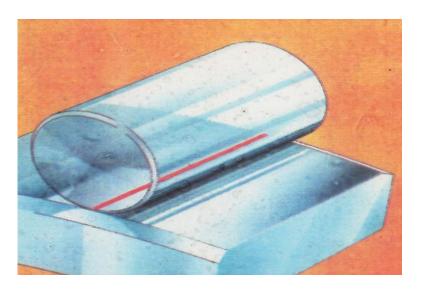


Rolling contact bearing




μ

2013-09-12 ©SKF Slide 13 [Code]


#### **ROLLING CONTACT BEARINGS**

#### **Point Contact**

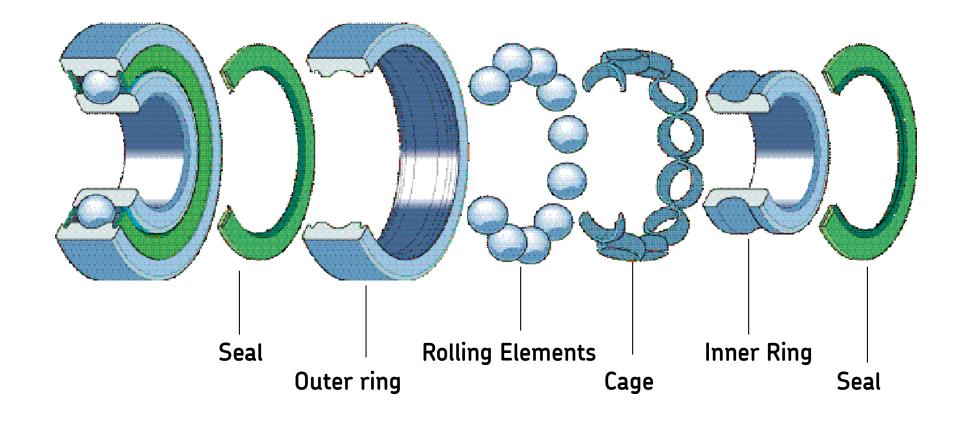


- √Balls have point contact
- √ For light or moderate loads
- √ For higher speed applications

#### **Line Contact**

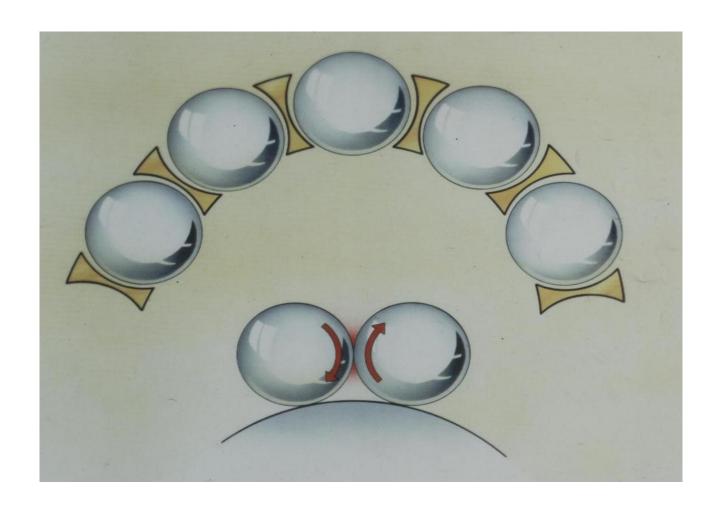


- ✓ Rollers have line contact
- √ For heavy loads
- √ For lower speed applications


2013-09-12 @SKF Slide 14 [Code]

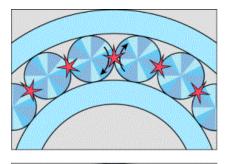
## **Bearing Components**

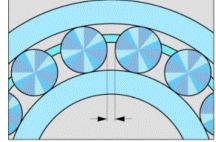


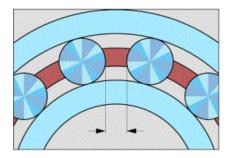

2013-09-12 ©SKF Slide 15 [Code]

#### Bearing Components (Deep Groove Ball Bearing)




2013-09-12 ©SKF Slide 16 [Code]


## Cage




2013-09-12 @SKF Slide 17 [Code]

#### **Cage Function**







- •Prevent immediate contact between rolling elements to minimize friction and heat generation
- Guide the rolling elements
- Provide space for lubricant
- •Retain the rolling elements when bearings of separable design are mounted or dismounted

2013-09-12 @SKF Slide 18 [Code]

#### **Cage Variants**







Window-type sheet steel cage



Window-type solid brass cage

2013-09-12 ©SKF Slide 19 [Code]

#### Polyamide Cages



- + Lightweight
- + High elasticity
- **+** Good sliding properties
- Good marginal lubrication properties

- -40°C< 0.Temp < +120 °C

2013-09-12 @SKF Slide 20 [Code]

#### Window Type Sheet Steel Cages



+ Lightweight

+ High strength

+ Operating temperature limit up to 300 °C

**+** High vibration and acceleration resistance

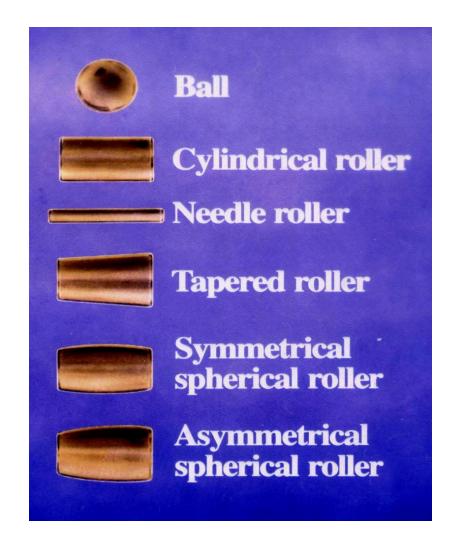
Sensitive to poor lubrication

2013-09-12 ©SKF Slide 21 [Code]

#### Window Type Solid Brass Cages



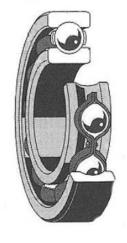
Very high vibration and acceleration resistance


Suitable for very highspeed in connectionwith circulating oil

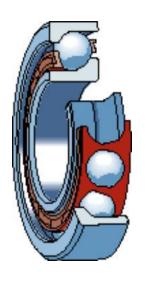
Soft (Wear & tear)

Highly Sensitive to Poor Lubricant

2013-09-12 ©SKF Slide 22 [Code]


#### Different types of rolling elements




2013-09-12 ©SKF Slide 23 [Code]

#### **Ball Bearings**

Single Row Deep Groove Ball Bearing (DGBB)



Single Row Angular Contact Ball Bearing (SRACBB)



Double Row Deep Groove Ball Bearing (DRDGBB)



Four Point Angular Contact Ball Bearing (FPACBB)



Self Aligning Ball Bearing (SABB)



2013-09-12 @SKF Slide 24 [Code]

#### Roller Bearings



Cylindrical roller bearing



Taper roller bearing



Spherical roller bearing



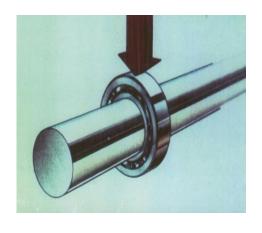
Spherical roller thrust bearing



Compact aligning roller bearing (CARB)

2013-09-12 ©SKF Slide 25 [Code]

#### Radial load


√ Radial load acts perpendicular to the shaft.


- Motor's rotor load
- •Car wheel (straight line)
- Fans



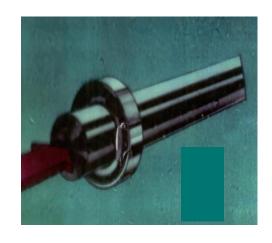
2013-09-12 ©SKF Slide 26 [Code]

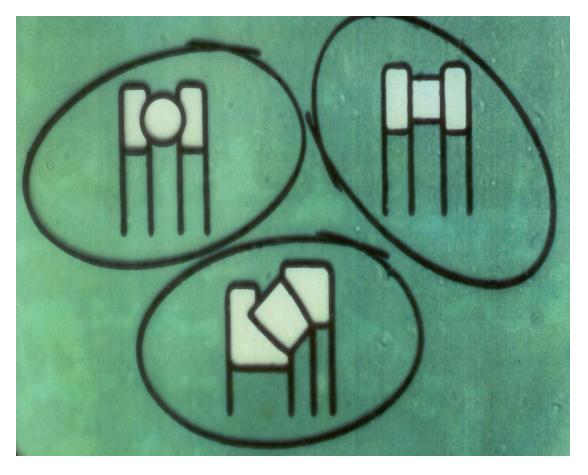
## Probable bearing types in case of radial load





2013-09-12 ©SKF Slide 27 [Code]


#### **Axial Load**

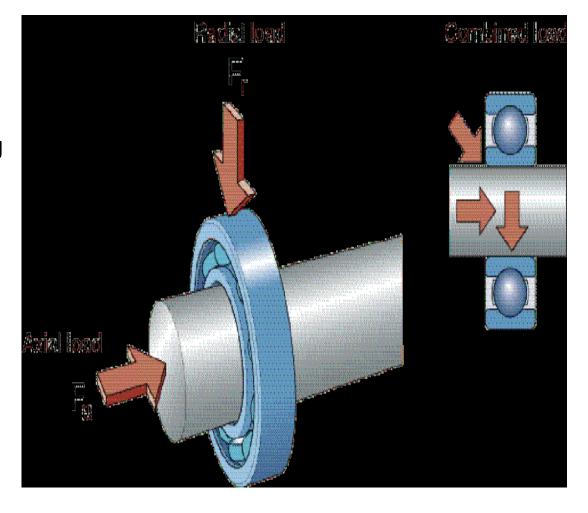



- ✓ Load acts parallel to the shaft.
- Drill press
- ■Cranes

2013-09-12 ©SKF Slide 28 [Code]

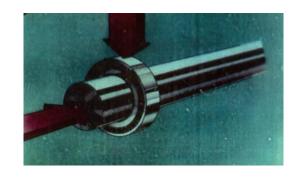
## Probable bearing types in case of axial load

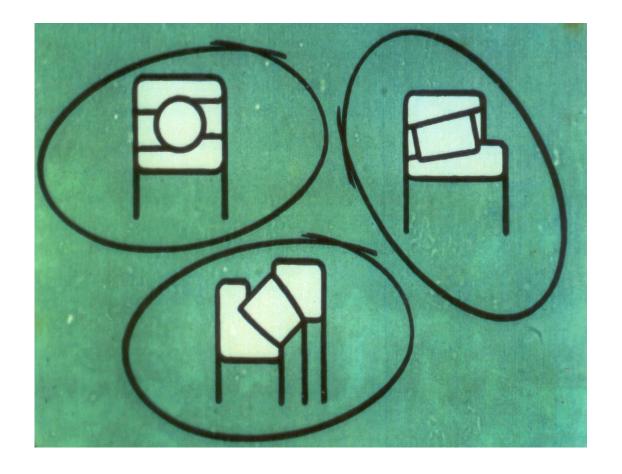





2013-09-12 ©SKF Slide 29 [Code]

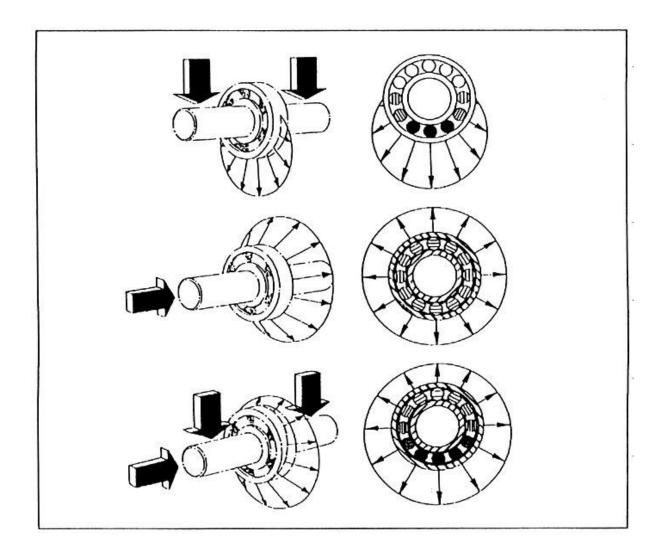
#### combined load


Pumps (fluid /media exerting thrust load)


•Car wheel (Turning)

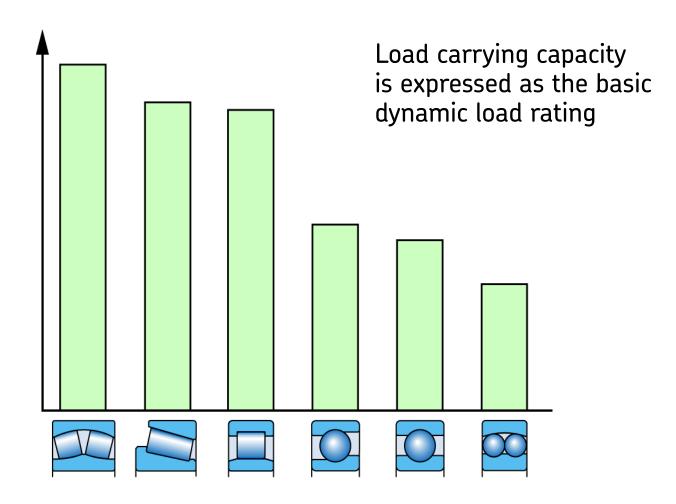


2013-09-12 ©SKF Slide 30 [Code]


## Probable bearings types in case of combined load

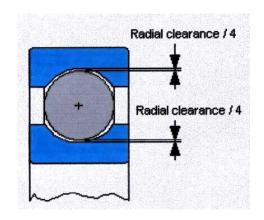


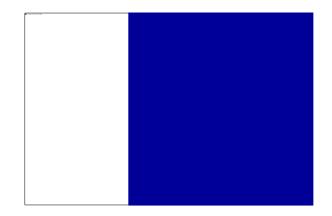


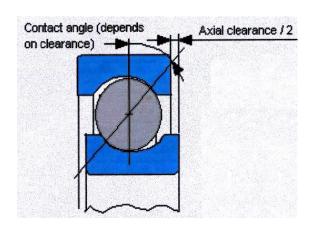

2013-09-12 ©SKF Slide 31 [Code]

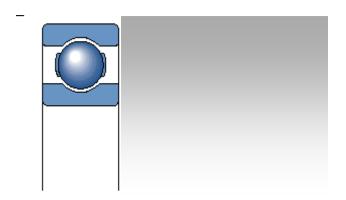
## **Typical Load Zones**




2013-09-12 ©SKF Slide 32 [Code]


## **Load Capabilities**

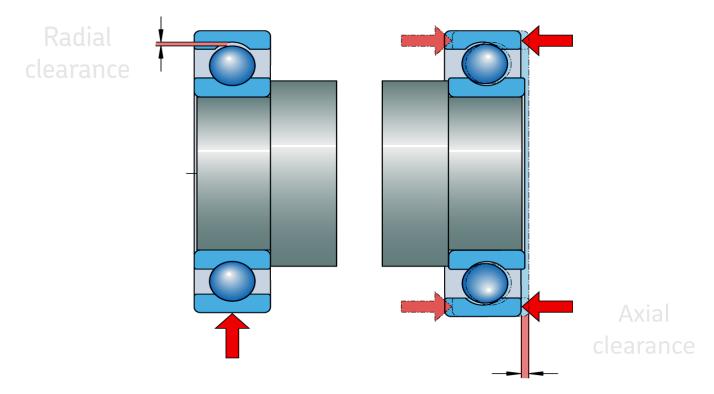




2013-09-12 ©SKF Slide 33 [Code]

#### **Internal Clearances**










2013-09-12 ©SKF Slide 35 [Code]

#### **Internal Clearances**

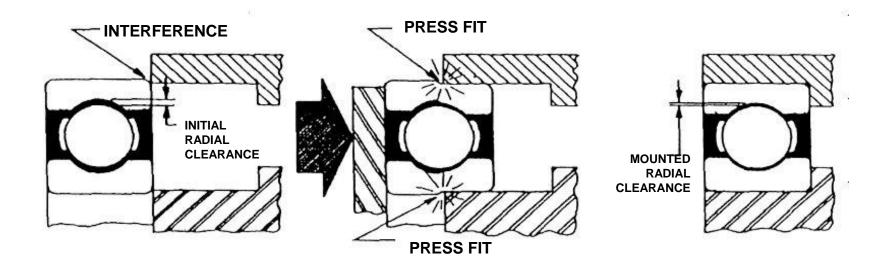
The bearing internal clearance is defined as the total distance through which one bearing ring can be moved relative to other under zero measuring load.



2013-09-12 ©SKF Slide 36 [Code]

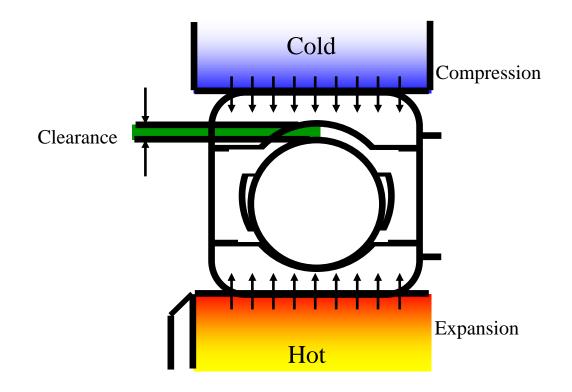
#### Internal Clearances

✓ Rolling bearings are delivered with different internal clearances.
The internal clearance will vary from bearing type to bearing type.


#### ✓ WHY INTERNAL CLEARANCE?

- Strong fits.
- Operating temperatures.
- Higher speeds.

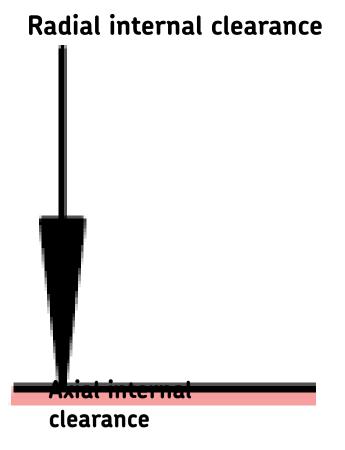
✓ In case of doubt a bearing with greater internal clearance shall always be selected!


2013-09-12 ©SKF Slide 37 [Code]

#### Clearance Reduced Due To Press Fit



2013-09-12 ©SKF Slide 38 [Code]


## Clearance Reduced Due To Thermal Expansion



2013-09-12 ©SKF Slide 39 [Code]

#### Suffix - - - Variant

Clearance



- C1 clearance less than C2
- C2 clearance less than Normal
- C3 clearance greater than Normal
- C4 clearance greater than C3
- C5 clearance greater than C4
- CA small axial internal clearance
- CB axial internal clearance greater than CA
- **CC** axial internal clearance greater than CB
- CG Zero clearance
- **GA** Light preload
- GB Preload greater than GA

2013-09-12 ©SKF Slide 40 [Code]

#### Steel

- Bearing Steel;
- 1. Through-hardened steel.
- 2. Case-hardened steel.
- 3. Corrosion resistant steel.
- 4. High temperature steel.
- 5. Non-magnetic steel.





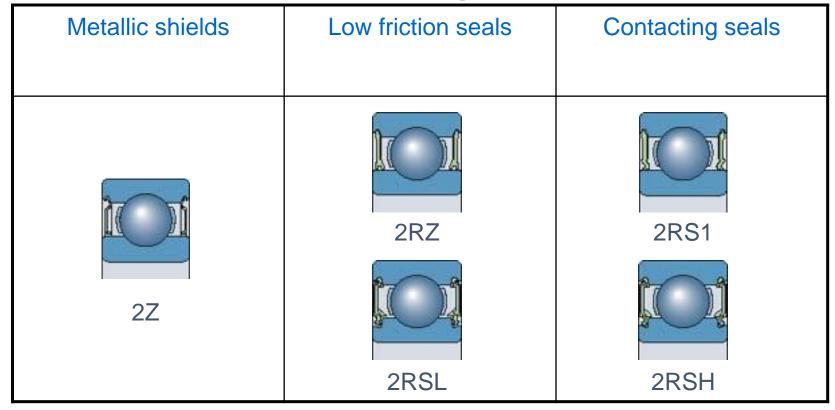
2013-09-12 @SKF Slide 41 [Code]

## High Quality Bearing Steel

✓ The composition of commonly used high quality steel:

Carbon = 1.0% Manganese = 0.35%

Chromium = 1.5%


Silicon = 0.25%

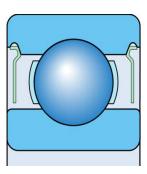
✓ The hardness of good quality rolling elements and rings is generally between 57 to 65 HRC.



2013-09-12 ©SKF Slide 42 [Code]

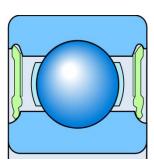
# Standard sealing solutions for Deep Groove Ball Bearings




2013-09-12 ©SKF Slide 43 [Code]

## Maintenance free Deep Groove Ball Bearing

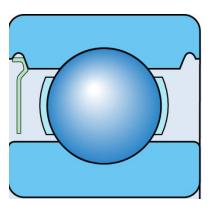
- ✓ Requirement because of high number of use.
- ✓ For those places where it is difficult to reach.


#### SHIELDS

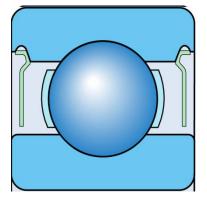


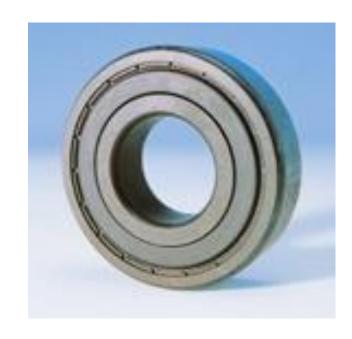


#### **SEALS**





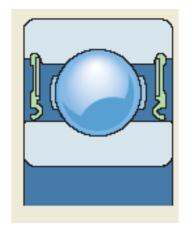


2013-09-12 @SKF Slide 44 [Code]

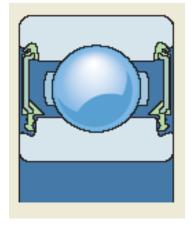

## **SHIELDS**

Z



22



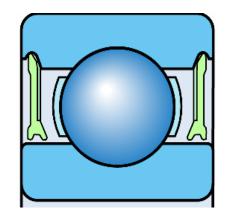

2013-09-12 ©SKF Slide 45 [Code]

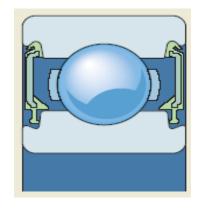
## **High Friction Seals**








2RSL


2RSH

| Characteristics                                                                                                                         | Seal ty<br>RSH                   |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|
| Low friction Speed ability Grease retention Dust exclusion Static water exclusion Dynamic water exclusion High pressure water exclusion | 0<br>0<br>+++<br>+++<br>+++<br>+ | 0<br>0<br>++<br>+++<br>++<br>+ |
| Symbols:<br>+++ = excellent ++ = very good                                                                                              | + = good                         | o = fair                       |

## **Low-Friction Seals**







2RZ

2RSL

| Characteristics                                                                                                                         | Seal ty<br>RSH              | •                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|
| Low friction Speed ability Grease retention Dust exclusion Static water exclusion Dynamic water exclusion High pressure water exclusion | 0<br>0<br>++++<br>++++<br>+ | 0<br>0<br>++<br>+++<br>++<br>+ |
| Symbols:<br>+++ = excellent ++ = very good                                                                                              | + = good                    | o = fair                       |

2013-09-12 ©SKF Slide 47 [Code]

#### Characteristics of Shield & Seals

| Requirement      | Shields<br>Z | Low-frict<br>RSL | ion seals<br>RZ | Contact s<br>RSH | eals<br>RS1 |
|------------------|--------------|------------------|-----------------|------------------|-------------|
| Low friction     | +++          | ++               | +++             | 0                | 0           |
| High speeds      | +++          | +++              | +++             | 0                | 0           |
| Grease retention | 0            | +++              | +               | +++              | ++          |
| Dust exclusion   | 0            | ++               | +               | +++              | +++         |
| Water exclusion  |              |                  |                 |                  |             |
| - static         | -            | 0                | -               | +++              | ++          |
| - dynamic        | -            | 0                | -               | +                | +           |
| - high pressure  | -            | 0                | -               | +++              | 0           |

Symbols: +++ excellent ++ very good + good o fair - not recommended

2013-09-12 ©SKF Slide 48 [Code]

## **NO WEAR bearings**

These bearings have been surface treated to withstand arduous operating conditions such as smearing, zero load or boundary lubrication conditions

#### CAN WITHSTAND SEVERE OPERATING CONDITIONS:

- Longer periods of insufficient lubrications
- Sudden variations in load
- Rapid speed changes
- Vibrations
- Oscillation
- •Can run at 350 °C





2013-09-12 ©SKF Slide 49 [Code]

## **Properties of NO WEAR bearings**

| Properties                                          | No Wear    |
|-----------------------------------------------------|------------|
| Hardness                                            | 1200 HV 10 |
| Coating Thickness<br>- Depending on bearing size    | 13 micro m |
| Coefficient of friction - Dry sliding against steel | 0.10.2     |
| Operating temperature - No Wear Coating             | +350 deg C |


2013-09-12 ©SKF Slide 50 [Code]

#### High Temperatures

Where requirement is to work at high temperatures like 350°C this bearing is right choice

 Suitable for kiln and furnace trolleys or any equipment working on high temperatures and lowest speeds

• 6206 2Z VA208 (10mm to 100mm)



2013-09-12 ©SKF Slide 51 [Code]

#### **INSOCOAT** bearings

Insulated bearings for electrical applications

 Where there are good chances of passage of electrical current for instance VFD Drives

These bearing have aluminum oxide coating on

the outer ring surfaces

Available sizes from 55 to 150 mm



## SKF Hybrid Bearings

#### Manufactured with standard steel rings but with ceramic balls

 Engineering ceramic (Silicon Nitride Si3N4) is three time as strong bearing steel and has very low wear rate

• This bearing can run at very high speeds at high temperatures and

under severe condition of contaminations.

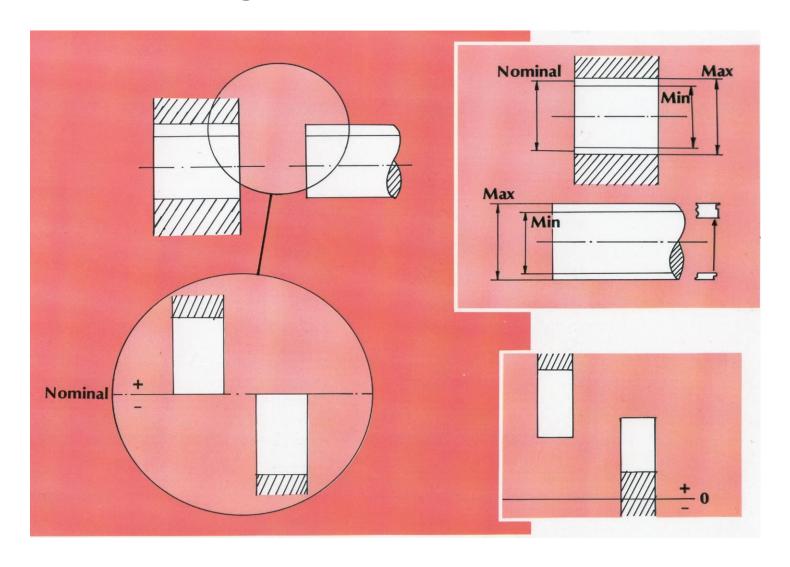
-E.g. 6314 2RS1/ HC5

2013-09-12 ©SKF Slide 53 [Code]

## Stainless steel deep groove ball bearing



- ➤ Reliable bearing solutions for a corrosive environment
- ➤ Longer service life in a severe environment
- ➤ Open or sealed
- > E.g; W 6206 2RSH


## **Applications**

- ➤ Food and beverage industry
- >Chemical equipment
- ➤ Medical equipment
- ➤ Optical instrument
- ➤ Printing machines
- ➤ Nuclear technology
- ➤ Engines and pumps
- ➤ Paper mills
- ➤ Off shore Marine industry

2013-09-12 ©SKF



## **Shaft & Housing**



2013-09-12 ©SKF Slide 56 [Code]

## **Shaft and Housing Fits**

#### FOR MAXIMUM UTILIZATION OF LCA:

Bearing rings must be supported around complete circumference and across the whole width.

The support must be firm even and can be provided by a cylindrical or tapered seating.

The seating must be made with adequate accuracy.

The seating surface must be uninterrupted by grooves or holes or other features.

THE RINGS MUST BE RADIALLY SECURED TO PREVENT THEM FROM CREEPING OR TURNING UNDER LOAD.

2013-09-12 ©SKF

## Tolerance Definition

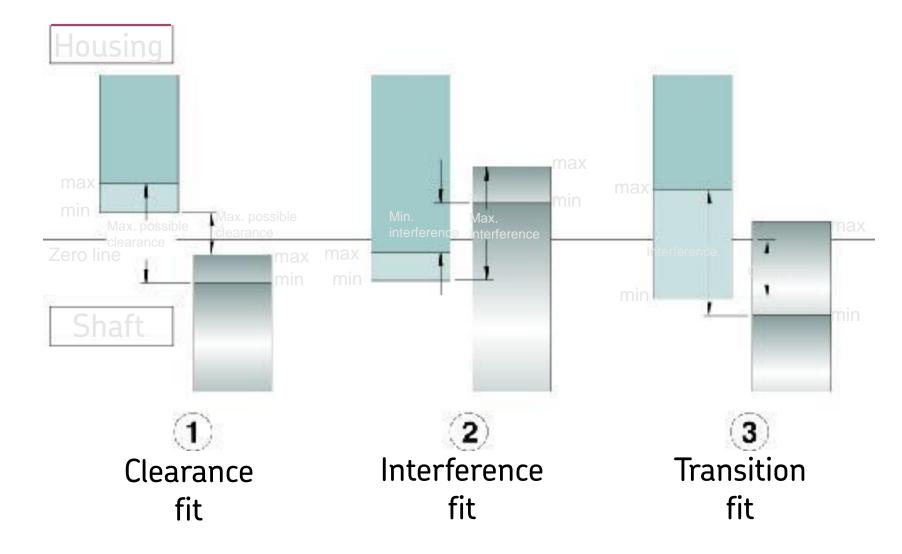
Permissible limits for the variation of the size (dimension)

2013-09-12 @SKF Slide 58 [Code]

## Importance of Correct Fit

- Excessively loose fit
- •Allows relative movement between mating components, causing
  - \* Heat (smearing)
  - \* Wear (scoring)
  - \* Fretting (ring fracture)
- Excessively tight fight
- •Creates reduction of internal clearance, causing
  - \* Increased operating temperature
  - \* Ring fracture
  - \* Increased mounting forces

2013-09-12 ©SKF Slide 59 [Code]


## **Shaft and Housing Fits**

- Mechanics generally remove, inspect, repair if needed and replace
- Machinists and designers
  - When checking, rebuilding, or specifying new fits
  - Contact SKF applications engineering
- SKF Standard: 80% minimum metal-to-metal contact between mating parts
- New OEM fit 95%



2013-09-12 @SKF Slide 60 [Code]

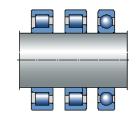
## Types of Fit Examples

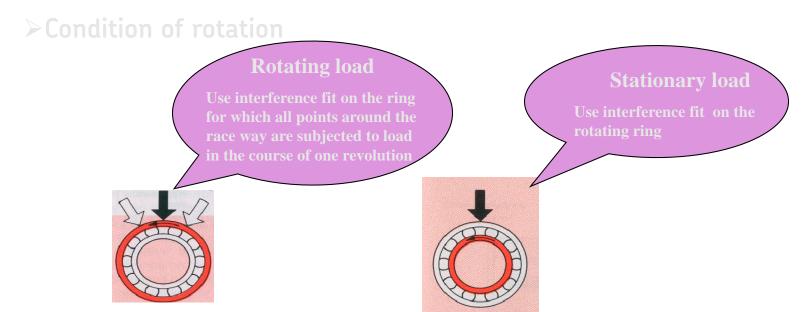


2013-09-12 ©SKF Slide 61 [Code]

## **Bearing Fit Criteria**

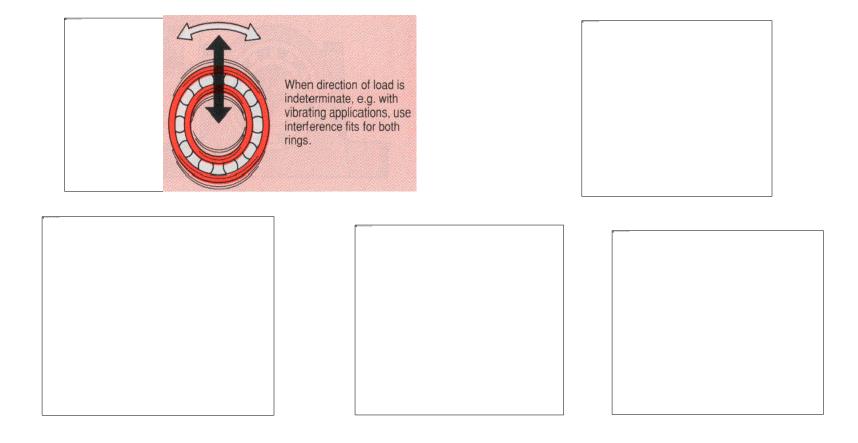
- Conditions of Rotation
- Load magnitude
- Bearing internal clearance
- Temperature conditions
- Running accuracy
- Shaft and housing material/design
- Ease of mounting and dismounting
- Displacement of non-locating bearing
- Bearings with tapered bore


2013-09-12 ©SKF Slide 62 [Code]

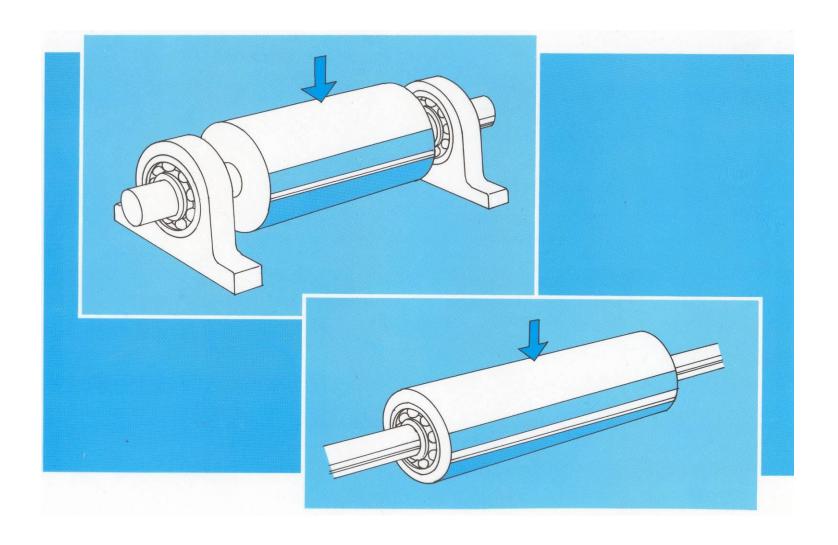

#### Radial location of bearings

## Rings must be radially secured to prevent them from creeping or turning under load

Bearings with cylindrical bore

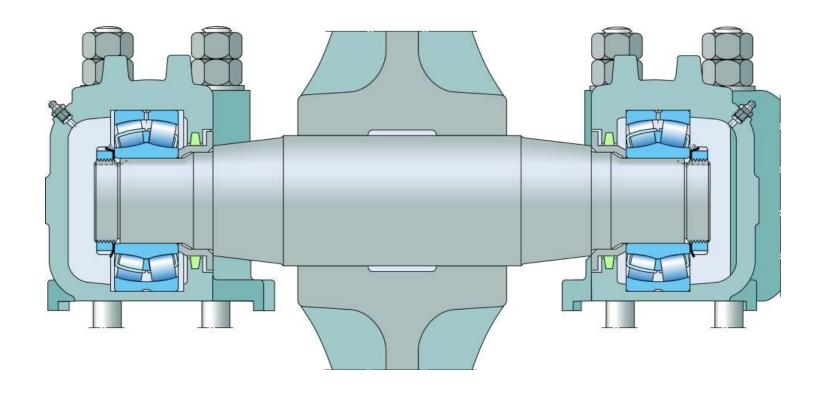

#### Critical factors for selection of "fits"





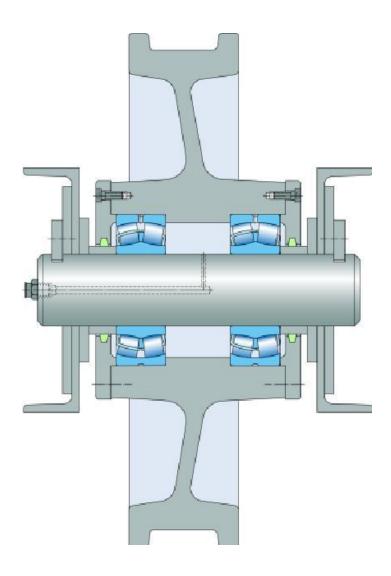

2013-09-12 ©SKF Slide 63 [Code]

## **Condition of rotation**



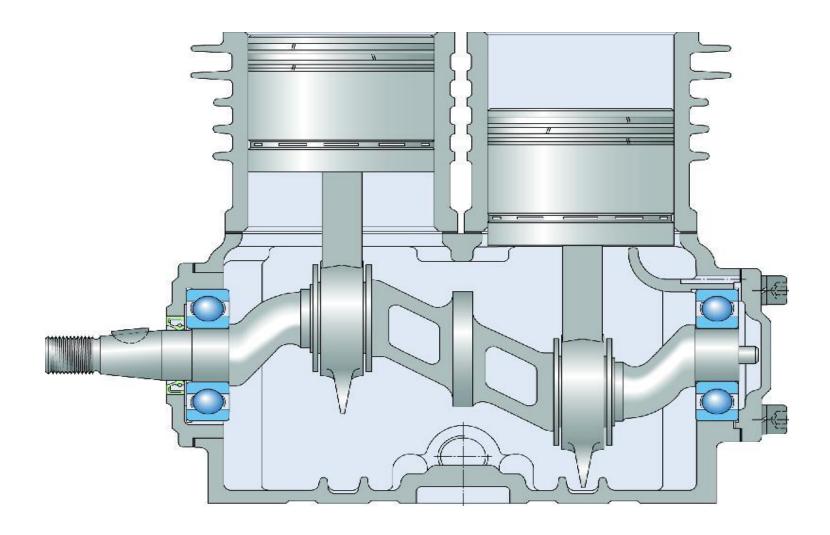

2013-09-12 ©SKF Slide 64 [Code]



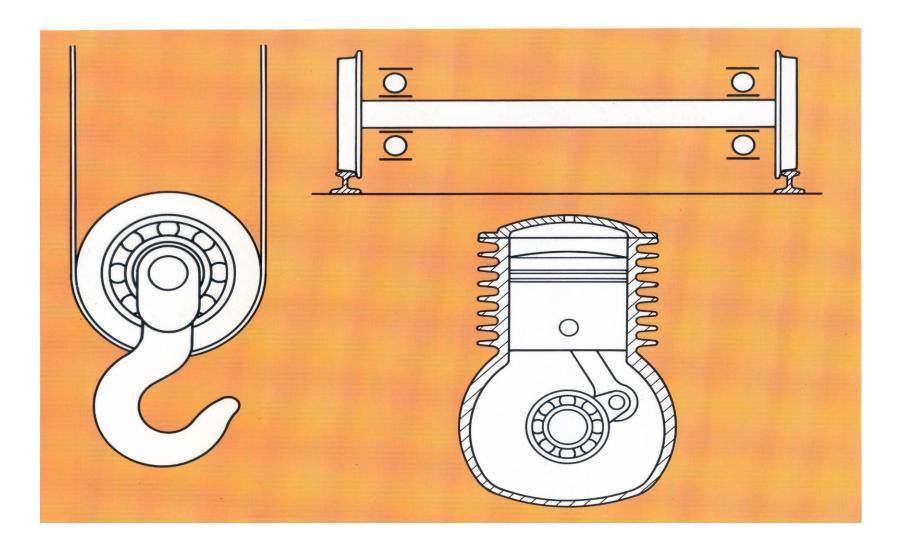

2013-09-12 ©SKF Slide 65 [Code]

## **Inner Ring Rotating Load**




2013-09-12 ©SKF Slide 66 [Code]

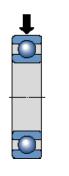
## **Outer Ring Rotating Load**



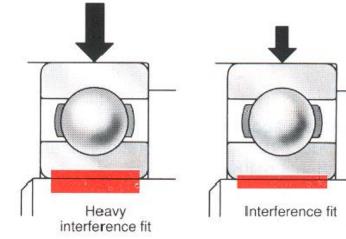

2013-09-12 ©SKF Slide 67 [Code]

## **Indeterminate Load Conditions**

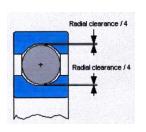



2013-09-12 ©SKF Slide 68 [Code]

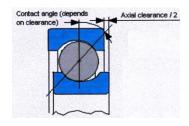



2013-09-12 ©SKF Slide 69 [Code]

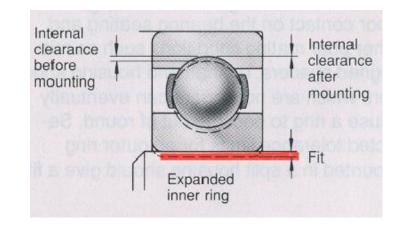
>Load magnitude





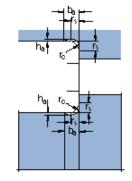





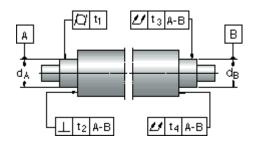


**▶**Bearing Internal Clearance

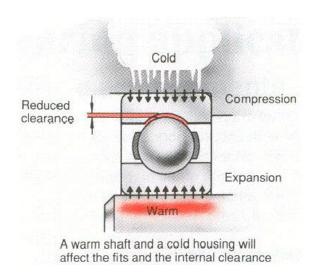


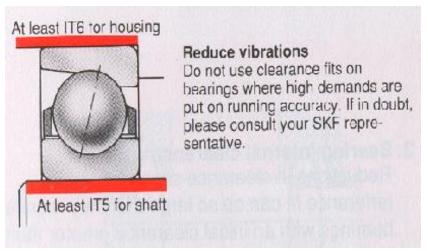






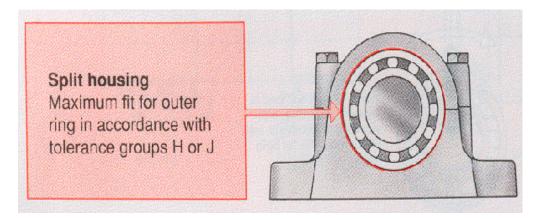





2013-09-12 ©SKF Slide 70 [Code]

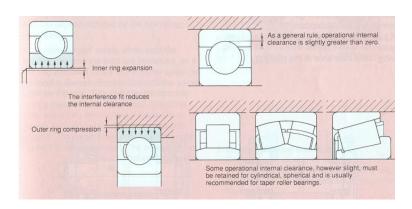

>Temperature conditions

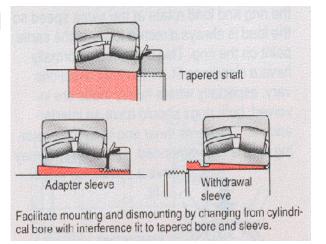


> Running accuracy





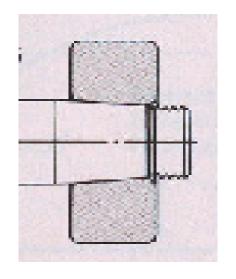


2013-09-12 ©SKF Slide 71 [Code]

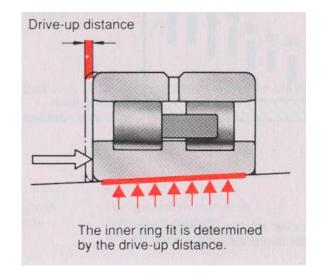
## ➤ Shaft and housing material/design



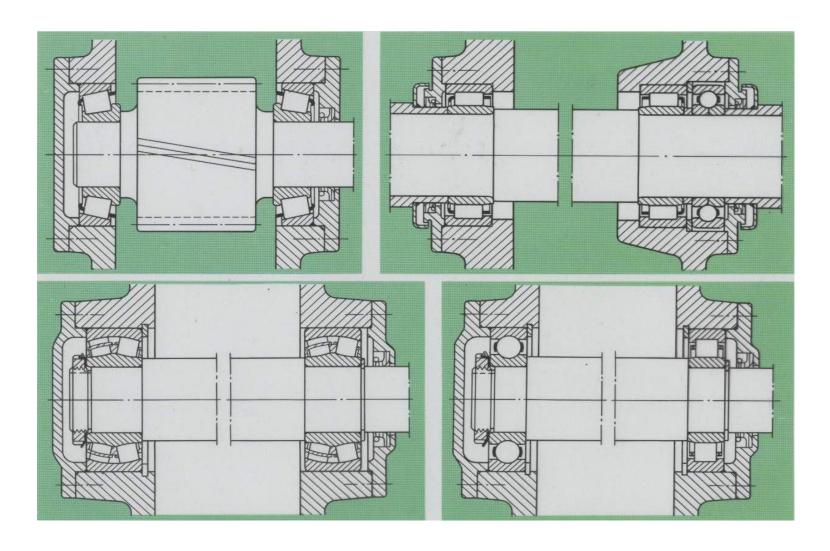
> Ease of mounting and dismounting



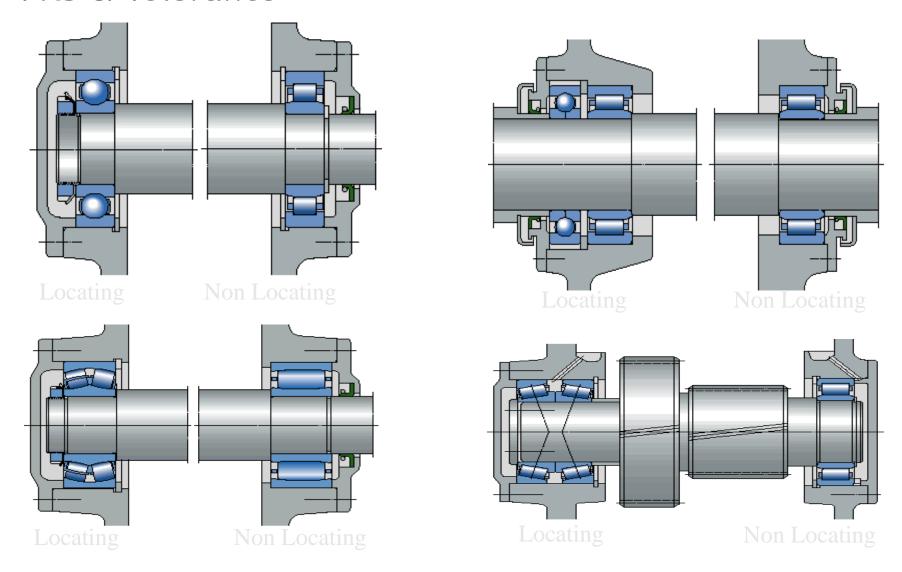




2013-09-12 ©SKF Slide 72 [Code]

### **▶** Displacement of non-locating bearing




#### **Bearing** with tapered bores






2013-09-12 ©SKF Slide 73 [Code]



2013-09-12 @SKF Slide 74 [Code]



2013-09-12 ©SKF Slide 75 [Code]

#### Example:

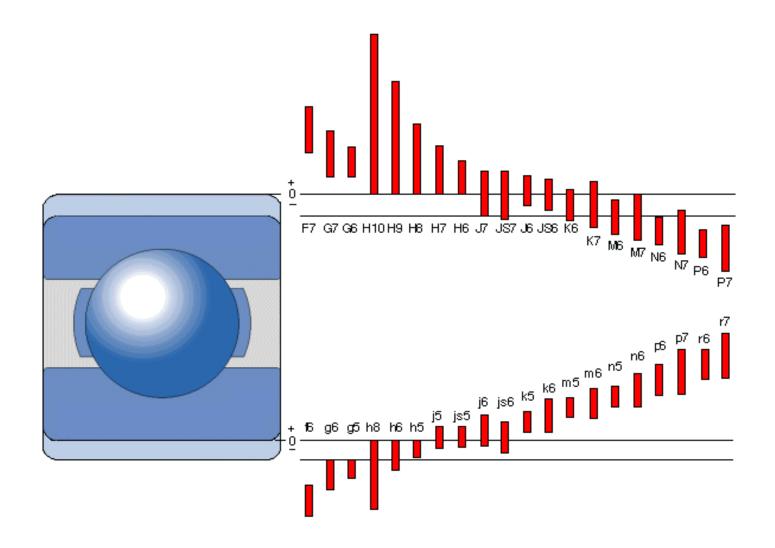
A deep groove ball bearing 6208 is to be mounted on a motor shaft.

What are the shaft and housing tolerances and limits?

Given Data: (Bearing Type & Condition of Rotation)

Radial bearing with cylindrical bore

Rotating inner ring load


Inner diameter Ø 40 mm. Outer diameter Ø 80 mm

Shaft Tolerances and Resultant Fit

According to the Table 1- SKF General Catalog page # 169

2013-09-12 ©SKF Slide 76 [Code]

| Radial bearings with cylindrical bore                                           |                                                                                                                                               |                                                                     |                                                                              |                                                                                                 |                                                                                                                |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Conditions                                                                      | Examples                                                                                                                                      | Shaft diameter,<br>Ball<br>bearings <sup>1)</sup>                   | , mm<br>Cylindrical,<br>needle <sup>2)</sup> and<br>taper roller<br>bearings | Spherical<br>roller<br>bearings                                                                 | Tolerance                                                                                                      |  |
| Rotating inner ring load or                                                     | r direction of load indetern                                                                                                                  | ninate                                                              |                                                                              |                                                                                                 |                                                                                                                |  |
| Light and variable<br>loads (P ≦ 0,06 C)                                        | Conveyors, lightly loaded gearbox bearings                                                                                                    | (18) to 100<br>(100) to 140                                         | ≤ 40<br>(40) to 100                                                          | F                                                                                               | j6<br>k6                                                                                                       |  |
| Normal and<br>heavy loads<br>(P > 0,06 C)                                       | Bearing applications<br>generally,<br>electric motors,<br>turbines, pumps<br>internal combustion<br>engines, gearing,<br>woodworking machines | ≤ 18<br>(18) to 100<br>(100) to 140<br>(140) to 200<br>(200) to 280 | _ ≤ 40<br>(40) to 100<br>(100) to 140<br>(140) to 200<br>(200) to 400<br>    | -<br>≤ 40<br>(40) to 65<br>(65) to 100<br>(100) to 140<br>(140) to 280<br>(280) to 500<br>> 500 | j5<br>k5 (k6) <sup>3)</sup><br>m5 (m6) <sup>3)</sup><br>m6<br>n6<br>p6<br>r6 <sup>4)</sup><br>r7 <sup>4)</sup> |  |
| Very heavy loads and shock loads with difficult working conditions (P > 0,12 C) | Axleboxes for heavy railway vehicles, traction motors, rolling mills                                                                          | Ξ                                                                   | (50) to 140<br>(140) to 200<br>> 200                                         | (50) to 100<br>(100) to 140<br>> 140                                                            | n6 <sup>4)</sup><br>p6 <sup>4)</sup><br>r6 <sup>4)</sup>                                                       |  |
| High demands on running accurary with light loads (P ≤ 0,06 C)                  | Machine tools                                                                                                                                 | ≤ 18<br>(18) to 100<br>(100) to 200                                 | -<br>≤ 40<br>(40) to 140<br>(140) to 200                                     |                                                                                                 | h5 <sup>5)</sup><br>j5 <sup>5)</sup><br>k5 <sup>5)</sup><br>m5 <sup>5)</sup>                                   |  |
| Stationary inner ring load                                                      |                                                                                                                                               |                                                                     |                                                                              |                                                                                                 |                                                                                                                |  |
| Easy axial displacement of inner ring on shaft desirable                        | Wheels on non-rotating axles                                                                                                                  |                                                                     |                                                                              |                                                                                                 | g6 <sup>6)</sup>                                                                                               |  |
| Easy axial displacement of inner ring on shaft unnecessary                      | Tension pulleys, rope sheaves                                                                                                                 |                                                                     |                                                                              |                                                                                                 | h6                                                                                                             |  |
| Axial loads only                                                                |                                                                                                                                               |                                                                     |                                                                              |                                                                                                 |                                                                                                                |  |
|                                                                                 | Bearing applications of all kinds                                                                                                             | ≤ 250<br>> 250                                                      | ≤ 250<br>> 250                                                               | ≤ 250<br>> 250                                                                                  | j6<br>js6                                                                                                      |  |



2013-09-12 ©SKF Slide 78 [Code]

| Shaft<br>diamet | ter  | Beari<br>bore<br>diam | •    | Devia<br>Toler | itions o | of shaft o           | liamete | r, result | ant fits |     |     |     |
|-----------------|------|-----------------------|------|----------------|----------|----------------------|---------|-----------|----------|-----|-----|-----|
| d<br>Nomina     | al   | ∆ <sub>dmp</sub>      |      | k5<br>Devia    | tions (s | k6<br>haft dian      | neter)  | m5        |          | m6  |     | n5  |
| over            | ind. | low                   | high |                |          | terferen<br>rference |         |           | •)       |     |     |     |
| mm              |      | μm                    |      | μm             |          |                      |         |           |          |     |     |     |
| 1               | 3    | -8                    | 0    | +4             | 0        | +6                   | 0       | +6        | +2       | +8  | +2  | +8  |
|                 |      |                       |      | +12            | 0        | +14                  | 0       | +14       | +2       | +16 | +2  | +16 |
|                 |      |                       |      | +11            | +1       | +12                  | +2      | +13       | +3       | +14 | +4  | +15 |
| 3               | 6    | -8                    | 0    | +6             | +1       | +9                   | +1      | +9        | +4       | +12 | +4  | +13 |
|                 |      |                       |      | +14            | +1       | +17                  | +1      | +17       | +4       | +20 | +4  | +21 |
|                 |      |                       |      | +13            | +2       | +15                  | +3      | +16       | +5       | +18 | +6  | +20 |
| 6               | 10   | -8                    | 0    | +7             | +1       | +10                  | +1      | +12       | +6       | +15 | +6  | +16 |
|                 |      |                       |      | +15            | +1       | +18                  | +1      | +20       | +6       | +23 | +6  | +24 |
|                 |      |                       |      | +13            | +3       | +16                  | +3      | +18       | +8       | +21 | +8  | +22 |
| 10              | 18   | -8                    | 0    | +9             | +1       | +12                  | +1      | +15       | +7       | +18 | +7  | +20 |
|                 |      |                       |      | +17            | +1       | +20                  | +1      | +23       | +7       | +26 | +7  | +28 |
|                 |      |                       |      | +15.           | +3       | +18                  | +3      | +21       | +9       | +24 | +9  | +26 |
| 18              | 30   | -10                   | 0    | +11            | +2       | +15                  | +2      | +17       | +8       | +21 | +8  | +24 |
|                 |      |                       |      | +21            | +2       | +25                  | +2      | +27       | +8       | +31 | +8  | +34 |
|                 |      |                       |      | +19            | +4       | +22                  | +5      | +25       | +10      | +28 | ÷11 | +32 |
| 30              | 50   | -12                   | 0 /  | +13            | +2       | +18                  | +2      | +20       | +9       | +25 | +9  | +28 |
|                 |      |                       | (    | +25            | +2       | +30                  | +2      | +32       | +9       | +37 | +9  | +40 |
|                 |      |                       |      | +22            | +5       | +26                  | +6      | +29       | +12      | +33 | +13 | +37 |
| 50              | 80   | -15                   | 0    | +15            | +2       | +21                  | +2      | +24       | +11      | +30 | +11 | +33 |
|                 |      |                       |      | +30            | +2       | +36                  | +2      | +39       | +11      | +45 | +11 | +48 |
|                 |      |                       |      | +26            | +6       | +32                  | +6      | +35       | +15      | +41 | +15 | +44 |
| 30              | 120  | -20                   | 0    | +18            | +3       | +25                  | +3      | +28       | +13      | +35 | +13 | +38 |
|                 |      |                       |      | +38            | +3       | +45                  | +3      | +48       | +13      | +55 | +13 | +58 |
|                 |      |                       |      | +33            | +8       | +39                  | +9      | +43       | +18      | +49 | +19 | +53 |
| 120             | 180  | -25                   | 0    | +21            | +3       | +28                  | +3      | +33       | +15      | +40 | +15 | +45 |
|                 |      |                       | -    | +46            | +3       | +53                  | +3      | +58       | +15      | +65 | +15 | +70 |
|                 |      |                       |      | +40            | +9       | +46                  | +10     | +52       | +21      | +58 | +22 | +64 |
| 180             | 250  | -30                   | 0    | +24            | +4       | +33                  | +4      | +37       | +17      | +46 | +17 | +51 |
|                 |      | ••                    | -    | +54            | +4       | +63                  | +4      | +67       | +17      | +76 | +17 | +81 |
|                 |      |                       |      | +48            | +10      | +55                  | +12     | +61       | +23      | +68 | +25 | +75 |

2013-09-12 ©SKF Slide 79 [Code]

#### Deviation of shaft diameter, resultant fit:

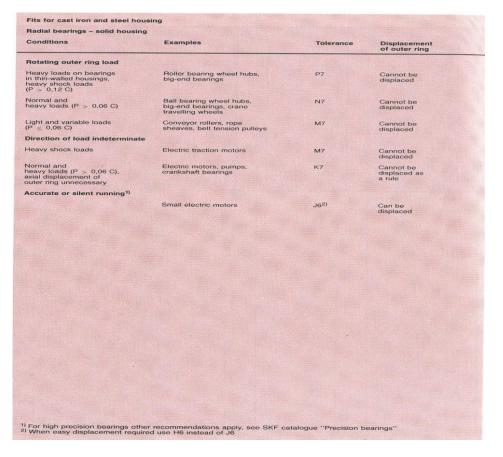
+ 0.013

40.013 Upper Limit

Ø 40

=

+ 0.002


40.002 Lower Limit

2013-09-12 ©SKF

# Housing Bore Tolerances and Resultant Fit

#### According to the Table 3- SKF General Catalog page # 114

According to the Table 3 Housing fits - SKF General Catalog page # 114



2013-09-12 ©SKF Slide 81 [Code]

Table 2d: Housing tolerances and resultant fits Housing Bearing Deviation of housing bore diameter, resultant fits bore outside Tolerances diameter diameter **∆**<sub>Dmp</sub> K7 M7 Nominal Deviations (housing bore diameter) Theoretical interference(+)/clearance(-) in d. high over low Probable interference(+)/dearance(-) mm um μm 10 0 6 -8 +2 -10 +5 -10 -12 -3 -15 +7 -10 +10 -13 +10 -4 +12 -5 +15 +5 -8 +7 -10 +8 +10 -2 +12 -3 10 18 0 -8 -9 +2 -12 +6 -12 -15 -4 -18 +9 -10 +12 -14 +12 +15 -4 -4 +18 +7 -8 +9 -11 +10 +13 -2 +15 30 0 -9 -11 +2 -15 +6 -14 -17 -21 +11 -11 +15 -15 +14 -4 +17 -5 +21 +8 -8 +12 -12 +12 +14 -2 +18 30 50 0 -11 -13 +3 -18 +7 -20 -16 -4 -25 +13 -14 +18 -18 +16 -6 +20 -7 +25 +10 -11 +14 -14 +13 -3 +17 -4 +21 50 80 0 -13 -15 -21 +4 -19 -6 -24 -5 -30 +15 -17 +21 -22 +19 -7 +24 -8 +30 +11 -13 +16 +16 +20 +25 120 0 -15 -18 +4 -25 +10 -23 -8 -28 -6 -35 +18 -19 +25 -25 +23 -7 +28 -9 +35 +13 +20 -20 -14 +19 -3 +23 -4 +30 120 150 0 -18 -21 -28 -27 +4 +12 -33 -8 -40

2013-09-12 ©SKF Slide 82 [Code]

+21

+15

-21

+21

+14

-24

+24

+16

-27

+27

+18

-25

-30

-35

150

250

180

250

315

0

-22

-16

+4

-29

-22

+5

-35

-27

+5

-40

-31

+28

+21

-28

+28

+20

-33

+33

+23

-36

+36

+24

-30

-23

+12

-37

-29

+13

-43

-33

+16

-51

-39

+27

+22

-27

+27

+21

-31

+31

+25

-36

+36

+28

-9

-4

-9

-16

-10

-11

-19

-13

-13

-22

-14

+33

+27

-33

+33

+26

-37

+37

+29

-41

+41

+32

-10

-4

-8

-17

-10

-8

-22

-14

-9

-26

-17

+40

+33

-40

+40

+32

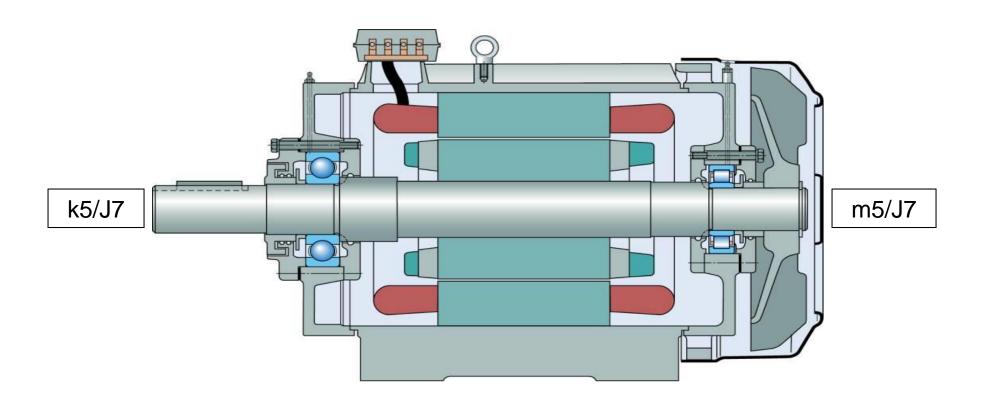
-46

+46

+36

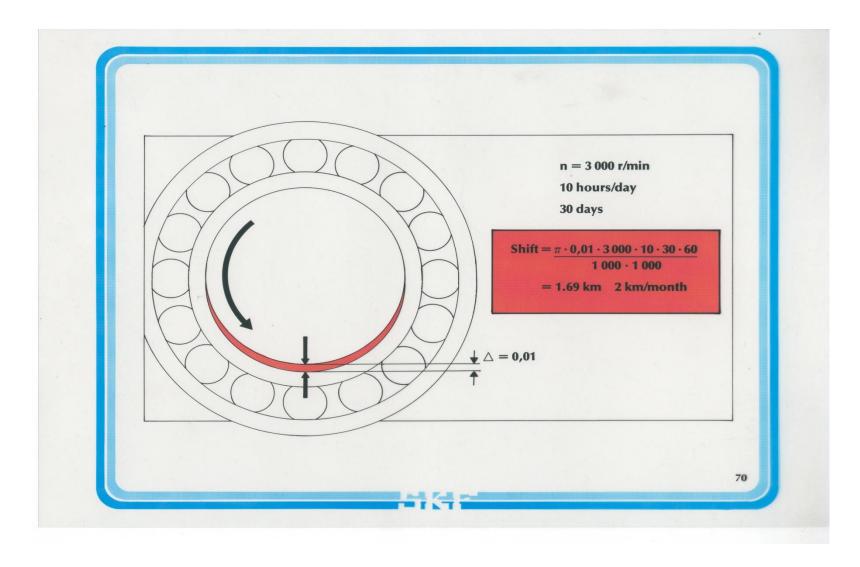
-52

+52


+40

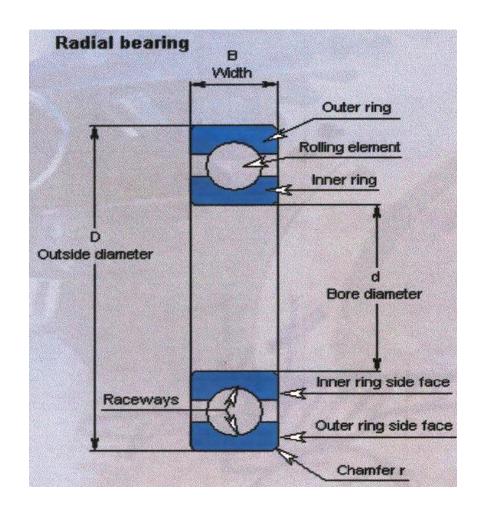
# Deviation of shaft diameter, resultant fit:

```
+ 0.009 80.009 Upper Limit
Ø 80 =
- 0.021 79.797 Lower Limit
```

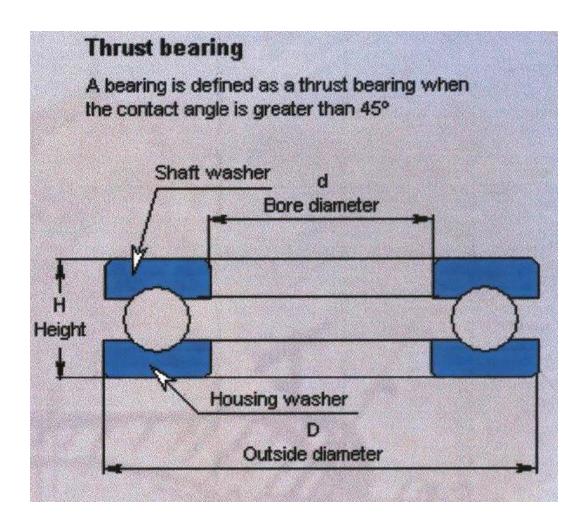

2013-09-12 ©SKF Slide 83 [Code]

#### **Electric Motor**




2013-09-12 ©SKF Slide 84 [Code]

# What interference is required to prevent ring-creep $\triangle = 0.25\sqrt{100}$ = The difference in diameter $\mu$ m B = Ring widthmm = Radial bearing load N **Example** 22318 CC F = 1000000 Nd = 90B = 64 $\triangle \approx 30 \, \mu \text{m}$

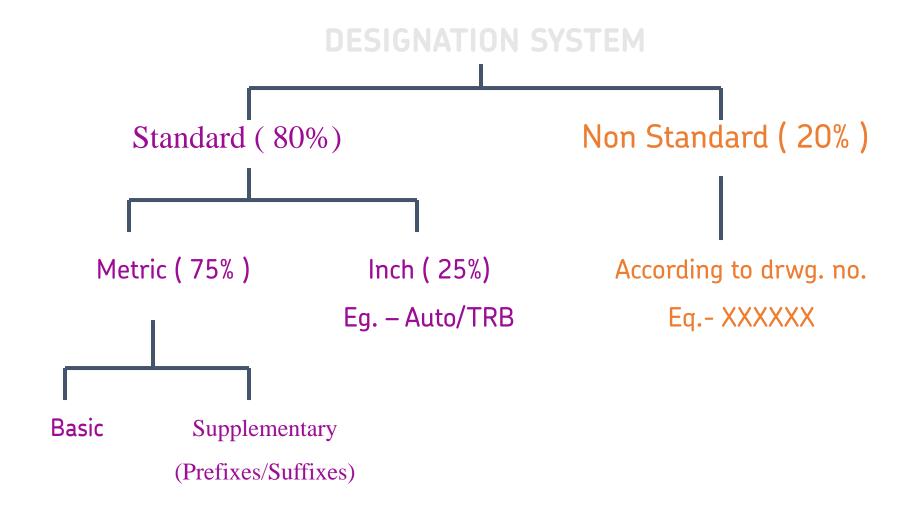



2013-09-12 ©SKF Slide 86 [Code]





2013-09-12 ©SKF Slide 88 [Code]




2013-09-12 ©SKF Slide 89 [Code]

# **ISO**

# International Standardization for Organization

2013-09-12 ©SKF Slide 90 [Code]

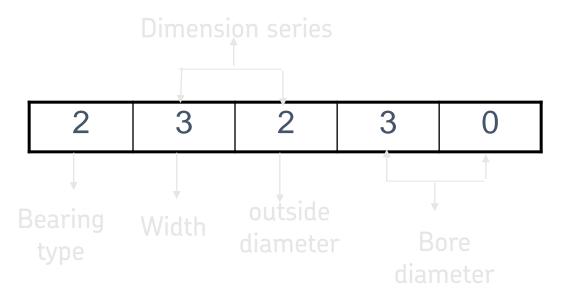


2013-09-12 ©SKF Slide 91 [Code]



2013-09-12 ©SKF Slide 92 [Code]

- ✓ Basic designation identifies:
  - Product type
  - Standard design
  - Bore size


- ✓ Supplementary designation identifies:
  - Special variants
  - Bearing component

2013-09-12 @SKF Slide 93 [Code]

#### **Basic Designation**

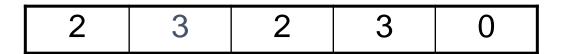
- ✓ Each SKF bearing of standard metric design is given a basic designation, which normally consists of three, four or five figures
  - •Bearing number directly indicates bore size.
  - •Bearing number only gives an idea about outer diameter and width

#### **BASIC DESIGNATION**

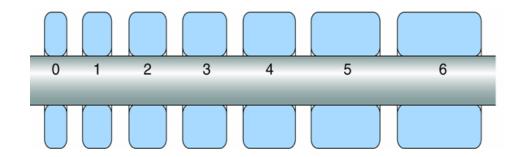


2013-09-12 @SKF Slide 94 [Code]

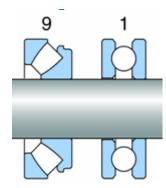
#### Basic Designation ---- Bearing type


✓ The first figures in the basic designation identifies the bearing type

| 2 | 3 | 2 | 3 | 0 |
|---|---|---|---|---|
|   |   |   |   |   |


- (0) : Angular contact ball bearing, double row
- 1 : Self-aligning ball bearings
- 2 : Spherical roller bearings & spherical roller thrust bearings.
- 3 : Taper roller bearings
- 4 : Deep groove ball bearing, double row
- 5 : Thrust ball bearing
- 6 : Deep groove ball bearing, single row
- 7 : Angular contact ball bearing ,single row
- 8 : Cylindrical roller thrust bearing
- N : Cylindrical roller bearings
- QJ : Four-point contact ball bearing
- C : CARB

2013-09-12 @SKF Slide 95 [Code]


# Basic Designation ---- Width series / Height series

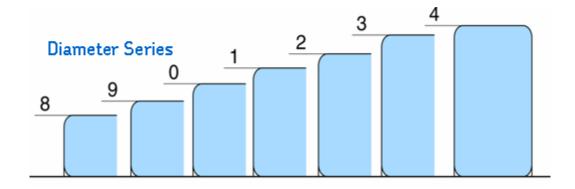


Width series



Height series





Radial bearing ......Width series = 0,1,2,3,4,5 and 6

Taper roller bearings ....... Width series = 0,2 and 3

Thrust bearings ...... Height series = 7,9 and 1

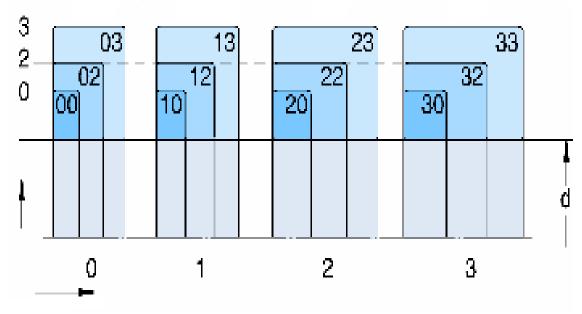
#### **Basic Designation ---- Diameter series**





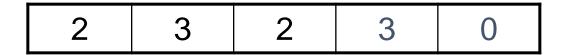
Radial bearing ......diameter series = 8,9,0,1,2,3 and 4

Taper roller bearings ...... diameter series = 9,0,2 and 3


Thrust bearings ...... diameter series = 0,1,2,3,4 and 5

2013-09-12 ©SKF

# **Basic Designation ---- Dimension series**


| 2 | 3 | 2 | 3 | 0 |
|---|---|---|---|---|
|   |   |   |   |   |

The combination of a Diameter series with a width or height series results in dimension series e.g; Dimension series 02 is the width series 0 and the diameter series 2.



2013-09-12 @SKF Slide 98 [Code]

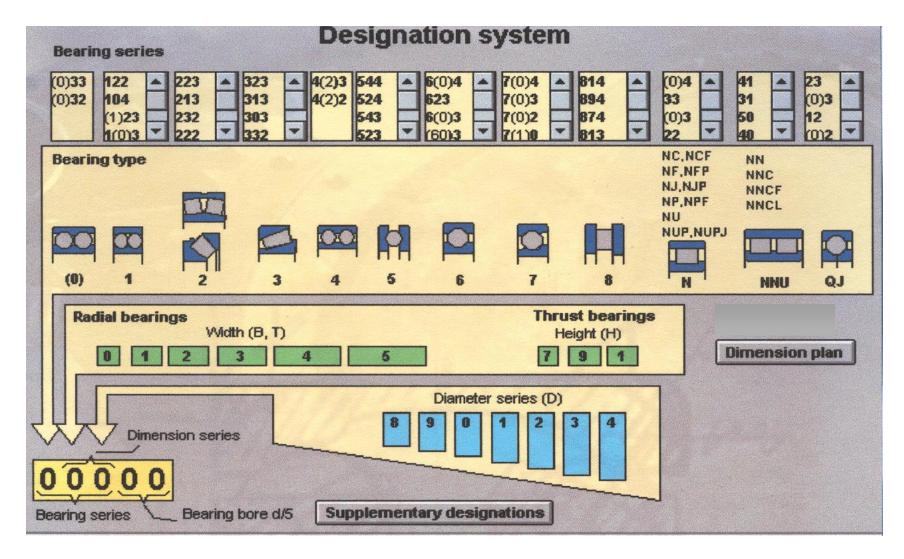
#### Basic Designation ---- Bore diameter



- ✓ The two final figures in the basic designation ,when multiplied by five ,
  identified the bore diameter in mm.
- ✓ The size identification of small and large bearing differs from this rule
- ✓ Bearing Bore has four groups:
  - (1) Bore below 10 mm
  - (2) Bore from 10 to 17 mm
  - (3) Bore from 20 mm to 480 mm.
  - (4) Bore equal and above 500 mm.

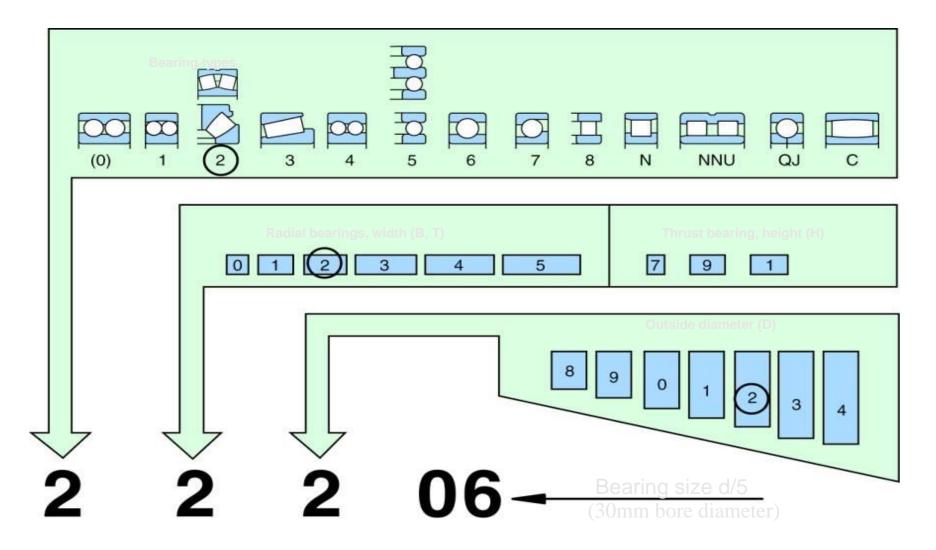
2013-09-12 ©SKF

# Basic Designation ---- Bore diameter


| Bore       | Designation | Example |
|------------|-------------|---------|
| 3          | 3           | 623     |
| 7          | 7           | 637     |
| 9          | 9           | 629     |
|            |             |         |
| 10         | 00          | 6200    |
| 12         | 01          | 1201    |
| 15         | 02          | 7202    |
| 17         | 03          | 7003    |
|            |             |         |
| 20         | 04          | 6204    |
| 85         | 17          | 22217   |
| 240        | 48          | NU 248  |
| <b>4</b> 0 | 40          | 110 240 |

2013-09-12 ©SKF

# Basic Designation ---- Bore diameter


| Bore |       | signation | Example |
|------|-------|-----------|---------|
| 500  | / 500 | 241 / 500 |         |
| 530  | / 530 | 239 /     | 530     |

2013-09-12 ©SKF Slide 101 [Code]



2013-09-12 ©SKF Slide 102 [Code]

# How the Designation System Works



2013-09-12 ©SKF Slide 103 [Code]

#### **Supplementary Designation**

The supplementary designations consist of both prefixes and suffixes

**Prefix** 

W 6202 – Stainless Steel

Suffix

**3204** ATN9

2013-09-12 ©SKF Slide 104 [Code]

#### **Supplementary Designation - - - Prefix**

Prefixes identify component parts of a bearing

**Prefix** 

IR - 5 X 8 X 12

AR: Ball and cage assembly or roller and cage assembly

IR: Inner ring of radial bearing

OR: Outer ring of radial ring

L : Removable inner or outer ring of a separable bearing

R : Separable bearing without inner or outer ring

K: Cylindrical roller and cage thrust assembly

2013-09-12 ©SKF Slide 105 [Code]

#### Supplementary Designation - - - Suffix

- ✓ The suffixes identify designs that differ from the original design.
- ✓ They are divided into four groups.
  - Internal design
  - External design
  - Cage design
  - Variants.

6205 – E 2RS1 TN9 / C3

| E               | 2RS1            | TN9            | C3      |
|-----------------|-----------------|----------------|---------|
| Internal design | External design | Cage<br>design | Variant |

2013-09-12 ©SKF Slide 106 [Code]

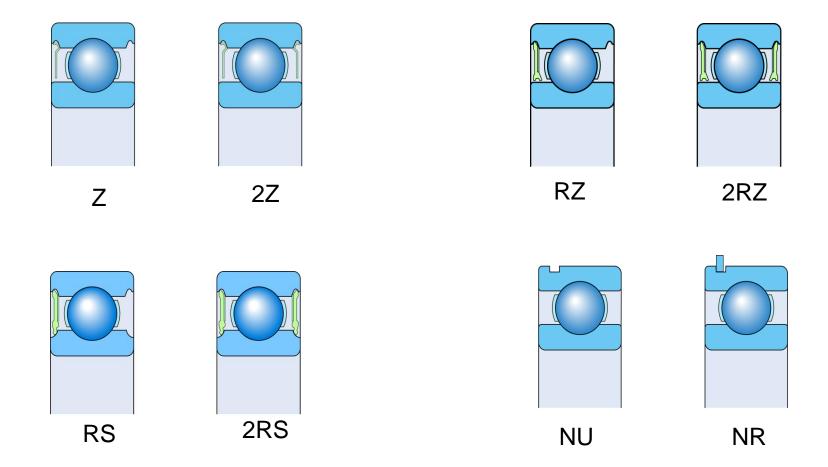
#### Suffix - - - Internal design

| E               | 2RS1                | TN9            | C3      |
|-----------------|---------------------|----------------|---------|
| Internal design | Externa<br>I design | Cage<br>design | Variant |

✓ Bearings with suffix of A,B,C,D,E or any combination of these have a deviating or modified internal design.

√ The standard boundary dimensions are the same

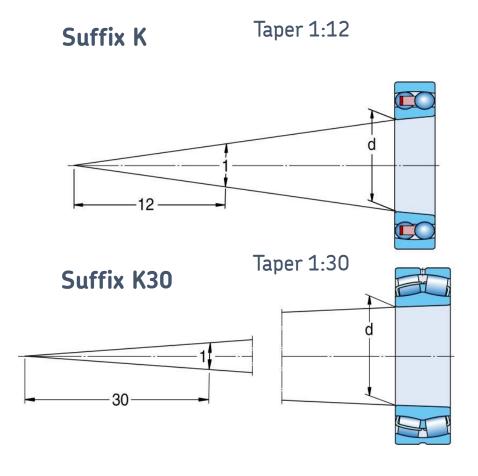
2013-09-12 @SKF Slide 107 [Code]


#### Suffix - - - External design

| E                  | 2RS1                | TN9 | C3      |
|--------------------|---------------------|-----|---------|
| Internal<br>design | Externa<br>I design |     | Variant |

✓ External design denotes modifications such as to the outer ring during during the manufacturing process so that the bearing accepts seals, shields or snap rings

2013-09-12 ©SKF Slide 108 [Code]


# Suffix - - - External design



2013-09-12 ©SKF Slide 109 [Code]

#### Suffix - - - External design

✓ Another example of modification to the external design is suffix K for bearing with a conical (tapered) bore



2013-09-12 ©SKF Slide 110 [Code]

# Suffix - - - Cage design

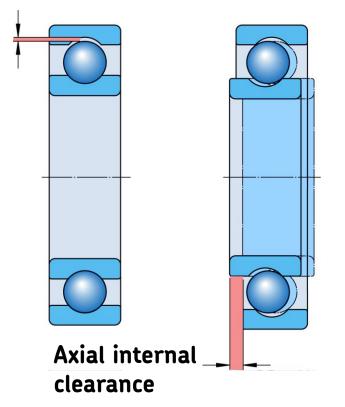
: Machineticage of steel for special cast Gon : Pressed steel cage Internal Externa Cage Variant : Machinedessiess calgeresign design

TN9: Injection moulded cage of glass fibre reinforced

- ✓ The cage suffix specifies :
- : Injection moulded cage of glass fibre reinforced \*how the cage is manufactured polyamide 6,6 and what material it is made of
- : Bearing without cage (with full complement of rolling elements)

Slide 111 [Code

2013-09-12 @SKF


| E                  | 2RS1                | TN9 | C3      |
|--------------------|---------------------|-----|---------|
| Internal<br>design | Externa<br>I design |     | Variant |

- √ Variant suffixes are placed at the end of the designation ,
  after an oblique stroke.
- ✓ Examples of common variant suffixes are:
  - Clearances
  - Heat treatment
  - Lubrication

2013-09-12 @SKF Slide 112 [Code]

Clearance

#### Radial internal clearance



- C1 clearance less than C2
- C2 clearance less than Normal
- C3 clearance greater than Normal
- C4 clearance greater than C3
- C5 clearance greater than C4
- CA small axial internal clearance
- CB axial internal clearance greater than CA
- **CC** axial internal clearance greater than CB
- **CG** Zero clearance
- **GA** Light preload
- GB Preload greater than GA

2013-09-12 ©SKF Slide 113 [Code]

Material, Heat treatment

✓ A variant suffix can describe material and heat treatment
of an entire bearing or part of a bearing.

#### ✓ Examples:

HA3: Case hardened inner ring

HB1: Bainite hardened outer ring

HC5: Silicon nitride rolling element.

2013-09-12 ©SKF Slide 114 [Code]

#### Lubrication

✓ The suffix used to describe the grease a bearing is filled with, consists of a combination of letters to denote the temperature range

HT: Grease for high temperature (-20°C to +130°C)

MT: Grease for medium temperature (-30°C to +110°C)

LT: Grease for low temperature (-50°C to +80°C)

WT: Grease for wide temperature range(-40°C to +160°C)

2013-09-12 ©SKF Slide 115 [Code]

**QUESTION:** 

What do you understand with the bearing designation

6205-ERS1M/C3LT

2013-09-12 ©SKF Slide 116 [Code]

(0) Angular contact ball bearing, double row

e.g. 3217, 3307 A-2RS1

1 Self Align ball bearing

e.g. 1209 E, 2313 K/C3

Spherical roller bearing e.g. 22222 E, 23028CCK/W33/C4

Spherical roller thrust bearings

e.g. 29230, 29444 E

3 Taper roller bearings

e.g. 32004 X, 33207











4 Deep groove ball bearing, double row

e.g. 4204 A, 4312 A



5 Thrust bearing

e.g. 51103, 51317



6 Deep groove ball bearing, single row

e.g. 623, 6000, 6209-2Z/C3, 6315-2RS1, 6410 NR



7 Angular contact ball bearings, single row

e.g. 7204 BE, 7330 BCB, 7211 BECBP, 7307BEGAJ



8 Cylindrical roller thrust bearings

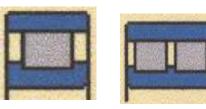
e.g. 81104, 81110

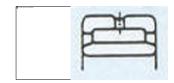
Cylindrical roller bearings

 $\mathbf{N}$   $\stackrel{\downarrow}{\ }$  e.g. NU 204 EC, NJ 2304 EC, NNC 4912 V

NA Needle roller bearings

**NK** e.g. RNA 4902, NK 20/20, NKS 50


QJ Four-point contact ball bearings e.g. QJ 304, QJ 210


#### Taper roller bearings

(Bearing with dimensions to ISO 355. Taper roller

bearings belonging to an American standard series are classified separately)











2013-09-12 ©SKF