<u>Using API-617 as a Purchase Specification</u> <u>for Centrifugal Compressors</u>

Although they are not legal documents, the various standards compiled and issued by the American Petroleum Institute (API) reflect the experience and recommendations of both users' and manufacturers' groups. These groups wish to impart safety and reliability to equipment utilized in the hydrocarbon processing industry (HPI). Of the two most important standards used in procuring dynamic compression machinery, API-617 pertains to centrifugal compressors and API614 applies to lubricating-oil systems. Virtually all API standards require users to make decisions on clauses marked with bullets (•), and understanding the standards is important for all parties. Therefore, highlighting a few clauses with explanatory remarks will be helpful in using the 7th Ed. (2002) API-617. (It should be noted that the numeric designation of a certain clause may change as the API Standard undergoes progressive updating or revisions.)

Clauses(s)	Торіс	API Explanation	Remarks
1.5.18 through	Definition of normal speed, 100% and maximum	The speed needed to attain the	The definitions help to flush out
1.5.26	continuous speed, plus others of interest.	highest head at any operating	any anomalies in deciding the
		condition. If the speed at the	shop performance test
		normal point is capable of	parameters. "MCS" or maximum
		meeting all the requirements at	continuous speed is 105% of the
		the other operating conditions,	highest speed required to meet
		normal speed will be taken as	any of the specified operating
		100% speed.	conditions. This sets the values
			for the mechanical performance
			test and the over-speed test. It is

			important from the point of view
			inspection and NDT examination.
1.5.25	Normal operating point	The point at which usual	
		operation is expected and	
		optimum efficiency is desired.	
	Rated Point	Obtained by the intersection of	Important to identify before
		100% speed lie and highest	ordering or before approval of
		capacity during operation	inspection documents. Definition
			of guarantee point is required.
1.5.30	Stability	Stability is the difference in	Important criterion for the design
		capacity between rated capacity	of the anti-surge system and for
		and surge point at rated speed.	defining operating flexibility.
1.5.51	Turndown	Turndown is the percentage of	The amount of recycle volume
		change in capacity between the	and thus loss of power at low-
		rated capacity and surge point	flow operating conditions will be
		capacity at rated head with unit	an important factor when it
		operating at rated suction	comes to a continuous mode.
		temperature and gas	
		composition.	
1.5.39	Settling-out pressure	Pressure of compressor system	It is important to state the same
		when the machine is shut down.	when handling gas that has
			substantial change in the vapor

			pressure for a small change in
			the temperature.
1.6.1	Referenced Publications	Identifies major standards	Look for completeness and keep
		covering driver, pressure vessels,	deviations from applicable
		instrumentation, electrical	standard to bare minimum.
		equipment, auxiliary equipment,	Apply piping standards without
		auxiliary systems, piping, and	compromising good layout;
		material specifications	access; pipe supports; upstream
			interstage, and downstream
			piping; drains; platform; and
			grating. Be especially vigilant in
			instances in which the
			compressor is delivered as a
			standard package. On many
			occasions, comments start
			pouring in after contract award.
			Note that similar considerations
			should apply to instrument
			tubing and piping. Note cabling,
			junction boxes, and fire
			protection systems for which the
			user company may have

			developed an overall strategy
			based on decades of field
			experience. These strategies may
			be more comprehensive than
			those of the compressor
			manufacturer.
2.1.1.3	Acceptance Criteria	No negative tolerance on the	The process industry places
		capacity and head at normal	emphasis on throughput with
		point of operation with +4%	lower priority on power
		tolerance on power	consumption. However, the user
		consumption.	should identify the guarantee
			point at the time of purchase if
			performance tests are
			contemplated. This will avoid
			disputes while acceptance tests
			are in progress.
1.5.17 and	Maximum allowable working pressure	At least equal to relief valve	The manufacturer should be
2.3.1.1.1; also		setting, or at least 1.25 times the	requested to state this, with no
2.3.1.2		maximum discharge pressure	relationship to the actual service
		(gauge) experienced during	condition. This will be useful if
		operation. Maximum pressure	future conditions should require
		occurs when the machine	more head. Heavier casing also

	_	_	,
		operates at maximum continuous	guarantees less susceptibility to
		speed close to surge with	changes due to piping loads and
		anticipated combination of	its effect on machine alignment.
		highest molecular weight,	Observe adequacy for settling-
		highest suction pressure, and	out pressure.
		lowest inlet temperature.	
2.1.1	Head and capacity characteristic curve	Rising characteristics up to the	Desirable from the point of view
		surge point; may be defined in	of anti-surge and general flow
		percentages	control since there is change in
			head for a change in the capacity
			over the entire operating range.
2.3.1.5	Axial split casing joint	Metal-to-metal joint	This is an important point to be
			remembered by maintenance
			organizations. A predefined
			sequence of tightening bolts,
			preferably with a hydraulic
			torque device, will avoid costly
			assembly errors in the future.
	Diaphragm cooling	Independent cooling passages	Precludes entry of cooling
			medium into compressor casing.
2.5.3.1	Raw material for the shaft	For 8" and above, the starting	Heat-treated forgings are the
		point shall be a forging. Although	preferred raw material from the

		even below this limit it is	point of view of strength and
		preferred to use a forging,	stress-concentration factors.
		experienced manufacturers may	
		be permitted to start with	
		quality-controlled bar stock.	
2.5.10.6	Balancing	Use of welding as a means to	Welding can introduce flaws, in
		balance an impeller is not	addition to difficulties in
		permitted.	controlling the mass.
			Maintenance engineers must
			strictly observe this rule.
2.5.4.1	Balance Chamber Pressure	Provision is required	Found missing in many
			installations. Trending this
			pressure gives a good indication
			of casing internal leakage.
2.7.1.3	Inlet oil temperature	If it exceeds 49°C, special	In desert atmospheres and with
		considerations are required.	fin fan coolers, oil header
			temperatures range in the
			vicinity of 55°C and bearing metal
			temperatures above 115°C
			(summer conditions). Consider a
			closed or thermosiphon water
			cooling system.

2.6.2.10	Separation margin	The damped unbalanced	These paragraphs represent
		response analysis shall indicate	guidelines to obtain an
		that the machine will meet the	acceptable rotor design. Also, it
		following SM:	calls for the verification of the
		a. If the AF at a particular	calculated results on the test
		critical speed is less than 2.5,	stand.
		the response is considered	
		critically damped and so no	
		SM is required.	
		b. If the AF at a particular speed	
		is 2.5 or greater and that	
		critical speed is below the	
		minimum speed, the SM (as a	
		percentage of the minimum	
		speed) shall not be less than	
		the value from Equation	
		below or the value of 16	
		whichever is less. SM= 17{1-	
		[1/(AF-1.5)]}.	
		c. If the AF at a particular	
		critical speed is equal to 2.5	
		or greater and that critical	
		speed is above the maximum	

		continuous speed, the SM (as	
		a percentage of the	
		maximum continuous speed)	
		shall not be less than the	
		below or the value of 26	
		whichever is less.	
		SM=10+17 {1-[1/(AF-1.5)]}	
2.6.3	Shop verification of unbalanced response analysis	Outlines the importance of	The deviation in the results
		verification of the theorical	beyond permissible limits helps
		results with the ones actually	to form guidelines. It gives the
		obtained on the test stand.	designer more insight in
			correcting the assumptions and
			thus can improve overall
			prediction capability.
2.6.8.1	Balancing	Does not necessarily specify	During the mechanical running
through		desirable high-speed balancing.	test of the machine, assembles
2.6.8.8			with the balanced rotor,
			operating at its maximum
			continuous speed or at any other
			speed within the specified
			operating speed range, the peak-
			to-peak amplitude of the

			Cut. I st
			unfiltered vibration in any plane,
			measured on the shaft adjacent
			and relative to each radial
			bearing, shall not exceed the
			following value or 25 micrometer
			(1mil), whichever is less: In SI
			units: A=25.4 (12000/N) ^{0.5} where
			A= amplitude of unfiltered
			vibration, in micron (mil) true
			peak-to-peak, N= maximum
			continuous speed, in rpm. At any
			speed greater than the maximum
			continuous speed, and up to and
			including the trip speed of the
			driver, the vibration level shall
			not increase more than 12.7
			micron (0.5mil) above the
			maximum value recorded at the
			maximum continuous speed.
2.2	Materials	Steel casing to be used as per	Review appropriate guidelines
2.2	Iviateriais	-	
		guidelines clauses. Disallow	for material selection.
		materials susceptible to brittle	

	·		
		fracture at ambient temperature.	
		In case of H ₂ S (sour)	
		environment, ferrous material	
		selection must be limited to	
		those having maximum yield	
		strength of 90,000 psi and RC22	
		maximum hardness. Austenitic	
		stainless steel should not be used	
		in services likely to experience	
		stress-corrosion cracking. For	
		hydrogen service with partial	
		pressure in excess of 100 psi or	
		over 90 molal percent H ₂ ,	
		impeller material yield strength	
		shall not exceed 120,000 psi and	
		hardness RC34.	
3.1.4, 3.1.5,	Driver Sizing	110% of the maximum power	For steam turbines, consider
3.1.7		required at any operating	future upgrade requirements.
		condition, inclusive of coupling	Are two-sided shaft extensions
		and gear losses for motors and	possible? Is space available for a
		steam turbines. Determination	helper turbine?
		to be made by mutual agreement	
		to be made by mutual agreement	

		for gas turbine drivers.	
3.2	Gear couplings		Lubricated gear couplings are not normally provided on new installations. Contoured diaphragm or flexible disc couplings are preferred but must have prior experience. On older machines with gear couplings, consider, replacement with con- toured diaphragm couplings.
3.5.1.4	Provision of bypass for flushing	Applicable to bearings and seals	This aspect should be carefully reviewed. Flushing with minimum effort may be difficult unless suitable provisions are designed-in.
4.3.3	Impeller overspeed	At 115% of MCS for a minimum duration of one minute.	Check the impeller for deformation and dimensional variations. Are runway situations possible in variable speed applications?

4.3.6	Mechanical running test	lm	portant point to note:	A mechanical running test is
		1.	Minimum degree of filtration	mandatory both for the main
			10 microns or better.	rotor and spare rotor. It assists in
		2.	Test with contract items to	determining mechanical losses.
			include coupling, vibration	Try to use lube-oil grade
			transducers, seals, bearings	equivalent to type used at
		3.	Observation and recording of	installation site and maintain
			several parameters at 10%	highest permissible lube-oil inlet
			speed increments up to MCS	temperature during shop testing.
			to include oil supply rate to	
			every line, pressure,	
			temperature, sour seal oil	
			rate.	
		4.	Run the machine at trip	
			speed for 15 minutes,	
			followed by a four-hour run	
			at MCS.	
		5.	Collection of vibration	
			spectra at each operating	
			point, also during start-up	
			and coast-down.	
		6.	Identification of lateral	
			critical speeds, separation	

		margins, and any testing to	
		be done in the context of	
		unbalance response analysis.	
4.3.7	Leakage test	After completion of mechanical	Will ensure integrity of the casing
		running test, casing along with	joint. Inert gas (N₂) is
		seal will be pressurized to	recommended. Helium gas is
		maximum sealing (or seal design	recommended for low molecular
		pressure). Also, casing shall be	weight gases.
		pressurized to rated discharge	
		pressure (with or without end	
		seals).	
4.3.8	Optional Tests	Various test ranging from	All tests should be carried out at
		performance test (4.3.8.1) to	the manufacturer's facility in
		dismantling and reassembly	order to minimize site problems.
		(4.3.8.8). Inspection to be	This is an opportunity for
		defined under this optional	owner's representative to
		category.	become familiar with equipment.
		Full-pressure/full-load/full-speed	Beneficial a high-pressure
		test (4.3.8.6)	applications in which seals can
			act as additional bearings and
			thus can affect the critical speed.
4.4.3.10	Preparation for shipment	Spare rotor	Preserved with rust-preventive
	1	l	ı

	coating and stored vertically to
	avoid bowing. Preferably located
	in humidity-controlled location.

Thanks To: Late Heinz P. Bloch, Book: Compressors and Modern Process Applications