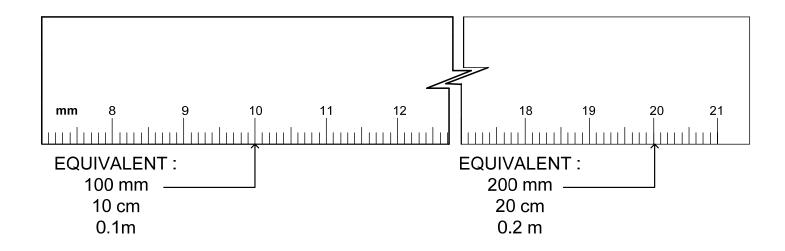

PIPE FITTER TRAINING MODULE

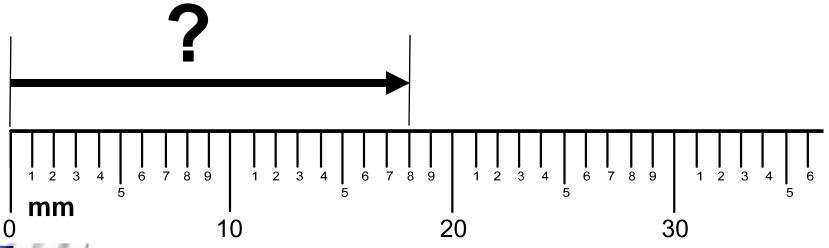
TOPICS

- 1. PIPE FITTER MATHEMATICS
 - 1.1 LINEAR MEASUREMENTS
 - 1.2 CONVERSION OF UNITS
 - 1.3 BASIC GEOMETRY
 - 1.4 BASIC TRIGONOMETRIC/ SOLID MENSURATION
 - 1.5 SOLVING FOR SIMPLE OFFSET 45°
 - 1.6 SOLVING FOR ROLLING OFFSET
 - 1.7 SOLVING FOR 90° ELBOW L.R.
 - 1.8 SOLVING FOR 45° ELBOW



STEEL TAPE (METRO)

STEEL TAPE (METRO)

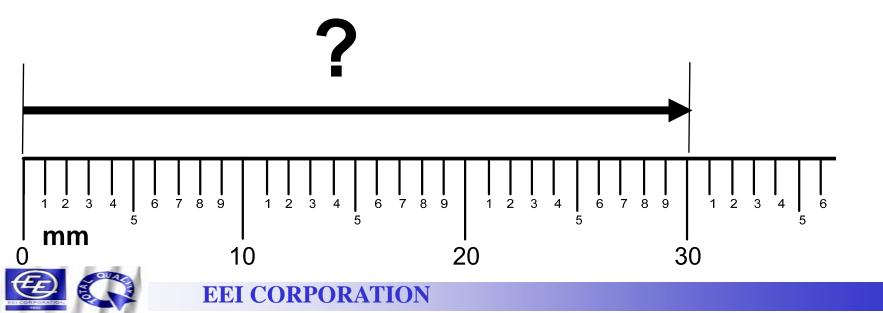


METER TAPE READING

METRIC SYSTEM EXAMPLE 1

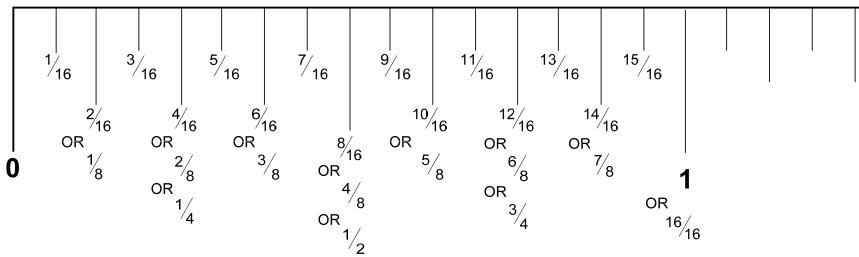
WHAT IS THE MEASUREMENT?

ANSWER: 18 mm


METER TAPE READING

METRIC SYSTEM

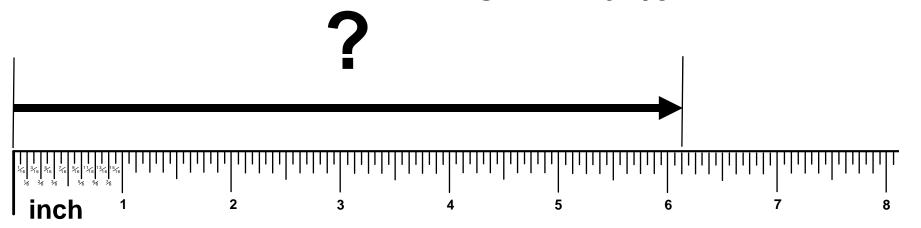
EXAMPLE 2


WHAT IS THE MEASUREMENT?

ANSWER: 30 mm

METER TAPE READING

ENGLISH SYSTEM

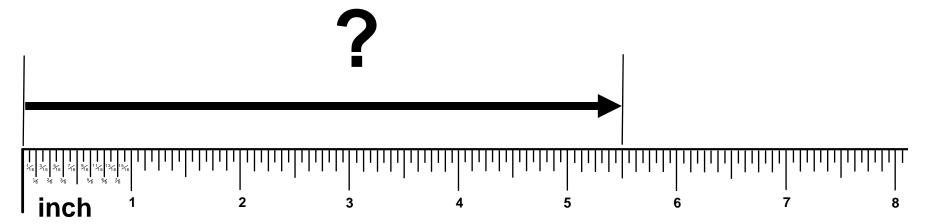

METER TAPE READING

ENGLISH SYSTEM

WHAT IS THE MEASUREMENT?

EXAMPLE 1

ANSWER: 6 1/8 in.


METER TAPE READING

ENGLISH SYSTEM

WHAT IS THE MEASUREMENT?

EXAMPLE 2

ANSWER: 5 1/2 in.

CONVERSION FACTOR

1 Meter = 3.28 Feet

1 Meter = 39.37 Inches

1 Meter = 100 Centimeters

1 Meter = 1000 Millimeters

1 Foot = 12 Inches

1 Inch = 2.54 Centimeters

1 Centimeter = 10 Millimeters

	ENGLISH – FRACTION (INCH)	ENGLISH – DECIMAL (INCH)	ENGLISH – (MILLIMETER)
1.	1/16	0.0625	1.6
2.	1/8	0.125	3.2
3.	1/4	0.25	6.4
4.	3/8	0.375	9.8
5.	1/2	0.50	12.7
6.	5/8	0.625	16.0
7.	3/4	0.75	19.1
8.	7/8	0.875	22.2
9.	1	1.0	25.4

CONVERSION FACTOR

SOLID

1 kilograms = 1000 grams = 2.2 pounds

1 ton = 1000 kilograms = 2200 pounds

LIQUID

1 gallon = 3.785 liters

PRESSURE

1 Kilopascals (kPa) = 6.894 pounds-force per inch (psi)

How many feet are there in 5 meters?
 meters = _____ feet

$$5 m x \frac{3.28 \ feet}{1 \ m} = 16.4 \ feet$$

2. How many meters are there in 15 feet? 15 feet = ____ meters

15 feet
$$x = \frac{1 m}{3.28 feet} = 4.57 m$$

3. How many inches are there in 75 centimeters? 75 centimeters = _____ inches

$$75 \ cm \ x \ \frac{1 \ in}{2.54 \ cm} = 29.53 \ in$$

4. How many centimeters are there in 100 inches?

100 inches = inches

$$100 \ in \ x \ \frac{2.54 \ cm}{1 \ in} = 254 \ cm$$

5. How many inches are there in 8 Meters? 8 Meters = _____ inches

$$8 m x \frac{39.37 in}{1m} = 314.96 in$$

6. How many meters are there in 50 inches? 50 Inches = ____ meter

$$50in \times \frac{1m}{39.37in} = 1.27 m$$

7. How many centimeters are there in 50 meters? 50 meters = ____ centimeters

$$50 \ m \ x \ \frac{100 cm}{1m} = 5,000 \ cm$$

8. How many meters are there in 250 centimeters? 250 centimeters = _____ meters

$$250 \ cm \ x \ \frac{1m}{100cm} = 2.50m$$

9. How many millimeters are there in 10 meters? 10 meters = ____ millimeters

$$10 \ m \ x \ \frac{1000mm}{1m} = 10,000mm$$

10. How many meters are there in 100 millimeters?

100 millimeters = _____ meters

$$100mm \ x \ \frac{1m}{1000mm} = 0.10m$$

11. How many inches are there in 3 feet?

3 feet = _____ inches

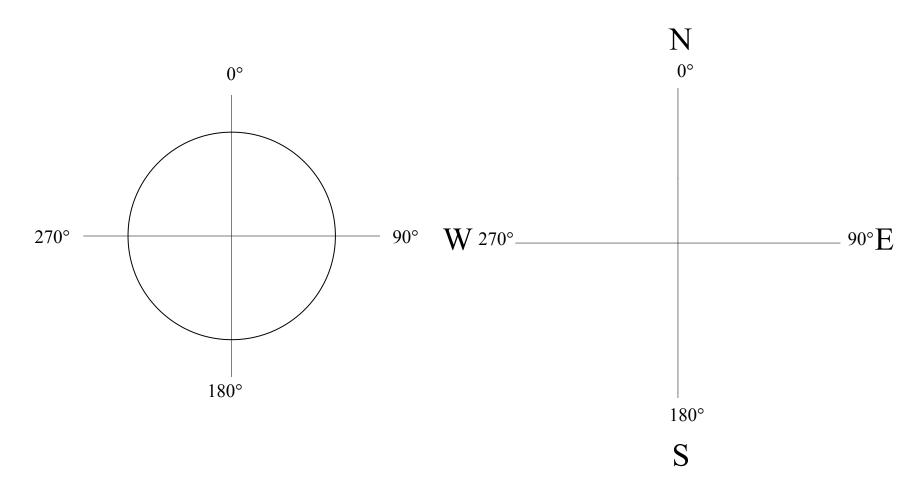
$$3 \text{ ft } \times \frac{12 \text{ in}}{1 \text{ ft}} = 36 \text{ in.}$$

12. How many feet are there in 48 inches?
48 inches = _____ feet

48 in
$$x \frac{1 \text{ ft}}{12 \text{ in}} = 4 \text{ ft.}$$

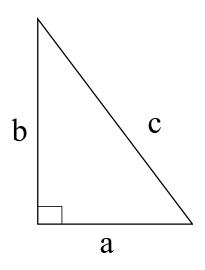
13. How many millimeters are there in 3 centimeters?

3 centimeters = _____ millimeters


$$3 cm x \frac{10mm}{1cm} = 30mm$$

14. How many centimeters are there in 50 millimeters? 50 millimeters = _____ centimeters

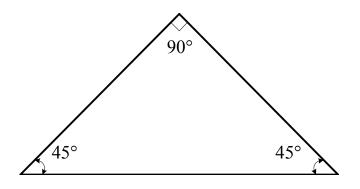
$$50 mm x \frac{1cm}{10mm} = 5cm$$



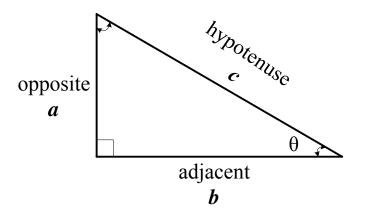
1.3 BASIC GEOMETRY

BASIC TRIGONOMETRIC FUNCTION

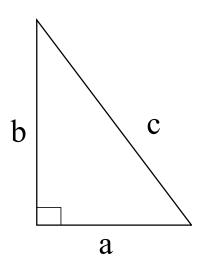
$$c^{2} = a^{2} + b^{2}$$
 $a^{2} = c^{2} - b^{2}$
 $b^{2} = c^{2} - a^{2}$


$$c = \sqrt{a^2 + b^2}$$

$$a = \sqrt{c^2 - b^2}$$


$$b = \sqrt{c^2 - a^2}$$

BASIC TRIGONOMETRIC FUNCTION

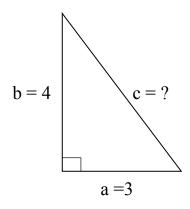

$$\sin \theta = \frac{opposite}{hypotenuse} = \frac{a}{c}$$

$$\cos \theta = \frac{adjacent}{hypotenuse} = \frac{b}{c}$$

$$\tan \theta = \frac{opposite}{adjacent} = \frac{a}{b}$$

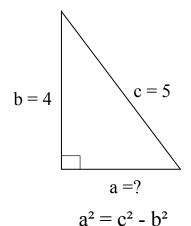
BASIC TRIGONOMETRIC FUNCTION

$$c^{2} = a^{2} + b^{2}$$
 $a^{2} = c^{2} - b^{2}$
 $b^{2} = c^{2} - a^{2}$

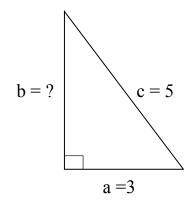

$$c = \sqrt{a^2 + b^2}$$

$$a = \sqrt{c^2 - b^2}$$

$$b = \sqrt{c^2 - a^2}$$


BASIC TRIGOMETRIC FUNCTION

$$c^{2} = a^{2} + b^{2}$$


$$c^{2} = 3^{2} + 4^{2}$$

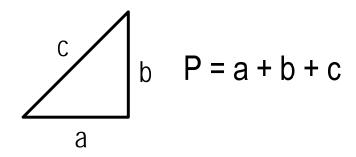
$$c = \sqrt{3^{2} + 4^{2}} = 5$$

$$a^{2} = 5^{2} - 4^{2}$$

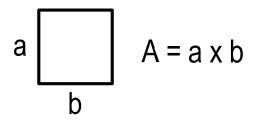
$$a = \sqrt{5^{2} - 4^{2}} = 3$$

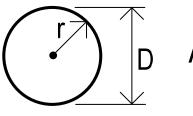
$$b^{2} = c^{2} - a^{2}$$

$$b^{2} = 5^{2} - 3^{2}$$

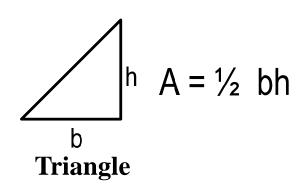

$$b = \sqrt{5^{2} - 3^{2}} = 4$$

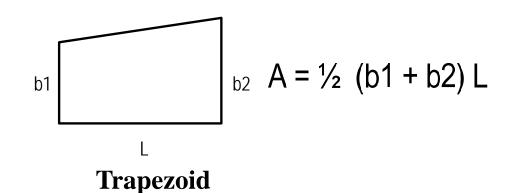
PERIMETER


Square

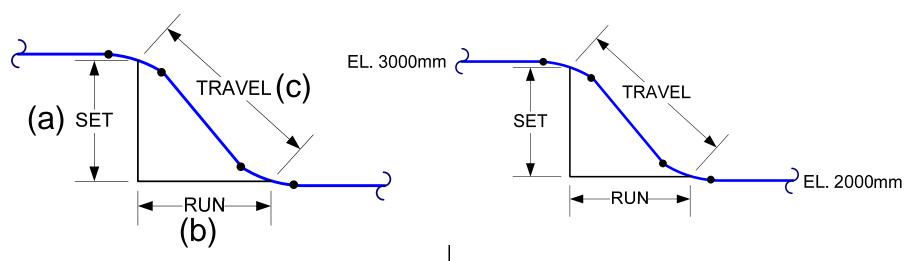


Triangle


AREA



$$A = \frac{\Pi(DxD)}{4}$$
 $\Pi = 3.1416$


Square

1.5 SOLVING FOR SIMPLE OFFSET 45°

FORMULA:

$$C = \sqrt{a^2 + b^2}$$

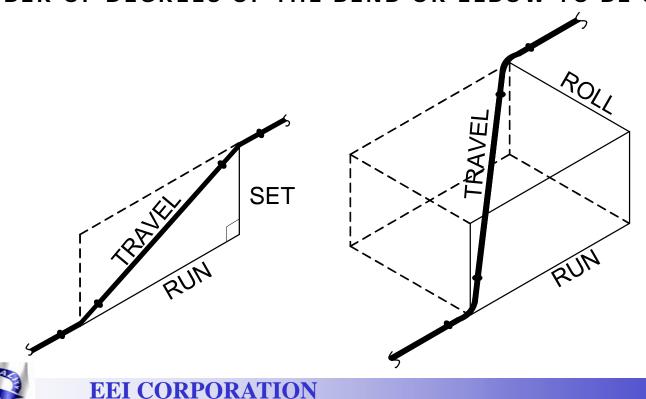
FOR 45 DEG.ELBOW: SET = RUN

$$C = \sqrt{a^2 + b^2}$$

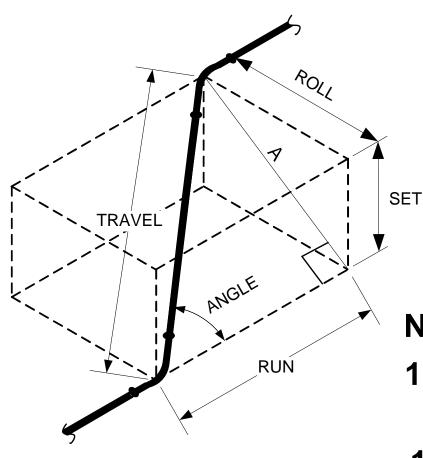
$$= \sqrt{(1000)^2 + (1000)^2}$$

$$= \sqrt{2000000}$$

$$= 1414.21 \text{ mm}$$



1.6 SOLVING FOR ROLLING OFFSET


SOLVING ROLLING OFFSETS:

INTRODUCTION:

A ROLLING OFFSET CAN BE FIGURED JUST LIKE A SIMPLE OFFSET WHICH IS ROLLED OVER TO FORM A DISTANCE CALLED "ROLL". THIS IDEA IS VERY USEFUL IN DETERMINING THE NUMBER OF DEGREES OF THE BEND OR ELBOW TO BE USED.

1.6 SOLVING FOR ROLLING OFFSET

FORMULA:

 $A = \sqrt{ROLL^2 + SET^2}$

 $TRAVEL = A \times 1.414$

 $RUN = A \times 1$

NOTE:

1.414 = cosecant of angle of 45 ° fitting

1 = cotangent of angle of 45° fitting

1.6 SOLVING FOR ROLLING OFFSET

EXAMPLE:

The roll of a 45° offset is 8 in. and the set is 15 in. Find the length of the travel and run.

FORMULA:

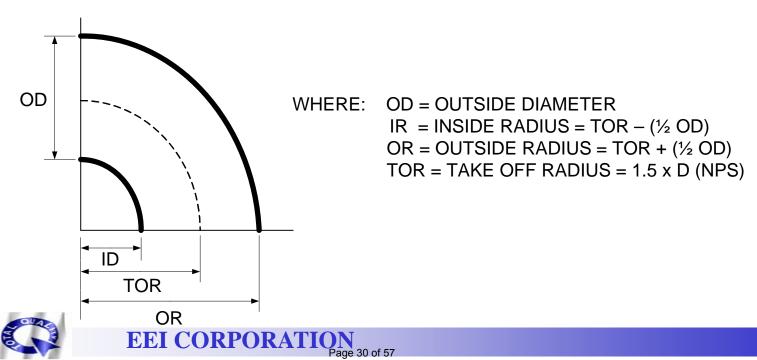
$$A = \sqrt{ROLL^2 + SET^2}$$

$$A = \sqrt{8^2 + 15^2} = 17 \text{ in.}$$

$$TRAVEL = A \times 1.414$$

TRAVEL = 17 x 1.414 =
$$24^{1}/_{32}$$
 in.

$$RUN = A \times 1$$


$$RUN = 17 \times 1 = 17 \text{ in.}$$

1.7 SOLVING FOR TAKE-OFF ELBOW L.R.

WHEN THE REQUIRED BEND FOR SIMPLE OR ROLLING OFFSET IS NOT AVAILABLE, IT CAN BE FABRICATED FROM A 90° LONG RADIUS WELD ELBOWS. TO FABRICATE CUT-ELBOW (FROM 90° LR ELBOW). THE FOLLOWING PROCEDURE CAN BE USEFUL.

- I. KNOW THE ACTUAL O.D. OF THE PIPE OR FITTING USED. REMEMBER THAT NOMINAL PIPE SIZES 12" Ø AND BELOW HAVE THEIR DESIGNATED O.D.'s.
- II. DETERMINE THE TAKE OFF RADIUS (TOR) OF THE 90° LR ELBOW USED AND CALCULATE THE INSIDE AND OUTSIDE RADII.

1.7 SOLVING FOR 90° ELBOW L.R.

FORMULA FOR TAKE-OFF ELBOW – L.R.

1. 90° ELBOW – LONG RADIUS

A. ENGLISH SYSTEM USE - 1.5

B. METRIC SYSTEM USE - 38.1

A. EXAMPLE : SIZE OF PIPE=8"

8"

X 1.5 ENGLISH

12.00"

B. EXAMPLE : SIZE OF PIPE=8"

8"

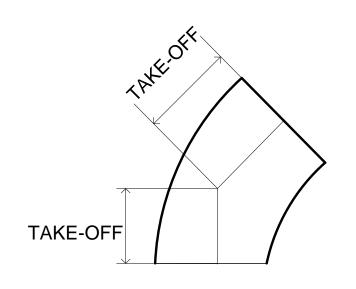
X 38.1 METRIC 304.8 mm.

•CHECKING:

IN ENGLISH SYSTEM A = B

$$12'' = \frac{304.8}{25.4}$$

$$12'' = 12''$$


IN ENGLISH SYSTEM A = B

$$12'' \text{ x} \frac{25.4 \text{ mm}}{1''} = 304.8 \text{mm}$$

$$304.8 \text{ mm} = 304.8 \text{mm}$$

1.8 SOLVING FOR 45° ELBOW

45° ELBOW

A. ENGLISH SYTEM: USE 0.625" (INCH) = USE ALL SIZE OF PIPE)

METRIC SYSTEM

X 15.875

127 mm

8 " SIZE OF PIPE

B. METRIC SYSTEM: USE 15.875 (mm) USE ALL SIZE OF PIPE

EXAMPLE:

ENGLISH SYSTEM

8 " SIZE OF PIPE

X 0.625 5"

EXAMPLE

0.625 **ENGLISH SYSTEM**

x 25.4 **15.875** METRIC SYSTEM

FORMULA:

DIAMETER X0.625 (ENGLISH)

DIAMETER X15.875 (METRIC)

NOTE: DIAMETER IS NOMINAL PIPE SIZE

PIPE FITTER TRAINING MODULE

TOPICS

- 2. BLUE PRINT READING
 - 2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)
 - 2.2 ISOMETRIC DRAWINGS & DETAILS

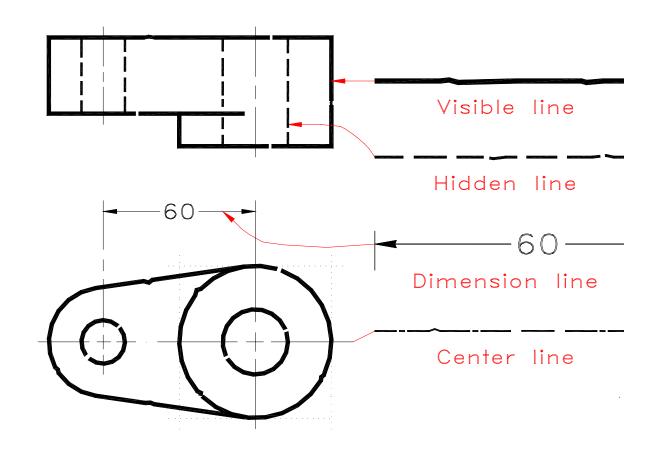
2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)

Line Types

Continuous Line

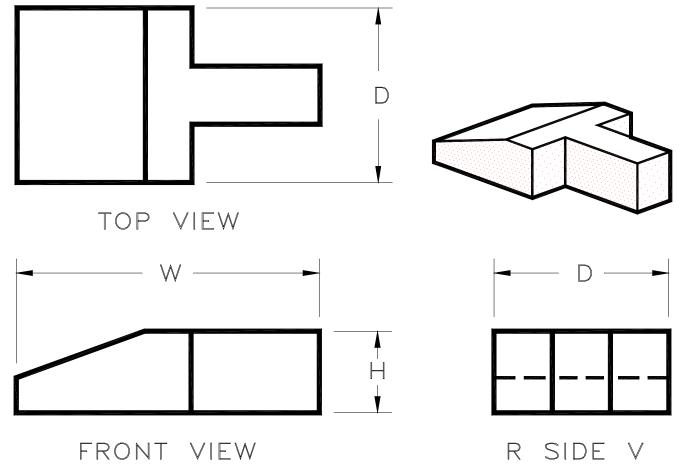
Hidden Line

Center Line


Dimension Line

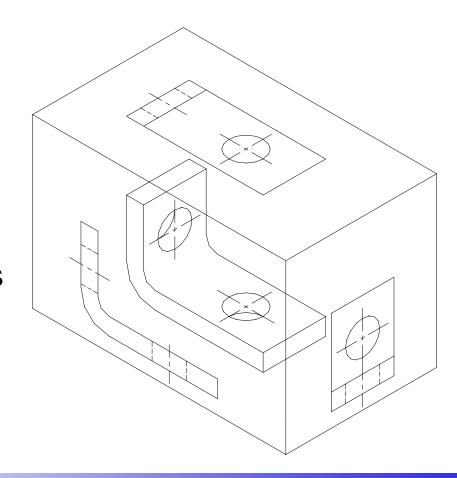
2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)

Linetypes


- Visible
- Hidden
- Center

2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)

Three Primary Views



2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)

Glass Box concept

- Envision the object surrounded in a glass box
- Project the views out onto the pieces of glass
- Each pane shows a 2D projection of the object

2.1 ORTHOGRAPHIC DRAWINGS (PLANS, ELEVATION, & SECTION)

Projection Planes

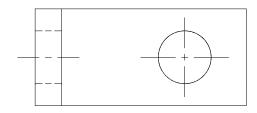
The three panes of glass represent the principal orthographic planes

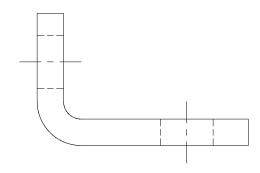
Horizontal

Frontal

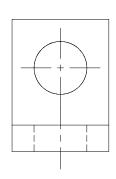
Profile

Each plane illustrates two of the principal dimensions:

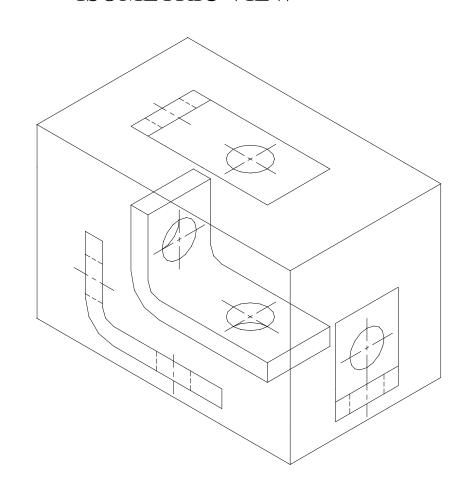

Height, Width, and Depth

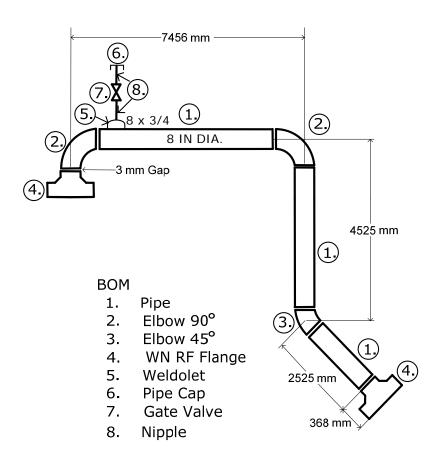


2.2 ISOMETRIC DRAWINGS & DETAILS

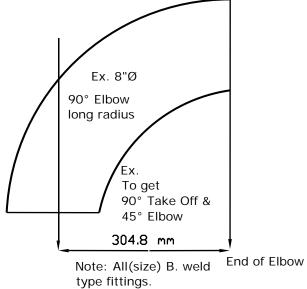

ISOMETRIC VIEW

PLAN



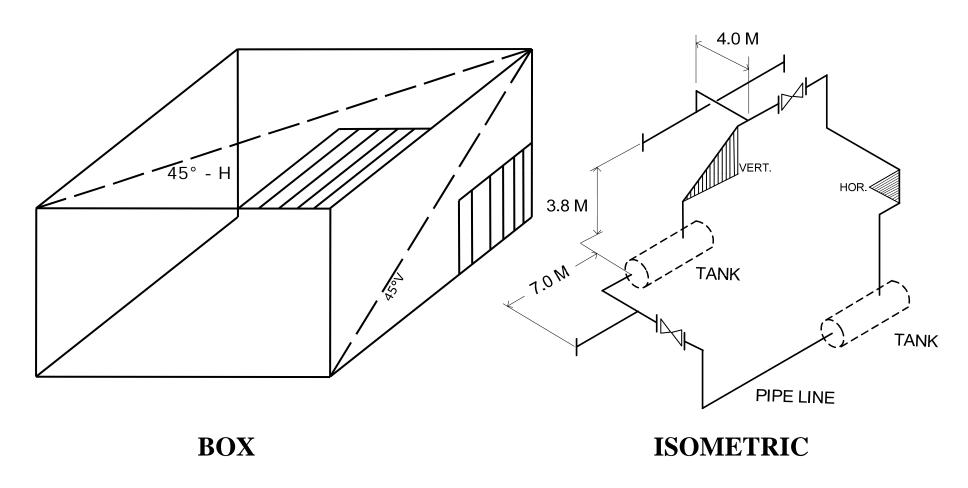


RIGHT SIDE VIEW

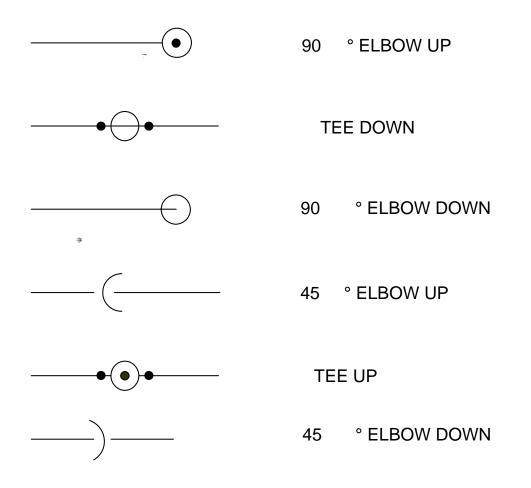


2.2 ISOMETRIC DRAWINGS & DETAILS

90° Elbow use take off 1.5 = English 90° Elbow use take off 38.1 = Metric


45° Elbow use take off 0.625 = English System 45° Elbow use take off 15.875 = Metric System

2.2 ISOMETRIC DRAWINGS & DETAILS


PIPE FITTER TRAINING MODULE

TOPICS

3. STANDARD TRADE SYMBOLS

SYMBOLS OF PIPE ORTHOGRAPHIC & MEANING

EXAMPLE FOR INDICATION OF PIPE FITTINGS (BUTT WELD TYPE)

ITEM	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
90° Elbow	14 in. NPS and Smaller 16 in. NPS and Larger			

EXAMPLE FOR INDICATION OF PIPE FITTINGS (BUTT WELD TYPE)

I	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
Elbow	14 in. NPS and Smaller NPS and Larger		45°	N Line Thickness 0.3mm

EXAMPLE FOR INDICATION OF PIPE FITTINGS (BUTT WELD TYPE)

ITEM	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
Tee	14 in. NPS and Smalle		*18" x 6"	* For reducing tees, sizes shall be indicated.
	16 in. NPS and Larger		*18"_x 14".	*18" x 14"

ITEM	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
Con- centric and Eccen- tric Redu- cer			*6" x 4" *6" x 4" *4" x 3" *20" x 18" *18" x 14"	*6" x 4" *4" x 3" *20" x 18" *Indicate double line for eccentric flat surface *18" x 14"

EXAMPLE FOR INDICATION OF PIPE FITTINGS (BUTT WELD TYPE)

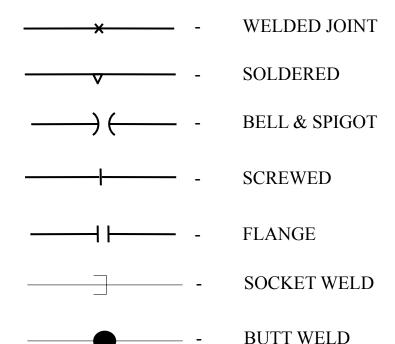
ITEM	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
Сар	14 in. NPS and Smalle	<u></u>		N
	16 in. NPS and Larger			

EXAMPLE FOR INDICATION OF PIPE FITTINGS (BUTT WELD TYPE)

ITEM	PIPE SIZE	PLAN	SIDE VIEW	ISOMETRIC
O-let	14 in. NPS and Smaller	. 5————————————————————————————————————	2	12" x 4"
	16 in. NPS and Larger			28" x 16"

ITEM	PLAN	SIDE VIEW	ISOMETRIC
90° Elbow			

ITEM	PLAN	SIDE VIEW	ISOMETRIC
45° Elbow		45°	45°


ITEM	PLAN	SIDE VIEW	ISOMETRIC
Tee		* 1" x 3/4"	* For reducing tees, sizes shall be indicated. N * 1" x 3/4"

ITEM	PLAN	SIDE VIEW	ISOMETRIC
Coupling			* For reducing tees, sizes shall be indicated. N * 1" x 3/4"

ITEM	PLAN	SIDE VIEW	ISOMETRIC
Union			Z

ITEM	PLAN	SIDE VIEW	ISOMETRIC
Сар	5 +	S + + +	Z/ Z/ Z /2

PIPE JOINT SYMBOL

VALVES

- GLOBE VALVE

- CHECK VALVE

- GATE VALVE

- NEEDLE VALVE

- SAFETY RELIEF VALVE

- CONTROL VALVE

- DIAPHRAGM VALVE

- PLUG VALVE

- BUTTERFLY VALVE

- 3 WAY VALVE

ANGLE VALVE

