CHAPTER OPENING PHOTO: Turbulent jet: The jet of water from the pipe is turbulent. The complex, irregular,
unsteady structure typical of turbulent flows is apparent. (Laser-induced fluorescence of dye in water.) (Pho-
tography by P. E. Dimotakis, R. C. Lye, and D. Z. Papantoniou.)

Learning Objectives

After completing this chapter, you should be able to:

m identify and understand various characteristics of the flow in pipes.

m discuss the main properties of laminar and turbulent pipe flow and appreciate
1 K their differences.

m calculate losses in straight portions of pipes as well as those in various

V8.1 Turbulent jet c
pipe system components.

m apply appropriate equations and principles to analyze a variety of pipe
flow situations.

m predict the flowrate in a pipe by use of common flowmeters.

In the previous chapters we have considered a variety of topics concerning the motion of fluids.
The basic governing principles concerning mass, momentum, and energy were developed and ap-
plied, in conjunction with rather severe assumptions, to numerous flow situations. In this chapter
we will apply the basic principles to a specific, important topic—the incompressible flow of vis-
cous fluids in pipes and ducts.

The transport of a fluid (liquid or gas) in a closed conduit (commonly called a pipe if it is of
round cross section or a duct if it is not round) is extremely important in our daily operations. A brief
consideration of the world around us will indicate that there is a wide variety of applications of pipe
flow. Such applications range from the large, man-made Alaskan pipeline that carries crude oil al-
most 800 miles across Alaska, to the more complex (and certainly not less useful) natural systems of
“pipes” that carry blood throughout our body and air into and out of our lungs. Other examples

Pipe flow is very
important in our
daily operations.
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B FIGURE 8.1 Typical pipe system components.

include the water pipes in our homes and the distribution system that delivers the water from the
city well to the house. Numerous hoses and pipes carry hydraulic fluid or other fluids to various
components of vehicles and machines. The air quality within our buildings is maintained at com-
fortable levels by the distribution of conditioned (heated, cooled, humidified/dehumidified) air
through a maze of pipes and ducts. Although all of these systems are different, the fluid mechan-
ics principles governing the fluid motions are common. The purpose of this chapter is to under-
stand the basic processes involved in such flows.

Some of the basic components of a typical pipe system are shown in Fig. 8.1. They include
the pipes themselves (perhaps of more than one diameter), the various fittings used to connect the
individual pipes to form the desired system, the flowrate control devices (valves), and the pumps
or turbines that add energy to or remove energy from the fluid. Even the most simple pipe systems
are actually quite complex when they are viewed in terms of rigorous analytical considerations.
We will use an “exact” analysis of the simplest pipe flow topics (such as laminar flow in long,
straight, constant diameter pipes) and dimensional analysis considerations combined with experi-
mental results for the other pipe flow topics. Such an approach is not unusual in fluid mechanics
investigations. When “real-world” effects are important (such as viscous effects in pipe flows), it
is often difficult or “impossible” to use only theoretical methods to obtain the desired results. A
judicious combination of experimental data with theoretical considerations and dimensional analy-
sis often provides the desired results. The flow in pipes discussed in this chapter is an example of
such an analysis.

8.1 General Characteristics of Pipe Flow

The pipe is as-
sumed to be com-
pletely full of the
flowing fluid.

Before we apply the various governing equations to pipe flow examples, we will discuss some of
the basic concepts of pipe flow. With these ground rules established we can then proceed to for-
mulate and solve various important flow problems.

Although not all conduits used to transport fluid from one location to another are round in
cross section, most of the common ones are. These include typical water pipes, hydraulic hoses, and
other conduits that are designed to withstand a considerable pressure difference across their walls
without undue distortion of their shape. Typical conduits of noncircular cross section include heat-
ing and air conditioning ducts that are often of rectangular cross section. Normally the pressure dif-
ference between the inside and outside of these ducts is relatively small. Most of the basic princi-
ples involved are independent of the cross-sectional shape, although the details of the flow may be
dependent on it. Unless otherwise specified, we will assume that the conduit is round, although we
will show how to account for other shapes.
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(a) (b)

B FIGURE 8.2 (a) Pipe flow. (b) Open-channel flow.

For all flows involved in this chapter, we assume that the pipe is completely filled with the
fluid being transported as is shown in Fig. 8.2a. Thus, we will not consider a concrete pipe through
which rainwater flows without completely filling the pipe, as is shown in Fig. 8.2b. Such flows,
called open-channel flow, are treated in Chapter 10. The difference between open-channel flow and
the pipe flow of this chapter is in the fundamental mechanism that drives the flow. For open-chan-
nel flow, gravity alone is the driving force—the water flows down a hill. For pipe flow, gravity
may be important (the pipe need not be horizontal), but the main driving force is likely to be a
pressure gradient along the pipe. If the pipe is not full, it is not possible to maintain this pressure
difference, p, — p».

8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds
(1842-1912), a British scientist and mathematician, was the first to distinguish the difference be-
tween these two classifications of flow by using a simple apparatus as shown by the figure in the
margin, which is a sketch of Reynolds’ dye experiment. Reynolds injected dye into a pipe in which
water flowed due to gravity. The entrance region of the pipe is depicted in Fig. 8.3a. If water runs
through a pipe of diameter D with an average velocity V, the following characteristics are ob-
served by injecting neutrally buoyant dye as shown. For “small enough flowrates” the dye streak
(a streakline) will remain as a well-defined line as it flows along, with only slight blurring due to
molecular diffusion of the dye into the surrounding water. For a somewhat larger “intermediate
flowrate” the dye streak fluctuates in time and space, and intermittent bursts of irregular behav-
ior appear along the streak. On the other hand, for “large enough flowrates” the dye streak al-
most immediately becomes blurred and spreads across the entire pipe in a random fashion. These
three characteristics, denoted as laminar, transitional, and turbulent flow, respectively, are illus-
trated in Fig. 8.35.

The curves shown in Fig. 8.4 represent the x component of the velocity as a function of
time at a point 4 in the flow. The random fluctuations of the turbulent flow (with the associated
particle mixing) are what disperse the dye throughout the pipe and cause the blurred appearance
illustrated in Fig. 8.3b. For laminar flow in a pipe there is only one component of velocity,

g—' > Turbulent

A4
Dye streak 0=v4
—_— > = Transitional
/ =
ﬁSmooth, well-rounded |
entrance l
Laminar

(a) (b)

B FIGURE 8.3 (a) Experiment to illustrate type of flow. (b) Typical dye streaks.
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H FIGURE 8.4 Time dependence of fluid velocity at a point.

V = ui. For turbulent flow the predominant component of velocity is also along the pipe, but it
is unsteady (random) and accompanied by random components normal to the pipe axis,
V=ui+ vf + wk. Such motion in a typical flow occurs too fast for our eyes to follow. Slow
motion pictures of the flow can more clearly reveal the irregular, random, turbulent nature of the
flow.

As was discussed in Chapter 7, we should not label dimensional quantities as being “large”
or “small,” such as “small enough flowrates” in the preceding paragraphs. Rather, the appropriate
dimensionless quantity should be identified and the “small” or “large” character attached to it. A
quantity is “large” or “small” only relative to a reference quantity. The ratio of those quantities re-
sults in a dimensionless quantity. For pipe flow the most important dimensionless parameter is the
Reynolds number, Re—the ratio of the inertia to viscous effects in the flow. Hence, in the previ-
ous paragraph the term flowrate should be replaced by Reynolds number, Re = pVD/u, where V
is the average velocity in the pipe. That is, the flow in a pipe is laminar, transitional, or turbulent
provided the Reynolds number is “small enough,” “intermediate,” or “large enough.” It is not only
the fluid velocity that determines the character of the flow—its density, viscosity, and the pipe size
are of equal importance. These parameters combine to produce the Reynolds number. The distinc-
tion between laminar and turbulent pipe flow and its dependence on an appropriate dimensionless
quantity was first pointed out by Osborne Reynolds in 1883.

The Reynolds number ranges for which laminar, transitional, or turbulent pipe flows are ob-
tained cannot be precisely given. The actual transition from laminar to turbulent flow may take place
at various Reynolds numbers, depending on how much the flow is disturbed by vibrations of the pipe,
roughness of the entrance region, and the like. For general engineering purposes (i.e., without undue
precautions to eliminate such disturbances), the following values are appropriate: The flow in a round
pipe is laminar if the Reynolds number is less than approximately 2100. The flow in a round pipe is
turbulent if the Reynolds number is greater than approximately 4000. For Reynolds numbers between
these two limits, the flow may switch between laminar and turbulent conditions in an apparently ran-
dom fashion (transitional flow).

Pipe flow character-
istics are dependent
on the value of the
Reynolds number.

V8.3 Intermittent

turbulent burst in
pipe flow
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Nanoscale flows The term nanoscale generally refers to objects
with characteristic lengths from atomic dimensions up to a few hun-
dred nanometers (nm). (Recall that 1 nm = 10~° m.) Nanoscale
fluid mechanics research has recently uncovered many surprising
and useful phenomena. No doubt many more remain to be discov-
ered. For example, in the future researchers envision using
nanoscale tubes to push tiny amounts of water-soluble drugs to ex-
actly where they are needed in the human body. Because of the tiny
diameters involved, the Reynolds numbers for such flows are ex-
tremely small and the flow is definitely laminar. In addition, some

standard properties of everyday flows (for example, the fact that a
fluid sticks to a solid boundary) may not be valid for nanoscale
flows. Also, ultratiny mechanical pumps and valves are difficult to
manufacture and may become clogged by tiny particles such as bio-
logical molecules. As a possible solution to such problems, re-
searchers have investigated the possibility of using a system that
does not rely on mechanical parts. It involves using light-sensitive
molecules attached to the surface of the tubes. By shining light onto
the molecules, the light-responsive molecules attract water and
cause motion of water through the tube. (See Problem 8.10.)




GIVEN Water at a temperature of 50 °F flows through a pipe
of diameter D = (.73 in. and into a glass as shown in Fig. E8.1a.

FIND Determine

(a) the minimum time taken to fill a 12-0z glass (volume =
0.0125 ft*) with water if the flow in the pipe is to be laminar.
Repeat the calculations if the water temperature is 140 °F.

(b) the maximum time taken to fill the glass if the flow is to be tur-
bulent. Repeat the calculations if the water temperature is 140 °F.

SoLuTION

(a) If the flow in the pipe is to remain laminar, the minimum
time to fill the glass will occur if the Reynolds number is the max-
imum allowed for laminar flow, typically Re = pVD/u = 2100.
Thus, ¥ = 2100 u/pD, where from Table B.1, p = 1.94 slugs/ft®
and u = 2.73 X 107> Ib - s/ft*> at 50 °F, while p = 1.91 slugs/ft’
and w = 0.974 X 105 1b - s/ft> at 140 °F. Thus, the maximum
average velocity for laminar flow in the pipe is

. 2100p  2100(2.73 X 107 Ib - s/ft)
~ pD  (1.94slugs/ft*)(0.73/12 ft)
= 0486 Ib - s/slug = 0.486 ft/s

Similarly, V' = 0.176 ft/s at 140 °F. With # = volume of glass
and # = Ot we obtain
¥ ¥ 4(0.0125 ft*)

O (/4D  (w[0.73/12]**)(0.486 ft/s)
=8.85sat T =50 °F

(Ans)

Similarly, # = 24.4 s at 140 °F. To maintain laminar flow, the less
viscous hot water requires a lower flowrate than the cold water.

(b) If the flow in the pipe is to be turbulent, the maximum time to
fill the glass will occur if the Reynolds number is the minimum al-
lowed for turbulent flow, Re = 4000. Thus, ¥ = 4000w/
pD = 0.925 ft/s and

t = 4.65 s at50 °F (Ans)

Similarly, 7 = 0.335 ft/s and # = 12.8 s at 140 °F.

COMMENTS Note that because water is “not very viscous,”
the velocity must be “fairly small” to maintain laminar flow. In
general, turbulent flows are encountered more often than lami-
nar flows because of the relatively small viscosity of most com-
mon fluids (water, gasoline, air). By repeating the calculations
at various water temperatures, 7' (i.e., with different densities
and viscosities), the results shown in Fig. E8.15 are obtained. As
the water temperature increases, the kinematic viscosity, v =
m/p, decreases and the corresponding times to fill the glass
increase as indicated. (Temperature effects on the viscosity of
gases are the opposite; increase in temperature causes an in-
crease in viscosity.)
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If the flowing fluid had been honey with a kinematic viscosity
(v = w/p) 3000 times greater than that of water, the velocities given
earlier would be increased by a factor of 3000 and the times re-
duced by the same factor. As shown in the following sections, the
pressure needed to force a very viscous fluid through a pipe at such
a high velocity may be unreasonably large.
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8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near where
the fluid enters the pipe is termed the entrance region and is illustrated in Fig. 8.5. It may be the
first few feet of a pipe connected to a tank or the initial portion of a long run of a hot air duct com-
ing from a furnace.

As is shown in Fig. 8.5, the fluid typically enters the pipe with a nearly uniform velocity
profile at section (1). As the fluid moves through the pipe, viscous effects cause it to stick to the
pipe wall (the no-slip boundary condition). This is true whether the fluid is relatively inviscid air
or a very viscous oil. Thus, a boundary layer in which viscous effects are important is produced
along the pipe wall such that the initial velocity profile changes with distance along the pipe, x,
until the fluid reaches the end of the entrance length, section (2), beyond which the velocity pro-
file does not vary with x. The boundary layer has grown in thickness to completely fill the pipe.
Viscous effects are of considerable importance within the boundary layer. For fluid outside the
boundary layer [within the inviscid core surrounding the centerline from (1) to (2)], viscous effects
are negligible.

The shape of the velocity profile in the pipe depends on whether the flow is laminar or tur-
bulent, as does the length of the entrance region, €,. As with many other properties of pipe flow,
the dimensionless entrance length, €,/D, correlates quite well with the Reynolds number. Typi-
cal entrance lengths are given by

)

e

D = 0.06 Re for laminar flow @8.1)

and

L,
— = 4.4 (Re)"* for turbulent flow

5 8.2)

For very low Reynolds number flows the entrance length can be quite short (€, = 0.6D if Re = 10),
whereas for large Reynolds number flows it may take a length equal to many pipe diameters before
the end of the entrance region is reached (¢, = 120D for Re = 2000). For many practical engineer-
ing problems, 10* < Re < 10° so that as shown by the figure in the margin, 20D < €, < 30D.

Calculation of the velocity profile and pressure distribution within the entrance region is
quite complex. However, once the fluid reaches the end of the entrance region, section (2) of Fig.
8.5, the flow is simpler to describe because the velocity is a function of only the distance from
the pipe centerline, », and independent of x. This is true until the character of the pipe changes
in some way, such as a change in diameter, or the fluid flows through a bend, valve, or some
other component at section (3). The flow between (2) and (3) is termed fully developed flow. Be-
yond the interruption of the fully developed flow [at section (4)], the flow gradually begins its

Entrance region

Fully developed

flow flow
D
Inviscid core Boundary layer l
_74\‘ n — 7
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¢ |
< [— 4: (]
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Y6~ X5 X5 = Xq
< Fully developed Developing
flow flow

B FIGURE 8.5 Entrance region, developing flow, and fully developed flow in a pipe

system.
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return to its fully developed character [section (5)] and continues with this profile until the next
pipe system component is reached [section (6)]. In many cases the pipe is long enough so that
there is a considerable length of fully developed flow compared with the developing flow length
[(x3 = x3) > €, and (x¢ — x5) = (x5 — x4)]. In other cases the distances between one component
(bend, tee, valve, etc.) of the pipe system and the next component is so short that fully developed
flow is never achieved.

8.1.3 Pressure and Shear Stress

Fully developed steady flow in a constant diameter pipe may be driven by gravity and/or pressure
forces. For horizontal pipe flow, gravity has no effect except for a hydrostatic pressure variation
across the pipe, yD, that is usually negligible. It is the pressure difference, Ap = p; — p,, between
one section of the horizontal pipe and another which forces the fluid through the pipe. Viscous ef-
fects provide the restraining force that exactly balances the pressure force, thereby allowing the
fluid to flow through the pipe with no acceleration. If viscous effects were absent in such flows,
the pressure would be constant throughout the pipe, except for the hydrostatic variation.

In non-fully developed flow regions, such as the entrance region of a pipe, the fluid accel-
erates or decelerates as it flows (the velocity profile changes from a uniform profile at the entrance
of the pipe to its fully developed profile at the end of the entrance region). Thus, in the entrance
region there is a balance between pressure, viscous, and inertia (acceleration) forces. The result is
a pressure distribution along the horizontal pipe as shown in Fig. 8.6. The magnitude of the pres-
sure gradient, dp/dx, is larger in the entrance region than in the fully developed region, where it
is a constant, dp/ox = —Ap/€ < 0.

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result of vis-
cous effects. As is discussed in Chapter 3, if the viscosity were zero, the pressure would not vary
with x. The need for the pressure drop can be viewed from two different standpoints. In terms of
a force balance, the pressure force is needed to overcome the viscous forces generated. In terms
of an energy balance, the work done by the pressure force is needed to overcome the viscous dis-
sipation of energy throughout the fluid. If the pipe is not horizontal, the pressure gradient along it
is due in part to the component of weight in that direction. As is discussed in Section 8.2.1, this
contribution due to the weight either enhances or retards the flow, depending on whether the flow
is downhill or uphill.

The nature of the pipe flow is strongly dependent on whether the flow is laminar or turbu-
lent. This is a direct consequence of the differences in the nature of the shear stress in laminar and
turbulent flows. As is discussed in some detail in Section 8.3.3, the shear stress in laminar flow is
a direct result of momentum transfer among the randomly moving molecules (a microscopic phe-
nomenon). The shear stress in turbulent flow is largely a result of momentum transfer among the
randomly moving, finite-sized fluid particles (a macroscopic phenomenon). The net result is that
the physical properties of the shear stress are quite different for laminar flow than for turbulent
flow.

Fully developed
flow: dp/dx = constant

Entrance
pressure i
drop

x; =0 xp =4,

B FIGURE 8.6 Pressure distribution along a horizontal pipe.
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Fully Developed Laminar Flow

Steady, fully devel-
oped pipe flow ex-
periences no
acceleration.

L
-
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Velocity profiles

Streamlines

As is indicated in the previous section, the flow in long, straight, constant diameter sections of a
pipe becomes fully developed. That is, the velocity profile is the same at any cross section of the
pipe. Although this is true whether the flow is laminar or turbulent, the details of the velocity pro-
file (and other flow properties) are quite different for these two types of flow. As will be seen in
the remainder of this chapter, knowledge of the velocity profile can lead directly to other useful
information such as pressure drop, head loss, flowrate, and the like. Thus, we begin by develop-
ing the equation for the velocity profile in fully developed laminar flow. If the flow is not fully de-
veloped, a theoretical analysis becomes much more complex and is outside the scope of this text.
If the flow is turbulent, a rigorous theoretical analysis is as yet not possible.

Although most flows are turbulent rather than laminar, and many pipes are not long enough
to allow the attainment of fully developed flow, a theoretical treatment and full understanding of
fully developed laminar flow is of considerable importance. First, it represents one of the few the-
oretical viscous analyses that can be carried out “exactly” (within the framework of quite general
assumptions) without using other ad hoc assumptions or approximations. An understanding of the
method of analysis and the results obtained provides a foundation from which to carry out more
complicated analyses. Second, there are many practical situations involving the use of fully devel-
oped laminar pipe flow.

There are numerous ways to derive important results pertaining to fully developed laminar
flow. Three alternatives include: (1) from F = ma applied directly to a fluid element, (2) from the
Navier —Stokes equations of motion, and (3) from dimensional analysis methods.

8.2.1 From F = ma Applied Directly to a Fluid Element

We consider the fluid element at time ¢ as is shown in Fig. 8.7. It is a circular cylinder of fluid of
length € and radius r centered on the axis of a horizontal pipe of diameter D. Because the veloc-
ity is not uniform across the pipe, the initially flat ends of the cylinder of fluid at time ¢ become
distorted at time ¢ + 6¢ when the fluid element has moved to its new location along the pipe as
shown in the figure. If the flow is fully developed and steady, the distortion on each end of the
fluid element is the same, and no part of the fluid experiences any acceleration as it flows, as shown
by the figure in the margin. The local acceleration is zero (3V/d¢t = 0) because the flow is steady,
and the convective acceleration is zero (V- VV = u oufoxi = 0) because the flow is fully devel-
oped. Thus, every part of the fluid merely flows along its streamline parallel to the pipe walls with
constant velocity, although neighboring particles have slightly different velocities. The velocity
varies from one pathline to the next. This velocity variation, combined with the fluid viscosity, pro-
duces the shear stress.

If gravitational effects are neglected, the pressure is constant across any vertical cross sec-
tion of the pipe, although it varies along the pipe from one section to the next. Thus, if the pres-
sure is p = p; at section (1), it is p, = p; — Ap at section (2) where Ap is the pressure drop be-
tween sections (1) and (2). We anticipate the fact that the pressure decreases in the direction of
flow so that Ap > 0. A shear stress, 7, acts on the surface of the cylinder of fluid. This viscous
stress is a function of the radius of the cylinder, 7 = 7(r).

As was done in fluid statics analysis (Chapter 2), we isolate the cylinder of fluid as is shown
in Fig. 8.8 and apply Newton’s second law, ', = ma,. In this case, even though the fluid is mov-
ing, it is not accelerating, so that a, = 0. Thus, fully developed horizontal pipe flow is merely a

Fluid element at time ¢ Element at time ¢ + o¢

Velocity /
> profile L \ ~———————— A
_ A o S 1 N p
— f ] _J
~V=oui ¢ | B FIGURE 8.7  Motion
of a cylindrical fluid element within a
(1) (2) pipe.
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balance between pressure and viscous forces—the pressure difference acting on the end of the
cylinder of area 777, and the shear stress acting on the lateral surface of the cylinder of area 27 7.
This force balance can be written as

(po)mr® = (py — Ap)mr® = (7)2mr€ = 0
which can be simplified to give

ap -2 @8.3)
¢ r

Equation 8.3 represents the basic balance in forces needed to drive each fluid particle along

the pipe with constant velocity. Since neither Ap nor € are functions of the radial coordinate, r, it

follows that 27/r must also be independent of r. That is, 7 = Cr, where C is a constant. At » = 0

(the centerline of the pipe) there is no shear stress (1 = 0). At » = D/2 (the pipe wall) the shear

stress is a maximum, denoted 7, the wall shear stress. Hence, C = 27,/D and the shear stress

distribution throughout the pipe is a linear function of the radial coordinate

27,1

r=" 8.4)

as is indicated in Fig. 8.9. The linear dependence of 7 on r is a result of the pressure force being
proportional to 7 (the pressure acts on the end of the fluid cylinder; area = 7r7%) and the shear
force being proportional to r (the shear stress acts on the lateral sides of the cylinder; area = 277().
If the viscosity were zero there would be no shear stress, and the pressure would be constant
throughout the horizontal pipe (Ap = 0). As is seen from Eqgs. 8.3 and 8.4, the pressure drop and
wall shear stress are related by

8.5)

A small shear stress can produce a large pressure difference if the pipe is relatively long
(¢/D > 1).

Although we are discussing laminar flow, a closer consideration of the assumptions involved
in the derivation of Eqs. 8.3, 8.4, and 8.5 reveals that these equations are valid for both laminar
and turbulent flow. To carry the analysis further we must prescribe how the shear stress is related
to the velocity. This is the critical step that separates the analysis of laminar from that of turbulent
flow—from being able to solve for the laminar flow properties and not being able to solve for the
turbulent flow properties without additional ad hoc assumptions. As is discussed in Section 8.3,
the shear stress dependence for turbulent flow is very complex. However, for laminar flow of a
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Under certain re-
strictions the veloc-

ity profile in a pipe
is parabolic.

\

dA = 2nr dr

Newtonian fluid, the shear stress is simply proportional to the velocity gradient, “T = w du/dy”
(see Section 1.6). In the notation associated with our pipe flow, this becomes

du
T=—u - (8.6)

The negative sign is included to give T > 0 with du/dr < 0 (the velocity decreases from the pipe
centerline to the pipe wall).

Equations 8.3 and 8.6 represent the two governing laws for fully developed laminar flow of
a Newtonian fluid within a horizontal pipe. The one is Newton’s second law of motion and the
other is the definition of a Newtonian fluid. By combining these two equations we obtain

du _ _<Ap)
dr 2ul g

which can be integrated to give the velocity profile as follows:

Ap
Jdu— 2'Uwfrdr

Ap 5
=)+
! (4,u€> <

where C; is a constant. Because the fluid is viscous it sticks to the pipe wall so that u = 0 at
r = D/2. Thus, C; = (Ap/16u€)D?*. Hence, the velocity profile can be written as

(NG e

where V, = ApD?/(16uf) is the centerline velocity. An alternative expression can be written by us-
ing the relationship between the wall shear stress and the pressure gradient (Egs. 8.5 and 8.7) to give

2
=221 - (2]
4 R
where R = D/2 is the pipe radius.

This velocity profile, plotted in Fig. 8.9, is parabolic in the radial coordinate, r, has a max-
imum velocity, V,, at the pipe centerline, and a minimum velocity (zero) at the pipe wall. The vol-
ume flowrate through the pipe can be obtained by integrating the velocity profile across the pipe.
Since the flow is axisymmetric about the centerline, the velocity is constant on small area elements
consisting of rings of radius » and thickness dr as shown in the figure in the margin. Thus,

0= JudA = J’_ u(r)2mr dr = 2 V‘J [1 - (r>2}rdr
=0 0 R

”

or

or
TRV,
2

By definition, the average velocity is the flowrate divided by the cross-sectional area,
V = Q/A = Q/mR?, so that for this flow
TRV, _r

c

- ApD?

= = <= 8.8
27R? 2 32uf ®8)
and
_ wD* Ap 8.9
0= 128t ®9)
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As is indicated in Eq. 8.8, the average velocity is one-half of the maximum velocity. In general,
for velocity profiles of other shapes (such as for turbulent pipe flow), the average velocity is not
merely the average of the maximum (7,) and minimum (0) velocities as it is for the laminar para-
bolic profile. The two velocity profiles indicated in Fig. 8.9 provide the same flowrate—one is the
fictitious ideal (u = 0) profile; the other is the actual laminar flow profile.

The above results confirm the following properties of laminar pipe flow. For a horizontal
pipe the flowrate is (a) directly proportional to the pressure drop, (b) inversely proportional to the
viscosity, (c) inversely proportional to the pipe length, and (d) proportional to the pipe diameter to
the fourth power. With all other parameters fixed, an increase in diameter by a factor of 2 will in-
crease the flowrate by a factor of 2* = 16—the flowrate is very strongly dependent on pipe size.
This dependence is shown by the figure in the margin. Likewise, a small error in pipe diameter
can cause a relatively large error in flowrate. For example, a 2% error in diameter gives an 8% er-
ror in flowrate (Q ~ D* or 8Q ~ 4D’ 8D, so that 8Q/Q = 4 8D/D). This flow, the properties of
which were first established experimentally by two independent workers, G. Hagen (1797-1884)
in 1839 and J. Poiseuille (1799-1869) in 1840, is termed Hagen—Poiseuille flow. Equation 8.9 is
commonly referred to as Poiseuille’s law. Recall that all of these results are restricted to laminar
flow (those with Reynolds numbers less than approximately 2100) in a horizontal pipe.

The adjustment necessary to account for nonhorizontal pipes, as shown in Fig. 8.10, can be
easily included by replacing the pressure drop, Ap, by the combined effect of pressure and grav-
ity, Ap — y€ sin 0, where 6 is the angle between the pipe and the horizontal. (Note that 6 > 0 if
the flow is uphill, while § < 0 if the flow is downhill.) This can be seen from the force balance
in the x direction (along the pipe axis) on the cylinder of fluid shown in Fig. 8.10b. The method is
exactly analogous to that used to obtain the Bernoulli equation (Eq. 3.6) when the streamline is not
horizontal. The net force in the x direction is a combination of the pressure force in that direction,
Apmr?, and the component of weight in that direction, —y#7*¢ sin 6. The result is a slightly mod-
ified form of Eq. 8.3 given by

Ap —y€sing 27

. ; (8.10)

Thus, all of the results for the horizontal pipe are valid provided the pressure gradient is adjusted
for the elevation term, that is, Ap is replaced by Ap — y€ sin 6 so that

(Ap — € sin 6)D?

V= 8.11
32uf @11y
and
w(Ap — € sin §)D*
= A2
© 1288 ®-12)

It is seen that the driving force for pipe flow can be either a pressure drop in the flow direction,
Ap, or the component of weight in the flow direction, —y¥ sin 6. If the flow is downhill, gravity
helps the flow (a smaller pressure drop is required; sin 6 << 0). If the flow is uphill, gravity works
against the flow (a larger pressure drop is required; sin § > 0). Note that y€ sin 6 = yAz (where

Fluid cylinder

(p+Ap) i

4sin9 =yl sin

(a) (b)
B FIGURE 8.10 Free-body diagram of a fluid cylinder for flow in a nonhorizontal pipe.
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Az is the change in elevation) is a hydrostatic type pressure term. If there is no flow,
V' =0and Ap = y€sin 0 = yAz, as expected for fluid statics.

GIVEN An oil with a viscosity of w = 0.40 N - s/m?* and den-
sity p = 900 kg/m’ flows in a pipe of diameter D = 0.020 m.

FIND (a) What pressure drop, p; — p», is needed to produce
a flowrate of O = 2.0 X 107> m%/s if the pipe is horizontal with
x; = 0andx, = 10 m?

SOLUTION

[ STUTIERY Laminar PipeFlow

(b) How steep a hill, 6, must the pipe be on if the oil is to flow
through the pipe at the same rate as in part (a), but with p, = p,?
(¢) For the conditions of part (b), if p; = 200 kPa, what is the
pressure at section x; = 5 m, where x is measured along the pipe?

(a) If the Reynolds number is less than 2100 the flow is
laminar and the equations derived in this section are valid. Since
the average velocity is V= Q/4 = (2.0 X 107> m’/s)/
[7(0.020)’m?*/4] = 0.0637 m/s, the Reynolds number is Re =
pVD/pn = 2.87 < 2100. Hence, the flow is laminar and from Eq.
8.9 with € = x, — x; = 10 m, the pressure drop is

Ap=p —p= 280
wD*
_ 128(0.40 N - s/m*)(10.0 m)(2.0 X 107° m’/s)
- 7(0.020 m)*

or
Ap = 20,400 N/m> = 20.4 kPa (Ans)

(b) Ifthe pipe is on a hill of angle 6 such that Ap = p; — p, =0,
Eq. 8.12 gives

128
sing = — 2O )
wpgD*
or
—128(0.40 N - s/m?)(2.0 X 107> m%/s
sin f = ( /m X /5) (Ans)

(900 kg/m*)(9.81 m/s?)(0.020 m)*
Thus, 6 = —13.34°.

COMMENT This checks with the previous horizontal result
as is seen from the fact that a change in elevation of
Az = €sin 6 = (10 m) sin(—13.34°) = —2.31 mis equivalent to
a pressure change of Ap = pg Az = (900 kg/m>)(9.81 m/s?)

(2.31 m) = 20,400 N/m?, which is equivalent to that needed for
the horizontal pipe. For the horizontal pipe it is the work done by
the pressure forces that overcomes the viscous dissipation. For the
zero-pressure-drop pipe on the hill, it is the change in potential
energy of the fluid “falling” down the hill that is converted to the
energy lost by viscous dissipation. Note that if it is desired to in-
crease the flowrate to Q = 1.0 X 10™*m?/s with p, = p,, the
value of 0 given by Eq. 1 is sinf = —1.15. Since the sine of an
angle cannot be greater than 1, this flow would not be possible.
The weight of the fluid would not be large enough to offset the
viscous force generated for the flowrate desired. A larger diame-
ter pipe would be needed.

(¢) With p, = p, the length of the pipe, €, does not appear in the
flowrate equation (Eq. 1). This is a statement of the fact that for such
cases the pressure is constant all along the pipe (provided the pipe
lies on a hill of constant slope). This can be seen by substituting the
values of Q and 6 from case (b) into Eq. 8.12 and noting that Ap = 0
for any €. For example, Ap = p; — p; = 0if € = x; — x;, = 5m.
Thus, p; = p, = p3 so that

p3 = 200 kPa (Ans)

COMMENT Note that if the fluid were gasoline (i = 3.1 X
107*N-s/m’?and p = 680 kg/m?), the Reynolds number would
be Re = 2790, the flow would probably not be laminar, and
use of Eqgs. 8.9 and 8.12 would give incorrect results. Also note
from Eq. 1 that the kinematic viscosity, v = u/p, is the impor-
tant viscous parameter. This is a statement of the fact that with
constant pressure along the pipe, it is the ratio of the viscous
force (~u) to the weight force (~y = pg) that determines the
value of 6.

8.2.2 From the Navier—Stokes Equations

In the previous section we obtained results for fully developed laminar pipe flow by applying
Newton’s second law and the assumption of a Newtonian fluid to a specific portion of the fluid—
a cylinder of fluid centered on the axis of a long, round pipe. When this governing law and assump-

Poiseuille’s law can tions are applied to a general fluid flow (not restricted to pipe flow), the result is the Navier—Stokes

be obtained fr 01:” equations as discussed in Chapter 6. In Section 6.9.3 these equations were solved for the specific
42 N;_mer_StO e geometry of fully developed laminar flow in a round pipe. The results are the same as those given
equations.

in Eq. 8.7.
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We will not repeat the detailed steps used to obtain the laminar pipe flow from the Navier—
Stokes equations (see Section 6.9.3) but will indicate how the various assumptions used and steps ap-
plied in the derivation correlate with the analysis used in the previous section.

General motion of an incompressible Newtonian fluid is governed by the continuity equa-
tion (conservation of mass, Eq. 6.31) and the momentum equation (Eq. 6.127), which are rewritten
here for convenience:

V-v=0 8.13)
A% Vp

—+V:-VV=—+g+ V¥V
ot P

(8.14)

For steady, fully developed flow in a pipe, the velocity contains only an axial component, which
is a function of only the radial coordinate [V = u(r)i]. For such conditions, the left-hand side of
the Eq. 8.14 is zero. This is equivalent to saying that the fluid experiences no acceleration as it
flows along. The same constraint was used in the previous section when considering F = ma for
the fluid cylinder. Thus, with g = — gﬁ the Navier—Stokes equations become

V-V=0
Vp + pgk = uV?v (8.15)

The flow is governed by a balance of pressure, weight, and viscous forces in the flow direction,
similar to that shown in Fig. 8.10 and Eq. 8.10. If the flow were not fully developed (as in an en-
trance region, for example), it would not be possible to simplify the Navier—Stokes equations to that
form given in Eq. 8.15 (the nonlinear term V - VV would not be zero), and the solution would be
very difficult to obtain.

Because of the assumption that V = u(r)i, the continuity equation, Eq. 8.13, is auto-
matically satisfied. This conservation of mass condition was also automatically satisfied by the
incompressible flow assumption in the derivation in the previous section. The fluid flows across
one section of the pipe at the same rate that it flows across any other section (see Fig. 8.8).

When it is written in terms of polar coordinates (as was done in Section 6.9.3), the compo-
nent of Eq. 8.15 along the pipe becomes

L 1a<au) 816

0x ps sin 'urar rar 8.16)
Since the flow is fully developed, u = u(r) and the right-hand side is a function of, at most, only
r. The left-hand side is a function of, at most, only x. It was shown that this leads to the condition
that the pressure gradient in the x direction is a constant—dp/dx = —Ap/€. The same condition
was used in the derivation of the previous section (Eq. 8.3).

It is seen from Eq. 8.16 that the effect of a nonhorizontal pipe enters into the Navier—Stokes
equations in the same manner as was discussed in the previous section. The pressure gradient in
the flow direction is coupled with the effect of the weight in that direction to produce an effective
pressure gradient of —Ap/€ + pg sin 6.

The velocity profile is obtained by integration of Eq. 8.16. Since it is a second-order equa-
tion, two boundary conditions are needed—(1) the fluid sticks to the pipe wall (as was also done
in Eq. 8.7) and (2) either of the equivalent forms that the velocity remains finite throughout the
flow (in particular # < oo at r = 0) or, because of symmetry, that 9u/dr = 0 at » = 0. In the de-
rivation of the previous section, only one boundary condition (the no-slip condition at the wall) was
needed because the equation integrated was a first-order equation. The other condition
(du/dr = 0 at r = 0) was automatically built into the analysis because of the fact that 7 = —pu du/dr
and 7 = 27,7/D =0 atr = 0.

The results obtained by either applying F = ma to a fluid cylinder (Section 8.2.1) or solving
the Navier—Stokes equations (Section 6.9.3) are exactly the same. Similarly, the basic assumptions
regarding the flow structure are the same. This should not be surprising because the two methods
are based on the same principle—Newton’s second law. One is restricted to fully developed lam-
inar pipe flow from the beginning (the drawing of the free-body diagram), and the other starts with
the general governing equations (the Navier—Stokes equations) with the appropriate restrictions
concerning fully developed laminar flow applied as the solution process progresses.
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(1) (2)
D —
Ap=p,—p,=FWV,{,D,n

Dimensional analy-
sis can be used to
put pipe flow para-
meters into dimen-
sionless form.

8.2.3 From Dimensional Analysis

Although fully developed laminar pipe flow is simple enough to allow the rather straightfor-
ward solutions discussed in the previous two sections, it may be worthwhile to consider this
flow from a dimensional analysis standpoint. Thus, we assume that the pressure drop in the hor-
izontal pipe, Ap, is a function of the average velocity of the fluid in the pipe, V, the length of
the pipe, €, the pipe diameter, D, and the viscosity of the fluid, u, as shown by the figure in the
margin. We have not included the density or the specific weight of the fluid as parameters be-
cause for such flows they are not important parameters. There is neither mass (density) times
acceleration nor a component of weight (specific weight times volume) in the flow direction in-
volved. Thus,

Ap = F(V,¢,D, )

There are five variables that can be described in terms of three reference dimensions (M, L, T).
According to the results of dimensional analysis (Chapter 7), this flow can be described in terms
of k — r =5 — 3 = 2 dimensionless groups. One such representation is

D Ap €
v o) <D> 8.17)
where ¢(€/D) is an unknown function of the length to diameter ratio of the pipe.

Although this is as far as dimensional analysis can take us, it seems reasonable to impose a
further assumption that the pressure drop is directly proportional to the pipe length. That is, it takes
twice the pressure drop to force fluid through a pipe if its length is doubled. The only way that
this can be true is if ¢$(€/D) = C{/D, where C is a constant. Thus, Eq. 8.17 becomes

DAp Ct
"4 D
which can be rewritten as
Ap _ Gy
4 D?

or

(m/4C) ApD*

= AV =
0 =4V b

8.18)
The basic functional dependence for laminar pipe flow given by Eq. 8.18 is the same as that
obtained by the analysis of the two previous sections. The value of C must be determined by
theory (as done in the previous two sections) or experiment. For a round pipe, C = 32. For ducts
of other cross-sectional shapes, the value of C is different (see Section 8.4.3).

It is usually advantageous to describe a process in terms of dimensionless quantities. To this end
we rewrite the pressure drop equation for laminar horizontal pipe flow, Eq. 8.8, as Ap = 32ufV/D?
and divide both sides by the dynamic pressure, pV2/2, to obtain the dimensionless form as

Ap _ (32peV/D%) _ 64( p ><€)_64(€)

This is often written as

¢ pV?
Ap = f—

L
where the dimensionless quantity

= Ap(D/€)/(pV?/2)

is termed the friction factor, or sometimes the Darcy friction factor [H. P. G. Darcy
(1803-1858)]. (This parameter should not be confused with the less-used Fanning friction
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factor, which is defined to be f/4. In this text we will use only the Darcy friction factor.) Thus,
the friction factor for laminar fully developed pipe flow is simply

_ o

f= Re 8.19)

as shown by the figure in the margin.
By substituting the pressure drop in terms of the wall shear stress (Eq. 8.5), we obtain an al-
ternate expression for the friction factor as a dimensionless wall shear stress

87,
— (8.20)

f= NE

Knowledge of the friction factor will allow us to obtain a variety of information regarding pipe
flow. For turbulent flow the dependence of the friction factor on the Reynolds number is much
more complex than that given by Eq. 8.19 for laminar flow. This is discussed in detail in
Section 8.4.

8.2.4 Energy Considerations

In the previous three sections we derived the basic laminar flow results from application of F = ma
or dimensional analysis considerations. It is equally important to understand the implications of
energy considerations of such flows. To this end we consider the energy equation for incompress-
ible, steady flow between two locations as is given in Eq. 5.89
2 2
LIRS S - N S, 8.21)
Y 2g Y 2g

Recall that the kinetic energy coefficients, «; and «,, compensate for the fact that the velocity
profile across the pipe is not uniform. For uniform velocity profiles, « = 1, whereas for any
nonuniform profile, « > 1. The head loss term, /;, accounts for any energy loss associated with
the flow. This loss is a direct consequence of the viscous dissipation that occurs throughout the
fluid in the pipe. For the ideal (inviscid) cases discussed in previous chapters, o) = a, = 1, h; = 0,
and the energy equation reduces to the familiar Bernoulli equation discussed in Chapter 3
(Eq. 3.7).

Even though the velocity profile in viscous pipe flow is not uniform, for fully developed
flow it does not change from section (1) to section (2) so that &; = «,. Thus, the kinetic energy
is the same at any section (a; V1/2 = a, V'3/2) and the energy equation becomes

<p1 N zl) _ <”2 + 22) o (8.22)
Y Y

The energy dissipated by the viscous forces within the fluid is supplied by the excess work done
by the pressure and gravity forces as shown by the figure in the margin.
A comparison of Egs. 8.22 and 8.10 shows that the head loss is given by
_ 2t
yr

hy

(recall p; = p, + Ap and z, — z; = € sin ), which, by use of Eq. 8.4, can be rewritten in the form

4T,
h = —= 8.23
=5 (3.23)

It is the shear stress at the wall (which is directly related to the viscosity and the shear stress
throughout the fluid) that is responsible for the head loss. A closer consideration of the assump-

tions involved in the derivation of Eq. 8.23 will show that it is valid for both laminar and turbu-
lent flow.
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GIVEN The flowrate, O, of corn syrup through the horizontal
pipe shown in Fig. E8.3a is to be monitored by measuring the pres-
sure difference between sections (1) and (2). It is proposed that
O = K Ap, where the calibration constant, K, is a function of tem-
perature, 7, because of the variation of the syrup’s viscosity and
density with temperature. These variations are given in Table E8.3.

FIND (a) Plot K(T') versus 7 for 60 °F = T = 160 °F. (b) De-
termine the wall shear stress and the pressure drop,
Ap = p; — py.forQ = 0.5 ft*/s and T = 100 °F. (c) For the con-
ditions of part (b), determine the net pressure force, (mD?/4) Ap,
and the net shear force, wD{€r,,, on the fluid within the pipe be-
tween the sections (1) and (2).

SoLuTION

(a) If the flow is laminar it follows from Eq. 8.9 that
7D* Ap (3 ft)* Ap

€= 08ut ~ 128u(6 )
or
1.60 X 1073
O=KAp = TAP @)

where the units on O, Ap, and u are ft*/s, Ib/ft>, and Ib - s/ft%, re-
spectively. Thus
1.60 X 1073
K=— "
o
where the units of K are ft*/Ib - s. By using values of the viscosity

from Table ES8.3, the calibration curve shown in Fig. E8.3b is ob-
tained. This result is valid only if the flow is laminar.

COMMENT As shown in Section 8.5, for turbulent flow the
flowrate is not linearly related to the pressure drop so it would not
be possible to have O = K Ap. Note also that the value of K is in-
dependent of the syrup density (p was not used in the calculations)
since laminar pipe flow is governed by pressure and viscous ef-
fects; inertia is not important.
(b) For T = 100 °F, the viscosity is u = 3.8 X 107°Ib - s/ft?
so that with a flowrate of O = 0.5 ft*/s the pressure drop (accord-
ing to Eq. 8.9) is

128utQ

P = n
wD
128(3.8 X 1073 1b - s/ft*)(6 ft)(0.5 ft*/s)
(% )

(Ans)

119 Ib/ft?
provided the flow is laminar. For this case
0  05ft’/s

==
Z(%ft)z

(Ans)

y = 10.2 ft/s

so that

_ pVD  (2.05 slugs/ft*)(10.2 ft/s)(5; i)
o (38X 107%Ib-s/ft)
= 1380 < 2100

Re

L SLXTIIIE Larminar Pipe Flow Properties

Ry B
0—> ,// 0

&) @ 1
3-in.
diameter
(a)
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107!
= 1072
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(b)
HEFIGURE ES8.3
m TABLE E8.3
T (°F) p (slugs/ft}) n (b - s/ft?)
60 2.07 4.0 X 1072
80 2.06 1.9 X 1072
100 2.05 3.8 X 1073
120 2.04 44 x 107*
140 2.03 92 X 1073
160 2.02 23 X 107°

Hence, the flow is laminar. From Eq. 8.5 the wall shear stress
is
_ ApD (119 1b/fe)(3 ft)

= 1.24 1b/f2
AT 4(6 ft) 4

(Ans)

T

(¢) For the conditions of part (b), the net pressure force, £, on
the fluid within the pipe between sections (1) and (2) is

Fp:zDZApzz

2
i 7 (i ft> (1191b/f) = 5.841b  (Ans)

12

Similarly, the net viscous force, F,, on that portion of the fluid is

D
F,=2m (E) £,

=27 {ﬁ ft}(6 ft)(1.24 1b/f%) = 58416 (Ans)

COMMENT Note that the values of these two forces are the
same. The net force is zero; there is no acceleration.
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83 Fully Developed Turbulent Flow

Turbulent flows
involve randomly
fluctuating param-
eters.

In the previous section various properties of fully developed laminar pipe flow were discussed.
Since turbulent pipe flow is actually more likely to occur than laminar flow in practical situations,
it is necessary to obtain similar information for turbulent pipe flow. However, turbulent flow is a
very complex process. Numerous persons have devoted considerable effort in attempting to under-
stand the variety of baffling aspects of turbulence. Although a considerable amount of knowledge
about the topic has been developed, the field of turbulent flow still remains the least understood
area of fluid mechanics. In this book we can provide only some of the very basic ideas concern-
ing turbulence. The interested reader should consult some of the many books available for further
reading (Refs. 1-3).

8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one (or more) di-
mensionless parameter such that with this parameter value below a particular value the flow is
laminar, whereas with the parameter value larger than a certain value the flow is turbulent. The
important parameters involved (i.e., Reynolds number, Mach number) and their critical values de-
pend on the specific flow situation involved. For example, flow in a pipe and flow along a flat
plate (boundary layer flow, as is discussed in Section 9.2.4) can be laminar or turbulent, depend-
ing on the value of the Reynolds number involved. As a general rule for pipe flow, the value of
the Reynolds number must be less than approximately 2100 for laminar flow and greater than ap-
proximately 4000 for turbulent flow. For flow along a flat plate the transition between laminar
and turbulent flow occurs at a Reynolds number of approximately 500,000 (see Section 9.2.4),
where the length term in the Reynolds number is the distance measured from the leading edge of
the plate.

Consider a long section of pipe that is initially filled with a fluid at rest. As the valve is
opened to start the flow, the flow velocity and, hence, the Reynolds number increase from zero (no
flow) to their maximum steady-state flow values, as is shown in Fig. 8.11. Assume this transient
process is slow enough so that unsteady effects are negligible (quasi-steady flow). For an initial
time period the Reynolds number is small enough for laminar flow to occur. At some time the
Reynolds number reaches 2100, and the flow begins its transition to turbulent conditions. Intermit-
tent spots or bursts of turbulence appear. As the Reynolds number is increased, the entire flow field
becomes turbulent. The flow remains turbulent as long as the Reynolds number exceeds approxi-
mately 4000.

A typical trace of the axial component of velocity measured at a given location in the flow,
u = u(f), is shown in Fig. 8.12. Its irregular, random nature is the distinguishing feature of turbu-
lent flow. The character of many of the important properties of the flow (pressure drop, heat trans-
fer, etc.) depends strongly on the existence and nature of the turbulent fluctuations or randomness

Random,
turbulent fluctuations Turbulent
3
Turbulent 4000
bursts T
w
=) I
< Transitional
2
Q
2000
1 5
[a
Laminar
0 0

t, sec

B FIGURE 8.11 Transition from laminar to turbulent flow in a pipe.
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V8.4 Stirring color
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V8.5 Laminar and
turbulent mixing

u = time-averaged
(or mean) value

1y to+ T t

B FIGURE 8.12 The time-averaged, u, and fluctuating, u’, descrip-
tion of a parameter for turbulent flow.

indicated. In previous considerations involving inviscid flow, the Reynolds number is (strictly speak-
ing) infinite (because the viscosity is zero), and the flow most surely would be turbulent. However,
reasonable results were obtained by using the inviscid Bernoulli equation as the governing equa-
tion. The reason that such simplified inviscid analyses gave reasonable results is that viscous
effects were not very important and the velocity used in the calculations was actually the time-
averaged velocity, u, indicated in Fig. 8.12. Calculation of the heat transfer, pressure drop, and
many other parameters would not be possible without inclusion of the seemingly small, but very
important, effects associated with the randomness of the flow.

Consider flow in a pan of water placed on a stove. With the stove turned off, the fluid is
stationary. The initial sloshing has died out because of viscous dissipation within the water.
With the stove turned on, a temperature gradient in the vertical direction, 97/9dz, is produced.
The water temperature is greatest near the pan bottom and decreases toward the top of the fluid
layer. If the temperature difference is very small, the water will remain stationary, even though
the water density is smallest near the bottom of the pan because of the decrease in density with
an increase in temperature. A further increase in the temperature gradient will cause a buoy-
ancy-driven instability that results in fluid motion—the light, warm water rises to the top, and
the heavy, cold water sinks to the bottom. This slow, regular “turning over” increases the heat
transfer from the pan to the water and promotes mixing within the pan. As the temperature gra-
dient increases still further, the fluid motion becomes more vigorous and eventually turns into
a chaotic, random, turbulent flow with considerable mixing, vaporization (boiling) and greatly
increased heat transfer rate. The flow has progressed from a stationary fluid, to laminar flow,
and finally to turbulent, multi-phase (liquid and vapor) flow.

Mixing processes and heat and mass transfer processes are considerably enhanced in turbu-
lent flow compared to laminar flow. This is due to the macroscopic scale of the randomness in tur-
bulent flow. We are all familiar with the “rolling,” vigorous eddy type motion of the water in a pan
being heated on the stove (even if it is not heated to boiling). Such finite-sized random mixing is
very effective in transporting energy and mass throughout the flow field, thereby increasing the var-
ious rate processes involved. Laminar flow, on the other hand, can be thought of as very small but
finite-sized fluid particles flowing smoothly in layers, one over another. The only randomness and
mixing take place on the molecular scale and result in relatively small heat, mass, and momentum
transfer rates.

Without turbulence it would be virtually impossible to carry out life as we now know it.
Mixing is one positive application of turbulence, as discussed above, but there are other situations
where turbulent flow is desirable. To transfer the required heat between a solid and an adjacent
fluid (such as in the cooling coils of an air conditioner or a boiler of a power plant) would require
an enormously large heat exchanger if the flow were laminar. Similarly, the required mass trans-
fer of a liquid state to a vapor state (such as is needed in the evaporated cooling system associ-
ated with sweating) would require very large surfaces if the fluid flowing past the surface were
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laminar rather than turbulent. As shown in Chapter 9, turbulence can also aid in delaying flow

separation.

F I u i d s i n

t h e N e w s

Smaller heat exchangers Automobile radiators, air condition-
ers, and refrigerators contain heat exchangers that transfer en-
ergy from (to) the hot (cold) fluid within the heat exchanger
tubes to (from) the colder (hotter) surrounding fluid. These
units can be made smaller and more efficient by increasing the
heat transfer rate across the tubes’ surfaces. If the flow through
the tubes is laminar, the heat transfer rate is relatively small.
Significantly larger heat transfer rates are obtained if the flow
within the tubes is turbulent. Even greater heat transfer rates

termed “turbulators,” which provide additional turbulent mix-
ing motion than would normally occur. Such enhancement
mechanisms include internal fins, spiral wire or ribbon inserts,
and ribs or grooves on the inner surface of the tube. While these
mechanisms can increase the heat transfer rate by 1.5 to 3 times
over that for a bare tube at the same flowrate, they also increase
the pressure drop (and therefore the power) needed to produce
the flow within the tube. Thus, a compromise involving in-
creased heat transfer rate and increased power consumption is

often needed.

can be obtained by the use of turbulence promoters, sometimes

Turbulence is also of importance in the mixing of fluids. Smoke from a stack would con-
tinue for miles as a ribbon of pollutant without rapid dispersion within the surrounding air if the
flow were laminar rather than turbulent. Under certain atmospheric conditions this is observed to
occur. Although there is mixing on a molecular scale (laminar flow), it is several orders of magni-
tude slower and less effective than the mixing on a macroscopic scale (turbulent flow). It is consid-
erably easier to mix cream into a cup of coffee (turbulent flow) than to thoroughly mix two colors
of a viscous paint (laminar flow).

In other situations laminar (rather than turbulent) flow is desirable. The pressure drop in pipes
(hence, the power requirements for pumping) can be considerably lower if the flow is laminar rather
than turbulent. Fortunately, the blood flow through a person’s arteries is normally laminar, except
in the largest arteries with high blood flowrates. The aerodynamic drag on an airplane wing can
be considerably smaller with laminar flow past it than with turbulent flow.

/N

V8.6 Stirring cream
into coffee

8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random behav-
ior of the various fluid parameters. Such variations occur in the three components of velocity, the
pressure, the shear stress, the temperature, and any other variable that has a field description. Tur-
bulent flow is characterized by random, three-dimensional vorticity (i.e., fluid particle rotation or
spin; see Section 6.1.3). As is indicated in Fig. 8.12, such flows can be described in terms of their
mean values (denoted with an overbar) on which are superimposed the fluctuations (denoted with
a prime). Thus, if u = u(x, y, z, t) is the x component of instantaneous velocity, then its time mean
(or time-average) value, u, is

1 [oFT
Turbulent flow pa- u= J u(x,y, z, 1) dt

rameters can be de- T A
scribed in terms of

mean and fluctuat-
ing portions.

(8.24)

where the time interval, 7, is considerably longer than the period of the longest fluctuations, but con-
siderably shorter than any unsteadiness of the average velocity. This is illustrated in Fig. 8.12.

The fluctuating part of the velocity, u’, is that time-varying portion that differs from the av-
erage value

!

u=u+u or u =u-—u (8.25)

Clearly, the time average of the fluctuations is zero, since
1 (6T 1 h+ T h+T
u’:J (u—u)dtZ(J udt—uJ dt)
r ty T ty ty

1, _
:?(TM—TM):O
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The fluctuations are equally distributed on either side of the average. It is also clear, as is indicated
in Fig. 8.13, that since the square of a fluctuation quantity cannot be negative [(x')* = 0], its av-
erage value is positive. Thus,

0+ T
')y = J (u')dt >0
T 3

On the other hand, it may be that the average of products of the fluctuations, such as W, are zero
or nonzero (either positive or negative).

The structure and characteristics of turbulence may vary from one flow situation to another.
For example, the turbulence intensity (or the level of the turbulence) may be larger in a very gusty
wind than it is in a relatively steady (although turbulent) wind. The turbulence intensity, $, is of-

ten defined as the square root of the mean square of the fluctuating velocity divided by the time-

averaged velocity, or
1 (6tT , ]
o il wral
1

9 = _ 0

u

=

The larger the turbulence intensity, the larger the fluctuations of the velocity (and other flow parame-
ters). Well-designed wind tunnels have typical values of $ = 0.01, although with extreme care, values
as low as 9 = 0.0002 have been obtained. On the other hand, values of $ = 0.1 are found for the
flow in the atmosphere and rivers. A typical atmospheric wind speed graph is shown in the figure in
the margin.

Another turbulence parameter that is different from one flow situation to another is the pe-
riod of the fluctuations—the time scale of the fluctuations shown in Fig. 8.12. In many flows, such
as the flow of water from a faucet, typical frequencies are on the order of 10, 100, or 1000 cycles
per second (cps). For other flows, such as the Gulf Stream current in the Atlantic Ocean or flow
of the atmosphere of Jupiter, characteristic random oscillations may have a period on the order of
hours, days, or more.

It is tempting to extend the concept of viscous shear stress for laminar flow (7 = w du/dy)
to that of turbulent flow by replacing u, the instantaneous velocity, by u, the time-averaged veloc-
ity. However, numerous experimental and theoretical studies have shown that such an approach
leads to completely incorrect results. That is, 7 # w d u/dy. A physical explanation for this behav-
ior can be found in the concept of what produces a shear stress.

Laminar flow is modeled as fluid particles that flow smoothly along in layers, gliding past the
slightly slower or faster ones on either side. As is discussed in Chapter 1, the fluid actually consists
of numerous molecules darting about in an almost random fashion as is indicated in Fig. 8.14a. The
motion is not entirely random—a slight bias in one direction produces the flowrate we associate
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B FIGURE 8.14 (a) Laminar flow shear stress caused by random motion of molecules.
(b) Turbulent flow as a series of random, three-dimensional eddies.

with the motion of fluid particles, u. As the molecules dart across a given plane (plane A— 4, for ex-
ample), the ones moving upward have come from an area of smaller average x component of veloc-
ity than the ones moving downward, which have come from an area of larger velocity.

The momentum flux in the x direction across plane 4—A4 gives rise to a drag (to the left) of
the lower fluid on the upper fluid and an equal but opposite effect of the upper fluid on the lower
fluid. The sluggish molecules moving upward across plane 4—A4 must be accelerated by the fluid
above this plane. The rate of change of momentum in this process produces (on the macroscopic
scale) a shear force. Similarly, the more energetic molecules moving down across plane 4—4 must
be slowed down by the fluid below that plane. This shear force is present only if there is a gradi-
ent in u = u(y), otherwise the average x component of velocity (and momentum) of the upward and
downward molecules is exactly the same. In addition, there are attractive forces between molecules.
By combining these effects we obtain the well-known Newton viscosity law: 7 = w du/dy, where
on a molecular basis u is related to the mass and speed (temperature) of the random motion of the
molecules.

Although the above random motion of the molecules is also present in turbulent flow, there
is another factor that is generally more important. A simplistic way of thinking about turbulent flow
is to consider it as consisting of a series of random, three-dimensional eddy type motions as is de-
picted (in one dimension only) in Fig. 8.14b. (See the photograph at the beginning of this chapter.)
These eddies range in size from very small diameter (on the order of the size of a fluid particle) to
fairly large diameter (on the order of the size of the object or flow geometry considered). They move
about randomly, conveying mass with an average velocity u = u(y). This eddy structure greatly pro-
motes mixing within the fluid. It also greatly increases the transport of x momentum across plane
A-A. That is, finite particles of fluid (not merely individual molecules as in laminar flow) are ran-
domly transported across this plane, resulting in a relatively large (when compared with laminar
flow) shear force. These particles vary in size but are much larger than molecules.

i d s i n t h e N e w s

Listen to the flowrate Sonar systems are designed to listen to
transmitted and reflected sound waves in order to locate sub-
merged objects. They have been used successfully for many years
to detect and track underwater objects such as submarines and
aquatic animals. Recently, sonar techniques have been refined so
that they can be used to determine the flowrate in pipes. These
new flow meters work for turbulent, not laminar, pipe flows be-
cause their operation depends strictly on the existence of turbu-

lent eddies within the flow. The flow meters contain a sonar-based
array that listens to and interprets pressure fields generated by the
turbulent motion in pipes. By listening to the pressure fields asso-
ciated with the movement of the turbulent eddies, the device can
determine the speed at which the eddies travel past an array of sen-
sors. The flowrate is determined by using a calibration procedure
which links the speed of the turbulent structures to the volumetric
flowrate.
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V8.7 Turbulence in
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The shear stress is
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nar portion and a
turbulent portion.

The random velocity components that account for this momentum transfer (hence, the shear
force) are u' (for the x component of velocity) and v (for the rate of mass transfer crossing the
plane). A more detailed consideration of the processes involved will show that the apparent shear
stress on plane 4— A is given by the following (Ref. 2):

du —
T=pu— —pu'v' =T T Tuw (8.26)

dy
Note that if the flow is laminar, ¥’ = v’ = 0, so that w'v’ =0 and Eq. 8.26 reduces to the cus-
tomary random molecule-motion-induced laminar shear stress, T,,,, =  du/dy. For turbulent flow
it is found that the turbulent shear stress, T, = —pu'v’, is positive. Hence, the shear stress is
greater in turbulent flow than in laminar flow. Note the units on 7, are (density)(velocity)* =
(slugs/fe))(ft/s)* = (slugs - ft/s*)/ft> = Ib/ft>, or N/m?, as expected. Terms of the form —pu'v’
(or —pv'w’, etc.) are called Reynolds stresses in honor of Osborne Reynolds who first discussed
them in 1895.

It is seen from Eq. 8.26 that the shear stress in turbulent flow is not merely proportional to
the gradient of the time-averaged velocity, u(y). It also contains a contribution due to the random
fluctuations of the x and y components of velocity. The density is involved because of the momen-
tum transfer of the fluid within the random eddies. Although the relative magnitude of 7,, com-
pared to 7,4 is a complex function dependent on the specific flow involved, typical measurements
indicate the structure shown in Fig. 8.15a. (Recall from Eq. 8.4 that the shear stress is proportional
to the distance from the centerline of the pipe.) In a very narrow region near the wall (the viscous
sublayer), the laminar shear stress is dominant. Away from the wall (in the outer layer) the turbu-
lent portion of the shear stress is dominant. The transition between these two regions occurs in the
overlap layer. The corresponding typical velocity profile is shown in Fig. 8.15b.

The scale of the sketches shown in Fig. 8.15 is not necessarily correct. Typically the value
of Ty 1s 100 to 1000 times greater than 7., in the outer region, while the converse is true in the
viscous sublayer. A correct modeling of turbulent flow is strongly dependent on an accurate knowl-
edge of 7. This, in turn, requires an accurate knowledge of the fluctuations u’ and v’, or pu'v’.
As yet it is not possible to solve the governing equations (the Navier—Stokes equations) for these
details of the flow, although numerical techniques (see Appendix A) using the largest and fastest
computers available have produced important information about some of the characteristics of tur-
bulence. Considerable effort has gone into the study of turbulence. Much remains to be learned.
Perhaps studies in the new areas of chaos and fractal geometry will provide the tools for a better
understanding of turbulence (see Section 8.3.5).

The vertical scale of Fig. 8.15 is also distorted. The viscous sublayer is usually a very thin
layer adjacent to the wall. For example, for water flow in a 3-in.-diameter pipe with an average
velocity of 10 ft/s, the viscous sublayer is approximately 0.002 in. thick. Since the fluid motion
within this thin layer is critical in terms of the overall flow (the no-slip condition and the wall shear
stress occur in this layer), it is not surprising to find that turbulent pipe flow properties can be quite
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B FIGURE 8.15 Structure of turbulent flow in a pipe. (¢) Shear stress. (b) Average velocity.
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dependent on the roughness of the pipe wall, unlike laminar pipe flow which is independent of
roughness. Small roughness elements (scratches, rust, sand or dirt particles, etc.) can easily disturb
this viscous sublayer (see Section 8.4), thereby affecting the entire flow.

An alternate form for the shear stress for turbulent flow is given in terms of the eddy viscos-
ity, m, where

_du

T = M dy

This extension of laminar flow terminology was introduced by J. Boussinesq, a French scientist,

in 1877. Although the concept of an eddy viscosity is intriguing, in practice it is not an easy pa-

rameter to use. Unlike the absolute viscosity, u, which is a known value for a given fluid, the eddy

viscosity is a function of both the fluid and the flow conditions. That is, the eddy viscosity of wa-

ter cannot be looked up in handbooks—its value changes from one turbulent flow condition to an-
other and from one point in a turbulent flow to another.

The inability to accurately determine the Reynolds stress, pu'v’, is equivalent to not knowing
the eddy viscosity. Several semiempirical theories have been proposed (Ref. 3) to determine approx-
imate values of n. L. Prandtl (1875-1953), a German physicist and aerodynamicist, proposed that
the turbulent process could be viewed as the random transport of bundles of fluid particles over a
certain distance, €,,, the mixing length, from a region of one velocity to another region of a differ-
ent velocity. By the use of some ad hoc assumptions and physical reasoning, it was concluded that
the eddy viscosity was given by

8.27)

du
= €2 _—
n = pty dy
Thus, the turbulent shear stress is
d* 2
T = pc’fn(”) (8.28)
dy

The problem is thus shifted to that of determining the mixing length, ¢,,. Further considerations
indicate that €, is not a constant throughout the flow field. Near a solid surface the turbulence is
dependent on the distance from the surface. Thus, additional assumptions are made regarding how
the mixing length varies throughout the flow.

The net result is that as yet there is no general, all-encompassing, useful model that can ac-
curately predict the shear stress throughout a general incompressible, viscous turbulent flow. With-
out such information it is impossible to integrate the force balance equation to obtain the turbulent
velocity profile and other useful information, as was done for laminar flow.

8.3.3 Turbulent Velocity Profile

Considerable information concerning turbulent velocity profiles has been obtained through the use of
dimensional analysis, experimentation, numerical simulations, and semiempirical theoretical efforts.
As is indicated in Fig. 8.15, fully developed turbulent flow in a pipe can be broken into three regions
which are characterized by their distances from the wall: the viscous sublayer very near the pipe wall,
the overlap region, and the outer turbulent layer throughout the center portion of the flow. Within the
viscous sublayer the viscous shear stress is dominant compared with the turbulent (or Reynolds) stress,
and the random, eddying nature of the flow is essentially absent. In the outer turbulent layer the
Reynolds stress is dominant, and there is considerable mixing and randomness to the flow.

The character of the flow within these two regions is entirely different. For example, within
the viscous sublayer the fluid viscosity is an important parameter; the density is unimportant. In
the outer layer the opposite is true. By a careful use of dimensional analysis arguments for the flow
in each layer and by a matching of the results in the common overlap layer, it has been possible
to obtain the following conclusions about the turbulent velocity profile in a smooth pipe (Ref. 5).

In the viscous sublayer the velocity profile can be written in dimensionless form as

) k
2 (8.29)

* v

<
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where y = R — ris the distance measured from the wall, u is the time-averaged x component of ve-
locity, and u* = (7,,/p)"? is termed the fiiction velocity. Note that u* is not an actual velocity of the
fluid—it is merely a quantity that has dimensions of velocity. As is indicated in Fig. 8.16, Eq. 8.29
(commonly called the law of the wall) is valid very near the smooth wall, for 0 = yu*v < 5.

Dimensional analysis arguments indicate that in the overlap region the velocity should vary
as the logarithm of y. Thus, the following expression has been proposed:

” *
=25 (y“) +5.0 (8.30)
u v

where the constants 2.5 and 5.0 have been determined experimentally. As is indicated in Fig. 8.16,
for regions not too close to the smooth wall, but not all the way out to the pipe center, Eq. 8.30
gives a reasonable correlation with the experimental data. Note that the horizontal scale is a loga-
rithmic scale. This tends to exaggerate the size of the viscous sublayer relative to the remainder of
the flow. As is shown in Example 8.4, the viscous sublayer is usually quite thin. Similar results
can be obtained for turbulent flow past rough walls (Ref. 17).

A number of other correlations exist for the velocity profile in turbulent pipe flow. In the cen-
tral region (the outer turbulent layer) the expression (V, — u)/u* = 2.5 In(R/y), where V, is the cen-
terline velocity, is often suggested as a good correlation with experimental data. Another often-used
(and relatively easy to use) correlation is the empirical power-law velocity profile

u r\"
(-3
V. R

In this representation, the value of # is a function of the Reynolds number, as is indicated in
Fig. 8.17. The one-seventh power-law velocity profile (n = 7) is often used as a reasonable ap-
proximation for many practical flows. Typical turbulent velocity profiles based on this power-law
representation are shown in Fig. 8.18.

A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near the
wall, since according to this equation the velocity gradient is infinite there. In addition, Eq. 8.31
cannot be precisely valid near the centerline because it does not give du/dr = 0 at = 0. How-
ever, it does provide a reasonable approximation to the measured velocity profiles across most of
the pipe.

Note from Fig. 8.18 that the turbulent profiles are much “flatter” than the laminar profile
and that this flatness increases with Reynolds number (i.e., with n). Recall from Chapter 3 that

(8.31)
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reasonable approximate results are often obtained by using the inviscid Bernoulli equation and by
assuming a fictitious uniform velocity profile. Since most flows are turbulent and turbulent flows
tend to have nearly uniform velocity profiles, the usefulness of the Bernoulli equation and the uni-
form profile assumption is not unexpected. Of course, many properties of the flow cannot be ac-
counted for without including viscous effects.

L ILXTTCIRY rurbulent Pipe Flow Properiies

GIVEN Water at 20 °C (p = 998 kg/m* and v = 1.004 X (b) Determine the approximate centerline velocity, V...

1976 m’/s) flows through a horizontal pipe of 0.1-m digmeter (¢) Determine the ratio of the turbulent to laminar shear stress,
with a flowrate of O = 4 X 10> m/s and a pressure gradient of Turb/ Tiam» at @ point midway between the centerline and the pipe
2.59 kPa/m. wall (i.., at » = 0.025 m).

FIND (a) Determine the approximate thickness of the vis-
cous sublayer.
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SoLUTION

(a) According to Fig. 8.16, the thickness of the viscous sub-
layer, 8, is approximately

Su*

Therefore,

where

Tw 12
()

The wall shear stress can be obtained from the pressure drop data
and Eq. 8.5, which is valid for either laminar or turbulent flow.
Thus,

DAp (0.1 m)(259 X 10° N/m?)

= 64.8 N/m?
4¢ 4(1'm) /m

Ty

Hence, from Eq. 1 we obtain

2\1/2
* = (%N;H:) = 0.255m/s
g/m

so that
5(1.004 X 107 m?/s)

! 0.255 m/s
=197 X 10> m = 0.02 mm

(Ans)

COMMENT As stated previously, the viscous sublayer is
very thin. Minute imperfections on the pipe wall will protrude
into this sublayer and affect some of the characteristics of the
flow (i.e., wall shear stress and pressure drop).

(b) The centerline velocity can be obtained from the average
velocity and the assumption of a power-law velocity profile as
follows. For this flow with

0  0.04m’/s

VAT 20 mpa

= 5.09 m/s
the Reynolds number is

R VD (5.09 m/s)(0.1 m)

T 0 T (1004 X 10-°m/s)

Thus, from Fig. 8.17, n = 8.4 so that

= 7 \1/84
—=[1-=
VC ( R)

To determine the centerline velocity, V., we must know the re-
lationship between ¥ (the average velocity) and V,. This can be

=5.07 X 10°

obtained by integration of the power-law velocity profile as fol-
lows. Since the flow is axisymmetric,

r=R 1/n
Q=AV=JEdA=VcJ (1—%) (2mr) dr
r=0

which can be integrated to give

2

Q = 27KV, (n+ 1)2n + 1)

Thus, since O = 7RV, we obtain

14 2n?

V. (n+1)@2n+1)
With » = 8.4 in the present case, this gives

(n+ 1)2n + 1)
v, = — V= 1.186V = 1.186 (5.09 m/s)
n

= 6.04 m/s (Ans)

Recall that V, = 2V for laminar pipe flow.

(¢) From Eq. 8.4, which is valid for laminar or turbulent flow,
the shear stress at » = 0.025 m is

27, 2(64.8 N/m?)(0.025 m)

7D (0.1 m)
or
T = Tum + T = 32.4 N/m?
where 7i,, = —u du/dr. From the power-law velocity profile

(Eq. 8.31) we obtain the gradient of the average velocity as
da_ V. (1 r)“*w "
dr  nR R

which gives

du _ (6.04 m/s)
dr 8.4(0.05m) <1
= —26.5/s

0.025 m)“**-‘WS-“
©0.05m

Thus,

Tlam — — M E = 7(Vp) %
= —(1.004 X 107° m?/s)(998 kg/m*)(~26.5/s)
= 0.0266 N/m?

Thus, the ratio of turbulent to laminar shear stress is given by

_ 324 - 0.0266 _ 1220
0.0266

Tub T 7 Tlam

(Ans)

Tlam Tlam

COMMENT As expected, most of the shear stress at this lo-
cation in the turbulent flow is due to the turbulent shear stress.

The turbulent flow characteristics discussed in this section are not unique to turbulent flow in
round pipes. Many of the characteristics introduced (i.e., the Reynolds stress, the viscous sublayer, the
overlap layer, the outer layer, the general characteristics of the velocity profile, etc.) are found in other
turbulent flows. In particular, turbulent pipe flow and turbulent flow past a solid wall (boundary layer
flow) share many of these common traits. Such ideas are discussed more fully in Chapter 9.
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8.3.4 Turbulence Modeling

Although it is not yet possible to theoretically predict the random, irregular details of turbulent
flows, it would be useful to be able to predict the time-averaged flow fields (pressure, velocity, etc.)
directly from the basic governing equations. To this end one can time average the governing Navier—
Stokes equations (Egs. 6.31 and 6.127) to obtain equations for the average velocity and pressure.
However, because the Navier—Stokes equations are nonlinear, the resulting time-averaged differ-
ential equations contain not only the desired average pressure and velocity as variables, but also
averages of products of the fluctuations—terms of the type that one tried to eliminate by averag-
ing the equations! For example, the Reynolds stress —pu’v’ (see Eq. 8.26) occurs in the time-
averaged momentum equation.

Thus, it is not possible to merely average the basic differential equations and obtain govern-
ing equations involving only the desired averaged quantities. This is the reason for the variety of
ad hoc assumptions that have been proposed to provide “closure” to the equations governing the
average flow. That is, the set of governing equations must be a complete or closed set of equa-
tions—the same number of equation as unknowns.

Various attempts have been made to solve this closure problem (Refs. 1, 32). Such schemes
involving the introduction of an eddy viscosity or the mixing length (as introduced in Section
8.3.2) are termed algebraic or zero-equation models. Other methods, which are beyond the scope
of this book, include the one-equation model and the two-equation model. These turbulence
models are based on the equation for the turbulence kinetic energy and require significant com-
puter usage.

Turbulence modeling is an important and extremely difficult topic. Although considerable
progress has been made, much remains to be done in this area.

8.3.5 Chaos and Turbulence

Chaos theory is a relatively new branch of mathematical physics that may provide insight into the com-
plex nature of turbulence. This method combines mathematics and numerical (computer) techniques
to provide a new way to analyze certain problems. Chaos theory, which is quite complex and is cur-
rently under development, involves the behavior of nonlinear dynamical systems and their response to
initial and boundary conditions. The flow of a viscous fluid, which is governed by the nonlinear Navier—
Stokes equations (Eq. 6.127), may be such a system.

To solve the Navier—Stokes equations for the velocity and pressure fields in a viscous flow, one
must specify the particular flow geometry being considered (the boundary conditions) and the condi-
tion of the flow at some particular time (the initial conditions). If, as some researchers predict, the
Navier—Stokes equations allow chaotic behavior, then the state of the flow at times after the initial
time may be very, very sensitive to the initial conditions. A slight variation to the initial flow condi-
tions may cause the flow at later times to be quite different than it would have been with the original,
only slightly different initial conditions. When carried to the extreme, the flow may be “chaotic,” “ran-
dom,” or perhaps (in current terminology), “turbulent.”

The occurrence of such behavior would depend on the value of the Reynolds number. For
example, it may be found that for sufficiently small Reynolds numbers the flow is not chaotic (i.e.,
it is laminar), while for large Reynolds numbers it is chaotic with turbulent characteristics.

Thus, with the advancement of chaos theory it may be found that the numerous ad hoc tur-
bulence ideas mentioned in previous sections (i.e., eddy viscosity, mixing length, law of the wall,
etc.) may not be needed. It may be that chaos theory can provide the turbulence properties and
structure directly from the governing equations. As of now we must wait until this exciting topic
is developed further. The interested reader is encouraged to consult Ref. 4 for a general introduc-
tion to chaos or Ref. 33 for additional material.

Chaos theory may
eventually provide a
deeper understand-
ing of turbulence.

8.4 Dimensional Analysis of Pipe Flow

As noted previously, turbulent flow can be a very complex, difficult topic—one that as yet has
defied a rigorous theoretical treatment. Thus, most turbulent pipe flow analyses are based on
experimental data and semi-empirical formulas. These data are expressed conveniently in dimen-
sionless form.
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Turbulent pipe flow
properties depend
on the fluid density
and the pipe rough-
ness.

It is often necessary to determine the head loss, /;, that occurs in a pipe flow so that the
energy equation, Eq. 5.84, can be used in the analysis of pipe flow problems. As shown in Fig.
8.1, a typical pipe system usually consists of various lengths of straight pipe interspersed with
various types of components (valves, elbows, etc.). The overall head loss for the pipe system con-
sists of the head loss due to viscous effects in the straight pipes, termed the major loss and denoted
h major» and the head loss in the various pipe components, termed the miror loss and denoted
Ay minor- That is,

hL = hL major + hL minor

The head loss designations of “major” and “minor” do not necessarily reflect the relative impor-
tance of each type of loss. For a pipe system that contains many components and a relatively
short length of pipe, the minor loss may actually be larger than the major loss.

8.4.1 Major Losses

A dimensional analysis treatment of pipe flow provides the most convenient base from which to
consider turbulent, fully developed pipe flow. An introduction to this topic was given in Section
8.3. As is discussed in Sections 8.2.1 and 8.2.4, the pressure drop and head loss in a pipe are de-
pendent on the wall shear stress, 7,,, between the fluid and pipe surface. A fundamental difference
between laminar and turbulent flow is that the shear stress for turbulent flow is a function of the
density of the fluid, p. For laminar flow, the shear stress is independent of the density, leaving the
viscosity, u, as the only important fluid property.

Thus, as indicated by the figure in the margin, the pressure drop, Ap, for steady, incompress-
ible turbulent flow in a horizontal round pipe of diameter D can be written in functional form as

Ap = F(V, D, €, &, . p) (8.32)

where V is the average velocity, € is the pipe length, and € is a measure of the roughness of the
pipe wall. It is clear that Ap should be a function of ¥, D, and €. The dependence of Ap on the
fluid properties w and p is expected because of the dependence of 7 on these parameters.
Although the pressure drop for laminar pipe flow is found to be independent of the roughness
of the pipe, it is necessary to include this parameter when considering turbulent flow. As is dis-
cussed in Section 8.3.3 and illustrated in Fig. 8.19, for turbulent flow there is a relatively thin vis-
cous sublayer formed in the fluid near the pipe wall. In many instances this layer is very thin;
8,/D < 1, where §, is the sublayer thickness. If a typical wall roughness element protrudes suffi-
ciently far into (or even through) this layer, the structure and properties of the viscous sublayer (along
with Ap and 7,) will be different than if the wall were smooth. Thus, for turbulent flow the pres-
sure drop is expected to be a function of the wall roughness. For laminar flow there is no thin vis-
cous layer—viscous effects are important across the entire pipe. Thus, relatively small roughness
elements have completely negligible effects on laminar pipe flow. Of course, for pipes with very large
wall “roughness” (¢/D = 0.1), such as that in corrugated pipes, the flowrate may be a function of
the “roughness.” We will consider only typical constant diameter pipes with relative roughnesses in
the range 0 =< ¢/D < 0.05. Analysis of flow in corrugated pipes does not fit into the standard con-
stant diameter pipe category, although experimental results for such pipes are available (Ref. 30).
The list of parameters given in Eq. 8.32 is apparently a complete one. That is, experiments
have shown that other parameters (such as surface tension, vapor pressure, etc.) do not affect the
pressure drop for the conditions stated (steady, incompressible flow; round, horizontal pipe). Since
there are seven variables (k = 7) which can be written in terms of the three reference dimensions
MLT (r = 3), Eq. 8.32 can be written in dimensionless form in terms of ¥ — » = 4 dimensionless
groups. As was discussed in Section 7.9.1, one such representation is
Ap - ( pVD ¢ 8)

w DD

12

2wV
This result differs from that used for laminar flow (see Eq. 8.17) in two ways. First, we have cho-
sen to make the pressure dimensionless by dividing by the dynamic pressure, p¥*/2, rather than a
characteristic viscous shear stress, wV/D. This convention was chosen in recognition of the fact
that the shear stress for turbulent flow is normally dominated by 7, which is a stronger function
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of the density than it is of viscosity. Second, we have introduced two additional dimensionless
parameters, the Reynolds number, Re = pVD/u, and the relative roughness, /D, which are not
present in the laminar formulation because the two parameters p and & are not important in fully
developed laminar pipe flow.

As was done for laminar flow, the functional representation can be simplified by imposing
the reasonable assumption that the pressure drop should be proportional to the pipe length. (Such
a step is not within the realm of dimensional analysis. It is merely a logical assumption supported
by experiments.) The only way that this can be true is if the €/D dependence is factored out as

A 4
Ao (re?)
pV: D D
As was discussed in Section 8.2.3, the quantity ApD/(€p V2/2) is termed the friction factor, f. Thus,
for a horizontal pipe

pV?

¢
Ap=fp (8.33)

where

f=¢ (Re, ;)

For laminar fully developed flow, the value of f'is simply f = 64/Re, independent of &/D. For tur-
bulent flow, the functional dependence of the friction factor on the Reynolds number and the relative
roughness, /' = ¢(Re, &/D), is a rather complex one that cannot, as yet, be obtained from a theoret-
ical analysis. The results are obtained from an exhaustive set of experiments and usually presented
in terms of a curve-fitting formula or the equivalent graphical form.

From Eq. 5.89 the energy equation for steady incompressible flow is

2

Vv
p2+a2f2+22+hL
2g

i
—+t otz =—
Y 2g

where /4, is the head loss between sections (1) and (2). With the assumption of a constant diame-
ter (D, = D, so that V', = V,), horizontal (z; = z,) pipe with fully developed flow (a; = a,), this
becomes Ap = p, — p, = yh;, which can be combined with Eq. 8.33 to give

¢ V?

hL major = fB ?g (8‘34)
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Equation 8.34, called the Darcy—Weisbach equation, is valid for any fully developed, steady, in-
compressible pipe flow—whether the pipe is horizontal or on a hill. On the other hand, Eq. 8.33
is valid only for horizontal pipes. In general, with V; = V, the energy equation gives

¢ pV?
PP =Yz —z) T yh = ')’(Zz - 21) +f57

Part of the pressure change is due to the elevation change and part is due to the head loss associ-
ated with frictional effects, which are given in terms of the friction factor, f.

It is not easy to determine the functional dependence of the friction factor on the Reynolds
number and relative roughness. Much of this information is a result of experiments conducted by
J. Nikuradse in 1933 (Ref. 6) and amplified by many others since then. One difficulty lies in the
determination of the roughness of the pipe. Nikuradse used artificially roughened pipes produced
by gluing sand grains of known size onto pipe walls to produce pipes with sandpaper-type sur-
faces. The pressure drop needed to produce a desired flowrate was measured and the data were
converted into the friction factor for the corresponding Reynolds number and relative roughness.
The tests were repeated numerous times for a wide range of Re and &/D to determine the
f = ¢(Re, /D) dependence.

In commercially available pipes the roughness is not as uniform and well defined as in the
artificially roughened pipes used by Nikuradse. However, it is possible to obtain a measure of the
effective relative roughness of typical pipes and thus to obtain the friction factor. Typical rough-
ness values for various pipe surfaces are given in Table 8.1. Figure 8.20 shows the functional de-
pendence of f'on Re and /D and is called the Moody chart in honor of L. F. Moody, who, along
with C. F. Colebrook, correlated the original data of Nikuradse in terms of the relative roughness
of commercially available pipe materials. It should be noted that the values of /D do not neces-
sarily correspond to the actual values obtained by a microscopic determination of the average
height of the roughness of the surface. They do, however, provide the correct correlation for
f= ¢(Re, &/D).

It is important to observe that the values of relative roughness given pertain to new, clean
pipes. After considerable use, most pipes (because of a buildup of corrosion or scale) may have a
relative roughness that is considerably larger (perhaps by an order of magnitude) than that given.
As shown by the figure in the margin, very old pipes may have enough scale buildup to not only
alter the value of & but also to change their effective diameter by a considerable amount.

The following characteristics are observed from the data of Fig. 8.20. For laminar flow,
f = 64/Re, which is independent of relative roughness. For turbulent flows with very large Reynolds
numbers, f = ¢(e/D), which, as shown by the figure in the margin, is independent of the Reynolds
number. For such flows, commonly termed completely turbulent flow (or wholly turbulent flow), the
laminar sublayer is so thin (its thickness decreases with increasing Re) that the surface roughness
completely dominates the character of the flow near the wall. Hence, the pressure drop required is a

H TABLE 8.1

Equivalent Roughness for New Pipes [From Moody
(Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness, &£

Pipe Feet Millimeters
Riveted steel 0.003-0.03 0.9-9.0
Concrete 0.001-0.01 0.3-3.0
Wood stave 0.0006-0.003 0.18-0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Commercial steel

or wrought iron 0.00015 0.045
Drawn tubing 0.000005 0.0015

Plastic, glass 0.0 (smooth) 0.0 (smooth)
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B FIGURE 8.20 Friction factor as a function of Reynolds number and relative roughness for round pipes—the Moody
chart. (Data from Ref. 7 with permission.)

For any pipe, even
smooth ones, the
head loss is not
zero.

result of an inertia-dominated turbulent shear stress rather than the viscosity-dominated laminar shear
stress normally found in the viscous sublayer. For flows with moderate values of Re, the friction fac-
tor is indeed dependent on both the Reynolds number and relative roughness—f = ¢(Re, ¢/D). The
gap in the figure for which no values of fare given (the 2100 < Re < 4000 range) is a result of the
fact that the flow in this transition range may be laminar or turbulent (or an unsteady mix of both)
depending on the specific circumstances involved.

Note that even for smooth pipes (¢ = 0) the friction factor is not zero. That is, there is a
head loss in any pipe, no matter how smooth the surface is made. This is a result of the no-slip
boundary condition that requires any fluid to stick to any solid surface it flows over. There is al-
ways some microscopic surface roughness that produces the no-slip behavior (and thus f # 0) on
the molecular level, even when the roughness is considerably less than the viscous sublayer thick-
ness. Such pipes are called Aydraulically smooth.

Various investigators have attempted to obtain an analytical expression for /' = ¢(Re, &/D). Note
that the Moody chart covers an extremely wide range in flow parameters. The nonlaminar region cov-
ers more than four orders of magnitude in Reynolds number—from Re = 4 X 10* to Re = 10%. Ob-
viously, for a given pipe and fluid, typical values of the average velocity do not cover this range. How-
ever, because of the large variety in pipes (D), fluids (p and p), and velocities (¥), such a wide range
in Re is needed to accommodate nearly all applications of pipe flow. In many cases the particular pipe
flow of interest is confined to a relatively small region of the Moody chart, and simple semiempirical
expressions can be developed for those conditions. For example, a company that manufactures cast
iron water pipes with diameters between 2 and 12 in. may use a simple equation valid for their con-
ditions only. The Moody chart, on the other hand, is universally valid for all steady, fully developed,
incompressible pipe flows.
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The following equation from Colebrook is valid for the entire nonlaminar range of the Moody
chart

I 201 (s/D n 2.51 >

Vo U537 T Re VS
In fact, the Moody chart is a graphical representation of this equation, which is an empirical
fit of the pipe flow pressure drop data. Equation 8.35 is called the Colebrook formula. A dif-
ficulty with its use is that it is implicit in the dependence of f. That is, for given conditions
(Re and &/D), it is not possible to solve for f/ without some sort of iterative scheme. With the
use of modern computers and calculators, such calculations are not difficult. A word of cau-
tion is in order concerning the use of the Moody chart or the equivalent Colebrook formula.
Because of various inherent inaccuracies involved (uncertainty in the relative roughness, un-
certainty in the experimental data used to produce the Moody chart, etc.), the use of several
place accuracy in pipe flow problems is usually not justified. As a rule of thumb, a 10% ac-
curacy is the best expected. It is possible to obtain an equation that adequately approximates
the Colebrook/Moody chart relationship but does not require an iterative scheme. For exam-

(8.352)

ple, an alternate form (Ref. 34), which is easier to use, is given by

where one can solve for f explicitly.

_EXAM PLE 8.5 EeJul:EWEJy

GIVEN Air under standard conditions flows through a 4.0-mm-
diameter drawn tubing with an average velocity of ¥ = 50 m/s.
For such conditions the flow would normally be turbulent. How-
ever, if precautions are taken to eliminate disturbances to the flow
(the entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.), it may be possible to maintain laminar flow.

SOLUTION

D 1.11 69

(8.35b)

of Laminar or Turbulent Pressure Drop

FIND (a) Determine the pressure drop in a 0.1-m section of
the tube if the flow is laminar.

(b) Repeat the calculations if the flow is turbulent.

Under standard temperature and pressure conditions the density
and viscosity are p = 1.23kg/m® and w = 1.79 X 107>
N - s/m?. Thus, the Reynolds number is

_ pVD (123 kg/m’)(50 m/s)(0.004 m)
o 1.79 X 1075 N - s/m?

Re = 13,700

which would normally indicate turbulent flow.

(a) If the flow were laminar, then = 64/Re = 64/13,700 =
0.00467 and the pressure drop in a 0.1-m-long horizontal section
of the pipe would be

¢1
Ap = f——pV?
p szp

= (0.00467 Ml123k/ 3(50 m/s)?
= (. )(0.004m)2(' g/m)(50 m/s)

or

Ap = 0.179 kPa (Ans)

COMMENT Note that the same result is obtained from Eq. 8.8:

2ut
Ap = 3Dl»:
32(1.79 X 107> N - s/m?)(0.1 m)(50 m/s)
a (0.004 m)?
= 179 N/m>

(b) If the flow were turbulent, then f = ¢(Re, &/D), where
from Table 8.1, £ = 0.0015 mm so that &/D = 0.0015 mm/
4.0 mm = 0.000375. From the Moody chart with Re = 1.37 X
10*and /D = 0.000375 we obtain f = 0.028. Thus, the pressure
drop in this case would be approximately

ap=ril VZ—(oozs)(O'lim)l(lﬁk/ ’)(50 m/s)*
P 2Pt T 0004 m) 2 T RETT IS
or
Ap = 1.076 kPa (Ans)




COMMENT A considerable savings in effort to force the fluid
through the pipe could be realized (0.179 kPa rather than 1.076 kPa)
if the flow could be maintained as laminar flow at this Reynolds
number. In general this is very difficult to do, although laminar flow
in pipes has been maintained up to Re = 100,000 in rare instances.

An alternate method to determine the friction factor for
the turbulent flow would be to use the Colebrook formula,
Eq. 8.35a. Thus,

1 o <@+ 251 ): 0l (0.000375 . 251 )
Vf T3 Re VY, RRCANEY 1.37 X 10°V7;

or

1 1.83 X 107
= 20 log(l.Ol X 107 + 7) 1)

Vf \

By using a root-finding technique on a computer or calculator, the
solution to Eq. 1 is determined to be /= 0.0291, in agreement
(within the accuracy of reading the graph) with the Moody chart
method of /= 0.028.

Eq. 8.35b provides an alternate form to the Colebrook formula
that can be used to solve for the friction factor directly.

1 g/D\""' 6.9 0.000375\"!! 6.9
— = —18log || =—— +—|= —18log aF
Vf 3.7 Re 3.7 1.37 x 10*

= 0.0289

This agrees with the Colebrook formula and Moody chart values ob-
tained above.

Numerous other empirical formulas can be found in the litera-
ture (Ref. 5) for portions of the Moody chart. For example, an often-
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used equation, commonly referred to as the Blasius formula, for tur-
bulent flow in smooth pipes (/D = 0) with Re < 10° is

0.316
Rel/4

f:

For our case this gives
f = 0.316(13,700)"°* = 0.0292

which is in agreement with the previous results. Note that the
value of fis relatively insensitive to &/D for this particular situa-
tion. Whether the tube was smooth glass (/D = 0) or the drawn
tubing (¢/D = 0.000375) would not make much difference in the
pressure drop. For this flow, an increase in relative roughness by
a factor of 30 to &/D = 0.0113 (equivalent to a commercial steel
surface; see Table 8.1) would give f = 0.043. This would repre-
sent an increase in pressure drop and head loss by a factor of
0.043/0.0291 = 1.48 compared with that for the original drawn
tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of pipe
corresponds to a change in absolute pressure [assuming p =
101 kPa (abs) at x = 0] of approximately 1.076/101 = 0.0107, or
about 1%. Thus, the incompressible flow assumption on which the
above calculations (and all of the formulas in this chapter) are based
is reasonable. However, if the pipe were 2-m long the pressure drop
would be 21.5 kPa, approximately 20% of the original pressure. In
this case the density would not be approximately constant along the
pipe, and a compressible flow analysis would be needed. Such con-
siderations are discussed in Chapter 11.

8.4.2 Minor Losses

As discussed in the previous section, the head loss in long, straight sections of pipe, the major losses,
can be calculated by use of the friction factor obtained from either the Moody chart or the Colebrook
equation. Most pipe systems, however, consist of considerably more than straight pipes. These addi-
tional components (valves, bends, tees, and the like) add to the overall head loss of the system. Such
losses are generally termed minor losses, with the corresponding head loss denoted 7; ino- In this
section we indicate how to determine the various minor losses that commonly occur in pipe systems.

The head loss associated with flow through a valve is a common minor loss. The purpose of
a valve is to provide a means to regulate the flowrate. This is accomplished by changing the geom-
etry of the system (i.e., closing or opening the valve alters the flow pattern through the valve),
which in turn alters the losses associated with the flow through the valve. The flow resistance or
head loss through the valve may be a significant portion of the resistance in the system. In fact,
with the valve closed, the resistance to the flow is infinite—the fluid cannot flow. Such minor
losses may be very important indeed. With the valve wide open the extra resistance due to the pres-
ence of the valve may or may not be negligible.

The flow pattern through a typical component such as a valve is shown in Fig. 8.21. It is not
difficult to realize that a theoretical analysis to predict the details of such flows to obtain the head
loss for these components is not, as yet, possible. Thus, the head loss information for essentially
all components is given in dimensionless form and based on experimental data. The most common
method used to determine these head losses or pressure drops is to specify the loss coefficient, K;,

Losses due to pipe
system components
are given in terms

of loss coefficients.

which is defined as

_ hL minor

Ap
b2 Lpr?
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2
hL, minor ~ V"

hL, minor

For most flows the
loss coefficient is
independent of the
Reynolds number.

B FIGURE 8.21 Flow through a valve.

so that
Ap = K, 3pV?
or
V2
hL minor KL A~ (8'36)
2g

The pressure drop across a component that has a loss coefficient of K; = 1 is equal to the dynamic
pressure, pV?/2. As shown by Eq. 8.36 and the figure in the margin, for a given value of K, the
head loss is proportional to the square of the velocity.

The actual value of K is strongly dependent on the geometry of the component considered.
It may also be dependent on the fluid properties. That is,

K, = ¢(geometry, Re)

where Re = pVD/u is the pipe Reynolds number. For many practical applications the Reynolds
number is large enough so that the flow through the component is dominated by inertia effects, with
viscous effects being of secondary importance. This is true because of the relatively large acceler-
ations and decelerations experienced by the fluid as it flows along a rather curved, variable area
(perhaps even torturous) path through the component (see Fig. 8.21). In a flow that is dominated by
inertia effects rather than viscous effects, it is usually found that pressure drops and head losses cor-
relate directly with the dynamic pressure. This is the reason why the friction factor for very large
Reynolds number, fully developed pipe flow is independent of the Reynolds number. The same con-
dition is found to be true for flow through pipe components. Thus, in most cases of practical inter-
est the loss coefficients for components are a function of geometry only, K, = ¢(geometry).

Minor losses are sometimes given in terms of an equivalent length, €.,. In this terminology,
the head loss through a component is given in terms of the equivalent length of pipe that would
produce the same head loss as the component. That is,

AT &
By minor = Ky — = f— —
L minor L 2g D 2g
or
KD
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H FIGURE 8.22 Entrance flow conditions and loss coefficient
(Refs. 28, 29). (a) Reentrant, K; = 0.8, (b) sharp-edged, K; = 0.5, (¢) slightly
rounded, K; = 0.2 (see Fig. 8.24), (d) well-rounded, K, = 0.04 (see Fig. 8.24).

where D and fare based on the pipe containing the component. The head loss of the pipe system
is the same as that produced in a straight pipe whose length is equal to the pipes of the original
system plus the sum of the additional equivalent lengths of all of the components of the system.
Most pipe flow analyses, including those in this book, use the loss coefficient method rather than
the equivalent length method to determine the minor losses.

Many pipe systems contain various transition sections in which the pipe diameter changes
from one size to another. Such changes may occur abruptly or rather smoothly through some type
of area change section. Any change in flow area contributes losses that are not accounted for in
the fully developed head loss calculation (the friction factor). The extreme cases involve flow into
a pipe from a reservoir (an entrance) or out of a pipe into a reservoir (an exit).

A fluid may flow from a reservoir into a pipe through any number of differently shaped en-
trance regions as are sketched in Fig. 8.22. Each geometry has an associated loss coefficient. A
typical flow pattern for flow entering a pipe through a square-edged entrance is sketched in Fig.
8.23. As was discussed in Chapter 3, a vena contracta region may result because the fluid cannot
turn a sharp right-angle corner. The flow is said to separate from the sharp corner. The maximum
velocity at section (2) is greater than that in the pipe at section (3), and the pressure there is lower.
If this high-speed fluid could slow down efficiently, the kinetic energy could be converted into
pressure (the Bernoulli effect), and the ideal pressure distribution indicated in Fig. 8.23 would re-
sult. The head loss for the entrance would be essentially zero.

Such is not the case. Although a fluid may be accelerated very efficiently, it is very difficult
to slow down (decelerate) a fluid efficiently. Thus, the extra kinetic energy of the fluid at section
(2) is partially lost because of viscous dissipation, so that the pressure does not return to the ideal
value. An entrance head loss (pressure drop) is produced as is indicated in Fig. 8.23. The majority
of this loss is due to inertia effects that are eventually dissipated by the shear stresses within the
fluid. Only a small portion of the loss is due to the wall shear stress within the entrance region.
The net effect is that the loss coefficient for a square-edged entrance is approximately K; = 0.50.
One-half of a velocity head is lost as the fluid enters the pipe. If the pipe protrudes into the tank
(a reentrant entrance) as is shown in Fig. 8.22a, the losses are even greater.

An obvious way to reduce the entrance loss is to round the entrance region as is shown in
Fig. 8.22¢, thereby reducing or eliminating the vena contracta effect. Typical values for the loss
coefficient for entrances with various amounts of rounding of the lip are shown in Fig. 8.24. A sig-
nificant reduction in K; can be obtained with only slight rounding.
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A head loss (the exit loss) is also produced when a fluid flows from a pipe into a tank as is shown
in Fig. 8.25. In these cases the entire kinetic energy of the exiting fluid (velocity ¥,)is dissipated through
viscous effects as the stream of fluid mixes with the fluid in the tank and eventually comes to rest
(V, = 0). The exit loss from points (1) and (2) is therefore equivalent to one velocity head, or K; = 1.

Losses also occur because of a change in pipe diameter as is shown in Figs. 8.26 and 8.27.
The sharp-edged entrance and exit flows discussed in the previous paragraphs are limiting cases
of this type of flow with either 4,/4, = oo, or 4,/4, = 0, respectively. The loss coefficient for a
sudden contraction, K, = h;/(V3/2g), is a function of the area ratio, 4,/4,, as is shown in Fig.
8.26. The value of K; changes gradually from one extreme of a sharp-edged entrance (4,/4, = 0
with K; = 0.50) to the other extreme of no area change (4,/4, = 1 with K, = 0).

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated in Fig.
8.28, the fluid leaves the smaller pipe and initially forms a jet-type structure as it enters the larger
pipe. Within a few diameters downstream of the expansion, the jet becomes dispersed across the
pipe, and fully developed flow becomes established again. In this process [between sections (2) and
(3)] a portion of the kinetic energy of the fluid is dissipated as a result of viscous effects. A square-
edged exit is the limiting case with 4,/4, = 0.

A sudden expansion is one of the few components (perhaps the only one) for which the loss
coefficient can be obtained by means of a simple analysis. To do this we consider the continuity
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The loss coefficient

for a sudden expan-
sion can be theoret-
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1 { \
c |

L T

(2) (3)

B FIGURE 8.28 Control volume used to calculate the loss coefficient
for a sudden expansion.

and momentum equations for the control volume shown in Fig. 8.28 and the energy equation ap-
plied between (2) and (3). We assume that the flow is uniform at sections (1), (2), and (3) and the
pressure is constant across the left-hand side of the control volume (p, = p, = p. = p,). The re-
sulting three governing equations (mass, momentum, and energy) are

AV = A5V
Pz — p3ds = PA3V3(V3 - Vl)

and

po Vi V5
Yy 2 v 2
These can be rearranged to give the loss coefficient, K, = h, /(V31/2g), as

A12
KL: 1 ——
4,

where we have used the fact that 4, = A5. This result, plotted in Fig. 8.27, is in good agreement
with experimental data. As with so many minor loss situations, it is not the viscous effects directly
(i-e., the wall shear stress) that cause the loss. Rather, it is the dissipation of kinetic energy (another
type of viscous effect) as the fluid decelerates inefficiently.

The losses may be quite different if the contraction or expansion is gradual. Typical re-
sults for a conical diffiser with a given area ratio, 4,/A4;, are shown in Fig. 8.29. (A diffuser
is a device shaped to decelerate a fluid.) Clearly the included angle of the diffuser, 6, is a very
important parameter. For very small angles, the diffuser is excessively long and most of the head
loss is due to the wall shear stress as in fully developed flow. For moderate or large angles, the flow
separates from the walls and the losses are due mainly to a dissipation of the kinetic energy of the jet
leaving the smaller diameter pipe. In fact, for moderate or large values of 0 (i.e., 6 > 35° for the case

1.4

1.2

1.0

) ‘\é\‘ 0.8
K=

106

0 30 60 90 120 150 180
0, degrees

B FIGURE 8.29 Loss coefficient for a typical conical diffuser (Ref. 5).
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shown in Fig. 8.29), the conical diffuser is, perhaps unexpectedly, less efficient than a sharp-edged ex-
pansion which has K, = (1 — 4,/A4,)*. There is an optimum angle (§ = 8° for the case illustrated) for
which the loss coefficient is a minimum. The relatively small value of 6 for the minimum K; results
in a long diffuser and is an indication of the fact that it is difficult to efficiently decelerate a fluid.

It must be noted that the conditions indicated in Fig. 8.29 represent typical results only. Flow
through a diffuser is very complicated and may be strongly dependent on the area ratio 4,/4,, spe-
cific details of the geometry, and the Reynolds number. The data are often presented in terms of a
pressure recovery coefficient, C, = (p, — p,)/(p V'1/2), which is the ratio of the static pressure rise
across the diffuser to the inlet dynamic pressure. Considerable effort has gone into understanding
this important topic (Refs. 11, 12).

Flow in a conical contraction (a nozzle; reverse the flow direction shown in Fig. 8.29) is
less complex than that in a conical expansion. Typical loss coefficients based on the downstream
(high-speed) velocity can be quite small, ranging from K; = 0.02 for # = 30°, to K; = 0.07 for
0 = 60°, for example. It is relatively easy to accelerate a fluid efficiently.

Bends in pipes produce a greater head loss than if the pipe were straight. The losses are due
to the separated region of flow near the inside of the bend (especially if the bend is sharp) and the
swirling secondary flow that occurs because of the imbalance of centripetal forces as a result of
the curvature of the pipe centerline. These effects and the associated values of K; for large Reynolds
number flows through a 90° bend are shown in Fig. 8.30. The friction loss due to the axial length
of the pipe bend must be calculated and added to that given by the loss coefficient of Fig. 8.30.

For situations in which space is limited, a flow direction change is often accomplished by
use of miter bends, as is shown in Fig. 8.31, rather than smooth bends. The considerable losses in
such bends can be reduced by the use of carefully designed guide vanes that help direct the flow
with less unwanted swirl and disturbances.

Another important category of pipe system components is that of commercially available
pipe fittings such as elbows, tees, reducers, valves, and filters. The values of K; for such compo-
nents depend strongly on the shape of the component and only very weakly on the Reynolds num-
ber for typical large Re flows. Thus, the loss coefficient for a 90° elbow depends on whether the
pipe joints are threaded or flanged but is, within the accuracy of the data, fairly independent of the
pipe diameter, flow rate, or fluid properties (the Reynolds number effect). Typical values of K; for
such components are given in Table 8.2. These typical components are designed more for ease of
manufacturing and costs than for reduction of the head losses that they produce. The flowrate from
a faucet in a typical house is sufficient whether the value of K for an elbow is the typical K; = 1.5,
or it is reduced to K; = 0.2 by use of a more expensive long-radius, gradual bend (Fig. 8.30).

1.0
b b
Separated flow
0.8 @ @
a
Secondary
flow
0.6
\
90°
K; PrimaryT
flow
0.4 c
o =001
0.002
0.2
0.001
e — O
0
0 2 4 6 8 10 12

RID

B FIGURE 8.30 Character of the flow in a 90° bend and the
associated loss coefficient (Ref. 5).
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B FIGURE 8.31 Character
of the flow in a 90° mitered bend and the
associated loss coefficient: («) without
guide vanes, (b) with guide vanes.

2
Loss Coefficients for Pipe Components (hL =K, ;/_g> (Data from Refs. 5, 10, 27)

Component K;

a. Elbows
Regular 90°, flanged 0.3
Regular 90°, threaded 1.5
Long radius 90°, flanged 0.2 V
Long radius 90°, threaded 0.7
Long radius 45°, flanged 0.2
Regular 45°, threaded 0.4

b. 180° return bends 4
180° return bend, flanged 0.2
180° return bend, threaded 1.5

c. Tees
Line flow, flanged 0.2
Line flow, threaded 0.9 v
Branch flow, flanged 1.0
Branch flow, threaded 2.0

d. Union, threaded 0.08 v

“e. Valves *
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15 "
Gate, 7{ closed 0.26
Gate, % closed 2.1
Gate, % closed 17
Swing check, forward flow 2 L
Swing check, backward flow o0 =
Ball valve, fully open 0.05
Ball valve, § closed 55
Ball valve, 5 closed 210

*See Fig. 8.32 for typical valve geometry.
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H FIGURE 8.32 Internal structure of various valves: (a) globe valve, (b) gate valve,
(c) swing check valve, (d) stop check valve. (Courtesy of Crane Co., Valve Division.)

Valves control the flowrate by providing a means to adjust the overall system loss coefficient
to the desired value. When the valve is closed, the value of K; is infinite and no fluid flows. Open-
ing of the valve reduces K;, producing the desired flowrate. Typical cross sections of various types
of valves are shown in Fig. 8.32. Some valves (such as the conventional globe valve) are designed
for general use, providing convenient control between the extremes of fully closed and fully open.
Others (such as a needle valve) are designed to provide very fine control of the flowrate. The check
valve provides a diode type operation that allows fluid to flow in one direction only.

Loss coefficients for typical valves are given in Table 8.2. As with many system components,
the head loss in valves is mainly a result of the dissipation of kinetic energy of a high-speed por-
tion of the flow. This high speed, V5, is illustrated in Fig. 8.33.

Vi>> 1y
v —— B A —>V,=7,
(1)‘\ )

N—

U B FIGURE 8.33 Headloss in a valve
is due to dissipation of the kinetic energy of the
large-velocity fluid near the valve seat.
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GIVEN  The closed-circuit wind tunnel shown in Fig. E8.6a is a
smaller version of that depicted in Fig. E8.6b in which air at stan-
dard conditions is to flow through the test section [between sections
(5) and (6)] with a velocity of 200 ft/s. The flow is driven by a fan
that essentially increases the static pressure by the amount p; — py

[ExawpLE 5.6

that is needed to overcome the head losses experienced by the fluid
as it flows around the circuit.

FIND Estimate the value of p; — py and the horsepower sup-
plied to the fluid by the fan.

Vs = 200 ft/s

/

f —ale o \\\
S

(5)

Test section
Flow-straightening
screens

(8)

0 (1)

&
\\k

(9)

B FIGURE E8.6a
(Photograph courtesy of
DELTALAB.France.)

SOLUTION

Fan

B FIGURE E8.6b

The maximum velocity within the wind tunnel occurs in the
test section (smallest area; see Table E8.6 on the next page).
Thus, the maximum Mach number of the flow is Mas = Vs/cs,
where Vs = 200 ft/s and from Eq. 1.20 the speed of sound is
cs =(kRT5)* ={1.4 (1716 ft - Ib/slug - °R) [(460 + 59)°R]}/> =
1117 ft/s. Thus, Mas = 200/1117 = 0.179. As was indicated in
Chapter 3 and discussed fully in Chapter 11, most flows can be con-
sidered as incompressible if the Mach number is less than about 0.3.
Hence, we can use the incompressible formulas for this problem.

The purpose of the fan in the wind tunnel is to provide the nec-
essary energy to overcome the net head loss experienced by the
air as it flows around the circuit. This can be found from the en-
ergy equation between points (1) and (9) as

V2 VZ
—+—+z1=&+—9+z9+hh_9
Y 2 Y 2

where %, is the total head loss from (1) to (9). With z; = z, and
Vi = V, this gives

P

Y Y

Py

@®

= hL1—9

Similarly, by writing the energy equation (Eq. 5.84) across the fan,
from (9) to (1), we obtain

where £, is the actual head rise supplied by the pump (fan) to the
air. Again since zg = z; and Vy, = V; this, when combined with
Eq. 1, becomes

(P1 — po)
h, = Ty =l

The actual power supplied to the air (horsepower, %) is obtained
from the fan head by
9= YOh, = vAsVsh, = vAs VShLl _9 (2)
Thus, the power that the fan must supply to the air depends on
the head loss associated with the flow through the wind tunnel. To
obtain a reasonable, approximate answer we make the following
assumptions. We treat each of the four turning corners as a mitered
bend with guide vanes so that from Fig. 8.31 K} = 0.2. Thus,
for each corner
V2 V2
K, —=02—

h =
L corner 2 g

where, because the flow is assumed incompressible, V' = V5 A4s/A.
The values of 4 and the corresponding velocities throughout the
tunnel are given in Table E8.6.

We also treat the enlarging sections from the end of the test
section (6) to the beginning of the nozzle (4) as a conical diffuser
with a loss coefficient of K, ;. = 0.6. This value is larger than that
of a well-designed diffuser (see Fig. 8.29, for example). Since the




B TABLE E8.6

Location Area (ft) Velocity (ft/s)
1 22.0 36.4
2 28.0 28.6
3 35.0 22.9
4 35.0 22.9
5 4.0 200.0
6 4.0 200.0
7 10.0 80.0
8 18.0 44.4
9 22.0 36.4

wind tunnel diffuser is interrupted by the four turning corners and
the fan, it may not be possible to obtain a smaller value of K, ., for
this situation. Thus,

Vs Vs
hy e = KLdif?g =06~

The loss coefficients for the conical nozzle between section (4)
and (5) and the flow-straightening screens are assumed to be
K, = 02andK; = 4.0(Ref. 13), respectively. We neglect the
head loss in the relatively short test section.

Thus, the total head loss is

hL179 = thomer7 + thomer8 + thomerZ + thomerS
+ hldif + thoz + hlscr

or
by, _o=102(V7+ V5 + V3 +13)

+ 0.6VE+ 0.2V2 + 4.0V3]/2g

=[0.2(80.0° + 44.4% + 28.6> + 22.9%) + 0.6(200)*

+ 0.2(200)* + 4.0(22.9)] ft%/s*/[2(32.2 ft/s?)]

or
hy, o = 560 ft

Hence, from Eq. 1 we obtain the pressure rise across the fan as

Pi = Po = vhi, _, = (0.0765 Ib/ft’)(560 ft)

= 42.8 Ib/ft* = 0.298 psi (Ans)
From Eq. 2 we obtain the power added to the fluid as
P, = (0.0765 Ib/ft*)(4.0 £t*)(200 ft/s)(560 ft)
= 34,300 ft - 1b/s
or
34,300 ft - 1b/s — 623 hp g

“ 550 (ft - Ib/s)/hp
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P, hp

100
(200 ft/s, 62.3 hp)

50

0 50 100 150
Vs, ft/s

B FIGURE EB8.6c

200 250 300

COMMENTS By repeating the calculations with various test
section velocities, Vs, the results shown in Fig. E8.6¢ are ob-
tained. Since the head loss varies as V52 and the power varies as
head loss times V5, it follows that the power varies as the cube of
the velocity. Thus, doubling the wind tunnel speed requires an
eightfold increase in power.

With a closed-return wind tunnel of this type, all of the
power required to maintain the flow is dissipated through vis-
cous effects, with the energy remaining within the closed tun-
nel. If heat transfer across the tunnel walls is negligible, the air
temperature within the tunnel will increase in time. For steady-
state operations of such tunnels, it is often necessary to provide
some means of cooling to maintain the temperature at accept-
able levels.

It should be noted that the actual size of the motor that powers
the fan must be greater than the calculated 62.3 hp because the fan
is not 100% efficient. The power calculated above is that needed
by the fluid to overcome losses in the tunnel, excluding those in
the fan. If the fan were 60% efficient, it would require a shaft
power of = 62.3 hp/(0.60) = 104 hp to run the fan. Determi-
nation of fan (or pump) efficiencies can be a complex problem that
depends on the specific geometry of the fan. Introductory mater-
ial about fan performance is presented in Chapter 12; additional
material can be found in various references (Refs. 14, 15, 16, for
example).

It should also be noted that the above results are only
approximate. Clever, careful design of the various components
(corners, diffuser, etc.) may lead to improved (i.e., lower)
values of the various loss coefficients, and hence lower power re-
quirements. Since 4, is proportional to 7%, the components with
the larger / tend to have the larger head loss. Thus, even though
K; = 0.2 for each of the four corners, the head loss for corner (7)
is (V2/V3)* = (80/22.9)> = 12.2 times greater than it is for cor-
ner (3).

8.4.3 Noncircular Conduits

Many of the conduits that are used for conveying fluids are not circular in cross section. Although the
details of the flows in such conduits depend on the exact cross-sectional shape, many round pipe re-
sults can be carried over, with slight modification, to flow in conduits of other shapes.

Theoretical results can be obtained for fully developed laminar flow in noncircular
ducts, although the detailed mathematics often becomes rather cumbersome. For an arbitrary
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The hydraulic di-
ameter is used for
noncircular duct
calculations.

A = cross-sectional z z V=uyz)
area
—
—)
—
X
y
P = perimeter —>
of pipe
D), = 44/P = hydraulic
diameter
(a) )

B FIGURE 8.34 Noncircular duct.

cross section, as is shown in Fig. 8.34, the velocity profile is a function of both y and z
[V = u(y, z)i]. This means that the governing equation from which the velocity profile is obtained
(either the Navier—Stokes equations of motion or a force balance equation similar to that used for
circular pipes, Eq. 8.6) is a partial differential equation rather than an ordinary differential equa-
tion. Although the equation is linear (for fully developed flow the convective acceleration is zero),
its solution is not as straightforward as for round pipes. Typically the velocity profile is given in
terms of an infinite series representation (Ref. 17).

Practical, easy-to-use results can be obtained as follows. Regardless of the cross-sectional
shape, there are no inertia effects in fully developed laminar pipe flow. Thus, the friction fac-
tor can be written as /' = C/Re,;, where the constant C depends on the particular shape of the
duct, and Re,, is the Reynolds number, Re, = pVD,/u, based on the hydraulic diameter. The
hydraulic diameter defined as D, = 44/P is four times the ratio of the cross-sectional flow area
divided by the wetted perimeter, P, of the pipe as is illustrated in Fig. 8.34. It represents a char-
acteristic length that defines the size of a cross section of a specified shape. The factor of 4 is
included in the definition of D, so that for round pipes the diameter and hydraulic diameter are
equal [D,, = 44/P = 4(wD*/4)/(mD) = D). The hydraulic diameter is also used in the definition
of the friction factor, h, = f(€/D,)V?*/2g, and the relative roughness, &/D,,.

The values of C = fRe,, for laminar flow have been obtained from theory and/or experiment
for various shapes. Typical values are given in Table 8.3 along with the hydraulic diameter. Note

m TABLE 8.3
Friction Factors for Laminar Flow in Noncircular Ducts (Data from Ref. 18)

Shape Parameter C = fRe,

I. Concentric Annulus D,/D,
Dy=Dz =Dy 0.0001 71.8
0.01 80.1
0.1 89.4
0.6 95.6
1.00 96.0

el
Rt
1I. Rectangle a/b

_ 2ab 0 96.0
"axb 0.05 89.9
T 0.10 84.7
a 0.25 72.9
i 0.50 62.2

P 0.75 57.9

1.00 56.9




The Moody chart,
developed for round
pipes, can also be
used for noncircu-
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that the value of C is relatively insensitive to the shape of the conduit. Unless the cross section is
very “thin” in some sense, the value of C is not too different from its circular pipe value, C = 64.
Once the friction factor is obtained, the calculations for noncircular conduits are identical to those
for round pipes.

Calculations for fully developed turbulent flow in ducts of noncircular cross section are usu-
ally carried out by using the Moody chart data for round pipes with the diameter replaced by the
hydraulic diameter and the Reynolds number based on the hydraulic diameter. Such calculations
are usually accurate to within about 15%. If greater accuracy is needed, a more detailed analysis

lar ducts.

based on the specific geometry of interest is needed.

[ BTN Noncircular Conduit |

GIVEN Air at a temperature of 120 °F and standard pressure
flows from a furnace through an 8-in.-diameter pipe with an av-
erage velocity of 10 ft/s. It then passes through a transition sec-
tion similar to the one shown in Fig. E8.7 and into a square duct
whose side is of length a. The pipe and duct surfaces are smooth
(g = 0). The head loss per foot is to be the same for the pipe and
the duct.

FIND Determine the duct size, a.

SoLuTION

We first determine the head loss per foot for the pipe,
hy/€ = (f/D) V*/2g, and then size the square duct to give the
same value. For the given pressure and temperature we obtain
(from Table B.3) » = 1.89 X 10~* ft*/s so that

v (0R/s)E 1)

Re=——=—— 212 7
T T 189 x 10 fYs

= 35,300

With this Reynolds number and with ¢/D = 0 we obtain the fric-
tion factor from Fig. 8.20 as = 0.022 so that

By 0022 (10 ft/s)?

= ———— = 0.0512
€ (S ft) 2(32.2 ft/s%)
Thus, for the square duct we must have
h  f V3
— =-——=0.0512

where
D, = 44/P = 4a*/4a = a and

w

8 2
L0 z(aft) (108/5) 5 49 ,
ST o4 a’ e @

is the velocity in the duct.
By combining Eqs. 1 and 2 we obtain

[ (349/a)
0.0512 = . 2022)
or
a=1307" 3

B FIGURE E8.7

where « is in feet. Similarly, the Reynolds number based on the

hydraulic diameter is
V.D,  (349/a’)a 185X 10* @

Re, = =
o T T 189 x 104 a

We have three unknowns (a, f; and Re,) and three equations—
Egs. 3, 4, and either in graphical form the Moody chart (Fig. 8.20)
or the Colebrook equation (Eq. 8.35a).

If we use the Moody chart, we can use a trial and error solution
as follows. As an initial attempt, assume the friction factor for the
duct is the same as for the pipe. That is, assume f = 0.022. From
Eq. 3 we obtain a = 0.606 ft, while from Eq. 4 we have
Re;, = 3.05 X 10*. From Fig. 8.20, with this Reynolds number
and the given smooth duct we obtain /= 0.023, which does not
quite agree with the assumed value of /. Hence, we do not have the
solution. We try again, using the latest calculated value of
f = 0.023 as our guess. The calculations are repeated until the
guessed value of f'agrees with the value obtained from Fig. 8.20.
The final result (after only two iterations) is f= 0.023,
Re;, = 3.03 X 10* and

a = 0.611ft = 7.34 in. (Ans)

COMMENTS Alternatively, we can use the Colebrook equa-
tion (rather than the Moody chart) to obtain the solution as
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follows. For a smooth pipe (¢/D, = 0) the Colebrook equation,
Eq. 8.35a, becomes
1 201 <8/Dh 251 )
— = —-201o
Vf E\37 T ReVT
2.51
= —-201lo ( ) o)
& Rehw
where from Eq. 3,
f=0269d° ©)
If we combine Egs. 4, 5, and 6 and simplify, Eq. 7 is obtained for a.
1.928 a2 = —21log(2.62 X 10~*a~*?) ™)

By using a root-finding technique on a computer or calculator, the
solution to Eq. 7 is determined to be a = 0.614 ft, in agreement
(given the accuracy of reading the Moody chart) with that ob-
tained by the trial and error method given above.

Note that the length of the side of the equivalent square duct
isa/D = 7.34/8 = 0.918, or approximately 92% of the diameter
of the equivalent duct. It can be shown that this value, 92%, is a
very good approximation for any pipe flow—Ilaminar or turbu-
lent. The cross-sectional area of the duct (4 = a? = 53.9in.?) is
greater than that of the round pipe (4 = wD?/4 = 50.3 in.?). Also,
it takes less material to form the round pipe (perimeter = 7D =
25.1 in.) than the square duct (perimeter = 4a = 29.4 in.). Cir-
cles are very efficient shapes.

8.5 Pipe Flow Examples

Pipe systems may
contain a single
pipe with compo-
nents or multiple
interconnected

pipes.

In the previous sections of this chapter, we discussed concepts concerning flow in pipes and ducts.
The purpose of this section is to apply these ideas to the solutions of various practical problems.
The application of the pertinent equations is straightforward, with rather simple calculations that
give answers to problems of engineering importance. The main idea involved is to apply the en-
ergy equation between appropriate locations within the flow system, with the head loss written in
terms of the friction factor and the minor loss coefficients. We will consider two classes of pipe
systems: those containing a single pipe (whose length may be interrupted by various components),

F | u i d s i n

and those containing multiple pipes in parallel, series, or network configurations.

t h e N e w s

New hi-tech fountains Ancient Egyptians used fountains in
their palaces for decorative and cooling purposes. Current use of
fountains continues, but with a hi-tech flair. Although the basic
fountain still consists of a typical pipe system (i.e., pump, pipe,
regulating valve, nozzle, filter, and basin), recent use of computer-
controlled devices has led to the design of innovative fountains
with special effects. For example, by using several rows of multi-
ple nozzles, it is possible to program and activate control valves to
produce water jets that resemble symbols, letters, or the time of
day. Other fountains use specially designed nozzles to produce

coherent, laminar streams of water that look like glass rods flying
through the air. By using fast-acting control valves in a synchronized
manner it is possible to produce mesmerizing three-dimensional
patterns of water droplets. The possibilities are nearly limitless.
With the initial artistic design of the fountain established, the ini-
tial engineering design (i.e., the capacity and pressure require-
ments of the nozzles and the size of the pipes and pumps) can be
carried out. It is often necessary to modify the artistic and/or en-
gineering aspects of the design in order to obtain a functional,
pleasing fountain. (See Problem 8.64.)

8.5.1 Single Pipes

The nature of the solution process for pipe flow problems can depend strongly on which of the var-
ious parameters are independent parameters (the “given”) and which is the dependent parameter (the
“determine”). The three most common types of problems are shown in Table 8.4 in terms of the pa-
rameters involved. We assume the pipe system is defined in terms of the length of pipe sections used
and the number of elbows, bends, and valves needed to convey the fluid between the desired loca-
tions. In all instances we assume the fluid properties are given.

In a Type I problem we specify the desired flowrate or average velocity and determine the
necessary pressure difference or head loss. For example, if a flowrate of 2.0 gal/min is required
for a dishwasher that is connected to the water heater by a given pipe system as shown by the fig-
ure in the margin, what pressure is needed in the water heater?

In a Type II problem we specify the applied driving pressure (or, alternatively, the head loss)
and determine the flowrate. For example, how many gal/min of hot water are supplied to the dish-
washer if the pressure within the water heater is 60 psi and the pipe system details (length, diam-
eter, roughness of the pipe; number of elbows; etc.) are specified?
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Pipe flow problems Variable Type I Type II Type III
can be categorized
by what parameters . Fluid
are given and what Density Given Given Given
is to be calculated. Viscosity Given Given Given
. Pipe
Diameter Given Given Determine
Length Given Given Given
Roughness Given Given Given
. Flow
Flowrate or Given Determine Given
Average Velocity
d. Pressure
Pressure Drop or Determine Given Given

Head Loss

In a Type III problem we specify the pressure drop and the flowrate and determine the diame-
ter of the pipe needed. For example, what diameter of pipe is needed between the water heater and
dishwasher if the pressure in the water heater is 60 psi (determined by the city water system) and the
flowrate is to be not less than 2.0 gal/min (determined by the manufacturer)?

Several examples of these types of problems follow.

_EXAMPLE 3.8 Type I, Determine Pressure Drop

GIVEN Water at 60 °F flows from the basement to the second
floor through the 0.75-in. (0.0625-ft)-diameter copper pipe
(a drawn tubing) at a rate of Q = 12.0 gal/min = 0.0267 ft¥s
and exits through a faucet of diameter 0.50 in. as shown in Fig.
E8.8a.

FIND Determine the pressure at point (1) if
(a) all losses are neglected,
(b) the only losses included are major losses, or

(¢) all losses are included.

SOLUTION

Since the fluid velocity in the pipe is given by V, = Q/A4, =
0/(mD*/4) = (0.0267 fts)/[m(0.0625 ft)%/4] = 8.70 ft /5, and the
fluid properties are p = 1.94 slugs/ft® and u = 2.34 X
1077 Ib - s/ft*(see Table B.1), it follows thatRe = p¥VD/u = (1.94
slugs/ft%)(8.70 ft/s)(0.0625 ft)/(2.34 X 107°Ib - s/ft*) = 45,000.
Thus, the flow is turbulent. The governing equation for either case
(a), (b), or (c) is the energy equation given by Eq. 8.21,
2 2

&+a1&+zl=&+azﬁ+zz+h

4 2g Y 2g
where z; =0, z, = 20 ft, p, = 0 (free jet), y = pg = 62.4 Ib/ft’,
and the outlet velocity is V, = Q/4, = (0.0267 ft*/s)/[7(0.50/
12)*t?/4] = 19.6 ft/s. We assume that the kinetic energy coeffi-
cients oy and a, are unity. This is reasonable because turbulent ve-
locity profiles are nearly uniform across the pipe. Thus,

K, = 2 based on
pipe
velocity

«~—10 ft a‘« 10 ft
(7)1(8)
.

Y

10 ft Wide open

globe valve
l 0.50-in.

(6)@®

0.75-in.-diameter @)

copper pipe

diameter

12.0 ‘g
gal/min
—— g

(1) Threaded

15 ft 90° elbows
B FIGURE EB8.8a
p1 = vzt %P(V% - V%) + yhy @

where the head loss is different for each of the three cases.
(a) [If all losses are neglected (A, = 0), Eq. 1 gives
p1 = (62.41b/6)(20 ft)
1.94 slugs/ft® ft\? ft'\?
4 104 slugs/ft [(19.6 —) - <8.70 —) }
2 S S
= (1248 + 299) Ib/ft> = 1547 Ib/ft*

or

p1 = 10.7 psi (Ans)
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COMMENT Note that for this pressure drop, the amount due
to elevation change (the hydrostatic effect)is y(z, — z;) = 8.67 psi
and the amount due to the increase in Kkinetic energy is

p(V3 — V3)/2 = 2.07 psi.

(b) If the only losses included are the major losses, the head
loss is

4
fD 2g
From Table 8.1 the roughness for a 0.75-in.-diameter copper
pipe (drawn tubing) is & = 0.000005 ft so that &/D = 8 X 107°.
With this /D and the calculated Reynolds number (Re =
45,000), the value of f is obtained from the Moody chart as
/= 0.0215. Note that the Colebrook equation (Eq. 8.35) would
give the same value of f. Hence, with the total length of the pipe
as € = (15 + 5+ 10 + 10 + 20) ft = 60 ft and the elevation
and kinetic energy portions the same as for part (a), Eq. 1 gives

W)

= (1248 + 299) Ib/ft2

1 2
P =7t EP(VZ -

0.0625 ft 2
= (1248 + 299 + 1515) Ib/ft* = 3062 Ib/ft?

70 ft/s)?
+(1.94s1ugs/ft3)(0.0215)< e )(8 0 ft/s)

or

p1 = 21.3 psi (Ans)
COMMENT Of this pressure drop, the amount due to pipe
friction is approximately (21.3 — 10.7) psi = 10.6 psi.

(¢) If major and minor losses are included, Eq. 1 becomes

1 i,
P =vnt EP(Vg - V%) B? EPKL

or

. v?
p1 = 213 psi + EpKL7 ?)

where the 21.3 psi contribution is due to elevation change, kinetic
energy change, and major losses [part (b)], and the last term rep-
resents the sum of all of the minor losses. The loss coefficients of
the components (K, = 1.5 for each elbow and K; = 10 for the
wide-open globe valve) are given in Table 8.2 (except for the loss
coefficient of the faucet, which is given in Fig. E8.8a as K; = 2).
Thus,

(8.70 fi)?
> pKL .

(1.94 slugs/ft) [10 + 4(1.5) + 2]

= 1321 Ib/ft?

or

V2
2 pK; B3

= 9.17 psi K))

Note that we did not include an entrance or exit loss because points
(1) and (2) are located within the fluid streams, not within an at-

..~ 30.5 psi
30
== (a) No losses
27.1 27.3 (c) Including all
| losses

|

| Pressure I

loss |

20 |

|

— |

a4 |

< I

10.7 :
10

Elevation
and
[ Kinetic
energy
0
0 10 20 30 40 50 60
Distance along pipe from point (1), ft
Location: (1) (3) (4) (5) (6) (7)) (2)

B FIGURE E8.8b

taching reservoir where the kinetic energy is zero. Thus, by com-
bining Eqs. 2 and 3 we obtain the entire pressure drop as

p1 = (21.3 + 9.17) psi = 30.5 psi (Ans)

This pressure drop calculated by including all losses should be the
most realistic answer of the three cases considered.

COMMENTS More detailed calculations will show that the
pressure distribution along the pipe is as illustrated in Fig. E8.8h
for cases (a) and (c)—neglecting all losses or including all losses.
Note that not all of the pressure drop, p; — p,, is a “pressure
loss.” The pressure change due to the elevation and velocity
changes is completely reversible. The portion due to the major
and minor losses is irreversible.

This flow can be illustrated in terms of the energy line and hy-
draulic grade line concepts introduced in Section 3.7. As is shown
in Fig. E8.8¢, for case (a) there are no losses and the energy line
(EL) is horizontal, one velocity head (¥?/2g) above the hydraulic
grade line (HGL), which is one pressure head (7yz) above the pipe
itself. For cases (b) or (c) the energy line is not horizontal. Each bit
of friction in the pipe or loss in a component reduces the available

(0]
o

Slope due to pipe friction
Sharp drop due to component loss

(o))
o

Energy line including all
losses, case (c)

N
o

H, elevation to energy line, ft
I
o

Energy line with no losses, case (a)

0 10 20 30 40 50 60
Distance along pipe from point (1), ft
HFIGURE E8.8c




energy, thereby lowering the energy line. Thus, for case (a) the to-
tal head remains constant throughout the flow with a value of

g P V3 (1547 1b/f*)  (8.70 ft/s)*
= = 4 — =
y T 2g T (62410/0) | 2(3221/5)
=26.0 ftf/z V3
S LS SN < s Y
Y 2 2g
For case (c) the energy line starts at
V2
H, = o SRS z;
Yy 2
30.5 X 144)Ib/ft* 8.70 ft/s)*
=( )3 4 ( )2 +0="7161ft
(62.4 1b/ft%) 2(32.2 fi/s?)
and falls to a final value of
V3 19.6 ft/s)?
H2=&+72+22=0+%+20ft
vy 2 2(32.2 ft/s%)
= 26.0 ft
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The elevation of the energy line can be calculated at any point
along the pipe. For example, at point (7), 50 ft from point (1),

V:
H; = 1 =L z;
Yy 2
0.93 X 144) b/ft> 8.70 ft/s)*
oy )3 ( )2 +20ft
(62.4 1b/ft%) 2(32.2 ft/s?)
= 44.1 ft

The head loss per foot of pipe is the same all along the pipe.
That is,
V? 0.0215(8.70 ft/s)?

hy
<= = = 0.404 ft/ft
¢/ 2¢D  2(32.2 ft/s?)(0.0625 ft) /

Thus, the energy line is a set of straight line segments of the same
slope separated by steps whose height equals the head loss of the
minor component at that location. As is seen from Fig. E8.8¢, the
globe valve produces the largest of all the minor losses.

Although the governing pipe flow equations are quite simple, they can provide very reason-
able results for a variety of applications, as is shown in the next example.

L FTXTIRIY Tyve | Determine Head Loss

GIVEN  As shown in Fig. E8.9a, crude oil at 140 °F with y =
53.71b/ft> and u = 8 X 107> Ib - s/ft*> (about four times the vis-
cosity of water) is pumped across Alaska through the Alaskan
pipeline, a 799-mile-long, 4-ft-diameter steel pipe, at a maxi-
mum rate of Q = 2.4 million barrels/day = 117 ft3/s.

FIND Determine the horsepower needed for the pumps that
drive this large system.

SoLuTION

. 4-ft-diameter
0il: y = 53.7 Ib/ft3 i '
Z: 8 x 10°° Ibf - s/ft? dee il

(1) @

Prudhoe Bay, Alaska
B FIGURE ES8.9a

Valdez, Alaska

From the energy equation (Eq. 8.21) we obtain

2

"
p1+fl+zl+h
2g

Y

D2

Y

3

73 + ?g arF Zy aF hL

where points (1) and (2) represent locations within the large hold-
ing tanks at either end of the line and /,, is the head provided to the
oil by the pumps. We assume that z; = z, (pumped from sea level
to sea level), p; = p, = V, = V, = 0 (large, open tanks) and
h, = (f€/D)V?/2g. Minor losses are negligible because of the
large length-to-diameter ratio of the relatively straight, uninterrupted
pipe; €/D = (799 mi) X (5280 ft/mi)/(4 ft) = 1.05 X 10°. Thus,

L V2

hy, = hy, = f—

D 1L fD 2g
where V= Q/4 = (117 f€/5)/[m(4 ft)*/4] = 9.31 ft/s. From Fig.
8.20 or Eq. 835, = 0.0125 since /D = (0.00015 ft)/(4 fc)

= (0.0000375 (see Table 8.1) and Re = pVD/u = [(53.7/32.2)
slugs/ft*] (9.31 ft /s)(4.0 ft) /(8 X 107 Ib -s/ft*) = 7.76 X 10°.
Thus,

(9.31 ft/s)?

h, = 0.0125(1.05 X 10°
" ( ) 2(32.2 fit/s)

= 17,700 ft

and the actual power supplied to the fluid, ?,, is

P, = yOh, = (53.7 1b/f)(117 {t*/s)(17,700 ft)
p
=1.11 X 10 ft - Ib/s | ————
& (550 fi - 1b/s>
= 202,000 hp (Ans)
COMMENTS There are many reasons why it is not practical

to drive this flow with a single pump of this size. First, there are no
pumps this large! Second, the pressure at the pump outlet would
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need to be p = yh, = (53.7 Ib/f})(17,700 ft)(1 ft*/144 in.?) =
6600 psi. No practical 4-ft-diameter pipe would withstand this
pressure. An equally unfeasible alternative would be to place the
holding tank at the beginning of the pipe on top of a hill of height
h; = 17,700 ft and let gravity force the oil through the 799-mi
pipe! How much power would it take to lift the oil to the top of the
hill?

To produce the desired flow, the actual system contains 12
pumping stations positioned at strategic locations along the
pipeline. Each station contains four pumps, three of which oper-
ate at any one time (the fourth is in reserve in case of emergency).
Each pump is driven by a 13,500-hp motor, thereby producing a
total horsepower of % = 12 stations (3 pump/station) (13,500 hp/
pump) = 486,000 hp. If we assume that the pump/motor combi-
nation is approximately 60% efficient, there is a total of
0.60 (486,000) hp = 292,000 hp available to drive the fluid. This
number compares favorably with the 202,000-hp answer calcu-
lated above.

The assumption of a 140 °F oil temperature may not seem reason-
able for flow across Alaska. Note, however, that the oil is warm when
it is pumped from the ground and that the 202,000 hp needed to pump
the oil is dissipated as a head loss (and therefore a temperature rise)
along the pipe. However, if the oil temperature were 70 °F rather than
140 °F, the viscosity would be approximately 16 X 107° Ib - s/ft?
(twice as large), but the friction factor would only increase from
f=0.0125 at 140 °F (Re = 7.76 X 10°) to f= 0.0140 at
70 °F (Re = 3.88 X 10°). This doubling of viscosity would result in

only an 11% increase in power (from 202,000 to 226,000 hp). Because
of the large Reynolds numbers involved, the shear stress is due mostly
to the turbulent nature of the flow. That is, the value of Re for this flow
is large enough (on the relatively flat part of the Moody chart) so that f
is nearly independent of Re (or viscosity).

By repeating the calculations for various values of the pipe di-
ameter, D, the results shown in Fig. E8.95 are obtained. Clearly the
required pump power, P, is a strong function of the pipe diameter,
with ,~ D~ if the friction factor is constant. The actual 4-ft-
diameter pipe used represents a compromise between using smaller
diameter pipes which are less expensive to make but require consid-
erably more pump power, and larger diameter pipes which require
less pump power but are very expensive to make and maintain.

4% 10°
3x10°
5
L 2x10°
&
1x10°
(4 ft, 2.02 x 10° hp)
0
0 1 2 3 4 5 6

D, ft
B FIGURE E8.9b

Some pipe flow
problems require a
trial-and-error solu-
tion technique.

Pipe flow problems in which it is desired to determine the flowrate for a given set of condi-
tions (Type II problems) often require trial-and-error or numerical root-finding techniques. This is
because it is necessary to know the value of the friction factor to carry out the calculations, but
the friction factor is a function of the unknown velocity (flowrate) in terms of the Reynolds num-

ber. The solution procedure is indicated in Example 8.10.

GIVEN Air at a temperature of 100 °F and standard pressure
flows from a clothes dryer. According to the appliance manufac-
turer, the 4-in.-diameter galvanized iron vent on the clothes dryer is
not to contain more than 20 ft of pipe and four 90° elbows.

SOLUTION

_EXAMPLE [Vl Type Il, Determine Flowrate

FIND Under these conditions determine the air flowrate if the
pressure at the start of the vent pipe, directly downstream of the
dryer fan, is 0.20 in. of water.

Application of the energy equation (Eq. 8.21) between the beginning
of the vent pipe, point (1), and the exit of the pipe, point (2), gives
_ P

6 € V2 &
n=—t—tntf——+ 2K — (1)
Yy 2g D 2g 2g

VZ

P

Yy 2

where K; for each elbow is assumed to be 1.5. In addition,

V, = V,and z; = z,. (The change in elevation is often negligible
for gas flows.) Also, p, = 0, and p,/yy,o = 0.21in., or

1ft
= (0.2 in.) [ —— ) (62.4 Ib/ft}) = 1.04 Ib/ft>
=0 m)<12m_)(6 b/ft’) 04 Ib/

Thus, with y = 0.0709 Ib/ft* (see Table B.3) and ¥, = V (the air
velocity in the pipe), Eq. 1 becomes

(1.041b/f¢) [ (20f1) 7
(0.0709 Ib/ft’) 4 (& ft) +415) 2(32.2 ft/s?)
or
945 = (6.0 + 60.f)V> Q@)

where Vis in ft/s.




The value of f'is dependent on Re, which is dependent on 7,
an unknown. However, from Table B.3, » = 1.79 X 10 * ft*/s and
we obtain

VD Lft) ¥V
Re =D _ (12 ft)

v 1.79 X 10~* ft*/s
or

Re = 1860 V/ 3)

where again Vis in ft/s.

Also, since &/D = (0.0005 ft)/(4/12 ft) = 0.0015 (see Table
8.1 for the value of ¢), we know which particular curve of the
Moody chart is pertinent to this flow. Thus, we have three rela-
tionships (Egs. 2, 3, and the &/D = 0.0015 curve of Fig. 8.20)
from which we can solve for the three unknowns f, Re, and V.
This is done easily by an iterative scheme as follows.

It is usually simplest to assume a value of £, calculate V from Eq.
2, calculate Re from Eq. 3, and look up the appropriate value of f'in
the Moody chart for this value of Re. If the assumed f'and the new f
do not agree, the assumed answer is not correct—we do not have the
solution to the three equations. Although values of either f, V, or Re
could be assumed as starting values, it is usually simplest to assume
a value of f'because the correct value often lies on the relatively flat
portion of the Moody chart for which f7is quite insensitive to Re.

Thus, we assume /= 0.022, approximately the large Re limit
for the given relative roughness. From Eq. 2 we obtain

B { 945

12
| S 14t
6.0 + 60(0.022)} /s

and from Eq. 3
Re = 1860(11.4) = 21,200

With this Re and &/D, Fig. 8.20 gives /= 0.029, which is not
equal to the assumed solution /= 0.022 (although it is close!).
We try again, this time with the newly obtained value of
1= 0.029, which gives ¥ = 11.0 ft/s and Re = 20,500. With
these values, Fig. 8.20 gives f = 0.029, which agrees with the as-
sumed value. Thus, the solution is ¥ = 11.0 ft/s, or

0 =4V = %(1% f)2(11.0 ft/s) = 0.960 f*/s  (Ans)
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COMMENTS Note that the need for the iteration scheme is
because one of the equations, /= ¢(Re, &/D), is in graphical
form (the Moody chart). If the dependence of fon Re and &/D is
known in equation form, this graphical dependency is elimi-
nated, and the solution technique may be easier. Such is the case
if the flow is laminar so that the friction factor is simply
f = 64/Re. For turbulent flow, we can use the Colebrook equa-
tion rather than the Moody chart. Thus, we keep Eqgs. 2 and 3
and use the Colebrook equation (Eq. 8.35a) with &/D = 0.0015

to give
1 e/D 251 >
7\6( 2.0 log (— 4 Re V7 Vi

2.51
=

From Eq. 2 we have V' = [945/(6.0 + 60 f)]"/?, which can be
combined with Eq. 3 to give

= —2.01log <4.05 X 107 +

57,200
V6.0 + 60 f

The combination of Eqs. 4 and 5 provides a single equation for
the determination of f°

3

= —201log(4.05 x 107*
Vi g(

+ 439 X 1075 /60 + 6—;) ©)

By using a root-finding technique on a computer or calculator,
the solution to this equation is determined to be f'= 0.029, in
agreement with the above solution which used the Moody
chart.

Note that unlike the Alaskan pipeline example (Example
8.9) in which we assumed minor losses are negligible, minor
losses are of importance in this example because of the rela-
tively small length-to-diameter ratio: €¢/D = 20/(4/12) = 60.
The ratio of minor to major losses in this case is K; A f{/D) =
6.0/[0.029 (60)] = 3.45. The elbows and entrance produce
considerably more loss than the pipe itself.

EXAWPLE . D ———

GIVEN The turbine shown in Fig. E8.11 extracts 50 hp from
the water flowing through it. The 1-ft-diameter, 300-ft-long
pipe is assumed to have a friction factor of 0.02. Minor losses
are negligible.

FIND Determine the flowrate through the pipe and turbine.

=90 ft

300-ft-long,
1-ft-diameter pipe

. Free jet
Turbine

.
e @ =0

B FIGURE ES8.11
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SOLUTION

The energy equation (Eq. 8.21) can be applied between the surface
of the lake [point (1)] and the outlet of the pipe as

&1 V3
& A, =2
Yy 2

+z, + by + hy
Y 2g

@

where A7 is the turbine head, p, =V, = p, =z, = 0,z; = 90 ft,
and V, = V, the fluid velocity in the pipe. The head loss is given by

€ V2 (300 ft) V2
h =f—— | = 0.09327*ft
1 =157 (1ft) 2(32.2ft/s?)
where Vis in ft/s. Also, the turbine head is

P, P,

hy = = WA
yQ  y(w/4)DV

_ (50hp)[(550 ft - 1b/s)/hp] 561

(62.4 Ib/tE)[(w/4)(1 £t)*V] V
Thus, Eq. 1 can be written as
V2 561

0= +0.093202 + 2=
2(32.2) 4

or

0.1097% — 90V + 561 = 0 )

where Vis in ft/s. The velocity of the water in the pipe is found as
the solution of Eq. 2. Surprisingly, there are two real, positive
roots: V' = 6.58 ft/s or V' = 24.9 ft/s. The third root is negative

(V= —31.4ft/s) and has no physical meaning for this flow.
Thus, the two acceptable flowrates are

0- % Dy = %(1 ft)%(6.58 ft/s) = 5.17 ft’/s (Ans)
or
0= %(1 ft)2(24.9 ft/s) = 19.6 ft*/s (Ans)

COMMENTS Either of these two flowrates gives the same
power, P, = yOhy. The reason for two possible solutions can be
seen from the following. With the low flowrate (Q = 5.17 ft}s), we
obtain the head loss and turbine head as h; = 4.04 ft and
hy = 85.3 ft. Because of the relatively low velocity there is a rela-
tively small head loss and, therefore, a large head available for the
turbine. With the large flowrate (Q = 19.6 ft’/s), we find
h; = 57.8 ftand h; = 22.5 ft. The high-speed flow in the pipe pro-
duces arelatively large loss due to friction, leaving a relatively small
head for the turbine. However, in either case the product of the tur-
bine head times the flowrate is the same. That is, the power extracted
(P, = yOhy) is identical for each case. Although either flowrate
will allow the extraction of 50 hp from the water, the details of the
design of the turbine itself will depend strongly on which flowrate is
to be used. Such information can be found in Chapter 12 and various
references about turbomachines (Refs. 14, 19, 20).

If the friction factor were not given, the solution to the prob-
lem would be much more lengthy. A trial-and-error solution sim-
ilar to that in Example 8.10 would be required along with the so-
lution of a cubic equation.

In pipe flow problems for which the diameter is the unknown (Type III), an iterative or numer-
ical root-finding technique is required. This is, again, because the friction factor is a function of the
diameter—through both the Reynolds number and the relative roughness. Thus, neither Re = pVD/u =

4pQ/muD nor g/D are known unless D is known. Examples 8.12 and 8.13 illustrate this.

_EXAMPLE I PA Type Il without

GIVEN Air at standard temperature and pressure flows
through a horizontal, galvanized iron pipe (¢ = 0.0005 ft) at a
rate of 2.0 ft*/s. The pressure drop is to be no more than 0.50 psi
per 100 ft of pipe.

SoLuTION

Minor Losses, Determine Diameter

FIND Determine the minimum pipe diameter.

We assume the flow to be incompressible with p =

0.00238 slugs/ft* and w = 3.74 X 107" Ib - s/ft>. Note that if the
pipe were too long, the pressure drop from one end to the other,
P1 — P, would not be small relative to the pressure at the begin-
ning, and compressible flow considerations would be required.
For example, a pipe length of 200 ft gives (p; — po)/p) =
[(0.50 psi)/(100 t)](200 ft)/14.7 psia = 0.068 = 6.8%, which is
probably small enough to justify the incompressible as-
sumption.

With z; = z, and ¥, = V, the energy equation (Eq. 8.21)
becomes

¢ pV?
n=pt St M)
where V' = Q/4 = 4Q/(7TD2) =4(2.0 ft3/S)/7TD2, or

255
D




where D is in feet. Thus, with p; — p, = (0.5 Ib/in.?)(144 in.*/ft?)
and ¢ = 100 ft, Eq. 1 becomes

P — pr = (0.5)(144) Ib/ft*
(100 ft)
D

2.55 ft'\?
p )

1
(0.00238 slugs/ft3) E (F ;

or
D = 0404 f'5 )

where D is in feet. Also Re = pVD/u = (0.00238 slugs/ft’)
[(2.55/D%) ft/s]D/(3.74 X 10" Ib - s/ft), or

1.62 X 10*
"7 Db ®
and
e 0.0005
D - D @

Thus, we have four equations (Egs. 2, 3, 4, and either the
Moody chart or the Colebrook equation) and four unknowns (f; D,
e/D, and Re) from which the solution can be obtained by trial-
and-error methods.

If we use the Moody chart, it is probably easiest to assume a
value of £, use Egs. 2, 3, and 4 to calculate D, Re, and &/D, and
then compare the assumed f with that from the Moody chart. If
they do not agree, try again. Thus, we assume f = 0.02, a typi-
cal value, and obtain D = 0.404(0.02)" = 0.185 ft, which gives
&/D = 0.0005/0.185 = 0.0027 and Re = 1.62 X 10*/0.185 =
8.76 X 10* From the Moody chart we obtain f = 0.027 for these
values of &/D and Re. Since this is not the same as our assumed
value of f; we try again. With = 0.027, we obtain D = 0.196 ft,
e/D = 0.0026, and Re = 8.27 X 10*, which in turn give
f = 0.027, in agreement with the assumed value. Thus, the diam-
eter of the pipe should be

D = 0.196 ft (Ans)
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COMMENT If we use the Colebrook equation (Eq. 8.35a)
with &/D = 0.0005/0.404 £/ = 0.00124/f° and Re = 1.62 X
10*/0.404 £° = 4.01 X 10*/f°, we obtain

n = —2.01log <8/7D + 251 )
Vf 3.7 ReVf
or
1 335X 107 6.26 X 1073
7f= —2.0 10g< f1/5 f3/10 )

By using a root-finding technique on a computer or calculator,
the solution to this equation is determined to be f'= 0.027, and
hence D = 0.196 ft, in agreement with the Moody chart
method.

By repeating the calculations for various values of the
flowrate, O, the results shown in Fig. E8.12 are obtained. Al-
though an increase in flowrate requires a larger diameter pipe (for
the given pressure drop), the increase in diameter is minimal. For
example, if the flowrate is doubled from 1 ft3/s to 2 ft*/s, the di-
ameter increases from 0.151 ft to 0.196 ft.

(2 ft/s, 0.196 ft)

0 0.5 1 1.5 2 2.5 3
0, ft3/s

B FIGURE E8.12

In the previous example we only had to consider major losses. In some instances the inclu-
sion of major and minor losses can cause a slightly more lengthy solution procedure, even though
the governing equations are essentially the same. This is illustrated in Example 8.13.

_EXAMPLE 8.13

GIVEN Water at 60 °F (v = 1.21 X 1077 ft*/s, see Table 1.5)
is to flow from reservoir 4 to reservoir B through a pipe of
length 1700 ft and roughness 0.0005 ft at a rate of Q = 26 ft*/s
as shown in Fig. E8.13a. The system contains a sharp-edged
entrance and four flanged 45° elbows.

FIND Determine the pipe diameter needed.

Type lll with Minor Losses, Determine Diameter

Elevation z; = 44 ft

Total length = 1700 ft

Elevation z, = 0

B FIGURE E8.13a
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SoLUTION

The energy equation (Eq. 8.21) can be applied between two points
on the surfaces of the reservoirs (p, = p, =V, = V, = z, = 0)
as follows:

P Vi _ P V3

;+£+zl—;+2—g2+z2+hL
or
a=£@%+2&> )
where V' = Q/4 = 40/mD* = 4(26 ft*/s)/mwD?, or
33.1
V=" @

is the velocity within the pipe. (Note that the units on ¥ and D are
ft/s and ft, respectively.) The loss coefficients are obtained from

Table 8.2 and Figs. 8.22 and 8.25 as K, = 0.5, K, = 0.2,
and K;_, = 1. Thus, Eq. 1 can be written as
V> {1700 }
44 ft = + [4(0.2) + 05 + 1
2(32.2ft/s*) | D ST [402) ]
or, when combined with Eq. 2 to eliminate V,
f=0.00152 D° — 0.00135 D @A)

To determine D we must know £, which is a function of Re and
g/D, where

vD  [(33.1)/D’]D 274 X 10°

= — - 4
T T 21x10° D @
and

e 0.0005

D= "D ®)

where D is in feet. Again, we have four equations (Eqs. 3, 4, 5, and
the Moody chart or the Colebrook equation) for the four un-
knowns D, f, Re, and &/D.

Consider the solution by using the Moody chart. Although
it is often easiest to assume a value of f'and make calculations
to determine if the assumed value is the correct one, with the
inclusion of minor losses this may not be the simplest method.
For example, if we assume f= 0.02 and calculate D from
Eq. 3, we would have to solve a fifth-order equation. With
only major losses (see Example 8.12), the term proportional to
D in Eq. 3 is absent, and it is easy to solve for D if f'is given.
With both major and minor losses included, this solution
for D (given f) would require a trial-and-error or iterative
technique.

Thus, for this type of problem it is perhaps easier to assume
a value of D, calculate the corresponding f from Eq. 3, and with
the values of Re and &/D determined from Egs. 4 and 5, look up
the value of f in the Moody chart (or the Colebrook equation).
The solution is obtained when the two values of f'are in agree-

ment. A few rounds of calculation will reveal that the solution is
given by

D =~ 1.63 ft (Ans)
COMMENTS Alternatively, we can use the Colebrook equa-
tion rather than the Moody chart to solve for D. This is easily
done by using the Colebrook equation (Eq. 8.35a) with f as a
function of D obtained from Eq. 3 and Re and &/D as functions of
D from Egs. 4 and 5. The resulting single equation for D can be
solved by using a root-finding technique on a computer or calcu-
lator to obtain D = 1.63 ft. This agrees with the solution ob-
tained using the Moody chart.

By repeating the calculations for various pipe lengths, €,
the results shown in Fig. E8.13b are obtained. As the pipe
length increases it is necessary, because of the increased fric-
tion, to increase the pipe diameter to maintain the same
flowrate.

It is interesting to attempt to solve this example if all losses are
neglected so that Eq. 1 becomes z; = 0. Clearly from Fig. E8.13a,
z; = 44 ft. Obviously something is wrong. A fluid cannot flow
from one elevation, beginning with zero pressure and velocity,
and end up at a lower elevation with zero pressure and velocity
unless energy is removed (i.e., a head loss or a turbine) some-
where between the two locations. If the pipe is short (negligible
friction) and the minor losses are negligible, there is still the ki-
netic energy of the fluid as it leaves the pipe and enters the reser-
voir. After the fluid meanders around in the reservoir for some
time, this kinetic energy is lost and the fluid is stationary. No mat-
ter how small the viscosity is, the exit loss cannot be neglected.
The same result can be seen if the energy equation is written from
the free surface of the upstream tank to the exit plane of the pipe,
at which point the kinetic energy is still available to the fluid. In
either case the energy equation becomes z, = V'?/2g in agree-
ment with the inviscid results of Chapter 3 (the Bernoulli
equation).

1.8

1.6
(1700 ft, 1.63 ft)
1.4

1.2
1.0
0.8
0.6
0.4
0.2
0.0

D, ft

0 500 1000
€, ft

B FIGURE E8.13b
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Trachea

8.5.2 Multiple Pipe Systems

Lung In many pipe systems there is more than one pipe involved. The complex system of tubes in

\ our lungs (beginning as shown by the figure in the margin, with the relatively large-diameter
trachea and ending in tens of thousands of minute bronchioles after numerous branchings) and
the maze of pipes in a city’s water distribution system are typical of such systems. The gov-

7~ Bronchiole  erning mechanisms for the flow in multiple pipe systems are the same as for the single pipe
systems discussed in this chapter. However, because of the numerous unknowns involved,
additional complexities may arise in solving for the flow in multiple pipe systems. Some of
these complexities are discussed in this section.

F I ui d s i n t h e N e w s

Deepwater pipeline Pipelines used to transport oil and gas are
commonplace. But south of New Orleans, in deep waters of the
Gulf of Mexico, a not-so-common multiple pipe system is being
built. The new so-called Mardi Gras system of pipes is being laid
in water depths of 4300 to 7300 feet. It will transport oil and gas
from five deepwater fields with the interesting names of Holstein,
Mad Dog, Thunder Horse, Atlantis, and Na Kika. The deepwater
pipelines will connect with lines at intermediate water depths to
transport the oil and gas to shallow-water fixed platforms and

shore. The steel pipe used is 28 inches in diameter with a wall
thickness of 1 1/8 in. The thick-walled pipe is needed to with-
stand the large external pressure which is about 3250 psi at a
depth of 7300 ft. The pipe is installed in 240-ft sections from a
vessel the size of a large football stadium. Upon completion, the
deepwater pipeline system will have a total length of more than
450 miles and the capability of transporting more than 1 million
barrels of oil per day and 1.5 billion cubic feet of gas per day.
(See Problem 8.113.)

The simplest multiple pipe systems can be classified into series or parallel flows, as are shown
in Fig. 8.35. The nomenclature is similar to that used in electrical circuits. Indeed, an analogy be-
tween fluid and electrical circuits is often made as follows. In a simple electrical circuit, there is
a balance between the voltage (), current (i), and resistance (R) as given by Ohm’s law: e = iR. In a
fluid circuit there is a balance between the pressure drop (Ap), the flowrate or velocity (Q or V),
and the flow resistance as given in terms of the friction factor and minor loss coefficients ( fand K).
For a simple flow [Ap = f(€¢/D)(pV?*/2)], it follows that Ap = Q°R, where R, a measure of the
resistance to the flow, is proportional to f.

The main differences between the solution methods used to solve electrical circuit problems
and those for fluid circuit problems lie in the fact that Ohm’s law is a linear equation (doubling
the voltage doubles the current), while the fluid equations are generally nonlinear (doubling the
pressure drop does not double the flowrate unless the flow is laminar). Thus, although some of the

V2
—_(2) D,

(@)

(1)

D, 3)

B FIGURE 8.35
(b) parallel pipe systems.

(a) Series and (b)
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Series and parallel
pipe systems are of-
ten encountered.

standard electrical engineering methods can be carried over to help solve fluid mechanics prob-
lems, others cannot.

One of the simplest multiple pipe systems is that containing pipes in series, as is shown in
Fig. 8.35a. Every fluid particle that passes through the system passes through each of the pipes.
Thus, the flowrate (but not the velocity) is the same in each pipe, and the head loss from point 4
to point B is the sum of the head losses in each of the pipes. The governing equations can be writ-
ten as follows:

0= 0,= 05
and
hLA,B = hLI + th + hL;,

where the subscripts refer to each of the pipes. In general, the friction factors will be different for
each pipe because the Reynolds numbers (Re; = p¥;D,/u) and the relative roughnesses (g;/D;) will
be different. If the flowrate is given, it is a straightforward calculation to determine the head loss or
pressure drop (Type I problem). If the pressure drop is given and the flowrate is to be calculated
(Type II problem), an iteration scheme is needed. In this situation none of the friction factors, f;, are
known, so the calculations may involve more trial-and-error attempts than for corresponding single
pipe systems. The same is true for problems in which the pipe diameter (or diameters) is to be de-
termined (Type III problems).

Another common multiple pipe system contains pipes in parallel, as is shown in Fig. 8.35b.
In this system a fluid particle traveling from 4 to B may take any of the paths available, with the
total flowrate equal to the sum of the flowrates in each pipe. However, by writing the energy equa-
tion between points A and B it is found that the head loss experienced by any fluid particle traveling
between these locations is the same, independent of the path taken. Thus, the governing equations
for parallel pipes are

O0=0,+0,+ 05
and
hLl = hLz = th

Again, the method of solution of these equations depends on what information is given and what
is to be calculated.

Another type of multiple pipe system called a loop is shown in Fig. 8.36. In this case the
flowrate through pipe (1) equals the sum of the flowrates through pipes (2) and (3),or O, = O, + Os.
As can be seen by writing the energy equation between the surfaces of each reservoir, the head
loss for pipe (2) must equal that for pipe (3), even though the pipe sizes and flowrates may be dif-
ferent for each. That is,

VZ VZ
L T L
Yy 2 2g :
for a fluid particle traveling through pipes (1) and (2), while
V2 V2
Pa 2a =P TRk, iy
Yy 2 Yy 2 '

Node, N

| "
0) —> (1) = o

— L e
D3

B FIGURE 8.36 Multiple pipe loop system.
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B FIGURE 8.37
A three-reservoir system.

for fluid that travels through pipes (1) and (3). These can be combined to give 4, = h; . This is a
statement of the fact that fluid particles that travel through pipe (2) and particles that travel through
pipe (3) all originate from common conditions at the junction (or node, N) of the pipes and all end
up at the same final conditions.
The flow in a relatively simple looking multiple pipe system may be more complex than
it appears initially. The branching system termed the three-reservoir problem shown in Fig. 8.37
is such a system. Three reservoirs at known elevations are connected together with three pipes
of known properties (lengths, diameters, and roughnesses). The problem is to determine the
flowrates into or out of the reservoirs. If valve (1) were closed, the fluid would flow from
reservoir B to C, and the flowrate could be easily calculated. Similar calculations could be
carried out if valves (2) or (3) were closed with the others open.
For some pipe sys- With all valves open, however, it is not necessarily obvious which direction the fluid flows.
tems, the direction For the conditions indicated in Fig. 8.37, it is clear that fluid flows from reservoir 4 because the
of flow is not other two reservoir levels are lower. Whether the fluid flows into or out of reservoir B depends
known a priori. on the elevation of reservoirs B and C and the properties (length, diameter, roughness) of the
three pipes. In general, the flow direction is not obvious, and the solution process must include
the determination of this direction. This is illustrated in Example 8.14.

i 5. 1 R A T T T

GIVEN  Three reservoirs are connected by three pipes asare |V 4 Elevation = 100 ft
shown in Fig. E8.14. For simplicity we assume that the diame-

ter of each pipe is 1 ft, the friction factor for each is 0.02, and
because of the large length-to-diameter ratio, minor losses are
negligible.

Dy =1ft
(1) ¢, = 1000 ft

FIND Determine the flowrate into or out of each reservoir.

D, =1ft
€, =500 ft |l———=t— Elevation =
20 ft

SoLuTION PP

T IRENN = Elevation =

O ft

It is not obvious which direction the fluid flows in pipe (2).
However, we assume that it flows out of reservoir B, writethe | @ F1 G U R E ES8.14
governing equations for this case, and check our assumption.
The continuity equation requires that O, + O, = QOs, which,
since the diameters are the same for each pipe, becomes simply By using the fact that p, = p- = V, = Vi = z = 0, this becomes

i+ V=7 @ £ V% n 4 V%

The energy equation for the fluid that flows from 4 to C in pipes

(1) and (3) can be written as For the given conditions of this problem we obtain
Vi Ve L 4G V3 0.02 1
Py g =2l O Ly o 100 ft = —————————[(1000 )/} + (400 fO)V'3]
vy 2g v 2g D, 2¢g D, 2g 2(32.2 ft/s%) (1 ft)
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or
322 = V2 + 0412 )

where ¥, and V5 are in ft/s. Similarly the energy equation for
fluid flowing from B and C'is

V3 Ve 4 V3 4G V3
LIRS SRR LA PR Y R A B |
Yy 2 Yy 2 D,2g " D;2g
or
LV 613
— [ + [ —
# k0,5 TP,
For the given conditions this can be written as
64.4 = 0.573 + 0.4V3 A)

Equations 1, 2, and 3 (in terms of the three unknowns ¥, ¥,, and
V) are the governing equations for this flow, provided the fluid flows
from reservoir B. It turns out, however, that there is no solution for
these equations with positive, real values of the velocities. Although
these equations do not appear to be complicated, there is no simple
way to solve them directly. Thus, a trial-and-error solution is sug-
gested. This can be accomplished as follows. Assume a value of
V> 0, calculate V5 from Eq. 2, and then V, from Eq. 3. It is found
that the resulting V;, V,, V5 trio does not satisfy Eq. 1 for any value of
¥V, assumed. There is no solution to Egs. 1, 2, and 3 with real, positive
values of V}, V5, and V3. Thus, our original assumption of flow out of
reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reser-
voirs B and C and out of 4. For this case the continuity equation
becomes

0,=0,+0;
or
Vi="V,+ 1, “)

Application of the energy equation between points 4 and B and 4
and C gives

which, with the given data, become

258 = V2 + 05V3 5)
and

322 = V3 + 0.4 V3 ©)

Equations 4, 5, and 6 can be solved as follows. By subtracting
Eq. 5 from 6 we obtain

V, = V160 + 125172

Thus, Eq. 5 can be written as
258 = (V, + V3)* + 0.5V3
= (Vy + V160 + 1.25V3)* + 0.5V3

or

2V, V160 + 1.25V3 = 98 — 2.75V3 @

which, upon squaring both sides, can be written as
Vs — 460 V3 + 3748 = 0

By using the quadratic formula we can solve for V3 to obtain
either V3 = 452 or V'3 = 8.30. Thus, either V, = 21.3 ft/s or
V, = 2.88 ft/s. The value ¥, = 21.3 ft/s is not a root of the orig-
inal equations. It is an extra root introduced by squaring Eq. 7, which
with 7, = 21.3 becomes “1140 = —1140.” Thus, V, = 2.88 ft/s
and from Eq. 5, 7, = 15.9 ft/s. The corresponding flowrates are

O, =4V, = %D%Vl = %(1 f)? (15.9 ft/s)

= 12.5 ft*/s from 4 (Ans)
0, = AV, = %D%Vz = %(1 ft)? (2.88 ft/s)
= 2.26 ft*/s into B (Ans)
and
0, =0, — 0, = (125 — 2.26) ft’/s
= 10.2 ft*/s into C (Ans)

Note the slight differences in the governing equations depending
on the direction of the flow in pipe (2)—compare Egs. 1, 2, and 3
with Egs. 4, 5, and 6.

COMMENT If the friction factors were not given, a trial-and-
error procedure similar to that needed for Type II problems (see
Section 8.5.1) would be required.

zZ, =2z +fﬁﬁ +fﬁ1%

AT T
and

Zy =z +f£ﬁ +fﬁﬁ

Y Di2g 7Dy
Pipe network prob-

lems can be solved
using node and
loop concepts.

The ultimate in multiple pipe systems is a network of pipes such as that shown in Fig. 8.38.
Networks like these often occur in city water distribution systems and other systems that may have
multiple “inlets” and “outlets.” The direction of flow in the various pipes is by no means obvi-
ous—in fact, it may vary in time, depending on how the system is used from time to time.

The solution for pipe network problems is often carried out by use of node and loop equations
similar in many ways to that done in electrical circuits. For example, the continuity equation requires
that for each node (the junction of two or more pipes) the net flowrate is zero. What flows into a node
must flow out at the same rate. In addition, the net pressure difference completely around a loop
(starting at one location in a pipe and returning to that location) must be zero. By combining these
ideas with the usual head loss and pipe flow equations, the flow throughout the entire network can
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P\
08 \ i
g — | —
|l| B FIGURE 8.38 A general

pipe network.

be obtained. Of course, trial-and-error solutions are usually required because the direction of flow
and the friction factors may not be known. Such a solution procedure using matrix techniques is ide-
ally suited for computer use (Refs. 21, 22).

8.6 Pipe Flowrate Measurement

Orifice, nozzle and
Venturi meters
involve the concept
“high velocity gives
low pressure.”

It is often necessary to determine experimentally the flowrate in a pipe. In Chapter 3 we introduced
various types of flow-measuring devices (Venturi meter, nozzle meter, orifice meter, etc.) and dis-
cussed their operation under the assumption that viscous effects were not important. In this section
we will indicate how to account for the ever-present viscous effects in these flow meters. We will
also indicate other types of commonly used flow meters.

8.6.1 Pipe Flowrate Meters

Three of the most common devices used to measure the instantaneous flowrate in pipes are the ori-
fice meter, the nozzle meter, and the Venturi meter. As was discussed in Section 3.6.3, each of these
meters operates on the principle that a decrease in flow area in a pipe causes an increase in veloc-
ity that is accompanied by a decrease in pressure. Correlation of the pressure difference with the
velocity provides a means of measuring the flowrate. In the absence of viscous effects and under
the assumption of a horizontal pipe, application of the Bernoulli equation (Eq. 3.7) between points
(1) and (2) shown in Fig. 8.39 gave

2(p1 — p2)
p(1 — B
where B = D,/D,. Based on the results of the previous sections of this chapter, we anticipate that
there is a head loss between (1) and (2) so that the governing equations become

0 =4V, = 4,0,

Oigea = AV = 4, (8.37)

and

p o Vi_p Y

Yy 2 v 2g
The ideal situation has #; = 0 and results in Eq. 8.37. The difficulty in including the head loss is
that there is no accurate expression for it. The net result is that empirical coefficients are used in

the flowrate equations to account for the complex real-world effects brought on by the nonzero
viscosity. The coefficients are discussed in this section.

g
[ /|TE2V\’\’ EFIGURE 8.39 Typical

1 pipe flow meter geometry.
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An orifice discharge
coefficient is used
to account for non-

ideal effects.
0~ ‘\IP1 -P2
0
P1-P2

17 Pressurle:taps:|j
J'gt ) J 9 \

1) D, =D Aq ’A_Z___ (2)
4 i
1 D,
AN \
) ( EFIGURE 8.40
I: :I Typical orifice meter construction.

A typical orifice meter is constructed by inserting between two flanges of a pipe a flat plate
with a hole, as shown in Fig. 8.40. The pressure at point (2) within the vena contracta is less than
that at point (1). Nonideal effects occur for two reasons. First, the vena contracta area, A,, is less than
the area of the hole, 4,, by an unknown amount. Thus, 4, = C.4,, where C, is the contraction co-
efficient (C, < 1). Second, the swirling flow and turbulent motion near the orifice plate introduce a
head loss that cannot be calculated theoretically. Thus, an orifice discharge coefficient, C,,, is used to
take these effects into account. That is,

2(pi — p2)
p(l = BY)
where 4, = md*/4 is the area of the hole in the orifice plate. The value of C, is a function of
B = d/D and the Reynolds number Re = pVD/u, where V' = Q/A,. Typical values of C, are given
in Fig. 8.41. As shown by Eq. 8.38 and the figure in the margin, for a given value of C,, the
flowrate is proportional to the square root of the pressure difference. Note that the value of C,
depends on the specific construction of the orifice meter (i.e., the placement of the pressure taps,
whether the orifice plate edge is square or beveled, etc.). Very precise conditions governing the
construction of standard orifice meters have been established to provide the greatest accuracy pos-
sible (Refs. 23, 24).

Another type of pipe flow meter that is based on the same principles used in the orifice me-
ter is the nozzle meter, three variations of which are shown in Fig. 8.42. This device uses a con-
toured nozzle (typically placed between flanges of pipe sections) rather than a simple (and less
expensive) plate with a hole as in an orifice meter. The resulting flow pattern for the nozzle meter
is closer to ideal than the orifice meter flow. There is only a slight vena contracta and the secondary

Q = CaQideal = CaAo (8‘38)

0.66
‘PD:’W D Lﬁ
2
I I
[
0.64 b Ly X o
N )
C, 062
5 =0.
0.60 &, 04
E— 0.2
0.58
10* 10° 108 107 108

B FIGURE 8.41 Orifice
Re =pVDiu meter discharge coefficient (Ref. 24).



The nozzle meter is
more efficient than
the orifice meter.
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(a)
B FIGURE 8.42 Typical nozzle meter construction.

T

(c)

flow separation is less severe, but there still are viscous effects. These are accounted for by use of
the nozzle discharge coefficient, C,, where

2(p1 — p2)
p(1 = B%)
with 4, = wd?/4. As with the orifice meter, the value of C, is a function of the diameter ratio,
B = d/D, and the Reynolds number, Re = pVD/u. Typical values obtained from experiments are
shown in Fig. 8.43. Again, precise values of C, depend on the specific details of the nozzle de-
sign. Accepted standards have been adopted (Ref. 24). Note that C, > C,; the nozzle meter is more
efficient (less energy dissipated) than the orifice meter.

The most precise and most expensive of the three obstruction-type flow meters is the Venturi
meter shown in Fig. 8.44 [G. B. Venturi (1746—1822)]. Although the operating principle for this de-
vice is the same as for the orifice or nozzle meters, the geometry of the Venturi meter is designed to
reduce head losses to a minimum. This is accomplished by providing a relatively streamlined con-
traction (which eliminates separation ahead of the throat) and a very gradual expansion downstream
of the throat (which eliminates separation in this decelerating portion of the device). Most of the head
loss that occurs in a well-designed Venturi meter is due to friction losses along the walls rather than
losses associated with separated flows and the inefficient mixing motion that accompanies such flow.

Q = CnQideal = CnAn (8°39)

1.00
0.2
0.4
0.6
0.98
C ~pg-d_
" p=f-08
0.9 Il Il
T V\P&j/ ~~
D = —> d >
| =1
0.94
10* 10° 10° 107 108
B FIGURE 8.43 Nozzle
Re = pVD/u meter discharge coefficient (Ref. 24).

B FIGURE 8.44 Typical Venturi meter construction.
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The Venturi dis-
charge coefficient
is a function of the
specific geometry
of the meter:

1.00
e
/
/
4
0.98 ," ——————————
/l i
Range of values
/
G, 4 ;l\depending on specific
,I geometry
0.96 Vi
/
U
/
/
/
/
0.94 =
10* 10° 100 107 108
B FIGURE 8.45 Venturi
Re = pVDiu meter discharge coefficient (Ref. 23).

Thus, the flowrate through a Venturi meter is given by

2(p1 — po)
p(l = B
where A, = md?/4 is the throat area. The range of values of C,, the Venturi discharge coefficient,
is given in Fig. 8.45. The throat-to-pipe diameter ratio (8 = d/D), the Reynolds number, and the
shape of the converging and diverging sections of the meter are among the parameters that affect
the value of C,.

Again, the precise values of C,, C,, and C, depend on the specific geometry of the devices

used. Considerable information concerning the design, use, and installation of standard flow meters
can be found in various books (Refs. 23, 24, 25, 26, 31).

(8.40)

0 = C0iea = CAr

LITLTICNE Nosele Flow weer

GIVEN Ethyl alcohol flows through a pipe of diameter
D = 60 mm in a refinery. The pressure drop across the nozzle
meter used to measure the flowrate is to be Ap = 4.0 kPa when
the flowrate is O = 0.003 m?/s.

SOLUTION

FIND Determine the diameter, d, of the nozzle.

From Table 1.6 the properties of ethyl alcohol are p = 789 kg/m?>
and w = 1.19 X 1073 N - s/m> Thus,
VD 4
Re = 2YP _ 400
® D
4(789 kg/m?)(0.003 m*/s)

(0.06 m)(1.19 X 107° N - s/m?)

= 42,200

From Eq. 8.39 the flowrate through the nozzle is

0 = 0.003m%/s = C, Edz\/w
L ny 789 kg/m*(1 — 8%
or
L i = G
' Vi-g €]

where d is in meters. Note that 8 = d/D = d/0.06. Equation 1
and Fig. 8.43 represent two equations for the two unknowns d and
C, that must be solved by trial and error.

As a first approximation we assume that the flow is ideal, or
C, = 1.0, so that Eq. 1 becomes

d= (120 x 1073V1 — gh'2 )

In addition, for many cases | — 8* = 1, so that an approximate
value of d can be obtained from Eq. 2 as

d = (1.20 X 107%)"*> = 0.0346 m

Hence, with an initial guess of d = 0.0346 m or B = d/D =
0.0346/0.06 = 0.577, we obtain from Fig. 8.43 (using Re =
42.200) a value of C, = 0.972. Clearly this does not agree with
our initial assumption of C, = 1.0. Thus, we do not have the so-
Iution to Eq. 1 and Fig. 8.43. Next we assume 8 = 0.577 and
C, = 0.972 and solve for d from Eq. 1 to obtain

V1-0. 5774>

d= (1 20 %X 1073
0.972

or d = 0.0341 m. With the new value of 8 = 0.0341/0.060 =
0.568 and Re = 42,200, we obtain (from Fig. 8.43) C, = 0.972 in
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agreement with the assumed value. Thus, 60 \
d = 34.1 mm (Ans) a=b

COMMENTS If numerous cases are to be investigated, it may 50 D 'tj
be much easier to replace the discharge coefficient data of Fig. [[ T
8.43 by the equivalent equation, C, = ¢(f, Re), and use a com- 40
puter to iterate for the answer. Such equations are available in the
literature (Ref. 24). This would be similar to using the Colebrook =
equation rather than the Moody chart for pipe friction problems. ~

By repeating the calculations, the nozzle diameters, d, needed =
for the same flowrate and pressure drop but with different fluids 20 E S _ g 2
are shown in Fig. E8.15. The diameter is a function of the fluid 2 E 2 = S
viscosity because the nozzle coefficient, C,, is a function of the 10 @ = = @ =
Reynolds number (see Fig. 8.43). In addition, the diameter is a
function of the density because of this Reynolds number effect
and, perhaps more importantly, because the density is involved di- ©
rectly in the flowrate equation, Eq. 8.39. These factors all com- B F 1 G U R E E8.15
bine to produce the results shown in the figure.

Numerous other devices are used to measure the flowrate in pipes. Many of these devices
use principles other than the high-speed/low-pressure concept of the orifice, nozzle, and Venturi
meters.

A quite common, accurate, and relatively inexpensive flow meter is the rotameter, or vari-
able area meter as is shown in Fig. 8.46. In this device a float is contained within a tapered, trans-
parent metering tube that is attached vertically to the pipeline. As fluid flows through the meter
(entering at the bottom), the float will rise within the tapered tube and reach an equilibrium height
that is a function of the flowrate. This height corresponds to an equilibrium condition for which
the net force on the float (buoyancy, float weight, fluid drag) is zero. A calibration scale in the tube
provides the relationship between the float position and the flowrate.

There are many

types of flow

meters.

—
QS

N

V8.13 Rotameter

AN
-
|—! Float at large end of tube indicates
L maximum flowrate

Position of edge of float against
scale gives flowrate reading

\Tapered metering tube

Metering float is freely suspended
in process fluid

I JHl:

'3

Float at narrow end of tube
indicates minimum flowrate

J N
|

[N

B FIGURE 8.46
Rotameter-type flow meter.
(Courtesy of Fischer &
Porter Co.)

—
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Volume flow meters
measure volume
rather than volume
Sflowrate.

AN

V8.14 Water meter

B FIGURE 8.47
Turbine-type flow meter.
(Courtesy of E G & G Flow
Technology, Inc.)

Turbine

Another useful pipe flowrate meter is a turbine meter as is shown in Fig. 8.47. A small, freely
rotating propeller or turbine within the turbine meter rotates with an angular velocity that is a func-
tion of (nearly proportional to) the average fluid velocity in the pipe. This angular velocity is picked
up magnetically and calibrated to provide a very accurate measure of the flowrate through the meter.

8.6.2 Volume Flow Meters

In many instances it is necessary to know the amount (volume or mass) of fluid that has passed
through a pipe during a given time period, rather than the instantaneous flowrate. For example,
we are interested in how many gallons of gasoline are pumped into the tank in our car rather than
the rate at which it flows into the tank. There are numerous quantity-measuring devices that pro-
vide such information.

The nutating disk meter shown in Fig. 8.48 is widely used to measure the net amount of wa-
ter used in domestic and commercial water systems as well as the amount of gasoline delivered to
your gas tank. This meter contains only one essential moving part and is relatively inexpensive and
accurate. Its operating principle is very simple, but it may be difficult to understand its operation
without actually inspecting the device firsthand. The device consists of a metering chamber with
spherical sides and conical top and bottom. A disk passes through a central sphere and divides the
chamber into two portions. The disk is constrained to be at an angle not normal to the axis of sym-
metry of the chamber. A radial plate (diaphragm) divides the chamber so that the entering fluid
causes the disk to wobble (nutate), with fluid flowing alternately above or below the disk. The fluid
exits the chamber after the disk has completed one wobble, which corresponds to a specific volume
of fluid passing through the chamber. During each wobble of the disk, the pin attached to the tip

Calibration gears

Flow
in

B FIGURE 8.48
Disk assembly Nutating disk flow meter.

: (Courtesy of Badger Meter,
Diaphragm Sphere Inc.)
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Inlet Outlet

a1 L

i’

[J =
/ Front case

- Front
diaphragm

(a) (b)

Slider valves
driven by
diaphragm

Back case

Back
diaphragm

() (d)

B FIGURE 8.49 Bellows-type flow meter. (Courtesy of BTR—Rockwell
Gas Products). (a) Back case emptying, back diaphragm filling. (b) Front diaphragm
filling, front case emptying. (¢) Back case filling, back diaphragm emptying. (d) Front
diaphragm emptying, front case filling.

of the center sphere, normal to the disk, completes one circle. The volume of fluid that has passed
through the meter can be obtained by counting the number of revolutions completed.

Another quantity-measuring device that is used for gas flow measurements is the bellows me-
ter as shown in Fig. 8.49. It contains a set of bellows that alternately fill and empty as a result of the
pressure of the gas and the motion of a set of inlet and outlet valves. The common household nat-
ural gas meter is of this type. For each cycle [(a) through (d)] a known volume of gas passes through
the meter.

The nutating disk meter (water meter) is an example of extreme simplicity—one cleverly designed
moving part. The bellows meter (gas meter), on the other hand, is relatively complex—it contains many
moving, interconnected parts. This difference is dictated by the application involved. One measures a
common, safe-to-handle, relatively high-pressure liquid, whereas the other measures a relatively dan-
gerous, low-pressure gas. Each device does its intended job very well.

There are numerous devices used to measure fluid flow, only a few of which have been dis-
cussed here. The reader is encouraged to review the literature to gain familiarity with other use-
ful, clever devices (Refs. 25, 26).

The nutating disk
meter has only one
moving part; the
bellows meter has a
complex set of
moving parts.

8.7 Chapter Summary and Study Guide

This chapter discussed the flow of a viscous fluid in a pipe. General characteristics of laminar, tur-
bulent, fully developed, and entrance flows are considered. Poiseuille’s equation is obtained to
describe the relationship among the various parameters for fully developed laminar flow.
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laminar flow
transitional flow
turbulent flow
entrance length
fully developed flow
wall shear stress
Poiseuille’s law
friction factor
turbulent shear stress
major loss

minor loss

relative roughness
Moody chart
Colebrook formula
loss coefficient
hydraulic diameter
multiple pipe systems
orifice meter

nozzle meter

Venturi meter

Various characteristics of turbulent pipe flow are introduced and contrasted to laminar flow.
It is shown that the head loss for laminar or turbulent pipe flow can be written in terms of the
friction factor (for major losses) and the loss coefficients (for minor losses). In general, the fric-
tion factor is obtained from the Moody chart or the Colebrook formula and is a function of the
Reynolds number and the relative roughness. The minor loss coefficients are a function of the
flow geometry for each system component.

Analysis of noncircular conduits is carried out by use of the hydraulic diameter concept.
Various examples involving flow in single pipe systems and flow in multiple pipe systems are
presented. The inclusion of viscous effects and losses in the analysis of orifice, nozzle, and Ven-
turi flow meters is discussed.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

m write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

m determine which of the following types of flow will occur: entrance flow, or fully devel-
oped flow; laminar flow, or turbulent flow.

m use the Poiseuille equation in appropriate situations and understand its limitations.

explain the main properties of turbulent pipe flow and how they are different from or sim-
ilar to laminar pipe flow.

use the Moody chart and the Colebrook equation to determine major losses in pipe systems.
use minor loss coefficients to determine minor losses in pipe systems.
determine the head loss in noncircular conduits.

incorporate major and minor losses into the energy equation to solve a variety of pipe
flow problems, including Type I problems (determine the pressure drop or head loss),
Type II problems (determine the flow rate), and Type III problems (determine the pipe
diameter).

m solve problems involving multiple pipe systems.

m determine the flowrate through orifice, nozzle, and Venturi flowmeters as a function of the
pressure drop across the meter.

Some of the important equations in this chapter are given below.

€. .
Entrance length Do 0.06 Re for laminar flow .1
te 1/6
D= 4.4 (Re)" for turbulent flow 8.2)
Pressure drop for fully 4¢T,,
developed laminar pipe flow Ap = D 8.5)
Velocity profile for fully ( A pDz)[ . (2,,)2} { . (2,,)2}
. . — == =V — ==
developed laminar pipe flow u(r) 160 D c D (8.7)
Volume flowrate for fully wD* Ap
developed laminar pipe flow = 128t 38.9)
Friction factor for fully 64
developed laminar pipe flow /= Re 8.19
Pressure drop for a ¢ pV?
horizontal pipe Ap=f D 2 8.33)
: ¢
Head loss due to major losses 5 — f=— (8.349)
L major D 2g
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Colebrook formul L 01 <8/D+2'51) 8.35

olebrook formula \/f_ .0 log 37 ReV7 (8.35a)

Explicit alternative to 1 /D' 6.9

Colebrook formula 7f =—18log K”) + Re} (8.35b)

. 2

Head loss due to minor losses ho =K, v (8.36)

2g

Volume flowrate for orifice, 2(py — p2)

nozzle, or Venturi meter Q=G4 DY (8.38, 8.39, 8.40)

p(1 = B)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (¥) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (7) are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 8.1 General Characteristics of Pipe Flow (Also
see Lab Problem 8.130.)

8.1 Obtain a photograph/image of a piping system that would
likely contain “pipe flow” and not “open channel flow.” Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.2 Water flows through a 50-ft pipe with a 0.5-in. diameter at
5 gal/min. What fraction of this pipe can be considered an entrance
region?

8.3 Rainwater runoff from a parking lot flows through a 3-ft-diam-
eter pipe, completely filling it. Whether flow in a pipe is laminar or
turbulent depends on the value of the Reynolds number. (See Video
V8.2.) Would you expect the flow to be laminar or turbulent? Sup-
port your answer with appropriate calculations.

8.4 Blue and yellow streams of paint at 60 °F (each with a density
of 1.6 slugs/ft* and a viscosity 1000 times greater than water) enter
a pipe with an average velocity of 4 ft/s as shown in Fig. P8.4.
Would you expect the paint to exit the pipe as green paint or sepa-
rate streams of blue and yellow paint? Explain. Repeat the problem
if the paint were “thinned” so that it is only 10 times more viscous
than water. Assume the density remains the same.

Yellow 2 in. Green?
i |
Splitte
A — 0 g
!
Blue ! o5 ft !

B FIGURE P84

8.5 Air at 200 °F flows at standard atmospheric pressure in a pipe
at a rate of 0.08 Ib/s. Determine the minimum diameter allowed if
the flow is to be laminar.

8.6 To cool a given room it is necessary to supply 4 ft*/s of air
through an 8-in.-diameter pipe. Approximately how long is the en-
trance length in this pipe?

8.7 A long small-diameter tube is to be used as a viscometer by
measuring the flowrate through the tube as a function of the pres-
sure drop along the tube. The calibration constant, K = Q/Ap, is

calculated by assuming the flow is laminar. For tubes of diameter
0.5, 1.0, and 2.0 mm, determine the maximum flowrate allowed
(in cm?/s) if the fluid is (a) 20 °C water, or (b) standard air.

8.8 Carbon dioxide at 20 °C and a pressure of 550 kPa (abs) flows
in a pipe at a rate of 0.04 N/s. Determine the maximum diameter al-
lowed if the flow is to be turbulent.

8.9 The pressure distribution measured along a straight, horizontal
portion of a 50-mm-diameter pipe attached to a tank is shown in the
table below. Approximately how long is the entrance length? In the
fully developed portion of the flow, what is the value of the wall
shear stress?

x (m) (£0.01 m) p (mm H,0) (5 mm)

0 (tank exit) 520
0.5 427
1.0 351
1.5 288
2.0 236
2.5 188
3.0 145
3.5 109
4.0 73
4.5 36
5.0 (pipe exit) 0

8.10 (See Fluids in the News article titled “Nanoscale flows,” Sec-
tion 8.1.1.) (a) Water flows in a tube that has a diameter of
D = 0.1 m. Determine the Reynolds number if the average veloc-
ity is 10 diameters per second. (b) Repeat the calculations if the
tube is a nanoscale tube with a diameter of D = 100 nm.

Section 8.2 Fully Developed Laminar Flow

8.11 Obtain a photograph/image of a piping system that contains
both entrance region flow and fully developed flow. Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.12 For fully developed laminar pipe flow in a circular pipe, the
velocity profile is given by u(r) = 2 (1 — 7*/R?) in m/s, where R
is the inner radius of the pipe. Assuming that the pipe diameter is
4 cm, find the maximum and average velocities in the pipe as well
as the volume flow rate.

8.13 The wall shear stress in a fully developed flow portion of a
12-in.-diameter pipe carrying water is 1.85 Ib/ft>. Determine the
pressure gradient, dp/dx, where x is in the flow direction, if the
pipe is (a) horizontal, (b) vertical with flow up, or (¢) vertical with
flow down.

8.14 The pressure drop needed to force water through a horizon-
tal 1-in.-diameter pipe is 0.60 psi for every 12-ft length of pipe. De-
termine the shear stress on the pipe wall. Determine the shear stress
at distances 0.3 and 0.5 in. away from the pipe wall.



8.15 Repeat Problem 8.14 if the pipe is on a 20° hill. Is the flow
up or down the hill? Explain.

8.16 Water flows in a constant diameter pipe with the following
conditions measured: At section (a) p, = 32.4 psi and z, = 56.8 fi;
at section (b) p, = 29.7 psi and z, = 68.2 ft. Is the flow from (a) to
(b) or from (b) to (a)? Explain.

*8.17 Some fluids behave as a non-Newtonian power-law fluid
characterized by 7 = —C(du/dr)", where n = 1,3, 5, and so on,
and C is a constant. (If n = 1, the fluid is the customary New-
tonian fluid.) (a) For flow in a round pipe of a diameter D,
integrate the force balance equation (Eq. 8.3) to obtain the veloc-

lty proﬁle
7 A ) 1/n D n+1)/n
n

(b) Plot the dimensionless velocity profile u/V,, where V, is the
centerline velocity (at » = 0), as a function of the dimensionless
radial coordinate r/(D/2), where D is the pipe diameter. Consider
values of n = 1, 3,5, and 7.

u(r) =

8.18 For laminar flow in a round pipe of diameter D, at what dis-
tance from the centerline is the actual velocity equal to the aver-
age velocity?

8.19 Water at 20 °C flows through a horizontal 1-mm-diameter
tube to which are attached two pressure taps a distance 1 m apart.
(a) What is the maximum pressure drop allowed if the flow is to
be laminar? (b) Assume the manufacturing tolerance on the tube
diameter is D = 1.0 = 0.1 mm. Given this uncertainty in the tube
diameter, what is the maximum pressure drop allowed if it must
be assured that the flow is laminar?

8.20 Glycerin at 20 °C flows upward in a vertical 75-mm-diameter
pipe with a centerline velocity of 1.0 m/s. Determine the head loss
and pressure drop in a 10-m length of the pipe.

8.21 Determine the magnitude of the velocity gradient at points
10, 20, and 30 mm from the pipe wall for the flow in Problem
8.20.

8.22 A large artery in a person’s body can be approximated by a
tube of diameter 9 mm and length 0.35 m. Also assume that blood
has a viscosity of approximately 4 X 103N - s/m?, a specific grav-
ity of 1.0, and that the pressure at the beginning of the artery is equiv-
alent to 120 mm Hg. If the flow were steady (it is not) with V' =
0.2 m/s, determine the pressure at the end of the artery if it is ori-
ented (a) vertically up (flow up) or (b) horizontal.

8.23 Attime ¢ = 0 the level of water in tank 4 shown in Fig. P8.23
is 2 ft above that in tank B. Plot the elevation of the water in tank 4
as a function of time until the free surfaces in both tanks are at the
same elevation. Assume quasisteady conditions—that is, the steady
pipe flow equations are assumed valid at any time, even though the
flowrate does change (slowly) in time. Neglect minor losses. Note:
Verify and use the fact that the flow is laminar.

3 ft 2ftatr=0

25 ft
B l{}) A

\ 0.1-in. diameter, galvanized iron
HFIGURE P8.23
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Problems

8.24 A fluid flows through a horizontal 0.1-in.-diameter pipe.
When the Reynolds number is 1500, the head loss over a 20-ft
length of the pipe is 6.4 ft. Determine the fluid velocity.

8.25 A viscous fluid flows in a 0.10-m-diameter pipe such that its
velocity measured 0.012 m away from the pipe wall is
0.8 m/s. If the flow is laminar, determine the centerline velocity
and the flowrate.

8.26 Oil flows through the horizontal pipe shown in Fig. P8.26
under laminar conditions. All sections are the same diameter ex-
cept one. Which section of the pipe (4, B, C, D, or E) is slightly
smaller in diameter than the others? Explain.

15 ft 5 ft

10 ft 6 ft

20-foot
sections

B FIGURE P8.26

8.27 Asphalt at 120 °F, considered to be a Newtonian fluid with
a viscosity 80,000 times that of water and a specific gravity of 1.09,
flows through a pipe of diameter 2.0 in. If the pressure gradient is
1.6 psi/ft determine the flowrate assuming the pipe is (a) horizon-
tal; (b) vertical with flow up.

8.28 Oil of SG = 0.87 and a kinematic viscosity v = 2.2 X 107*
m?/s flows through the vertical pipe shown in Fig. P8.28 at a rate
of 4 X 107* m?/s. Determine the manometer reading, A.

L

SG =0.87

20 mm

l = N s6-13
0

B FIGURE P8.28

8.29 Determine the manometer reading, 4, for Problem 8.28 if the
flow is up rather than down the pipe. Note: The manometer read-
ing will be reversed.

8.30 A liquid with SG = 0.96, 4 = 9.2 X 10~ *N - s/m? and va-
por pressure p, = 1.2 X 10* N/m*(abs) is drawn into the syringe
as is indicated in Fig. P8.30. What is the maximum flowrate if cav-
itation is not to occur in the syringe?
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|

10-mm-diameter

0.12m
0.25-mm-diameter
0.10-m-long needle

\V4

Patm = 101 kPa (abs)

B FIGURE P8.30

Section 8.3 Fully Developed Turbulent Flow

8.31 Obtain a photograph/image of a “turbulator.” (See Fluids in
the News article titled “Smaller heat exchangers” in Section 8.3.1.)
Print this photo and write a brief paragraph that describes its use.

8.32 For oil (SG = 0.86, u = 0.025 Ns/m? flow of 0.3 m%/s
through a round pipe with diameter of 500 mm, determine the
Reynolds number. Is the flow laminar or turbulent?

8.33 For air at a pressure of 200 kPa (abs) and temperature of
15 °C, determine the maximum laminar volume flowrate for flow
through a 2.0-cm-diameter tube.

8.34 Show that the power-law approximation for the velocity pro-
file in turbulent pipe flow (Eq. 8.31) cannot be accurate at the cen-
terline or at the pipe wall because the velocity gradients at these
locations are not correct. Explain.

8.35 As shown in Video V8.9 and Fig. P8.35, the velocity profile
for laminar flow in a pipe is quite different from that for turbulent
flow. With laminar flow the velocity profile is parabolic; with tur-
bulent flow at Re = 10,000 the velocity profile can be approxi-
mated by the power-law profile shown in the figure. (a) For lami-
nar flow, determine at what radial location you would place a Pitot

Turbulent with Re = 10,000
10 / U _p_ rlus
. v R
T
R
Laminar with Re < 2100
u_q_ ‘LJ2
0.5+ v, - R
u
%@_
- 1
0 0.5

B FIGURE P8.35

tube if it is to measure the average velocity in the pipe. (b) Repeat
part (a) for turbulent flow with Re = 10,000.

8.36 The kinetic energy coefficient, «, is defined in Eq. 5.86. Show
that its value for a power-law turbulent velocity profile (Eq. 8.31) is
given by a = (n + 1)’(2n + 1)¥/[4n*(n + 3)2n + 3)].

8.37 When soup is stirred in a bowl, there is considerable tur-
bulence in the resulting motion (see Video V8.7). From a very
simplistic standpoint, this turbulence consists of numerous inter-
twined swirls, each involving a characteristic diameter and ve-
locity. As time goes by, the smaller swirls (the fine scale struc-
ture) die out relatively quickly, leaving the large swirls that
continue for quite some time. Explain why this is to be expected.

8.38 Determine the thickness of the viscous sublayer in a smooth
8-in.-diameter pipe if the Reynolds number is 25,000.

8.39 Water at 60 °F flows through a 6-in.-diameter pipe with an
average velocity of 15 ft/s. Approximately what is the height of
the largest roughness element allowed if this pipe is to be classi-
fied as smooth?

Section 8.4.1 Major Losses (Also see Lab Problem 8.126.)

8.40 Obtain photographs/images for round pipes of different mate-
rials. Print these photos and write a brief paragraph that describes the
different pipes.

8.41 A person with no experience in fluid mechanics wants to esti-
mate the friction factor for 1-in.-diameter galvanized iron pipe at a
Reynolds number of 8,000. They stumble across the simple equation
of /= 64/Re and use this to calculate the friction factor. Explain the
problem with this approach and estimate their error.

8.42 Water flows through a horizontal plastic pipe with a diameter
of 0.2 m at a velocity of 10 cm/s. Determine the pressure drop per
meter of pipe using the Moody chart.

8.43 For Problem 8.42, calculate the power lost to the friction per
meter of pipe.

8.44 Qil (SG = 0.9), with a kinematic viscosity of 0.007 ft*/s, flows
in a 3-in.-diameter pipe at 0.01 ft*/s. Determine the head loss per unit
length of this flow.

8.45 Water flows through a 6-in.-diameter horizontal pipe at a rate
of 2.0 cfs and a pressure drop of 4.2 psi per 100 ft of pipe. Deter-
mine the friction factor.

8.46 Water flows downward through a vertical 10-mm-diameter
galvanized iron pipe with an average velocity of 5.0 m/s and exits
as a free jet. There is a small hole in the pipe 4 m above the outlet.
Will water leak out of the pipe through this hole, or will air enter
into the pipe through the hole? Repeat the problem if the average
velocity is 0.5 m/s.

8.47 Air at standard conditions flows through an 8-in.-diameter,
14.6-ft-long, straight duct with the velocity versus pressure drop
data indicated in the following table. Determine the average fric-
tion factor over this range of data.

V (ft/ min) Ap (in. water)
3950 0.35
3730 0.32
3610 0.30
3430 0.27
3280 0.24
3000 0.20
2700 0.16




8.48 Water flows through a horizontal 60-mm-diameter galvanized
iron pipe at a rate of 0.02 m*/s. If the pressure drop is 135 kPa per
10 m of pipe, do you think this pipe is (a) a new pipe, (b) an old
pipe with a somewhat increased roughness due to aging, or (¢) a
very old pipe that is partially clogged by deposits? Justify your an-
SWer.

8.49 Water flows at a rate of 10 gallons per minute in a new hor-
izontal 0.75-in.-diameter galvanized iron pipe. Determine the pres-
sure gradient, Ap/€, along the pipe.

8.50 Two equal length, horizontal pipes, one with a diameter of
1 in., the other with a diameter of 2 in., are made of the same ma-
terial and carry the same fluid at the same flow rate. Which pipe
produces the larger head loss? Justify your answer.

78.51 A 6-inch-diameter water main in your town has become
very rough due to rust and corrosion. It has been suggested that
the flowrate through this pipe can be increased by inserting a
smooth plastic liner into the pipe. Although the new diameter
will be smaller, the pipe will be smoother. Will such a procedure
produce a greater flowrate? List all assumptions and show all
calculations.

8.52 Blood (assume p = 4.5 X 107 1b - s/ft*, SG = 1.0) flows
through an artery in the neck of a giraffe from its heart to its head
at arate of 2.5 X 107* ft*/s. Assume the length is 10 ft and the di-
ameter is 0.20 in. If the pressure at the beginning of the artery (out-
let of the heart) is equivalent to 0.70 ft Hg, determine the pressure
at the end of the artery when the head is (a) 8 ft above the heart,
or (b) 6 ft below the heart. Assume steady flow. How much of this
pressure difference is due to elevation effects, and how much is
due to frictional effects?

8.53 A 40-m-long, 12-mm-diameter pipe with a friction factor of
0.020 is used to siphon 30 °C water from a tank as shown in Fig.
P8.53. Determine the maximum value of / allowed if there is to be
no cavitation within the hose. Neglect minor losses.

B FIGURE P8.53

8.54 Gasoline flows in a smooth pipe of 40-mm diameter at a rate
of 0.001 m?/s. If it were possible to prevent turbulence from oc-
curring, what would be the ratio of the head loss for the actual tur-
bulent flow compared to that if it were laminar flow?
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8.55 A 3-ft-diameter duct is used to carry ventilating air into a ve-
hicular tunnel at a rate of 9000 ft’/min. Tests show that the pres-
sure drop is 1.5 in. of water per 1500 ft of duct. What is the value
of the friction factor for this duct and the approximate size of the
equivalent roughness of the surface of the duct?

Section 8.4.2 Minor Losses (Also see Lab
Problem 8.131.)

8.56 Obtain photographs/images of various pipe components that
would cause minor losses in the system. Print these photos and
write a brief paragraph that discusses these components.

8.57 An optional method of stating minor losses from pipe com-
ponents is to express the loss in terms of equivalent length; the
head loss from the component is quoted as the length of straight pipe
with the same diameter that would generate an equivalent loss. De-
velop an equation for the equivalent length, €.

8.58 Given 90° threaded elbows used in conjunction with copper
pipe (drawn tubing) of 0.75-in. diameter, convert the loss for a sin-
gle elbow to equivalent length of copper pipe for wholly turbulent
flow.

8.59 Based on Problem 8.57, develop a graph to predict equiva-
lent length, €., as a function of pipe diameter for a 45° threaded
elbow connecting copper piping (drawn tubing) for wholly turbu-
lent flow.

8.60 A regular 90° threaded elbow is used to connect two
straight portions of 4-in.-diameter galvanized iron pipe. (a) If
the flow is assumed to be wholly turbulent, determine the equiv-
alent length of straight pipe for this elbow. (b) Does a pipe fit-
ting such as this elbow have a significant or negligible effect on
the flow? Explain.

8.61 To conserve water and energy, a “flow reducer” is installed
in the shower head as shown in Fig. P8.61. If the pressure at
point (1) remains constant and all losses except for that in the
“flow reducer” are neglected, determine the value of the loss co-
efficient (based on the velocity in the pipe) of the “flow reducer”
if its presence is to reduce the flowrate by a factor of 2. Neglect
gravity.

Flow reducer washer

50 holes of
diameter 0.05 in.

B FIGURE P8.61

8.62 Water flows at a rate of 0.040 m*/s in a 0.12-m-diameter pipe
that contains a sudden contraction to a 0.06-m-diameter pipe. De-
termine the pressure drop across the contraction section. How much
of this pressure difference is due to losses and how much is due to
kinetic energy changes?

8.63 A sign like the one shown in Fig. P8.63 is often attached to
the side of a jet engine as a warning to airport workers. Based on
Video V8.10 or Figs. 8.22 and 8.25, explain why the danger areas
(indicated in color) are the shape they are.
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B FIGURE P8.63

8.64 (See Fluids in the News article titled “New hi-tech foun-
tains,” Section 8.5.) The fountain shown in Fig. P8.64 is de-
signed to provide a stream of water that rises # = 10ft to
h = 20 ft above the nozzle exit in a periodic fashion. To do this
the water from the pool enters a pump, passes through a pres-
sure regulator that maintains a constant pressure ahead of the
flow control valve. The valve is electronically adjusted to pro-
vide the desired water height. With 2 = 10 ft the loss coefficient
for the valve is K; = 50. Determine the valve loss coefficient
needed for &7 = 20 ft. All losses except for the flow control valve
are negligible. The area of the pipe is 5 times the area of the exit
nozzle.

Flow control valve

Pump
Pressure regulator
HFIGURE P8.64

*8.65 Water flows from a large open tank through a sharp-edged
entrance and into a galvanized iron pipe of length 100 m and di-
ameter 10 mm. The water exits the pipe as a free jet at a distance
h below the free surface of the tank. Plot a log—log graph of the
flowrate, Q, as a function of 4 for 0.1 = 4 = 10 m.

8.66 Air flows through the mitered bend shown in Fig. P8.66 at
a rate of 5.0 cfs. To help straighten the flow after the bend, a set
of 0.25-in.-diameter drinking straws is placed in the pipe as shown.

Estimate the extra pressure drop between points (1) and (2) caused
by these straws.

Tightly packed 0.25-in.-diameter,
12-in.-long straws

B FIGURE P8.66

8.67 Repeat Problem 8.66 if the straws are replaced by a piece of
porous foam rubber that has a loss coefficient equal to 5.4.

8.68 As shown in Fig. P8.68, water flows from one tank to an-
other through a short pipe whose length is » times the pipe diam-
eter. Head losses occur in the pipe and at the entrance and exit.
(See Video V8.10.) Determine the maximum value of » if the ma-
jor loss is to be no more than 10% of the minor loss and the fric-
tion factor is 0.02.

B FIGURE P8.68

8.69 Air flows through the fine mesh gauze shown in Fig. P8.69
with an average velocity of 1.50 m/s in the pipe. Determine the
loss coefficient for the gauze.

Gauze over

/ end of pipe

—

Water

L
% —— = 1.5 m/s
1=

8 mm

T

B FIGURE P8.69

8.70 Water flows steadily through the 0.75-in-diameter galva-
nized iron pipe system shown in Video V8.14 and Fig. P8.70 at
a rate of 0.020 cfs. Your boss suggests that friction losses in the
straight pipe sections are negligible compared to losses in the
threaded elbows and fittings of the system. Do you agree or dis-
agree with your boss? Support your answer with appropriate cal-
culations.



6-in. length N . 6-in. length

90° threaded
elbows —

0.60-in. dia.

Reducer 0 =0.020 cfs

1-in. length

4-in. length < Tee

B FIGURE P8.70

Section 8.4.3 Noncircular Conduits

8.71 Obtain a photograph/image of a noncircular duct. Print this
photo and write a brief paragraph that describes the situation involved.

8.72 Given two rectangular ducts with equal cross-sectional area,
but different aspect ratios (width/height) of 2 and 4, which will
have the greater frictional losses? Explain your answer.

8.73 Air at standard temperature and pressure flows at a rate of
7.0 cfs through a horizontal, galvanized iron duct that has a rec-
tangular cross-sectional shape of 12 in. by 6 in. Estimate the pres-
sure drop per 200 ft of duct.

8.74 Air flows through a rectangular galvanized iron duct of size
0.30 m by 0.15 m at a rate of 0.068 m>/s. Determine the head loss
in 12 m of this duct.

8.75 Air at standard conditions flows through a horizontal 1 ft by
1.5 ft rectangular wooden duct at a rate of 5000 ft’/min. Determine
the head loss, pressure drop, and power supplied by the fan to over-
come the flow resistance in 500 ft of the duct.

Section 8.5.1 Single Pipes—Determine Pressure Drop

8.76 Assume a car’s exhaust system can be approximated as 14 ft
of 0.125-ft-diameter cast-iron pipe with the equivalent of six 90°
flanged elbows and a muffler. (See Video V8.12.) The muffler acts
as a resistor with a loss coefficient of K; = 8.5. Determine the
pressure at the beginning of the exhaust system if the flowrate is
0.10 cfs, the temperature is 250 °F, and the exhaust has the same
properties as air.

8.77 The pressure at section (2) shown in Fig. P8.77 is not to fall
below 60 psi when the flowrate from the tank varies from 0 to 1.0 cfs

All pipe is 6-in.-diameter plastic
(e/D = 0), flanged fittings

6:t y ®DBranch I|r‘1? (2.2 Main
T line
600 ft ‘
~—with 15 i 900 ft |
90° elbows

B FIGURE P8.77
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and the branch line is shut off. Determine the minimum height, 4,
of the water tank under the assumption that (a) minor losses are neg-
ligible, (b) minor losses are not negligible.

8.78 Repeat Problem 8.77 with the assumption that the branch
line is open so that half of the flow from the tank goes into the
branch, and half continues in the main line.

8.79 The exhaust from your car’s engine flows through a complex
pipe system as shown in Fig. P8.79 and Video V8.12. Assume that
the pressure drop through this system is Ap, when the engine is
idling at 1000 rpm at a stop sign. Estimate the pressure drop (in
terms of Ap,) with the engine at 3000 rpm when you are driving
on the highway. List all the assumptions that you made to arrive
at your answer.

Exhaust

Muffler =10

o

Exhaust header
HFIGURE P8.79

8.80 According to fire regulations in a town, the pressure drop in
a commercial steel horizontal pipe must not exceed 1.0 psi per
150 ft of pipe for flowrates up to 500 gal/min. If the water tem-
perature is above 50° F, can a 6-in-diameter pipe be used?

8.81 As shown in Video V8.14 and Fig. P8.81, water “bubbles up”
3 in. above the exit of the vertical pipe attached to three horizon-
tal pipe segments. The total length of the 0.75-in.-diameter galva-
nized iron pipe between point (1) and the exit is 21 in. Determine
the pressure needed at point (1) to produce this flow.

B FIGURE P8.81

8.82 Water at 10°C is pumped from a lake as shown in
Fig. P8.82. If the flowrate is 0.011 m’/s, what is the maximum
length inlet pipe, ¢, that can be used without cavitation
occurring?

Length ¢
D=0.07m
€ =0.08 mm

Elevation
Q =
0.011 m¥s

Elevation
653 m

B FIGURE P8.82

8.83 Water flows through the pipe system shown in Fig. P8.83
at a rate of 0.30 ft*/s. The pipe diameter is 2 in., and its roughness
is 0.002 in. The loss coefficient for each of the five filters is 6.0,
and all other minor losses are negligible. Determine the power
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added to the water by the pump if the pressure immediately before
the pump is to be the same as that immediately after the last filter.
The length of the pipe between these two locations is 80 ft.

S Filters

Pump
B FIGURE P8.83

8.84 Water at 40 °F flows through the coils of the heat exchanger
as shown in Fig. P8.84 at a rate of 0.9 gal/min. Determine the
pressure drop between the inlet and outlet of the horizontal
device.

18 in. i
<t 0

' \Threaded 180°

)
) return bend
)

\ >

0.5-in. copper pipe (drawn tubing)
HFIGURE P8.84

8.85 For the flow in Problem 8.84, ethylene glycol is added to the
water for freeze protection if the temperature drops below the freez-
ing point. The density is unchanged, and all flow conditions are
the same except that the viscosity of the mixture has changed to
0.01 Ns/m? at the given temperature. Recalculate the pressure drop
between inlet and outlet. Discuss how this loss will change if the
fluid temperature does drop below freezing.

8.86 Water flows through a 2-in.-diameter pipe with a velocity of
15 ft/s as shown in Fig. P8.86. The relative roughness of the pipe
is 0.004, and the loss coefficient for the exit is 1.0. Determine the
height, A, to which the water rises in the piezometer tube.

/ Open
h A[
8 ft
15 1y 2in.
t/s
0 '_J P J

f — |
‘ 8 ft
H FIGURE P8.86

8.87 Water is pumped through a 60-m-long, 0.3-m-diameter pipe
from a lower reservoir to a higher reservoir whose surface is 10 m
above the lower one. The sum of the minor loss coefficients for
the system is K; = 14.5. When the pump adds 40 kW to the wa-
ter the flowrate is 0.20 m*/s. Determine the pipe roughness.

78.88 Estimate the pressure drop associated with the air flow from
the cold air register in your room to the furnace (see Figure P8.88).
List all assumptions and show all calculations.

Cold air register «

A

[ —
Ig [~— Duct
% l Furnace
JH

"<7J— Filter

B FIGURE P8.88

8.89 Asshown in Fig. P8.89, a standard household water meter is
incorporated into a lawn irrigation system to measure the volume
of water applied to the lawn. Note that these meters measure vol-
ume, not volume flowrate. (See Video V8.15.) With an upstream
pressure of p; = 50 psi the meter registered that 120 ft* of water
was delivered to the lawn during an “on” cycle. Estimate the up-
stream pressure, p;, needed if it is desired to have 150 ft* delivered
during an “on” cycle. List any assumptions needed to arrive at
your answer.

&

9

I | Irrigation :
WATER 1 System;_ _ |

: METER pipes, fittings, |
w | nozzles, etc. :

B FIGURE P8.89

8.90 A fan is to produce a constant air speed of 40 m/s through-
out the pipe loop shown in Fig. P8.90. The 3-m-diameter pipes are
smooth, and each of the four 90° elbows has a loss coefficient of
0.30. Determine the power that the fan adds to the air.

D=3m-— |—
10 m

oy /Fan
él — F

B FIGURE P8.90

1

Section 8.5.1 Single Pipes—Determine Flowrate (Also
see Lab Problems 8.128 and 8.129.)

8.91 The turbine shown in Fig. P8.91 develops 400 kW. Deter-
mine the flowrate if (a) head losses are negligible or (b) head loss
due to friction in the pipe is considered. Assume /= 0.02. Note:
There may be more than one solution or there may be no solution
to this problem.



20m
Diffuser

120 m of 0.30-m-diameter
cast-iron pipe

B FIGURE P8.91

*8.92 In some locations with very “hard” water, a scale can build
up on the walls of pipes to such an extent that not only does the
roughness increases with time, but the diameter significantly de-
creases with time. Consider a case for which the roughness and di-
ameter vary as € = 0.02 + 0.01# mm, D = 50 (1 — 0.027) mm,
where ¢ is in years. Plot the flowrate as a function of time for t = 0
to ¢t = 10 years if the pressure drop per 12 m of horizontal pipe re-
mains constant at Ap = 1.3 kPa.

8.93 Water flows from the nozzle attached to the spray tank shown
in Fig. P8.93. Determine the flowrate if the loss coefficient for the
nozzle (based on upstream conditions) is 0.75 and the friction fac-
tor for the rough hose is 0.11.

Nozzle diameter
=7.5mm

0.80 m

B FIGURE P8.93

8.94 When the pump shown in Fig. P8.94 adds 0.2 horsepower to
the flowing water, the pressures indicated by the two gages are
equal. Determine the flowrate.

Length of pipe between gages = 60 ft
Pipe diameter = 0.1 ft

Pipe friction factor = 0.03

Filter loss coefficient = 12

Pump

~—

iy

B FIGURE P8.94

8.95 Water is pumped between two large open tanks as shown in
Fig. P8.95. If the pump adds 50 kW of power to the fluid, what is

Diameter
Water Dy=0.5m
Pump /

I |

v
Pipe length = 600 m
H FIGURE P8.95
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the flowrate passing between the tanks? Assume the friction fac-
tor to be equal to 0.02 and minor losses to be negligible.

78.96 Gasoline is unloaded from the tanker truck shown in
Fig. P8.96 through a 4-in.-diameter rough-surfaced hose. This is a
“gravity dump”” with no pump to enhance the flowrate. It is claimed
that the 8800-gallon capacity truck can be unloaded in 28 minutes.
Do you agree with this claim? Support your answer with appropri-
ate calculations.

=
=2

D 00 L 0

=

Midstate Gasoline

B FIGURE P8.96

8.97 The pump shown in Fig. P8.97 delivers a head of 250 ft to
the water. Determine the power that the pump adds to the water.
The difference in elevation of the two ponds is 200 ft.

Pipe length = 500 ft
Pipe diameter = 0.75 ft
Pipe roughness = 0

B FIGURE P8.97

8.98 Water flows through two sections of the vertical pipe shown
in Fig. P8.98. The bellows connection cannot support any force in
the vertical direction. The 0.4-ft-diameter pipe weighs 0.2 Ib/ft, and
the friction factor is assumed to be 0.02. At what velocity will the
force, F, required to hold the pipe be zero?

M Free jet
-

f=0.020 AN Pipe weighs

0.20 Ib/ft

—

—D=0.40ft

@ Bellows

t

o
B FIGURE P8.98

8.99 Water is circulated from a large tank, through a filter, and back
to the tank as shown in Fig. P8.99. The power added to the water by
the pump is 200 ft - Ib/s. Determine the flowrate through the filter.
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K exit=1-
K, eibow =15 ™
—= 1[I —
K}, vawe = 6.0
K filer = 12.0 K, o =0.8
||| |||| m = ——- \200 ft. of 0.1-ft-diameter
Filter =~ pipe with ¢/D = 0.01

B FIGURE P8.99

Section 8.5.1 Single Pipes—Determine Diameter

8.100 A certain process requires 2.3 cfs of water to be delivered
at a pressure of 30 psi. This water comes from a large-diameter
supply main in which the pressure remains at 60 psi. If the galva-
nized iron pipe connecting the two locations is 200 ft long and con-
tains six threaded 90° elbows, determine the pipe diameter. Eleva-
tion differences are negligible.

8.101 Water is pumped between two large open reservoirs through
1.5 km of smooth pipe. The water surfaces in the two reservoirs are
at the same elevation. When the pump adds 20 kW to the water the
flowrate is 1 m®/s. If minor losses are negligible, determine the pipe
diameter.

8.102 Determine the diameter of a steel pipe that is to carry
2000 gal/min of gasoline with a pressure drop of 5 psi per 100 ft of
horizontal pipe.

8.103 Water is to be moved from a large, closed tank in which the
air pressure is 20 psi into a large, open tank through 2000 ft of
smooth pipe at the rate of 3 ft*/s. The fluid level in the open tank
is 150 ft below that in the closed tank. Determine the required di-
ameter of the pipe. Neglect minor losses.

8.104 Rainwater flows through the galvanized iron downspout
shown in Fig. P8.104 at a rate of 0.006 m’/s. Determine the size
of the downspout cross section if it is a rectangle with an aspect
ratio of 1.7 to 1 and it is completely filled with water. Neglect the
velocity of the water in the gutter at the free surface and the head
loss associated with the elbow.

2 Q 0
[ 3m |

B FIGURE P8.104

*8.105 Repeat Problem 8.104 if the downspout is circular.

Section 8.5.2 Multiple Pipe Systems

8.106 Obtain a photograph/image of a multiple pipe system with
series of parallel flows. Print this photo and write a brief paragraph
that describes the situation involved.

8.107 Air, assumed incompressible, flows through the two pipes
shown in Fig. P8.107. Determine the flowrate if minor losses are
neglected and the friction factor in each pipe is 0.015. Determine
the flowrate if the 0.5-in.-diameter pipe were replaced by a 1-in.-
diameter pipe. Comment on the assumption of incompressibility.

p = 0.5 psi
T=150°F )
Lin. 0.50 in.

¢
L] |

| 20 ft >

D

sztég

B FIGURE P8.107

*8.108 Repeat Problem 8.107 if the pipes are galvanized iron and
the friction factors are not known a priori.

18.109 Estimate the power that the human heart must impart to
the blood to pump it through the two carotid arteries from the heart
to the brain. List all assumptions and show all calculations.

8.110 The flowrate between tank A4 and tank B shown in
Fig. P8.110 is to be increased by 30% (i.e., from Q to 1.30Q) by
the addition of a second pipe (indicated by the dotted lines) run-
ning from node C to tank B. If the elevation of the free surface in
tank A is 25 ft above that in tank B, determine the diameter, D, of
this new pipe. Neglect minor losses and assume that the friction
factor for each pipe is 0.02.

\V4 6-in. diameter;

,,,,,,,,,,,, 6-in. diameter;
600 ft long

500 ft long

Diameter D, 500 ft long
HEFIGURE P8.110

8.111 The three tanks shown in Fig. P8.111 are connected by pipes
with friction factors of 0.03 for each pipe. Determine the water ve-
locity in each pipe. Neglect minor losses.

Elevation =
850 ft
Elevation = R
838 ft
:—:—:;Y’ Eaannr D=
D=1.01t =
€ =800 ft
Elevation =
4 805 ft

B FIGURE P8.111

8.112 The three water-filled tanks shown in Fig. P8.112 are con-
nected by pipes as indicated. If minor losses are neglected, deter-
mine the flowrate in each pipe.



Elevation = 60 m

Elevation =20 m

Elevation = 0

D=0.08m
¢ =200m
f =0.020

B FIGURE P8.112

8.113 (See Fluids in the News article titled “Deepwater pipeline,”
Section 8.5.2.) Five oil fields, each producing an output of Q bar-
rels per day, are connected to the 28-in.-diameter “main line pipe”
(4-B—-C) by 16-in.-diameter “lateral pipes” as shown in Fig.
P8.113. The friction factor is the same for each of the pipes and
elevation effects are negligible. (a) For section 4—B determine the
ratio of the pressure drop per mile in the main line pipe to that in
the lateral pipes. (b) Repeat the calculations for section B—C.

0 Lateral
N \ — %i»

/b o

B FIGURE P8.113

+8.114 As shown in Fig. P8.114, cold water (7 = 50 °F) flows
from the water meter to either the shower or the hot water heater.
In the hot water heater it is heated to a temperature of 150 °F. Thus,
with equal amounts of hot and cold water, the shower is at a com-
fortable 100 °F. However, when the dishwasher is turned on, the
shower water becomes too cold. Indicate how you would predict
this new shower temperature (assume the shower faucet is not ad-
justed). State any assumptions needed in your analysis.

Shower—

iDishwasher

Hot water heater

Cold —

Water meter

-

[
B FIGURE P8.114

Section 8.6 Pipe Flowrate Measurement (Also see Lab
Problem 8.127.)
8.115 Obtain a photograph/image of a flowrate measurement de-

vice. Print this photo and write a brief paragraph that describes the
measurement range of the device.
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8.116 A 2-in.-diameter orifice plate is inserted in a 3-in.-diameter
pipe. If the water flowrate through the pipe is 0.90 cfs, determine
the pressure difference indicated by a manometer attached to the
flow meter.

8.117 Air to ventilate an underground mine flows through a large
2-m-diameter pipe. A crude flowrate meter is constructed by placing
a sheet metal “washer” between two sections of the pipe. Estimate
the flowrate if the hole in the sheet metal has a diameter of 1.6 m and
the pressure difference across the sheet metal is 8.0 mm of water.

8.118 Water flows through a 40-mm-diameter nozzle meter in a
75-mm-diameter pipe at a rate of 0.015 m?/s. Determine the pres-
sure difference across the nozzle if the temperature is (a) 10 °C,
or (b) 80 °C.

8.119 Air at 200 °F and 60 psia flows in a 4-in.-diameter pipe at
a rate of 0.52 1b/s. Determine the pressure at the 2-in.-diameter
throat of a Venturi meter placed in the pipe.

8.120 A 2.5-in.-diameter flow nozzle is installed in a 3.8-in.-
diameter pipe that carries water at 160 °F. If the air—water
manometer used to measure the pressure difference across the me-
ter indicates a reading of 3.1 ft, determine the flowrate.

8.121 A 0.064-m-diameter nozzle meter is installed in a 0.097 m-
diameter pipe that carries water at 60 °C. If the inverted air—water
U-tube manometer used to measure the pressure difference across
the meter indicates a reading of 1 m, determine the flowrate.

8.122 Water flows through the WVenturi meter shown in
Fig. P8.122. The specific gravity of the manometer fluid is 1.52.
Determine the flowrate.

B FIGURE P8.122

8.123 Water flows through the orifice meter shown in Fig. P8.123
at a rate of 0.10 cfs. If d = 0.1 ft, determine the value of A.

-

4\ —

T
e

B FIGURE P8.123

8.124 Water flows through the orifice meter shown in Fig. P8.123
such that # = 1.6 ft with d = 1.5 in. Determine the flowrate.

8.125 The scale reading on the rotameter shown in Fig. P8.125
and Video V8.14 (also see Fig. 8.46) is directly proportional to the
volumetric flowrate. With a scale reading of 2.6 the water bubbles
up approximately 3 in. How far will it bubble up if the scale read-
ing is 5.0?
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Rotameter

B FIGURE P8.125

Bl Lab Problems

8.126 This problem involves the determination of the friction fac-
tor in a pipe for laminar and transitional flow conditions. To pro-
ceed with this problem, go to Appendix H which is located on the
book’s web site, www.wiley.com/college/munson.

8.127 This problem involves the calibration of an orifice meter
and a Venturi meter. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

8.128 This problem involves the flow of water from a tank and
through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.129 This problem involves the flow of water pumped from a tank
and through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.130 This problem involves the pressure distribution in the en-
trance region of a pipe. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.131 This problem involves the power loss due to friction in a
coiled pipe. To proceed with this problem, go to Appendix H which
is located on the book’s web site, www.wiley.com/college/munson.

B Life Long Learning Problems

8.132 The field of bioengineering has undergone significant
growth in recent years. Some universities have undergraduate and
graduate programs in this field. Bioengineering applies engineer-
ing principles to help solve problems in the medical field for hu-
man health. Obtain information about bioengineering applications
in blood flow. Summarize your findings in a brief report.

8.133 Data used in the Moody diagram were first published in
1944. Since then, there have been many innovations in pipe mate-
rial, pipe design, and measurement techniques. Investigate whether
there have been any improvements or enhancements to the Moody
chart. Summarize your findings in a brief report.

8.134 As discussed in Sec. 8.4.2, flow separation in pipes can lead
to losses (we will also see in Chapter 9 that external flow separation
is a significant problem). For external flows, there have been many
mechanisms devised to help mitigate and control flow separation
from the surface, e.g., from the wing of an airplane. Investigate ei-
ther passive or active flow control mechanisms that can reduce or
eliminate internal flow separation (e.g., flow separation in a diffuser).
Summarize your findings in a brief report.

B FlowLab Problems

*8.135 This FlowLab problem involves simulating the flow in the
entrance region of a pipe and looking at basic concepts involved
with the flow regime. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

*8.136 This FlowLab problem involves investigation of the cen-
terline pressure distribution along a pipe. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/munson.

*8.137 This FlowLab problem involves conducting a parametric
study to see how Reynolds number affects the entrance length of
a pipe. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.138 This FlowLab problem involves investigation of pressure
drop in the entrance region of a pipe as a function of Reynolds
number as well as comparing simulation results to analytic values.
To proceed with this problem, go to the book’s web site, www.
wiley.com/college/munson.

*8.139 This FlowLab problem involves the simulation of fully de-
veloped pipe flow and how the Reynolds number affects the wall
friction. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.140 This FlowLab problem involves conducting a parametric
study on the effects of a sudden pipe expansion on the overall pres-
sure drop in a pipe. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/munson.

*8.141 This FlowLab problem involves investigation of effects of
the pipe expansion ratio on flow separation. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.142 This FlowLab problem involves investigation of geometric
effects of a diffuser on the resulting flow field. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.143 This FlowLab problem involves investigating the effects
of the diameter ratio for a flat plate type orifice meter. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/munson.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/munson.



