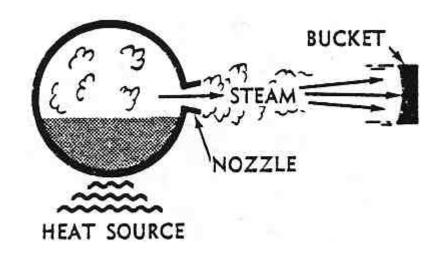

Selecting Steam Turbines for Pump Drives

Dave Scott
Ramco Energy Products Ltd

Wayne Adams
J.W. Adams & Assoc. Inc

Calgary Pump Symposium November 13,2009


What is a Steam Turbine?

A Steam Turbine is an energy conversion device. It extracts heat energy from steam and converts it to velocity, or kinetic energy. The velocity energy, in turn, is used to produce rotary motion or useable shaft power.

What is a Steam Turbine?

Steam Cycle Terms

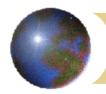
Non- Condensing:

"Non-condensing" cycle is used when the turbine exhaust pressure is above atmospheric (14.7 psia). The exhaust steam energy is usually utilized in the plant process (resulting in a high "Steam-Cycle" efficiency).

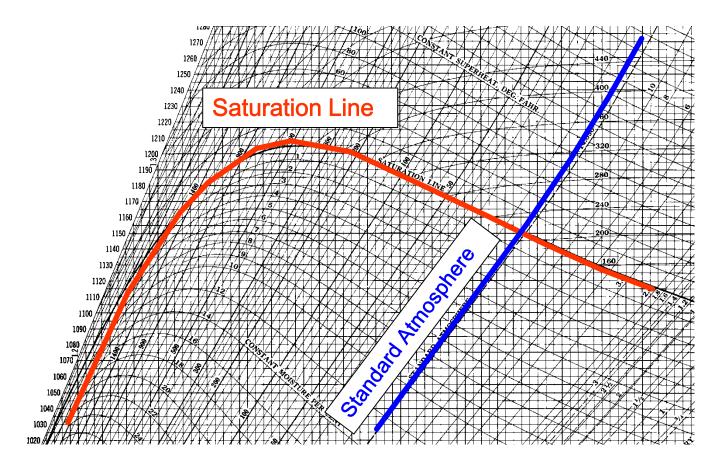
Steam Cycle Terms

Condensing:

"Condensing" cycle is used when the turbine exhausts to a pressure lower that atmospheric (usually to a steam condenser). The steam is cooled in the condenser (by water or air cooling) and the resulting condensate is pumped back to the boiler. Condensing "Steam Cycle" efficiencies are usually very low since most of the exhaust steam energy is lost to the cooling medium and not recovered.



Steam Cycle Terms


Steam Rates:

- <u>Theoretical Steam Rate</u> (TSR) is based on "isentropic" turbine performance [no losses] or 100% efficiency.
- <u>Actual Steam Rate</u> (ASR) reflects turbine efficiency and is expressed in the same terms as the TSR. Lower ASR's are indicative of higher turbine efficiencies.
- Larger wheel sizes are often more efficient. Smaller wheels have lower windage losses and can be more efficient at low horsepowers than large wheels.
- Typical single-stage turbine efficiencies range between 30 50%. Standard multistage turbine efficiencies range between 60 70%. Engineered multistage turbine efficiencies range between 70 80%.


Mollier Diagram

Steam Cycle

- •Why Steam Turbines?
- Steam Turbine construction
- Specifications
- Steam Turbine selection

Steam Turbines as Prime Movers

- Prime movers are required as a drive for pumps, fans, blowers, generators, compressors, etc.
- Steam turbine drivers are prime movers that convert the thermal energy of steam into mechanical energy through the rotation of a shaft.

Steam Turbines Applications

Pumps

Generator Drives

Compressors

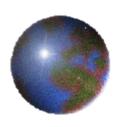
Fans

Blowers

Paper Mills

Sugar Mills

Palm Oil Mills



Advantages of Steam Turbine Drives

- High horsepower in a small package.
- Variable/optimal speed capability.
- Usually directly connected to driven equipment.
- Non Sparking explosion proof.
- High starting torque capability.
- Will not stall or trip on overload.
- Can operate independently of plant electrical system.
- Quick start capability.

Why Steam Turbines?

Why Steam Turbines? Variable Speeds

	Design speed	Maximum Continuous speed	Minimum speed
Simple	100%	105%	85%
governors			
Advanced	100%	105%	65% or
governors			more

Why Steam Turbines? Speed Capability

Typical pump speeds:
1500, 1800, 3000, 3600 RPM
Maximum speeds -To 12000 RPM
(and more)

Why Steam Turbines? Quick Starting

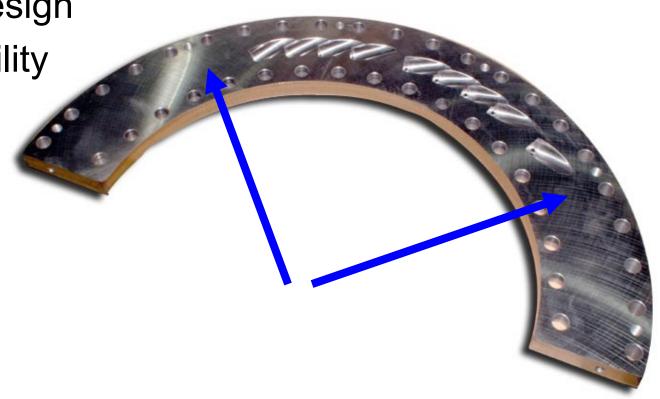
Why Steam Turbines? Availability of Steam

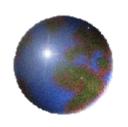
Exothermic processes

Why Steam Turbines? Electrical Power Alternatives

Critical duties - power not required to operate a steam turbine

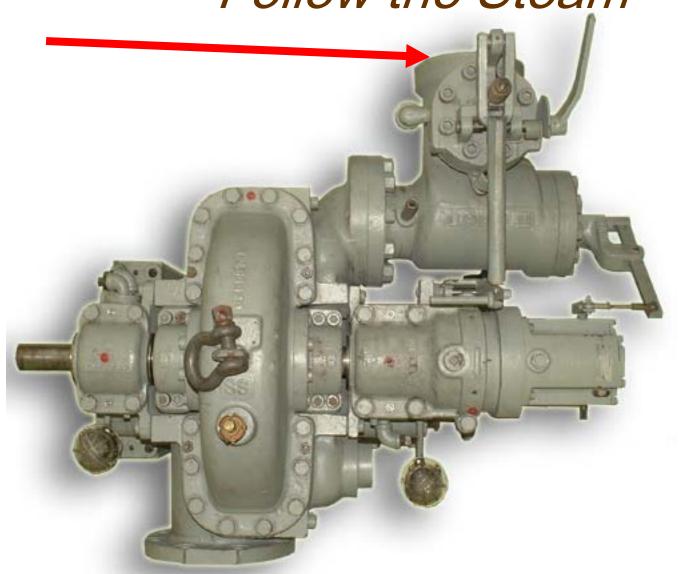
Generate power when power is not available

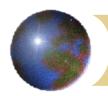


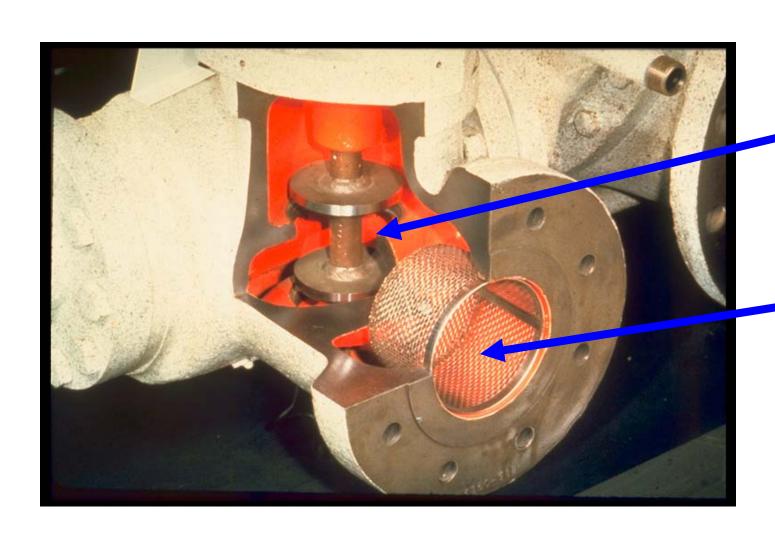

Why Steam Turbines?

Flexibility

Variety of duties, common design
Upgradeability

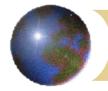



Steam Turbine Construction

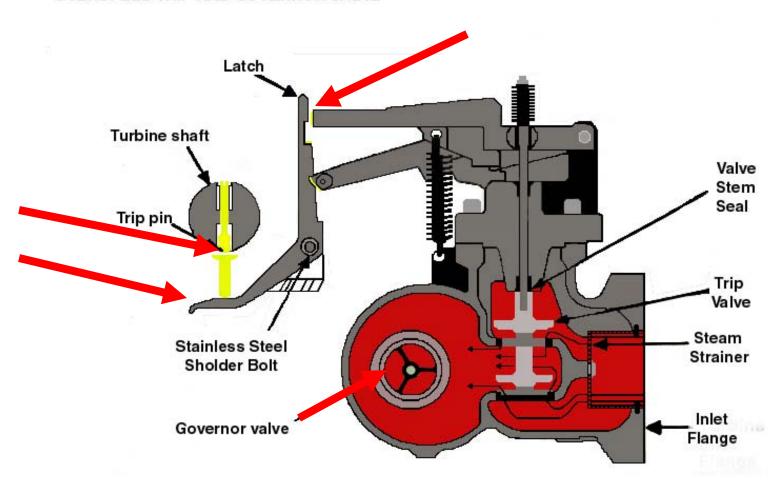

Steam Turbine Construction

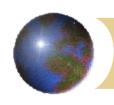
Follow the Steam

Steam Turbine Construction Inlet

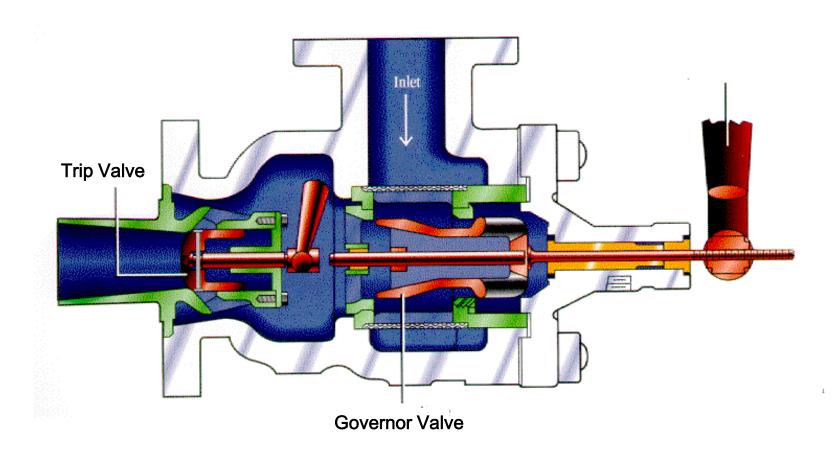


Steam Turbine Design -Components

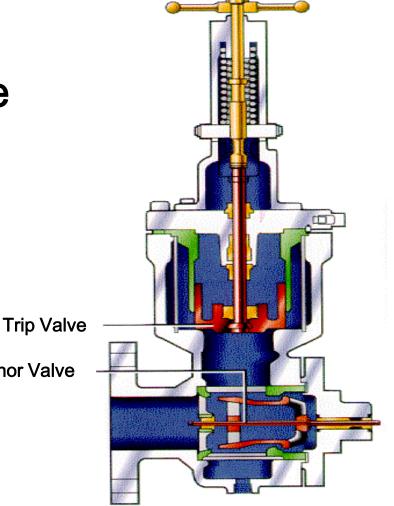

Trip Valve Types


- **Venturi Trip** single seated and piloted. Normally actuated through springs and linkages but also can be used in conjunction with bellows assemblies for low/air pressure trip functions. No throttling capability.
- **Built-in T &T Valve** The trip and governor valve are housed in the same inlet casing.
- **Separate T & T Valve** just as the name implies, it is separate from the turbine. Oil operated or latch type.

Steam Turbine Construction Steam Chest


OVERSPEED TRIP AND GOVERNOR VALVE

Steam Turbine Design -Components


Single Governor Valve & Venturi Trip

Steam Turbine Design -Components

Trip &Throttle Valve

Governor Valve

Steam Turbine Design - Components

Rotor

Curtis 2 row wheel is standard but 1 Rateau wheel is available for high speed applications.

Single profiled disc with 2 rows of blades shrunk and keyed on to shaft is standard. Solid rotor construction is available for certain applications and API 612 machines.

Steam Turbine Design -Components

Blades / Buckets

Turbine blades (buckets) are normally 403 stainless steel

Lower stressed blades are made from stock drawn to foil shape. (Drawn Blades)

Steam Turbine Design -Components

Blades / Buckets

Drawn Blades:

Machined from extruded airfoil shaped stock.

Cut to length, tenon and root machined.

Packer piece (spacer) between each blade.

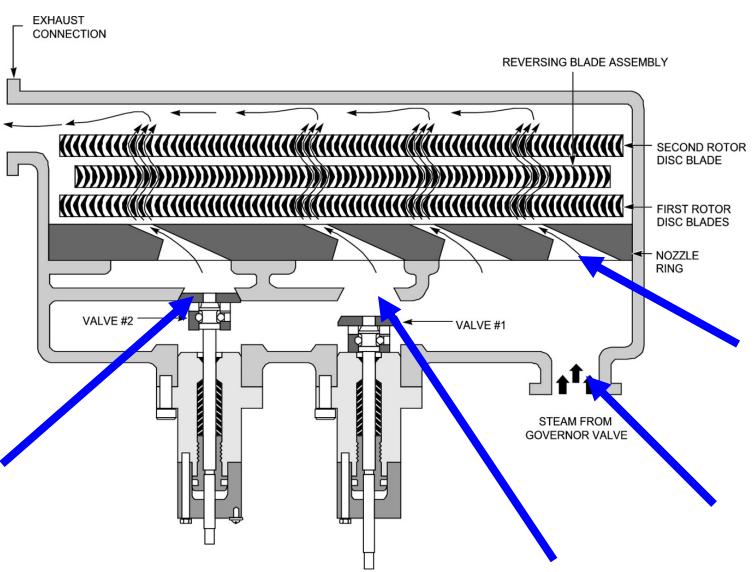
Wedge/block locking piece at rim insertion point.

Steam Turbine Design - Components

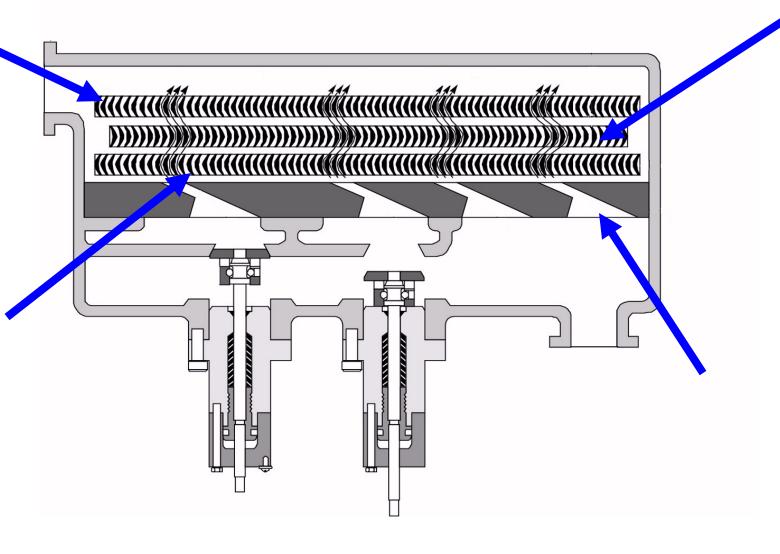
Blades / Buckets Milled Blades:

As horsepower and speeds increase, stronger blades are needed. Also better shapes for efficiency.

Milled blades are machined from a rectangular piece of bar stock and are more expensive to produce because of the machining steps involved.

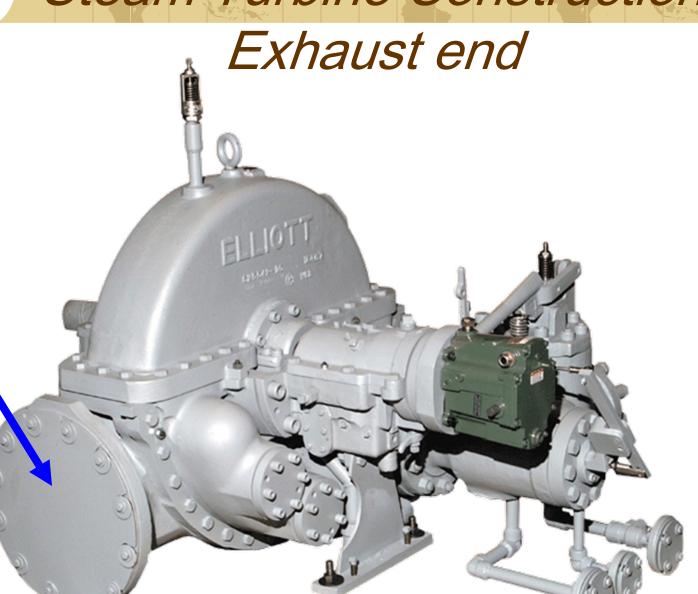

Milled blades do not require a packer piece between each blade.

Wedge/block locking piece at rim insertion point.

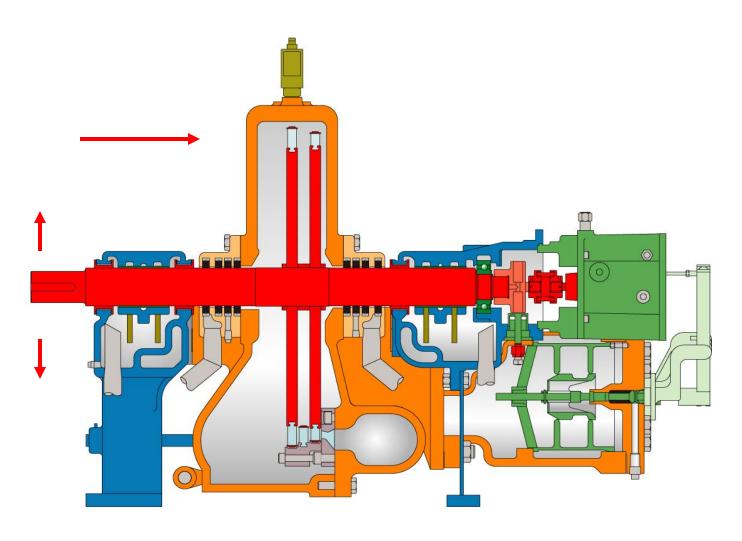

Steam Turbine Construction

Steam End

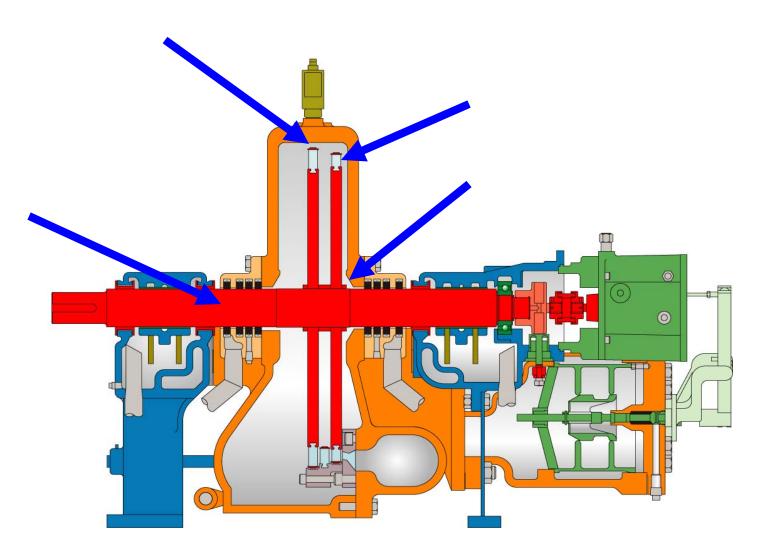
Steam Turbine Construction Steam End


Steam Turbine Design -Components

Manual Handvalves

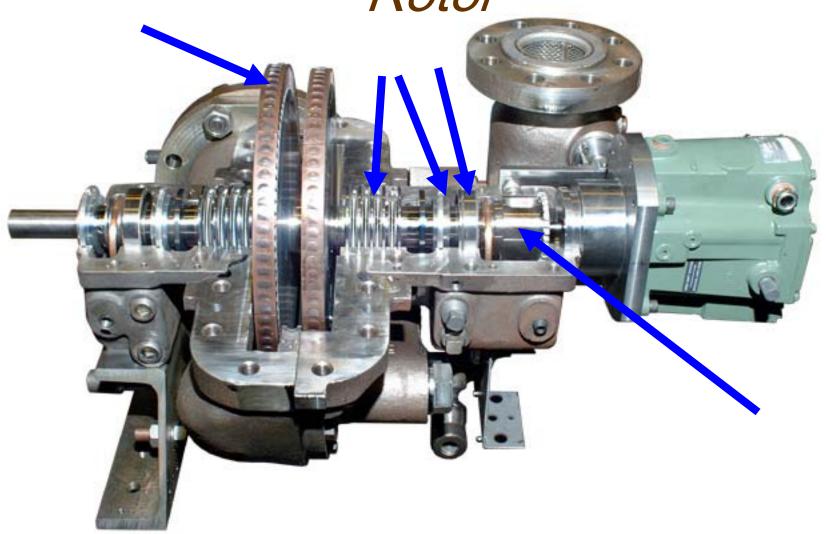


Steam Turbine Construction


Steam Turbine Construction Casing Support

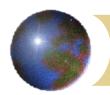


Steam Turbine Construction


Rotor

Steam Turbine Construction

Rotor



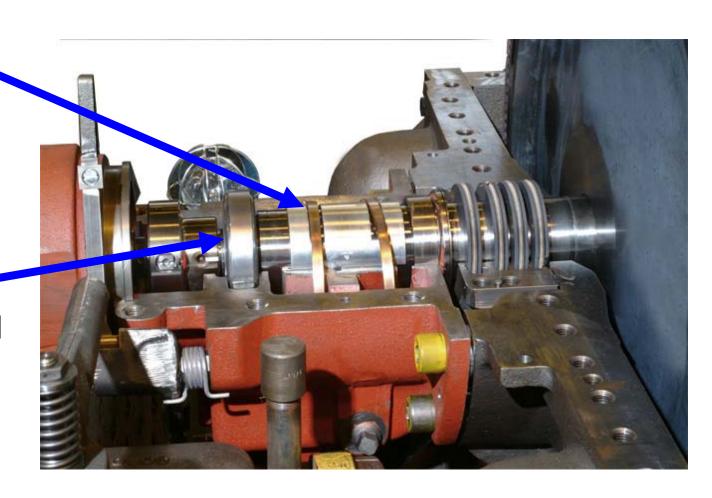
Steam Turbine Design -Components

Bearing Housings

SST bearing housings are cast separate from the casing and are bolted on to the casing during assembly. They are cast with integral cooling water passages for lube oil cooling and are horizontally split to allow bearing removal with the rotor and casing in place. The following NON-STANDARD options are available:

Steel material
INPRO seals
Air purge connections
Oil mist connections

Steam Turbine Construction


Bearings

Journal bearings

Sleeve, ball

Thrust bearing

Rotor locating ball Tilting pad

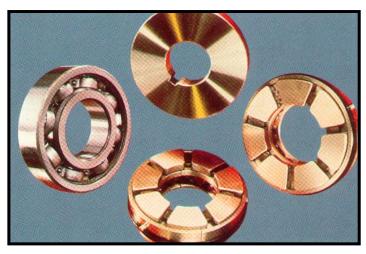
Steam Turbine Design -Components

Turbine Bearings

The Journal Bearings support the turbine rotor.

Two types

Sleeve type bearings


Tilt-pad type bearings

Note: Ball radial bearings have been supplied on some turbines for ExxonMobil.

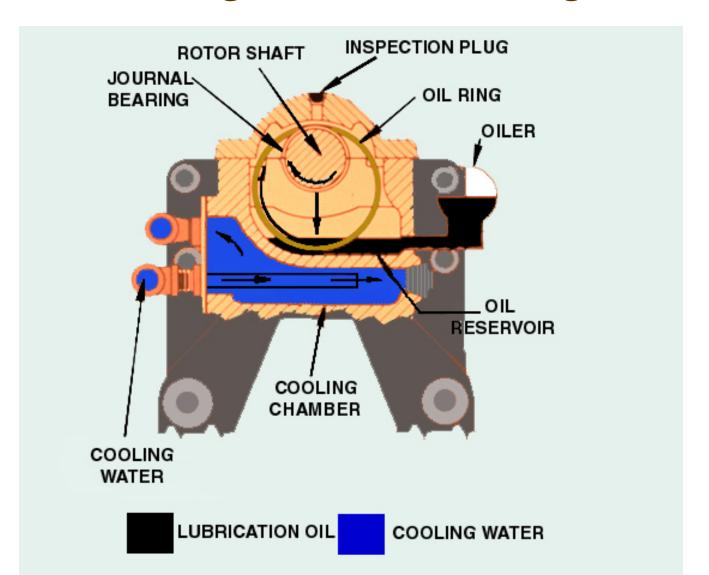
Steam Turbine Design -Components

Turbine Bearings

The Thrust Bearing locates the turbine rotor in relation to the nozzle ring.


Two types

Ball type thrust bearings


3311XR (Simple Bearing Case)(MRC)

9310 - U (Hi-Cap Bearing Case) (MRC)

Tilt-pad type bearings - Glacier

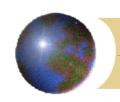
Steam Turbine Construction Ring-Oiled Bearings

Steam Turbine Construction When Pressure Lubrication?

- Higher speeds
- Tilt-pad thrust bearing
- High exhaust temperatures
- Needed for other items
 - Trip and Throttle valve
 - Gear

Steam Turbine Design - Components

Lubrication


Options:

"SP" circulating oil system (non - pressurized)

Saddle pump with oil tank, level indicator, carbon steel interconnecting tubing and sight flow indicator. Cooler and filter available as options.

F.F. lube feed and drain manifolds

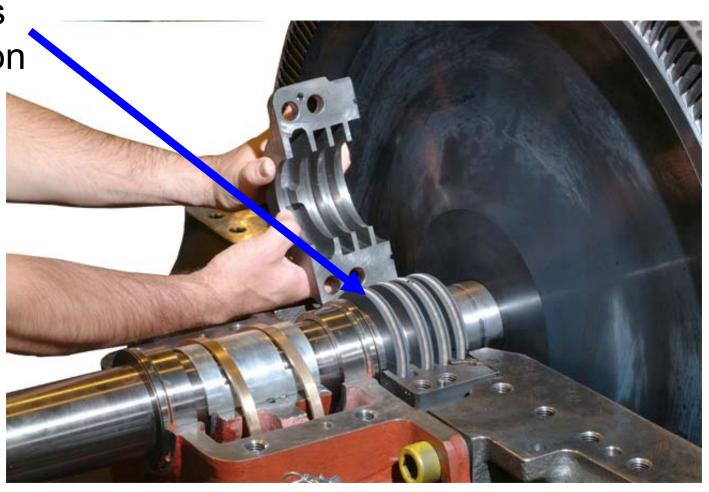
Complete F.F. lube system

Steam Turbine Design -Components

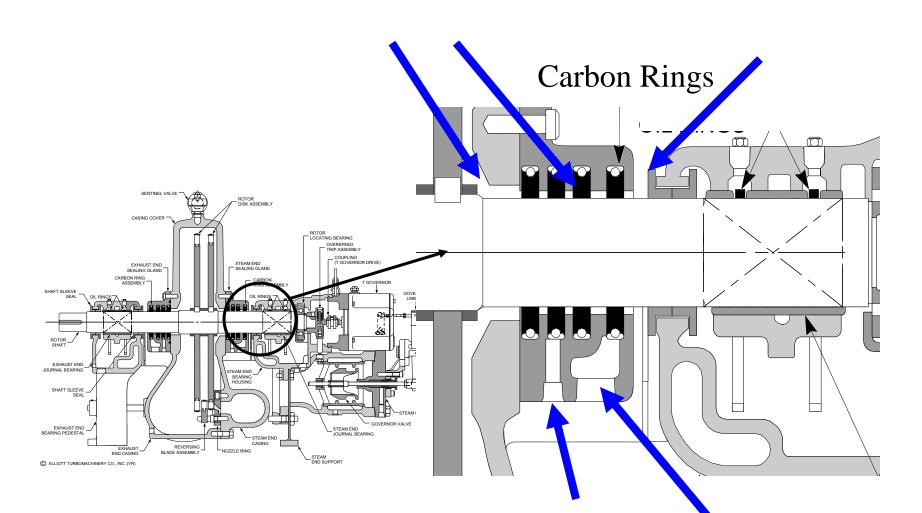
Lubrication

All standard ball thrust bearing applications are ring oiled unless:

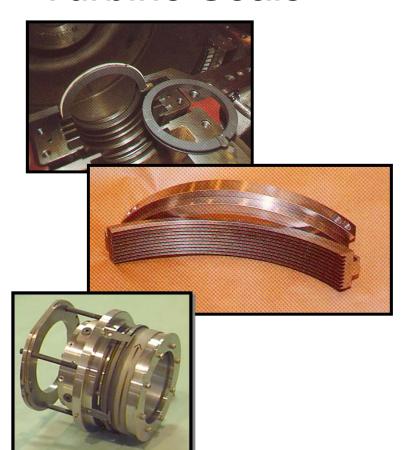
Turbine speed is over 5000 RPM


Limits on allowable Exhaust temperature are exceeded.

All 9310-U (oversize ball thrust) and tilt-pad thrust bearing applications require a force feed lube oil system.

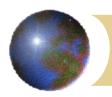

Steam Turbine Construction Shaft Seals

Carbon rings most common


Steam Turbine Construction Seal Leakage

Steam Turbine Design -Components

Turbine Seals


Seals prevent steam from leaking out of the casing along the turbine shaft, and potentially contaminating the bearing oil.

Three types

Carbon Ring

Labyrinth

Mechanical

Steam Turbine Construction

Seal Alternatives

Gas Face Seal

Don't let the

steam out

Water accumulation

Growth

Cost

Steam Turbine Construction Bearing Isolators

Keep the oil in and the steam out

Steam Turbine Construction Controls – Speed definitions

Class of	Maximum	Maximum	Maximum
Governing	Speed	Speed	Speed
System	Regulation	Variation	Rise
	%	%	%
Α	10	0.75	13
В	6	0.50	7
С	4	0.25	7
D	0.50	0.25	7

Steam Turbine Design - Components

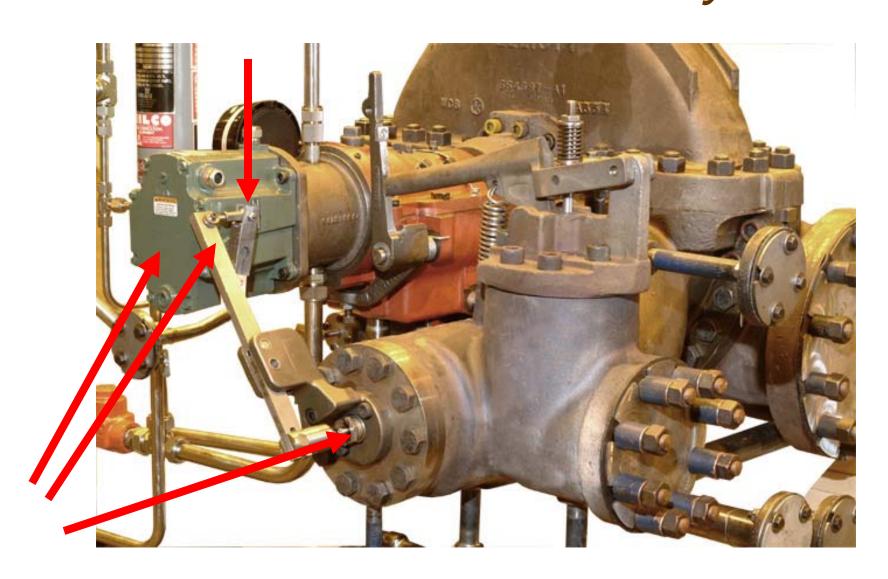
Governors

The standard governor is the Woodward TG-13.

The following mechanical-hydraulic governors are available:

TG-13L

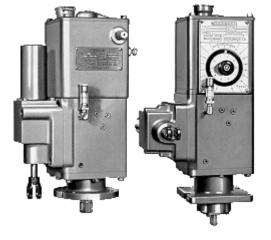
PG-D


PG-PL

UG-10

UG-40

Steam Turbine Construction Controls – Mechanical-Hydraulic



TG -13

PG-D

PG-PL

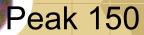
Steam Turbine Design - Components

Governors

The following electronic governors are available:

Woodward Peak 150

Woodward 505


Tri-Sen TS-110

Tri-Sen TS-310

Dynalco

Actuators - Fisher, Valtek and Woodward

Pneumatic and hydraulic

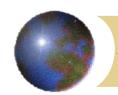
TS 110

Woodward ProTech 203

Triconex TurboSentry

Steam Turbine Construction Controls - Electronic

Control components considerations -


Reliable

Versatile

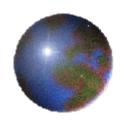
Remote signal

Redundant trip

Steam Turbine Selection When to use a Multistage Turbine

Larger exhausts needed than available on single stage turbines (typically condensing)

Steam rate improvement


Power too high for single stage turbine

Steam Turbine Selection Multistage Comparison

	Steam rate at normal	Annual cost of steam (millions)
Normal power Plus 10%	51.2	\$1.58
Min/Max design with Hand Valves	54.6	\$1.68
Min/Max design without Hand Valves	58.7	\$1.81
Multistage	40	\$1.23

Steam Turbine Specifications

Steam Turbine Specifications

- NEMA SM23
 - Controls
 - Velocity limits
 - Piping loads
 - Excursions
 - Purity
- API 611 General Purpose
- API 612 Special Purpose

Mechanical Differences

API 611

- Cast iron bearing housing
- Sleeve journal bearings
- Ball or tilt-pad thrust bearing
- Carbon ring steam seals
- Keyed shaft
- Nema A or D governor

API 612

- Steel bearing housing
- Sleeve or tilt-pad journal bearings
- Tilt-pad thrust bearing
- Labyrinth end seals
- Nema D governor
- Oil operated T&T valve
- 2 out of 3 voting electronic trip
- No mechanical trip
- Casing field rotor balance provision
- Rotor shafts must be degaussed

Standard Testing

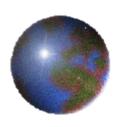
API 611

- 1-hour uninterrupted mechanical test
- Measure Oil Temperature (IN)
- Measure Oil Pressure (IN)
- Measure Steam Pressure
 - Inlet and Exhaust
- Measure Steam Temperature
 - Inlet and Exhaust
- Standard Rotor Balance

API 612

- 4-hour uninterrupted mechanical test
- Rotor Dynamics Testing
 - Amplitude vs. Frequency
 - Amplitude vs. Speed
 - Phase Angle vs. Speed
 - Prove Lateral Critical (N/A for stiff shaft rotors)
- Measure Oil Temperature (IN / OUT)
- Measure Oil Pressure (IN / OUT)
- Measure Oil Flow
- Measure Steam Pressure
 - Inlet and Exhaust
- Measure Steam Temperature
 - Inlet and Exhaust
- Check rotor unbalance response (if coupling is furnished by Elliott)
- Incremental Rotor Balance

Standard Documentation


API 611

- Willans Line (Performance Curve)
- API-611 Data Sheets

API 612

- Willans Line (Performance Curve)
- API-612 Data Sheets
- Rotor Response Analysis (Lateral)
- Campbell / Goodman Diagrams

Steam Turbine Selection

Steam Turbine Selection Data Required

Musts

- Inlet pressure
- Inlet temperature
- Exhaust pressure
- Power required (sometimes flow available)
- Speed of driven equipment

Steam Turbine Selection Data Required - Additional

- Driven equipment
- Control required (NEMA)
- Operational considerations
- Steam consumption information

2 FOR 3 SITE

4 SERVICE

10 NORMAL

12 RATED

13 OTHER (4.1.4)

11

14

5 MANUFACTURER

9**b**PERATING POINT

API 611 Data Sheet

JOB NO.

SENERAL-PURPOSE STEAM TURBINE
DATA SHEET
IIS CUSTOMARY UNITS

ELLIOTT

6 NOTE. INDICATES INFORMATION COMPLETED P

O OPERATING CONDITIONS

POWER,

BHP

O DUTY, SITE AND UTILITY DATA

O PURCHASE

EED,

RPM

1 APPLICABLE TO: O PROPOSAL

٧E	PURCHASE ORDER NO.								
	SPECIFIC								
	REVISION		0			ATE			
	PAGE	1	OF _	3		Υ	DCM - ELLI	ЭТТ	
ASE	UILT								
	UNIT								
	NO. REQU	IRED							
	DRIVEN E	QUIPM	ENT						
_	M ODEL					SE	RIAL NO		
P UF	PURC-BY MANUFACTURER DBY MFGR IF NOT BY PURCH								
					PER	FORI	MANCE		
	OPERA	TING	POINT	7	NO.	HAN	D VALVES	STEAM	RATE,
	STEAM	CON	DITIO	١	0	PEN	(5.4.1.5)	LBS/H	P-HR
	NORMAL/	NORM	AL						_
	(CERTIFIE	D SR)							
	RATED/NO	ORMAI	L						
	(1) M IN. IN	LET -							
	MAXEXHA	AUST							

ITEM NO.

API 611 Data Sheet

	O SLOWROLL REQ. (4.10.4)			API-611 OTHER		
18	DUTY O CONTINUOUS O	STAND	BY			
19	O UNATTENDED AUTO START (4	1.1.6)		CONSTRUCTION		
20	LOCATION (4.1.14) O INDOOR	O HEA	ATED O	UNHEAT	TURBINE TYPE O HORIZ O VERTICAL	
21	O OUTDOOR	O RO	OF O	W/O ROO	NO STAGES WHEEL DIA., IN.	
22	AMBIENT TEMP., F: MIN.		MAX		ROTOR: BUILT UP SOLID OVERHUNG	
	_	т О	SALTATMO	SPHERE	☐ BETWEEN BRGS	
24	(4.1.14) OTH	IER			BLADING 2 ROW 3 ROW RE-ENTRY	
25	ELECT. AREA (4.1.13) CLASS	GROUP		DIV	CASING SPLIT AXIAL RADIAL	
26	O NON-HAZAI	RDOUS			CASING SUPPORT CENTERLINE FOOT	
27	CONTROL POWER V	PH.		HZ	VERT. JACKSCREWS (4.2.13)	
28	AUX.MOTORS V	PH.		HZ	VERTICAL TURBINE FLANGE	
29	COOLING WATER PRESS, PSIG		DPPS	l	O NEMA "P" BASE O OTHER (4.4.9)	
30	TEMPFLOW, GPM		D T F: ˌ		TRIP VALVE INTEGRAL SEPARATE	
31	ALLOW. SOUND PRESS LEVEL (4.1.	12)	dB <mark> </mark>	F	INTERSTAGE SEALS	
32	O STEAM CO	ITI NO	ONS		END SEALS CARBON RING, NO/BOX	
33		MAX	NORMAL	MIN.	LABYRINTH MATERIAL	
	INLET PRESS, PSIG				☐ MECHANICAL ☐ MFR	
34	INLET TEMP,℉					
35	EXHAUST PRESS (PSIG)(IN. HGA)				TYPE RADIAL BEARINGS (4.9.1)	
36	O STEAM CONTAMINANTS (4.11	.1.7)			TYPE THRUST BEARING (4.9.2)	

API 611 Data Sheet

37	TURBINE DATA	CALCULATED THRUST LOAD PSI (4.9.15)		
38	ALLOW SPEEDS, RPM, MAX MIN	BEARING M FGR's ULTIMATE RATING PSI		
39	MAX CONT SPEED, RPM (3.1.10)	THRUST COLLAR (4.9.10.2) REPLACEABLE INTEGRAL NONE		
40	TRIP SPEED, RPM BLADE TIP VEL, FPS	LUBE OIL VISCOSITY (4.10.3) ISO GRADE		
41	FIRST CRITICAL SPEED, RPM (4.8.2.1)	LUBRICATION O RINGOILED O PRESSURE O GREASE		
42	EXH.TEM F NORMAL NO LOAD	OIL M IST (4.9.19)		
43	POTENTIAL MAX POWER, BHP (3.1.20)	O PURGEOILMIST O PUREOILMIST		
44	MAX. NOZZLE STEAM FLOW, LBS/HR	O BEARING HOUSING OILER TYPE		
45	ROTATION FACING GOVERNOR END O CCW O CW	CASING DESIGN INLET EXHAUST		
46	O DRIVEN EQUIPMENT THRUST, LBS (4.9.11)	MAX. ALLOW. PRESS, PSIG		
47	(VERTICAL TURBINE) (4.9.3)	MAXALLOW.TEMP, F		
48	O WATER PIPING FURN. BY O VENDOR O OTHERS	HYDRO TEST PRESS., PSIG		
49	O OIL PIPING FURN. BY O VENDOR O OTHERS			
50				

Steam Turbines

Factors that affect Turbine Performance

Steam Conditions

More "available energy" means lower steam flow to produce power.

Horsepower & RPM

In general, higher HP & RPM turbines are more efficient.

Frame Size

Number of stages.

Stage pitch diameters.

Inlet & Exhaust Losses

Minimized by keeping velocities within reasonable limits.

Steam Turbine Selection

Steam Rate = Flow/Power or TSR/η

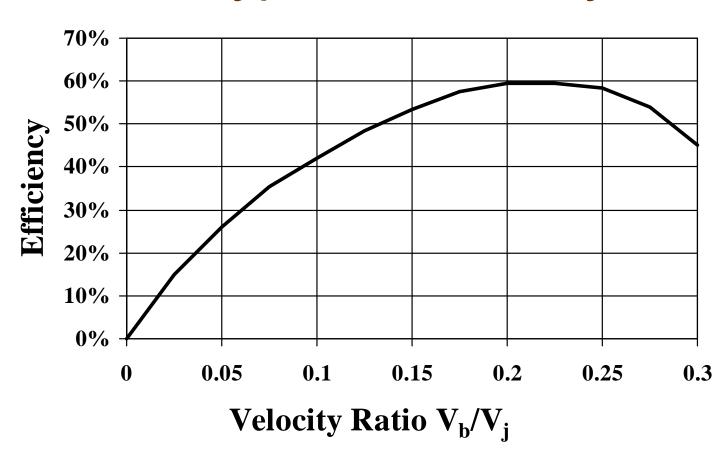
TSR – theoretical steam rate = Δh_{is} /Constant

Steam Turbine Selection Power Calculation

Power = (Flow) $(H_{is}) (\eta) / 2545 - HP losses$

In English units:

Power = horsepower


H_{is} = Isentropic BTU per pound

 $\eta = efficiency$

Flow = Pounds per hour

Steam Turbine Selection Typical Efficiency

Where V_b = Bucket Velocity = π (Stage Diameter)(Speed) / K And V_j = Steam Jet Velocity = $\sqrt{2g_cJ(\Delta H_{is})}$

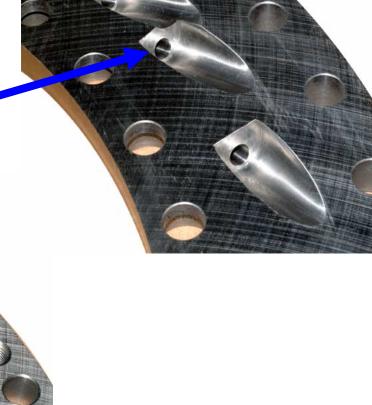
Steam Turbine Selection Example

- 770 Horsepower @ 3600 RPM
- 600 psig/700 Deg. F/150 PSIG
- 847 maximum Horsepower

Steam Turbine Selection Design Checks Inlet and Exhaust velocities

	Non –	Condensing
	Condensing	feet per
	feet/second	second
Inlet	175	175
Exhaust	250	450

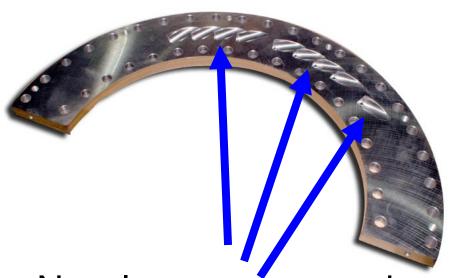
Steam Turbine Selection Design Checks Mechanical Limits


- Shaft end torque
- Blade stresses (Goodman diagram)
- Blade frequencies (Campbell Diagram)
- Speed limits
 - Blades, Shrouds, Disks, Critical speed

Steam Turbine Selection Design Checks

Aerodynamics

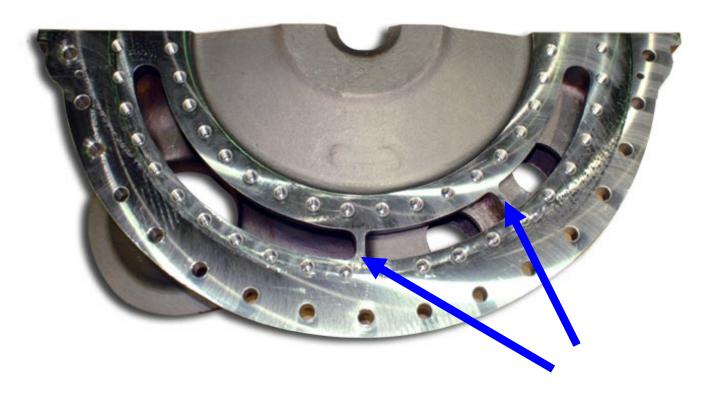
Pressure ratio across the stage determines ideal nozzle expansion ratio – ratio of exit area to throat area



Steam Turbine Selection Nozzle Configuration

Steam flow divided by critical flow determines nozzle area required

Nozzle area required divided by the nozzle throat area determines the number of nozzles



Nozzles are arranged to accommodate the hand valve ports ribs

Nozzle Ports

Nozzles are arranged to accommodate the hand valve ports, ribs

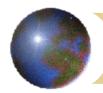
Steam Turbine Selection Results Comparison

	Steam rate at normal	Annual cost of steam (millions)
Normal power Plus 10%	51.2	\$1.58
Min/Max design with Hand Valves	54.6	\$1.68
Min/Max design without Hand Valves	58.7	\$1.81

Instrumentation

Following instrumentation available:

Thermocouples or RTDs


Radial vibration probes

Axial position probes

Keyphasor

Vibraswitch

Accelerometer

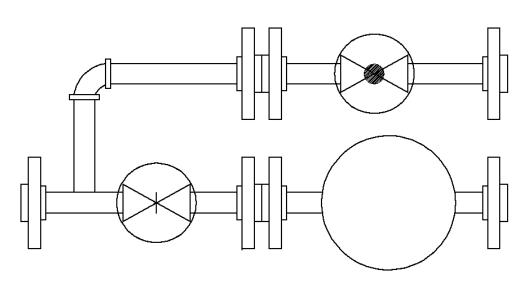
Leakoffs & Drains (Typical)

Leakoffs to Open Drain

- 2 packing case
- •1 trip valve stem
- 1 governor valve stem

Open Drains with Suitable Valve

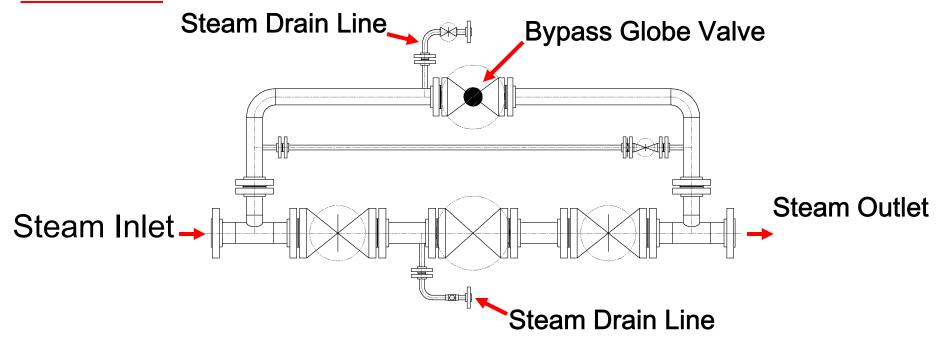
- 1 turbine case drain
- 1below the seat drain (steam chest)
- 1above the seat drain (steam chest)

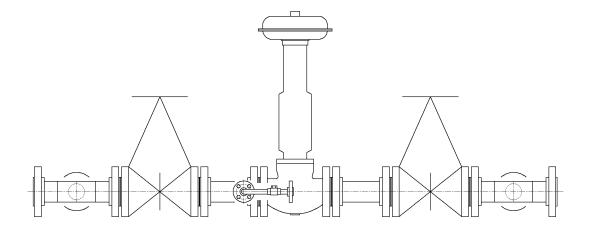


Steam Turbines

Steam Traps

- Spirax Sarco
 - TD-52 or TD-62 (based on temperatures)
- Located on turbine drain lines





Steam Turbines

Auto Start

Accessories

Following accessories are available:

Low oil / air pressure trip

Solenoid trip arrangement

Alarm & trip switches

Tachometers (digital, externally powered or self-powered)

2 out of 3 voting overspeed trip arrangement

Gaugeboards with gauges and tachometer mounted

Soleplate or baseplate (turbine alone or with gear/generator)

Accessories

Valved casing drain connections

Seal steam piping

Manual system

Automatic system

Gland condenser options - standard & TEMA C

Automatic steam traps

Couplings

Optical alignment flats & tooling balls

Accessories

Material certifications

BOM

Material certs on major castings

Certificate of compliance

Miscellaneous tests

API 612

M & E runout check

Software - Drawings, Lists and Data

Main equipment outline (General Arrangement)

Section drawings - normally contained in IOM

Parts Lists - normally contained in IOM

Lube schematics - furnished when FF lube system supplied

Electrical schematics - supplied when several electrical devices and instrumentation is furnished

Instruction manuals - CD plus 1 hard copy. Hard copy shipped with turbine

Software - Drawings, Lists and Data

Optional drawings and data submittals available at extra cost:

Combined outline - all major equipment on one drawing

As-built section drawings

P & I diagram

Performance curves

Campbell & Goodman diagrams

Critical speed analysis

Torsional data and or analysis

Report on balance machine sensitivity - API

API Appendix requirements

Steam Turbine Selection Conclusions

- Pump OEMs don't over-specify the power
- Contractors Use realistic min/max conditions
- Users Use the Hand valves!!!

Summary

- Steam turbines are a reliable and flexible driver for pumps
- Construction allows long term reliability
- Specifying appropriate operating conditions can save significant amounts of money