CHAPTER OPENING PHOTO: Hydraulic jump: Under certain conditions, when water flows in an open chan-
nel, even if it has constant geometry, the depth of the water may increase considerably over a short distance
along the channel. This phenomenon is termed a hydraulic jump (water flow from left to right).
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After completing this chapter, you should be able to:
discuss the general characteristics of open-channel flow.

m use a specific energy diagram.

apply appropriate equations to analyze open-channel flow with uniform
depth.

calculate key properties of a hydraulic jump.

determine flowrates based on open-channel flow-measuring devices.

Open-channel flow involves the flow of a liquid in a channel or conduit that is not completely
filled. A free surface exists between the flowing fluid (usually water) and fluid above it (usually
the atmosphere). The main driving force for such flows is the fluid weight—gravity forces the fluid
to flow downhill. Most open-channel flow results are based on correlations obtained from model
and full-scale experiments. Additional information can be gained from various analytical and nu-
merical efforts.

Open-channel flows are essential to the world as we know it. The natural drainage of water
through the numerous creek and river systems is a complex example of open-channel flow. Although
the flow geometry for these systems is extremely complex, the resulting flow properties are of
considerable economic, ecological, and recreational importance. Other examples of open-channel flows
include the flow of rainwater in the gutters of our houses; the flow in canals, drainage ditches, sewers,
and gutters along roads; the flow of small rivulets and sheets of water across fields or parking lots;
and the flow in the chutes of water rides in amusement parks.

Open-channel flow involves the existence of a free surface which can distort into various shapes.
Thus, a brief introduction into the properties and characteristics of surface waves is included.

The purpose of this chapter is to investigate the concepts of open-channel flow. Because of
the amount and variety of material available, only a brief introduction to the topic can be presented.
Further information can be obtained from the references indicated.
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10.1 General Characteristics of Open-Channel Flow

Open-channel flow
can have a variety
of characteristics.

Rapidly varying flow
(photograph courtesy
of Stillwater Sciences).

In our study of pipe flow (Chapter 8), we found that there are many ways to classify a flow—
developing, fully developed, laminar, turbulent, and so on. For open-channel flow, the existence of
a free surface allows additional types of flow. The extra freedom that allows the fluid to select its
free-surface location and configuration (because it does not completely fill a pipe or conduit) allows
important phenomena in open-channel flow that cannot occur in pipe flow. Some of the
classifications of the flows are described below.

The manner in which the fluid depth, y, varies with time, ¢, and distance along the channel, x, is
used to partially classify a flow. For example, the flow is unsteady or steady depending on whether the
depth at a given location does or does not change with time. Some unsteady flows can be viewed as
steady flows if the reference frame of the observer is changed. For example, a tidal bore (difference it
water level) moving up a river is unsteady to an observer standing on the bank, but steady to an observer
moving along the bank with the speed of the wave front of the bore. Other flows are unsteady regardless
of the reference frame used. The complex, time-dependent, wind-generated waves on a lake are in this
category. In this book we will consider only steady open-channel flows.

An open-channel flow is classified as uniform flow (UF) if the depth of flow does not vary
along the channel (dy/dx = 0). Conversely, it is nonuniform flow or varied flow if the depth varies
with distance (dy/dx # 0). Nonuniform flows are further classified as rapidly varying flow (RVF)
if the flow depth changes considerably over a relatively short distance; dy/dx ~ 1. Gradually
varying flows (GVF) are those in which the flow depth changes slowly with distance along the
channel; dy/dx << 1. Examples of these types of flow are illustrated in Fig. 10.1 and the photographs
in the margin. The relative importance of the various types of forces involved (pressure, weight,
shear, inertia) is different for the different types of flows.

As for any flow geometry, open-channel flow may be laminar, transitional, or turbulent,
depending on various conditions involved. Which type of flow occurs depends on the Reynolds
number, Re = pVR,/u, where V is the average velocity of the fluid and R, is the hydraulic radius
of the channel (see Section 10.4). A general rule is that open-channel flow is laminar if Re < 500,
turbulent if Re > 12,500, and transitional otherwise. The values of these dividing Reynolds
numbers are only approximate—a precise knowledge of the channel geometry is necessary to
obtain specific values. Since most open-channel flows involve water (which has a fairly small
viscosity) and have relatively large characteristic lengths, it is rare to have laminar open-channel
flows. For example, flow of 50 °F water (v = 1.41 X 107> t*/s) with an average velocity of
V = 1 ft/s in a river with a hydraulic radius of R, = 10 ft has Re = VR,/v = 7.1 X 10°. The flow
is turbulent. However, flow of a thin sheet of water down a driveway with an average velocity of
V' = 0.25 ft/s such that R, = 0.02 ft (in such cases the hydraulic radius is approximately equal to
the fluid depth; see Section 10.4) has Re = 355. The flow is laminar.

In some cases stratified flows are important. In such situations layers of two or more fluids
of different densities flow in a channel. A layer of oil on water is one example of this type of flow.
All of the open-channel flows considered in this book are homogeneous flows. That is, the fluid
has uniform properties throughout.

Open-channel flows involve a free surface that can deform from its undisturbed relatively
flat configuration to form waves. Such waves move across the surface at speeds that depend on

UF uniform flow
GVF gradually varying flow
RVF rapidly varying flow

RVF| UF RVF

UF

GVF | RVF
B FIGURE 101 Classification of open-channel flow.
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their size (height, length) and properties of the channel (depth, fluid velocity, etc.). The character
of an open-channel flow may depend strongly on how fast the fluid is flowing relative to how fast
a typical wave moves relative to the fluid. The dimensionless parameter that describes this behavior
is termed the Froude number, Fr = V/(gf)"?, where € is an appropriate characteristic length of
the flow. This dimensionless parameter was introduced in Chapter 7 and is discussed more fully
in Section 10.2. As shown by the figure in the margin, the special case of a flow with a Froude number
of unity, Fr = 1, is termed a critical flow. If the Froude number is less than 1, the flow is subcritical
(or tranquil). A flow with the Froude number greater than 1 is termed supercritical (or rapid).

(Refs. 1, 2, 3).

F | u i d s i n

The distinguishing feature of flows involving a free surface (as in open-channel flows) is the
opportunity for the free surface to distort into various shapes. The surface of a lake or the ocean is
seldom “smooth as a mirror.” It is usually distorted into ever-changing patterns associated with
surface waves as shown in the photos in the margin. Some of these waves are very high, some barely
ripple the surface; some waves are very long (the distance between wave crests), some are short;
some are breaking waves that form whitecaps, others are quite smooth. Although a general study of
this wave motion is beyond the scope of this book, an understanding of certain fundamental properties
of simple waves is necessary for open-channel flow considerations. The interested reader is
encouraged to use some of the excellent references available for further study about wave motion

t h e N e w s

Rogue Waves There is a long history of stories concerning giant
rogue ocean waves that come out of nowhere and capsize ships. The
movie Poseidon (2006) is based on such an event. Although these
giant, freakish waves were long considered fictional, recent satel-
lite observations and computer simulations prove that, although
rare, they are real. Such waves are single, sharply-peaked mounds
of water that travel rapidly across an otherwise relatively calm
ocean. Although most ships are designed to withstand waves up to
15 meters high, satellite measurements and data from offshore oil

platforms indicate that such rogue waves can reach a height of 30
meters. Although researchers still do not understand the formation
of these large rogue waves, there are several suggestions as to how
ordinary smaller waves can be focused into one spot to produce a
giant wave. Additional theoretical calculations and wave tank ex-
periments are needed to adequately grasp the nature of such
waves. Perhaps it will eventually be possible to predict the occur-
rence of these destructive waves, thereby reducing the loss of ships
and life because of them.

10.2.1 Wave Speed

Consider the situation illustrated in Fig. 10.2a in which a single elementary wave of small height,
0y, is produced on the surface of a channel by suddenly moving the initially stationary end wall
with speed 6V. The water in the channel was stationary at the initial time, # = 0. A stationary

V10.2 Filling your
car’s gas tank.

observer will observe a single wave move down the channel with a wave speed c, with no fluid
motion ahead of the wave and a fluid velocity of 6/ behind the wave. The motion is unsteady
for such an observer. For an observer moving along the channel with speed ¢, the flow will
appear steady as shown in Fig. 10.2b. To this observer, the fluid velocity will be V = —ci on

the observer’s right and V = (—¢ + 6 V)f to the left of the observer.

The relationship between the various parameters involved for this flow can be obtained by
application of the continuity and momentum equations to the control volume shown in Fig. 10.2
as follows. With the assumption of uniform one-dimensional flow, the continuity equation (Eq.

4 w  5.12) becomes

—cyb = (—c¢ + 8V)(y + 8y)b

where b is the channel width. This simplifies to

v+ ey

c 8)/




The wave speed can
be obtained from
the continuity and
momentum equa-
tions.
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B FIGURE 10.2 (o) Production of a single elementary wave in
a channel as seen by a stationary observer. (b) Wave as seen by an observer
moving with a speed equal to the wave speed.

or in the limit of small amplitude waves with 6y <y

Similarly, the momentum equation (Eq. 5.22) is
27°b = 3y + 8y)b = pbey[(c — 8V) — c]

where we have written the mass flowrate as m = pbcy and have assumed that the pressure variation
is hydrostatic within the fluid. That is, the pressure forces on the channel cross sections (1) and (2)
are Iy, = yyq4, = y(y + 8y)’h/2 and F, = yy.,4, = yv*b/2, respectively. If we again impose the
assumption of small amplitude waves [i.e., (§y)* < y §y], the momentum equation reduces to

oV
or_¢ (10.2)
éy ¢
Combination of Egs. 10.1 and 10.2 gives the wave speed
c='Vgy (10.3)

as indicated by the figure in the margin.

The speed of a small amplitude solitary wave as is indicated in Fig. 10.2 is proportional to
the square root of the fluid depth, y, and independent of the wave amplitude, dy. The fluid density
is not an important parameter, although the acceleration of gravity is. This is a result of the fact
that such wave motion is a balance between inertial effects (proportional to p) and weight or
hydrostatic pressure effects (proportional to y = pg). A ratio of these forces eliminates the common
factor p but retains g. For very small waves (like those produced by insects on water as shown in
the photograph on the cover of the book), Eq. 10.3 is not valid because the effects of surface tension
are significant.

The wave speed can also be calculated by using the energy and continuity equations rather
than the momentum and continuity equations as is done above. A simple wave on the surface is
shown in Fig. 10.3. As seen by an observer moving with the wave speed, ¢, the flow is steady.
Since the pressure is constant at any point on the free surface, the Bernoulli equation for this
frictionless flow is simply

2

—— + y = constant
2g
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B FIGURE 10.3 Stationary simple wave in
a flowing fluid.
or by differentiating
Vv

“2 sy =0
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Also, by differentiating the continuity equation, ¥y = constant, we obtain
yoV+Véy=20

We combine these two equations to eliminate 67 and 8y and use the fact that /' = ¢ for this situation
(the observer moves with speed ¢) to obtain the wave speed given by Eq. 10.3.

The above results are restricted to waves of small amplitude because we have assumed one-
dimensional flow. That is, §y/y << 1. More advanced analysis and experiments show that the wave
speed for finite-sized solitary waves exceeds that given by Eq. 10.3. To a first approximation, one
obtains (Ref. 4)

B 1/2
c = \/gy(l +;>

As indicated by the figure in the margin, the larger the amplitude, the faster the wave travels.

A more general description of wave motion can be obtained by considering continuous (not
solitary) waves of sinusoidal shape as is shown in Fig. 10.4. By combining waves of various
wavelengths, A, and amplitudes, dy, it is possible to describe very complex surface patterns found
in nature, such as the wind-driven waves on a lake. Mathematically, such a process consists of
using a Fourier series (each term of the series represented by a wave of different wavelength and
amplitude) to represent an arbitrary function (the free-surface shape).

A more advanced analysis of such sinusoidal surface waves of small amplitude shows that
the wave speed varies with both the wavelength and fluid depth as (Ref. 1)

12
¢ = {g)‘tanh(zzyﬂ (10.4)

where tanh(27y/A) is the hyperbolic tangent of the argument 27y/A. The result is plotted
in Fig. 10.5. For conditions for which the water depth is much greater than the wavelength (y > A,
as in the ocean), the wave speed is independent of y and given by

Sy = Surface at time ¢

amplitude c _ Surface at

~timet + 6t

y = mean depth

B FIGURE 10.4 Sinusoidal surface wave.
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This result, shown in the figure in the margin, follows from Eq. 10.4, since tanh(27wy/A) — 1 as
y/A — . Note that waves with very long wavelengths [e.g., waves created by a tsunami (“tidal
wave”’) with wavelengths on the order of several kilometers] travel very rapidly. On the other hand,
if the fluid layer is shallow (y << A, as often happens in open channels), the wave speed is given
by ¢ = (gy)"/% as derived for the solitary wave in Fig. 10.2. This result also follows from Eq. 10.4,
since tanh(27y/A) — 2my/A as y/A — 0. These two limiting cases are shown in Fig. 10.5. For

2,k
" moderate depth layers (y ~ A), the results are given by the complete Eq. 10.4. Note that for a given
fluid depth, the long wave travels the fastest. Hence, for our purposes we will consider the wave
speed to be this limiting situation, ¢ = (gy)"/~
F I ui d s i n t h e N e w s

Tsunami, the nonstorm wave A tsunami, often miscalled a “tidal
wave,” is a wave produced by a disturbance (for example, an earth-
quake, volcanic eruption, or meteorite impact) that vertically dis-
places the water column. Tsunamis are characterized as shallow-
water waves, with long periods, very long wavelengths, and
extremely large wave speeds. For example, the waves of the great
December 2005, Indian Ocean tsunami traveled with speeds to
500-1000 m/s. Typically, these waves were of small amplitude in
deep water far from land. Satellite radar measured the wave height

less than 1 m in these areas. However, as the waves approached
shore and moved into shallower water, they slowed down consid-
erably and reached heights up to 30 m. Because the rate at which a
wave loses its energy is inversely related to its wavelength,
tsunamis, with their wavelengths on the order of 100 km, not only
travel at high speeds, they also travel great distances with minimal
energy loss. The furthest reported death from the Indian Ocean
tsunami occurred approximately 8000 km from the epicenter of
the earthquake that produced it. (See Problem 10.14.)

- Stationary

- J=c

10.2.2 Froude Number Effects

Consider an elementary wave traveling on the surface of a fluid, as is shown in the figure in the
margin and Fig. 10.2a. If the fluid layer is stationary, the wave moves to the right with speed ¢
relative to the fluid and the stationary observer. If the fluid is flowing to the left with velocity
V < ¢, the wave (which travels with speed c relative to the fluid) will travel to the right with a
speed of ¢ — V relative to a fixed observer. If the fluid flows to the left with V' = ¢, the wave will
remain stationary, but if /' > ¢ the wave will be washed to the left with speed V' — c.

The above ideas can be expressed in dimensionless form by use of the Froude number,
Fr = V/(gv)"%, where we take the characteristic length to be the fluid depth, y. Thus, the
Froude number, Fr = V/(gy)'/* = V/c, is the ratio of the fluid velocity to the wave speed.

The following characteristics are observed when a wave is produced on the surface of a
moving stream, as happens when a rock is thrown into a river. If the stream is not flowing, the
wave spreads equally in all directions. If the stream is nearly stationary or moving in a tranquil
manner (i.e., ¥ < ¢), the wave can move upstream. Upstream locations are said to be in hydraulic
communication with the downstream locations. That is, an observer upstream of a disturbance can
tell that there has been a disturbance on the surface because that disturbance can propagate upstream
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to the observer. Viscous effects, which have been neglected in this discussion, will eventually damp
out such waves far upstream. Such flow conditions, V' < ¢, or Fr < 1, are termed subcritical.

On the other hand, if the stream is moving rapidly so that the flow velocity is greater than
the wave speed (i.e., ¥ > ¢), no upstream communication with downstream locations is possible.
Any disturbance on the surface downstream from the observer will be washed farther downstream.
Such conditions, V' > ¢ or Fr > 1, are termed supercritical. For the special case of V"= ¢ or
Fr = 1, the upstream propagating wave remains stationary and the flow is termed critical.

E xampie 101 I

GIVEN At a certain location along the Rock River shown in  , of the river as indicated in Fig. E10.1h. A reasonable approxi-
Fig. E10.14, the velocity, V, of the flow is a function of the depth, ~ mation to these experimental results is

V=>5y" 0))

where Vis in ft/s and y is in ft.

FIND  For what range of water depth will a surface wave on the
river be able to travel upstream?

14
12 e .
10 .
B FIGURE E10.1a y = 5y23
o 8 *
£
SoLuTiON S . ¢
While the river travels to the left with speed 7, the surface wave Z
travels upstream (to the right) with speed ¢ = (g y)'/? relative to ¢
i / ©® Measured values
the water (not relative to the ground). Hence relative to the sta- 2| A
tionary ground, the wave travels to the right with speed
0
c—V=(gy)? =5y 0 1 2 3 4
= (32.2 ft/s?y)'2 — 5% ) v ft
For the wave to travel upstream, ¢ — ¥ > 0 so that from Eq. 2, LG I

(32.2 )2 > 542

or

1.2
y <214t (Ans)
1
COMMENT As shown above, if the river depth is less than (2.14,1)
2.14 ft, its velocity is less than the wave speed and the wave can 0.8
travel upstream against the current. This is consistent with the fact
that ifa wave is to travel upstream, the flow must be subcritical (i.e., & 0.6
Fr = V/c < 1). For this flow
0.4
Fr = V/e = (5yF)/(gy)"”
= 5yY6/(32.2 ft/s?)"? 0.2
= 0.881 y'/
0
This result is plotted in Fig. E10.1¢. Note that in agreement with 0 1 2 3 4
the above answer, for y < 2.14 the flow is subcritical; the wave » ft
can travel upstream. B FIGURE E10.1c

The character of an open-channel flow may depend strongly on whether the flow is subcritical
or supercritical. The characteristics of the flow may be completely opposite for subcritical flow
than for supercritical flow. For example, as is discussed in Section 10.3, a “bump” on the bottom
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of a river (such as a submerged log) may cause the surface of the river to dip below the level it
would have had if the log were not there, or it may cause the surface level to rise above its
undisturbed level. Which situation will happen depends on the value of Fr. Similarly, for supercritical
flows it is possible to produce steplike discontinuities in the fluid depth (called a hydraulic jump;
see Section 10.6.1). For subcritical flows, however, changes in depth must be smooth and
continuous. Certain open-channel flows, such as the broad-crested weir (Section 10.6.3), depend
on the existence of critical flow conditions for their operation.

As strange as it may seem, there exist many similarities between the open-channel flow of
a liquid and the compressible flow of a gas. The governing dimensionless parameter in each case
is the fluid velocity, V, divided by a wave speed, the surface wave speed for open-channel flow or
sound wave speed for compressible flow. Many of the differences between subcritical (Fr < 1)
and supercritical (Fr > 1) open-channel flows have analogs in subsonic (Ma < 1) and supersonic
(Ma > 1) compressible gas flow, where Ma is the Mach number. Some of these similarities are
discussed in this chapter and in Chapter 11.

10.3 Energy Considerations

The slope of the
bottom of most
open channels is
very small; the
bottom is nearly
horizontal.

A typical segment of an open-channel flow is shown in Fig. 10.6. The slope of the channel bottom
(or bottom slope), Sy = (z; — z,)/¢, is assumed constant over the segment shown. The fluid depths
and velocities are y;, ,, ¥, and V, as indicated. Note that the fluid depth is measured in the vertical
direction and the distance x is horizontal. For most open-channel flows the value of S is very small
(the bottom is nearly horizontal). For example, the Mississippi River drops a distance of 1470 ft in
its 2350-mi length to give an average value of S, = 0.000118. In such circumstances the values of
x and y are often taken as the distance along the channel bottom and the depth normal to the bottom,
with negligibly small differences introduced by the two coordinate schemes.

With the assumption of a uniform velocity profile across any section of the channel, the one-
dimensional energy equation for this flow (Eq. 5.84) becomes

V2 V3
&+—‘+zlz&+2—2+zz+m (10.5)
g

Y 2g Y
where /; is the head loss due to viscous effects between sections (1) and (2) and z; — z, = Syf.
Since the pressure is essentially hydrostatic at any cross section, we find that p,/y = y, and
P2/Y = y, so that Eq. 10.5 becomes

Vi V3
oSt =ty (10.6)
g 2g

One of the difficulties of analyzing open-channel flow, similar to that discussed in Chapter 8 for pipe
flow, is associated with the determination of the head loss in terms of other physical parameters.
Without getting into such details at present, we write the head loss in terms of the slope of the
energy line, S; = h;/{ (often termed the friction slope), as indicated in Fig. 10.6. Recall from

z) z,
l $ Horizontal datum

B FIGURE 10.6 Typical open-channel geometry.
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The specific energy
is the sum of poten-
tial energy and
kinetic energy (per
unit weight).

q = constant

Chapter 3 that the energy line is located a distance z (the elevation from some datum to the channel
bottom) plus the pressure head (p/y) plus the velocity head (¥2/2g) above the datum. Therefore,
Eq. 10.6 can be written as

;=)
2g

If there is no head loss, the energy line is horizontal (S; = 0), and the total energy of the
flow is free to shift between kinetic energy and potential energy in a conservative fashion. In
the specific instance of a horizontal channel bottom (S, = 0) and negligible head loss (S; = 0),
Eq. 10.7 simply becomes

Yi =W = + (Sf - So)f (10.7)

(-1

Yi == 2¢

10.3.1 Specific Energy

The concept of the specific energy or specific head, E, defined as

2
E=y+— (10.8)
2g
is often useful in open-channel flow considerations. The energy equation, Eq. 10.7, can be written
in terms of E as

E = E, + (S,— So)t (10.9)

If head losses are negligible, then S, = 0 so that (S, — Sp)f = —Syf = z, — z; and the sum of the
specific energy and the elevation of the channel bottom remains constant (i.e., £, + z; = E, + z,,
a statement of the Bernoulli equation).

If we consider a simple channel whose cross-sectional shape is a rectangle of width b, the
specific energy can be written in terms of the flowrate per unit width, ¢ = Q/b = Vyb/b = Vy, as

q2

2gy2

E=y+ (10.10)
which is illustrated by the figure in the margin.

For a given channel of constant width, the value of ¢ remains constant along the channel, although
the depth, y, may vary. To gain insight into the flow processes involved, we consider the specific energy
diagram, a graph of E = E(y), with ¢ fixed, as shown in Fig. 10.7. The relationship between the flow
depth, y, and the velocity head, V'?/2g, as given by Eq. 10.8 is indicated in the figure.

B FIGURE 10.7 Specific energy
diagram.
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R For given ¢ and E, Eq. 10.10 is a cubic equation [y* — Ey* + (¢?/2g) = 0] with three

of specific energy, a solutions, Ve, Vsub> and Y. If the specific energy is large enough (i.e., E > E,;,, where E,;, is a
flow may have al- function of g), two of the solutions are positive and the other, y,,, is negative. The negative root,
ternate depths. represented by the curved dashed line in Fig. 10.7, has no physical meaning and can be ignored.

Thus, for a given flowrate and specific energy there are two possible depths, unless the vertical
line from the E axis does not intersect the specific energy curve corresponding to the value of ¢
given (i.e., £ < E,;,). These two depths are termed alternate depths.

For large values of £ the upper and lower branches of the specific energy diagram (yy, and yq,,)
approach y = E and y = 0, respectively. These limits correspond to a very deep channel flowing
very slowly (E = y + V?/2g—y as y — with ¢ = Vy fixed), or a very high-speed flow in a
shallow channel (E = y + V?/2g — V?*/2gas y —0).

As is indicated in Fig. 10.7, yq, < yq. Thus, since ¢ = Vy is constant along the curve, it
follows that V,, > Vi, where the subscripts “sub” and “sup” on the velocities correspond to the
depths so labeled. The specific energy diagram consists of two portions divided by the E,;, “nose”
of the curve. We will show that the flow conditions at this location correspond to critical conditions
(Fr = 1), those on the upper portion of the curve correspond to subcritical conditions (hence, the
“sub” subscript), and those on the lower portion of the curve correspond to supercritical conditions
(hence, the “sup” subscript).

To determine the value of E,,;,, we use Eq. 10.10 and set dE/dy = 0 to obtain

dE ?
dE_ 4
dy g
or
2\1/3
q
Ve = () 10.11)
g
where the subscript “c” denotes conditions at £, ;,. By substituting this back into Eq. 10.10 we
obtain
3y.
E . =
min 2

By combining Eq. 10.11 and V, = ¢/y,, we obtain

¢ _ 02"

V,=—=—""="—+-= \/7c
Ye Ye
v

- or Fr, = V,/(gy.)"* = 1. Thus, critical conditions (Fr = 1) occur at the location of E,;,. Since the
layer is deeper and the velocity smaller for the upper part of the specific energy diagram (compared

with the conditions at E,;,), such flows are subcritical (Fr < 1). Conversely, flows for the lower

Fr=1 . .. .. . . .
P part of the diagram are supercritical. This is shown by the figure in the margin. Thus, for a given
Fr>1

flowrate, ¢, if E > E,;, there are two possible depths of flow, one subcritical and the other
E supercritical.
It is often possible to determine various characteristics of a flow by considering the specific
energy diagram. Example 10.2 illustrates this for a situation in which the channel bottom eleva-
tion is not constant.

—EXAMPLE /W4 Specific Energy Diagram—Quantitative

GIVEN  Water flows up a 0.5-ft-tall ramp in a constant width FIND Determine the elevation of the water surface downstream
rectangular channel at a rate ¢ = 5.75 ft*/s as is shown in Fig.  ofthe ramp, y, + z,.

E10.2a. (For now disregard the “bump.”) The upstream depth is

2.3 ft and viscous effects are negligible.
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SoLUTION

With So€ = z; — z, and h; = 0, conservation of energy (Eq. 10.6
which, under these conditions, is actually the Bernoulli equation)
requires that
+ & + + & +
— +z = —= 4 Z

N 2g 1= 2 2
For the conditions given (z; = 0,z, = 0.5 ft, y; = 2.3 ft, and
Vi = q/y, = 2.5 ft/s), this becomes

v

1.90 = y, +
27 a4

@

where ¥, and y, are in ft/s and feet, respectively. The continuity
equation provides the second equation

nVy=nl
or
Vs = 5.75 ft°/s Q?)
Equations 1 and 2 can be combined to give
¥ — 19002 + 0513 = 0
which has solutions

v, =172/, 3, =0.638f, or y, = —0.466 ft

Note that two of these solutions are physically realistic, but the
negative solution is meaningless. This is consistent with the previ-
ous discussions concerning the specific energy (recall the three
roots indicated in Fig. 10.7). The corresponding elevations of the
free surface are either

Y, +z, = 172ft + 050 ft =222 ft
or

y, + 2, = 0.638ft + 050t = 1.14 fi

The question is which of these two flows is to be expected? This
can be answered by use of the specific energy diagram obtained
from Eq. 10.10, which for this problem is

0.513

y2

E=y+

where E and y are in feet. The diagram is shown in Fig. E10.25.
The upstream condition corresponds to subcritical flow; the
downstream condition is either subcritical or supercritical,
corresponding to points 2 or 2'. Note that since E, = E, +
(zy — z) = E, + 0.5 1t, it follows that the downstream condi-
tions are located 0.5 ft to the left of the upstream conditions on the
diagram.

With a constant width channel, the value of ¢ remains the
same for any location along the channel. That is, all points for
the flow from (1) to (2) or (2') must lie along the ¢ = 5.75 ft*/s
curve shown. Any deviation from this curve would imply either
a change in ¢g or a relaxation of the one-dimensional flow as-
sumption. To stay on the curve and go from (1) around the criti-
cal point (point ¢) to point (2") would require a reduction in

/ Free surface with ramp

Free
v, surface
S~ V2 ‘wi}bump

Ramp T
(a)
4 7
7
7
7/
7/
Ve
3
» =2.30
=2
=
yC:
1.01 p
7/
7
1 =T
z | —
/ | q _2
// | | 5.75 ft/s
/ Ll
o kZ [ |
0 1 \ 2 | 3 4
E.in=151 | E; =240
E,=1.90
E, ft
(b)

B FIGURE E10.2

specific energy to E, ;.. As is seen from Fig. E10.24, this would
require a specified elevation (bump) in the channel bottom so
that critical conditions would occur above this bump. The height
of this bump can be obtained from the energy equation (Eq.
10.9) written between points (1) and (c) with S, = 0 (no viscous
effects) and Sy¢ = z; — z.. That is, E; = Ey, — z; + z.. In par-
ticular, since £, = y, + 0.513/»2 = 2.40 ft and E,,;, = 3y./2 =
3(¢*/2)"/2 = 1.51 f, the top of this bump would need to be
z.—z;=E, — E;, =240 ft — 1.51 ft = 0.89 ft above the chan-
nel bottom at section (1). The flow could then accelerate to su-
percritical conditions (Fry > 1) as is shown by the free surface
represented by the dashed line in Fig. E10.2a.

Since the actual elevation change (a ramp) shown in Fig.
E10.2a does not contain a bump, the downstream conditions will
correspond to the subcritical flow denoted by (2), not the super-
critical condition (2'). Without a bump on the channel bottom,
the state (2') is inaccessible from the upstream condition state (1).
Such considerations are often termed the accessibility of flow
regimes. Thus, the surface elevation is

y, + 2z, =222 1t (Ans)

Note that since y; + z; = 2.30 ft and y, + z, = 2.22 fi, the
elevation of the free surface decreases as it goes across the
ramp.




COMMENT If the flow conditions upstream of the ramp (1) on the lower (supercritical) branch of the specific energy curve
were supercritical, the free-surface elevation and fluid depth — and ends at(2) on the same branch with y, > y;. Since both y and
would increase as the fluid flows up the ramp. This is indicated in ~ z increase from (1) to (2), the surface elevation, y + z, also
Fig. E10.2¢ along with the corresponding specific energy dia-  increases. Thus, flow up a ramp is different for subcritical than it
gram, as is shown in Fig. E10.2d. For this case the flow starts at  is for supercritical conditions.

—_
Vy>e

N
i 0.5 ft
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H FIGURE E10.2 (Continued)

| f
¥ o5t~ £
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10.3.2 Channel Depth Variations

By using the concepts of the specific energy and critical flow conditions (Fr = 1), it is possible to
determine how the depth of a flow in an open channel changes with distance along the channel.
In some situations the depth change is very rapid so that the value of dy/dx is of the order of 1.
Complex effects involving two- or three-dimensional flow phenomena are often involved in such
flows.

In this section we consider only gradually varying flows. For such flows, dy/dx < 1 and it
is reasonable to impose the one-dimensional velocity assumption. At any section the total head is
H = V?*/2g + y + z and the energy equation (Eq. 10.5) becomes

where 7, is the head loss between sections (1) and (2).

As is discussed in the previous section, the slope of the energy line is dH/dx = dh, /dx = S; and
the slope of the channel bottom is dz/dx = S,. Thus, since

dH d(V2 ) vav dy  dz
—=—|—+ytz)=——+—+—
dx  dx\2g dc dx dx
we obtain
dh d
dh _Vav & o
dx g dx dx
or
Vdv dy
——+ =538 10.12
gdx dx 1 0 ( )

For a given flowrate per unit width, ¢, in a rectangular channel of constant width b, we have V' = ¢/y
or by differentiation
v_ a4 _ V&

dc  Ydx  ydx
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so that the kinetic energy term in Eq. 10.12 becomes
Vav V*d d
7 _77)} — _Frll

= 10.13
g dx gy dx dx ( )

where Fr = V/(gy)"/? is the local Froude number of the flow. Substituting Eq. 10.13 into Eq. 10.12
and simplifying gives
dy _ (S 5) (10.14)
dx (1 —Fr?)

It is seen that the rate of change of fluid depth, dy/dx, depends on the local slope of the
channel bottom, S, the slope of the energy line, S, and the Froude number, Fr. As shown by the
figure in the margin, the value of dy/dx can be either negative, zero, or positive, depending on
the values of these three parameters. That is, the channel flow depth may be constant or it may
increase or decrease in the flow direction, depending on the values of S, S; and Fr. The behavior
of subcritical flow may be the opposite of that for supercritical flow, as seen by the denominator,
1 — Fr?, of Eq. 10.14.

Although in the derivation of Eq. 10.14 we assumed g is constant (i.e., a rectangular channel),
Eq. 10.14 is valid for channels of any constant cross-sectional shape, provided the Froude number
is interpreted properly (Ref. 3). In this book we will consider only rectangular cross-sectional
channels when using this equation.

10.4 Uniform Depth Channel Flow

V0.6 Merging
channels

The wall shear
stress acts on the
wetted perimeter
of the channel.

Many channels are designed to carry fluid at a uniform depth all along their length. Irrigation canals
are frequently of uniform depth and cross section for considerable lengths. Natural channels such
as rivers and creeks are seldom of uniform shape, although a reasonable approximation to the
flowrate in such channels can often be obtained by assuming uniform flow. In this section we will
discuss various aspects of such flows.

Uniform depth flow (dy/dx = 0) can be accomplished by adjusting the bottom slope, S, so
that it precisely equals the slope of the energy line, S,. That is, S, = S;. This can be seen from Eq.
10.14. From an energy point of view, uniform depth flow is achieved by a balance between the
potential energy lost by the fluid as it coasts downhill and the energy that is dissipated by viscous
effects (head loss) associated with shear stresses throughout the fluid. Similar conclusions can be
reached from a force balance analysis as discussed in the following section.

10.4.1 Uniform Flow Approximations

We consider fluid flowing in an open channel of constant cross-sectional size and shape such that
the depth of flow remains constant as is indicated in Fig. 10.8. The area of the section is 4 and
the wetted perimeter (i.e., the length of the perimeter of the cross section in contact with the fluid)
is P. The interaction between the fluid and the atmosphere at the free surface is assumed negligible
so that this portion of the perimeter is not included in the definition of the wetted perimeter.
Since the fluid must adhere to the solid surfaces, the actual velocity distribution in an open
channel is not uniform. Some typical velocity profiles measured in channels of various shapes are
indicated in Fig. 10.9a. The maximum velocity is often found somewhat below the free surface,

Free surface 4 = flow area

Section -« BEFIGURE 10.8
(a) (b) Uniform flow in an open channel.
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(a)

H FIGURE 10.9 Typical velocity and
shear stress distributions in an open channel:

(a) velocity distribution throughout the cross section,
(b) shear stress distribution on the wetted perimeter.

and the fluid velocity is zero on the wetted perimeter, where a wall shear stress, 7, is developed.
This shear stress is seldom uniform along the wetted perimeter, with typical variations as are

Fortunately, reasonable analytical results can be obtained by assuming a uniform velocity
profile, 7, and a constant wall shear stress, 7,,. Similar assumptions were made for pipe flow
situations (Chapter 8), with the friction factor being used to obtain the head loss.

— Actual
——— Uniform
7,, = shear stress
distribution
(b)
indicated in Fig. 10.95.
F I ui d s i n

t h e N e w s

Plumbing the Everglades Because of all of the economic de-
velopment that has occurred in southern Florida, the natural
drainage pattern of that area has been greatly altered during the
past century. Previously there was a vast network of surface
flow southward from the Orlando area, to Lake Okeechobee,
through the Everglades, and out to the Gulf of Mexico. Cur-
rently a vast amount of freshwater from Lake Okeechobee and
surrounding waterways (1.7 billion gallons per day) is sluiced
into the ocean for flood control, bypassing the Everglades. A
new long-term Comprehensive Everglades Restoration Plan is
being implemented to restore, preserve, and protect the south

Florida ecosystem. Included in the plan are the use of numer-
ous aquifer-storage-and-recovery systems that will recharge the
ecosystem. In addition, surface water reservoirs using artificial
wetlands will clean agricultural runoff. In an attempt to im-
prove the historical flow from north to south, old levees will be
removed, parts of the Tamiami Trail causeway will be altered,
and stored water will be redirected through miles of new pipes
and rebuilt canals. Strictly speaking, the Everglades will not be
“restored.” However, by 2030, 1.6 million acres of national
parkland will have cleaner water and more of it. (See Problem
10.77.)

10.4.2 The Chezy and Manning Equations

The basic equations used to determine the uniform flowrate in open channels were derived many
years ago. Continual refinements have taken place to obtain better values of the empirical coefficients
involved. The result is a semiempirical equation that provides reasonable engineering results. A
more refined analysis is perhaps not warranted because of the complexity and uncertainty of the
flow geometry (i.e., channel shape and the irregular makeup of the wetted perimeter, particularly

for natural channels).

Under the assumptions of steady uniform flow, the x component of the momentum equation
(Eq. 5.22) applied to the control volume indicated in Fig. 10.10 simply reduces to

For steady, uniform
depth flow in an
open channel

there is no fluid
acceleration.

£y

—F,—7,PC+ Wsinf =0

ZF, = p0(Va = 1) =0

since ¥, = V,. There is no acceleration of the fluid, and the momentum flux across section (1) is
the same as that across section (2). The flow is governed by a simple balance between the forces
in the direction of the flow. Thus, 2F, = 0, or

(10.15)



548 Chapter 10 B Open-Channel Flow

ply)
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\ Equal pressure /
distributions

For uniform depth,
channel flow is gov-
erned by a balance
between friction
and weight.

Wholly

turbulent
(£ ;

7=1(5)

Re

B FIGURE 10.10
Control volume for uniform flow
in an open channel.

where F| and F), are the hydrostatic pressure forces across either end of the control volume, as shown
by the figure in the margin. Because the flow is at a uniform depth (y; = y»), it follows that |, = F,
so that these two forces do not contribute to the force balance. The term W'sin 6 is the component of
the fluid weight that acts down the slope, and 7,,P¢ is the shear force on the fluid, acting up the slope
as a result of the interaction of the water and the channel’s wetted perimeter. Thus, Eq. 10.15 becomes

_ Wsing WS,
Y] Pe

T

where we have used the approximation that sin § = tan 6 = S, since the bottom slope is typically
very small (i.e., Sy < 1). Since W = yA€ and the hydraulic radius is defined as R, = A/P, the
force balance equation becomes

= = YR,S, (10.16)

Most open-channel flows are turbulent rather than laminar. In fact, typical Reynolds numbers
are quite large, well above the transitional value and into the wholly turbulent regime. As was
discussed in Chapter 8, and shown by the figure in the margin, for very large Reynolds number pipe
flows (wholly turbulent flows), the friction factor, ; is found to be independent of Reynolds number,
dependent only on the relative roughness, &/D, of the pipe surface. For such cases, the wall shear
stress is proportional to the dynamic pressure, p/?/2, and independent of the viscosity. That is,

2
7, = Kp 5
where K is a constant dependent upon the roughness of the pipe.

It is not unreasonable that similar shear stress dependencies occur for the large Reynolds
number open-channel flows. In such situations, Eq. 10.16 becomes

2

V
Kp B = YRiS,
or
V'=CVR,S, (10.17)

where the constant C is termed the Chezy coefficient and Eq. 10.17 is termed the Chezy equation.
This equation, one of the oldest in the area of fluid mechanics, was developed in 1768 by A. Chezy
(1718-1798), a French engineer who designed a canal for the Paris water supply. The value of the
Chezy coefficient, which must be determined by experiments, is not dimensionless but has the
dimensions of (length)'/ per time (i.e., the square root of the units of acceleration).

From a series of experiments it was found that the slope dependence of Eq. 10.17 (V ~ S/?)
is reasonable, but that the dependence on the hydraulic radius is more nearly ¥ ~ R} rather than
V ~ R}*. In 1889, R. Manning (1816—1897), an Irish engineer, developed the following somewhat
modified equation for open-channel flow to more accurately describe the R, dependence:

2/3¢l/2
_ Rh/ SO/

. (10.18)
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B TABLE 10.1
Values of the Manning Coefficient, n (Ref. 6)

Wetted Perimeter n Wetted Perimeter n
A. Natural channels D. Artificially lined channels
Clean and straight 0.030 Glass 0.010
Sluggish with deep pools 0.040 Brass 0.011
Major rivers 0.035 Steel, smooth 0.012
B. Floodplains Steel, painted 0.014
Pasture, farmland 0.035 Steel, riveted 0.015
Light brush 0.050 Cast iron 0.013
Heavy brush 0.075 Concrete, finished 0.012
Trees 0.15 Concrete, unfinished 0.014
Planed wood 0.012
C. Excavated earth channels Clay tile 0.014
Clean 0.022 Brickwork 0.015
Gravelly 0.025 Asphalt 0.016
Weedy 0.030 Corrugated metal 0.022
Stony, cobbles 0.035 Rubble masonry 0.025

Equation 10.18 is termed the Manning equation, and the parameter n is the Manning resistance
coefficient. Tts value is dependent on the surface material of the channel’s wetted perimeter and is
obtained from experiments. It is not dimensionless, having the units of s/m'* or s/ft'/*.

As is discussed in Chapter 7, any correlation should be expressed in dimensionless form,
with the coefficients that appear being dimensionless coefficients, such as the friction factor for
pipe flow or the drag coefficient for flow past objects. Thus, Eq. 10.18 should be expressed in
dimensionless form. Unfortunately, the Manning equation is so widely used and has been used for
so long that it will continue to be used in its dimensional form with a coefficient, n, that is not
dimensionless. The values of n found in the literature (such as Table 10.1) were developed for SI
units. Standard practice is to use the same value of n when using the BG system of units, and to

The Manning equa- insert a conversion factor into the equation.
tion is used to ob- Thus, uniform flow in an open channel is obtained from the Manning equation written as
tain the velocity or

Sflowrate in an open K
channel. V= ;Ri/ e (10.19)

and

0= %AR%”S(%/Z (10.20)

where k = 1 if SI units are used, and k = 1.49 if BG units are used. The value 1.49 is the cube
root of the number of feet per meter: (3.281 ft/m)"? = 1.49. Thus, by using R, in meters, 4 in m?,
and k = 1, the average velocity is m/s and the flowrate m?/s. By using R, in feet, 4 in ft%, and
k = 1.49, the average velocity is ft/s and the flowrate ft’/s.

Typical values of the Manning coefficient are indicated in Table 10.1. As expected, the
rougher the wetted perimeter, the larger the value of n. For example, the roughness of floodplain
surfaces increases from pasture to brush to tree conditions. So does the corresponding value of
the Manning coefficient. Thus, for a given depth of flooding, the flowrate varies with floodplain
roughness as indicated by the figure in the margin.

Precise values of n are often difficult to obtain. Except for artificially lined channel
surfaces like those found in new canals or flumes, the channel surface structure may be quite
complex and variable. There are various methods used to obtain a reasonable estimate of the
0 o005 o1 value of n for a given situation (Ref. 5). For the purpose of this book, the values from Table

n 10.1 are sufficient. Note that the error in Q is directly proportional to the error in n. A 10%

Pasture, farmland

Light brush

Heavy brush




550 Chapter 10 B Open-Channel Flow

V10.7 Uniform
channel flow

error in the value of n produces a 10% error in the flowrate. Considerable effort has been put
forth to obtain the best estimate of n, with extensive tables of values covering a wide variety
of surfaces (Ref. 7). It should be noted that the values of n given in Table 10.1 are valid only
for water as the flowing fluid.

Both the friction factor for pipe flow and the Manning coefficient for channel flow are
parameters that relate the wall shear stress to the makeup of the bounding surface. Thus, various
results are available that describe # in terms of the equivalent pipe friction factor, f, and the surface
roughness, € (Ref. 8). For our purposes we will use the values of n from Table 10.1.

10.4.3 Uniform Depth Examples

A variety of interesting and useful results can be obtained from the Manning equation. The following
examples illustrate some of the typical considerations.

The main parameters involved in uniform depth open-channel flow are the size and shape of
the channel cross section (4, R,,), the slope of the channel bottom (S,), the character of the material
lining the channel bottom and walls (1), and the average velocity or flowrate (¥ or Q). Although
the Manning equation is a rather simple equation, the ease of using it depends in part on which
variables are given and which are to be determined.

Determination of the flowrate of a given channel with flow at a given depth (often termed
the normal flowrate for normal depth, sometimes denoted y,) is obtained from a straightforward
calculation as is shown in Example 10.3.

_EXAMPLE |V ¥ Uniform Flow, Determine Flow Rate

GIVEN Water flows in the canal of trapezoidal cross section
shown in Fig. E10.3a. The bottom drops 1.4 ft per 1000 ft of
length. The canal is lined with new finished concrete.

FIND Determine
(a) the flowrate and
(b) the Froude number for this flow.

SoLuTION

‘ 12 ft
B FIGURE E10.3a

(a) From Eq. 10.20,

1.49
0 =——AR" S )
n
where we have used k = 1.49, since the dimensions are given in
BG units. For a depth of y = 5 ft, the flow area is

A=12ﬁ(5ﬁ)+5ﬁ< ft)=89.8ﬁ2

tan 40°
so that with a wetted perimeter of P =12 ft + 2(5/sin 40° ft) =
27.6 ft, the hydraulic radius is determined to be R, = 4/P =
3.25 ft. Note that even though the channel is quite wide (the free-
surface width is 23.9 ft), the hydraulic radius is only 3.25 ft, which
is less than the depth.

Thus, with S, = 1.4 ft/1000 ft = 0.0014, Eq. 1 becomes

1.49 10.98
Q = == (89.8 f%)(3.25 1)°(0.0014)” = ==

where Q is in ft*/s.

From Table 10.1, we obtain » = 0.012 for the finished
concrete. Thus,
~10.98

= =915
0 0012 915 cfs (Ans)

COMMENT The corresponding average velocity, V' = Q/A,
is 10.2 ft/s. It does not take a very steep slope (S, = 0.0014 or 0 =
tan~"' (0.0014) = 0.080°) for this velocity.

By repeating the calculations for various surface types (i.e.,
various Manning coefficient values), the results shown in Fig.
E10.35 are obtained. Note that the increased roughness causes
a decrease in the flowrate. This is an indication that for the tur-
bulent flows involved, the wall shear stress increases with sur-
face roughness. [For water at 50 °F, the Reynolds number
based on the 3.25-ft hydraulic radius of the channel and a
smooth concrete surface is Re = R, V/v = 3.25 ft (10.2 ft/s)/
(1.41 X 107° ft*/s) = 2.35 X 10°, well into the turbulent regime.]

(b) The Froude number based on the maximum depth for the
flow can be determined from Fr = ¥/(gy)". For the finished
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concrete case,

10.2 ft/s
b =
(32.2 ft/s* X 5 i)'

The flow is subcritical.

= 0.804 (Ans)

COMMENT The same results would be obtained for the
channel if its size were given in meters. We would use the same
value of n but set k = 1 for this SI units situation.

In some instances a trial-and-error or iteration method must be used to solve for the dependent
variable. This is often encountered when the flowrate, channel slope, and channel material are
given, and the flow depth is to be determined as illustrated in the following examples.

GIVEN Water flows in the channel shown in Fig. E10.3a at a
rate of O = 10.0 m*/s. The canal lining is weedy.

SoLuTION

L SLXTTCLY Uniform Flow, Determine Flow Depth

FIND Determine the depth of the flow.

In this instance neither the flow area nor the hydraulic radius are
known, although they can be written in terms of the depth, y.
Since the flowrate is given in m*/s, we will solve this problem using
ST units. Hence, the bottom width is (12 ft) (1 m/3.281 ft) = 3.66 m
and the area is

A =y( 2 >+ 3.66y = 1.19)% + 3.66y
tan 40°

where 4 and y are in square meters and meters, respectively. Also,
the wetted perimeter is

= 311y 4= 556
sin 40°> Y

P=3.66+2<

so that

z 4 _ 1.19y” + 3.66y
TP 311y + 3.66

where R, and y are in meters. Thus, with » = 0.030 (from Table

10.1), Eq. 10.20 can be written as

0 =10 =~ 4R} Si’

1

0
= " (1.19 + 3.66
0.030 (1% y)(

X (0.0014)"2

1.197 + 3‘66y)2/3
3.11y + 3.66

which can be rearranged into the form
(1.195* + 3.66y)° — 515(3.11y + 3.66)> = 0 (0))

where y is in meters. The solution of Eq. 1 can be easily obtained
by use of a simple rootfinding numerical technique or by trial-

and-error methods. The only physically meaningful root of Eq. 1
(i.e., a positive, real number) gives the solution for the normal
flow depth at this flowrate as

y=150m (Ans)
COMMENT By repeating the calculations for various
flowrates, the results shown in Fig. E10.4 are obtained. Note that
the water depth is not linearly related to the flowrate. That is, if
the flowrate is doubled, the depth is not doubled.

&0
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BEFIGURE E10.4
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In Example 10.4 we found the flow depth for a given flowrate. Since the equation for this
depth is a nonlinear equation, it may be that there is more than one solution to the problem. For a
given channel there may be two or more depths that carry the same flowrate. Although this is not

normally so, it can and does happen, as is illustrated by Example 10.5.

GIVEN Water flows in a round pipe of diameter D at a depth
of 0 =y = D, as is shown in Fig. E10.5a. The pipe is laid on a
constant slope of S, and the Manning coefficient is 7.

FIND (a) At what depth does the maximum flowrate occur?

(b) Show that for certain flowrates there are two depths possible
with the same flowrate. Explain this behavior.

SoLuTION

(a) According to the Manning equation (Eq. 10.20) the flowrate is
K
0 = AR 0))

where S, n, and k are constants for this problem. From geometry
it can be shown that

2

D
A =§(9— sin 0)

where 6, the angle indicated in Fig. E10.54, is in radians. Simi-
larly, the wetted perimeter is

A D(6 — sin6)
P 46

Therefore, Eq. 1 becomes

D3 {(0 — sin 0)5/3}

_ K ap
Q_nS 023

0 8( 4)2/3

This can be written in terms of the flow depth by using
y = (D/2)[1 — cos(6/2)].

A graph of flowrate versus flow depth, O = O(y), has the
characteristic indicated in Fig. E10.5b. In particular, the maxi-
mum flowrate, Q... does not occur when the pipe is full;

_EXAMPLE IFVMY Uniform Flow, Maximum Flow Rate

1.0
0 R
|
O Orer )
0.5 :
quH =0.929 Qmax :
|
0 |
0 0.5 1.0
v y=0.938D
D
(b)

B FIGURE E10.5

O = 09290, It occurs when y = 0.938D, or 6 = 5.28
rad = 303°. Thus,

O = Ounax Wheny = 0.938D (Ans)

(b) Forany 0.929 < Q/Q,.x < 1 there are two possible depths
that give the same Q. The reason for this behavior can be seen by
considering the gain in flow area, 4, compared to the increase in
wetted perimeter, P, for y = D. The flow area increase for an
increase in y is very slight in this region, whereas the increase in
wetted perimeter, and hence the increase in shear force holding
back the fluid, is relatively large. The net result is a decrease in
flowrate as the depth increases.

COMMENT  For most practical problems, the slight difference
between the maximum flowrate and full pipe flowrates is negligible,
particularly in light of the usual inaccuracy of the value of 7.

F | u i d s i n

t h e N e w s

Done without GPS or lasers Two thousand years before the
invention of such tools as the GPS or laser surveying equipment,
Roman engineers were able to design and construct structures that
made a lasting contribution to Western civilization. For example,
one of the best surviving examples of Roman aqueduct construc-
tion is the Pont du Gard, an aqueduct that spans the Gardon River
near Nimes, France. This aqueduct is part of a circuitous, 50 km

long open channel that transported water to Rome from a spring
located 20 km from Rome. The spring is only 14.6 m above the
point of delivery, giving an average bottom slope of only 3 X 107*,
It is obvious that to carry out such a project, the Roman under-
standing of hydraulics, surveying, and construction was well ad-
vanced. (See Problem 10.59.)
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For manylopen In many man-made channels and in most natural channels, the surface roughness (and hence

channels, the sur- the Manning coefficient) varies along the wetted perimeter of the channel. A drainage ditch, for
face roughness example, may have a rocky bottom surface with concrete side walls to prevent erosion. Thus,
varies across the the effective n will be different for shallow depths than for deep depths of flow. Similarly, a river
channel. channel may have one value of n appropriate for its normal channel and another very different

value of n during its flood stage when a portion of the flow occurs across fields or through
floodplain woods. An ice-covered channel usually has a different value of » for the ice than for
the remainder of the wetted perimeter (Ref. 7). (Strictly speaking, such ice-covered channels are
not “open” channels, although analysis of their flow is often based on open-channel flow
equations. This is acceptable, since the ice cover is often thin enough so that it represents a fixed
boundary in terms of the shear stress resistance, but it cannot support a significant pressure
differential as in pipe flow situations.)

A variety of methods has been used to determine an appropriate value of the effective
roughness of channels that contain subsections with different values of #. Which method gives the
most accurate, easy-to-use results is not firmly established, since the results are nearly the same
for each method (Ref. 5). A reasonable approximation is to divide the channel cross section into N
subsections, each with its own wetted perimeter, P,, area, 4;, and Manning coefficient, n,. The P;
values do not include the imaginary boundaries between the different subsections. The total flowrate
is assumed to be the sum of the flowrates through each section. This technique is illustrated by
Example 10.7.

L STXTIITNA Uniform Flow, Variable Roughness

GIVEN  Water flows along the drainage canal having the proper- 3 ft
ties shown in Fig. E10.6a. The bottom slope is S, = 1 /500 ft = 1y = 0.020

0.002. ST
Y

FIND Estimate the flowrate when the depth is y = 0.8 ft +
0.6 ft = 1.4 ft.

B FIGURE E10.6a
SOLUTION

We divide the cross section into three subsections as is indicated ~ so that
in Fig. E10.6a and write the flowrate as Q = O, + O, + O;,

2
where for each section R, = 4 _ 2.8 1t = 0.778 ft
> P, 36ft
0, = 1.49 ARPSI
! n, OO Thus, the total flowrate is
The appropriate values of 4, P, R, and n, are listed in 0 =0 +0,+ 0, = 1.49(0.002)"2

Table E10.6. Note that the imaginary portions of the perimeters 2 23 2 23
between sections (denoted by the vertical dashed lines in Fig. (5 YO 4k (I, ()
E10.6a) are not included in the P;. That is, for section (2) 0.020 0.015

Ay =2f(0.8 + 0.6)ft = 2.8 f2 (1.8 £%)(0.500 ft)”

0.030
and
or
P, =2ft+2(0.8f)=36ft
0 =168 ft'/s (Ans)
H TABLE E10.6 COMMENTS If the entire channel cross section were con-
A P. R.. sidered as one flow area, then 4 = 4, + 4, + 4; = 6.4 ft? and
; (fth) (ft () " P=P + P,+P,=108f, or R,=A/P =64f*/108% =
: 0.593 ft. The flowrate is given by Eq. 10.20, which can be writ-
1 1.8 3.6 0.500 0.020 ten as
2 2.8 3.6 0.778 0.015 e
3 1.8 3.6 0.500 0.030 0 = —— ARS)?

Mot
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where n. is the effective value of n for this channel. With 40
O = 16.8 ft*/s as determined above, the value of n. is found to be

1.494R2/*SY? 30

Nefr = T
1.49(6.4)(0.593)%3(0.002) /2 T
- LACAO0 B0 _ 417 = s
16.8 Ql (1.4 ft, 16.8 ft°/s)

As expected, the effective roughness (Manning 7) is between the 10
minimum (n, = 0.015) and maximum (n; = 0.030) values for
the individual subsections.

By repeating the calculations for various depths, ), the results 0
shown in Fig. E10.6b are obtained. Note that there are two distinct
portions of the graph—one when the water is contained entirely
within the main, center channel (y < 0.8 ft); the other when the wa-
ter overflows into the side portions of the channel (y > 0.8 ft).

0 0.5 1 1.5 2
» ft

B FIGURE E10.6b

For a given flow-

rate, the channel of

minimum area is
denoted as the best
hydraulic cross
section.

One type of problem often encountered in open-channel flows is that of determining the best
hydraulic cross section defined as the section of the minimum area for a given flowrate, O, slope,
Sy, and roughness coefficient, n. By using R, = A/P we can write Eq. 10.20 as

K (AVE o, K AVS
=—4(= /2 — —
0-5a(5) W

P P

which can be rearranged as

4 = ( nQ )3/5 ps

K Sy

where the quantity in the parentheses is a constant. Thus, a channel with minimum 4 is one with
a minimum P, so that both the amount of excavation needed and the amount of material to line
the surface are minimized by the best hydraulic cross section.

The best hydraulic cross section possible is that of a semicircular channel. No other shape
has as small a wetted perimeter for a given area. It is often desired to determine the best shape for
a class of cross sections. The results (given here without proof) for rectangular, trapezoidal (with
60° sides), and triangular shapes are shown in Fig. 10.11. For example, the best hydraulic cross
section for a rectangle is one whose depth is half its width; for a triangle it is a 90° triangle.

10.5 Gradually Varied Flow

In many situations the flow in an open channel is not of uniform depth (y = constant) along the
channel. This can occur because of several reasons: The bottom slope is not constant, the cross-
sectional shape and area vary in the flow direction, or there is some obstruction across a portion
of the channel. Such flows are classified as gradually varying flows if dy/dx < 1.

If the bottom slope and the energy line slope are not equal, the flow depth will vary along
the channel, either increasing or decreasing in the flow direction. In such cases dy/dx # 0,
dV/dx # 0, and the right-hand side of Eq. 10.10 is not zero. Physically, the difference between the

B FI GURE 10.11 Best hydraulic cross sections for a rectangle, a 60°
trapezoid, and a triangle.
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component of weight and the shear forces in the direction of flow produces a change in the fluid
momentum that requires a change in velocity and, from continuity considerations, a change in
depth. Whether the depth increases or decreases depends on various parameters of the flow, with
a variety of surface profile configurations [flow depth as a function of distance, y = y(x)] possible
(Refs. 5, 9).

10.6 Rapidly Varied Flow

In many cases the
flow depth may
change significantly
in a short distance.

V10.8 Erosion in a
channel

V10.9 Bridge pier
scouring

In many open channels, flow depth changes occur over a relatively short distance so that dy/dx ~ 1.
Such rapidly varied flow conditions are often quite complex and difficult to analyze in a precise
fashion. Fortunately, many useful approximate results can be obtained by using a simple one-
dimensional model along with appropriate experimentally determined coefficients when necessary.
In this section we discuss several of these flows.

Some rapidly varied flows occur in constant area channels for reasons that are not immediately
obvious. The hydraulic jump is one such case. As is indicated in Fig. 10.12, the flow may change
from a relatively shallow, high-speed condition into a relatively deep, low-speed condition within
a horizontal distance of just a few channel depths. Other rapidly varied flows may be due to a
sudden change in the channel geometry such as the flow in an expansion or contraction section of
a channel as is indicated in Fig. 10.13.

In such situations the flow field is often two- or three-dimensional in character. There may be
regions of flow separation, flow reversal, or unsteady oscillations of the free surface. For the purpose
of some analyses, these complexities can be neglected and a simplified analysis can be undertaken.
In other cases, however, it is the complex details of the flow that are the most important property of
the flow; any analysis must include their effects. The scouring of a river bottom in the neighborhood
of a bridge pier, as is indicated in Fig. 10.14, is such an example. A one- or two-dimensional model
of this flow would not be sufficient to describe the complex structure of the flow that is responsible
for the erosion near the foot of the bridge pier.

Many open-channel flow-measuring devices are based on principles associated with rapidly
varied flows. Among these devices are broad-crested weirs, sharp-crested weirs, critical flow flumes,
and sluice gates. The operation of such devices is discussed in the following sections.

B FIGURE 10.12 Hydraulic jump.

B FIGURE 10.13 Rapidly varied
flow may occur in a channel transition section.
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N

V10.10 Big Sioux
River bridge
collapse

A hydraulic jump is
a steplike increase

in fluid depth in an
open channel.

Upstream velocity |

profile m/ Bridge pier
\‘k—/ Horseshoe vortex

/

e ,——,%

A

Scouring of _—" = = ——_
channel bottom

B FI GURE 10.14 The complex three-dimensional flow structure around a bridge pier.

O D

10.6.1 The Hydraulic Jump

Observations of flows in open channels show that under certain conditions it is possible that the
fluid depth will change very rapidly over a short length of the channel without any change in the
channel configuration. Such changes in depth can be approximated as a discontinuity in the free-
surface elevation (dy/dx = ). For reasons discussed below, this step change in depth is always
from a shallow to a deeper depth—always a step up, never a step down.

Physically, this near discontinuity, called a hydraulic jump, may result when there is a conflict
between the upstream and downstream influences that control a particular section (or reach) of a channel.
For example, a sluice gate may require that the conditions at the upstream portion of the channel
(downstream of the gate) be supercritical flow, while obstructions in the channel on the downstream
end of the reach may require that the flow be subcritical. The hydraulic jump provides the mechanism
(a nearly discontinuous one at that) to make the transition between the two types of flow.

The simplest type of hydraulic jump occurs in a horizontal, rectangular channel as is indicated
in Fig. 10.15. Although the flow within the jump itself is extremely complex and agitated, it is
reasonable to assume that the flow at sections (1) and (2) is nearly uniform, steady, and one-
dimensional. In addition, we neglect any wall shear stresses, 7,,, within the relatively short segment
between these two sections. Under these conditions the x component of the momentum equation
(Eq. 5.22) for the control volume indicated can be written as

Fy — F, = pQ(V, = V) = pViy,b(Vy — V)

where, as indicated by the figure in the margin, the pressure force at either section is hydrostatic.
That is, F, = p.A, = yy?b/2 and F, = p,A4, = yy3b/2, where p., = yy,/2 and p., = yy,/2 are
the pressures at the centroids of the channel cross sections and b is the channel width. Thus, the
momentum equation becomes

iy

— == Vv, =V 10.21
) P (, = 1) (10.21)
In addition to the momentum equation, we have the conservation of mass equation (Eq. 5.12)

bV, =y.bV, = Q (10.22)

Control ‘[
volume™

)
|
&; » Fl |

!

B FIGURE 10.15 Hydraulic jump geometry.
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and the energy equation (Eq. 5.84)
Vi V3
Wt =yt —+h (10.23)
2g 2g
The head loss, #;, in Eq. 10.23 is due to the violent turbulent mixing and dissipation that occur
within the jump itself. We have neglected any head loss due to wall shear stresses.

Clearly Eqgs. 10.21, 10.22, and 10.23 have a solution y, = y,, V', = V,, and #;, = 0. This
represents the trivial case of no jump. Since these are nonlinear equations, it may be possible that
more than one solution exists. The other solutions can be obtained as follows. By combining Eqgs.
10.21 and 10.22 to eliminate V, we obtain

2 2 2
ioo»n_ VoV Viyi
At ) g

&

2 2 g
which can be simplified by factoring out a common nonzero factor y, — y, from each side to give

2
1 Y1

where Fr, = V,/V gy, is the upstream Froude number. By using the quadratic formula we obtain

1
%za(—l = V1 + 8Fr})
1
Clearly the solution with the minus sign is not possible (it would give a negative y,/y;). Thus,

ol N TR (10.24)

yoo2

Y2

This depth ratio, y,/y,, across the hydraulic jump is shown as a function of the upstream Froude number
in Fig. 10.16. The portion of the curve for Fr; < 1 is dashed in recognition of the fact that to have a
hydraulic jump the flow must be supercritical. That is, the solution as given by Eq. 10.24 must be
restricted to Fr; = 1, for which y,/y, = 1. This can be shown by consideration of the energy equation,
Eq. 10.23, as follows. The dimensionless head loss, %, /y,, can be obtained from Eq. 10.23 as

h Fr} :
Lzl_yurl{l_(yl” (10.25)
N no 2 Y2

where, for given values of Fr;, the values of y,/y, are obtained from Eq. 10.24. As is indicated in
Fig. 10.16, the head loss is negative if Fr; < 1. Since negative head losses violate the second law

4
3
V2
N
Y2 2
N
or No jump hAL
possible N
hL
R
/|
/7 |
A
4 |
) = A—
7
A
1 |
1 |
1 1 I
0 1 2 3 4

B FIGURE 10.16 Depth ratio and dimension-
Fr, = " less head loss across a hydraulic jum, functi f
T = y jump as a function o

&N upstream Froude number.
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(Photograph courtesy
of U.S. Army Corps
of Engineers.)

Hydraulic jumps
dissipate energy.
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of thermodynamics (viscous effects dissipate energy, they cannot create energy; see Section 5.3),
it is not possible to produce a hydraulic jump with Fr; < 1. The head loss across the jump is
indicated by the lowering of the energy line shown in Fig. 10.15.

A flow must be supercritical (Froude number > 1) to produce the discontinuity called a
hydraulic jump. This is analogous to the compressible flow ideas discussed in Chapter 11 in which
it is shown that the flow of a gas must be supersonic (Mach number > 1) to produce the
discontinuity called a normal shock wave. However, the fact that a flow is supercritical (or
supersonic) does not guarantee the production of a hydraulic jump (or shock wave). The trivial
solution y; = y, and V| = V), is also possible.

The fact that there is an energy loss across a hydraulic jump is useful in many situations. For
example, the relatively large amount of energy contained in the fluid flowing down the spillway
of a dam like that shown in the figure in the margin could cause damage to the channel below the
dam. By placing suitable flow control objects in the channel downstream of the spillway, it is
possible (if the flow is supercritical) to produce a hydraulic jump on the apron of the spillway and
thereby dissipate a considerable portion of the energy of the flow. That is, the dam spillway produces
supercritical flow, and the channel downstream of the dam requires subcritical flow. The resulting
hydraulic jump provides the means to change the character of the flow.

F | u i d s i n

t h e N e w s

Grand Canyon rapids building Virtually all of the rapids in the
Grand Canyon were formed by rock debris carried into the Col-
orado River from side canyons. Severe storms wash large
amounts of sediment into the river, building debris fans that nar-
row the river. This debris forms crude dams which back up the
river to form quiet pools above the rapids. Water exiting the pool
through the narrowed channel can reach supercritical conditions
and produce hydraulic jumps downstream. Since the configura-
tion of the jumps is a function of the flowrate, the difficulty in
running the rapids can change from day to day. Also, rapids

change over the years as debris is added to or removed from the
rapids. For example, Crystal Rapid, one of the notorious rafting
stretches of the river, changed very little between the first photos
of 1890 and those of 1966. However, a debris flow from a severe
winter storm in 1966 greatly constricted the river. Within a few
minutes the configuration of Crystal Rapid was completely
changed. The new, immature rapid was again drastically changed
by a flood in 1983. While Crystal Rapid is now considered full
grown, it will undoubtedly change again, perhaps in 100 or 1000
years. (See Problem 10.100.)

GIVEN Water on the horizontal apron of the 100-ft-wide spill-
way shown in Fig. E10.7a has a depth of 0.60 ft and a velocity of
18 ft/s.

SoLUTION

E xampLe 10.7 I

FIND Determine the depth, y,, after the jump, the Froude
numbers before and after the jump, Fr; and Fr,, and the power dis-
sipated, %, within the jump.

Conditions across the jump are determined by the upstream
Froude number
v 18 ft/s

= e (322 f/)(0.60 )] 2

Thus, the upstream flow is supercritical, and it is possible to gen-
erate a hydraulic jump as sketched.
From Eq. 10.24 we obtain the depth ratio across the jump as

(=1 + V1 + 8Fr)
[—1+ V1 + 8(4.10] = 5.32

=4.10 (Ans)

V2

i

or

¥, = 5.32(0.60 ft) = 3.19 ft (Ans)

Since O, = 0,, or Vo= V)/y,=0.60 ft(18 ft/s)/3.19 ft =
3.39 fi/s, it follows that

. v, 3.39 ft/s
r, = =
P Ve, [(3221£/5%)(3.19 )]
As is true for any hydraulic jump, the flow changes from super-
critical to subcritical flow across the jump.

The power (energy per unit time) dissipated, %,, by viscous
effects within the jump can be determined from the head loss

=0.334 (Ans)
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as (see Eq. 5.85) b = width = 100 ft
Spillway apron _,:::v:;
P, = yOh, = yby Vi, ) wf f r ==
. . ~ ) >
where £, is obtained from Eqs. 10.23 or 10.25 as ~ — 1, = 18 ft/s L |_| m
2 2 18.0 ft/s)? T
hy = (J’1 + ﬂ) - (yz + E) = {0-60 ft + 7( /5) } y1=0.60 ft Downstream
2g 2g 2(32.2 ft/s%) obstacles
3.39 fi/s)? &
[ 200
2(32.2 ft/s%)
1000
or
h, =226 ft &e
Thus, from Eq. 1,
600
P, = (62.4 Ib/ft*)(100 ft)(0.60 ft)(18.0 ft/s)(2.26 ft) &
_ s S
=1.52 X 10° ft - Ib/s S 100
o (0.60 ft, 277 hp)
1.52 X 10° ft - Ib/s 200
= ———————=277hp (Ans)
550[(ft - 1b/s)/hp] . (1.54 ft, O hp)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 '1.6

COMMENTS This power, which is dissipated within the
highly turbulent motion of the jump, is converted into an increase
in water temperature, 7. That is, 7, > 7). Although the power
dissipated is considerable, the difference in temperature is not
great because the flowrate is quite large.

By repeating the calculations for the given flowrate O, =
AV, = by, V; =100 ft (0.6 ft)(18 ft/s) = 1080 ft*/s but with
various upstream depths, y;, the results shown in Fig. E10.75 are
obtained. Note that a slight change in water depth can produce a
considerable change in energy dissipated. Also, if y; > 1.54 ft
the flow is subcritical (Fr; < 1) and no hydraulic jump can occur.

The hydraulic jump flow process can be illustrated by use of the
specific energy concept introduced in Section 10.3 as follows. Equa-
tion 10.23 can be written in terms of the specific energy,
E=y+ V?/2g, as E, = E, + h;, where E, =y, + V3/2g =
5.63ft and E, =y, + V3/2g = 337 ft. As is discussed in
Section 10.3, the specific energy diagram for this flow can be ob-
tained by using V' = ¢/y, where

vy ft
(b)

v, ft

(c)
B FIGURE E10.7

% = 3V, = 0.60 fi (18.0 fi/s)

=10.8 t¥/s jump, the upstream and downstream values of E are different.
In going from state (1) to state (2) the fluid does not proceed

q9=4q9 = 4=

Thus, along the specific energy curve and pass through the critical
P 7 B (10.8 ft%/s)? - 181 condition at state 2'. Rath.er, it jumps from (1) to (2) as is repre-
y 207 y 2322 /) y 7 sented by the dashed line in the figure. From a one-dimensional

consideration, the jump is a discontinuity. In actuality, the jump
where y and E are in feet. The resulting specific energy diagram  is a complex three-dimensional flow incapable of being repre-
is shown in Fig. E10.7¢. Because of the head loss across the sented on the one-dimensional specific energy diagram.

The actual structure of a hydraulic jump is a complex function of Fr;, even though the depth
ratio and head loss are given quite accurately by a simple one-dimensional flow analysis (Eqs. 10.24
and 10.25). A detailed investigation of the flow indicates that there are essentially five types of
surface and jump conditions. The classification of these jumps is indicated in Table 10.2, along with
sketches of the structure of the jump. For flows that are barely supercritical, the jump is more like
a standing wave, without a nearly step change in depth. In some Froude number ranges the jump is



560 Chapter 10 B Open-Channel Flow

The actual struc-
ture of a hydraulic
Jjump depends on
the Froude number.

A

V10.12 Hydraulic
Jump in a sink
———y————

B TABLE 10.2
Classification of Hydraulic Jumps (Ref. 12)

Fr, Yo/ Classification Sketch
<1 1 Jump impossible \V4
>, Vy =V, =
1to 1.7 1to2.0 Standing wave or undulant jump —
b Y2
1~ 7§
1.7 to 2.5 2.0 to 3.1 Weak jump L —
[ ey —
2.51t0 4.5 3.1t0 59 Oscillating jump m
== I

4.51t0 9.0 5.9 to 12 Stable, well-balanced steady jump;

=
insensitive to downstream conditions ﬁ
e

>9.0 >12 Rough, somewhat intermittent strong jump

nNr— —
O~

unsteady, with regular periodic oscillations traveling downstream. (Recall that the wave cannot travel
upstream against the supercritical flow.)

The length of a hydraulic jump (the distance between the nearly uniform upstream and
downstream flows) may be of importance in the design of channels. Although its value cannot be
determined theoretically, experimental results indicate that over a wide range of Froude numbers,
the jump is approximately seven downstream depths long (Ref. 5).

Hydraulic jumps can occur in a variety of channel flow configurations, not just in horizontal,
rectangular channels as discussed above. Jumps in nonrectangular channels (i.e., circular pipes,
trapezoidal canals) behave in a manner quite like those in rectangular channels, although the details
of the depth ratio and head loss are somewhat different from jumps in rectangular channels.

Other common types of hydraulic jumps include those that occur in sloping channels as is
indicated in Fig. 10.17a and the submerged hydraulic jumps that can occur just downstream of a

(a)

~fres ump EFIGURE 10.17
Hydraulic jump variations: (¢) jump
caused by a change in channel slope,
(b) (b) submerged jump.
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Weir plate
B FIGURE 10.18 Sharp-crested weir geometry.

sluice gate as is indicated in Fig. 10.175. Details of these and other jumps can be found in standard
open-channel flow references (Refs. 3 and 5).

10.6.2 Sharp-Crested Weirs

A weir is an obstruction on a channel bottom over which the fluid must flow. It provides a convenient
method of determining the flowrate in an open channel in terms of a single depth measurement. A
sharp-crested weir is essentially a vertical sharp-edged flat plate placed across the channel in a way
such that the fluid must flow across the sharp edge and drop into the pool downstream of the weir
plate, as is shown in Fig. 10.18. The specific shape of the flow area in the plane of the weir plate
is used to designate the type of weir. Typical shapes include the rectangular weir, the triangular weir,
and the trapezoidal weir, as indicated in Fig. 10.19.

The complex nature of the flow over a weir makes it impossible to obtain precise analytical
expressions for the flow as a function of other parameters, such as the weir height, P,,, weir head,
H, the fluid depth upstream, and the geometry of the weir plate (angle 6 for triangular weirs or
aspect ratio, b/H, for rectangular weirs). The flow structure is far from one-dimensional, with a
variety of interesting flow phenomena obtained.

The main mechanisms governing flow over a weir are gravity and inertia. From a highly
simplified point of view, gravity accelerates the fluid from its free-surface elevation upstream
of the weir to larger velocity as it flows down the hill formed by the nappe. Although viscous
and surface tension effects are usually of secondary importance, such effects cannot be entirely
neglected. Generally, appropriate experimentally determined coefficients are used to account for
these effects.

As a first approximation, we assume that the velocity profile upstream of the weir plate is
uniform and that the pressure within the nappe is atmospheric. In addition, we assume that the
fluid flows horizontally over the weir plate with a nonuniform velocity profile, as indicated in Fig.
10.20. With pp = 0 the Bernoulli equation for flow along the arbitrary streamline A—B indicated
can be written as

VZ u2
Doy S AP, - k) + 2 (10.26)
Y 2g 2g
b Channel
‘ ‘ walls
VAR /\ Y VA
= Weir
plate L
(a) (b) (c)

B FIGURE 10.19 Sharp-crested weir plate geometry: (a) rectangular,
(b) triangular, (c) trapezoidal.
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B FIGURE 10.20 Assumed flow structure over a weir.

where / is the distance that point B is below the free surface. We do not know the location of point
A from which came the fluid that passes over the weir at point B. However, since the total head
for any particle along the vertical section (1) is the same, z, + p,/y + V3/2g = H + P,, + V3/2g,
the specific location of 4 (i.e., A or A" shown in the figure in the margin) is not needed, and the
velocity of the fluid over the weir plate is obtained from Eq. 10.26 as

4

h=H
0= J Uy dA = J uy dh (10.27)
@

h=0

The flowrate can be calculated from

where € = €(h) is the cross-channel width of a strip of the weir area, as is indicated in Fig. 10.205.
For a rectangular weir € is constant. For other weirs, such as triangular or circular weirs, the value
of £ is known as a function of 4.

For a rectangular weir, € = b, and the flowrate becomes

H V% 12
0= \/Zgbj <h +) dh
0 2g

or

2\3/2 2\3/2
0= % V2ghb [(H + ;/gl) — (;/gl) } (10.28)

Equation 10.28 is a rather cumbersome expression that can be simplified by using the fact that

with P, > H (as often happens in practical situations) the upstream velocity is negligibly small.
That is, V?/2g < H and Eq. 10.28 simplifies to the basic rectangular weir equation

0=3\V2gbH" (10.29)

Note that the weir head, H, is the height of the upstream free surface above the crest of the weir.
As is indicated in Fig. 10.18, because of the drawdown effect, H is not the distance of the free
surface above the weir crest as measured directly above the weir plate.

Because of the numerous approximations made to obtain Eq. 10.29, it is not unexpected that
an experimentally determined correction factor must be used to obtain the actual flowrate as a
function of weir head. Thus, the final form is

0=0C,2V2gbH" (10.30)
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where C,, is the rectangular weir coefficient. From dimensional analysis arguments, it is expected
that C,, is a function of Reynolds number (viscous effects), Weber number (surface tension
effects), and H/P, (geometry). In most practical situations, the Reynolds and Weber number
effects are negligible, and the following correlation, shown in the figure in the margin, can be
used (Refs. 4, 7):

H
Cyy = 0.611 + 0.075 (P> (10.31)

More precise values of C,, can be found in the literature, if needed (Refs. 3, 14).

The triangular sharp-crested weir is often used for flow measurements, particularly for
measuring flowrates over a wide range of values. For small flowrates, the head, H, for a rectangular
weir would be very small and the flowrate could not be measured accurately. However, with the
triangular weir, the flow width decreases as H decreases so that even for small flowrates, reasonable
heads are developed. Accurate results can be obtained over a wide range of Q.

The triangular weir equation can be obtained from Eq. 10.27 by using

¢ =2(H — h) tan (g)

where 6 is the angle of the V-notch (see Figs. 10.19 and 10.20). After carrying out the integration
and again neglecting the upstream velocity (V3/2g < H), we obtain

8 0

= —tan( - | V2g H"
Q= 5t <2> g

An experimentally determined triangular weir coefficient, C,,, is used to account for the real-world

effects neglected in the analysis so that

8 6
0=C, 15 tan (2) V2g H? (10.32)

Typical values of C,, for triangular weirs are in the range of 0.58 to 0.62, as is shown in Fig. 10.21.
Note that although C,, and 6 are dimensionless, the value of C,, is given as a function of the
weir head, H, which is a dimensional quantity. Although using dimensional parameters is not
recommended (see the dimensional analysis discussion in Chapter 7), such parameters are often
used for open-channel flow.

0.66
6=20°

0.64
0.62 45

60°

th
0.60
0.58
Minimum C,, for all 6
0.56
0 0.2 0.4 0.6 0.8 1.0 M FIGURE 10.21 Weir coefficient

H, ft for triangular sharp-crested weirs (Ref. 10).
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Flowrate over a
weir depends on
whether the nappe
is free or sub-
merged.

I

HIL, =0.08

HIL, = 0.50

(a) (b)

B FIGURE 10.22 Flow conditions over a weir without a free nappe: (a) plunging
nappe, (b) submerged nappe.

The above results for sharp-crested weirs are valid provided the area under the nappe is
ventilated to atmospheric pressure. Although this is not a problem for triangular weirs, for
rectangular weirs it is sometimes necessary to provide ventilation tubes to ensure atmospheric
pressure in this region. In addition, depending on downstream conditions, it is possible to obtain
submerged weir operation, as is indicated in Fig. 10.22. Clearly the flowrate will be different for
these situations than that given by Eqgs. 10.30 and 10.32.

10.6.3 Broad-Crested Weirs

A broad-crested weir is a structure in an open channel that has a horizontal crest above which the
fluid pressure may be considered hydrostatic. A typical configuration is shown in Fig. 10.23.
Generally, to ensure proper operation, these weirs are restricted to the range 0.08 < H/L,, < 0.50.
These conditions are drawn to scale in the figure in the margin. For long weir blocks (H/L,, less
than 0.08), head losses across the weir cannot be neglected. On the other hand, for short weir blocks
(H/L,, greater than 0.50) the streamlines of the flow over the weir block are not horizontal. Although
broad-crested weirs can be used in channels of any cross-sectional shape, we restrict our attention
to rectangular channels.

The operation of a broad-crested weir is based on the fact that nearly uniform critical flow
is achieved in the short reach above the weir block. (If H/L,, < 0.08, viscous effects are important,
and the flow is subcritical over the weir.) If the kinetic energy of the upstream flow is negligible,
then V3/2g < y, and the upstream specific energy is E, = V}/2g + y, = y,. Observations show
that as the flow passes over the weir block, it accelerates and reaches critical conditions, y, = y,
and Fr, = 1 (i.e., ¥, = ¢,), corresponding to the nose of the specific energy curve (see Fig. 10.7).
The flow does not accelerate to supercritical conditions (Fr, > 1). To do so would require the
ability of the downstream fluid to communicate with the upstream fluid to let it know that there is
an end of the weir block. Since waves cannot propagate upstream against a critical flow, this
information cannot be transmitted. The flow remains critical, not supercritical, across the weir
block.

The Bernoulli equation can be applied between point (1) upstream of the weir and point (2)
over the weir where the flow is critical to obtain
Vi _ + P, +
2g Je Y 2g

2
H+P,+ —

or, if the upstream velocity head is negligible

(ve-m) _ v

H—y. = =<
Ve 2¢ 2¢
&)
R 2
vnoH > V,=V, N

yl—bl _
v

yz_yc
‘ fj \/'( Weir block C

B FIGURE 10.23 Broad-crested
LiLw*" weir geometry.
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However, since V, = V., = (gy.)"/%, we find that V'2 = gy, so that we obtain

The broad-crested H—-y = Le
weir is governed by 2
critical flow across or
the weir block.

2H

Thus, the flowrate is
0 = byV, = by V. = bylgy.)"”? = b Vg y*

or
2\32
0= ri(2) s

Again an empirical weir coefficient is used to account for the various real-world effects not included
in the above simplified analysis. That is

1 2\3/2

| 0=Cyb \/§<3> H? (10.33)

Cu where approximate values of C,,, the broad-crested weir coefficient shown in the figure in the
margin, can be obtained from the equation (Ref. 6)

E ! Cyy = 1.125 <1+H/PW>1/2 10.34

HIP, wb = L. 2+ H/P, (10.34)

_EXAMPLE |[FV: ¥ Sharp-Crested and Broad-Crested Weirs

GIVEN  Water flows in a rectangular channel of widths = 2m  flow area over the weir is a distance P,, = 1 m above the channel
with flowrates between Q,;, = 0.02 m*/s and Q,,x = 0.60 m*/s.  bottom.

This flowrate is to be measured by using either (a) a rectangular

sharp-crested weir, (b) a triangular sharp-crested weir with FIND Plot a graph of O = Q(H) for each weir and comment
6 = 90°, or (c) a broad-crested weir. In all cases the bottom of the  on which weir would be best for this application.

SoLuTION

(a) For the rectangular weir with P, = 1 m, Eqs. 10.30 and 0.6
10.31 give

Onax = 0.60

Rectangular

2
0 = Gy Vg bH”

0.4

H\2
0.611 + 0.075 P—) 5 V2g bH?

w Broad-crested

%

Thus, S
2
0 = (0.611 + 0.075H) 5 \V2(9.81 m/s?) (2 m) H** 0.2
Triangular
or
0 =5.91(0.611 + 0.075H)H*> Q)

where H and Q are in meters and m>/s, respectively. The results % 0.2 0.4 0.6 0.8
from Eq. 1 are plotted in Fig. E10.8. H,m

B FIGURE E10.8
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(b) Similarly, for the triangular weir, Eq. 10.32 gives where, again, H and Q are in meters and m®/s. This result is also
plotted in Fig. E10.8.

8 0
= — - /2
0= Cy; 15 tan <2) V2g

8 COMMENTS Although it appears as though any of the three

= Cw 15 tan(45°) V2(9.81 m/s*) H¥? weirs would work well for the upper portion of the flowrate range,

neither the rectangular nor the broad-crested weir would be very

or accurate for small flowrates near QO = Q,;, because of the small
0 = 236C,, H"* (2) head, A, at these conditions. The triangular weir, however, would

allow reasonably large values of A at the lowest flowrates. The
corresponding heads with Q = Q,;, = 0.02 m*/s for rectangular,
triangular, and broad-crested weirs are 0.0312, 0.182, and 0.0375 m,

where H and Q are in meters and m*/s and C,,, is obtained from
Fig. 10.21. For example, with 4 = 0.20 m, we find C,, = 0.60,
or Q = 2.36 (0.60)(0.20)¥* = 0.0253 m*/s. The triangular weir

L respectively.

ISR RO FIO.& _ In addition, as discussed in this section, for proper operation
(¢) For the broad-crested weir, Eqs. 10.28 and 10.29 give the broad-crested weir geometry is restricted to 0.08 < H/L,, <
2\32 0.50, where L, is the weir block length. From Eq. 3 with O, ., =
Q= Cxp bvé(g) H? 0.60 m’/s, we obtain H,,, = 0.349. Thus, we must have L, >
H,../0.5 = 0.698 m to maintain proper critical flow conditions at

1 + H/P,\ 2\ : :
= 1.125 (7W> \/é(*) 2 the largest flowrate in the channel. However, with O = Q;, =
2+ H/P, 3 0.02 m®/s, we obtain H,;, = 0.0375 m. Thus, we must have L,, <

H,.;,/0.08 = 0.469 m to ensure that frictional effects are not im-
portant. Clearly, these two constraints on the geometry of the weir
1 + B\ 2\3/2 block, L,,, are incompatible.

0= 1125 <2 T H) (2 m) V9.81 m/s? <§) H"? A broad-crestedpweir will not function properly under the
wide range of flowrates considered in this example. The sharp-
crested triangular weir would be the best of the three types con-
sidered, provided the channel can handle the A, = 0.719-m
head.

Thus, with P, = 1 m

or

2+ H ®)

+ 1/2
Q=3.84(1 H> H3?

10.6.4 Underflow Gates

A variety of underflow gate structures is available for flowrate control at the crest of an overflow
spillway (as shown by the figure in the margin), or at the entrance of an irrigation canal or river
from a lake. Three types are illustrated in Fig. 10.24. Each has certain advantages and
disadvantages in terms of costs of construction, ease of use, and the like, although the basic
fluid mechanics involved are the same in all instances.

The flow under a gate is said to be free outflow when the fluid issues as a jet of supercritical

(Photograph courtesy ] R o
of Pend Oreille Public ~ flow with a free surface open to the atmosphere as shown in Fig. 10.24. In such cases it is customary
Utility District.) to write this flowrate as the product of the distance, a, between the channel bottom and the bottom
of the gate times the convenient reference velocity (2gy,)"%. That is,
q = CyaV2gy, (10.35)

where ¢ is the flowrate per unit width. The discharge coefficient, C,, is a function of the contraction
coefficient, C, = y,/a, and the depth ratio y,/a. Typical values of the discharge coefficient for free

V10.15 Spillway
gate

(a) (b) ()

B FIGURE 10.24 Three variations of underflow gates: (a) vertical gate, (b) radial gate,
(¢) drum gate.
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0.6

Free outflow

0.5

0.4

¢, 03

N

Drowned outflow

0.2

0.1

10 12 14 16

B FIGURE 10.25 Typical discharge coefficients for underflow gates (Ref. 3).

B FIGURE 10.26 Drowned outflow
from a sluice gate.

outflow (or free discharge) from a vertical sluice gate are on the order of 0.55 to 0.60 as indicated
s by the top line in Fig. 10.25 (Ref. 3).
depends on whether As indicated in Fig. 10.26, in certain situations the depth downstream of the gate is controlled
the outlet is free or by some downstream obstacle and the jet of water issuing from under the gate is overlaid by a
drowned. mass of water that is quite turbulent.

The flowrate for a submerged (or drowned) gate can be obtained from the same equation
that is used for free outflow (Eq. 10.35), provided the discharge coefficient is modified
appropriately. Typical values of C, for drowned outflow cases are indicated as the series of lower

The flowrate from

'—X curves in Fig. 10.25. Consider flow for a given gate and upstream conditions (i.e., given y,/a)

corresponding to a vertical line in the figure. With y;/a = y,/a (i.e., y; = y,) there is no head to
V10.16 Unsteady drive the flow so that C, = 0 and the fluid is stationary. For a given upstream depth (y,/a fixed),
under and over the value of C, increases with decreasing ys;/a until the maximum value of C, is reached. This

: maximum corresponds to the free discharge conditions and is represented by the free outflow line

so labeled in Fig. 10.25. For values of y;/a that give C, values between zero and its maximum,

| the jet from the gate is overlaid (drowned) by the downstream water and the flowrate is therefore

“ reduced when compared with a free discharge situation. Similar results are obtained for the radial
gate and drum gate.

|_EXAMPLE 10.9

GIVEN Water flows under the sluice gate shown in Fig. E10.9. FIND Plot a graph of flowrate, O, as a function of y;.
The channel width is b = 20 ft, the upstream depth is y;, = 6 ft,
and the gate is a = 1.0 ft off the channel bottom.
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SOLUTION

From Eq. 10.35 we have
0 = bg = baCy V2gy,
=20 ft (1.0 ft) C, V'2(32.2 ft/s%)(6.0 ft)

or
0 = 393C, cfs 1)

The value of C, is obtained from Fig. 10.25 along the vertical line
yi/a = 6 ft/1ft = 6. For y; = 6 ft(i.e,y;/a =6 =y/a) we
obtain C, = 0, indicating that there is no flow when there is no
head difference across the gate. The value of C, increases as ys/a
decreases, reaching a maximum of C; = 0.56 when y;/a = 3.2.
Thus, with y; = 3.2a = 32 ft

O = 393 (0.56) cfs = 220 cfs

The flowrate for 3.2 ft = y; =< 6 ft is obtained from Eq. 1 and
the C, values of Fig. 10.24 with the results as indicated in Fig.
E10.9.

COMMENT For y; < 3.2 ft the flowrate is independent of
3, and the outflow is a free (not submerged) outflow. For such
cases the inertia of the water flowing under the gate is sufficient

250

Free outflow —— <—— Submerged outflow —

200

150

0, cfs

100

50

B FIGURE E10.9

to produce free outflow even with y; > a.

10.7

Chapter Summary and Study Guide

open-channel flow
Froude number
critical flow
subcritical flow
supercritical flow
wave speed

specific energy
specific energy diagram
uniform depth flow
wetted perimeter
hydraulic radius
Chezy equation
Manning equation
Manning coefficient
rapidly varied flow
hydraulic jump
sharp-crested weir
weir head
broad-crested weir
underflow gate

This chapter discussed various aspects of flows in an open channel. A typical open-channel flow
is driven by the component of gravity in the direction of flow. The character of such flows can
be a strong function of the Froude number, which is ratio of the fluid speed to the free-surface
wave speed. The specific energy diagram is used to provide insight into the flow processes
involved in open-channel flow.

Uniform depth channel flow is achieved by a balance between the potential energy lost by
the fluid as it coasts downhill and the energy dissipated by viscous effects. Alternately, it repre-
sents a balance between weight and friction forces. The relationship among the flowrate, the slope
of the channel, the geometry of the channel, and the roughness of the channel surfaces is given
by the Manning equation. Values of the Manning coefficient used in the Manning equation are
dependent on the surface material roughness.

The hydraulic jump is an example of nonuniform depth open-channel flow. If the Froude
number of a flow is greater than one, the flow is supercritical, and a hydraulic jump may occur.
The momentum and mass equations are used to obtain the relationship between the upstream
Froude number and the depth ratio across the jump. The energy dissipated in the jump and the
head loss can then be determined by use of the energy equation.

The use of weirs to measure the flowrate in an open channel is discussed. The relationships
between the flowrate and the weir head are given for both sharp-crested and broad-crested weirs.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

m write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

m determine the Froude number for a given flow and explain the concepts of subcritical, crit-
ical, and supercritical flows.

m plot and interpret the specific energy diagram for a given flow.
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m use the Manning equation to analyze uniform depth flow in an open channel.

m calculate properties such as the depth ratio and the head loss for a hydraulic jump.

m determine the flowrates over sharp-crested weirs, broad-crested weirs, and under underflow gates.

Some of the important equations in this chapter are:

Froude number Fr = V/(gy)"?
Wave speed c=Vgy (10.3)
2
Specific energy E=y+ i (10.8)
Manning equation V= %Rﬁ/ 3542 (10.19)
1
Hydraulic jump depth ratio j% = 5(—1 + V1 + 8Fr}) (10.24)
hy v, | Fri { (J/l )2}

Hydraulic j head 1 —=1l-—=4+—11—-|= 10.25

ydraulic jump head loss 7 3 ) ) ( )
2

Rectangular sharp-crested weir 0o=cC, 3 V2g b H”? (10.30)
. . 8 0 5/2

Triangular sharp-crested weir 0 = Cy 15 tan 5 V2g H (10.32)

2 3/2
Broad-crested weir O=Cyuh \/§(3) H3? (10.33)
Underflow gate q = CyaV2gy, (10.35)
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Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (¥) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (1) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 10.2 Surface Waves

10.1 Obtain a photograph/image of surface waves. Print this photo
and write a brief paragraph that describes the similarities and
differences between these waves and those depicted in Fig. 10.4.

10.2 On a distant planet small amplitude waves travel across a
1-m-deep pond with a speed of 5 m/s. Determine the acceleration
of gravity on the surface of that planet.

10.3 The flowrate in a 50-ft-wide, 2-ft-deep river is QO = 190 cfs.
Is the flow subcritical or supercritical?

10.4 The flowrate per unit width in a wide channel is ¢ = 2.3 m?/s.
Is the flow subcritical or supercritical if the depth is (a) 0.2 m, (b)
0.8 m, or (¢) 2.5 m?

10.5 A rectangular channel 3 m wide carries 10 m*/s at a depth
of 2 m. Is the flow subcritical or supercritical? For the same
flowrate, what depth will give critical flow?

10.6 Consider waves made by dropping objects (one after another
from a fixed location) into a stream of depth y that is moving with
speed V as shown in Fig. P10.6 (see Video V10.5). The circular
wave crests that are produced travel with speed ¢ = (g)"/ relative
to the moving water. Thus, as the circular waves are washed
downstream, their diameters increase and the center of each circle
is fixed relative to the moving water. (a) Show that if the flow is
supercritical, lines tangent to the waves generate a wedge of half-
angle «/2 = arcsin(1/Fr), where Fr = V/(gy)"* is the Froude
number. (b) Discuss what happens to the wave pattern when the
flow is subcritical, Fr < 1.

| V

B FIGURE P10.6

10.7 Waves on the surface of a tank are observed to travel at a speed
of 2 m/s. How fast would these waves travel if (a) the tank were in
an elevator accelerating downward at a rate of 4 m/s?, (b) the tank
accelerates horizontally at a rate of 9.81 m/s?, (c) the tank were
aboard the orbiting Space Shuttle? Explain.

10.8 In flowing from section (1) to section (2) along an open
channel, the water depth decreases by a factor of two and the
Froude number changes from a subcritical value of 0.5 to a
supercritical value of 3.0. Determine the channel width at (2) if it
is 12 ft wide at (1).

10.9 Observations at a shallow sandy beach show that even though
the waves several hundred yards out from the shore are not parallel
to the beach, the waves often “break’ on the beach nearly parallel to
the shore as indicated in Fig. P10.9. Explain this behavior based
on the wave speed ¢ = (gy)"?

//// Have crest
@

—¥

Ocean

B FIGURE P10.9

110.10 Explain, physically, why surface tension increases the
speed of surface waves.

10.11 Often when an earthquake shifts a segment of the ocean
floor, a relatively small amplitude wave of very long wavelength
is produced. Such waves go unnoticed as they move across the open
ocean; only when they approach the shore do they become
dangerous (a tsunami or “tidal wave”). Determine the wave speed
if the wavelength, A, is 6000 ft and the ocean depth is 15,000 ft.

10.12 A bicyclist rides through a 3-in.-deep puddle of water as
shown in Video V10.5 and Fig. P10.12. If the angle made by the
V-shaped wave pattern produced by the front wheel is observed
to be 40°, estimate the speed of the bike through the puddle.
Hint: Make a sketch of the current location of the bike wheel
relative to where it was Az seconds ago. Also indicate on this
sketch the current location of the wave that the wheel made A¢
seconds ago. Recall that the wave moves radially outward in all
directions with speed c relative to the stationary water.

B FIGURE P10.12

10.13 Determine the minimum depth in a 3-m-wide rectangular
channel if the flow is to be subcritical with a flowrate of O = 60 m/s.

10.14 (See Fluids in the News article titled “Tsunami, the nonstorm
wave,” Section 10.2.1.) An earthquake causes a shift in the ocean
floor that produces a tsunami with a wavelength of 100 km. How



fast will this wave travel across the ocean surface if the ocean depth
is 3000 m?

Section 10.3 Energy Considerations

10.15 Water flows in a 10-m-wide open channel with a flowrate
of 5 m*/s. Determine the two possible depths if the specific energy
of the flow is £ = 0.6 m.

10.16 Water flows in a rectangular channel with a flowrate per
unit width of ¢ = 2.5 m?/s. Plot the specific energy diagram for
this flow. Determine the two possible depths of flow if £ = 2.5 m.

10.17 Water flows radially outward on a horizontal round disk as
shown in Video V10.12 and Fig. P10.17. (a) Show that the specific
energy can be written in terms of the flowrate, Q, the radial distance
from the axis of symmetry, r, and the fluid depth, y, as

2
1

by (L)L
2mr) 2gy

(b) For a constant flowrate, sketch the specific energy diagram.
Recall Fig. 10.7, but note that for the present case r is a variable.
Explain the important characteristics of your sketch. (¢) Based on the
results of Part (b), show that the water depth increases in the flow
direction if the flow is subcritical, but that it decreases in the flow
direction if the flow is supercritical.

Y

! l\\ v
|

—r—s

B FIGURE P10.17

10.18 Water flows in a 10-ft-wide rectangular channel with a flowrate
of 200 ft*/s. Plot the specific energy diagram for this flow. Determine
the two possible flowrates when the specific energy is 6 ft.

10.19 Water flows in a rectangular channel at a rate of
q = 20 cfs/ft. When a Pitot tube is placed in the stream, water in
the tube rises to a level of 4.5 ft above the channel bottom.
Determine the two possible flow depths in the channel. Illustrate
this flow on a specific energy diagram.

10.20 Water flows in a 5-ft-wide rectangular channel with a
flowrate of Q = 30 ft*/s and an upstream depth of y, = 2.5 ft as
is shown in Fig. P10.20. Determine the flow depth and the surface
elevation at section (2).

VA —
14 Vo =3V,
—_ - \ ¥
0.2 (2

B FIGURE P10.20

10.21 Repeat Problem 10.20 if the upstream depth is y;, = 0.5 ft.

*10.22 Water flows over the bump in the bottom of the rectangular
channel shown in Fig. P10.22 with a flowrate per unit width of

571
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g = 4 m?/s. The channel bottom contour is given by z, = 0.2¢7",
where z, and x are in meters. The water depth far upstream of the
bump is y; = 2 m. Plot a graph of the water depth, y = y(x), and
the surface elevation, z = z(x), for —4 m < x = 4 m. Assume one-
dimensional flow.

zZp= 0.2¢™

B FIGURE P10.22

*10.23 Repeat Problem 10.22 if the upstream depth is 0.4 m.

10.24 Water in a rectangular channel flows into a gradual
contraction section as is indicated in Fig. P10.24. If the flowrate
is O = 25 ft*/s and the upstream depth is y, = 2 ft, determine the
downstream depth, y,.

v

1
— b =4t by=3ft — V,

Top view

Side view
HEFIGURE P10.24

10.25 Sketch the specific energy diagram for the flow of Problem
10.24 and indicate its important characteristics. Note that ¢; # g¢,.

10.26 Repeat Problem 10.24 if the upstream depth is y; = 0.5 fi.
Assume that there are no losses between sections (1) and (2).

10.27 Water flows in a rectangular channel with a flowrate per
unit width of ¢ = 1.5 m?/s and a depth of 0.5 m at section (1). The
head loss between sections (1) and (2) is 0.03 m. Plot the specific
energy diagram for this flow and locate states (1) and (2) on this
diagram. Is it possible to have a head loss of 0.06 m? Explain.

10.28 Water flows in a horizontal rectangular channel with a
flowrate per unit width of ¢ = 10 ft?/s and a depth of 1.0 ft at the
downstream section (2). The head loss between section (1) upstream
and section (2) is 0.2 ft. Plot the specific energy diagram for this
flow and locate states (1) and (2) on this diagram.

10.29 Water flows in a horizontal, rectangular channel with an
initial depth of 1 m and an initial velocity of 4 m/s. Determine the
depth downstream if losses are negligible. Note that there may be
more than one solution.

10.30 A smooth transition section connects two rectangular
channels as shown in Fig. P10.30. The channel width increases
from 6.0 to 7.0 ft and the water surface elevation is the same in
each channel. If the upstream depth of flow is 3.0 ft, determine #,
the amount the channel bed needs to be raised across the transition
section to maintain the same surface elevation.



572 Chapter 10 B Open-Channel Flow

—/—_
—Q> 6 ft 7 ft
L
Top view
VA —
T ERr =
25 3t
’f
Side view

B FIGURE P10.30

10.31 Water flows over a bump of height # = A(x) on the bottom
of a wide rectangular channel as is indicated in Fig. P10.31. If energy
losses are negligible, show that the slope of the water surface is
given by dy/dx = —(dh/dx)/[1 — (V*/gy)], where V = V(x) and
¥ = y(x) are the local velocity and depth of flow. Comment on the
sign (i.e., <0, = 0,0r >0) of dy/dx relative to the sign of dh/dx.
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B FIGURE P10.31

10.32 Integrate the differential equation obtained in Problem
10.31 to determine the draw-down distance, € = €(x), indicated in
Fig. P10.31. Comment on your results.

10.33 Water flows in the river shown in Fig. P10.33 with a uniform
bottom slope. The total head at each section is measured by using
Pitot tubes as indicated. Determine the value of dy/dx at the
location where the Froude number is 0.357.

z
2, =620.1 ft .
2= 6283 ft 2= 61871t
xp—x, = 4100 ft 24 =625.01t

B FIGURE P10.33

10.34 Repeat Problem 10.33 if the Froude number is 2.75.

10.35 Water flows in a horizontal rectangular channel at a depth
of 0.5 ft and a velocity of 8 ft/s. Determine the two possible depths
at a location slightly downstream. Viscous effects between the
water and the channel surface are negligible.

Section 10.4.2 The Manning Equation

10.36 Water flows in a 5-m-wide channel with a speed of 2 m/s
and a depth of 1 m. The channel bottom slopes at a rate of 1 m
per 1000 m. Determine the Manning coefficient for this channel.

10.37 Fluid properties such as viscosity or density do not appear
in the Manning equation (Eq. 10.20). Does this mean that this
equation is valid for any open-channel flow such as that involving
mercury, water, oil, or molasses? Explain.

10.38 The following data are taken from measurements on Indian
Fork Creek: 4 =26 m?, P = 16 m, and S, = 0.02 m/62 m. Determine
the average shear stress on the wetted perimeter of this channel.

10.39 The following data are obtained for a particular reach of the
Provo River in Utah: 4 = 183 ft?, free-surface width = 55 ft,
average depth = 3.3 ft, R, = 3.22ft, VV = 6.56 ft/s, length of
reach = 116 ft, and elevation drop of reach = 1.04 ft. Determine
(a) the average shear stress on the wetted perimeter, (b) the
Manning coefficient, n, and (c¢) the Froude number of the flow.

10.40 At a particular location the cross section of the Columbia
River is as indicated in Fig. P10.40. If on a day without wind it takes
5 min to float 0.5 mi along the river, which drops 0.46 ft in that
distance, determine the value of the Manning coefficient, 7.
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B FIGURE P10.40

Section 10.4.3 Uniform Depth Examples—Determine
Flowrate

10.41 A 2-m-diameter pipe made of finished concrete lies on a slope
of 1 m elevation change per 1000 m horizontal distance. Determine
the flowrate when the pipe is half full.

10.42 Rainwater flows down a street whose cross section is shown
in Fig. P10.42. The street is on a hill at an angle of 2°. Determine
the maximum flowrate possible if the water is not to overflow onto
the sidewalk.

6in.

G

Sidewalk

Asphalt street

10

Concrete curb
HEFIGURE P10.42

10.43 By what percent is the flowrate reduced in the rectangular
channel shown in Fig. P10.43 because of the addition of the thin
center board? All surfaces are of the same material.

Center board

bl2
l bl2

‘r b |
B FIGURE P10.43



10.44 The great Kings River flume in Fresno County, California,
was used from 1890 to 1923 to carry logs from an elevation of
4500 ft where trees were cut to an elevation of 300 ft at the railhead.
The flume was 54 miles long, constructed of wood, and had a V-
cross section as indicated in Fig. P10.44. It is claimed that logs
would travel the length of the flume in 15 hours. Do you agree
with this claim? Provide appropriate calculations to support your
answer.

B FIGURE P10.44

10.45 Water flows in a channel as shown in Fig. P10.45. The velocity
is 4.0 ft/s when the channel is half full with depth d. Determine the
velocity when the channel is completely full, depth 2d.

T
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[ 10d 1
B FIGURE P10.45
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10.46 A trapezoidal channel with a bottom width of 3.0 m and
sides with a slope of 2 : 1 (horizontal:vertical) is lined with fine
gravel (n = 0.020) and is to carry 10 m*/s. Can this channel be
built with a slope of S, = 0.00010 if it is necessary to keep the
velocity below 0.75 m/s to prevent scouring of the bottom?
Explain.

10.47 Water flows in a 2-m-diameter finished concrete pipe so
that it is completely full and the pressure is constant all along the
pipe. If the slope is S, = 0.005, determine the flowrate by using
open-channel flow methods. Compare this result with that obtained
by using pipe flow methods of Chapter 8.

10.48 Water flows in a weedy earthen channel at a rate of 30 m*/s.
What flowrate can be expected if the weeds are removed and the
depth remains constant?

10.49 A round concrete storm sewer pipe used to carry rainfall
runoff from a parking lot is designed to be half full when the
rainfall rate is a steady 1 in./hr. Will this pipe be able to handle
the flow from a 2-in./hr rainfall without water backing up into the
parking lot? Support your answer with appropriate calculations.

10.50 A 10-ft-wide rectangular channel is built to bypass a dam
so that fish can swim upstream during their migration. During
normal conditions when the water depth is 4 ft, the water velocity
is 5 ft/s. Determine the velocity during a flood when the water
depth is 8 ft.

110.51 Overnight a thin layer of ice forms on the surface of a
river. Estimate the percent reduction in flowrate caused by this
condition. List all assumptions and show all calculations.

*10.52 Water flows in the painted steel rectangular channel with
rounded corners shown in Fig. P10.52. The bottom slope is
1 ft/200 ft. Plot a graph of flowrate as a function of water depth
for 0 = y = 1 ft with corner radii of » = 0, 0.2, 0.4, 0.6, 0.8, and
1.0 ft.
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B FIGURE P10.52

*10.53 The cross section of a long tunnel carrying water through
a mountain is as indicated in Fig. P10.53. Plot a graph of flowrate
as a function of water depth, y, for 0 = y = 18 ft. The slope is
2 ft/mi and the surface of the tunnel is rough rock (equivalent to
rubble masonry). At what depth is the flowrate maximum? Explain.

12 ft

B FIGURE P10.53

10.54 The smooth concrete-lined channel shown in Fig. P10.54 is
built on a slope of 2 m/km. Determine the flowrate if the depth is
y=15m.

: Concrete

3m——:

B FIGURE P10.54

*10.55 At a given location, under normal conditions a river flows
with a Manning coefficient of 0.030 and a cross section as indicated
in Fig. P10.55a. During flood conditions at this location, the river
has a Manning coefficient of 0.040 (because of trees and brush in
the floodplain) and a cross section as shown in Fig. P10.55h.
Determine the ratio of the flowrate during flood conditions to that
during normal conditions.
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B FIGURE P10.55

10.56 Repeat Problem 10.54 if the surfaces are smooth concrete
as is indicated, except for the diagonal surface, which is gravelly
with n = 0.025.
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*10.57 Water flows through the storm sewer shown in Fig. P10.57.
The slope of the bottom is 2 m/400 m. Plot a graph of the flowrate
as a function of depth for 0 = y = 1.7 m. On the same graph, plot
the flowrate expected if the entire surface were lined with material
similar to that of a clay tile.

Rubble

/ masonry

Clay tile
HFIGURE P10.57

10.58 Determine the flowrate for the symmetrical channel shown
in Fig. P10.80 if the bottom is smooth concrete and the sides are
weedy. The bottom slope is S, = 0.001.

10.59 (See Fluids in the News article titled “Done without a GPS
or lasers,” Section 10.4.3.) Determine the number of gallons of wa-
ter delivered per day by a rubble masonry, 1.2-m-wide aqueduct
laid on an average slope of 14.6 m per 50 km if the water depth is
1.8 m.

Section 10.4.3 Uniform Depth Examples—Determine
Depth or Size

10.60 Water flows in a rectangular, finished concrete channel at
a rate of 2 m*/s. The bottom slope is 0.001. Determine the channel
width if the water depth is to be equal to its width.

10.61 An old, rough-surfaced, 2-m-diameter concrete pipe with a
Manning coefficient of 0.025 carries water at a rate of 5.0 m*/s
when it is half full. It is to be replaced by a new pipe with a Manning
coefficient of 0.012 that s also to flow half full at the same flowrate.
Determine the diameter of the new pipe.

10.62 Four sewer pipes of 0.5-m diameter join to form one pipe
of diameter D. If the Manning coefficient, n, and the slope are
the same for all of the pipes, and if each pipe flows half-full,
determine D.

10.63 The flowrate in the clay-lined channel (n = 0.025) shown
in Fig. P10.63 is to be 300 ft*/s. To prevent erosion of the sides,
the velocity must not exceed 5 ft/s. For this maximum velocity,
determine the width of the bottom, b, and the slope, S,.

B FIGURE P10.63

10.64 Overnight a thin layer of ice forms on the surface of a 40-
ft-wide river that is essentially of rectangular cross-sectional shape.
Under these conditions the flow depth is 3 ft. During the following
day the sun melts the ice cover. Determine the new depth if the
flowrate remains the same and the surface roughness of the ice is
essentially the same as that for the bottom and sides of the river.

10.65 A rectangular, unfinished concrete channel of 28-ft-width
is laid on a slope of 8 ft/mi. Determine the flow depth and Froude
number of the flow if the flowrate is 400 ft*/s.

10.66 An engineer is to design a channel lined with planed wood
to carry water at a flowrate of 2 m?/s on a slope of 10 m/800 m.
The channel cross section can be either a 90° triangle or a rectangle
with a cross section twice as wide as its depth. Which would require
less wood and by what percent?

10.67 A circular finished concrete culvert is to carry a discharge
of 50 ft*/s on a slope of 0.0010. It is to flow not more than half-
full. The culvert pipes are available from the manufacture with
diameters that are multiples of 1 ft. Determine the smallest suitable
culvert diameter.

10.68 At what depth will 50 ft*/s of water flow in a 6-ft-wide
rectangular channel lined with rubble masonry set on a slope of
1 ft in 500 ft? Is a hydraulic jump possible under these conditions?
Explain.

10.69 The rectangular canal shown in Fig. P10.69 changes to a
round pipe of diameter D as it passes through a tunnel in a mountain.
Determine D if the surface material and slope remain the same and
the round pipe is to flow completely full.

B FIGURE P10.69

10.70 The flowrate through the trapezoidal canal shown in Fig.
P10.70 is Q. If it is desired to double the flowrate to 2Q without
changing the depth, determine the additional width, L, needed. The
bottom slope, surface material, and the slope of the walls are to
remain the same.

B FIGURE P10.70

10.71 When the channel of triangular cross section shown in Fig.
P10.71 was new, a flowrate of O caused the water to reach L = 2 m
up the side as indicated. After considerable use, the walls of the
channel became rougher and the Manning coefficient, n, doubled.
Determine the new value of L if the flowrate stayed the same.

B FIGURE P10.71

10.72 A smooth steel water slide at an amusement park is of
semicircular cross section with a diameter of 2.5 ft. The slide
descends a vertical distance of 35 ft in its 420-ft length. If pumps



supply water to the slide at a rate of 6 cfs, determine the depth of
flow. Neglect the effects of the curves and bends of the slide.

10.73 Two canals join to form a larger canal as shown in Video
V10.6 and Fig. P10.73. Each of the three rectangular canals is
lined with the same material and has the same bottom slope. The
water depth in each is to be 2 m. Determine the width of the
merged canal, b. Explain physically (i.e., without using any
equations) why it is expected that the width of the merged canal
is less than the combined widths of the two original canals (i.e.,
b<4m+ 8m = 12m).
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B FIGURE P10.73

10.74 Water flows uniformly at a depth of 1 m in a channel that is
5 m wide as shown in Fig. P10.74. Further downstream the channel
cross section changes to that of a square of width and height b.
Determine the value of b if the two portions of this channel are made
of the same material and are constructed with the same bottom slope.

Width=5m
B FIGURE P10.74

10.75 Determine the flow depth for the channel shown in Fig.
P10.54 if the flowrate is 15 m’/s.

10.76 Rainwater runoff from a 200-ft by 500-ft parking lot is to
drain through a circular concrete pipe that is laid on a slope of
3 ft/mi. Determine the pipe diameter if it is to be full with a steady
rainfall of 1.5 in./hr.

10.77 (See Fluids in the News article titled “Plumbing the Ever-
glades,” Section 10.4.1.) The canal shown in Fig. P10.77 is to be
widened so that it can carry twice the amount of water. Determine the
additional width, L, required if all other parameters (i.e., flow depth,
bottom slope, surface material, side slope) are to remain the same.

‘<— 5 ft *»‘EL *»‘

B FIGURE P10.77

Section 10.4.3 Uniform Depth Examples—Determine Slope

10.78 Water flows 1 m deep in a 2-m-wide finished concrete
channel. Determine the slope if the flowrate is 3 m’/s.

10.79 Water flows in the channel shown in Fig. P10.79 at a rate
of 90 ft*/s. Determine the minimum slope that this channel can
have so that the water does not overflow the sides. The Manning
coefficient for this channel is n = 0.014.
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B FIGURE P10.79

10.80 To prevent weeds from growing in a clean earthen-lined
canal, it is recommended that the velocity be no less than 2.5 ft/s.
For the symmetrical canal shown in Fig. P10.80, determine the
minimum slope needed.

<—4ft*>‘

B FIGURE P10.80

10.81 The smooth, concrete-lined, symmetrical channel shown in
Video V10.7 and Fig. P10.80 carries water from the silt-laden
Colorado River. If the velocity must be 4.0 ft/s to prevent the silt
from settling out (and eventually clogging the channel), determine the
minimum slope needed.

10.82 The symmetrical channel shown in Fig. P10.80 is dug in sandy
loam soil with n = 0.020. For such surface material it is recommended
that to prevent scouring of the surface the average velocity be no more
than 1.75 ft/s. Determine the maximum slope allowed.

10.83 The depth downstream of a sluice gate in a rectangular
wooden channel of width 5 m is 0.60 m. If the flowrate is 18 m?/s,
determine the channel slope needed to maintain this depth. Will the
depth increase or decrease in the flow direction if the slope is (a)
0.02; (b) 0.01?

10.84 Water in a painted steel rectangular channel of width b = 1 ft
and depth y is to flow at critical conditions, Fr = 1. Plot a graph of
the critical slope, S;.., as a function of y for 0.05 ft = y = 5 ft. What
is the maximum slope allowed if critical flow is not to occur
regardless of the depth?

10.85 A 50-ft-long aluminum gutter (Manning coefficient
n = 0.011)on asection of a roof is to handle a flowrate of 0.15 ft*/s

S v
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during a heavy rain storm. The cross section of the gutter is shown
in Fig. P10.85. Determine the vertical distance that this gutter must
be pitched (i.e., the difference in elevation between the two ends
of the gutter) so that the water does not overflow the gutter. Assume
uniform depth channel flow.

Section 10.6.1 The Hydraulic Jump (Also see Lab
Problems 10.116 and 10.117.)

10.86 Obtain a photograph/image of a situation that involves a
hydraulic jump. Print this photo and write a brief paragraph that
describes the flow.

10.87 Water flows upstream of a hydraulic jump with a depth of
0.5 m and a velocity of 6 m/s. Determine the depth of the water
downstream of the jump.

10.88 A 2.0-ft standing wave is produced at the bottom of the
rectangular channel in an amusement park water ride. If the water
depth upstream of the wave is estimated to be 1.5 ft, determine
how fast the boat is traveling when it passes through this standing
wave (hydraulic jump) for its final “splash.”

10.89 The water depths upstream and downstream of a hydraulic
jump are 0.3 and 1.2 m, respectively. Determine the upstream
velocity and the power dissipated if the channel is 50 m wide.

10.90 Under appropriate conditions, water flowing from a faucet,
onto a flat plate, and over the edge of the plate can produce a circular
hydraulic jump as shown in Fig. P10.90 and Video V10.12. Consider
a situation where a jump forms 3.0 in. from the center of the plate
with depths upstream and downstream of the jump of 0.05 in. and
0.20 in., respectively. Determine the flowrate from the faucet.

B FIGURE P10.90

10.91 Show that the Froude number downstream of a hydraulic
jump in a rectangular channel is (y,/,)*? times the Froude number
upstream of the jump, where (1) and (2) denote the upstream and
downstream conditions, respectively.

10.92 Water flows in a 2-ft-wide rectangular channel at a rate of
10 ft*/s. If the water depth downstream of a hydraulic jump is 2.5 ft,
determine (a) the water depth upstream of the jump, (b) the
upstream and downstream Froude numbers, and (c¢) the head loss
across the jump.

10.93 A hydraulic jump at the base of a spillway of a dam is such
that the depths upstream and downstream of the jump are 0.90 and
3.6 m, respectively (see Video V10.11). If the spillway is 10 m
wide, what is the flowrate over the spillway?

10.94 Determine the head loss and power dissipated by the
hydraulic jump of Problem 10.93.

10.95 A hydraulic jump occurs in a 4-m-wide rectangular channel
at a point where the slope changes from 3 m per 100 m upstream
of the jump to # m per 100 m downstream of the jump. The depth

and velocity of the uniform flow upstream of the jump are 0.5 m
and 8 m/s, respectively. Determine the value of % if the flow
downstream of the jump is to be uniform flow.

10.96 At a given location in a 12-ft-wide rectangular channel the
flowrate is 900 ft*/s and the depth is 4 ft. Is this location upstream
or downstream of the hydraulic jump that occurs in this channel?
Explain.

*10.97 A rectangular channel of width b is to carry water at flowrates
from 30 = Q = 600 cfs. The water depth upstream of the hydraulic
jump that occurs (if one does occur) is to remain 1.5 ft for all cases.
Plot the power dissipated in the jump as a function of flowrate for
channels of width » = 10, 20, 30, and 40 ft.

10.98 Water flows in a rectangular channel at a depth of y = 1 ft
and a velocity of ' = 20 ft/s. When a gate is suddenly placed across
the end of the channel, a wave (a moving hydraulic jump) travels
upstream with velocity V,, as is indicated in Fig. P10.98. Determine
V... Note that this is an unsteady problem for a stationary observer.
However, for an observer moving to the left with velocity V,,, the
flow appears as a steady hydraulic jump.

V y

B FIGURE P10.98

10.99 Water flows in a rectangular channel with velocity
V = 6m/s. A gate at the end of the channel is suddenly closed
so that a wave (a moving hydraulic jump) travels upstream with
velocity V,, = 2 m/s as is indicated in Fig. P10.98. Determine the
depths ahead of and behind the wave. Note that this is an unsteady
problem for a stationary observer. However, for an observer moving
to the left with velocity V,, the flow appears as a steady hydraulic
jump.

10.100 (See Fluids in the News article titled “Grand Canyon
rapids building,” Section 10.6.1.) During the flood of 1983, a large
hydraulic jump formed at “Crystal Hole” rapid on the Colorado
River. People rafting the river at that time report “entering the
rapid at almost 30 mph, hitting a 20-ft-tall wall of water, and exit-
ing at about 10 mph.” Is this information (i.e., upstream and down-
stream velocities and change in depth) consistent with the princi-
ples of a hydraulic jump? Show calculations to support your
answer.

Section 10.6.2,3 Sharp-Crested and Broad-Crested
Weirs (Also see Lab Problems 10.114 and 10.115.)

10.101 Obtain a photograph/image of a situation that involves a
weir. Print this photo and write a brief paragraph that describes the
flow.

10.102 Water flows over a 2-m-wide rectangular sharp-crested
weir. Determine the flowrate if the weir head is 0.1 m and the
channel depth is 1 m.

10.103 Water flows over a 5-ft-wide, rectangular sharp-crested
weir that is P,, = 4.5 ft tall. If the depth upstream is 5 ft, determine
the flowrate.

10.104 A rectangular sharp-crested weir is used to measure the
flowrate in a channel of width 10 ft. It is desired to have the channel
flow depth be 6 ft when the flowrate is 50 cfs. Determine the height,
P, of the weir plate.



10.105 Water flows from a storage tank, over two triangular
weirs, and into two irrigation channels as shown in Video V10.13
and Fig. P10.105. The head for each weir is 0.4 ft, and the flowrate
in the channel fed by the 90°-V-notch weir is to be twice the
flowrate in the other channel. Determine the angle 6 for the second
weir.
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B FIGURE P10.105

10.106 Rain water from a parking lot flows into a 2-acre (8.71
X 10* ft?) retention pond. After a heavy rain when there is no
more inflow into the pond, the rectangular weir shown in Fig.
P10.106 at the outlet of the pond has a head of H = 0.6 ft. (a)
Determine the rate at which the level of the water in the pond
decreases, dH/dt, at this condition. (b) Determine how long it
will take to reduce the pond level by half a foot; that is, to
H=0.1 ft

B FIGURE P10.106

10.107 A basin at a water treatment plant is 60 ft long, 10 ft wide,
and 5 ft deep. Water flows from the basin over a 3-ft-long,
rectangular weir whose crest is 4 ft above the bottom of the basin.
Estimate how long it will take for the depth of the water in the
basin to change from 4.5 ft to 4.4 ft if there is no flow into the
basin.

10.108 Water flows over a sharp-crested triangular weir with
0 = 90°. The head range covered is 0.20 = H = 1.0 ft and the
accuracy in the measurement of the head, H, is 6H = £0.01 ft.
Plot a graph of the percent error expected in Q as a function of Q.

10.109 (a) The rectangular sharp-crested weir shown in Fig.
P10.109¢ is used to maintain a relatively constant depth in the
channel upstream of the weir. How much deeper will the water be
upstream of the weir during a flood when the flowrate is 45 ft*/s
compared to normal conditions when the flowrate is 30 ft3/s? Assume
the weir coefficient remains constant at Cy,, = 0.62. (b) Repeat the

20 ft

30°
]

(a) (b)
B FIGURE P10.109
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calculations if the weir of part (a) is replaced by a rectangular sharp-
crested “duck bill” weir which is oriented at an angle of 30° relative
to the channel centerline as shown in Fig. P10.1095. The weir
coefficient remains the same.

10.110 Water flows in a rectangular channel of width b = 20 ft at
a rate of 100 ft*/s. The flowrate is to be measured by using either a
rectangular weir of height P,, = 4 ft or a triangular (§ = 90°) sharp-
crested weir. Determine the head, H, necessary. If measurement of
the head is accurate to only *0.04 ft, determine the accuracy of the
measured flowrate expected for each of the weirs. Which weir would
be the most accurate? Explain.

Section 10.6.4 Underflow Gates

10.111 Water flows under a sluice gate in a 60-ft-wide finished
concrete channel as is shown in Fig. P10.111. Determine the
flowrate. If the slope of the channel is 2.5 t/200 ft, will the water
depth increase or decrease downstream of the gate? Assume
C. = y,/a = 0.65. Explain.

B FIGURE P10.111

10.112 Water flows under a sluice gate in a channel of 10-ft width.
If the upstream depth remains constant at 5 ft, plot a graph of
flowrate as a function of the distance between the gate and the
channel bottom as the gate is slowly opened. Assume free outflow.

10.113 A water-level regulator (not shown) maintains a depth of
2.0 m downstream from a 10-m-wide drum gate as shown in Fig.
P10.113. Plot a graph of flowrate, O, as a function of water depth
upstream of the gate, y,, for 2.0 =y, = 5.0m.

B FIGURE P10.113

Bl Lab Problems

10.114 This problem involves the calibration of a triangular weir.
To proceed with this problem, go to Appendix H which is located
on the book’s web site, www.wiley.com/college/munson.

10.115 This problem involves the calibration of a rectangular
weir. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

10.116 This problem involves the depth ratio across a hydraulic
jump. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

10.117 This problem involves the head loss across a hydraulic
jump. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.
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B Life Long Learning Problems

10.118 With the increased usage of low-lying coastal areas and
the possible rise in ocean levels because of global warming, the
potential for widespread damage from tsunamis (i.e., “tidal waves”)
is increasing. Obtain information about new and improved methods
available to predict the occurrence of these damaging waves and
how to better use coastal areas so that massive loss of life and
property does not occur. Summarize your findings in a brief report.

10.119 Recent photographs from NASA’s Mars Orbiter Camera
on the Mars Global Surveyor provide new evidence that water may
still flow on the surface of Mars. Obtain information about the
possibility of current or past open-channel flows on Mars and other
planets or their satellites. Summarize your findings in a brief report.

10.120 Hydraulic jumps are normally associated with water
flowing in rivers, gullies, and other such relatively high-speed open
channels. However, recently, hydraulic jumps have been used in
various manufacturing processes involving fluids other than water
(such as liquid metal solder) in relatively small-scale flows. Obtain
information about new manufacturing processes that involve
hydraulic jumps as an integral part of the process. Summarize your
findings in a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.



