Chemical Process Diagrams

V	1	۱
Ť	Ā	Ť
m	ľ	151

The most effective way of communicating information about a process is through the use of flow diagrams.

Outline

- Flow Diagrams
 - Block Flow Diagrams (BFD)
 - Process Flow Diagrams (PFD)
 - Piping and Instrument Diagrams (P&ID)
- Other common diagrams
- 3-D plant layout diagrams

3 Levels of Diagram

- Block Flow Diagram (BFD)
- Process Flow Diagram (PFD)
- Piping and Instrumentation Diagram (P&ID) often referred to as Mechanical Flow Diagram

increases Conceptual understanding increases

As chemical engineers, we are most familiar with BFD and PFD.

The Block Flow Diagram (BFD)

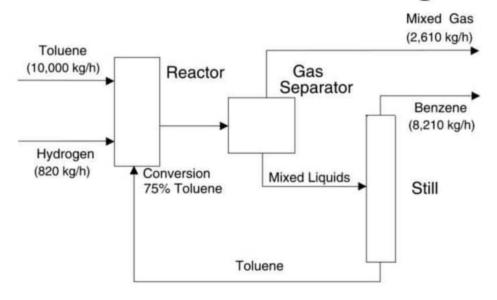
- BFD shows overall processing picture of a chemical complex
 - Flow of raw materials and products may be included on a BFD
 - BFD is a superficial view of facility Ch E information is missing

Block Flow Diagrams (BFD)

 Emphasis not on details regarding blocks; focus on flow of streams through process.

Conventions:

- 1. Operations shown by blocks
- 2. Major flow lines shown with arrows giving flow direction
- 3. Flow goes from left to right whenever possible
- Light streams toward top, heavy streams toward bottom
- Critical information unique to the process supplied (i.e., reaction stoichiometry, conversion)
- Avoid crossing lines; horizontal continuous, vertical broken.
- Simplified material balance (overall)



Definitions of BFD

- Block Flow Process Diagram
 - Figure 1.1
 - Similar to sketches in material and energy balances
- Block Flow Plant Diagram
 - Figure 1.2
 - Gives a general view of a large complex plant

The Block Flow Process Diagram

Reaction: $C_7H_8 + H_2 = C_6H_6 + CH_4$

The Block Flow Plant Diagram

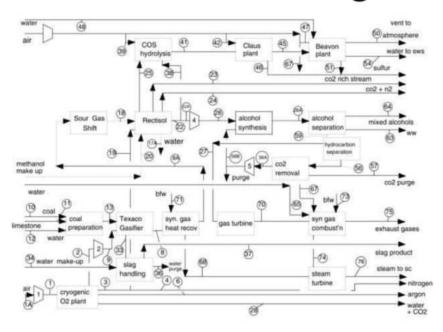
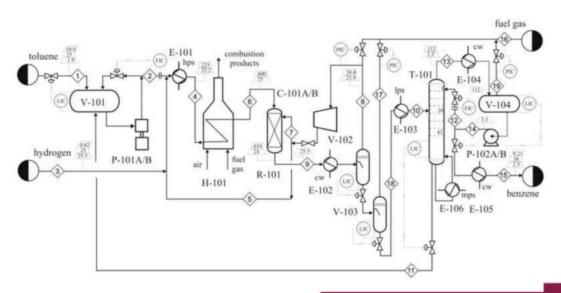


Figure 1.2: Block Flow Plant Diagram of a Coal to Higher Alcohol Fuels Process

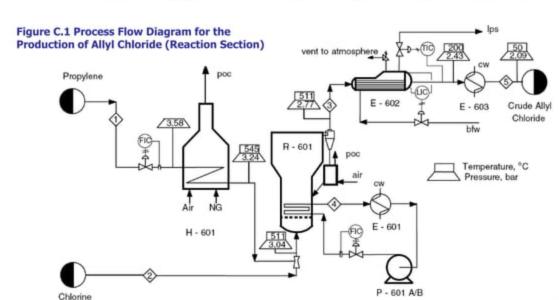
The Process Flow Diagram (PFD)

- PFD shows all process engineering information
- Typical conventions (vary by company):
 - All major equipment represented, uniquely numbered
 - All process flow streams shown and uniquely numbered, with description of thermodynamic conditions and composition (often in an accompanying table)
 - All utility streams supplied to major process equipment shown
 - Basic control loops, illustrating control strategy during normal operation


The Process Flow Diagram (cont'd)

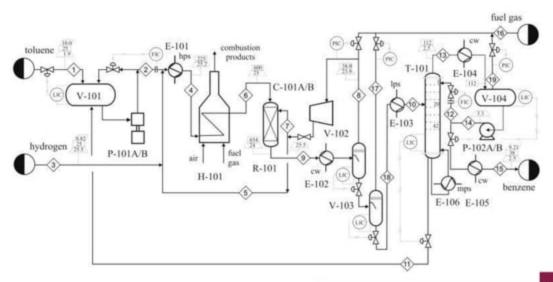
- The topology of the process showing the connectivity of all the streams and the equipment
 - Example for toluene HDA Figures 1.3 and 1.5
 - Tables 1.2 and 1.4 list information that should be on the PFD but cannot fit
 - Use appropriate conventions consistency is important in communication of process information
 - ex. Table 1.2

Process Flow Diagram (cont'd)


E-103 E-106 E-102 V-102 V-101 P-101A/B E-101 H-101 R-101 C-101 A/B Reactor HighPores Low Pres. Tower Benzene Benzene Benzene Reflux Reflux Product Feed Feed Reactor Recycle Gos Efflornt Phase Sep. Phase Sep. Feed Reboiler Column Condemer Drum Pumps Cooler Storage Feed Pumps Preheater Heater Compressor Cooler Heater Deam

Process Flow Diagram (cont'd)

H-601 R-601 J-601 E-601 P-601 A/B E-602 E-603 Reactor Feed Fluidized Bed Jet Mixer Dowtherm Dowtherm Waste Heat CrudeAllyl Heater Cooler **Pumps** Boiler Chloride Cooler Reactor

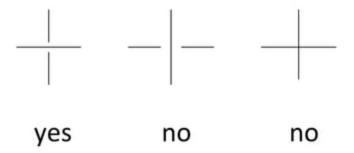

Equipment Numbering

- XX-YZZ A/B/...
 - XX represents a 1- or 2-letter designation for the equipment (P = pump)
 - Y is the 1 or 2 digit unit number (1-99)
 - ZZ designates equipment number of unit (1-99)
 - A/B/... represents presence of spare equipment

Equipment Numbering (cont'd)

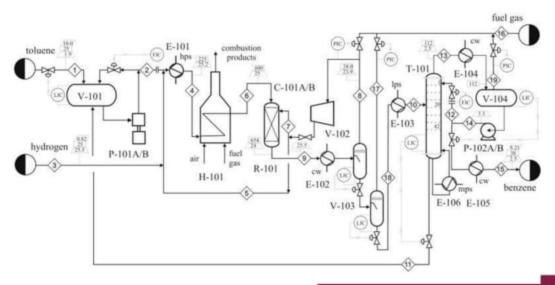
E-103 E-106 T-101 E-104 E-102 V-104 V-101 P-101A/B V-102 14-101 C-101 A/B Reactor HighPores Low Pres, Tower Benzene Benzene Benzene Reflux Reflux **Product** Feed Reactor Recycle Gas. Efflicent Phase Sep. Phase Sep. Feed Reboiler Column Condenser Drum Pumps Cooler Storage Food Pumps Probeater Heater Compression Cooler Heater

Equipment Numbering (cont'd)


- T-905 is the 5th tower in unit nine hundred
- P-301 A/B is the 1st Pump in unit three hundred plus a spare

- Use univocal letters for new equipment
 - Ex. Turbine use Tb or J not T (used for tower)
 - Replace old vessel V-302 with a new one of different design - use V-319 (e.g.) not V-302 – since it may be confused with original V-302

Stream Numbering & Drawing

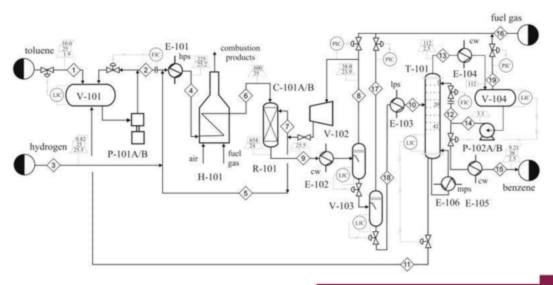

- Number streams left to right when possible
- Horizontal lines are dominant

Stream Numbering & Drawing (cont'd)

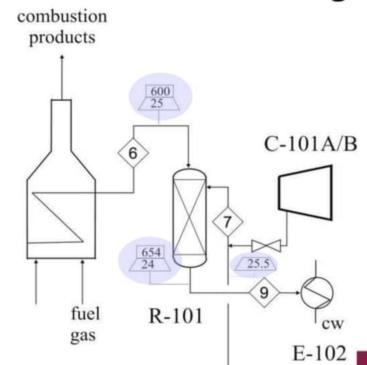
V-101 P-101A/B E-102 V-102 V-104 E-101 H-101 R-101 C-101 A/B Low Pres. Tower Benzene Benzene Benzene Reflux Reflux Product Toluene Toluene Reactor HighPeres Feed. Feed. Reactor Recycle Ges-Phase Sep. Feed. Reboiler Column Condenser Drum Pumps Effluent Phase Sep. Cooler Storage Feed Pumps Preheater Heater Compressor Heater Cooler

Stream Numbering & Drawing (cont'd)

- Add arrows for
 - change in direction
 - inlet of equipment
- Utility streams
 - use convention in Table 1.3
 - lps, cw, fg, etc.


Stream Information

- Since diagrams are small, not much stream information can be included
- Include important data around reactors and towers, etc.
 - Flags are used see toluene HDA diagram
 - Full stream data, as indicated in Table 1.4, are included in a separate flow summary table – see Table 1.5


Stream Numbering & Drawing (cont'd)

V-101 P-101A/B E-102 V-102 V-104 E-101 H-101 R-101 C-101 A/B Low Pres. Tower Benzene Benzene Benzene Reflux Reflux Product Toluene Toluene Reactor HighPeres Feed. Feed. Reactor Recycle Ges-Phase Sep. Feed. Reboiler Column Condenser Drum Pumps Effluent Phase Sep. Cooler Storage Feed Pumps Preheater Heater Compressor Heater Cooler

Stream Information - Flags

STREAM I.D.

PRESSURE

TEMPERATURE

GAS FLOWRATE

MOLAR FLOWRATE

MASS FLOWRATE

Stream Drawing

Future Equipment Electromagnetic, Sonic Optical, Nuclear Major Process Electric Minor Process Connecting Line Pneumatic Non-Connecting Line Hydraulic Non-Connecting Line Capillary Tubing Jacketed or Double Containment Software or Data Link Mechanical Link -0-0-0-

The Process Flow Diagram (cont'd)

Essential Information

Stream Number Temperature (°C) Pressure (bar) Vapor Fraction

Total Mass Flow Rate (kg/h)

Total Mole Flow Rate (kmol/h)

Individual Component Flow Rates (kmol/h)

Optional Information

Component Mole Fractions
Component Mass Fractions

Individual Component Flow Rates (kg/h)

Volumetric Flow Rates (m3/h)

Significant Physical Properties

Density

Viscosity Other

Thermodynamic Data

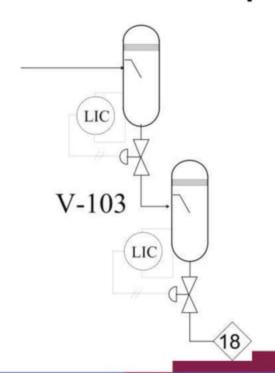
Heat Capacity

Stream Enthalpy

K-values

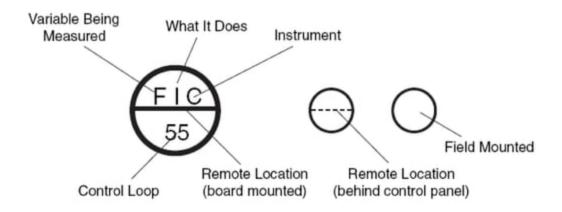
Stream Name

Table 1.4: Information in a Flow Summary



Basic Control Loops

- Often the basic control loops (those involving maintaining material balance and reactor controls) are included on the PFD; instrumentation and other control loops are not shown
- The final control element in nearly all chemical process control loops is a valve.



Basic Control Loops

Basic Instrumentation Symbols

Basic Instrumentation Symbols

TI Temp Indicator	FI	Flow Indicator	(P)	Transducer
TT Temp Transmitter	FT	Flow Transmitter	PIC 105	Pressure Indicating Controller
TR Temp Recorder	FR	Flow Recorder	PRC 40	Pressure Recording Controller
TC Temp Controller	FC	Flow Controller	LA 25	Level Alarm
LI Level Indicator	PI	Pressure Indicator	FE	Flow Element
LT Level Transmitter	PT 55	Pressure Transmitter	(TE)	Temperature Element
LR Level Recorder	PR 55	Pressure Recorder	LG	Level Gauge
Level Controller	PC 55	Pressure Controller	AT	Analyzer Transmitter

Equipment Information

- Equipment are identified by number and a label (name) positioned above the equipment on the PFD
- Basic data such as size and key data are included in a separate table (Equipment Summary Table) Table 1.7 (and Table 1.6) in TBWS

Equipment Information

A Section of Table 1.7: Equipment Summary

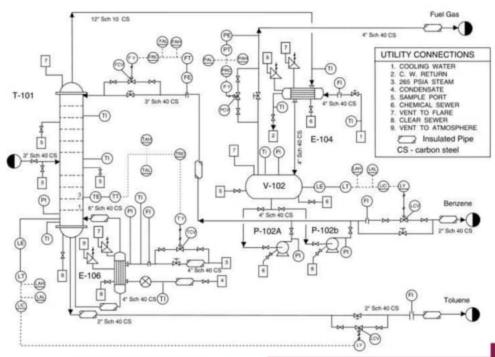
Vessel	V-101	V-102	
Temperature (°C)	55	38	
Pressure (bar)	2.0	24	
Orientation	Horizontal	Vertical	
MOC	CS	CS	
Size			
Height/Length (m)	5.9	3.5	
Diameter (m)	1.9	1.1	
Internals		s.p. (splash plate)	

PFD Summary

- PFD, Equipment Summary Table, and Flow Summary Table represent a complete PFD
- This information is sufficient to permit a one to complete a preliminary estimation of capital investment and cost of manufacture.

Piping & Instrument Diagram

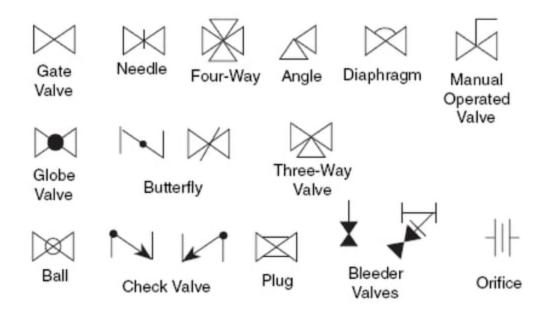
- Piping & Instrument Diagram (P&ID) –
 Construction Bible
- Contains: plant construction information (piping, process, instrumentation)
- P&ID info explained in Tables 1.8 and 1.9
- Instrumentation conventions shown in Fig. 1.10



Piping & Instrumentation Diagram (P&ID)

- support documents of the PFD used for planning for plant construction and maintaining the plant thereafter
- Each PFD requires many P&IDs to provide the necessary data
- Used as a checklist at the final walk-through prior to start up to assure each detail has been attended to
- Use by/to
 - MEs and CEs to build/install equipment
 - Instrument engineers to specify/install/check control systems
 - Piping engineers to develop plant layout and elevation drawings
 - Project engineers to develop plant and construction schedules

The P&ID (cont'd)



Look at V-102 on P&ID

- V-102 contains an LE (Level Element)
- LE senses liquid level in separator and adjusts flow rate leaving, by opening or closing a valve, depending on liquid level
- Together, the LE and valve represent a feedback control loop

Valve Symbols

More Valve Symbols

Gauge

Solenoid Valve CLOSED

Hydraulic

Back Pressure Regulator

Pneumatic Operated

Back Pressure Regulator

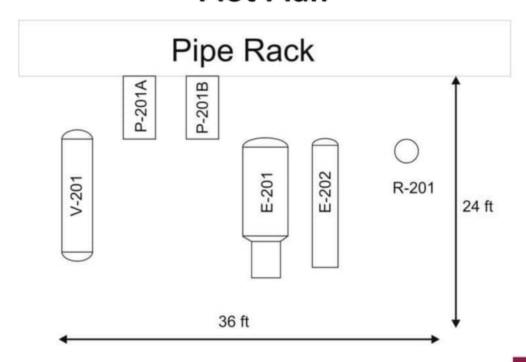
Pneumatic Operated Butterfly Valve

Motor

Rotameter

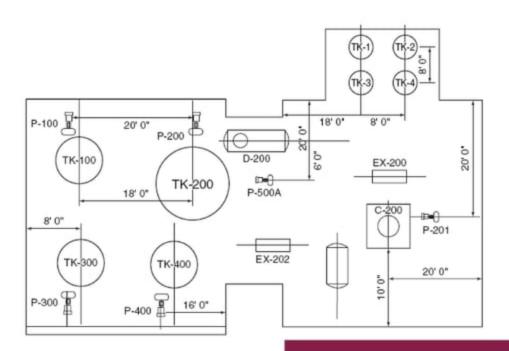
Reliet PRV

Safety PSV

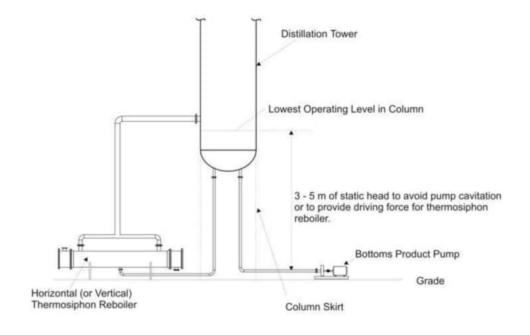


Other Common Diagrams

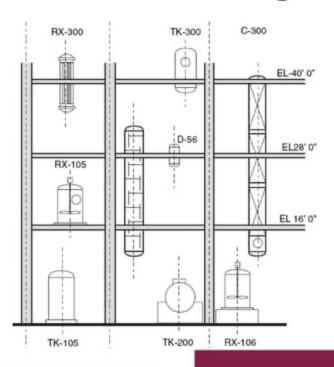
- Plot Plans plan or map drawn looking down on plant (drawn to scale with all major equipment identified)
- Elevation Diagrams show view from side and give information about equipments distance from ground
- Foundation drawings
- Electrical drawings



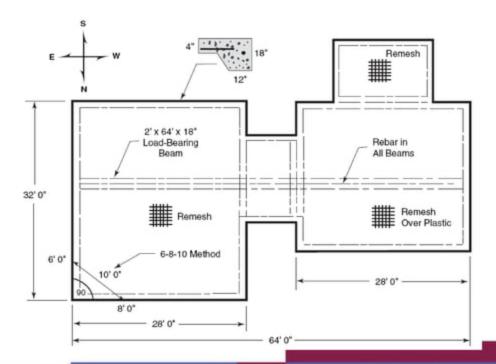
Plot Plan



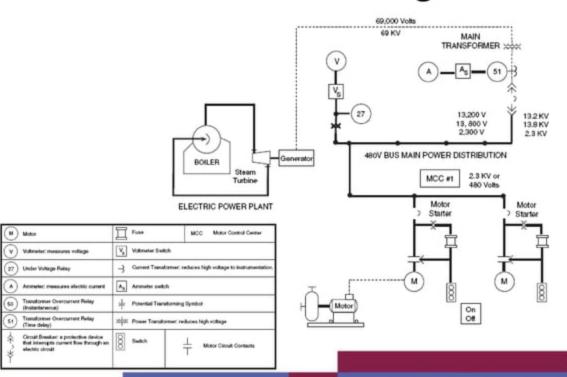
Plot Plan



Elevation Diagram



Elevation Drawing

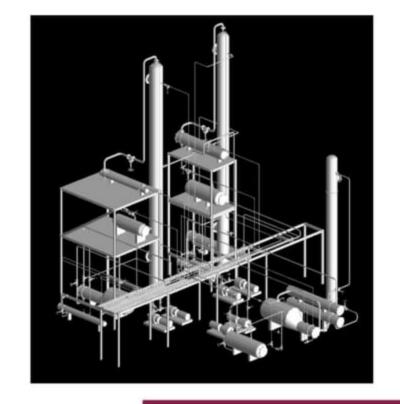


Foundation Drawing

Electrical Drawing

Other Common Diagrams (cont'd)

- Piping Isometrics show piping in 3dimensions
- Vessel Sketches show key dimensions of equipment and locations of inlet and outlet nozzles etc.



Scale Models and Virtual Plants

- 25 yr ago physical models used for review
- Now virtual or electronic models are generated using software (3D plant diagrams)
- Purpose of Models catch errors such as
 - Piping clashes
 - Misaligned piping
 - Equipment not easily accessed
 - Sample points not easily reached by operators

3-D Plant Diagrams

Summary

- The 3 principal diagrams (BFD, PFD, P&ID) are used to convey increasingly specific technical information about a process.
- Important to adhere to standards for these diagrams in order to avoid confusion
- Information on equipment layout is most clearly conveyed through a 3-D plant layout diagram.

