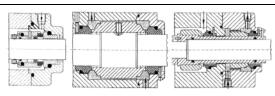

Centrifugal Pump selection metrics

Centrifugal pump: mechanical sealed or sealless pump

Selection parameter Nature of product, Solid handling Vapor pressure, Specific gravity and viscosity, Operating and min / max T, P Initial budget, O&M cost

namear scared or scaness pump					
Parameter	Sealed	Sealess			
Hazardous service					
Solid handling					
Initial cost					
maintenance cost					
Efficiency					
Lifecycle Cost					
Safety					
Reliability					



Centrifugal pump Type

Selection parameter: Hydraulics (Flow X head) requirement, NPSHa, Budget, Suction discharge orientation, Space available, Driver and coupling arrangement, applicable standard, installation and maintenance cost. API 610 pump types are listed below.

Fle	xibly Coupl	Coupled Rigidly Close Coupled 1-2 Stage Multi Stage Coupled		je	Single Casing					Double Casing									
Horizontal		Vertical In Line with Bearing Bracket	Vertical In	Vertical In Line	High Speed Integrally Geared	Axially Split	Radially Split	Axially Split	Radially Split		Radially Split		lit Discharge Through Column		ıgh	Separate Discharge		Diffuser	Volute
Foot Mounted	Centreline support								Single Casing	Double Casing	Diffuser	Volute	Axial Flow	Line Shaft	Cantilever				
OH1	OH2	ОНЗ	OH4	OH5	OH6	BB1	BB2	BB3	BB4	BB5	VS1	VS2	VS3	VS4	VS5	VS6	VS7		

Centrifugal pump with mechanical seal type and arrangement: Single, Tandem or double

Selection parameter Nature of product, Solid handling Vapor pressure, Specific gravity, viscosity, Operating & min / max T, Pr Initial budget, O&M cost

Single	Tandem	Double
	Single	Single Tandem

Mechanical API Plan selection: Please refer my earlier post exclusively on this topic

Material of construction

Selection parameter: Fluid (Abrasive, corrosive), Maximum / minimum operating temperature, Maximum pressure, component, budget, life cycle (

Type of Corrosion

- Galvanic corrosion
- Pitting corrosion
- Erosion corrosion
- Crevice corrosion
- Uniform corrosion
- Intergranular corrosion
- Stress corrosion
- Graphitization

Galvanic Series of Common Metals and Alloys in Seawater

Most Noble, or Cathodic Platinum

Gold Graphite Titanium Silver Hastelloy C Stainless steel (passive)

Nickel (passive)

Monel

Bronze

Copper

Brass

Hastelloy B

Nickel (active)

Lead

Stainless steel (active)

Ni-Resist

Cast iron

Steel

Aluminium Cadmium

Zinc

Magnesium

Least Noble, or Anodic

Recommended Pump Materials for Different pH Liquids

PH Value	Material
10-14	Corrosion-resistant alloys or non-metals
8-10	All Iron
6-8	Bronze fitted r Standard fitted
4-6	All Bronze
0-4	Corrosion-resistant alloys or non-metals

For more info. Refer API 610, 12th edition, Annex. G and H

Temperature range for common elastomeric material ||||||||| Extended temperature range for short term only Comparison of properties of commonly used elastomer