

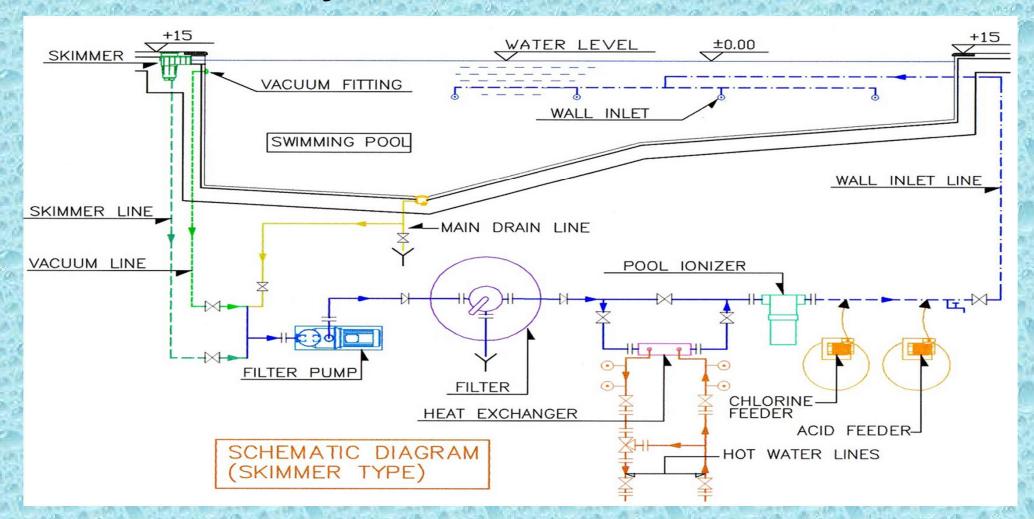
Contents

- 1. Over View
- 2. Swimming Pool Types
- 3. Treatment
- 4. Design
- 5. Manual Calculation
- 6. Special Cases
- 7. Fountain Design

Over View

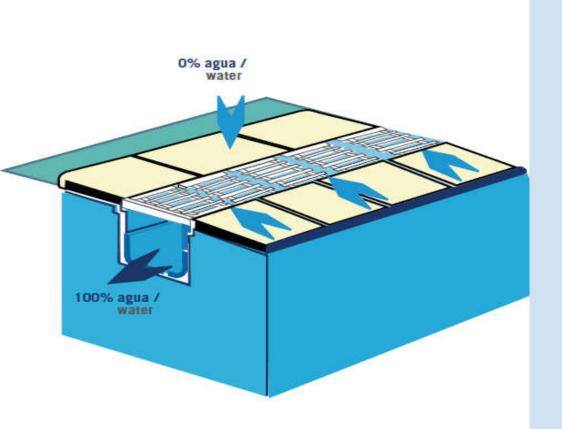
1. Skimmer System

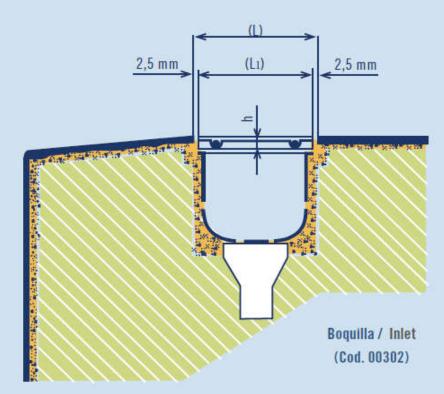
- Component
 - 1. Skimmer
 - 2. Vacuum
 - 3. Inlet
 - 4. Main Drain
 - 5. Make Up
 - 6. Circulating Pump
 - 7. Treatment
 - 8. Heating System


1. Skimmer System

Skimmer Feature

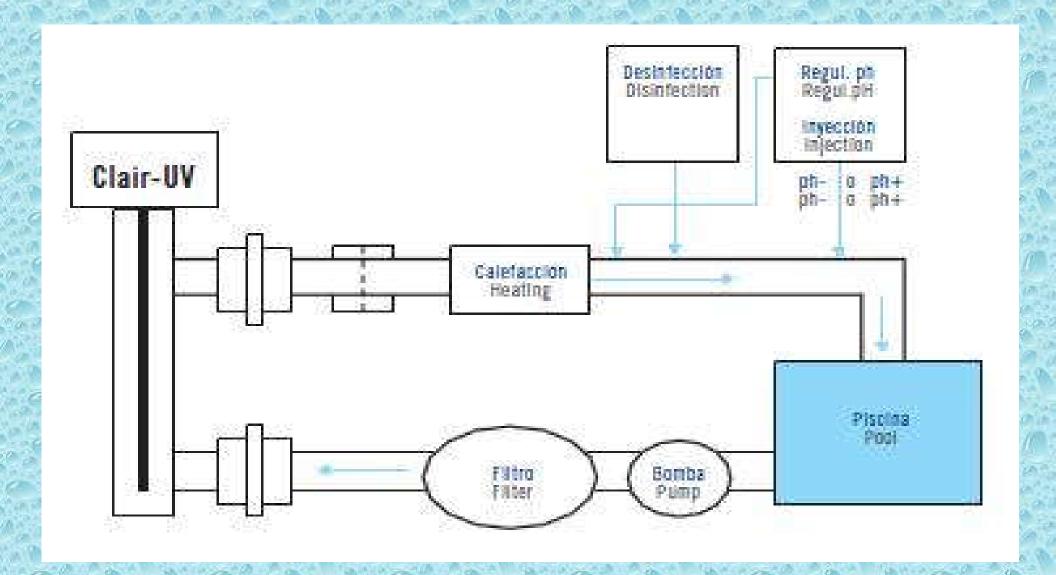
1. Skimmer System




2. Over Flow System

- Component
 - 1. Gutter Drain
 - 2. Vacuum
 - 3. Inlet
 - 4. Main Drain
 - 5. Balance Tank
 - 6. Make Up
 - 7. Circulating Pump
 - 8. Treatment
 - 9. Heating System

2. Over Flow System



2. Over Flow System

Treatment

Filtration

1. Filter

Note: No. Of Filter Equal No. Of Operating Pump

Treatment

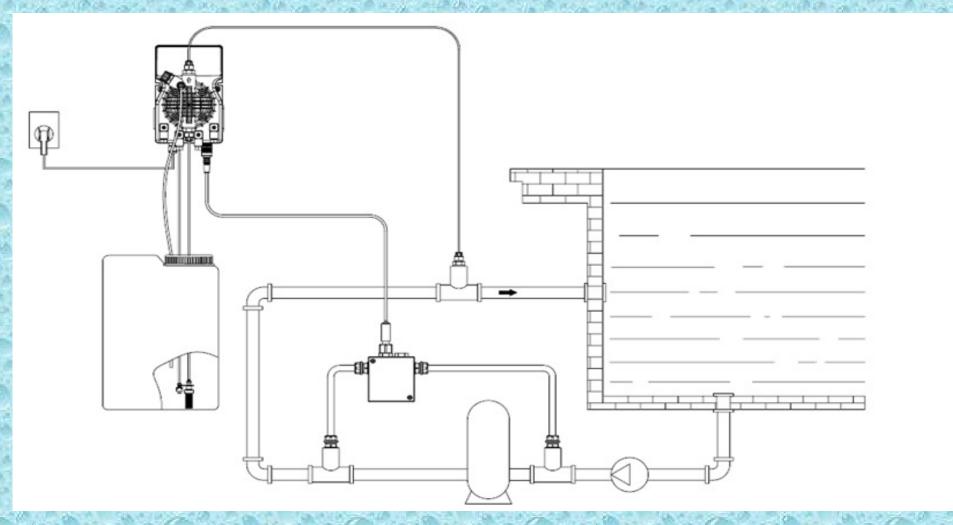
2. Ultraviolet

Treatment

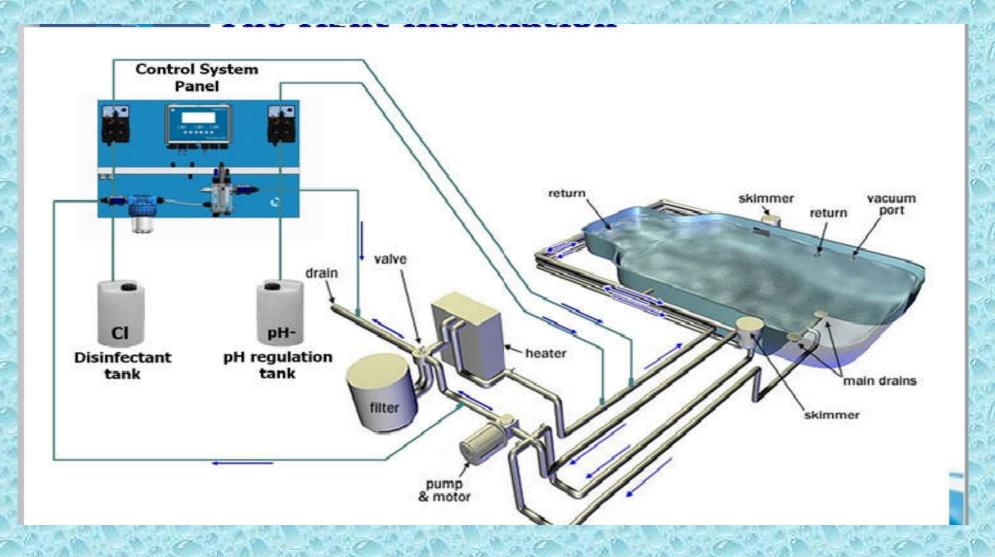
3. Ozone

650 W 850 W 1150 W

Chemical Treatment


4. Dosing Pump

Chemical Treatment


4. Dosing Pump

Chemical Treatment

4. Dosing Pump

1. Requirements

A. Equipments

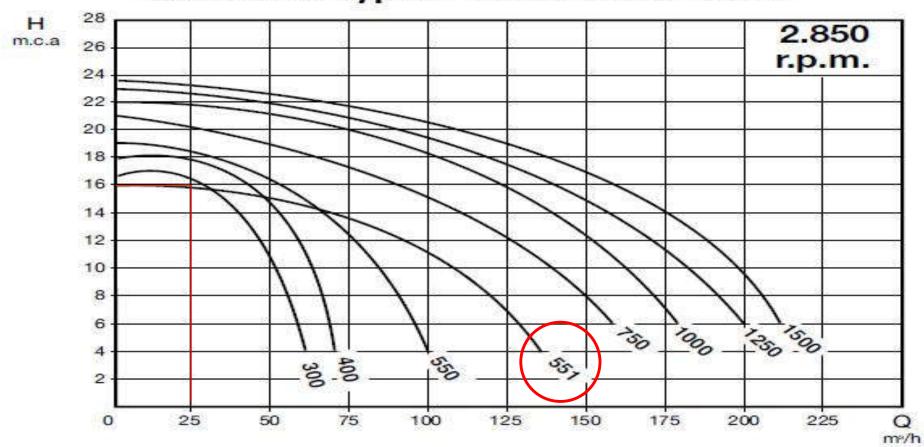
- Circulation Pumps
- Filter
- Balance Tank
- UV
- Dosing Pump
- Heaters

- Case Study
 - Pool Data
 - 1. Length = 20 m
 - 2. Wide = 10 m
 - 3. Depth = 1.5 m

- Pumps
 - I. Requirements Data
 - Pool Parameters (From Pool Plan & Sections)
 - 2. Turn Over (According To Application)
 - Turn Over:
 - A. Kids (2 Hours)
 - B. Private (4 Hours)
 - C. Public (6 Hours)

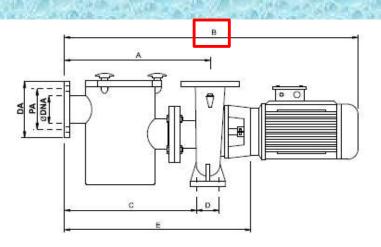
Pumps

TTLE : Swimming Pool Cale	dimini		
ool Data		Pump	
Length	20.00 m	Using	2 Fump Operatin
Wide	10.00 m	Using	1 Fump Standby
Perimeter	60,00 m	Capacity of each pump	25.00 m3/ hrs
Area	200.00 m2		110,07 gpm
Average Depth	1.5 m	Approx. Pipe length	25 m
Volume	300.00 m3	Static Head	4 m
Turnover Period	6 00 hrs	Residual Head	5 m
Flow rate	50.00 m3/ hrs	Filter Head Loss	5 m
	220.14 gpm	Friction Head Loss	0.77 m
		Pump Head	14.77 m
		Pump Efficiency	0.55
		Approx. Pump Power	1.83 kW
			2.5 HP

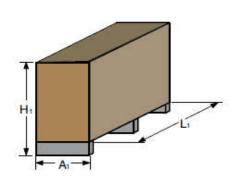

Pumps

Inlet Pipe	Main	Branhes	
Nubmer of inlet	10	10	No.
Flow rate per each inlet	5.00	5.00	m3/ hrs
Total Water flow rate	50.00	50.00	m3/ hrs
Water Velocity	1.50	1.50	m/s
	4.92	4.92	ft/s
Main pipe inside diameter	110.00	110.00	mm
Hazen roughness constant	150	150	PVC
Friction head loss per 100 meter	1.720	1.720	m H2O/100m
Pipe length	50.00	10.00	m
Friction head loss	0.86	0.17	m H2O

Pump Selection




Pump Selection


Tipo / Type					и	"A" Altura manométrica m.c.a Manometric height w.c.m.									.m.		
Hierro	Bronce	HP K		R.P.M		"A"		8	10	12	14	16	18	20	22	DNA	DNI
Cast Iron	Bronze				230 V	400 V			Ca	audal n	13/h - F	low m ³	/h				
CF-2 300 / VERT	BR-2 300	3	2,2	2.850	9	5,2	61	54	51	46	35	29				DN80*	DN80*
CF-2 400 / VERT	BR-2 400	4	3	2.850	12	6,9	70	64	59	55	49	42	30			DN80*	DN80*
CF-2 550 / VERT	BR-2 550	5,5	4	2.850	16,5	9,5	95	90	84	77	65	54	32			DN125	DN100
CF-2 551 / VERT	BR-2 551	5,5	4	2.850	16,5	9,5	128	121	107	90	69	30				DN125	DN100
CF-2 750 / VERT	BR-2 750	7,5	5,5	2.850	21,7	12,5	159	152	135	125	109	88	60			DN125	DN100
CF-2 1000 / VERT	BR-2 1000	10	7,5	2.850		15,5	180	175	162	149	135	119	101	78		DN125	DN100
CF-2 1250 / VERT	BR-2 1250	12,5	9,2	2.850		19	200	196	182	165	150	136	110	95		DN125	DN100
CF-2 1500 / VERT	BR-2 1500	15	11	2.850	12/	23	216	210	200	185	171	155	137	118	95	DN125	DN100

Pump Selection

HIERRO	BRONCE			Mod	elos/	Туре	s a 2.	900 1	p.m.	4		Α	spira	ción	/Intal	(e	ln	puls	ión/	Outp	ut	En	nbala	aje	Pesc	Kg.
CAST IRON	BRONZE	Α	В	C	D	Е	F	G	Н	1	J	ØDNA	DA	PA	N°T	ØT	ØDNI	DI	PI	N°T	ØT	L,	A,	H,	Hi	Br
CF-2 300	BR-2 300	465	880	425	80	605	410	275	200	320	250	80	200	160	4	18	80	200	160	4	18	1.050	400	660	75	90
CF-2 400	BR-2 400	465	910	425	80	605	410	275	200	320	250	80	200	160	4	18	80	200	160	4	18	1.050	400	660	79	96
CF-2 550	BR-2 550	500	985	455	105	635	435	280	215	330	280	125	250	210	8	18	100	220	180	8	18	1.150	400	660	104	124
CF-2 551	BR-2 551	500	985	455	105	635	435	280	215	330	280	125	250	210	8	18	100	220	180	8	18	1.150	400	660	104	124
CF-2 750	BR-2 750	500	1050	455	105	675	435	280	215	330	280	125	250	210	8	18	100	220	180	8	18	1.150	400	660	121	140
CF-2 1000	BR-2 1000	525	1095	470	120	725	465	325	275	345	330	125	250	210	8	18	100	220	180	8	18	1.150	400	660	140	163
CF-2 1250	BR-2 1250	525	1130	470	120	725	465	325	275	345	330	125	250	210	8	18	100	220	180	8	18	1.150	400	660	148	163
CF-2 1500	BR-2 1500	525	1130	470	120	725	465	325	275	345	330	125	250	210	8	18	100	220	180	8	18	1.150	400	660	148	168

^{*} Para dimensiones de bomba en montaje vertical, consulte con nuestro departamento técnico.

^{*} Please contact our technical department for measure of vertical mounted pump.

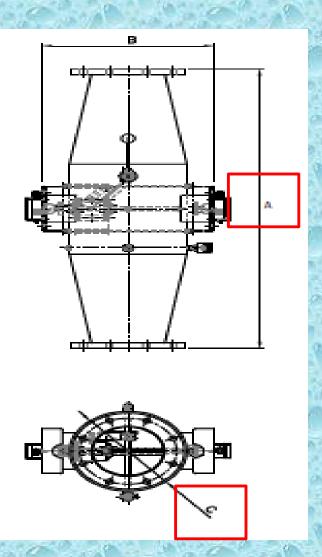
Filter

<u>Filter</u>	
Number of Filters	2
Service factor	1.25
Flow rate per each filter	31.25 m3/ hrs
	137.59 gpm
Filtration speed	30,00 m3/ hrs /m2
Filtration Area	1.04 m2
Filter Diameter	1.15 m
	45.35 inch
Backwash time	5.00 mins
Backwash per each filter	31.25 m3/ hrs

Filter Selection

Velocidad de filtración / Filtration Rate / Vitesse Filtration: 30m³/h/m²

		Ømm	Conexión / Connection	Arena / Sand / Sable
75100063	25m2/h	1.050	DN 75	1.100 Kg
75100064	33mA/h	1.200	DN 75	1.400 Kg
75100065	46m9/h	1.400	DN 90	1.900 Kg
75100066	60m4h	1.600	DN 110	2.600 Kg
75100067	76m2h	1.900	DN 110	3.500 Kg
75100068	94mAth	2.000	DN 125	4.500 Kg

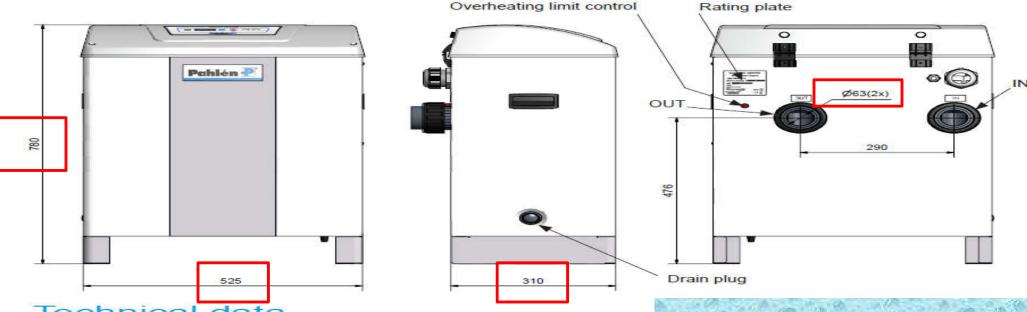

Balance Tank

Balancing Tank	
Bathers Water displacement	41.00 liters/m2
	1.01 gallons/ft2
Total water displaced	8.20 m3
Backwash volume	2.60 m3
Evaporation rate	10.00 mm/m2/day
Evaporation volume	2.00 m3
Safty Factor	1.20
Tank Effective volume	15.37 m3
Tank Height	3.00 m
Tank Area	5.12 m2
Make-Up Water period	1.00 hr
Make-Up Water flow rate	15.37 m3/ hrs
Water Velocity	1.50 m/s
	4.92 ft/s
Make-Up Water pipe diameter	60.21 mm

UV

Code	Model Clair-UV MP	Flow rate Q (m³/h)	N° Lamps	Consumpt. lamps	Total lamp power UV-C (W)	DN flange inlet/outlet	Total Height A (mm)	Ø C of reactor
36831	MP30	30	1	600W	90	80 or 100	450	273
36832	MP30	50	1	1kW	150	80 or 100	450	273
32679	MP100	80	l	1kW	150	125	1175	273
32680	MP125	140	ĺ	2.5kW	375	150	1168	273
32681	MP140	300	1	4kW	600	200	1244	355.6
32682	MP240	450	2	4kW	1200	250	1020	355.6
32683	MP340	675	3	4kW	1800	300	1016	355.6
32684	MP440	900	4	4kW	2400	300	824	355.6

- Dosing Pump Calculation
- 1. VOLUME Of Water To be Treated= 20*10*1.5 = 300 m3
- 2. As 3 gm Of Chlorine For 1 m3 Of Water
- 3. So Weight Of Chlorine To be Dosed = 900 gm,
- 1 Kg Of Chlorine Used For 100 Liter Of Water To Make Solution With 10% Concentration, So For 900 gm Of Chlorine IT Requires 90 L
- 5. Flow Of Dosing Pumps= 90 / Turn Over = 15 L / H
- 6. Dosing Pump Head = 1.5 Circulating Pump Head

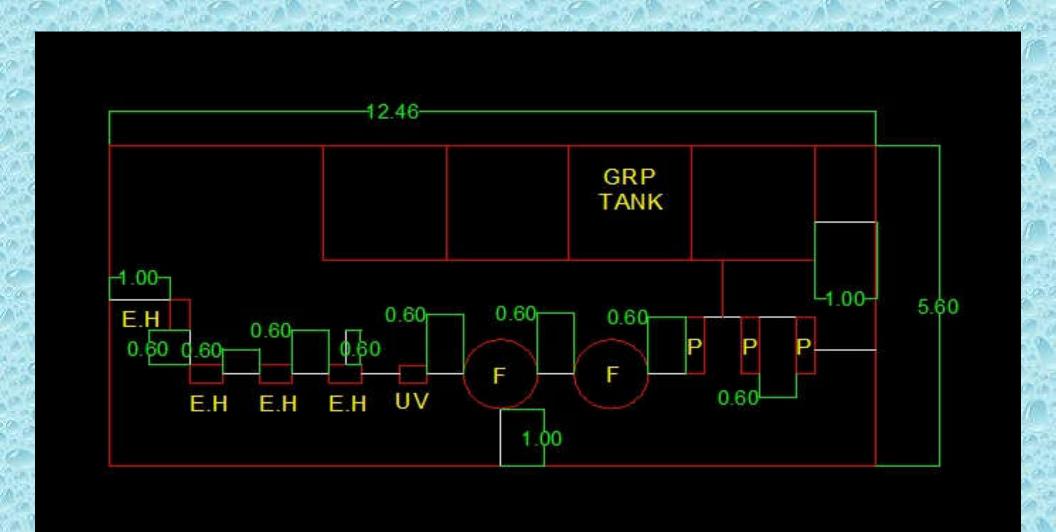


Electric Heaters Calculation

Water Heate	er		
1- Water direc	t heating		
	$Q_1 = \rho \ C_p \lor (t_r - t_i) / x$		
where:			
ρ:	water denisty,	998.00	kg/m3
് റ ്ട് വ	water specific heat,	4.18	kJ/Kg.K
V:	Pool volume, m ³	300.00	m3
t _r :	desired water temperature, °C	27	°C
t, :	initial temperature, °C	14	°C
X 35	pool heat-up time, hrs	48.00	hrs
Q ₁ :	pool heat-up rate, kW	94.15	kW
		321544.6	BTU/hr
2- Heat Loss			
	Q ₂ = U A (t _p - t _a)		
where:			
U:	Overall coefficient of heat transfer,	0.06	kW/m2.k
A :	water surface area	200.00	
t _p :	water pool temperature	27	°C
t _a :	ambient temperature	14.00	°C
	sheltered positions	1.00	
Q ₂ :	heat loss from pool surface	156.00	kW
		532,767.9	
Required heat	er output = Q ₁ + Q ₂	250.15	kW
		854,312.5	

Electric Heaters Selection

Technical data


Item no.	Capacity kW	400V 3-phase	415V 3-phase
1510018	2x9=18	18kW 26A	19.5kW 27A
1510024	2×12=24	24kW 35A	26kW 36A
1510030	2x15=30	30kW 43A	32kW 45A
1510036	3x12=36	36kW 52A	39kW 54A
1510045	3x15 -45	45kW 66A	49kW 68A
1510060	4×15=60	60kW 87A	65kW 90A
1510072	4×18=72	72kW 104A	78kW 108A
Item no.	Capacity	230V 3-phase	
1510218	2x9=18	18kW 45A	
1510224	2x12=24	24kW 60A	
1510230	2×15=30	30kW 75A	
1510236	3x12=36	36kW 90A	
1510245	3x15=45	45kW 113A	
1510260	4×15=60	60kW 151A	

For heaters with titanium element add T after the item no.

3 Electric Heaters Each 72 Kw & 1 Electric Heater 36 Kw

Mechanical Room Dimensions

- Pumps
 - Q=(L * W * D) / Turn Over
 - No of Pumps = Q / (No of Operating Pumps)
 - Head = ((P static + P residual + P filter) major + (P friction) minor)

Where:

- P static = Pump Room Height
- P residual = 5m
- P filter = 5m
- P friction :

```
H f.pipe = 6.78 ((L / D ^1.165) * [ V / C ]^1.85)
```

$$H f.fit = k * H f.pipe$$

H minor = H f.pipe + H f.fit

- Filter
 - Q=(Service Factor * Q pumps flow rate)/ No of Filter
 - Where NO of Filter = No of Operating Pump
 - Service Factor = 1.25

- Balance Tank
 - Tank Effective volume = Safety Factor * (Total water displaced + Backwash volume + Evaporation volume)
 - Safety Factor = 1.2
 - Total water displaced = (Pool Area * Bathers Water displacement)/ 1000

Where: Bathers Water displacement = 41 L/m2

Balance Tank

Backwash volume = Number of Filters *
 Backwash time * Backwash per each filter)/ 60

Where: Backwash time = 5 min

Evaporation volume = (Pool Area * Evaporation rate) /1000

Where: Evaporation rate = 10 mm/m2

Balance Tank

 Make Up Flow Rate = Tank Effective volume / Make-Up Water period

Where: Make-Up Water period = 1 hour

 Make Up Diameter = (4*(Make Up Flow Rate /3600)/(3.14* Water Velocity))^0.5*1000

Where: Water Velocity = 2 m/s

Heaters

1- Water direct heating

• $Q_1 = (r c_p V (t_f - t_i))/x * 3600$ Where:

r : water density,

c_p: water specific heat,

V : Pool volume, m³

t_f: desired water temperature, °C

t_i: initial temperature, °C

x pool heat-up time, hrs

Q₁: pool heat-up rate, kW

(998) kg/m3 (4.18) kJ/ Kg

(27) °C

(14)°C

(48.00) hr

Heaters

2- Heat Loss

- Q2= U A (tp ta)
 Where:
- U: Overall coefficient of heat transfer, (0.06) kW/m2
- A: water surface area,
- tp : water pool temperature (27) °C
- ta ambient temperature, °C (14) °C
- sheltered positions
 Where 1 hr for Uncovered Pool & 0.5 hr For Covered Pool
- Q₂: heat loss from pool surface, kW

Heaters

Required heater output = Q1 + Q2

Pool Routing

Inlet Nozzle:

Based on MFG recommendation = 5 m3/h

Max Distance = 6 m

Dist. From corner = 1.5 m

Wall Inlet

Floor Inlet

Pool Routing

Gutter Drain:

Max Distance = 4.6 m

Skimmer:

Max Distance = (15 to 25) ft

Vacuum:

Max Distance = (20) m

Pool Routing

Main Drain:

Max Distance

Dist. From corner:

Note:

At less 2 Main Drain If Possible

į	Egy. Code	ASPE
	6	9.20
	1.80	4.60

Pool Routing

Pipe Sizing:

Suction (Pressurized): 1 to 1.5 m/s

Suction (By Gravity): 0.8 m/s

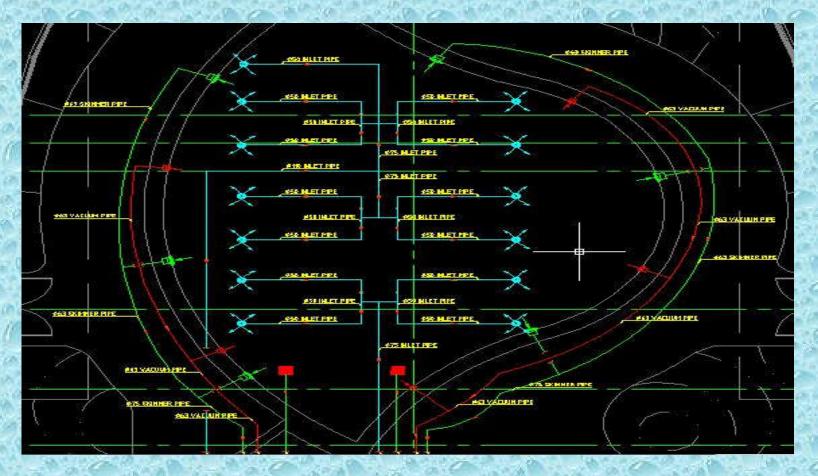
Discharge : 1.5 to 2.4 m/s

Note:

Pipe Diameter Should be Not Exceeds 110 mm

All Feature 50 mm

Pool Routing

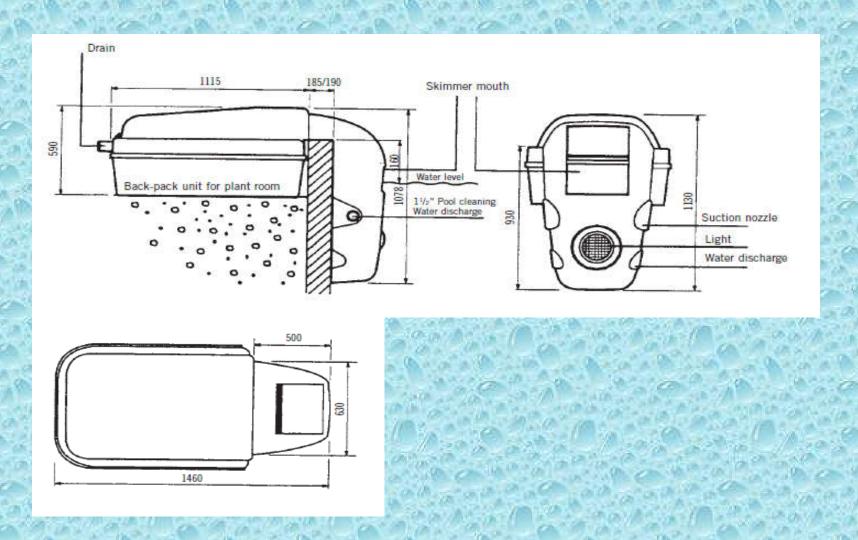

Pipe Sizing:

		33 - 2 33 - 5	ALK DOME AND	
Flow Rate	Pipe	Diameter	Area	Velocity
M3/hr	MIM	Meter	M2	M/sec
50	25	0.022	0.00037994	36.56
50	32	0.0284	0.00063315	21.94
50	40	0.0362	0.001028695	13.50
50	50	0.0452	0.001603786	8.66
50	63	0.057	0.002550465	5.45
50	75	0.0678	0.003608519	3.85
50	90	0.0814	0.005201379	2.67
50	110	0.0994	0.007756083	1.79
50	125	0.113	0.010023665	1.39
50	140	0.1266	0.012581635	1.10
50	160	0.1446	0.016413691	0.85
50	200	0.1808	0.025660582	0.54
50	225	0.214	0.03594986	0.39
50	250	0.238	0.04446554	0.31
50	280	0.2666	0.055794315	0.25
50	315	0.3	0.07065	0.20
50	355	0.3381	0.089734614	0.15
50	400	0.3809	0.113891576	0.12
	==			

Pool Routing

Pipe Distributions:

Combo Unit 1

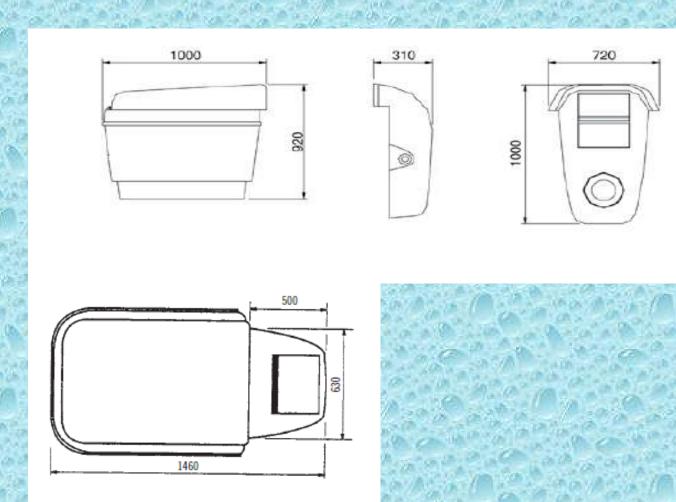

Combo I

With 3/4 HP pump with 11 m³/h flow at 10 m.c.a., 3 cartridge filters of 5 m³/h flow rate each. Total filtration surface 6.9 m². Control box included.

Code	Standard	Standard	Standard
	Packing	Weight Kg	Volume m ³
18546	1	92	1.241

Combo Unit 1

Combo Unit 2


Combo II

With Terra 50 cartridge filter with maximum flow 15 m³/h, Sena pump 1.25 HP, 100 W light and programmable control box. An electric heater and chlorinator can also be incorporated. One single filter replaces the three used in Combo I. Improved return of water to pool. This Combo II can also be installed as one compact unit or can be installed as 2 separated parts.

	Code	Standard Packing	Standard Weight Kg	Standard Volume m ³
White cartridge filter, 15 m ³ /h flow	27413	1	79	1.41

Combo Unit 2

COMPACT FILTRATION UNITS

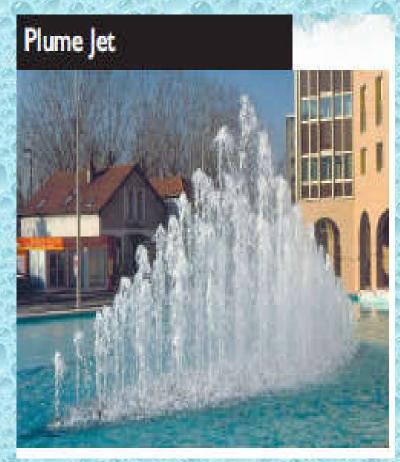
Flow Rate Up TO 60 m3\h

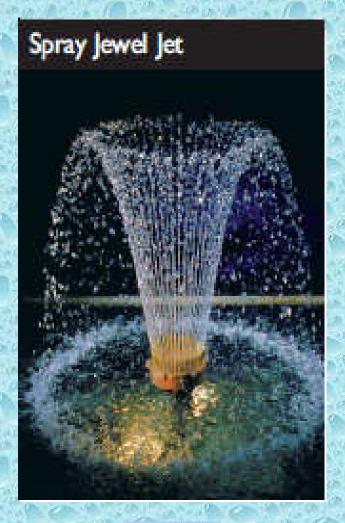
Fountain

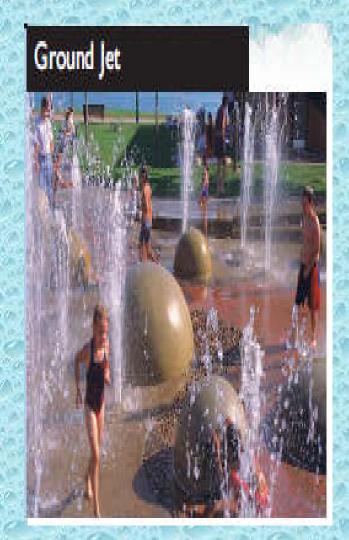
A. Equipments

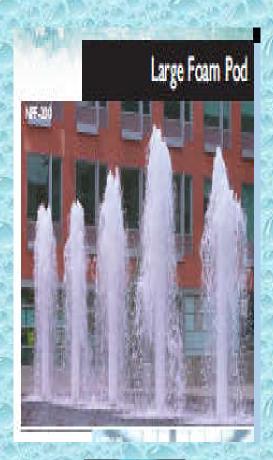
- Circulation Pumps
- Filter
- Balance Tank
- Dosing Pump
- Display Pumps

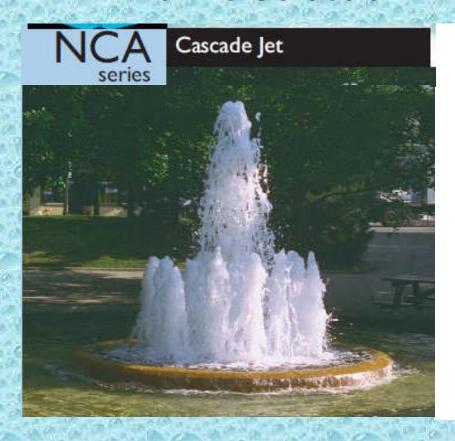
Fountain

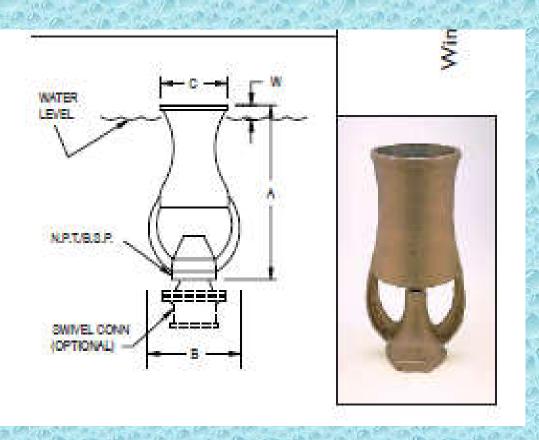












NMB series

Nozzle Selection

Nozzle Selection

Dimensions (in mm)					Performance														
DEFO ma	suction attrainer openings required	dm.	dim.	dim.	dim.	inlet (npt) (bsp)	apray height (meters)	.60	0.9	1.2	13	1.8	2.4	10	17	4.5	6.1	3,6	Q)
NCA050	6	100	50	50	-32	j2	Limin Missed spread	26 5 203	34 8 381	38 11 559	42 12 813					9 0	3		
NCA-075	8	140	70	65	-35	26	Umin Mhead presid	45 8 254	57 7 279	61 10 432	76 13 610	76 16 762	87 21 864		35 3	8 3			
NCA125	đ	203	114	89	12	32	Umin Mhead apmod	61 4 229	79 5 305	17	98 5 6.10	110 11 711	129 15 737	14.4 18 91.4	151 20 1016				
NCA I 50	8	229	121	95	12	40	Umin Mhead spread	87 3 254	110 4 381	121 5 488	136 7 616	159 16 762	170 11 813	185 14 9(4	201 15 940	220 19 101 6			
NCA-200	i7	273	140	114	12	50	Umin Mhead spread			159 4 381	178 6 508	7 508	231 10 914	254 12 10ts	269 13 1092	284 15 1270	348 22 1397		4 50
NCA-300	72	342	203	165	20	75	Umin Mhead aproof				333 7 6.10	341 8 610	352 11 660	424 13 1067	439 15 1219	545 19 1524	628 24 1524	708 32 2134	776 35 243

Circulation Pump

Pump Calculation:

Q = Volume / Turn Over

Where :Turn Over = Max 2 Hours

Head = P residual + P static + P filter + P friction

Where:

P residual: From Catalogue

P filter : 5m

P static : Pump Room Height

P friction : H f.pipe = 6.78 ((L / D ^1.165) * [V / C]^1.85)

H f.fit = k * H f.pipe

H minor = H f.pipe + H f.fit

Display Pumps

Pump Calculation:

Q = (No of Nozzle * Q nozzle)

Head = P residual + P static + P friction

Where:

P residual: From Catalogue

P static : Pump Room Height

P friction:

H f.pipe = 6.78 ((L / D ^1.165) * [V / C]^1.85)

H f.fit = k * H f.pipe

H minor = H f.pipe + H f.fit

Check

We Need Balance Tank or Not?

Q = (Q circulation pump + Q display pump) = Gallon / min

V circulation = (Gallon / min) * 6 min

IF V circulation < V fountain We Not Need

IF V circulation > V fountain We Need

Or Increase Fountain Depth