## **IHRDC**

# READING DRAWINGS PFD'S AND P&ID'S

Technical Training Program
For
Existing Production Operators
And
Senior Production Operators

**Total Pages (66)** 



## **Reading Drawings PFD and P&ID**

| <ul> <li>□ This module is designed for AFPC existing Production, Mechanical of Instrument graduates, to become familiar with PFD and P&amp;ID drawing They will be asked to design and sketch a simple control instrumentation process equipment</li> <li>□ The module covers PFD, P&amp;ID and ISA symbols. It also includes Instrumentation Line Symbols/Identification and special abbreviations.</li> <li>□ Introduction to PFD, P&amp;ID and ISA.</li> <li>□ PFDs</li> <li>□ P&amp;IDs</li> <li>□ Instrument line symbols and identification</li> <li>□ Special Abbreviations</li> <li>□ Design and sketch a simple P&amp;ID.</li> <li>Audience</li> <li>□ Production Operators, Senior Operators Mechanical and Instrument Technicians &amp; Senior Technicians</li> <li>Prerequisites: English comprehension and communication.</li> <li>□ AFPC Training Center D. Z.</li> </ul> | Fraduate Deve                                                                             | opment Programme                                                                                   | <b>Module (P-01) 2D</b>                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Line Symbols/Identification and special abbreviations.  □ Introduction to PFD, P&ID and ISA. □ PFDs □ P&IDs □ Instrument line symbols and identification □ Special Abbreviations □ Design and sketch a simple P&ID.  Audience : Production Operators, Senior Operators Mechanical and Instrument Technicians & Senior Technicians Prerequisites : English comprehension and communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Instrument<br>They will b                                                                 | graduates, to become fame<br>e asked to design and sketc                                           | ciliar with PFD and P&ID drawings.                   |
| <ul> <li>□ PFDs</li> <li>□ P&amp;IDs</li> <li>□ Instrument line symbols and identification</li> <li>□ Special Abbreviations</li> <li>□ Design and sketch a simple P&amp;ID.</li> <li>Audience : Production Operators, Senior Operators Mechanical and Instrument Technicians &amp; Senior Technicians</li> <li>Prerequisites : English comprehension and communication.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           | •                                                                                                  | •                                                    |
| Instrument Technicians & Senior Technicians Prerequisites: English comprehension and communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul><li>□ PFDs</li><li>□ P&amp;IDs</li><li>□ Instrument</li><li>□ Special Abord</li></ul> | line symbols and identificat<br>breviations                                                        | ion                                                  |
| Format : Lecture, discussion and workshop practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prerequisites<br>Location                                                                 | <ul><li>Instrument Technician</li><li>English comprehension</li><li>AFPC Training Center</li></ul> | s & Senior Technicians a and communication. b, D. Z. |

This module is one of twenty modules, which together cover the theoretical aspect of the Technical Training for the AFPC Production Graduates Development Programme. This programme has been developed specifically for AFPC Graduate Development to enhance the dynamic Nationalisation drive adopted by the company

IHRDC RD – P- 01 (REV. 0) Page - 2

## **COURSE CONTENTS:**

- 1. Objectives
- 2. Course Outlines
- 3. Equipment / Resources
- 4. Course Manual ( Handed out for the Participants)
- 5. Training Aids
- 6. Lesson Plan
- 7. Course Final Test and Model Answers
- 8. Appendix

## 1. COURSE OBJECTIVES:

Upon completion of the course, the trainee will be able to:

- Identify the different types of flow schemes.
- Identify the information in the different types of flow schemes.
- Identify the functions of individual schemes.
- Understand the symbols and abbreviations relevant to the flow schemes.
- Understand the instrument identification.
- Design and sketch simple control instrumentation for process equipment and include standard drafting symbols.

## **2.COURSE OUTLINES:**

The course is designed for the AFPC existing production operators and senior production operators to provide the basic necessary knowledge and to gain experience dealing with reading engineering drawing special for PFD's and P & ID's

- Duration of this course is two working days (12 Hrs.).
- The maximum number of participants shall be four (4) trainees in one patch.
- This course will be conducted at AFPC Training Centre classroom in D.Z
- Course time plan shall be as follows:

Instruction time: 10 Hrs.Test Time: 2 Hrs.

• Course program shall be proceeded as follows:

## **First Day (6.00 Hrs.)**

| Time<br>(Hrs. / Min.) | Activity                                                                             | Location  |
|-----------------------|--------------------------------------------------------------------------------------|-----------|
| 5.00                  | <ul><li>Introduction</li><li>Flow schemes.</li><li>Instrument line symbols</li></ul> | Classroom |
| 1.00                  | Pre- Assessment                                                                      | Classroom |

## Second Day (6.00 Hrs.)

| Time<br>(Hrs. / Min.) | Activity                                                                                                                                   | Location  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.00                  | <ul> <li>Instrument identification</li> <li>Functional designation of relay</li> <li>Special abbreviations</li> <li>ISA symbols</li> </ul> | Classroom |
| 1.00                  | Final Test                                                                                                                                 | Classroom |

## 3. EQUIPMENT / RESOURCES TO CONDUCT THE COURSE:

The following training resources to be available in the Training Centre before conducting this course:

- Overhead Projector
- Transparencies

# 4.COURSE MANUAL (HAND OUT TO THE PARTICIPANTS)

## **Table of Contents**

- 1. Introduction.
- 2. Flow Schemes.
  - 2.1 Types of schemes with definitions.
  - 2.2 Functions of the individual schemes.
- 3. Instrument Line Symbols.
- 4. Instrument Identification.
- 5. Functional Designation of Relays.
- 6. Special Abbreviations.
- 7. General Abbreviations.
- 8. ISA Symbols.

#### 1. INTRODUCTION:

Every scientific and technical field develops a specialized language convey information and ideas.

The specialized language not only includes particular meanings for words, it also includes abbreviations and symbols peculiar to a given field.

Anyone who seeks training in such a technical or scientific field must become familiar with the specialized language of that field.

The instrument Society of America has prepared a standard, entitled Instrumentation, Symbols and Identification, ISA- S5.1, for individuals in the field of instrumentation.

The purpose of this standard is to provide a satisfactory system of symbols and identification for industrial process instrumentation equipment.

This is designed to prompt a uniformity of practice and expedite communication in the fields of production operation and instrumentation.

#### 2. FLOW SCHEMES

#### 2.1 Types of Scheme with Definitions

#### 2.1.1 Process Flow Diagram (PFD)

A PFD is a simplified flow diagram of either a single process unit, a utility unit, a complete process module or an offsite product storage and loading system.

The purpose of a PFD is to provide a preliminary understanding of the process system indicating only the main items of equipment, the main pipelines and the essential instruments, switches and control valves.

A PFD also indicates operating variables, such as mass flow, temperatures and pressures, which are tabulated at various points in the system. The general symbol function letter of the instrument and a basic control valve symbol are indicated.

Explanatory notes are often included at the bottom of the PFD and these give valuable information on the different modes of operation and interment control of a process unit during the start-up and normal operating phases.

The PFD is a document containing information on:

- Process conditions and physical data of the main process streams.
- Main process equipment with design data.
- Main Process lines.
- Main controls.
- Mass (material) balance.
- Heat balance (if applicable).

### 2.1.2 Piping and Instrumentation Diagram (P & ID)

A P & ID is a detailed flow diagram o either a process unit, a utility unit, an ancillary unit, an offsite product storage system, a product loading system, or a drawing of a process and instrumentation system which connects different operating facilities together.

A P&ID's drawing typically provides the following detailed information:-

## **Mechanical Details**

#### • Stationary Equipment:

Stationary equipment such as inlet, outlet, drain, vent, instrument connections and valve connections with the associated block valves and spading points.

#### • Fittings:

All internal fittings, access manways, support structures, materials of construction and insulation details.

#### • Lube Oil and Sealing Systems;

Some mechanical details of rotating equipment together with their auxiliary systems (lubrication and sealing systems).

#### • Piping Details:

Piping sizes and details such as flanges, reducers, valving, materials of construction, insulation, high point vents and low point drains.

#### **Instrument Details**

#### • Symbols and Tag Numbers:

Measuring instrument symbols, tag numbers and locations of connections to piping or to equipment.

#### • Control Device Symbols:

Control valve symbols or other control device symbols with their associated block valves, drain points, purge points, actuator symbols, limit switch symbols and alarm instrument symbols.

#### • Signal Transmission Lines:

Signal transmission lines between measuring instruments and their controlling devices or control valves. Solenoid valves or other signal switching devices are shown in the transmission lines.

#### • Locations:

Symbols and locations of instruments connected to process computers.

#### Alarms and Trips:

Alarm and trip instrument symbols with transmission signal lines to the appropriate shutdown devices or shutdown logic a systems.

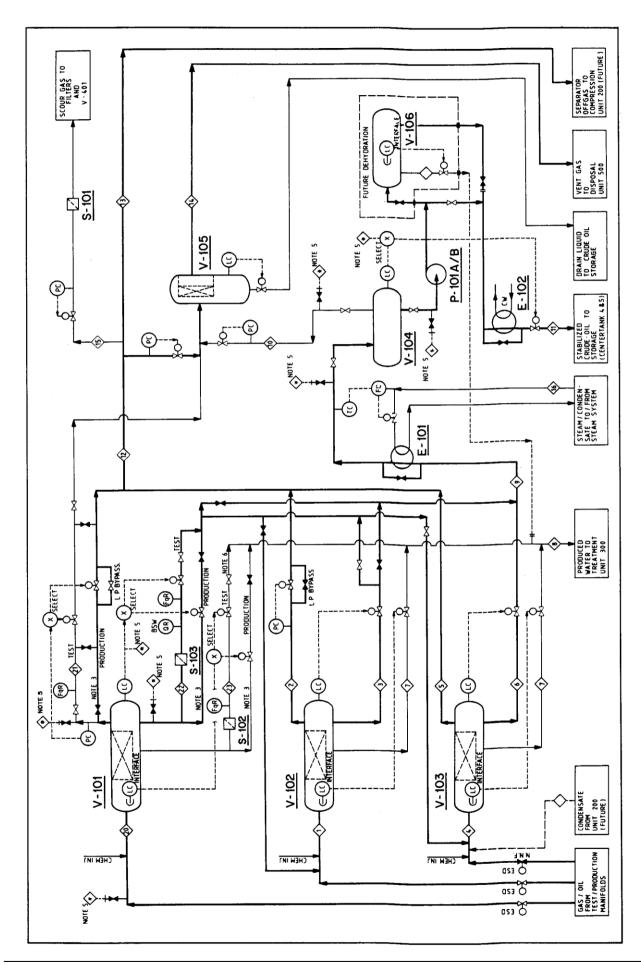
#### • Shutdown Devices:

Emergency system instrumentation symbols showing details of hydraulic/pneumatic actuators used with different types of valves.

Each P&ID's drawing contains a list of explanatory notes which supplement or clarify the graphical details shown on the P&ID's. This additional information covers special features of the stationary equipment, rotating equipment or instrumentation. For example, explanatory notes about complex process control loops, compressor anti-surge control loops and furnace logic systems for star-up and shutdown or the emergency alarm an be shown on a P&ID's.

#### 2.1.3 Process Engineering Utility Flow Diagram (PEUFD)

The PEFD is a document containing information on:


 Main distortion and/or collection arrangement of each individual utility system, expect electrical systems. Detailed design/engineering data are given as on the P&ID mentioned above. In addition the PEUFD shows the mass and heat balances of the system concerned.

**Note:** The PEUFD is usually the first schematic document prepared for a certain utility. Only for very large utility systems is a Process Utility Flow Diagram (PUFD) prepared first.

#### 2.1.4 Process Safeguarding Flow Diagram (PSFD)

The PSFD is a document highlighting information on:

• Types and levels of protection offered by the devices installed and their inter relation to demonstrate the plant's safety.



| EQUIPMENT       | V-101<br>HP/LP TEST<br>PRODUCTION<br>SEPARATOR | V-102<br>HP/LP<br>PRODUCTION<br>SEPARATOR | V-103<br>LP<br>PRODUCTION<br>SEPARATOR | V-104<br>CRUDE OIL<br>STABILIZER<br>VESSEL | V-105<br>VENT GAS<br>SCRUBBER | V-106<br>CRUDE OIL<br>DEHYDRATOR<br>(FUTURE) | S - 101<br>SCOUR<br>GASFILTER | S-102/103<br>INLINE<br>STRAINERS |
|-----------------|------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|----------------------------------|
| I.D. x LENGTHMM | 2500 x 7500                                    | 2500 x 7500                               | 2500 x 7500                            | 1800 x 7200                                | 1370 x 4980                   | 3400 x 14600                                 | 273 × 2540                    | 3/4 NOMINAL                      |
| VOLUME m3       | 39.5                                           | 39.5                                      | 39.5                                   | 19.8                                       | 8,0                           | 142                                          | <b>-</b>                      | NIL                              |
| TYPE / MAKE     | B.S & B                                        | B.S & B                                   | B.5 & B                                | KUNZEL                                     | PORTATEST                     | -                                            | 75V-2-fit 324                 | DUPLEX/PLENTY                    |
|                 |                                                |                                           |                                        |                                            |                               | NOTE 7                                       | leern                         |                                  |

| EQUIPMENT      | E - 101<br>CRUDE OIL<br>PREHEATER | E - 102<br>STABILIZED<br>CRUDE OIL<br>COOLER |
|----------------|-----------------------------------|----------------------------------------------|
| DUTYDESIGNIKW  | 4440                              | 1045                                         |
| OUTY (NORM) kW | 1370                              | 1045                                         |
| TYPE / MAKE    | KORPERSHOEK                       | KORPERSHOEK                                  |

| EQUIPMENT     | P-101 A/B<br>STABILIZED<br>CRUDE OIL<br>PUMPS |
|---------------|-----------------------------------------------|
| CAPACITY m3/h | 150                                           |
| HEAD, m LIQ   | 23                                            |
| BEGEMAN       | BS-R-50f -1                                   |

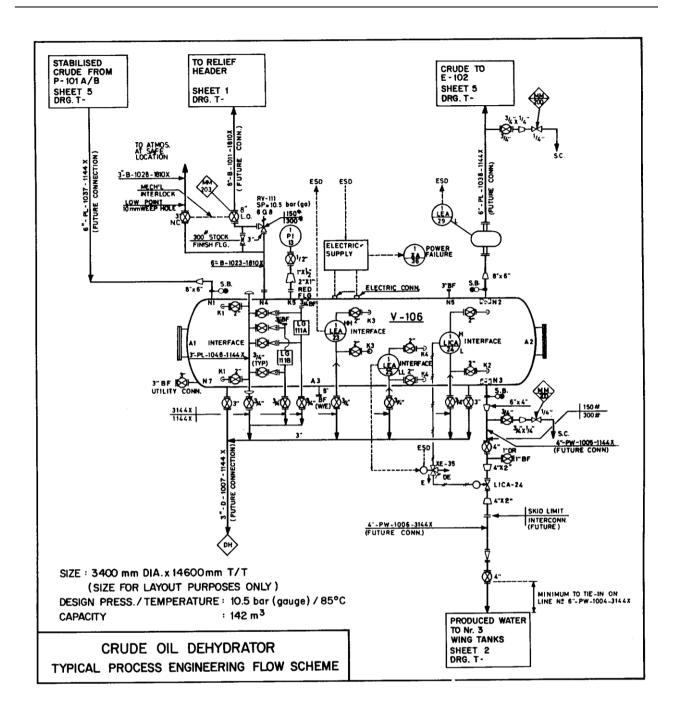
- 7. PRELIMINARY DIMENSIONS FOR LAYOUT ONLY
- 8. DESIGN FLOW RATE

- NOTES : 1. PRE-CHOKE CONDITIONS:
  PRESSURE: 21bar (ga)
  TEMPERATURE: 45°C
  - 2. NORMALLY NO FLOW, DATA GIVEN ARE FOR LINESIZING ONLY, BASED ON 60% FREE WATER AT 3000 m³/d
  - 3. DESIGNED FOR PRODUCTION FLOW (SPARE OPERATION)
- 4. WATER FLOW AT TEST-OPERATION: 60% AT MAX. 950m3/d FOR DESIGN PURPOSE
- 5. INDICATES CONNECTIONS FOR TEST SEPARATOR IN SPARE STABILIZER MODE
- WATER DRAW-OFF TO BE ROUTED TO WING-TANKS. No. 3 SEPARATELY FOR FLUSHING OPERATIONS.

| OPERATION          |       |           |              |        |      |        |          |        |            |          |      |          |
|--------------------|-------|-----------|--------------|--------|------|--------|----------|--------|------------|----------|------|----------|
| STREAM             |       | $\supset$ | ⟨ <b>i</b> ⟩ | (3)    |      | 5      | <b>⑤</b> | 6      | $\Diamond$ | <b>®</b> | <    | 9        |
| PHASE              | VAP   | Lia       | VĂP          | Lia    | VAP  | LIQ    | VAP      | LIQ    | Liū        | LIQ      | VAP  | LIQ      |
| 1/d                | 644.5 | 2904.7    | 6445         | 2904.7 | 674  | 2837 3 | 67.4     | 2837 3 | 1996       | 1976     | 69   | 2830 4   |
| kg/s               | 7.46  | 33.62     | 7.46         | 33 62  | 0.78 | 32.84  | 0.78     | 32.84  | 23.1       | 23.1     | 0.08 | 32 76    |
| D 15/4 OR M W      | 427   | 0 900     | 427          | 0 900  | 437  | 0.900  | 43.7     | 0 900  | 1045       | 1.045    | 441  | 0.900    |
| DENSITY ACT. kg/m3 | 238   | 880       | 23.8         | 880    | 5.86 | 880    | 5.86     | 680    | 1035       | 1035     | 41_  | 880      |
| VISCOSITY mm 2/s   | -     | 16        | -            | 16     |      | 16     |          | 16     | I -        | -        |      | 16       |
| PRESSURE bar (ga)  | 12    | 8         | 12.8         | 128    | 2    | 1.5    | 2.5      | 2.5    | 12 8/245   | 0.05     |      | 1 4      |
| TEMPERATURE °C     | 43    |           | 43           | 43     | 4    |        | 41       | 41     | 43         | 43       | 4    | <u> </u> |
|                    | NOT   | TE 1      |              |        |      |        |          |        | NOTE 2     |          |      |          |

|            | OPERATION          |      |       |      |     |            |              |       |
|------------|--------------------|------|-------|------|-----|------------|--------------|-------|
|            | STREAM             | 10   | (1)   | 12>  | ₹3> | <b>(()</b> | <b>(5)</b> * | 16    |
|            | PHASE              | VAP  | LIQ   | VAP  | VAP | VAP        | VAP          | STEAM |
|            | t/d                | 17.3 | 2820  | 7119 | NNF | 7292       | 17.3         | 57.0  |
|            | kg/s               | 0.20 | 32.64 | 824  | -   | 844        | 0.2          | 0.66  |
| <b>#</b> ) | D 15/4 OR M W      | 462  | 0 900 | 42.8 | 428 | 42.9       | 42.8         | 18    |
| •          | DENSITY ACT. kg/m3 | 2 35 | 875   | 5.6  | 5.8 | 20         | 58           | 41    |
|            | VISCOSITY mm2/s    | -    | 15    | -    | -   | -          |              |       |
|            | PRESSURE bar (go)  | 04   | 0.05  | 2.45 | 245 | 0 2        | 2.45         | 70    |
|            | TEMPERATURE °C     | 60   | 45    | 34   | 34  | 33         | 34           | 170   |

| TEST OPERATION (V-101) |       |      |       |        |  |  |  |  |
|------------------------|-------|------|-------|--------|--|--|--|--|
| 4                      | 9     | ₹1>  | ₹\$   | ♦      |  |  |  |  |
| VAP                    | LIQ   | VAP  | LIQ   | LIQ    |  |  |  |  |
| 1900                   | 858.2 | 190  | 858 2 | 5980   |  |  |  |  |
| 2.20                   | 993   | 2 20 | 9.93  | 692    |  |  |  |  |
| 42.7                   | 0 900 | 42.7 | 0.900 | 1.045  |  |  |  |  |
| 23.8 880               |       | 23.8 | 880   | 1035   |  |  |  |  |
| -                      | 16    | -    | 16    |        |  |  |  |  |
| 128 128 128 128        |       |      |       |        |  |  |  |  |
| 43                     |       | 43   | 43    | 43     |  |  |  |  |
|                        |       |      |       | NOTE 4 |  |  |  |  |


\*) DENSITY 15°C/4°C

MW NOW CALLED RELATIVE MOLECULAR MASS

GAS / OIL SEPARATION
TYPICAL PROCESS FLOW SCHEME

\* NOTE 8

IHRDC



#### 2. 2 Functions of the Individual Schemes

#### 2.2.1 Process Flow Diagram (PFD)

The PFD stating process conditions and physical data for design conditions shall serve as a basis for:

- Advanced ordering of special/long delivery equipment/materials base the
- on the Preliminary Project Planning
- Obtaining a preliminary equipment summary list
- Composing preliminary plant layout
- Preparing preliminary cost estimate (25-40% accuracy)
- Preparation of the MID with data sheets.
- Preliminary risk analysis.

#### 2.2.2 Piping and instrumentation diagram (P&ID)

The P&ID based on the PFD shall contain detailed information (sizing and specification) required for engineering purposes and serve as a basis for:

- Planning schedule
- Final plant layout development together with hazardous areas classification
- Preparing piping, instrument, safety relief valve and level gauge data sheets
- Construction contract specifications
- Developing piping layout drawings
- Bulk material ordering (piping, electrical, instrumentation, civil)
- Remaining equipment ordering
- Final capital cost estimate (engineering, purchasing and construction) 10% accuracy
- HAZOP studies/safety reviews
- Operations review
- Stating special requirements for start-up and shut-down

## 2.2.3 Process Engineering Utility Flow diagram (PEUFD)

The PEUFD shall state characteristics and consumption figures of the particular utility concerned, cooling water, fire water, drinking water, steam, plant air, instrument air, fuel oil/gas, inert gas and similar utilities. When serving different processing plants isolating facilities are to be provided for each process plant.

The basic use of the PEUFD follows the general principles and details as described for the P&ID above.

For an electrical utility system the electrical engineer prepares an electrical key diagram and electrical load summary sheets. In principle these documents serve the same purpose as the PEUFDs.

#### 2.2.4 Process Safeguarding Flow Diagram (PSFD)

The PSFD shall state in detail identification and clarification of the essential detecting devices and their relation to one another, as well as the related emergency shut-down facilities.

The P&ID contains all information required for a PSFD; however, the PSFD highlights protection in case of extreme conditions and measures to be taken to safeguard personnel and environment.

<u>Note:</u> In general these schemes will only be made for complex installations like offshore process platforms. For simple applications the information shown on the P&ID is usually sufficient to highlight safety devices and aspects.

#### 3. INSTRUMENT LINE SYMBOLS.

For instrumentation, there are six line designations that are commonly used. These are shown in Table 1:

Table 1
Instrument Line Symbols

| All lines shall be fine in relation to process piping lines         | <b>5.</b>          |  |  |  |  |  |
|---------------------------------------------------------------------|--------------------|--|--|--|--|--|
| (1) Connection to process, or mechanical link. or instrument supply |                    |  |  |  |  |  |
| (2) Pneumatic signal, or undefined signal for process flow diagrams |                    |  |  |  |  |  |
| (3) Electric signal                                                 |                    |  |  |  |  |  |
| (4) Capillary tubing (filled system)                                | _X _ X _ X         |  |  |  |  |  |
| (5) Hydraulic signal                                                | <del>L L L L</del> |  |  |  |  |  |
| (6) Electromagnetic or sonic signal (without wiring or tubing)      |                    |  |  |  |  |  |

#### **Notes**

• The following abbreviations are suggested to denote the types or power supply. These designation may also be applied for purge fluid supplies.

| AS | Air Supply.       |
|----|-------------------|
| ES | Electric Supply.  |
| GS | Gas Supply.       |
| HS | Hydraulic Supply. |
| NS | Nitrogen Supply.  |
| SS | Steam Supply.     |
| WS | Water Supply.     |
|    |                   |

• The power supply level may be added to the instrument supply line, e.g., AS 100, a100-psig air supply; ES 2413C, a 24- volt direct current supply.

- The pneumatic signal symbol applies to a signal using any gas as the signal medium. If a gas other than air is used, the gas shall be identified by a note on the signal symbol or otherwise
- Electromagnetic phenomena include heat, radio waves, nuclear radiation, and light.

#### 4. INSTRUMENT IDENTIFICATION

Instruments are identified by a system of letters and numbers as shown in Table - 2. The number is generally common to all instrument of the loop of which it is a part.

T RC -2 A

First letter Succeeding Letters Loop Number Suffix

Functional Identification Loop Identification

Instrument Identification or / Tag Number

Table-2

The first two letters identify the function of the instrument and are selected from I Table 3. The succeeding numbers and letters identify the particular loop.

The first letter designates the measured or initiating variable such as temperature, level, flow, etc. Modifying letters such as D for differential, F for ratio, and Q for totalizing may follow the first Letter. For example, a TDI a differential temperature indicator and a FQR is a flow recorder with an integrator in the loop.

The succeeding letters designate one or more functions of the loop such as readout, passive function, or output.

The loop identification method assigns a number to each loop. It may begin with 1, 20 1, or 120 1, which may include a plant area coding system.

Prefix numbers may be assigned to a number to designate plant areas. For example, 6-TRC-2 may indicate an instrument located in Plant Area 6.

If an instrument is common to more than a loop it may be assigned a separate number.

For loops that have more than one instrument with the same functional identification, suffixes should be added to the loop number; e.g., FV-2A FV-213, etc., or TE-25-1, TE-25-2, TE-25-3, etc.

#### Table 3

## **Meaning Of Identification Letters**

This table applies only to the functional identification of instruments Numbers in table refer to notes following.

|       | First le                           | etter                     | Succeeding Letters (3)     |                                                            |                                     |  |  |
|-------|------------------------------------|---------------------------|----------------------------|------------------------------------------------------------|-------------------------------------|--|--|
|       | Measured or                        |                           | Readout or                 |                                                            |                                     |  |  |
|       | Initiating                         | Modifier                  | Passive                    | Output                                                     | Modifier                            |  |  |
|       | Variables (4)                      |                           | Function                   | Function                                                   |                                     |  |  |
| A     | Analysis (5)                       |                           | Alarm                      |                                                            | II                                  |  |  |
| В     | Burner Flame                       |                           | User's Choice (1)          | User's Choice(1)                                           | User's Choice (1)                   |  |  |
| С     | Conductivity (Electrical)          |                           |                            | Control (13)                                               |                                     |  |  |
| D     | Density (Mass) or Specific Gravity | Differential (4)          |                            |                                                            |                                     |  |  |
| Е     | Voltage (EMF)                      |                           | Primary Element            |                                                            |                                     |  |  |
| F     | Flow Rate                          | Ratio<br>(Fraction) (4)   |                            |                                                            |                                     |  |  |
| G     | Gauging (Dimensional)              |                           | Glass (9)                  |                                                            |                                     |  |  |
| Н     | Hand (Manually Initiated)          |                           |                            |                                                            | High (7,15,16)                      |  |  |
| I     | Current (Electrical)               |                           | Indicate (10)              |                                                            |                                     |  |  |
| J     | Power                              | Scan (7)                  |                            |                                                            |                                     |  |  |
| K     | Time or Time-<br>Schedule          |                           |                            | Control Station                                            |                                     |  |  |
| L     | Level                              |                           | Light (Pilot) (11)         |                                                            | Low (7,15,16)                       |  |  |
| M     | Moisture or<br>Humidity            |                           |                            |                                                            | Middle or<br>Intermediate<br>(7,15) |  |  |
| N (1) | User's Choice                      |                           | User's Choice              | User's Choice                                              | User's Choice                       |  |  |
| О     | User's Choice (1)                  |                           | Orifice (Restriction)      |                                                            |                                     |  |  |
| P     | Pressure or Vacuum                 |                           | Point (Test<br>Connection) |                                                            |                                     |  |  |
| Q     | Quantify or Event                  | Integrate<br>Totalize (4) |                            |                                                            |                                     |  |  |
| R     | Radioactivity                      |                           | Record or Print            |                                                            |                                     |  |  |
| S     | Sped or frequency                  | Safety (8)                |                            | Switch (13)                                                |                                     |  |  |
| T     | Temperature                        |                           |                            | Transmit                                                   |                                     |  |  |
| U     | Multivariable (6)                  |                           | Multifunction (12)         | Multifunction (12)                                         | Multifunction (12)                  |  |  |
| V     | Viscosity                          |                           |                            | Valve, damper, or,<br>Louver (13)                          |                                     |  |  |
| W     | Weight or force                    |                           | Well                       |                                                            |                                     |  |  |
| X (2) | Unclassified                       |                           | Unclassified               | Unclassified                                               | Unclassified                        |  |  |
| Y     | User's Choice (1)                  |                           |                            | Relay or Compute (13,14)                                   |                                     |  |  |
| Z     | Position                           |                           |                            | Drive, Actuate or<br>Unclassified Final<br>Control Element |                                     |  |  |

## Notes For Table 3 Meanings Of Identification Letters

- 1- A user's choice letter is intended to cover unlisted meanings that will be used repetitively in a particular project. If used, the letter may have meaning as a first-letter and another meaning as a succeeding letter.
   The meanings need be defined only once in a legend, or otherwise, for that project. For example, the letter N may be defined as module of elasticity as a first-letter and oscilloscope as a succeeding-letter.
- 2- The unclassified letter X, is intended to cover unlisted meanings that will be used only once or to a limited extent. If used, the letter may have any number of meanings as a first letter and any number of meanings as a succeeding letter. Except for its use with distinctive symbols it is expected that the meanings will be defined outside a tagging balloon on flow diagram. For example, XR-2 may be a stress recorder, XR-3 may be a vibration recorder, and XX-4 may be a stress oscilloscope.
- 3- The grammatical form of the succeeding-letter meanings may be modified as required. For example, indicate may be applied as indicator or indicating, transmit as transmitter or transmitting, etc.
- 4- Any first-letter, if used in combination with modifying letter D (differential), F (ratio), or Q (integrate or totalize), or any combination of them, shall be construed to represent a new and separate measured variable, and the combination shall be treated as a first-letter entity.

  Thus, instruments, TDL and TL measures two different variables, differential
  - Thus, instruments TDI and TI measure two different variables, differential-temperature and temperature. These modifying letter shall be used when applicable.
- 5- Fist-letter A for analysis covers all analyses that are not listed in Table 3 and are not covered by a user's choice letter. It is expected that the type of analysis in each instance will be defined outside a tagging balloon on flow diagram.
- 6- Use of first-letter U for multiple in lieu of a combination of first-letter is optional.
- 7- The use of modifying terms high, low, or intermediate, and scan is preferred, but optional.
- 8- The term safety shall apply only to emergency protective primary elements and emergency protective final control elements. Thus, a self-actuated valve that prevents operation of a fluid system at a higher-than-de sired pressure by bleeding fluid from the system shall be a back pressure- type PCV, even if the valve were not intended to be used normally. However, this valve shall be a PSV if it were

IHRDC RD - P- 01 (REV. 0) Page - 22

intended to protect against emergency conditions- i.e., conditions that are hazardous to personnel or equipment, or both, and that are not expected to arise normally.

The designation PSV applies to all valves intended to protect against emergency pressure conditions regardless of whether the valve construction and more of operation place them in the category of the safety valve, or safety-relief valve.

- 9- Passive function glass applies to instruments that provide an uncelebrated direct view of the process.
- 10- The term indicate applies only to the readout of an actual measurement. It does not apply to a scale for manual adjustment of a variable if there is no measurement input to the scale.
- 11- A pilot light that is part of an instrument loop shall be designated by a first1 letter followed by succeeding-letter L. For example, a pilot light that indicates an expired time period may be tagged KL A running light for an electric motor may be tagged either EL, assuming that voltage is the appropriate measured variable, or XL, assuming that the light is actuated by auxiliary electric contacts of the motor starter, or simply L.

The action of a pilot light may be accompanied by an audible signal.

- 12- Use of succeeding-letter U for multifunction instead of a combination of other functional letters is optional.
- 13- A device that connects, disconnects, or transfers one or more circuits may be either a switch, a relay, an on-off control valve, depending on the application.

If the device manipulates a fluid process steam and is not a hand-Actuated On-off block valve, it shall be designated as a control valve. For all applications other than fluid process streams, the device shall be designated as follows:

A switch, if it is actuated by hand.

A switch or an on-off controller if it is automatic and is the first such device in a loop.

The term switch is generally used if the device is used for alarm, pilot light, selection, interlock, or safety. The term controller is generally used if the device is used for normal operating control. A relay, if it is automatic and is not the first such device in a loop, I . e., it is actuated by a switch or an on-off controller.

- 14- It is expected that the functions associated with the use of succeeding-letter Y will be defined outside a balloon on a flow diagram when it is convenient to do so.
- 15- Use of modifying terms high, and middle or intermediate shall correspond to values of the measured variable, not of the signal, unless otherwise noted. For example, a high-level alarm derived from a reverse-acting level transmitter signal shall be an LAH even though the alarm is actuated when the signal falls to a low value. The terms may be used in combinations as appropriate.
- 16-The terms high and low, when applied to positions of valves and other open-close devices, are defined as follows; high denotes that valve is in or approaching the fully open position, and low denotes in or approaching the fully closed position.

#### 5. FUNCTIONAL DESIGNATION OF RELAYS

#### Table 4

The function designations associated with relays may be used as follows individually or in combination (see Table 3, note 14) The use of a box enclosing a symbol is optional; the box is intended to avoid confusion by setting off the symbol from other markings on a diagram.

| Symbol                                 | Funct                                                                                                                                               | tion                     |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| 1. 1.0 or ON-OFF                       | Automatically connect. disconnect. or transfer one or more circuit provided that this is not the first such device in a loop (see Table 3 note 13). |                          |  |
| 2. V or ADD                            | Add or totalize (add ar                                                                                                                             | nd subtract)f            |  |
| $3^{\triangle}$ or DIFF.               | Subtract                                                                                                                                            | ,                        |  |
| 4. ±                                   |                                                                                                                                                     |                          |  |
| +                                      | Bias*                                                                                                                                               |                          |  |
| 5. AVG.                                | Average                                                                                                                                             |                          |  |
| 6.% or 1:3 or 2:1 (typical)            | Gain or attenuate (inpu                                                                                                                             | ut: output)*             |  |
| 7. ⊠                                   | Multiply +                                                                                                                                          |                          |  |
| 8. ÷                                   | Divide +                                                                                                                                            |                          |  |
| 9. √ or SQ. RT.                        | Extract square root                                                                                                                                 |                          |  |
| 10. X <sup>n</sup> or X <sup>1/n</sup> | Raise to power                                                                                                                                      |                          |  |
| 11. f (X)                              | Characterize                                                                                                                                        |                          |  |
| 12. 1:1                                | Boost                                                                                                                                               |                          |  |
| 1.3. > OR Highest                      | High-select. Select highest (higher) measured variable (not                                                                                         |                          |  |
| (MEASURED VARIABLE)                    | signal. unless so noted).                                                                                                                           |                          |  |
| 14. < OR LOWEST                        | Low-select. Select lowest (lower) measured variable (not signal.                                                                                    |                          |  |
| (MEASURED VARIABLE)                    | unless so noted).                                                                                                                                   |                          |  |
| 15. REV.                               | Reverse                                                                                                                                             |                          |  |
| 16.                                    | Convert                                                                                                                                             |                          |  |
| a. E/P or P/I (typical)                | For input/ output sequences of the following:                                                                                                       |                          |  |
|                                        | Designation                                                                                                                                         | Signal                   |  |
|                                        | E                                                                                                                                                   | Voltage                  |  |
|                                        | Н                                                                                                                                                   | Hydraulic                |  |
|                                        | I                                                                                                                                                   | Current (electrical)     |  |
|                                        | O                                                                                                                                                   | electromagnetic or sonic |  |
|                                        | P                                                                                                                                                   | Pneumatic                |  |
|                                        | R                                                                                                                                                   | Resistance (electrical)  |  |
| b. A/D or D/A                          | For input/ output seque                                                                                                                             |                          |  |
|                                        | A                                                                                                                                                   |                          |  |
| 15                                     | D                                                                                                                                                   | Digital                  |  |
| 17.                                    | Integrate (time Integra                                                                                                                             | 1)                       |  |
| 18. D or d/dt                          | Derivative or rate                                                                                                                                  |                          |  |
| 19. 1/D                                | Inverse derivative<br>Unclassified                                                                                                                  |                          |  |
| 20. As required                        | Unclassified                                                                                                                                        |                          |  |
| * Used for single-input relay.         |                                                                                                                                                     |                          |  |
| + Used for relay with two or more      | inputs.                                                                                                                                             |                          |  |
|                                        |                                                                                                                                                     |                          |  |

## 6. SPECIAL ABBREVIATIONS

**Table 5**For abbreviations other than instrument identification letters of Table 3

| Abbreviation | Meaning                                 |  |
|--------------|-----------------------------------------|--|
| A            | Analog signal                           |  |
| ADAPT,       | Adaptive control mode                   |  |
| AS           | Air supply                              |  |
| AM           | Average                                 |  |
| C            | Patch board or matrix board connection  |  |
| D            | Derivative control mode                 |  |
|              | _Digital signal                         |  |
| DIFF.        | Subtract                                |  |
| DIR.         | Direct-acting                           |  |
| E            | Voltage signal                          |  |
| ES           | Electric supply                         |  |
| FC           | Fail closed                             |  |
| F1           | Fail indeterminate                      |  |
| FL           | Fail locked                             |  |
| FO           | Fail open                               |  |
| GS           | Gas supply                              |  |
| H            | Hydraulic signal                        |  |
| HS           | Hydraulic supply                        |  |
| 1            | Current (electrical) signal             |  |
|              | Interlock                               |  |
| M            | Motor actuator                          |  |
| MAX          | Maximizing control mode                 |  |
| MIN,         | Minimizing control mode                 |  |
| NS           | Nitrogen supply                         |  |
| O            | Electromagnetic or sonic signal         |  |
| OPT.         | Optimizing control mode.                |  |
| p            | Pneumatic signal                        |  |
| _            | proportional control mode               |  |
|              | Purge or flushing device                |  |
| R            | Automatic- reset control mode           |  |
|              | Reset of fail-locked device             |  |
|              | Resistance (signal)                     |  |
| REV.         | Reverse acting                          |  |
| RTD          | Resistance (-type) temperature detector |  |
| S            | Solenoid actuator                       |  |
| S.P.         | Set point                               |  |
| SQ.RT.       | Square root                             |  |
| SS           | Steam supply                            |  |
| T            | Trap                                    |  |
| WS           | Water supply                            |  |
| X            | Multiply                                |  |
|              | Unclassified actuator                   |  |

## 7. GENERAL ABBREVIATIONS

| A/D  | Analog to digital              |       | Air to open           |
|------|--------------------------------|-------|-----------------------|
| ΑE   | Analyser element               | _     | Air to close          |
| ΑI   | Analyser indicator             |       | Air failure open      |
| AT   | Analyser transmitter           | AFC   | Air failure close     |
| ASH  | Analyser switch high           | AOV   | Air operated valve    |
| AM   | Analyser alarm high            | AY    | Electrical relay      |
|      |                                |       |                       |
| BE   | Burner flame element           |       | Base sediment & water |
| BAO  | Burner alarm off               |       | Blow out hatch        |
| BFO  | Burner flame off               |       | Building              |
| BAL  | Burner alarm low               | BF    | Blind flange          |
| BSI, | Burner switch low              |       |                       |
| CVA  | Choke valve, adjustable        | CSO   | Car seal open         |
| CVC  | Choke valve control            | CSC   | Car seal closed       |
| CVP  | Choke valve positive           | CD    | Continuos drainer     |
| CCH  | Central control house          | CO    | Clean out             |
| CCP  | Central control panel          | W     | Choke nipple          |
| CC   | Corrosion coupon               | c     | Compressor            |
| CP   | Corrosion probe control        | CTC   | Central telemetry     |
| CI   | Corrosion probe control        | CIC   | Central telemetry     |
| D    | Dryer                          | DE    | Density element       |
| DA   | Direct acting                  | DR    | Density recorder      |
|      | / Differential pressure switch | DK    | Density recorder      |
| DISW | Differential pressure switch   |       |                       |
| E    | Exchanger                      | ESD   | Emergency shutdown    |
| EI   | Voltage indicator              |       |                       |
| FA   | Flow alarm                     | FIC   | Flow indicating       |
| FAH  | Flow alarm high                |       | controller            |
| FAL  | Flow alarm low                 | FYL   | Flow relay low        |
| FC   | Flow controller                | FY    | Flow relay            |
| FCV  | Flow control valve             | FQI   | Flow totaliser        |
| FI   | Flow indicator                 | _     | Flow totaliser data   |
| FE   | Flow element                   |       | logger                |
| FR   | Flow recorder                  | FIS   | Flow indicating       |
| FT   | Flow transmitter               |       | switch                |
| FV   | Flow valve                     | FTPR  | Flow recorder (3)     |
| FS   | Flow switch                    | FrRC  | Flow ratio            |
| FSH  | Flow switch high               | 11110 | controller            |
| FSI, | Flow switch low                | FFY   | Signal multiplier     |
| FRC  | Flow recorder controller       | FOT   | Flat on top           |
| FXR  | Flow data logger               | FA    | Flame arrestor        |
| FC   | Fail close                     | F     | Filter                |
| rc   | Tan Close                      | 1,    | 1 11101               |
| GAI  | Gas analyser indicator         | G     | Generator             |
| GA   | Gas analyser                   |       |                       |
|      | •                              |       |                       |

|             | Hydroge<br>Hydroge<br>Hydroge<br>Instrume               | en alarm high<br>en alarm low<br>en transmitter<br>en suphide<br>ent air supply<br>e level gauge | HE<br>HOA<br>HS<br>HCV | Heater element Hand-Off-Auto Hand switch Hand control valve Current indicator |
|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|
| ILC         |                                                         | e level control                                                                                  |                        |                                                                               |
|             |                                                         | e level control valve                                                                            |                        |                                                                               |
| ILT<br>ILIC |                                                         | e level transmitter<br>e level indicating controller                                             |                        |                                                                               |
|             |                                                         | pneumatic transmitter                                                                            |                        |                                                                               |
|             |                                                         | o switch transducer                                                                              |                        |                                                                               |
|             |                                                         |                                                                                                  |                        |                                                                               |
| KC          | Time co                                                 | ntroller                                                                                         |                        |                                                                               |
|             |                                                         |                                                                                                  |                        |                                                                               |
| LA          | Level                                                   | alarm                                                                                            | LI                     | Level indicator                                                               |
|             | Level                                                   | alarm high                                                                                       | LC                     | Level controller                                                              |
| LAL         |                                                         | alarm low                                                                                        | LG                     | Level gauge                                                                   |
| LAHL        | Level                                                   | alarm high low<br>control valve                                                                  | LR<br>LRC              | Level recorder Level recorder                                                 |
| LC V<br>LV  | Level                                                   | valve                                                                                            | LKC                    | controller                                                                    |
| LS          | Level                                                   | switch                                                                                           | LIC                    | Level indicating                                                              |
|             | Level                                                   | switch high low                                                                                  | Lic                    | controller                                                                    |
|             | Level                                                   | switch high                                                                                      | LT                     | Level transmitter                                                             |
| LSI,        | Level                                                   | switch low                                                                                       | LY                     | Level relay                                                                   |
| LXR         | Level                                                   | data logger                                                                                      | L                      | Launcher                                                                      |
|             |                                                         |                                                                                                  |                        |                                                                               |
| MA          |                                                         | e analyser                                                                                       | MR                     | Meter                                                                         |
| MAA         | 3                                                       |                                                                                                  | M/A                    | Manual-Auto alarm                                                             |
| MCC         |                                                         | ontrol centre                                                                                    | MCVI                   | Motor controlled                                                              |
| MLS<br>MOV  |                                                         | pading station                                                                                   | MW                     | valve indicator                                                               |
| MSS         |                                                         | perated valve<br>selector station                                                                | MX                     | Man-way<br>Mixer                                                              |
| MS          |                                                         | set point station                                                                                | MOL                    | Main line oil                                                                 |
| MO          |                                                         |                                                                                                  | MR                     | Manual reset                                                                  |
| MT          | Manually operated MR Manual reset  Moisture transmitter |                                                                                                  |                        |                                                                               |
| NC          |                                                         |                                                                                                  |                        | Net oil computer                                                              |
| NO          | Normally open                                           |                                                                                                  |                        |                                                                               |
| PA          | Pressure alarm PCV Pressure control                     |                                                                                                  |                        | Pressure control                                                              |
| PAL         | Pressure alarm low valve                                |                                                                                                  |                        | valve                                                                         |
| PAH         | Pressure alarm high PC Pressure controller              |                                                                                                  |                        |                                                                               |
| PI          |                                                         |                                                                                                  |                        | Pressure recorder                                                             |
| PIC         |                                                         | indicating                                                                                       | PRC                    | Pressure recorder                                                             |
|             | controlle                                               | er<br>T                                                                                          |                        | controller                                                                    |

## **Abbreviations (Continued)**

| PSH<br>PSHL<br>PXR<br>PDI<br>PDSI,<br>PDSH<br>PDC<br>PDT<br>PDIC<br>PDIC | Pressure Pressure Pressure switc Pressure data la Pressure differe | valve switch switch low switch high h high low valve logger ential indicator ential switch low ential switch high ential controller ential indicator control ential indicator control ential control valve eurrent transducer electric transducer | PY<br>PYH<br>PYL<br>PSV               |                                                                 | relay<br>relay high<br>relay low<br>safety |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| QC<br>QCA<br>QCI                                                         | QCA Quality control alarm                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                       |                                                                 |                                            |
| RA<br>RD<br>RO<br>RB<br>RTD                                              | Reverse acting Rupture disc Restriction orifice Reduced bore Resistance temperature detector                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | RM<br>RTS<br>RTU                      |                                                                 |                                            |
| SC<br>SS<br>SI<br>ST<br>SR<br>SAH<br>SC<br>S                             | Speed control Speed switch Speed indicate Speed transmi Speed recorde Overspeed ala Sample conne Sump                                                                                                                                                                                           | or<br>tter<br>r<br>rm                                                                                                                                                                                                                             | SDY<br>SD<br>SDP<br>SDV<br>STR<br>SSV |                                                                 | anel<br>alve                               |
| TAH TAL TY TC TE TI TCV TIC TR TRC TSH TSL TT TXR                        | Temperature                                                                                     | alarm high alarm low relay controller element indicator control valve controller recorder recorder controlle switch high switch low transmitter data logger                                                                                       | TW<br>TV<br>TH<br>TA<br>T             | Thermal we<br>Temperature<br>Thief hatch<br>Temperature<br>Tank | e valve                                    |

| UA   | Unit shutdown alarm          | UXR  | Unit alarm data   |
|------|------------------------------|------|-------------------|
| UC   | Utility connection           |      | logger            |
| VE   | vibration sensor             | v    | Vessel            |
| VI   | Vibration indicator          | VB   | Voltage balance   |
| VS   | Vibration switch             | VR   | Voltage regulator |
| VSH  | Vibration switch high        | VPSB | Vacuum pressure   |
| VAH  | Vibration alarm high         |      | safety valve      |
| VT   | Vibration transmitter        |      |                   |
| WHS  | Wellhead start button        | WH   | Wellhead          |
|      |                              |      |                   |
| X    | Electrical                   | XAC  | Analog computer   |
| XAS  | Auto-select relay            | XS   | Beacon light      |
| xC   | Converter                    | XBA  | Beacon alarm      |
| XCV  | Deluge valve                 | XCM  | Corrosion meter   |
| XDI  | Dewpoint indicator           | XCR  | Control relay     |
| XFA  | Flow adder                   | XPA  | Sphere detector   |
| XFrC | Flow ratio controller        | XSS  | Sphere passage    |
| XFC  | Flow computer                |      | switch            |
| XFT  | Flow totaliser               | XSPI | Sphere passage    |
| XPSU | Power supply unit            |      | indicator         |
| XRG  | Ramp generator               | XI   | Running light     |
| XTC  | Temperature converter        | XSRH | Selector relay    |
| XTP  | Ticket printer               |      | high              |
| XVPI | Valve position indicator XXP |      | Pre-alarm to      |
| XVPS | Valve position switch        |      | data logger       |
| XA   | Common alarm                 |      |                   |
|      |                              |      |                   |

## 8. ISA SYMBOLS

## **Instruments**

Symbols according to ITN 02912 and ISA STD VII ED. 1983 with specifications/ Exceptions as follow

|    | Locally mounted instrument                         |
|----|----------------------------------------------------|
| GB | Instrument mounted on Local Gauge Board            |
|    | Instrument mounted on Local Board (or Local Panel) |
|    | Instrument mounted on Main Board (or Main Panel)   |
|    | Instrument mounted on Rear local Board             |
|    | Instrument mounted or Rear Main Board              |
| FG | Flow sight glass.                                  |
|    | Shared display in Control Room.                    |

HRDC RD – P- 01 (REV. 0) Page - 31

#### **PIPELINES**

#### SYMBOLS ACCORDING TO ITN 02912

MAIN LINE

AUXILIARY LINE

TRACED MAIN LINE

TRACED AUXILIARY LINE

LINE PREASSEMBLED ON THE MACHINE

FLEXIBLE HOSE

FINNED PIPE

INSULATED LINE

#### INSTRUMENT LINES

SYMBOLS ACCORDING TO ITN 02912 AND ISA STD VII ED. 1983 PARAG. 5.1

PROCESS PIPING FOR INSTRUMENTATION

PNEUMATIC SIGNAL

ELECTRIC SIGNAL

CAPILLARY TUBING (FILLED SYSTEM)

HYDRAULIC SIGNAL

#### VALVES

SYMBOLS ACCORDING TO ITN 02912 AND ISA VII ED. 1983 WITH SPECIFICATIONS / EXCEPTIONS AS FOLLOWS:

UNCLASSIFIED VALVE NORMALLY OPEN

UNCLASSIFIED VALVE NORMALLY CLOSED

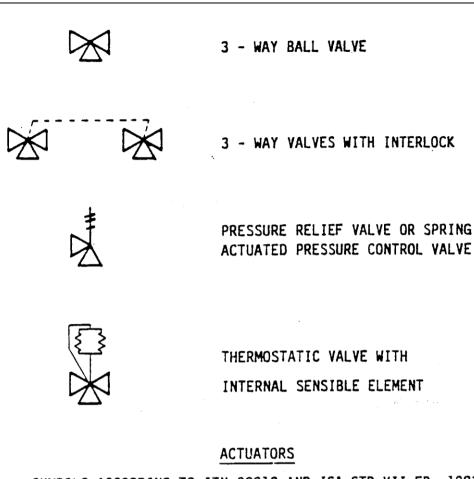
GLOBE VALVE NORMALLY OPEN

GLOBE VALVE NORMALLY CLOSED

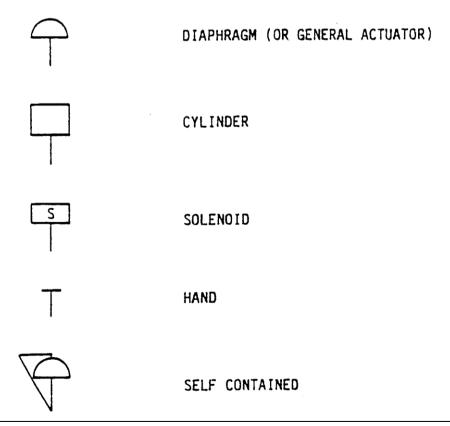
BALL VALVE NORMALLY OPEN

BALL VALVE NORMALLY CLOSED

GATE VALVE NORMALLY OPEN

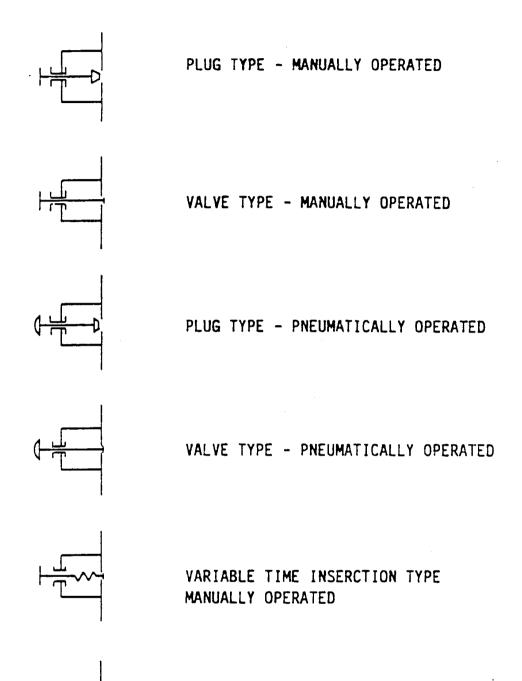

GATE VALVE NORMALLY CLOSED

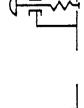
NEEDLE VALVE NORMALLY OPEN


NEEDLE VALVE NORMALLY CLOSED

BUTTERFLY VALVE

CHECK VALVE





SYMBOLS ACCORDING TO ITN 02912 AND ISA STD VII ED. 1983



**IHRDC** 

#### CLEARANCE POCKETS

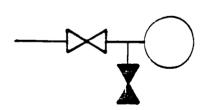




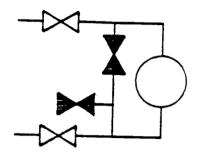
VARIABLE VOLUME - MANUALLY OPERATED

VARIABLE TIME INSERCTION TYPE

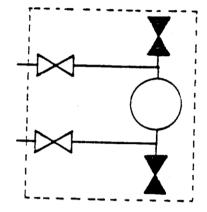
PNEUMATICALLY OPERATED


#### MISCELLANEOUS

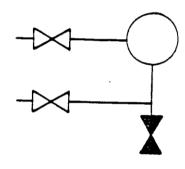
#### SYMBOLS ACCORDING TO ITN 02912


EQUIPMENT LINE BATTERY OR SKID LIMIT TEMPORARY STRAINER Y-TIPE FILTER SPECTACLE BLIND OPEN DRAIN CLOSED DRAIN PLUG CAP REDUCER BREATHER EXPLOSION RELIEF VALVE

#### TYPICAL ARRANGEMENT FOR INSTRUMENT CONNECTIONS


(WHEN MORE INSTRUMENTS ARE CONNECTED TO PROCESS BY A COMMON IMPULSE LINE, AN ADDITIONAL BLOCK VALVE WILL BE INSTALLED ON IT)



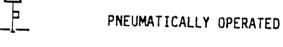

PRESSURE INSTRUMENT



DIFFERENTIAL PRESSURE INSTRUMENT



LEVEL GAUGE




LEVEL SWITCH

#### VALVE UNLOADERS



MANUALLY OPERATED



REVERSE FLOW TYPE - MANUALLY OPERATED



REVERSE FLOW TYPE - PNEUMATICALLY OPERATED

## 5. <u>LIST OF TRANSPERANCIES</u>

# **Transparencies List**

| Trans.   | Description                                    | Page. No. |
|----------|------------------------------------------------|-----------|
| T-1      | Course Objectives.                             | 4         |
| T-2/ T-3 | Typical Process Flow Schemes                   | 14/15     |
| T-4      | Typical P&ID.                                  | 16        |
| T-5      | Instrument Symbols.                            | 31        |
| T-6      | Pipelines Symbols.                             | 32        |
| T-7/ T-8 | Valves Symbols.                                | 33        |
| T-9      | Actuators.                                     | 34        |
| T-10     | Clearance Pockets Symbols.                     | 35        |
| T-11     | Miscellaneous.                                 | 36        |
| T-12     | Typical Arrangement for Instrument Connection. | 36        |

HRDC RD – P- 01 (REV. 0) Page - 38

#### 6. LESSON PLAN

Trainer to follow these instructions:

- To prompt learning, attempt to make the classroom comfortable. E.g., check the temperature, arrange so everyone can see the front, etc.)
- During the introduction, tolk to the participants.
- Gauge their Technical knowledge and ability to follow your language.
- Adjust your speed to match participants.
- Pay individual attention in classroom.
- Allow time for brief breaks at hourly internals.
- Record attendance.
- If students raise questions that don't apply to the course content, suggest that they discussion them with you during a break or after class.
- This course shall be conducted in two working days (12 Hrs). and will be performed in classroom.

# Day-1, Lesson-1

| Contents                                                              | Activities                                                                                                                          |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1. Introduction                                                       |                                                                                                                                     |
| - Introduce yourself.                                                 |                                                                                                                                     |
| - Instructe the class participants.                                   |                                                                                                                                     |
| - Have one or two describe their understanding with PFD's and P&ID's. |                                                                                                                                     |
| - Give Pre-assessment.                                                | Have each student grade their own and pass them to you. Record the grades.                                                          |
| - Distribute student manual.                                          | - Prerequisites.                                                                                                                    |
| - Point out the contents of the manual.                               | <ul> <li>Objectives (Show overhead T1)</li> <li>Point out what is expected of them by reviewing the responsibility list.</li> </ul> |
|                                                                       | - Purpose of the manual.                                                                                                            |
|                                                                       | - Be sure to note the manual is each students copy.                                                                                 |
|                                                                       | - Contents of the manual.                                                                                                           |

# Day-1, Lesson-2

| Contents                                                                                      | Activities                                                       |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <ul><li>2. Types of schemes with definitions.</li><li>- Point out types of schemes.</li></ul> | - Process flow diagram (PFD).                                    |
|                                                                                               | - Piping and instrumentation diagram (P&ID).                     |
|                                                                                               | - Process engineering utility flow diagram (PEUFD).              |
|                                                                                               | - Process safeguarding flow diagram (PSFD).                      |
| - Explain and discuss the importance of PFD and identify the information included.            | - Show overhead T2/ T3 Refer to student manual item 2.1.1.       |
| - Explain and discuss the importance of P & ID and identify the information that included.    | - <b>Show overhead T4.</b> - Refer to student manual item 2.1.2. |
| - Discuss the function of PFD.                                                                | - Refer to students manual item 2.2.1.                           |
| - Discuss the function of P&ID's.                                                             | - Refer to students manual item 2.2.2.                           |
| - Discuss the function of PEUFD.                                                              | - Refer to students manual item 2.2.3.                           |
| - Discuss the function of PSFD.                                                               | - Refer to students manual item 2.2.4.                           |
|                                                                                               |                                                                  |

# Day-1, Lesson-2

| Contents                    | Activities                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------|
| 3. Instrument line symbols. | - Discuss with the students if they are familiar with process and instrument line symbols. |
| 4. Revision.                | - Has a revision for all what have been studied in day-1                                   |

## Day-2, Lesson-1

(Suggested time for this section: Two hours).

| Contents                                    | Activities                                                                             |
|---------------------------------------------|----------------------------------------------------------------------------------------|
| 1. Instrument identification or tag number. | - Have one or two of the students describe what is meant by instrument identification. |
|                                             | - Explain the meaning of identification letters and give examples.                     |
| 2. Functional designation of relays.        | - Refer to AFPC P&ID.                                                                  |

## Day-2, Lesson-2

| Contents                  | Activities                                                               |
|---------------------------|--------------------------------------------------------------------------|
| 3. Special abbreviations. | - Discuss the special abbreviation through table-5 (student manual).     |
| 4. General abbreviations. | - Discuss the general abbreviation through the tables in student manual. |

# Day-2, Lesson –3

| Contents                                        | Activities                                                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 5. ISA symbols.                                 | <ul> <li>Discuss with the students information on ISA symbols.</li> <li>Show overhead T5/ T6/ T7/ T8/ T9/ T10/ T11.</li> </ul> |
| 6.Typical arrangement of instrument connection. | <ul><li>Show overhead T12.</li><li>Refer to typical AFPC P&amp;ID.</li></ul>                                                   |
| 7. Revision.                                    | - Have a revision for all what have been studied in Day-1 and day-2.                                                           |
| 8. Give Post- assessment (Final Test).          | - This assessment covers all points of the course.                                                                             |
|                                                 | - Have the students pass their answer to you and grade them.                                                                   |
|                                                 | - Record grades and compare with the pre-assessment scores.                                                                    |

# 7. PRE AND POST (FINAL) ASSESSMENT AND MODEL ANSWERS

HRDC RD – P- 01 (REV. 0) Page - 45

#### Pre- Course Assessment Reading Drawings PFD'S and P &ID's

|       | ame : Location:<br>o. No.: Score :                                       |  |
|-------|--------------------------------------------------------------------------|--|
| Answe | swer the following questions:                                            |  |
| Q.1 W | What is meant by the following identifications:                          |  |
| ]     | PFD:                                                                     |  |
| ]     | P&ID:                                                                    |  |
| ]     | PEUFD:                                                                   |  |
| ]     | PSFD:                                                                    |  |
|       | Identify the information you can get from the following documents:  PFD: |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
|       |                                                                          |  |
| ]     | P&ID:                                                                    |  |
|       |                                                                          |  |
|       |                                                                          |  |

| ]<br>-<br>- | PEUFD:                                                   |
|-------------|----------------------------------------------------------|
| -<br>]<br>- | PSFD:                                                    |
| -           |                                                          |
| Q.3 Ex      | plain the function of the following schemes.             |
|             | PFD:                                                     |
|             |                                                          |
|             |                                                          |
|             |                                                          |
|             | P&ID:                                                    |
|             |                                                          |
|             |                                                          |
|             |                                                          |
| Q.4 Ide     | entify the line designations (symbols) of the following: |
| a.          | Main process line                                        |
| b.          | Traced main process line                                 |
| c.          | Insulated line                                           |
| d.          | Pneumatic signal                                         |
| e.          | Electrical signal                                        |

| Q.5 | What is meant b | y the following i | instrument identifications | (Tag Number): |
|-----|-----------------|-------------------|----------------------------|---------------|
|     |                 |                   |                            |               |

| 1. FSH:   |
|-----------|
| 2. TRC:   |
| 3. RO:    |
| 4. PIC:   |
| 5. PDIC:  |
| 6. LS:    |
| 7. TT:    |
| 8. LG:    |
| 9. FR:    |
| 10. FI:   |
| 11. TE:   |
| 12. TV:   |
| 13. SDV:  |
| 14. TCV:  |
| 15. PSV:  |
| 16. LAH:  |
| 17. PSD:  |
| 18. PAHH: |
| 19. FO:   |
| 20. ESD:  |
| 21. FC:   |
| 22. AS:   |
| 23. ES:   |
| 24. S.P:  |
| 25. FY:   |

| Q.6 Identify the function of the following designation of relays: |  |  |
|-------------------------------------------------------------------|--|--|
| I/ P:                                                             |  |  |
| A/ D:                                                             |  |  |
|                                                                   |  |  |
| Q.7 Identify the meanings of the following instrument symbols:    |  |  |
| <u>:</u>                                                          |  |  |
| <del></del>                                                       |  |  |
|                                                                   |  |  |

| • | Globe Valve normally open   |
|---|-----------------------------|
| • | Globe valve normally closed |
| • | Gate Valve normally open    |

Q.8 Draw the symbols of the following process valves:

- Gate Valve normally closed -----.
- Ball Valve normally closed -----.
- Check Valve -----.
- Butterfly Valve -----.
- Needle Valve normally open -----.

#### Post- Course Assessment Reading Drawings PFD'S and P &ID's

| Name :                                            |            | on: |
|---------------------------------------------------|------------|-----|
| Answer the following questions:                   | Score      | •   |
| Q.1 What is meant by the following identi         | fications: |     |
| PFD:                                              |            |     |
| P&ID:                                             |            |     |
| PEUFD:                                            |            |     |
| PSFD:                                             |            |     |
| Q.2 Identify the information you can get for PFD: |            | _   |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
|                                                   |            |     |
| P&ID:                                             |            |     |
|                                                   |            |     |
|                                                   |            |     |

| PEUFD:                                                         |
|----------------------------------------------------------------|
|                                                                |
|                                                                |
|                                                                |
| PSFD:                                                          |
|                                                                |
|                                                                |
|                                                                |
| Q.3 Explain the function of the following schemes.             |
| PFD:                                                           |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
| P&ID:                                                          |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
| Q.4 Identify the line designations (symbols) of the following: |
| a. Main process line                                           |
| b. Traced main process line                                    |
| c. Insulated line                                              |
| d. Pneumatic signal                                            |
| e. Electrical signal                                           |

| Q.5 | What is meant b | y the following | instrument identifications | (Tag Number) |
|-----|-----------------|-----------------|----------------------------|--------------|
|     |                 |                 |                            |              |

| 1. FSH:   |
|-----------|
| 2. TRC:   |
| 3. RO:    |
| 4. PIC:   |
| 5. PDIC:  |
| 6. LS:    |
| 7. TT:    |
| 8. LG:    |
| 9. FR:    |
| 10. FI:   |
| 11. TE:   |
| 12. TV:   |
| 13. SDV:  |
| 14. TCV:  |
| 15. PSV:  |
| 16. LAH:  |
| 17. PSD:  |
| 18. PAHH: |
| 19. FO:   |
| 20. ESD:  |
| 21. FC:   |
| 22. AS:   |
| 23. ES:   |
| 24. S.P:  |
| 25. FY:   |

| Q.6 Identify the function of the following designation of relays: |
|-------------------------------------------------------------------|
| I/ P:                                                             |
| A/ D:                                                             |
|                                                                   |
| Q.7 Identify the meanings of the following instrument symbols:    |
| :                                                                 |
|                                                                   |
| :                                                                 |
| · :                                                               |
|                                                                   |
| :                                                                 |
| ····::                                                            |
| :                                                                 |

| • Globe Valve normally open   | _ |
|-------------------------------|---|
| Grove that to morning open    |   |
| • Globe valve normally closed |   |
|                               |   |
| • Gate Valve normally open    |   |

Q.8 Draw the symbols of the following process valves:

- Gate Valve normally closed -----.
- Ball Valve normally closed -----.
- Check Valve -----.
- Butterfly Valve -----.
- Needle Valve normally open -----.

#### Model Answer For pre and Post (Final )Course Assessment

| Name :   | <b>Location:</b> |
|----------|------------------|
| Co. No.: | Score :          |

A-1 PFD: Process Flow Diagram.

P & ID: Piping and Instrumentation Diagram.

PEUFD: Process Engineering Utility Flow Diagram.

PSFD; Process Safeguarding Flow Diagram.

#### A-2 The PFD is a document containing the following information:

- Process conditions and physical data of the main process streams.
- Main process equipment with design data.
- Main Process lines.
- Main controls.
- Mass (material) balance.
- Heat balance (if applicable).
- \* The P&ID is a document containing the detailed design/ engineering data on:
  - Stationary equipment.
  - Fittings.
  - Piping details.
  - Lube oil and sealing systems.
  - Instrument symbols and tag numbers.
  - Control device symbols.
  - Signal transmission lines.
  - Alarms and tips.
  - Shutdown devices.

<sup>\*</sup> The PEUFD is a document containing information on main distribution and/or collection arrangement of each individual utility system, except electrical systems. Detailed design/ engineering data are given as on the P&ID mentioned above. In addition the PEUFD shows the mass and heat balances of the system concerned.

\* The PSFD is a document high lighting information on types and levels of protection offered by the devices installed and their interrelation to demonstrate the plant's safety.

#### A.3 PFD:

- Advanced ordering of special/long delivery equipment/materials base
- on the Preliminary Project Planning
- Obtaining a preliminary equipment summary list
- Composing preliminary plant layout
- Preparing preliminary cost estimate (25-40% accuracy)
- Preparation of the MID with data sheets.
- Preliminary risk analysis.

#### P & ID:

- Planning schedule
- Final plant layout development together with hazardous areas classification
- Preparing piping, instrument, safety relief valve and level gauge data sheets
- Construction contract specifications
- Developing piping layout drawings
- Bulk material ordering (piping, electrical, instrumentation, civil)
- Remaining equipment ordering
- Final capital cost estimate (engineering, purchasing and construction) 10% accuracy
- HAZOP studies/safety reviews
- Operations review

e. Electrical Signal

• Stating special requirements for start-up and shut-down

# A. 4: a. Main Line b. Traced Auxiliary Line c. Installed Line d. Pneumatic Signal

#### A. 5

1. PSH: Flow Switch High.

2. TRC: Temperature Recorder Controller.

3. RO: Restriction Orifice.

4. PIC: Pressure Indicator Controller.

5. PDIC: Pressure Difference Indicator Controller.

6. LS: Level Switch.

7. TT: Temperature Transmitter.

8. LG: Level Glass.9. FR: Flow Recorder.10.FI: Flow Indicator.

11.TE: Temperature Element.12.TV: Temperature Valve.13.SDV: Shut Down Valve.

14.TCV: Temperature Control Valve.

15.PSV: Pressure Safety Valve.16.LAH: Level Alarm High.17.PSD: Process Shut Down.

18.PAHH: Pressure Alarm High High.

19.FO: Fail Open.

20.ESD: Emergency Shut Down.

21.FC: Fail Close. 22.AS: Air Supply. 23.S. P: Set Point. 24.FY: Flow Relay.

#### A-6. I/ P Change electric signal to pneumatic signal

A/D Change analog signal to digital signal.

| 7.                                        |  |
|-------------------------------------------|--|
| :Locally mounted instrument.              |  |
| : Instrument Mounted on Local Board.      |  |
| : Instrument Mounted on Main Board.       |  |
| : Instrument Mounted on Rear Local Board. |  |
| : Instrument Mounted on Rear Main Board.  |  |
| : Shared Display in Control Roam.         |  |

A. 8

1 Globe valve normally open

2 Globe valve normally closed.

Gate valve normally open.

4 Gate Valve normally closed.

5 Ball valve normally closed.

6 Check valve.

7 Butterfly Valve.

8 Needle valve normally open.

# 8. Appendix

IHRDC RD – P- 01 (REV. 0) Page - 61