We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,300 171,000 190M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Innovative Separation Technology
Utilizing Marine Bioresources:
Multifaceted Development of

a Chitosan-Based System Leading
to Environmentally-Friendly
Processes

Keita Kashima, Tomoki Takahashi, Ryo-ichi Nakayama
and Masanao Imai

Abstract

Chitosan, known as a most typical marine biological polymer, has a fruitful
capability of biocompatible gel formation. Attempts of chitosan have been made to
develop it from the multifaceted viewpoint of separation technology. The physico-
chemical properties of chitosan containing a lot of hydroxyl groups and reactive
amino groups help to build the characteristic polymer networks. The deacetylation
degree of chitosan is found as the most influential factor to regulate properties of
chitosan hydrogels. The antibacterial activity of the chitosan membrane is one of its
notable abilities because of its practical application. The chitosan, its derivatives,
and the complex formation with other substances has been used for applications in
filtration and membrane separation processes. Adsorption processes based on
chitosan have been also developed widely. Moreover, complex of chitosan gel helps
to immobilize adsorbent particles. The chitosan membrane immobilizing Prussian-
Blue for cesium ion removal from the aqueous phase is one of the leading cases. To
elaborate the adsorption behavior on the chitosan immobilizing adsorbent, the
isothermal equilibrium and mass transfer characteristics can be discussed. The
adsorption process using chitosan-based membranes in combination with filtration
in a flow process is advantageous compared with the batch process. More advanced
studies of chitosan aerogel and chitosan nanofibers have been proceeded recently,
especially for adapting to water purification and air filtration.

Keywords: chitosan, membrane, deacetylation degree, filtration, adsorption, water
treatment, aerogel, nanofiber

1. Introduction

A separation process, which is often called the “downstream process”, plays a
key role of product manufacturing through chemical or biochemical reaction as well
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as a synthesis process called the “upstream process” [1]. To ensure quality and cost
of final products, the separation process is important and has been developed in line
with the social demands [2]. For chemical and biochemical industries, the separa-
tion process aims to purify objective substances, eliminate undesirable substances,
and fractionate each component from their mixture. As environmental awareness
around the world increases recently, new separation technologies, such as waste-
water treatment [3], advanced desalination [4], air cleaning [5] etc., are in great
demand. In addition, materials used in such separation processes are not only
expected to be efficient, low cost, easy operation, but also required to be
environmentally-friendly.

Chitin and chitosan obtained from crustaceans possess sufficient environmental
adaptability as well as an attractive potential to build various types of functional
media, e.g., membranes [6-10], micro/nanoparticles [11, 12], and nanofibers
[13-16]. Many studies have devoted to develop the novel media adapting separation
processes using chitosan. The separation performance of such chitosan media
should be strongly influenced from chemical properties characterized by
deacetylation degree (DD) at amino groups in the chitosan molecular chain. Nev-
ertheless, it was less mentioned that the DD could steer not only the structure of the
prepared chitosan gels but also the characteristics as separation media.

This chapter describes the preparation and physicochemical properties of novel
chitosan-based media and demonstrates the promising ability of chitosan with focus
on principal studies for environmentally-friendly separation processes. The essential
factors which regulate the performance of separation media prepared from chitosan,
such as DD, molecular weight, and options of cross-linker, are explained. In particu-
lar, the notable impacts of DD on the mass transfer mediated by chitosan membrane,
the mechanical property, and the antibacterial activity, are introduced based on our
previous research [17-19]. Separation media prepared from chitosan are often com-
bined with various adsorbents [20, 21], carbon nanotubes [22, 23], or other functional
materials [24, 25]. In such case, the behavior of mass transfer into the chitosan
hydrogel is complicated to quantitatively evaluate. The present chapter shows the
determination of effective diffusion coefficient of cesium ions in chitosan membrane
immobilizing Prussian Blue particles [20]. Furthermore, the chitosan aerogels with
macro-porous structure is proposed for selective separation for anionic dye from
aqueous phase. Chitosan nanofibers incorporated with polyethylene terephthalate
(PET) non-woven are also covered to describe in an application of air filtration.

2. Physicochemical properties and gelling characteristics

Chitin and chitosan are known as secondary abundant polymers obtained from
the external skeleton of crustaceans such as crab and shrimp [26]. Apart from this,
chitin is also found in and produced from the exoskeleton of insects or the cell walls
of fungi and yeast [6, 27, 28]; however, this contribution is much less than that from
the marine resources. In recent years, chitin and chitosan have gained attention
instead of raw materials of petroleum origin owing to the inevitable depletion of
fossil fuels and the prevention of climate change [29]. This section looks at the
physicochemical properties of chitosan and focuses on the gelling characteristics to
build environmentally-friendly separation media.

2.1 Chemical composition and gelling ability for separation media

Figure 1 shows the chemical conversion between chitin and chitosan. The
chemical composition of chitin can be described as a long-chain polymer,



Innovative Separation Technology Utilizing Marine Bioresources: Multifaceted Development...
DOI: http://dx.doi.org/10.5772/intechopen.95839

OH
NH,
HO (o] o]
Chitosan
NH,
OH n
protonation | N deprotonation
NH;* H
Chitosan HO r—~0 o
dissolved in o
acidic solution -~ [o) HO i O+,
OH : )
acetylation I N deacetylation
Chitin o=(°“° "
NH
HO (o] (o]
0 o HO o4 m
B NH -
0-< n exoskeleton of crustacean
CH,
Figure 1.

Chemical conversion among chitin, chitosan, and furthermore functional separation media.

poly(p-(1 — 4)-N-Acetyl-D-glucosamine). Chitosan, poly(p-(1 — 4)-D-
glucosamine), is obtained mainly by transforming partial deacetylation of chitin in
an alkaline condition, such as using sodium hydroxide aqueous solution. It has been
reported that chitosan and its oligosaccharides not only possess hydrophilicity, non-
toxicity, biodegradability, and biocompatibility, but also possess antimicrobial
activity, antioxidant properties, and an affinity for proteins [7, 26].

Chitosan is insoluble in water at neutral pH or in any organic solvent. Conse-
quently, an acidic aqueous solution, such as acetate buffer solution, is usually
employed to dissolve chitosan, whereby the acid dissociation constant of chitosan is
found as pKa ~ 6.5 [30]. Chitosan can be dissolved in acidic solutions by proton-
ation of amino groups in glucosamine units.

Deprotonating a chitosan solution through an acid-base neutralization leads to
formation of a water-insoluble gel structure without cross-linker due to
intermolecular hydrogen bonding [8]. The salt (e.g. NaCl) coexisting with chitosan
in an acidic solution acts as counter ions and disrupts intramolecular hydrogen
bonding, and then the flexibility of chitosan molecular chains increases [31]. In
addition, pH neutralization influences the formation of a polymeric network [9].
Therefore, the neutralization condition should be optimized. From the convenient
gelling process, chitosan hydrogels have been developed widely as immobilizing
matrices, with enzymes, carbon nanotubes, and electroconductive polymers as
typical examples [10, 32, 33].

2.2 Deacetylation degree

Deacetylation degree (DD) is the most important factor to regulate physico-
chemical properties. The deacetylation degree of chitosan samples was determined
using the colloidal titration method-based experimental conditions in previous
works [34, 35]. We dissolved chitosan powder (0.5 g) in 5% acetic acid solution, and
then increased the total weight of chitosan-acetic acid solution to 100.0 g by adding
acetic acid. We mixed a 1 g sample of this chitosan-acetic acid solution to 30 ml of
deionized water. The titrant was 0.0025 N potassium polyvinyl sulfate (PVS-K),
and the indicator was 1% toluidine blue. The terminal point of titration was clearly
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indicated by the color changing from blue to claret. The deacetylation degree was
calculated using the following equations.

X =fx0.0025x 103 x v x 161 (1)
Y=05x1072-X (2)
DD (%) = X/161 100 (3)

T X/161+ Y203

In these equations, X is the equivalent mass of glucosamine containedinalg
sample of the chitosan-acetic acid solution, v [ml] is the volume of 0.0025 N PVS-K
solution, and f is its concentration factor. Y is the mass of acetyl glucosamine
contained in a 1 g sample, calculated as the difference between the mass of the
sample and the value of X. We evaluated the deacetylation degree of the chitosan
samples as a molar fraction of glucosamine [36].

2.2.1 Control of the deacetylation degree

A chitosan membrane was prepared by the casting method in combination with
N-acetylation reaction [17]. The deacetylation degree (DD) decreased linearly with
increasing added amounts of acetic anhydride (Figure 2). Stoichiometric control of
the deacetylation degree to the desired level was successfully performed. However,
gelation reaction due to excess addition of acetic anhydride inhibited formation of
the chitosan membrane.

The gelation behavior of chitosan, which has various degrees of acetylation (DA)
of amino groups, was investigated to ensure preparation of the designed membrane
structure [37]. The gelation behavior was evaluated by the gelation time and the
quantity of syneresis, and useful information not only for preparing a membrane
but also for preparing an immobilized carrier or a chemical reaction system was
obtained in this work.

2.2.2 Water permeation mechanism of an N-acetylated chitosan membrane

A novel model of the water permeation mechanism in an N-acetyl-chitosan
membrane with a cellular structure was proposed [18]. Although the entire mem-
brane structure has a hydrophilic character, the cellular structure incorporates
junction zones that practically prevent water permeation.
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Figure 2.
Effect of acetic anhydride on N-acetylation of chitosan. Acetic anhydride was added to 2 wt.% chitosan solution
(50 g) [17] with permission from Elsevier.
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Chitosan membranes with a controlled degree of deacetylation (DD) were
prepared using a casting method. Changes in the total water content and the
pressure driven water flux of the membrane were observed with a change in DD
(Figure 3). The membrane properties were analyzed and evaluated using water
permeability measurements, scanning electron microscopy (SEM), X-ray diffrac-
tion (XRD), and differential scanning calorimetry (DSC). SEM observations indi-
cated that the membrane structure was an individual cellular structure and that this
cellular structure grew with decrease in DD (Figure 4). From XRD measurements,
the intensity in the range from 10° to 20° were detected in the chitin (DD = 1.1%)
and the chitosan membranes (71.3% < DD < 92.2%), which indicated that the
crystal structure of the membrane was amorphous regardless of DD. The free water
content (Wy), the freezable bound water (W4g,), and the bound water not able to
freeze (W,,) were evaluated by DSC. The total water content and the sum of free
water content ratios (W + Wy,) decreased with increasing DD whereas W, gradu-
ally increased [18]. That suggests the membrane prepared from lower DD chitosan
formed remarkable cellular structure. The free water was mainly contained inside
of the cellular structure, and resulted in swelling the chitosan membrane (Figure 5).
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Figure 3.
Change in water flux (50 kPa, 298 K, uL = 0.901 mPa s) and total water content of membrane with regulated
DD. (@) water flux, ], and (O) total water content, W, [18] with permission from Elsevier.

5 pm

Figure 4.

SEM images observed at cross-section of the membranes prepaved from different DD chitosan [18] with
permission from Elsevier. (a) and (b) DD 71.3%; (c) and (d) DD 81.8%; (e) and (f) DD 92.2%. The full
length of reference scaling measuve in (a), (c) and (e) indicates 10 pum. The full length of veference scaling
measure in (b), (d) and (f) indicated 5 pm.
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Schematic illustration of the water permeation mechanism in an N-acetyl-chitosan membrane with a cellular
structure. (a) the structure of a high DD chitosan membrane, (b) the structuve of a low DD chitosan
membrane, and (c) the detailed image of a low DD chitosan membrane with its cellular structure and water
channels. The cellular structure illustrated in (b) is composed of immobilized water, the cellular wall, and the
Junction zone. The structure prevents water flux [18] with permission from Elsevier.

Pressure driven water flux was measured using the ultrafiltration apparatus; it
was dependent on the operational pressure, membrane thickness, and the feed
solution viscosity, and obeyed the Hagen-Poiseuille flow. At a higher DD, water
permeation proceeded due to degradation of the cellular structure; the amount of
water in permeation channels was greater than that for lower DD membranes even
though the total water content in the membrane was less. The water flux of the
chitosan membrane was determined by the water content constructing channels
through the membrane and not by the total water content in the membrane.

2.2.3 Antibacterial activity

The antibacterial activity is also explained, because of its long-time practical
application. The antibacterial activity of chitosan membranes was investigated by a
conductimetric assay using a bactometer [19]. The growth of the gram-positive
sample (S. aureus) was more strongly inhibited by chitosan than the gram-negative
sample (E. coli). This inhibitory effect was recognized as a bactericidal effect.
Antibacterial activity was also observed and was dependent on the shape and
specific surface area of the powdered chitosan membrane. The influence of the DD
of the chitosan on inhibiting the growth of S. aureus was investigated by two
methods: incubation using a mannitol salt agar medium and a conductimetric assay
(Figure 6). In both methods, chitosan with a higher DD successfully inhibited
growth of S. aureus. Our findings regarding the dominant role of the DD of chitosan
will be useful for designing lasting, hygienic, membrane-based processes.
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Figure 6

Photographical evidence of antibacterial activity of chitosan membrane immersed in mannitol salt agar culture
involved with degree of deacetylation: (a) DD 92.2%; (b) DD 90.1%; (c) DD 88.0%; (d) DD 83.9%; (¢) DD
79.7%; (f) DD 75.5%; (g) PVC; (h) control [19] with permission from Elsevier.

2.3 Molecular weight

The molecular weight of chitosan also plays a significant role in the properties
of a prepared membrane. It was found that the tensile strength and elongation of
membranes prepared from high molecular weight chitosan were higher than those
prepared from low molecular weight chitosan; however, the permeability of
membranes from high molecular weight chitosan is lower than those prepared
from low molecular weight ones [38]. For convenient determination, the visco-
metric average molecular weight (M [g mol ']) can be calculated from the intrin-
sic viscosity (7 [mL g_l]) using the Mark-Houwink-Sakurada relationship as
follows:

] = KM* (4)

For a case, chitosan is dissolved in an acetate buffer composed of 0.2 M acetic
acid +0.2 M sodium acetate at 25’ C. The parameters in the above relationship were
found as K = 7.9 x 10> [mL/g] and @ = 0.796 [—] [27, 39, 40].

2.4 Cross-linker

Various types of cross-linkers are often employed for the fabrication of suitable
chitosan membranes adapted to separation processes. Glutaraldehyde (GA) is
usually used as cross-linker, because it is extremely reactive in cross-linking
chitosan polymer chains via the Schiff reaction between aldehyde groups and amino
groups to form covalent imine bonds [41-43]; however, GA is also toxic. Genipin,
which is produced from the hydrolysis of geniposide extracted from the fruits of
Gardenia jasminoides Ellis, is attracted as a biocompatible and low biohazardous
cross-linker [44, 45]. Tetraethyl orthosilicate (TEOS) is also used as a covalent
cross-linker, which serves to cross-link with chitosan polymers at their hydroxyl
groups, to immobilize adsorbent particles, and to hydrophobize membrane surfaces
[22, 46-48]. J6zwiak and coworkers widely investigated the effect of the
cross-linker type occurring covalent bond or ionic bond on the chitosan hydrogel
prepared for ionic dye adsorption. In case of covalent agents, it is suggested that
epoxide functional groups prefer to attack hydroxyl groups of chitosan during
cross-linking, and the free amine groups formed are responsible for anionic dye
adsorption [49].
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3. Filtration processes with sieving to molecules

Table 1 summarizes the recent studies of a filtration membrane consisting of
chitosan or chitosan derivatives. In several membranes, the functional materials are
additionally composed to improve the separation ability. The relevant studies are
picked up and described below.

Membrane body Additive functionalizing Cross- Target Expected Ref. Year
material linker substances application
chitosan phosphotungstic acid NA proton, DMFCs * [60] 2016
methanol
chitosan/PSFP MOFs*© NA NacCl, nanofiltration [50] 2017
MgClz,
CaCl,,
Nast4
chitosan MWNT¢ glycerin, NaCl, nanofiltration [51]
PEGDE® MgCl,
MgSO4
carboxymethyl NA NA humic nanofiltration [52]
chitosan/PVDF f acid
chitosan/PTFE® NA TEOS®  methanol, pervaporation [46] 2018
toluene
chitosan/PVA! NA adipic NaCl air filtration  [56]
acid aerosol
phosphorylated NA GAK MgCl, nanofiltration [41]
chitosan/PAN J Na,SO0,4
MB' MO
m AYR™"
chitosan polyester nonwoven sulfuric H,O membrane [61] 2019
fabric acid (vapor) drier
chitosan/PVA® motmorillonite NA Cr(VI) nanofiltration [53
chitosan MWNT¢ NA NaCl, nanofiltration [55] 2020
MgSO4
PVA' microparticles of GAK ethanol pervaporation [42]

chitosan, phosphorylated
chitosan, glycidol-
modified chitosan,

or sulphated

chitosan
phosphorylated graphene oxide GAK DB38 °, PS nanofiltration [43]
chitosan P X0 1
chitosan/PES* MWNT¢ NA MG ® nanofiltration [54]
chitosan NA genipin IPA* pervaporation [44]
chitosan/PVA* Cu-BTC" NA CO, (gas) CO, [57]

separation

carboxymethyl hydrotalcite NA CO;, (gas) CO, [58]
chitosan/ separation
polyamidoamine
chitosan/ cutin glycerol H,O0 packaging [62]
methoxy pectin (vapor) film
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Membrane body Additive functionalizing Cross- Target Expected Ref. Year
material linker substances application
chitosan NA succinic  H,0 packaging [63] 2021
acid (vapor) film

“DMFCs: direct methanol fuel cells

bPSF: polysulfone

‘MOF: metal organic frameworks
MWNT: multi-walled carbon nanotubes
‘PEGDE: polyethyleneglycol diglycidyl ether
fPVDF: polyvinylidene fluoride

EPTFE: polytetrafluoroethylene

"TEOS: tetraethyl orthosilicate

‘PVA: polyvinyl alcohol

JPAN: polyacrylonitrile

*GA: glutaraldehyde

'MB: Methylene Blue (dye)

"MO: Methyl Orange (dye)

"AYR: Alizarine Yellow (dye)

°DB38: Direct Black 38 (dye)

PPS: Ponceau S (dye)

1X0: Xylenol Orange (dye)

"PES: polyethersulfone

‘MG: Malachite Green (dye)

*IPA: isopropanol

“Cu-BTC: copper-1,3,5-benzenetricarboxylic acid

Table 1.
Recent studies of a separation membrane consisting of chitosan.

3.1 Nanofiltration

As a common procedure, many types of chitosan-based membranes are pre-
pared using the casting method. Chitosan membranes prepared by the casting
method usually has a highly compacted gel structure since hydrogen bonding
derived from a lot of hydroxyl groups. The dense membranes are beneficial for the
nanofiltration process separating small substances, for instance, salts, organic acids,
or organic dyes [41, 43, 50-54]. For improving the separation ability, combination
of organic-inorganic polymeric hybrid membrane is an innovative approach.
Metal-organic frameworks (MOFs) were incorporated into the chitosan polymeric
matrix to obtain a positively charged membrane surface for cation removal [50].
Montmorillonite clay, which is dispersed uniformly in a porous matrix, enhances
chromium removal [53]. Also, carbon nanotubes are combined with the chitosan
membrane for improving solution permeability and salt rejection [51, 55].

3.2 Gas separation

The chitosan membranes with dense polymeric structures can also be used for gas
separation processes. It is reported that a chitosan/polyvinyl alcohol (PVA)-blended
membrane exhibited high air filtration with antibacterial activity [56]. Nowadays,
CO, separation technology has caught attention due to the increase in concerns
related to climate change because of greenhouse gases. Chitosan-based membranes
for CO, separation membranes are developed to immobilize active sites, such as
copper-1,3,5-benzenetricarboxylic acid (Cu-BTC) [57] and hydrotalcite [58].

3.3 Hydrophilicity-based process

Due to a high hydrophilicity derived from abundant hydroxyl groups in glucos-
amine units, the polymeric membranes consisting of chitosan are suitable for

9
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separation between water and organic solvents using pervaporation processes

[42, 44, 46, 59]. From its hydrophilicity, the chitosan membrane has also been used
as a separation membrane in direct methanol fuel cells (DMFCs) requiring blocking
of methanol permeation as well as proton conductivity [60]. Regarding the hydro-
philicity of chitosan, removal or blocking of water vapor was tested using a chitosan
membrane for a part of a membrane drier apparatus [61] and packaging membrane
[62, 63]. As a very recent issue, the interest in biodegradable films for packaging has
recently been steadily increasing due to significant concerns on environmental
pollution caused by nonbiodegradable packaging materials [64, 65].

4. Adsorption processes

Adsorption is frequently used in separation processes to recover worthy sub-
stances as well as water treatment due to its advantages, such as easy operation,
high selectivity, and low operational costs [66, 67]. Tables 2 and 3 summarize the
recent studies of adsorption processes, which employed chitosan or chitosan deriv-
atives as either main body of adsorbent or immobilizing media for other adsorbents
(mainly fine particles).

As shown in Figure 1, chitosan has abundant functional groups. Thereby,
chitosan and its derivatives also show adsorbent capabilities with various metal ions
and organic substances depending on the pH and the concentration of ionic sub-
stances [13]. Hence, their adsorption properties are being widely researched [68]. A
large portion of the study employed chitosan and its derivatives for adsorption
processes devoted to remove heavy metal from polluted water [11, 13-16, 28, 69—
71]. Considering organic compounds, chitosan can adsorb anionic dyes due to amine
groups in a chitosan polymer chain [72-74]. It has been reported that nonionic
compounds like naphthalene [22] are also adsorbed on chitosan. For improving the
adsorption ability, fibrous membranes are fabricated to remove ionic substances or
heavy metal ions [12-16, 71]. Fibrous membranes with the adsorption ability are
beneficial due to not only large surface area but also high permeation flux. Chitosan
gel have shown brilliant abilities as immobilizing media to various adsorbent sub-
stances not only to enhance absorption performance but also to enlarge coverage of
adsorbates [20-21, 23, 25, 66, 73, 75-79].

Adsorption processes are liberally categorized into two types which are adsorp-
tion conducted in a batch process and adsorption in combination with filtration in a
flow process.

4.1 Membrane-type absorbents adapting with filtration process

Chitosan have been focused as the media immobilizing various adsorbents since
it is able to form stable gel structure through pH responsible [15, 20, 24, 71, 80].
From the advantages in both the adsorption process with selectivity and filtration
with continuous operation, the membrane-type adsorbents have been recently
developed to adopt the flow process. Table 2 summarizes the studies of membrane-
type adsorbents consisted of chitosan or chitosan derivatives.

4.1.1 Characterization of chitosan membrane immobilizing adsorbent in batch process
For a large portion of such studies, adsorption abilities are evaluated from
isothermal adsorption in batch process to reveal adsorption mechanisms [24, 72]. As

a typical case of an adsorption membrane immobilizing adsorbent particles,
chitosan membrane incorporating Prussian Blue (PB) was developed for cesium

10
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Membrane body ~ Membrane type Additional Cross- Target Ref. Year
adsorbent linker substances
chitosan/PVA*® porous membrane CNTs" TEOS © naphthalene [22] 2015
chitosan/ fibrous membrane NA GA“ Cr(VI) [14] 2016
polyester
chitosan/PET* fibrous membrane NA GA“ Cu(Il), Pb(II), [13] 2017
Cd(II), Cr(VI)
chitosan/cellulose porous membrane NA GA¢ Cu(II) [69] 2018
chitosan affinity membrane multilayered TEOS ¢ artemisinin [47] 2019
molecularly
imprinted
chitosan/ fibrous membrane zirconium MOF NA Pb(II), CA(II), [15]
polyacrylonitrile £ Cr(VI)
chitosan dense membrane PB#$ NA Cs [20]
immobilizing
adsorbents
chitosan NA NA glyoxal RO16", MO! [72]
oxidized chitosan/ fibrous membrane PHMG/ NA Cu(II) [16]
PVA?
chitosan/PVA?* dence membrane ZIF-8 ¥ NA MG [24] 2020
immobilizing
adsorbents
octyl- dense membrane NA TEOS © impurities from [48]
trimethoxysilane extracted
modified chitosan artemisinin
chitosan/PVA ? dence membrane ZIF-8 ¥ NA MG [80]
immobilizing
adsorbents
chitosan/PVA*/  porous membrane NA NA Cu(II) [70]
PEI™
chitosan/PVDF®*  fibrous membrane ZIF-8 ¥ NA BSA°, Cr(VI) [71]
chitosan/ fibrous membrane NA NA Acid Fuchsin [12]
polyamide6 dye

“PVA: poly(vinyl alcohol)
bCNTs: carbon nanotubes
“TEOS: tetraethyl orthosilicate
1GA: glutaraldehyde
’PET: polyethylene terephthalate

fMOF: metal-organic frameworks

2PB: Prussian Blue (dye used as adsorbent)
hRO16: Reactive Orange 16 (dye)

‘MO: Methyl Orange (dye)

JPHMG: poly-hexamethylene guanidine
kZIF-8: zeolitic imidazole framework-8
'MG: Malachite Green ( dye)

"PEI: polyethyleneimine

"PVDF: polyvinylidene fluoride

’BSA: bovine serum albumin

Table 2.
Recent studies of adsorption membrane consisted of chitosan or its derivatives.

removal from the aqueous phase [20]. The maximum adsorption capacity can be
evaluated from the equilibrium adsorption amount of absorbate on absorbent
(ge [mol gfl]) and the equilibrium concentration of absorbate in aqueous phase

11
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Matrix body Additional adsorbent Cross-linker Type of Adsorption Target substances Ref. Year
adsorbent media  process
chitosan NA GA ? EGDE® spherical beads through packed Cu(II), Pb, Zn(II), E. [28] 2016
bed coli, S. aureus
chitosan/PAM ¢ EDTA ¢ MBA ° cylindrical batch Cu(II), Pb(II), Cd(II) [75] 2017
tablets adsorption
Rayon fibers coated NA PBf rayon fibers batch Cs [76]
with chitosan adsorption
chitosan NA CIT& TPP" SSA‘, OAJ, ECH®, GA®, sphericalbeads  batch RB5™ [49]
TTE', EGDE" adsorption
chitosan graphene nanopalates GA*® spherical beads  batch MO", AR1° [66] 2018
adsorption
chitosan PDMAEMA P NA magnetic batch AG25 9, RB19" [73]
spherical beads  adsorption
chitosan CA-CD® EDC *, NHS" particles through packed RB49 " [77]
column
chitosan CB[8] "™ NA powder batch Pb, RO5%, AB257, [84] 2019
adsorption RY145*
chitosan bentnite, cobalt oxide NA powder batch CR A, Cr(VI) [21]
adsorption
N-allylthiourea NA NA powder batch AS(II1)® [74]
chitosan adsorption
chitosan Fe;0, NA magnetic batch AB€ [78]
spherical beads  adsorption
chitosan CNTsP NA particles batch phenol [23]
adsorption
chitosan EDTA %-silane/mGO E GA? magnetic batch Pb(II), Cd(II) [25]
spherical beads  adsorption
oleoyl chitosan NA NA nanoparticles batch Fe(II) [11]

adsorption

suongwonddyy iagsnpu] puv sa134dosJ wa1uways001sqyJ - uvsoqyr) puv uigy))
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Matrix body Additional adsorbent Cross-linker Type of Adsorption Target substances Ref. Year
adsorbent media  process
chitosan DES ¥ (choline chloride + urea or chline NA spherical beads batch MG © [79] 2020
chloride + glycerol) adsorption

“GA: glutaraldehyde

YEGDE: ethylene glycol diglycidylether
‘PAM: polyacrylamide

YEDTA: ethylenediaminetetva-acetic acid
‘MBA: N,N-methylenebis(acrylamide)
IPB: Prussian Blue (. dye used as adsorbent)
£CIT: trisodium citrate

"TPP: tripolyphosphate

‘SSA: sulfosuccinic acid

JOA: oxalic acid

*ECH: epichlorohydrin

'TTE: trimethylpropane triglycidyl ether
"RB5: Reactive Black 5 (dye)

"MO: Methyl Orange (dye)

°AR1: Acid Red 1 (dye)

PPDMAEMA: poly(2-(dimethylamino)ethyl methe>sss;
1A G25: Acid Green 25 (dye)

"RB19: Reactive Blue (dye)

‘CA-CD: citric acid modified f-cyclodextrin
*EDC: 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride
“NHS: N-hydroxysuccinimide

“RB49: Reactive Blue (dye)

“CB[8]: cucurbit [8] uril

*RO5: Reactive Orange 5 (dye)

YAB25: Acidic Blue 25 (dye)

“RY145: Reactive Yellow 145 (dye)

“ACR: Congo Red (dye)

BAS(III): Arsenazo III ( dye)

CAB: Acid Blue ( dye)

PCNTs: carbon nanotubes

EmGO: magnetic graphene oxide

FDES: deep eutectic solvents

SMG: Malachite Green ( dye)

Table 3.

Recent studies of adsorption processes using chitosan or its derivatives (without membrane-type processes).
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(C. [mol g_l]) using the Langmuir adsorption isotherm (Eq. 5). The Langmuir
isotherm explains both monolayer and homogeneous adsorption.

- Qmax I< C€
=711KcC, (5)

Where, Quax and K are the maximum adsorption capacity [mol g~ '] and the
equilibrium adsorption constant [L mol '], respectively. Figure 7a displays the
effect of the mass fraction of immobilized PB in chitosan membrane (MFpg) on the
maximum adsorption capacity for the membrane and for the PB immobilized in
membranes. Immobilization in the chitosan membrane achieved to improve cesium
adsorption without inhibition of the adsorption ability of PB.

The diffusivity of adsorbate molecules in adsorbent media strongly influences
the adsorption rate [81]. The effective diffusion coefficient (D [m?s™']) of cesium
ions in the chitosan membrane immobilizing PB was determined according to the
mass transfer theory. Figure 7b depicts the effect of MFpg on the D¢ of cesium ions
in the initial period of isothermal adsorption. The obtained values of D¢ were lower
than that of the diffusion coefficient in the bulk aqueous phase, which was previ-
ously reported as 2.17 x 10~° m? s ! [82]. The structure of the membrane consisting
of a chitosan polymer chain and PB were observed to suppress the diffusion of
cesium ions into the membrane. The diffusion of cesium ions was inhibited consid-
erably by the immobilized PB, which became dominant in comparison to the mass
transfer resistance by the chitosan polymer chain [20].

4.1.2 Adsorbed separation in flow process

The adsorbed separation in flowing process through the membrane
immobilizing adsorbents is more efficiently than equilibrium adsorption in flask.
Owing to the adsorption ability collaborated with molecular size screening ability,
selective separation is exhibited higher than without adsorbent system. Moreover,
adsorption capability of adsorbents is fully utilized in the adsorption in combination
with filtration in a flow process whereas the batch adsorption is up to equilibrium
by the decrease of solutes concentration in liquid phase [83].
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Figure 7.

Effect of the mass fraction of PB on (a) the maximum adsorption capacity for the chitosan membrane (left axis)
and for the PB immobilized in the membrane (vight axis). (b) the effective diffusion coefficient of cesium ions in
the initial period of isothermal adsorption (25°C). Reprinted from Fujisaki, Kashima, Hagivi, Imai [20] with
permission from WILEY-VCH.
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Li and co-workers have prepared chitosan fibrous membrane and investigated
the dynamic flow adsorption using filtration apparatus for removal of Cr (VI) from
aqueous phase [14]. The study revealed the flow adsorption is advantageous than
static batch adsorption for small concentration of feed Cr (VI). In addition, the flow
rate of feed solution during the flow process directly influenced on the adsorption
behavior. Lower flow rate increases the adsorbed amount of Cr (VI) nearly up to
maximum adsorption capacity since the contact time between adsorbent and
adsorbate increases.

Separation performance is strongly depended on the membrane structure as well
as selection of absorbent. Khajavian and co-workers have demonstrated the removal
of Malachite Green known as a cationic dye via flow process using chitosan/poly
(vinyl alcohol) incorporating metal-organic frameworks (ZIF-8) [80]. The physical
factors including membrane thickness and porous structure generated by pore
generator (polyethylene glycol) inside membrane regulate water flux and dye
rejection. The chitosan membrane adopting flow processes should be optimized for
each system and target substances.

4.2 Other types of absorbent media composed of chitosan

Table 3 shows the recent studies of adsorption processes using chitosan or its
derivatives. Here, the adsorption studies in membrane-type process, which were
already showed in Table 2 are eliminated.

A spherical bead is the basis of the adsorbent media. Chitosan beads can be
obtained easily via droplet method which a small portion of chitosan dissolved in
acid solution is dropped to alkaline solution for neutralization. Bead-type absor-
bents can be applied to packed bed adsorption operated in a flow process [28].

Adsorbents composed of chitosan and its derivatives incorporated with inor-
ganic substances have been developed to enhance adsorption performance [21, 75,
78, 84]. In addition, it is a notable trend that the studies about the removal of
organic dye from aqueous are clearly increasing.

As a very recent approach, Sadiq and coworkers developed chitosan beads
incorporating with deep eutectic solvents (DES) which are prepared from choline
chloride with urea or glycerol for removing organic dye [79]. The DES is paid
attention to possess biocompatibility and low toxicity regardless of similar charac-
teristics with ionic liquids [79, 85, 86].

4.3 Highly porous aerogels

Highly porous media from chitosan gel which have large surface area contribut-
ing high adsorption ability have been developed recently [87-91]. Such highly
porous media are frequently called aerogel. Chitosan aerogels can be prepared via
freeze-drying of chitosan aqueous solution and stabilization using cross-linker, such
as glutaraldehyde (GA). Yi and coworkers reported chitosan aerogel silylated with
methyl trimethoxysilane which has spring-like structure leading to high oil absorp-
tion [89]. Yu and coworkers revealed preparation of chitosan aerogel incorporating
graphene oxide and montmorillonite without cross-linker exhibited efficiently Cr
(VI) adsorption [88].

Chitosan aerogel prepared with GA has highly porous structure showed by a
field emission scanning electron microscopy (FE-SEM) (Figure 8a). The chitosan
aerogel prepared with GA adsorbed anionic dye (Methyl Orange: 327 Da) rapidly
although cationic dye of similar molecular weight (Methylene Blue: 320 Da) is not
removed from their aqueous solutions (Figure 8b). Selective removal of anionic
substrates in high adsorption rate can be achieved by static attraction derived
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Figure 8.
Chitosan aerogel prepaved with glutaraldehyde as a cross-linker. (a) Morphology observed by FE-SEM.
(b) Isothermal adsorption of anionic dye (methyl Orange) and cationic dye (methylene blue) onto chitosan aerogel.

abundant amine and sufficient surface area. Moreover, chitosan aerogel can immo-

bilize various functional particles hence it is expected to develop as new adsorbent
media [88, 90].

5. Chitosan nanofiber

Recently, along with the expanding area of nanotechnologies, the area of
nanofibers has been gaining interest [92]. Nanofibers with diameter in the range
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from several micrometers down to tens of nanometers have useful properties such
as high specific surface area, porosity, as well as biocompatibility [93, 94].
Nanofibers made from chitosan have not yet been fully established as compared
with other nanofibers [95-97]. Chitosan nanofibers have diameter around 10 nm
and amino groups on its surface with positive charge [98]. Accordingly, chitosan
nanofibers possess unique characteristics and advantages that other nanofiber does
not have, that has been expected to be used in various sorts of industrial fields, for
instance, filtrations, recovery of metal ions, adsorption of proteins, drug release,
enzyme carriers, wound healing, cosmetics, and biosensors have been developed
[99-106].

In particular, chitosan nanofiber can be expected as an alternative to air filter
media (Figure 9). The particle collection performance across chitosan nanofiber
media decreased with increase in the amount of chitosan nanofibers on the poly-
ethylene terephthalate (PET) non-woven, as shown in Figure 10. In addition, it was

Figure 9.
SEM photograph of chitosan nanofibers filter media.
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Figure 10.
Comparison of the fractional penetrations of various sorts of test filter media.
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found that the particle collection performance of filter media with high weight of
chitosan nanofibers (Weight of sheet (W;) = 6.0 g/mz) is compatible to commercial
electret filter media.

6. Conclusion

This chapter described the promising development of utilizing chitosan and its
derivatives with the focus on separation processes, and overviewed principal inves-
tigations. Reactive molecular chains of chitosan derived from hydroxyl and amino
groups serve to form an attractive polymeric gel structure. In the filtration process,
dense chitosan membranes separate small molecules of solvents, organic dyes, and
toxic ions. The deacetylation degree is found to be the most notable factor for water
permeation through membranes and its antibacterial ability. The complexity of
chitosan-immobilizing systems with functional materials are found to be available
in water purification processes. In recent years, adsorption combined with filtration
is being developed for various types of water treatment. In this new type process,
both the equilibrium adsorption capability and diffusivity in the absorbent matrix
should be mentioned as describe in Section 4.1. Due to the easy operation, high
selectivity, and low operational costs, adsorption process with chitosan gel is widely
studied. As advanced separation media, highly porous chitosan aerogels and
nanofibers, which possess large surface area that contribute to improved separation
ability, have been developed recently.

Great demands of a novel biocompatible material and environmentally-friendly
processes will continue to increase in future. Innovative separation technology
utilizing chitosan obtained from bioresources is promising. The multifaceted devel-
opment of chitosan-based system will lead to environmentally-friendly processes.
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