
Quantum Optics  
and Laser Experiments

Edited by Sergiy Lyagushyn

Edited by Sergiy Lyagushyn

Photo by fotojog / iStock

The book embraces a wide spectrum of problems falling under the concepts of 
“Quantum optics” and “Laser experiments”. These actively developing branches 

of physics are of great significance both for theoretical understanding of the 
quantum nature of optical phenomena and for practical applications. The book 

includes theoretical contributions devoted to such problems as providing a general 
approach to describe electromagnetic field states with correlation functions of 

different nature, nonclassical properties of some superpositions of field states in 
time-varying media, photon localization, mathematical apparatus that is necessary 

for field state reconstruction on the basis of restricted set of observables, and 
quantum electrodynamics processes in strong fields provided by pulsed laser beams. 

Experimental contributions are presented in chapters about some quantum optics 
processes in photonic crystals - media with spatially modulated dielectric properties - 

and chapters dealing with the formation of cloud of cold atoms in magneto optical trap. 
All chapters provide the necessary basic knowledge of the phenomena under discussion 

and well-explained mathematical calculations.
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Preface 

The book covers a wide spectrum of research problems concerning quantum theory 
of light and experiments using its quantum properties. In reference literature one
can find a number of definitions for the term “quantum optics” – from the sphere of
phenomena revealing the quantum nature of light to the optics section dealing with
statistical properties of emission. Such a contradictory situation reflects a 
complicated way of notion formation. Difficulties of the classical wave concept of
light were the basis for formulating new quantum concepts of light emission, 
propagation, interaction and a new general concept – field concept of matter in the 
first quarter of the 20th century. In this sense we can speak about quantum optics 
whenever optical phenomena are considered from the position of quantum theory. 
That is especially true for the world of phenomena that can be discussed and 
understood only within the framework of quantum picture. The possibilities of
optical experiments have been broadened fantastically by the invention of laser.
Since lasers are quantum optical generators, the domain of experiments with laser
emission seems to be close to quantum optics. At the same time, strong
electromagnetic fields generated by lasers usually manifest their classical properties, 
so some analysis is necessary for including the observed phenomena into the field of
quantum optics. In classical optics, correlation properties of light connected with the 
statistical nature of a real experiment were discussed in terms of the conception 
“coherence”. In the experiments of Hanbury Brown–Twiss with quantum detecting
of light, the process of receiving an electromagnetic emission was considered a usual
random process for the first time. Later on, the whole ideology of probability theory
and stochastic processes was applied to optical phenomena using quantum detectors 
for analyzing the statistical (correlation) properties of electromagnetic fields in
optics. It gives substantiation for quantum optics identification as a statistical theory
of light.

The editor was faced with different interpretations of quantum optics while analyzing 
the chapter proposals. Upon examining them, he reached the conclusion that all 
theoretical and experimental papers were welcome if they contributed to our 
understanding of light as a quantum phenomenon. The accepted approach was to 
speak about quantum optics in a wide sense, i.e. different phenomena demonstrating 
the quantum nature of light together with theoretical constructs applied to them; and 
in the narrow sense, i.e. the statistical theory of light processes and its incarnation with 
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XII Preface

quantum detecting schemes. The present title of the book reflects its real contents and 
breadth of topics. 

The first section titled “Theoretical Fundamentals: Problem of Observables” includes 
four chapters united in the search for adequate mathematical apparatus for quantum 
electromagnetic field state description, taking into account experimental research 
possibilities. The first chapter “Description of Field States with Correlation Functions 
& Measurements in Quantum Optics” by Dr. S. Lyagushyn and Prof. A. Sokolovsky 
incorporates the discussion of basic approaches to field investigation in quantum 
optics. Since measurements with quantum detectors lead to Glauber correlation 
function and the Glauber-Sudarshan P-function is the most consumable tool for 
practical field description, such functions are regarded as an optimal way for field 
diagnostics. Then the Bogolyubov reduced description is constructed for a medium 
consisting of two-level emitters (the Dicke superfluorescence phenomenon) and 
plasma-field system. In such way, the connection is made using simultaneous 
correlation functions of field amplitudes for system evolution description, constructing 
differential equations for them, and coming to a quasiequilibrium statistical operator 
for system constituents at large times, the statistical operator permitting correlation 
function calculation. The necessity of considering binary correlation of field is 
substantiated. Such kinds of electrodynamics in media imply obtaining certain 
material equations. Various forms of correlation description are presented: one-
particle density matrix, Wigner distribution function, and correlation functions of 
Glauber type. Correlation functions in the theory of radiation transfer and 
corresponding equations are considered. A way to field evolution description on the 
basis of a generating functional and Glauber-Sudarshan distribution connected with it 
is proposed. 

The second chapter is “Nonclassical Features of Superpositions of Coherent and 
Squeezed States for Electromagnetic Fields in Time-Varying Media” by Prof. Choi 
Jeong Ryeol. The author is interested in light behavior in media with varying 
characteristic parameters, the situation promising several interesting applications. A 
special method of field quantization based on the invariant operator theory is used. 
Thus deriving quantum solutions for time-dependent Hamiltonians becomes possible. 
The exact wave functions for the system with time-varying parameters can be derived 
in Fock, coherent, and squeezed states. Then superpositions of quantum states are 
considered in the search for nonclassical properties (high-order squeezing, 
subpoissonian photon statistics, and oscillations in the photon-number distribution). 
Such analysis is based on the Wigner distribution function, allowing us to know the 
phase space distribution connected to a simultaneous measurement of position and 
momentum. The Wigner distribution function is regarded as quasiprobability 
distribution function and is widely used in explaining intrinsic quantum features that 
have no classical analogue. 

The third chapter “Photon Localization Revisited” by Prof. P. Saari is devoted to the 
intriguing problem that is traditionally under discussion in literature on quantum 

Preface XI 

optics. Such considerations are urgent for needs of near-field optics, cavity quantum 
electrodynamics, and quantum computing. Some new optical phenomena connected with 
photon localization have drawn scientists’ interest in recent years (see, for example 
Chapter 5). In textbooks the problems of position wave function and measurable 
quantities locality are compared. The author presents a qualified review together with 
his original results. Restrictions on photon localization set by the Paley-Wiener 
theorem and their seeming violation for certain two-dimensional wave packets are 
discussed.

The fourth chapter “Fusion Frames and Dynamics of Open Quantum Systems” by 
Prof. A. Jamiołkowski deals with the problems of quantum tomography, which is a 
procedure for reconstructing properties of a quantum object on the basis of 
experimentally accessible data. The state reconstruction requires identifying the
quorum of observables, providing a possibility to determine expectation values of
physical quantities for which no measuring apparatuses are available. The problem is
discussed in terms of a set of density operators on the Hilbert space of the quantum
system states. The main purpose of this contribution is to discuss properties of some 
Krylov subspaces in a given Hilbert space as natural examples of fusion frames and
their applications in reconstructing open quantum system trajectories. 

The second section of the book under the title “Quantum Phenomena with Laser 
Radiation” includes three chapters. The fifth chapter “Quantum Optics Phenomena in 
Synthetic Opal Photonic Crystals” by Prof. V. Moiseyenko and Dr. M. Dergachov
opens the section. It contains a useful review of optical phenomena in materials with a
space modulation of dielectric constant at distances close to the light wavelengths (so
called photonic band-gap structures or photonic crystals). Gaps in their photonic band
structure represent frequency regions where electromagnetic waves are forbidden, 
irrespective of the spatial propagation directions. Since the photon density of states is
equal to zero inside the band gaps, emission of light sources embedded in these
crystals should be inhibited in these spectral regions. Besides the emission inhibition
effect, a number of new optical phenomena in 3D photonic crystals, interesting from
the applied point of view, are under intensive study now. The main research
directions are the following: effects of light localization, radiation of photonic crystals
filled with organic and inorganic luminophores near the edges of photonic band-gaps, 
radiation of quantum dots in photonic crystal volume, quantum optics phenomena in 
nano-structured materials based on photonic crystals and nonlinear optical substances, 
effects of the radiation field amplification in photonic crystals, increase of solar cells 
efficiency with the use of photonic crystals. Synthetic opal photonic crystals containing
nonlinear optical substances give a good chance to observe quantum optics 
phenomena in spatially nonuniform media where the photon mean free path is close
to the light wavelength. The following quantum optics phenomena are considered: 
luminescence, Raman scattering, and spontaneous parametric down-conversion.
Experimental samples were made of nanodisperse globules of silica dioxide
synthesized by authors. Results of spectral investigations are presented and discussed. 
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The sixth chapter “Resonant Effects of Quantum Electrodynamics in the Pulsed Light 
Field” by Prof. S. Roshchupkin et al. describes the great achievements of this group in 
investigating laser field influence on kinematics and cross-sections of various quantum 
electrodynamics processes of the both first and second orders in the fine structure 
constant, such as resonant spontaneous bremstrahlung of an electron scattered by a 
nucleus, resonant photocreation of electron-positron pair on a nucleus, resonant 
scattering of a lepton by a lepton, and resonant scattering of a photon by an electron in 
the field of a pulsed light wave. This scientific direction has been of great interest for 
many years. Theoretical study of such processes is based on solutions of the Dirac’s 
equation for an electron in the field of a plane electromagnetic wave. Resonant 
character of strong field influence has common features with resonant interactions in 
quantum optics. The wide research activities presented in the chapter have resulted in 
some conclusions to be tested in experiments with accelerators in presence of strong 
fields. 

The seventh chapter “Cold Atoms Experiments: Influence of Laser Intensity Imbalance 
on Cloud Formation” by Dr. I. Olivares and Dr. F. Aguilar can be regarded as an 
example showing the possibilities of modern laser experiments. The authors deal with 
a magneto optical trap with the intent to obtain a cloud of cold atoms. They describe 
an experiment that proved the stability of the cloud and the optical method to vary the 
laser intensity of the pump and trap beams. The influence of laser intensity imbalance 
on cloud formation is investigated and values for the threshold intensity of lasers 
supporting cloud formation are obtained. The technique of saturated absorption 
spectroscopy is described. The theoretical analysis is performed in terms of level 
populations and optical Bloch equations that is conventional for quantum optics. 

The book's “geography” – from Estonia to Chile – shows the wide interest for the 
problems under discussion all over the world. The relative majority of authors from 
Ukraine reflect both the history of monograph formation and great potential of 
Ukrainian physics.  

I am grateful to InTech’s publishing team and especially to Publishing Process 
Manager Ms. Marina Jozipovic for their constructive approach to the book formation, 
understanding  the authors’ problems, and a tolerant attitude for my delays. I would 
like to thank my older colleagues Prof. A. Sokolovsky and Prof. V. Skalozub for their 
support at different stages of the Project. 

Sergiy Lyagushyn, 
Associate Professor of Theoretical Physics 

Department of Oles’ Honchar Dnipropetrovs’k National University 
Ukraine 
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Description of Field States with Correlation 
Functions and Measurements  

in Quantum Optics 
Sergiy Lyagushyn and Alexander Sokolovsky 

Oles’ Honchar Dnipropetrovs'k National University 
Ukraine 

1. Introduction 

Modern physics deals with the consistent quantum concept of electromagnetic field. 
Creation and annihilation operators allow describing pure quantum states of the field as 
excited states of the vacuum one. The scale of its changes obliges to use statistical 
description of the field. Therefore the main object for full description of the field is a 
statistical operator (density matrix). Field evolution is reflected by operator equations. If the 
evolution equations are formulated in terms of field strength operators, their general 
structure coincides with the Maxwell equations. At the same time from the point of view of 
experiments only reduced description of electromagnetic fields is possible. In order to 
analyze certain physical situations and use numerical methods, we have the necessity of 
passing to observable quantities that can be measured in experiments. The problem of 
parameters, which are necessary for non-equilibrium electromagnetic field description, is a 
key one for building the field kinetics whenever it is under discussion. The field kinetics 
embraces a number of physical theories such as electrodynamics of continuous media, 
radiation transfer theory, magnetic hydrodynamics, and quantum optics. In all the cases it is 
necessary to choose physical quantities providing an adequate picture of non-equilibrium 
processes after transfer to averages. It has been shown that the minimal set of parameters to 
be taken into account in evolution equations included binary correlations of the field. The 
corresponding theory can be built in terms of one-particle density matrices, Wigner 
distribution functions, and conventional simultaneous correlation functions of field 
operators. Obviously, the choice depends on traditions and visibility of phenomenon 
description. Some methods can be connected due to relatively simple relations expressing 
their key quantities through one another. The famous Glauber’s analysis (Glauber, 1966) of a 
quantum detector operation had resulted in using correlation functions including positive- 
and negative-frequency parts of field operator amplitudes in the quantum optics field. 
Herewith the most interesting properties of field states are described with non-simultaneous 
correlation functions. Various approaches in theoretical and experimental research into field 
correlations are compared in the present chapter. 

Our starting point is investigation of the Dicke superfluorescence (Dicke, 1954) on the basis 
of the Bogolyubov reduced description method (Akhiezer & Peletminskii, 1981). It paves the 
way to constructing the field correlation functions. We can give a relaxation process picture 
in different orders of the perturbation theory. The set of correlation functions providing a 
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rather full description of the superfluorescence phenomenon obeys the set of differential 
equations. The further research into the correlation properties of the radiated field requires 
establishing the connection with the behavior of Glauber functions of different orders. 

2. Electromagnetic field as an object of quantum statistical theory 

A statistical operator   of electromagnetic field should take into account the whole variety 
of field modes and statistical structure abundance for each of them. Proceeding from the 
calculation convenience provided by using coherent states z  of field modes, the Glauber-
Sudarshan representation for the statistical operator of field (Klauder & Sudarshan, 1968) 
footholds in physics. We refer to the following view of this diagonal representation 

  2 *, | |d zP z z z z    (1) 

where *( , )P z z  is so called P -distribution ( { }kz z  and these variables are numbered by 
polarization   and wave vector k of the field modes). Since coherent states form an 
overcrowded basis in the state space of the mode with the completeness condition 

 21 ˆ| | 1d z z z


  , (2) 

the most general representation for the statistical operator should include not only 
projection operators | |z z , but also more general operator products | |z z . Nevertheless it 
can be shown (Glauber, 1969; Kilin, 2003) that a P-distribution can be obtained as a two-
dimensional Fourier transformation of the generating functional  
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which is a generating one for all normally ordered field moments and can be calculated 
directly with an arbitrary statistical operator  . Here we use standard notation of quantum 
electrodynamics: kc

 , kc  are Bose amplitudes (creation and annihilation operators) of the 
field. 

So we can use the representation (1) in all cases when the Fourier integral for (3) exists. Such 
situation embraces a great variety of states that are interesting for physicists. More general 
cases reveal themselves in singularities of the P-distribution, the representation (1) still 
being prospective for using if the P-distribution can be expressed via generalized functions 
of slow growth, i.e.  -function and its derivatives. The term “ P -distribution” is relatively 
conventional: function *( , )P z z is a real but non-positive one. Nevertheless, the field state 
description with the Glauber-Sudarshan P-distribution remains the most demonstrative and 
consumable. For example, a proposed definition of non-classical states of electromagnetic 
field (Bogolyubov (Jr.) et al., 1988) uses the expression (1) for the statistical operator. A state 
is referred to as non-classical one if one of two requirements is obeyed: either average 
number of photons in a mode is less than 1, or P-function is not positively determined or has 
singularity that is higher than the  -function.  

 
Description of Field States with Correlation Functions and Measurements in Quantum Optics 

 

5 

For a multi-mode field the statistical operator takes the form of a direct product of one-mode 
statistical operators. In Schrödinger picture the Liouville equation  

 ˆ( ) [ , ( )]t
it H t   


 (4) 

describes the evolution of an arbitrary physical system. In the case when electromagnetic 
field interacting with matter is under consideration the problem is reduced to the correct 
account of the matter influence, so some kinds of effective Hamiltonians may appear in an 
analogue of (4) for the statistical operator of field. Evolution description in Heisenberg 
picture seems to be closer to the classical one. We come to operator Maxwell equations for 
field operators with terms corresponding to the matter influence and demanding some kind 
of material equations. 

More graphic way to describing the electromagnetic field, its states, and their evolution is 
using correlation functions of different types, i.e. averaged values of physical quantities 
characterizing the field. The problem of choosing them will be discussed below. 

3. Correlation functions provided by methods of quantum optics  

Conventional classical optics was very restricted in measuring the parameters of fields. All 
conclusions about properties of light including its polarization properties were drawn from 
measurements of light intensity, i.e. from values of some quadratic functions of the field 
(Landau & Lifshitz, 1988).  Naturally, we speak now about transversal waves in vacuum. 
Regarding a wave, close to a monochromatic one, we use slowly varying complex amplitude 

 0nE t for its description: 

  0
i t

n nE E t e  . (5) 

Partially polarized light is characterized with the tensor of polarization 

 
________

*
0 0mn m nJ E E  (6) 

where m and n corresponds to two possible directions of polarization and quick oscillations 
of field are neglected. Averaging is performed over time intervals or (in the case of 
statistically stable situation) in terms of probabilities. A sum of diagonal components of mnJ  
is a real value that is proportional to the field intensity (the energy flux density in the wave 
in our case). Note that the discussion of field correlation functions by Landau in the earlier 
edition of the mentioned book was one of the first in the literature.  

A rather full analysis of the classical measurement picture is given in (Klauder & 
Sudarshan, 1968). It should be mentioned that real field parameters are obtained from 
complex conjugated values in this approach. Transition to the quantum electromagnetic 
theory (Scully & Zubairy, 1997) is connected with substitution of operator structures with 
creation and annihilation operators instead of complex conjugated functions and coming 
to positive- and negative-frequency parts of field operators. Such expressions will be 
shown later on. 
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Physical picture of field parameter registration in the quantum case can be reduced to the 
problem of photon detection. An ideal detector should have response that is independent of 
radiation frequency and be small enough in comparison with the scale of field changes. 
Generally accepted analysis of quantum photon detector (Glauber, 1965; Kilin, 2003) is 
based on using an atom in this role and regarding the operator of field-atom interaction in 
the electric dipole approximation 

  ˆ ˆˆn nV p E x     

with ˆnp  standing for the operator of the electric dipole moment of an atom localized in a 
point with a radius-vector x  (we shall denote in such a simple way a three-dimensional 
spatial vector). The quantum theory derives the total probability w  of atom transition from 
a definite initial ground state |g  to an arbitrary final excited one |e  belonging to the 
continuous spectrum during the time interval from 0t  to t  on the basis of Dirac’s 
nonstationary perturbation theory in the interaction picture (Kilin, 2003)  

      
0 0

1,1 , ; ,
t t

mn mn
mnt t

w d d R G x x           (7) 

where  mnR     is a function of detector sensitivity and  

            1,1
1 1 1 1 1 1 1 1

ˆ ˆ, ; , , ,mn m nG x t x t E x t E x t        (8) 

is field correlation function of the first order (we use the notation ˆ ˆSpA A    for an 
arbitrary operator Â ). Here and further we use standard expressions for operators of the 
vector potential, electric and magnetic field in the Coulomb gauge (Akhiezer A. & 
Berestetsky V., 1969) 
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; (9) 
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,   (10) 
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In these formulas kne  are vectors of the circular polarization ( 0kn ne k  ), /l lk k k , 
k ck  , V  is field volume. Field operators in (8) are the positive- and negative-frequency 

parts of electric field operator in the picture of interaction 

 ( ) ( )ˆ ˆ ˆ( , ) ( , ) ( , )n n nE x t E x t E x t   , (11) 
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The correlation function of detector sensitivity in the suggestion that matrix elements of the 
dipole moment operator between the ground and excited states (so called dipole moment of 
transition) ˆ| |n ne p g p   are independent of a final state takes the form 

      *
2mn m n mnR p p s              


 (12) 

where   stands for the spectral density of states in the continuous spectrum. It is expedient 
to notice that the dependence of matrix elements of electric dipole moment on time in the 
interaction picture results in positive- and negative-frequency parts of field operators 
appearing in calculated averages.  

It follows from (7) and (12) that the rate of counting for the considered model of an ideal 
photon detector makes 

 (1,1)( ) ( , ; , )mn mn
mn

dwp t s G x t x t
dt

   (13) 

The problem of correlation of modes with different polarizations is a complicated one from 
the point of view of quantum measurements. So in most cases theoretical consideration goes 
to the presence of polarization filter. For such case the correlation  (13) takes the form 

        (1,1)( ) ( , ; , ) , ,p t sG x t x t s E x t E x t     ,      ˆ ˆ( , ) ( , )n nE x t E x t e  (14) 

confirming that an ideal detector measures a correlation function of the first order with 
coinciding space-time arguments, i.e. field intensity in a fixed point ( ne  is polarization 
vector depending on the filter). 

Correlation properties of radiation manifest themselves in interference experiments. The 
well-known Young scheme with signals from two apertures interfering can be analyzed   in 
quantum terms. Schematically, we regard (in accordance with Huygens-Fresnel principle) a 
field value in an observation point x at some time t  as a linear combination of field 
parameters in aperture points 1x  and 2x  at proper time moments. Using our previous 
considerations concerning quantum detectors, we put down, for example, for negative-
frequency part of the electric field strength for a fixed field polarization 

            1 1 1 2 2 2
ˆ ˆ ˆ, , ,E x t E x t E x t      (15) 

where 1,2 1,2 /t t s c   and 1,2 1,2s x x  ; 1  and 2  are determined by the system 
geometry. Thus for readings of an ideal detector placed in x  we obtain an expression 
including an interference term 

    ( ) ( )*
1 2 1 1 2 2

ˆ ˆ2Re , ,E x t E x t     .  
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The most important conclusion at this stage is possibility of measuring a correlation function 
of the first order defined by (8) with arbitrary arguments on the basis of the Young scheme 
and one photon detector. The stability of the statistical situation is suggested, thus function 
(8) is transformed into the function of 1 1t t  . So, using polarization filters after apertures, 
we obtain a scheme for measuring a correlation function (8) in the most general form. 

We see that optical measurements with one quantum detector lead to considering a 
correlation function of the first order (8) with necessity. In order to obtain information about 
more complex correlation properties of electromagnetic fields, we should consider a more 
complicated model problem corresponding to the scheme of the famous pioneer 
experiments of Hanbury Brown and Twiss (Hanbury Brown & Twiss, 1956). We suppose 
that two ideal detectors of photons are located in points 1x  and 2x ; optical shutters are 
placed in front of the detectors. The shutters are opened at the time moment 0t  and closed 
at the moments 1t  and 2t . Calculation of probability of photon absorption in each detector 
gives the following result  

          
1 2 1 2

1 1 2 2 1 2 1 2

0 0 0 0

2,22
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w d d d d R R G x x x x                      (16) 

where  mnR     is a sensitivity correlation function determined by (12) and a correlation 
function of the second order 
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is introduced (we use here an abbreviated notation ( , )y x t ) . In the above-considered case 
of a broadband detector the rate of coinciding of photon registrations by two detectors 
makes 

  
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 (18) 

with detector parameters mns  introduced in (12). Therefore the Hanbury Brown–Twiss 
experimental scheme with registering the coincidence of photon absorption by two detectors 
obtaining signals from the divided light beam with a delay line in front of one of detectors 
provides measuring of the correlation function of the second order (17) if each detector 
operates with a certain polarization of the wave.  

Generalizations of the Hanbury Brown–Twiss coincidence scheme for the case of N detectors 
are considered as obvious. The rate of N-fold coincidences is connected with a correlation 
function of Nth order. The analysis of ideal quantum photon detector operation and 
coincidence scheme by Glauber has elucidated the nature of field functions measured via 
using the noted schemes – they are functions built with the set of normally ordered operators 
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in the case of M  detectors. At last, the most general set of normally ordered correlation 
functions introduced by Glauber (Glauber, 1963) looks like 
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Functions (20) equal to zero usually at M N  except very special states with broken 
symmetry (Glauber, 1969). Such function complex provides the most full description of the 
field correlation properties. In this picture taking into account magnetic field amplitudes is 
not necessary since they are simply connected with electric field amplitudes for each mode 
of electromagnetic field. Notice that the electric-dipole mechanism of absorption really 
dominates in experiments. 

Method of photon counting corresponds to the general ideas of statistical approach; in its 
terms a number of quantum optics phenomena is described adequately, so the term 
“quantum optics” is used mainly as “statistical optics”. Traditional terminology concerning 
correlation properties of light is based on the notion “coherence”. In scientific literature 
coherences of the first and second orders are distinguished. It can be substantiated that, for 
example, the visibility of interference fringes in the Young scheme is determined by the 
coherence function of the first order that is a normalized correlation function of the first 
order (Scully & Zubairy, 1997) 
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Similarly to (21), the photon grouping effect is determined by the coherence function of the 
second order  
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Coherences of higher orders (Bogolyubov (Jr.) et al., 1988) can be introduced in the same 
way. We shall refer to Glauber functions (20) as the main means of field description in 
quantum optics. Differences between time arguments play the decisive role in the physical 
interpretation of functions. Taking into account all difficulties and conditions for 
measurements, functions of lower orders are really urgent for experimental work. 

4. Superfluorescence in Dicke model as an important example of collective 
quantum phenomena 

The Dicke model of a system of great quantity of two-level emitters interacting via 
electromagnetic field (Dicke, 1954) is a noticeable case of synergetics in statistical system 
behavior during the relaxation processes. Its research history is very informative. R. Dicke 
came to the conclusion about superradiant state formation proceeding from the analysis of 
symmetry of quantum states of emitters described with quasispin operators. For long time 
equilibrium properties of the Dicke model were under discussion and the possibility of 
phase transition has been established; it was associated with field states in lasers. At the next 
step it has become clear that self-organizing takes place in the dynamical process and 
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The most important conclusion at this stage is possibility of measuring a correlation function 
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not necessary since they are simply connected with electric field amplitudes for each mode 
of electromagnetic field. Notice that the electric-dipole mechanism of absorption really 
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Method of photon counting corresponds to the general ideas of statistical approach; in its 
terms a number of quantum optics phenomena is described adequately, so the term 
“quantum optics” is used mainly as “statistical optics”. Traditional terminology concerning 
correlation properties of light is based on the notion “coherence”. In scientific literature 
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Coherences of higher orders (Bogolyubov (Jr.) et al., 1988) can be introduced in the same 
way. We shall refer to Glauber functions (20) as the main means of field description in 
quantum optics. Differences between time arguments play the decisive role in the physical 
interpretation of functions. Taking into account all difficulties and conditions for 
measurements, functions of lower orders are really urgent for experimental work. 

4. Superfluorescence in Dicke model as an important example of collective 
quantum phenomena 

The Dicke model of a system of great quantity of two-level emitters interacting via 
electromagnetic field (Dicke, 1954) is a noticeable case of synergetics in statistical system 
behavior during the relaxation processes. Its research history is very informative. R. Dicke 
came to the conclusion about superradiant state formation proceeding from the analysis of 
symmetry of quantum states of emitters described with quasispin operators. For long time 
equilibrium properties of the Dicke model were under discussion and the possibility of 
phase transition has been established; it was associated with field states in lasers. At the next 
step it has become clear that self-organizing takes place in the dynamical process and 
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presents some kind of a “dynamical phase transition” (Bogolyubov (Jr.) & Shumovsky, 
1987). N excited atoms come to coordinated behavior without the mechanism of stimulated 
emission and a peak of intensity, proportional to 2N , appeared for modes that were close to 
the resonant one in a direction determined by the geometry of the system (Banfi & Bonifacio, 
1975). So we have a way of coherent generation that is alternative to the laser one. This way 
can be used hypothetically in X- and γ-ray generators opening wide possibilities for physics 
and technology.  

Collective spontaneous emission in the Dicke quasispin model proved to be one of the most 
difficult for experimental observations collective quantum phenomena. That is why taking 
into account real conditions of the experiment is of great importance. Thus great quantity of 
Dicke model generalizations has been considered. There are two factors dependent of 
temperature, namely the own motion of emitters and their interaction with the media. The 
both factors are connected with additional chaotic motion, thus they worsen the prospects of 
self-organizing in a system. The last factor is discussed traditionally as an influence of a 
cavity (resonator) since experiments in superradiance use laser technology (Kadantseva et 
al., 1989). The corresponding theoretical analysis is based on modeling the cavity with a 
system of oscillators (Louisell, 1964). The problem of influence of emitter motion (which is of 
different nature in different media) can be solved with taking into account this motion via a 
nonuniform broadening of the working frequency of emitters (Bogolyubov (Jr.) & 
Shumovsky, 1987). The dispersion of emitter frequencies results in an additional fading in a 
system and elimination of singularities in kinetic coefficients.  

Traditional investigations obtain conclusions about a superfluorescent impulse generation 
on the basis of calculated behavior of the system of two-level emitters. The problem of light 
generation in the Dicke model can be investigated in the framework of the Bogolyubov 
method of eliminating boson variables (Bogolyubov (Jr.) & Shumovsky, 1987) with the 
suggestion of equilibrium state of field with a certain temperature. The correlation 
properties of light remain unknown in such picture. Good results can be obtained by 
applying the Bogolyubov reduced description method (Lyagushyn et al., 2005) to the model. 
The reduced description method eliminates some difficulties in the Dicke model 
investigations and allows both to take into account some additional factors (the orientation 
and motion of emitters, for instance) and to introduce more detailed description of the field. 
A kind of correlation functions to be used in such approach will be of interest for us. 

5. Quantum models for electromagnetic field in media 

The main problem of quantum optics is diagnostics of electromagnetic field ( f -system) 
interacting with a medium ( m -system). In this connection we have considered a number of 
models of medium and medium-field interaction. From various points of view the Dicke 
model of medium consisting of two-level emitters is very useful for such analysis. In the 
Coulomb gauge it is described by the Hamilton operator (Lyagushyn & Sokolovsky, 2010b) 
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Here ânr  is a quasispin operator, a  is emitter’s number,   is polarization index, ˆ ( )nP x  is 
the density of electric dipole moment (polarization) of emitters 
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1

ˆ ˆ( ) 2n an ax a
a N

P x d r x x
 

  . (24) 

We neglect emitter-emitter interaction in (23). Operators of vector potential, transversal 
electric field and magnetic field are expressed via creation and annihilation boson operators 

,k kc c 
 by formulas (9), (10) and commutation relations 
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are valid (we use the notation ˆ ( )t
nE x  for electric field operator (10) in the discussion of the 

field-emitters system).   

It is very convenient to use operator evolution equations for investigating the dynamics of 
the system (23). The Maxwell operator equations have a known form 
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where  total electric field  and  electromagnetic current  
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are introduced. Energy density of emitter medium  
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obeys the evolution equation  
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which describes the Joule heat exchange between the emitters and field. Since the field 
parameters are considered in different spatial points, we obtain the possibility of 
investigating the field correlation properties. 

Also the model of electromagnetic field in plasma medium plays a significant role. The 
Hamilton operator of such system in the Coulomb gauge was taken in the paper 
(Sokolovsky & Stupka, 2004) in the form 
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1975). So we have a way of coherent generation that is alternative to the laser one. This way 
can be used hypothetically in X- and γ-ray generators opening wide possibilities for physics 
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Here ânr  is a quasispin operator, a  is emitter’s number,   is polarization index, ˆ ( )nP x  is 
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Here ˆ
mH is the Hamilton operator of plasma particles with account of Coulomb interaction, 

ˆ ( )nj x is electric current, ˆ ( )an x  is density operator of the a th component of the system.  

6. Reduced description of electromagnetic field in medium. Role of field 
correlations  
Here we discuss kinetics of electromagnetic field in a medium. This theory must connect 
dynamics of the field with dynamics of the medium. The problem can be solved only on the 
basis of the reduced description of a system. One has to choose a set of microscopic 
quantities in such way that their average values describe the system completely. Therefore, 
the Bogolyubov reduced description method (Akhiezer & Peletminskii, 1981) can be a basis 
for the general consideration of the problem. In this approach its starting point is a quantum 
Liouville equation for the statistical operator ( )t of a system including electromagnetic 
field and a medium 

 ˆ( ) [ , ( )]t
it H t   


,                  f m mf
ˆ ˆ ˆ ˆH H H H   . (30) 

The method is based on the functional hypothesis describing a structure of the operator 
( )t  at large times (Bogolyubov, 1946) 

 ( )
0 0( ) ( ( , ), ( , )) ( )

ott t t t               ( 0 ( 0)t   )                  (31) 

where reduced description parameters of the field 0( , )t   and matter 0( , )a t   are defined 
in a natural way 

 ( )
0

ˆ( , ) Sp ( )t t     ,            ( )
0 ˆ( , ) Sp ( )a at t     (32) 

( 0  is a characteristic time determined by an initial state of the system 0  and a used set of 
reduced description parameters). The set of parameters 0( , )t  , 0( , )a t   is determined by 
the possibilities and traditions of experiments as well as by theoretical considerations (for 
simplicity we will drop 0  in the parameters). The development of the problem 
investigation has resulted in finding the main approximation for the statistical operator 

( , )   , so called a quasiequilibrium statistical operator ( ( ), ( ))q Z X   (though it describes 
states which are far from the equilibrium) defined by the relations 

 f m m( , ) ( ) ( )q mZ Z Z Z   ; (33) 

 f
ˆ( ) exp{ ( ) }Z Z Z 


    ,     f fSp ( ) 1Z  ,     f f

ˆSp ( ( ))Z      ; (34) 

 m ˆ( ) exp{ ( ) }a a
a

X X X    ,     m mSp ( ) 1X  ,     m m ˆSp ( ( )) a aX    . (35) 

According to the common idea, electromagnetic field in medium is usually described by 
average values of electric ( , )nE x t  and magnetic ( , )nB x t  fields. So, it seems possible to 
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choose operators ̂  in (32) as ˆ ( )n x : 1̂
ˆ( ) ( )t

n nx E x  ,  2̂
ˆ( ) ( )n nx B x  .  However, in this case 

the statistical operator f ( )Z  does not exist (its exponent contains only linear in Bose 
amplitudes form and f ( )Z  is non-normalized). Therefore, one has to use a wider set of 
parameters ̂  in conformity with the observation made in (Peletminkii et al., 1975).  At 
least, exponent in (34) should contain quadratic terms.  So the simplest quasiequilibrium 
statistical operator of the field can be written as 

 f
, ,

( ) exp{ ( ) ( . .)}kk k k kk k k k k
k k k k k

Z Z Z c c Z c c Z c h c  
    

    
     

     
   

       
 (36) 

Kinetics of the field based on this statistical operator describes states with zero average 
fields at 0kZ  . Quadratic terms in (36) correspond to binary fluctuation of the field 

x x
m n t   

  (or two binary correlations ( )x x
m n t   

 ) as additional reduced description 
parameters 

 ( ) 1 ˆ ˆSp ( ) { ( ), ( )}
2

x x
m n m n tt x x        

     ,      ( ) ( , ) ( , )x x x x
m n t m n t m nx t x t           

        (37) 

In other words, the quasiequilibrium statistical operator (34) corresponds to field 
description by average values of operators  

 ̂ :     ˆ ( )n x ,    1 ˆ ˆ{ ( ), ( )}
2 m nx x     . (38) 

The theory can be significantly simplified in the Peletminskii-Yatsenko model (Akhiezer & 
Peletminskii, 1981) in which 

 f
1 ˆ ˆ ˆ[ , ]H c  


  


 

,                      m
1 ˆ ˆ ˆ[ , ]a aa a

aa
H c  


 

 (39) 

where c , aac   are some coefficients. Operators of electromagnetic field ˆ ( )t
nE x , ˆ ( )nB x  and 

operator ˆ( )x  satisfy these conditions 

 f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH E x ic B x   ,             f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH B x ic E x  ,               (40) 

 m
ˆ ˆ[ , ( )] 0H x  ,  

therefore, relations (39) are valid for all field operators in (38).  

In usual kinetic theory nonequilibrium states of quantum system are described by one-
particle density matrix ( )kkn t

  

 ( )( ) Sp ( )kk k kn t t c c
   

   . (41) 

States, for which parameters  

 ( )( ) Sp ( )kk k kn t t c c
  

   ,          ( )( ) Sp ( )k kx t t c    (42) 
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Here ˆ
mH is the Hamilton operator of plasma particles with account of Coulomb interaction, 

ˆ ( )nj x is electric current, ˆ ( )an x  is density operator of the a th component of the system.  

6. Reduced description of electromagnetic field in medium. Role of field 
correlations  
Here we discuss kinetics of electromagnetic field in a medium. This theory must connect 
dynamics of the field with dynamics of the medium. The problem can be solved only on the 
basis of the reduced description of a system. One has to choose a set of microscopic 
quantities in such way that their average values describe the system completely. Therefore, 
the Bogolyubov reduced description method (Akhiezer & Peletminskii, 1981) can be a basis 
for the general consideration of the problem. In this approach its starting point is a quantum 
Liouville equation for the statistical operator ( )t of a system including electromagnetic 
field and a medium 

 ˆ( ) [ , ( )]t
it H t   


,                  f m mf
ˆ ˆ ˆ ˆH H H H   . (30) 

The method is based on the functional hypothesis describing a structure of the operator 
( )t  at large times (Bogolyubov, 1946) 
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0 0( ) ( ( , ), ( , )) ( )

ott t t t               ( 0 ( 0)t   )                  (31) 

where reduced description parameters of the field 0( , )t   and matter 0( , )a t   are defined 
in a natural way 
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0

ˆ( , ) Sp ( )t t     ,            ( )
0 ˆ( , ) Sp ( )a at t     (32) 

( 0  is a characteristic time determined by an initial state of the system 0  and a used set of 
reduced description parameters). The set of parameters 0( , )t  , 0( , )a t   is determined by 
the possibilities and traditions of experiments as well as by theoretical considerations (for 
simplicity we will drop 0  in the parameters). The development of the problem 
investigation has resulted in finding the main approximation for the statistical operator 

( , )   , so called a quasiequilibrium statistical operator ( ( ), ( ))q Z X   (though it describes 
states which are far from the equilibrium) defined by the relations 

 f m m( , ) ( ) ( )q mZ Z Z Z   ; (33) 

 f
ˆ( ) exp{ ( ) }Z Z Z 


    ,     f fSp ( ) 1Z  ,     f f

ˆSp ( ( ))Z      ; (34) 

 m ˆ( ) exp{ ( ) }a a
a

X X X    ,     m mSp ( ) 1X  ,     m m ˆSp ( ( )) a aX    . (35) 

According to the common idea, electromagnetic field in medium is usually described by 
average values of electric ( , )nE x t  and magnetic ( , )nB x t  fields. So, it seems possible to 
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choose operators ̂  in (32) as ˆ ( )n x : 1̂
ˆ( ) ( )t

n nx E x  ,  2̂
ˆ( ) ( )n nx B x  .  However, in this case 

the statistical operator f ( )Z  does not exist (its exponent contains only linear in Bose 
amplitudes form and f ( )Z  is non-normalized). Therefore, one has to use a wider set of 
parameters ̂  in conformity with the observation made in (Peletminkii et al., 1975).  At 
least, exponent in (34) should contain quadratic terms.  So the simplest quasiequilibrium 
statistical operator of the field can be written as 

 f
, ,

( ) exp{ ( ) ( . .)}kk k k kk k k k k
k k k k k

Z Z Z c c Z c c Z c h c  
    

    
     

     
   

       
 (36) 

Kinetics of the field based on this statistical operator describes states with zero average 
fields at 0kZ  . Quadratic terms in (36) correspond to binary fluctuation of the field 

x x
m n t   

  (or two binary correlations ( )x x
m n t   

 ) as additional reduced description 
parameters 

 ( ) 1 ˆ ˆSp ( ) { ( ), ( )}
2

x x
m n m n tt x x        

     ,      ( ) ( , ) ( , )x x x x
m n t m n t m nx t x t           

        (37) 

In other words, the quasiequilibrium statistical operator (34) corresponds to field 
description by average values of operators  

 ̂ :     ˆ ( )n x ,    1 ˆ ˆ{ ( ), ( )}
2 m nx x     . (38) 

The theory can be significantly simplified in the Peletminskii-Yatsenko model (Akhiezer & 
Peletminskii, 1981) in which 

 f
1 ˆ ˆ ˆ[ , ]H c  


  


 

,                      m
1 ˆ ˆ ˆ[ , ]a aa a

aa
H c  


 

 (39) 

where c , aac   are some coefficients. Operators of electromagnetic field ˆ ( )t
nE x , ˆ ( )nB x  and 

operator ˆ( )x  satisfy these conditions 

 f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH E x ic B x   ,             f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH B x ic E x  ,               (40) 

 m
ˆ ˆ[ , ( )] 0H x  ,  

therefore, relations (39) are valid for all field operators in (38).  

In usual kinetic theory nonequilibrium states of quantum system are described by one-
particle density matrix ( )kkn t

  

 ( )( ) Sp ( )kk k kn t t c c
   

   . (41) 

States, for which parameters  

 ( )( ) Sp ( )kk k kn t t c c
  

   ,          ( )( ) Sp ( )k kx t t c    (42) 
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are not equal to zero, are considered as states with a broken symmetry. Therefore, ( )kkn t
  is 

called an anomalous one-particle density matrix. However, average electromagnetic fields 
are expressed through ( )kx t .  Instead of density matrices Wigner distribution functions are 
widely used (de Groot, S. & Suttorp L., 1972) 

 ( ) ˆf ( , ) Sp ( )f ( )k kx t t x   ,          ( ) ˆf ( , ) Sp ( )f ( )k kx t t x     (43) 

where 

 , /2 , /2f̂ ( ) iqx
k k q k q

q
x c c e

 
 

   ,             , /2 , /2f̂ ( ) iqx
k k q k q

q
x c c e

 


    . (44) 

Simple relations between average field, correlations of the field, density matrices and 
Wigner distribution functions can be established by the formula 

 1 2 3* ˆ ˆ(8 ) { ( ) / ( )}t ikx
k k kn n nc V e d x Z x k iE x e     ,     ˆ ˆ( ) rot ( )n nZ x B x .    (45) 

Further on kinetics of electromagnetic field in medium consisting of two-level emitters with 
the Hamilton operator (23) is considered in more detail. According to the general theory 
(Akhiezer & Peletminskii, 1981), an integral equation for the statistical operator ( , )    
introduced by the functional hypothesis (31) can be obtained (Lyagushyn & Sokolovsky, 
2010b) 

  0
0 ˆ

f m mf
ˆ( , ) ( ( )) ( ( )) [ , , ]

i H iZ X d e H


          


  
 
  (46) 

 0
ˆ

3( , ) ( , )( , ) ( , , )
( ) ic

i H

e
M d x M x e

x 




  

        
  





   
 

     

where functions ( , )M   , ( , )M    are defined as right-hand sides of evolution equations 
for the reduced description parameters 

 ( ) ( ) ( ( ), ( ))t t i c t M t t   


    


   ,                         ( , ) ( , ( ), ( ))t x t M x t t    ; (47) 

 mf
ˆ ˆ( , ) Sp ( , )[ , ]iM H      


,                     mf

ˆ ˆ( , , ) Sp ( , )[ , ( )]iM x H x     


  

(see notations in (39)). Quasiequilibrium statistical operator of the emitters 

 3
m ˆ( ) ( ) ( )exp{ ( ) ( ) ( )}dX w d w X d xX x x       (48) 

describes a state of local equilibrium of the emitter medium with temperature 1( ) ( )T x X x   
in the considered case. Function ( )dw d  describes distribution of orientations of emitter 
dipole moments (Lyagushyn et al., 2008). Further it is assumed for simplicity that 
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correlations of dipole orientations are absent and their distribution is isotropic one.  
Function ( )w   is defined by formulas 

 2 2
0

( ) ( )
( )

w c
 

  


 
,                   

0

( ) 1d w 


       ( 1  ) (49) 

and phenomenologically accounts for non-resonant interaction between the field and 
emitters.  

The obtained integral equation is solved in perturbation theory in emitter-field interaction 
mf

ˆ ~H   ( 1  ). Important convenience is provided by the structure of f ( ( ))Z   allowing 
to use the Wick–-Bloch–-de Dominicis theorem. However, one needs this theorem for 
calculating contributions of the third and higher orders of the perturbation theory to the 
statistical operator ( , )   . Averages that are linear and bilinear in the field can be 
calculated on the basis of relations: 

 f f
ˆSp ( ( )) ( ) ( )n nZ x x     , (50) 

 f f
1ˆ ˆ ˆ ˆSp ( ( )) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nZ x x x x x x                

        .  

Moreover, according to the general theory of the Peletminskii-Yatsenko model (Akhiezer & 
Peletminskii, 1981) the same formulas are valid for calculations with the statistical operator 

( , )   : 

 ˆSp ( , ) ( ) ( )n nx x      , (51) 

 1ˆ ˆ ˆ ˆSp ( , ) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nx x x x x x                 

        .  

Averages with a quasiequilibrium statistical operator of the medium are calculated by the 
method developed for spin systems (Lyagushyn et al., 2005). It gives, for example, an 
expression for energy density of emitter medium via its temperature ( )T x  and density ( )n x  

 ( ) ( )th
2 2 ( )

x n x
T x

   
           (

1
( ) ( )a

a N
n x x x

 
  ). (52) 

Integral equation (46) solution gives evolution equations for all parameters of the reduced 
description. Average electric and magnetic fields satisfy the Maxwell equations 

 ( , ) rot ( , ) 4 ( , ( ), ( ))t n n nE x t c B x t J x t t     ,           ( , ) rot ( , )t n nB x t c E x t    (53) 

where average current density in terms of the total electric field is given by the relation 

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nJ x dx x x x E x c dx x x x Z x O                  (54) 

 2( , ) ( , ) ( )t
n nE x t E x t O   ,              ( , ) rot ( , )n nZ x t B x t   



 
Quantum Optics and Laser Experiments 

 

14

are not equal to zero, are considered as states with a broken symmetry. Therefore, ( )kkn t
  is 

called an anomalous one-particle density matrix. However, average electromagnetic fields 
are expressed through ( )kx t .  Instead of density matrices Wigner distribution functions are 
widely used (de Groot, S. & Suttorp L., 1972) 

 ( ) ˆf ( , ) Sp ( )f ( )k kx t t x   ,          ( ) ˆf ( , ) Sp ( )f ( )k kx t t x     (43) 

where 

 , /2 , /2f̂ ( ) iqx
k k q k q

q
x c c e

 
 

   ,             , /2 , /2f̂ ( ) iqx
k k q k q

q
x c c e

 


    . (44) 

Simple relations between average field, correlations of the field, density matrices and 
Wigner distribution functions can be established by the formula 

 1 2 3* ˆ ˆ(8 ) { ( ) / ( )}t ikx
k k kn n nc V e d x Z x k iE x e     ,     ˆ ˆ( ) rot ( )n nZ x B x .    (45) 

Further on kinetics of electromagnetic field in medium consisting of two-level emitters with 
the Hamilton operator (23) is considered in more detail. According to the general theory 
(Akhiezer & Peletminskii, 1981), an integral equation for the statistical operator ( , )    
introduced by the functional hypothesis (31) can be obtained (Lyagushyn & Sokolovsky, 
2010b) 

  0
0 ˆ

f m mf
ˆ( , ) ( ( )) ( ( )) [ , , ]

i H iZ X d e H


          


  
 
  (46) 

 0
ˆ

3( , ) ( , )( , ) ( , , )
( ) ic

i H

e
M d x M x e

x 



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        
  





   
 

     

where functions ( , )M   , ( , )M    are defined as right-hand sides of evolution equations 
for the reduced description parameters 

 ( ) ( ) ( ( ), ( ))t t i c t M t t   


    


   ,                         ( , ) ( , ( ), ( ))t x t M x t t    ; (47) 

 mf
ˆ ˆ( , ) Sp ( , )[ , ]iM H      


,                     mf

ˆ ˆ( , , ) Sp ( , )[ , ( )]iM x H x     


  

(see notations in (39)). Quasiequilibrium statistical operator of the emitters 

 3
m ˆ( ) ( ) ( )exp{ ( ) ( ) ( )}dX w d w X d xX x x       (48) 

describes a state of local equilibrium of the emitter medium with temperature 1( ) ( )T x X x   
in the considered case. Function ( )dw d  describes distribution of orientations of emitter 
dipole moments (Lyagushyn et al., 2008). Further it is assumed for simplicity that 
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correlations of dipole orientations are absent and their distribution is isotropic one.  
Function ( )w   is defined by formulas 

 2 2
0

( ) ( )
( )

w c
 

  


 
,                   

0

( ) 1d w 


       ( 1  ) (49) 

and phenomenologically accounts for non-resonant interaction between the field and 
emitters.  

The obtained integral equation is solved in perturbation theory in emitter-field interaction 
mf

ˆ ~H   ( 1  ). Important convenience is provided by the structure of f ( ( ))Z   allowing 
to use the Wick–-Bloch–-de Dominicis theorem. However, one needs this theorem for 
calculating contributions of the third and higher orders of the perturbation theory to the 
statistical operator ( , )   . Averages that are linear and bilinear in the field can be 
calculated on the basis of relations: 

 f f
ˆSp ( ( )) ( ) ( )n nZ x x     , (50) 

 f f
1ˆ ˆ ˆ ˆSp ( ( )) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nZ x x x x x x                

        .  

Moreover, according to the general theory of the Peletminskii-Yatsenko model (Akhiezer & 
Peletminskii, 1981) the same formulas are valid for calculations with the statistical operator 

( , )   : 

 ˆSp ( , ) ( ) ( )n nx x      , (51) 

 1ˆ ˆ ˆ ˆSp ( , ) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nx x x x x x                 

        .  

Averages with a quasiequilibrium statistical operator of the medium are calculated by the 
method developed for spin systems (Lyagushyn et al., 2005). It gives, for example, an 
expression for energy density of emitter medium via its temperature ( )T x  and density ( )n x  

 ( ) ( )th
2 2 ( )

x n x
T x

   
           (

1
( ) ( )a

a N
n x x x

 
  ). (52) 

Integral equation (46) solution gives evolution equations for all parameters of the reduced 
description. Average electric and magnetic fields satisfy the Maxwell equations 

 ( , ) rot ( , ) 4 ( , ( ), ( ))t n n nE x t c B x t J x t t     ,           ( , ) rot ( , )t n nB x t c E x t    (53) 

where average current density in terms of the total electric field is given by the relation 

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nJ x dx x x x E x c dx x x x Z x O                  (54) 

 2( , ) ( , ) ( )t
n nE x t E x t O   ,              ( , ) rot ( , )n nZ x t B x t   
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(for all parameters ˆ( , ) Sp ( , )A A     ). This material equation takes into account spatial 
dispersion and Fourier transformed functions ( , )x  , ( , )x   give conductivity ( , )k   and 
magnetic susceptibility ( , )k   of the emitter medium 

 
2

2
2( , ) ( )
3 k

dk w
    


,     
2

2 2 2
0

4 1( , ) ( )P
3 k

dk d w
   

 



 


. (55) 

Average density of the dipole moment of emitters is given by expression  

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nP x dx x x x E x c dx x x x Z x O                   (56) 

where 

 ( , ) ( , )k k    ,               2( , ) ( , ) kk k      .  (57) 

Evolution equation for energy density ( , )x t  of emitters has the form  

 ( , ) ( , ( ), ( ))t x t L x t t    , (58) 

 ( , , ) ( , ( )){( ) ( ) ( )}x x
n n n nL x dx x x x E E E x E x            

 3( , ( )){( ) ( ) ( )} ( ( )) ( )x x
n n n nc dx x x x E B E x B x R n x O         .  

The last term describes dipole radiation of the emitters 

 

2
4

3
0

2( ) ( )
3

dR n n d w
c  





    (59) 

and for small   gives a known expression 

 

2 4
0

3
2( )
3
dR n n

c



  . (60) 

Evolution equations for correlation functions of electromagnetic field in terms of the total 
electric field can be written in the form 

 ( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t m n t m n t n m t m n t m n tE E c B E c E B J E E J          , (61) 

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tE B c B B c E E J B       ,  

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tB E c E E c B B B J        ,  

 ( ) rot ( ) rot ( )x x x x x x
t m n t m n t n m tB B c E B c B E      .  
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Current-field correlation functions are defined analogously to (37). Material equations for 
these correlations are given by expressions in terms of the total electric field 

 ( ) ( , ( , ))( )x x x x
m n t m n tE J dx x x x t E E         (62) 

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t E Z S x x n x O            ,  

 ( ) ( , ( , ))( )x x x x
m n t m n tB J dx x x x t B E          

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t B Z T x x n x O            ,  

where Fourier transformed functions ( , )mnS x n , ( , )mnT x n  are given by expressions 

 2 22( , ) ( ) ( )
3mn mn m n k kS k n d n k k w
        , (63) 

 2
2 2

0

4( , ) ( )P
3mn mnl l

k

iT k n cd ne k d w
  

 




   

Quantities ( , )mnS k n , ( , )mnT k n  determine equilibrium correlations of the electromagnetic 
field. Comparing relations (54) and (62) shows that the Onsager principle is valid for the 
considered system. 

Hereafter we consider kinetics of electromagnetic field in plasma medium with the 
Hamiltonian (29) in more detail. We restrict ourselves by considering equilibrium plasma 
(Sokolovsky & Stupka, 2004) and states of the field described by average fields ( , )t

nE x t , 
( , )nB x t  and one-particle density matrix ( )kkn t 

  defined in (41). The problem for plasma 
medium in terms of hydrodynamic states has been investigated in (Sokolovsky & Stupka, 
2005). Instead of average fields and matrix ( )kkn t

  one can use average Bose amplitudes 
( )kx t  defined in (42) and correlation function 

 
*( ) ( ) ( ) ( )kk kk k kg t n t x t x t 
 

 
     . (64) 

So, for this problem in above notations we have parameters  : kkn , kx , *
kx  and 

corresponding operators ̂ : k kc c 


  , kc , kc
 . A statistical operator of the system 

introduced by the functional hypothesis depends in this case only on the field variables and 
satisfies the integral equation 

 0 0
0 ˆ ˆ

f m mf
( )ˆ( ) ( ( )) [ ( ), ] ( )

ic

i iH H

e

iZ w d e H M e


 


  

        
 



 

    
 

  


, (65) 

where quasiequilibrium statistical operator f ( )Z  is given by formula (36) with 0kkZ 
  , 

mw  is a statistical operator  of equilibrium plasma 
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(for all parameters ˆ( , ) Sp ( , )A A     ). This material equation takes into account spatial 
dispersion and Fourier transformed functions ( , )x  , ( , )x   give conductivity ( , )k   and 
magnetic susceptibility ( , )k   of the emitter medium 

 
2

2
2( , ) ( )
3 k

dk w
    


,     
2

2 2 2
0

4 1( , ) ( )P
3 k

dk d w
   

 



 


. (55) 

Average density of the dipole moment of emitters is given by expression  

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nP x dx x x x E x c dx x x x Z x O                   (56) 

where 

 ( , ) ( , )k k    ,               2( , ) ( , ) kk k      .  (57) 

Evolution equation for energy density ( , )x t  of emitters has the form  

 ( , ) ( , ( ), ( ))t x t L x t t    , (58) 

 ( , , ) ( , ( )){( ) ( ) ( )}x x
n n n nL x dx x x x E E E x E x            

 3( , ( )){( ) ( ) ( )} ( ( )) ( )x x
n n n nc dx x x x E B E x B x R n x O         .  

The last term describes dipole radiation of the emitters 

 

2
4

3
0

2( ) ( )
3

dR n n d w
c  





    (59) 

and for small   gives a known expression 

 

2 4
0

3
2( )
3
dR n n

c



  . (60) 

Evolution equations for correlation functions of electromagnetic field in terms of the total 
electric field can be written in the form 

 ( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t m n t m n t n m t m n t m n tE E c B E c E B J E E J          , (61) 

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tE B c B B c E E J B       ,  

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tB E c E E c B B B J        ,  

 ( ) rot ( ) rot ( )x x x x x x
t m n t m n t n m tB B c E B c B E      .  
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Current-field correlation functions are defined analogously to (37). Material equations for 
these correlations are given by expressions in terms of the total electric field 

 ( ) ( , ( , ))( )x x x x
m n t m n tE J dx x x x t E E         (62) 

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t E Z S x x n x O            ,  

 ( ) ( , ( , ))( )x x x x
m n t m n tB J dx x x x t B E          

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t B Z T x x n x O            ,  

where Fourier transformed functions ( , )mnS x n , ( , )mnT x n  are given by expressions 

 2 22( , ) ( ) ( )
3mn mn m n k kS k n d n k k w
        , (63) 

 2
2 2

0

4( , ) ( )P
3mn mnl l

k

iT k n cd ne k d w
  

 




   

Quantities ( , )mnS k n , ( , )mnT k n  determine equilibrium correlations of the electromagnetic 
field. Comparing relations (54) and (62) shows that the Onsager principle is valid for the 
considered system. 

Hereafter we consider kinetics of electromagnetic field in plasma medium with the 
Hamiltonian (29) in more detail. We restrict ourselves by considering equilibrium plasma 
(Sokolovsky & Stupka, 2004) and states of the field described by average fields ( , )t

nE x t , 
( , )nB x t  and one-particle density matrix ( )kkn t 

  defined in (41). The problem for plasma 
medium in terms of hydrodynamic states has been investigated in (Sokolovsky & Stupka, 
2005). Instead of average fields and matrix ( )kkn t

  one can use average Bose amplitudes 
( )kx t  defined in (42) and correlation function 

 
*( ) ( ) ( ) ( )kk kk k kg t n t x t x t 
 

 
     . (64) 

So, for this problem in above notations we have parameters  : kkn , kx , *
kx  and 

corresponding operators ̂ : k kc c 


  , kc , kc
 . A statistical operator of the system 

introduced by the functional hypothesis depends in this case only on the field variables and 
satisfies the integral equation 

 0 0
0 ˆ ˆ

f m mf
( )ˆ( ) ( ( )) [ ( ), ] ( )

ic

i iH H

e

iZ w d e H M e


 


  

        
 



 

    
 

  


, (65) 

where quasiequilibrium statistical operator f ( )Z  is given by formula (36) with 0kkZ 
  , 

mw  is a statistical operator  of equilibrium plasma 
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 m
ˆ ˆ( )

m
a aaH N Tw e         ( ˆ ˆ ( )a aN dxn x  ). (66) 

Functions ( )M   define the right-hand sides of evolution equations for the reduced 
description parameters 

 ( ) ( ) ( ( ))t t i c t M t   


   


   ,            mf
ˆ ˆ( ) Sp ( )[ , ]iM H    


. (67) 

Integral equation (65) is solvable in a perturbation theory in plasma-field interaction based 
on estimations 1

1
ˆ ~H  , 2

2
ˆ ~H   (see (29)). As a result, evolution equations for the reduced 

description parameters take the form (Sokolovsky & Stupka, 2004) 

 3( ) ( )( ) ( )t kk k k kk k k kk k kkg i g g n O  
      

              , (68) 

 3* ,( ) ( ) ( )t k k k k k k k kx i x i x O                

where k  is photon spectrum in the plasma, kn  is the Planck distribution with the plasma 
temperature, k  is a frequency of photon emission and absorption.  These quantities are 
given by formulas  

 {1 2 ( )}k k k    ,   2 ( )k k  . (69) 

The second equation in (68) is a form of the Maxwell equations (53) with similar to (54) 
material equation  

 
3( , ) ( ) ( ) ( ) ( ) ( )n n nJ x dx x x E x c dx x x Z x O              . (70) 

This material equation takes into account spatial dispersion and Fourier transformed 
functions ( )x , ( )x  give conductivity ( )k  and magnetic susceptibility ( )k  of the 
plasma medium. Their values are given by relations 

 
 Im ,

( ) k

k

G k
k





  ,              

 Re ,
( ) k

k

G k
k

c
 





  , (71) 

where ( , )G k  is a transversal part of current-current Green function:  

 1( , ) ( , )( )
2 mn mn m nG k G k k k      ,             m m

ˆ ˆ, Sp [ ( , ), (0)]mn m n
iG x t t w j x t j 


; (72) 

 
2 2

4
a a

aa

n e
m





  .  

In fact, the obtained results are valid for kc   where   is Langmuir frequency.  
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7. Connection between correlation functions of different nature and some 
suitable representations for them 
One can notice that simultaneous correlation functions of field amplitudes of (37) type arise 
in a natural way in the framework of the reduced description method. At the same time 
Glauber correlation functions of (19) type (including positive-frequency and negative-
frequency parts of the electric field operator (11) in the interaction picture) seem to be 
observable quantities from the point of view of experimental possibilities. The most 
interesting effects of quantum optics can be described with non-simultaneous Glauber 
functions (Lyagushyn & Sokolovsky, 2010a; Lyagushyn et al., 2011). Nevertheless we can 
insist that there are no real contradictions between the approaches. Correlation functions 
(19) characterize properties of electromagnetic field described by the statistical operator  . 
In the previous section we have been constructed a reduced description for electromagnetic 
field in emitter medium and in plasma medium. These theories lead not only to equations 
for the reduced description parameters but also to the expression for corresponding 
nonequilibrium statistical operators. For the field-emitters system a nonequilibrium 
statistical operator has the form    

 
0

2
f m f m

ˆ ˆ( , ) ( ( )) ( ( )) [ ( ( )) ( ( )), ( , ) ( , )] ( )t
n n

iZ X d dx Z X E x P x O              


   
. (73) 

where ˆ ( , )t
nE x  , ˆ ( , )lP x   are operators ˆ ( )t

nE x , ˆ ( )nP x  in the interaction picture. Analogously, a 
nonequilibrium statistical operator for the field-plasma system is given by the formula 

 
0

2
f m f m

ˆ ˆ( ) ( ( )) [ ( ( )) , ( , ) ( , )] ( )n n
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where ˆ ( , )nA x  , ˆ ( , )nj x   are operators ˆ ( )nA x , ˆ ( )nj x  in the interaction picture. According to 
general theory of the Peletminskii-Yatsenko model (Akhiezer & Peletminskii, 1981), the 
following relations for the field-emitters system 
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and for the field-plasma system 
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are valid. Average of products of three and more Bose operators should be calculated with 
taking into account the second term in expressions (73), (74) and using the Wick–Bloch–de 
Dominicis theorem. It is convenient to perform the calculation of correlation functions (23) 
for the field-plasma system through using formulas (11), (74). For the field-emitters system 
the following formula  
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a aaH N Tw e         ( ˆ ˆ ( )a aN dxn x  ). (66) 

Functions ( )M   define the right-hand sides of evolution equations for the reduced 
description parameters 
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Integral equation (65) is solvable in a perturbation theory in plasma-field interaction based 
on estimations 1

1
ˆ ~H  , 2

2
ˆ ~H   (see (29)). As a result, evolution equations for the reduced 

description parameters take the form (Sokolovsky & Stupka, 2004) 
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This material equation takes into account spatial dispersion and Fourier transformed 
functions ( )x , ( )x  give conductivity ( )k  and magnetic susceptibility ( )k  of the 
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where ( , )G k  is a transversal part of current-current Green function:  

 1( , ) ( , )( )
2 mn mn m nG k G k k k      ,             m m

ˆ ˆ, Sp [ ( , ), (0)]mn m n
iG x t t w j x t j 


; (72) 

 
2 2

4
a a

aa

n e
m





  .  

In fact, the obtained results are valid for kc   where   is Langmuir frequency.  
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7. Connection between correlation functions of different nature and some 
suitable representations for them 
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functions (Lyagushyn & Sokolovsky, 2010a; Lyagushyn et al., 2011). Nevertheless we can 
insist that there are no real contradictions between the approaches. Correlation functions 
(19) characterize properties of electromagnetic field described by the statistical operator  . 
In the previous section we have been constructed a reduced description for electromagnetic 
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nonequilibrium statistical operators. For the field-emitters system a nonequilibrium 
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are valid. Average of products of three and more Bose operators should be calculated with 
taking into account the second term in expressions (73), (74) and using the Wick–Bloch–de 
Dominicis theorem. It is convenient to perform the calculation of correlation functions (23) 
for the field-plasma system through using formulas (11), (74). For the field-emitters system 
the following formula  
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can be useful. Here ( , )D x t  is a standard function widely used in electromagnetic theory 
(Akhiezer A. & Berestetsky V., 1969) and defined by expression   
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Calculation of the simplest correlation function (1,1)
1 1( , )nlG y y  can be done according to (75), 

(76) exactly. For example, for the field-plasma system one has 
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An exact expression for this correlation function of the field-emitters system is given by the 
formula 
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Correlation function (2,2)
1 2 1 2( , )nlG y y y y  can be calculated only approximately. For example, 

for the field-plasma system the formula 

 
1 1 2 2 1 2 2 1

(1,1) (1,1) (1,1) (1,1)(1,1) 1
1 2 1 2 1 1 2 2 1 2 2 1( , ; , ) ( , ) ( , ) ( , ) ( , ) ( )mn m n m n m n m nG y y y y G y y G y y G y y G y y O         . (81) 

is obtained.  

So, the method of the reduced description of nonequilibrium states allows calculating 
Glauber correlation functions in important models. It gives possibility to analyze correlation 
properties of electromagnetic field interacting with emitters and plasma in the considered 
examples. Such analysis can be performed in terms of average electromagnetic field and 
binary correlations of the field. 

Quantum theory of radiation transfer is an important part of quantum optics (Perina, 1984). 
The problem is: to choose parameters that describe radiation transfer in a medium and 
obtain a closed set of equations for such parameters. This problem can be solved in the 
reduced description method. 

In the theory of radiation transfer (Chandrasekhar, 1950) energy fluxes in medium and 
polarization of the radiation are problems of interest. Operator of energy flux is given by the 
formula 
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In the developed above theory average values of binary in the field quantities can be 
calculated exactly. For the field-plasma model the following result can be obtained in terms 
of the one-particle density matrix and Wigner distribution function 
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where 
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For a weakly nonuniform states of the field formula (82) can be simplified and gives (at 
V  ) a classic expression 
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Formula (83) should be put in the basis of the theory of radiation transfer. The simplest 
consideration is based on the approximate expression (85). Radiation transfer can be 
described with specific intensity of radiation in the form   
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Therefore, an equation of radiation transfer can be based on the kinetic equation for the 
Wigner distribution function of the field. According to definition (43) and equation (68), for 
weakly nonuniform states in the absence of the average field this kinetic equation is written 
as follows  
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The radiation transfer equation follows from the definition (86) and kinetic equation (87)  
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can be useful. Here ( , )D x t  is a standard function widely used in electromagnetic theory 
(Akhiezer A. & Berestetsky V., 1969) and defined by expression   
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An exact expression for this correlation function of the field-emitters system is given by the 
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Correlation function (2,2)
1 2 1 2( , )nlG y y y y  can be calculated only approximately. For example, 

for the field-plasma system the formula 
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is obtained.  

So, the method of the reduced description of nonequilibrium states allows calculating 
Glauber correlation functions in important models. It gives possibility to analyze correlation 
properties of electromagnetic field interacting with emitters and plasma in the considered 
examples. Such analysis can be performed in terms of average electromagnetic field and 
binary correlations of the field. 

Quantum theory of radiation transfer is an important part of quantum optics (Perina, 1984). 
The problem is: to choose parameters that describe radiation transfer in a medium and 
obtain a closed set of equations for such parameters. This problem can be solved in the 
reduced description method. 

In the theory of radiation transfer (Chandrasekhar, 1950) energy fluxes in medium and 
polarization of the radiation are problems of interest. Operator of energy flux is given by the 
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In the developed above theory average values of binary in the field quantities can be 
calculated exactly. For the field-plasma model the following result can be obtained in terms 
of the one-particle density matrix and Wigner distribution function 

 
2 2

/2, /2
, ,

( ) ( , ) ( , )f ( )iqx
n k q k q n n k

kq k

c cq x n k q e k i x
V V x

   

 
    

 
 


  

    (83) 

where 

 ( , ) ( / 2, / 2)n nk q k q k q      , (84) 

 1 2
1 1 2 2 1 1 2 2

1 2 * *
1 2 1 2 1 2

1( , ) ( )( ) { }
2n nl ms ml ns l k s k m l k m k sk k k k k e e k e e 

           .  
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Formula (83) should be put in the basis of the theory of radiation transfer. The simplest 
consideration is based on the approximate expression (85). Radiation transfer can be 
described with specific intensity of radiation in the form   
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Therefore, an equation of radiation transfer can be based on the kinetic equation for the 
Wigner distribution function of the field. According to definition (43) and equation (68), for 
weakly nonuniform states in the absence of the average field this kinetic equation is written 
as follows  
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The radiation transfer equation follows from the definition (86) and kinetic equation (87)  
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are introduced. Usually this equation is written for stationary states and given without 
correction with the last term. So, the reduced description method provides an approach in 
which it is possible to justify the radiation transfer theory. 
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Hence, the generating functional gives complete description of a system and evolution 
equation for this functional is equivalent to the quantum Liouville equation. Definition (3) 
shows that the functional obeys the property 

 ** *F(u,u ) = F(-u,-u ) . (91) 

Let us suppose that effective photon interaction in a system has the form 
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is widely used. Formula (95) shows that this distribution is the Fourier transformed 
generating functional. Note that an evolution equation for the Glauber-Sudarshan 
distribution can be easily obtained by substituting the second formula in (95) into equation 
(94). Such evolution equations can be a starting point for constructing the reduced 
description of a system (Peletminskii, S. & Yatsenko A., 1970). Obtaining the field evolution 
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picture in terms of P-function is very attractive from the point of view of analysis of field 
properties under consideration in quantum optics.  

8. Conclusions 
Kinetic theory of electromagnetic field in media has choosing a set of parameters describing 
nonequilibrium states of the field as a starting point with necessity. The minimal set of such 
parameters includes binary correlations of field amplitudes. The corresponding 
mathematical apparatus uses different structures of averages: one-particle density matrices, 
Wigner distribution functions, and conventional simultaneous correlation functions of field 
operators. All approaches can be connected with each other due to the possibility of 
expressing the main correlation parameters in various forms. The reduced description 
method elucidates the construction of kinetic equations in electrodynamics of continuous 
media (field-plasma, field-emitters systems) and radiation transfer theory. Electromagnetic 
field properties are discussed in quantum optics in terms of Glauber correlation functions 
measured in experiments. Theoretical calculation of such functions requires information 
about the statistical operator of the system under investigation. In the framework of the 
reduced description method we have succeeded in obtaining the statistical operator of the 
field in the form that is convenient for calculations in a number of interesting cases. 
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1. Introduction

In spite of remarkable advance of quantum optics, there would be many things that are
yet to be developed regarding the properties of light. One of them is the behavior of
light propagating or confined in time-varying media. If the characteristic parameters of
medium such as electric permittivity, magnetic permeability, and electric conductivity are
dependent on time, the medium is classified as time-varying media. After the publication
of a seminal paper by Choi and Yeon (Choi & Yeon, 2005), there has been a surge of renewed
research for electromagnetic field quantization in time-varying media and for the properties
of corresponding quantized fields (Budko, 2009; Choi, 2010a; Choi, 2010b). Some important
examples that the theory of optical wave propagation in time-varying media is applicable
are magnetoelastic delay lines (Rezende & Morgenthaler, 1969), wave propagation in ionized
plasmas (Kozaki, 1978), the modulation of microwave power (Morgenthaler, 1958), and novel
imaging algorithms for dynamical processes in time-varying physical systems (Budko, 2009).

To study the time behavior of light rigorously, it may be crucial to quantize it. The purpose
of this chapter is to analyze nonclassical properties of superpositions of quantum states
for electromagnetic fields in time-varying linear media. The methods for quantization of a
light propagating in free space or in transparent material is well known, since each mode
of the field in that case acts like a simple harmonic oscillator. However, the quantization
procedure for a light in a time-varying background medium is somewhat complicate and
requires elaborate technic in accompanying mathematical treatments. One of the methods
that enable us to quantize fields in such situation is to introduce an invariant operator theory
(Lewis & Riesenfeld, 1969) in quantum optics. The invariant operator theory which employs
Lewis-Riesenfeld invariants is very useful in deriving quantum solutions for time-dependent
Hamiltonian systems in cases like this. The light in homogeneous conducting linear media
which have time-dependent parameters will be quantized and their quantum properties will
be investigated on the basis of invariant operator theory. The exact wave functions for the
system with time-varying parameters will be derived in Fock, coherent, and squeezed states
in turn.

For several decades, much attention has been devoted to the problem of superposed quantum
states (the Schrödinger cat states) of an optical field (Choi & Yeon, 2008; Ourjoumtsev et
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al., 2006; Yurke & Stoler, 1986). The superpositions in both coherent states and squeezed
states of electromagnetic field are proved to be quite interesting and their generation has
been an important topic in quantum optics thanks to their nonclassical properties such as
high-order squeezing, subpoissonian photon statistics, and oscillations in the photon-number
distribution (Richter & Vogel, 2002; Schleich et al., 1991). Moreover, it is shown that
the Schrödinger cat states provide an essential tool for quantum information processing
(Ourjoumtsev et al, 2006).

It may be interesting to study a phase space distribution function so-called Wigner distribution
function (WDF) (Wigner, 1932) for Schrödinger cat states for fields in time-varying media.
The propagation of a signal through optical systems is well described by means of the WDF
transformations (Bastiaans, 1991), which results in accompaniment of the reconstruction of
the propagated signal. A convolution of the WDF allows us to know the phase space
distribution connected to a simultaneous measurement of position and momentum. Due
to its square integrable property, the WDF always exists and can be employed to evaluate
averages of Hermitian observables that are essential in the quantum mechanical theory. The
WDF is regarded as ’quasiprobability distribution function’, since it can be negative as well
as positive on subregions of phase space. Gaussian is the only pure state for which the
WDF is positive everywhere. In view of quantum optics, Bastiaans showed that the WDF
provides a link between Fourier optics and the geometrical optics (Bastiaans, 1980). The
WDF has been widely used in explaining intrinsic quantum features which have no classical
analogue in various branches of physics, such as decoherence (Zurek, 1991), Fourier quantum
optics (Bartelt et al, 1980), and interference of quantum amplitudes (Bužek et al., 1992). The
nonclassical properties of superpositions of quantum states for electromagnetic fields with
time-dependent parameters will be studied here via WDF.

2. Quantization of light in time-varying media

The characteristics of electromagnetic fields in media are determined in general by the
parameters of media such as electric permittivity �, magnetic permeability μ, and electric
conductivity σ. If σ = 0 and other two parameters are real constants, the electromagnetic
fields behave like simple harmonic oscillators. The electromagnetic fields propagating along
a medium that have non-zero conductivity undergo dissipation that entails their energy
loss. In case that the value of one or more parameters of media is complex and/or
time-dependent, the mathematical description of optical fields may be not an easy task. We
suppose that the parameters are time-dependent and use invariant operator theory to quantize
the electromagnetic fields in such medium. The relations between fields and current in linear
media are

D = �(t)E, H =
B

μ(t)
, J = σ(t)E. (1)

The Maxwell’s equations in media that have no charge source can be written in SI unit as

∇ · D = 0, (2)

∇ · B = 0, (3)

∇× E = − ∂B
∂t

, (4)

∇× H = J +
∂D
∂t

. (5)
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A fundamental relation between electromagnetic fields and potentials are

E = −∇Φ − ∂A
∂t

, (6)

B = ∇× A, (7)

where Φ is a scalar potential and A is a vector potential. We take Coulomb gauge due to its
usefulness in this situation. In particular Coulomb gauge is more advantageous in describing
a purely transverse wave. The scalar potential then vanishes since we assumed that there
is no net charge source. As a consequence, both the electric and the magnetic fields can be
expanded only in terms of vector potential.

By solving Eqs. (2)-(5) considering Eqs. (6) and (7), we obtain a time-dependent damped wave
equation such that

∇2A − [σ(t) + �̇(t)]μ(t)
∂A
∂t

− �(t)μ(t)
∂2A
∂t2 = 0. (8)

To decouple the vector potential into position and time functions, it is necessary to put

A(r, t) = ∑
l

ul(r)ql(t), (9)

where particular modes are denoted by subscript l. The substitution of Eq. (9) into Eq. (8)
leads to

∇2ul(r) + k2
l ul(r) = 0, (10)

∂2ql(t)
∂t2 +

σ(t) + �̇(t)
�(t)

∂ql(t)
∂t

+ c2(t)k2
l ql(t) = 0, (11)

where kl are separation constants and c(t) is the time-dependent velocity of light which is
given by c(t) = 1/

√
�(t)μ(t). Actually kl are wave numbers that can be represented as

kl =
ωl(t)
c(t)

, (12)

where ωl(t) are time-dependent natural angular frequencies. From the fact that kl are
constants, we have

ωl(t)
c(t)

=
ωl(0)
c(0)

. (13)

From now on, let us omit under subscript l from notations for the shake of convenience.

Using fundamental theory of dynamics, we can construct the Hamiltonian of the system
associated with Eq. (11) to be

Ĥ(q̂, p̂, t) =
1

2�0
e−Λ(t) p̂2 +

1
2

eΛ(t)�0ω2(t)q̂2, (14)

where �0 = �(0) and Λ(t) =
∫ t

0 {[σ(t�) + �̇(t�)]/�(t�)}dt�. If we consider that this Hamiltonian
is a time-varying form, the introduction of a suitable invariant operator K̂ may enable us to

27
Nonclassical Properties of Superpositions 
of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media



2 Will-be-set-by-IN-TECH

al., 2006; Yurke & Stoler, 1986). The superpositions in both coherent states and squeezed
states of electromagnetic field are proved to be quite interesting and their generation has
been an important topic in quantum optics thanks to their nonclassical properties such as
high-order squeezing, subpoissonian photon statistics, and oscillations in the photon-number
distribution (Richter & Vogel, 2002; Schleich et al., 1991). Moreover, it is shown that
the Schrödinger cat states provide an essential tool for quantum information processing
(Ourjoumtsev et al, 2006).

It may be interesting to study a phase space distribution function so-called Wigner distribution
function (WDF) (Wigner, 1932) for Schrödinger cat states for fields in time-varying media.
The propagation of a signal through optical systems is well described by means of the WDF
transformations (Bastiaans, 1991), which results in accompaniment of the reconstruction of
the propagated signal. A convolution of the WDF allows us to know the phase space
distribution connected to a simultaneous measurement of position and momentum. Due
to its square integrable property, the WDF always exists and can be employed to evaluate
averages of Hermitian observables that are essential in the quantum mechanical theory. The
WDF is regarded as ’quasiprobability distribution function’, since it can be negative as well
as positive on subregions of phase space. Gaussian is the only pure state for which the
WDF is positive everywhere. In view of quantum optics, Bastiaans showed that the WDF
provides a link between Fourier optics and the geometrical optics (Bastiaans, 1980). The
WDF has been widely used in explaining intrinsic quantum features which have no classical
analogue in various branches of physics, such as decoherence (Zurek, 1991), Fourier quantum
optics (Bartelt et al, 1980), and interference of quantum amplitudes (Bužek et al., 1992). The
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obtain quantum solutions of the system. The invariant operator can be evaluated from

dK̂
dt

=
∂K̂
∂t

+
1
ih̄
[K̂, Ĥ] = 0, (15)

which is known as Liouville-von Neumann equation. Execution of some algebra after
inserting Eq. (14) into the above equation gives

K̂ =

(
Ω

2ρ(t)
q̂
)2

+ [ρ(t) p̂ − �0eΛ(t) ρ̇(t)q̂]2, (16)

where Ω is an arbitrary real positive constant and ρ(t) is some real time-function that satisfies
the following differential equation

ρ̈(t) +
σ(t) + �̇(t)

�(t)
ρ̇(t) + ω2(t)ρ(t)− Ω2

4�2
0

e−2Λ(t) 1
ρ3(t)

= 0. (17)

If we introduce annihilation and creation operators of the form

â =

√
1

h̄Ω

[(
Ω

2ρ(t)
− i�0eΛ(t) ρ̇(t)

)
q̂ + iρ(t) p̂

]
, (18)

â† =

√
1

h̄Ω

[(
Ω

2ρ(t)
+ i�0eΛ(t) ρ̇(t)

)
q̂ − iρ(t) p̂

]
, (19)

the invariant operator can be rewritten as

K̂ = h̄Ω
(

â† â +
1
2

)
. (20)

Note that Eqs. (18) and (19) are different from those of simple harmonic oscillator.

If we denote two linearly independent homogeneous solutions of Eq. (11) as ρ1(t) and ρ2(t),
ρ(t) is given by (Eliezer & Gray, 1976)

ρ(t) = [h1ρ2
1(t) + h2ρ1(t)ρ2(t) + h3ρ2

2(t)]
1/2, (21)

where h1, h2, and h3 are constants that follow some relation imposed between them. In terms
of an Wronskian w which is a time-constant and has the form

w = �0eΛ(t)[ρ1(t)ρ̇2(t)− ρ̇1(t)ρ2(t)], (22)

h1, h2, and h3 yield
4h1h3 − h2

2 = Ω2/w2. (23)

As an example, we can take the electromagnetic parameters to be

�(t) = �0eγt, μ(t) = μ(0), σ(t) = 0, (24)

where γ is a real constant. Then, the Wronskian can be rewritten as

w = �(t)[ρ1(t)ρ̇2(t)− ρ̇1(t)ρ2(t)], (25)
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where ρ1(t) and ρ2(t) are given by

ρ1(t) = ρ1,0 e−γt/2 J1[ξ(t)], (26)

ρ2(t) = ρ2,0 e−γt/2N1[ξ(t)]. (27)

Here, ρ1,0 and ρ2,0 are arbitrary real constants and ξ(t) = [2ω(0)/γ]e−γt/2.

If we consider the asymptotic behavior of Bessel functions for x � 1:

Jm(x) �
√

2
πx

cos
(

x − m
π

2
− π

4

)
, (28)

Nm(x) �
√

2
πx

sin
(

x − m
π

2
− π

4

)
, (29)

ρ1(t) and ρ2(t), in the limit ξ � 1 with a selection of ρ1,0 = −ρ2,0 =
√

πΩ/(2�0γ), becomes

ρ1(t) �
√

Ω
�0γξ(t)

e−γt/2 cos
(

ξ(t)− 3π

4

)
, (30)

ρ2(t) � −
√

Ω
�0γξ(t)

e−γt/2 sin
(

ξ(t)− 3π

4

)
. (31)

Then, Ω/(2w) = 1 and, as a consequence, we can choose h1 = h3 = 1 and h2 = 0 so that Eq.
(21) reduces to ρ(t) = [ρ2

1(t) + ρ2
2(t)]

1/2 which is a well used relation in the literature (Choi,
2010b).

We can directly check that the ladder operators satisfy the boson commutation relation
[â, â†] = 1. Therefore, it is possible to obtain zero-point eigenstate �q|φ0(t)� of K̂ from
â�q|φ0(t)� = 0 and nth order eigenstate by operating â† n times into �q|φ0(t)�. Thus we
finally get

�q|φn(t)� = 4

√
Ω

2ρ2(t)h̄π

1√
2nn!

Hn

(√
Ω

2ρ2(t)h̄
q

)

× exp
[
− 1

2ρ(t)h̄

(
Ω

2ρ(t)
− i�0eΛ(t) ρ̇(t)

)
q2
]

, (32)

where Hn is nth order Hermite polynomial. For the time-dependent Hamiltonian systems in
cases like this, the Schrödinger solutions are different from the eigenstates �q|φn(t)� by only
time-dependent phase factors (Lewis & Riesenfeld, 1969):

�q|ψn(t)� = �q|φn(t)� exp [iθn(t)]. (33)

If we insert this equation together with Eq. (14) into Schrödinger equation, we obtain the
phases θn(t) as:

θn(t) = −
(

n +
1
2

)
Ω

2�0

∫ t

0

e−Λ(t�)

ρ2(t�)
dt�. (34)

The probability of finding the real photons is given by probability density that is squared
modulus of the wave function, while the wave function itself in general has no physical reality.
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The probability density |�q|ψn(t)�|2 in number state is illustrated in Fig. 1 as a function

Fig. 1. Probability density in number state as a function of q and t. We used n = 4, h̄ = 1,
γ = 0.3, �0 = 1, μ(0) = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and
ρ1,0 = ρ2,0 = 0.5. All values are taken to be dimensionless for convenience (This convention
will be used in all figures in this chapter).

of q and t. The parameters chosen in this figure are the same as those of Eq. (24). (This
choice will also be hold in all subsequent figures without mentioning.) The probability density
converges to origin (q = 0) as time goes by. This means that the amplitude of electromagnetic
wave decreases with time. In general, the damping factor (σ + �̇)/� appeared in Eq. (11) is
responsible for the dissipation of amplitude. As you can see form Eq. (24), it is kept that
σ = 0 in our model example but �̇ is not zero. Therefore, the variation of �(t) with time is
the actual factor that leads to take place the dissipation of amplitude in this case. Note that
�(t) exponentially increases depending on γ. Thus,for large γ, the amplitude decreases more
rapidly.

The density operator � is defined in the form

�̂ = ∑
n,m

�nm|ψn��ψm|. (35)

Then, the WDF is represented in terms of �̂ as

W(q, p, t) =
1

πh̄

∫ ∞

−∞
�q − x|�̂|q + x�e2ipx/h̄dx. (36)

The properties of superposition states are well understood from WDF representation. A little
algebra gives

W(q, p, t) =
1

πh̄

∫ ∞

−∞
�̂(q − x, q + x, t)e2ipx/h̄dx. (37)
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It is well known that the WDF for number state consists of many concentric circles of
ridge and valley which have different radii (Choi, 2004). The total number of ridge and
valley is associated with the quantum number of the system and the value of WDF at a
valley is negative. Whenever the WDF takes on negative values in parts of the phase,
the corresponding state is regarded as nonclassical one. Due to its allowance of negative
values, it is impossible to interpret WDF as the real distribution function. For this reason,
there have been established several kinds of weighted WDF that takes non-negative value
in phase space (Mogilevtsev & Kilin, 2000). The negative values of WDF have indeed been
observed from lots of experimental measurements for a variety of states of optical field and
matter (Leonhardt, 1997). However, integration of WDF over either of q and p makes it to be
probability distribution for the other

∫ ∞

−∞
W(q, p, t)dq = |ψ(p, t)|2, (38)

∫ ∞

−∞
W(q, p, t)dp = |ψ(q, t)|2. (39)

These formulae guarantee WDF to be a quantum distribution function (but quasi) in spite of
its singular properties.

3. Superposition of coherent states

The state engineering can also be achieved using a coherent-state expansion, instead of
expanding number-state whose wave function is derived in the previous section. Coherent
state for harmonic oscillator were firstly found by Schrödinger (Schrödinger, 1926) and
rediscovered afterwards by Glauber (Glauber, 1963). Though coherent states are classical-like
quantum states and hardly exhibit nonclassical effects, most class of superposition of coherent
states can exhibit one or more nonclassical effects among various possible nonclassicality such
as sub-Poissonian photon statistics and squeezing.

The coherent state |α� is an eigenstate of the annihilation operator:

â|α� = α|α�. (40)

If we consider Eq. (18), α is given by

α =

√
1

h̄Ω

[(
Ω

2ρ(t)
− i�0eΛ(t) ρ̇(t)

)
qcl(t) + iρ(t)pcl(t)

]
, (41)

where qcl(t) and pcl(t) are classical trajectories of variables q and p, which are given by

qcl(t) = c1ρ1(t) + c2ρ2(t), (42)

pcl(t) = �0eΛ(t) dqcl(t)
dt

= �0eΛ(t)[c1ρ̇1(t) + c2ρ̇2(t)], (43)

where c1 and c2 are arbitrary real constants. If we divide α into real and imaginary parts such
that

αR =

√
Ω
h̄

1
2ρ(t)

[c1ρ1(t) + c2ρ2(t)], (44)
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of q and t. The parameters chosen in this figure are the same as those of Eq. (24). (This
choice will also be hold in all subsequent figures without mentioning.) The probability density
converges to origin (q = 0) as time goes by. This means that the amplitude of electromagnetic
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The density operator � is defined in the form

�̂ = ∑
n,m

�nm|ψn��ψm|. (35)

Then, the WDF is represented in terms of �̂ as

W(q, p, t) =
1

πh̄

∫ ∞

−∞
�q − x|�̂|q + x�e2ipx/h̄dx. (36)

The properties of superposition states are well understood from WDF representation. A little
algebra gives

W(q, p, t) =
1

πh̄

∫ ∞

−∞
�̂(q − x, q + x, t)e2ipx/h̄dx. (37)
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It is well known that the WDF for number state consists of many concentric circles of
ridge and valley which have different radii (Choi, 2004). The total number of ridge and
valley is associated with the quantum number of the system and the value of WDF at a
valley is negative. Whenever the WDF takes on negative values in parts of the phase,
the corresponding state is regarded as nonclassical one. Due to its allowance of negative
values, it is impossible to interpret WDF as the real distribution function. For this reason,
there have been established several kinds of weighted WDF that takes non-negative value
in phase space (Mogilevtsev & Kilin, 2000). The negative values of WDF have indeed been
observed from lots of experimental measurements for a variety of states of optical field and
matter (Leonhardt, 1997). However, integration of WDF over either of q and p makes it to be
probability distribution for the other

∫ ∞

−∞
W(q, p, t)dq = |ψ(p, t)|2, (38)

∫ ∞

−∞
W(q, p, t)dp = |ψ(q, t)|2. (39)

These formulae guarantee WDF to be a quantum distribution function (but quasi) in spite of
its singular properties.

3. Superposition of coherent states

The state engineering can also be achieved using a coherent-state expansion, instead of
expanding number-state whose wave function is derived in the previous section. Coherent
state for harmonic oscillator were firstly found by Schrödinger (Schrödinger, 1926) and
rediscovered afterwards by Glauber (Glauber, 1963). Though coherent states are classical-like
quantum states and hardly exhibit nonclassical effects, most class of superposition of coherent
states can exhibit one or more nonclassical effects among various possible nonclassicality such
as sub-Poissonian photon statistics and squeezing.

The coherent state |α� is an eigenstate of the annihilation operator:

â|α� = α|α�. (40)

If we consider Eq. (18), α is given by

α =

√
1

h̄Ω

[(
Ω

2ρ(t)
− i�0eΛ(t) ρ̇(t)

)
qcl(t) + iρ(t)pcl(t)

]
, (41)

where qcl(t) and pcl(t) are classical trajectories of variables q and p, which are given by

qcl(t) = c1ρ1(t) + c2ρ2(t), (42)

pcl(t) = �0eΛ(t) dqcl(t)
dt

= �0eΛ(t)[c1ρ̇1(t) + c2ρ̇2(t)], (43)

where c1 and c2 are arbitrary real constants. If we divide α into real and imaginary parts such
that

αR =

√
Ω
h̄

1
2ρ(t)

[c1ρ1(t) + c2ρ2(t)], (44)
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αI =

�
1

h̄Ω
�0eΛ(t){ρ(t)[c1ρ̇1(t) + c2ρ̇2(t)]− ρ̇(t)[c1ρ1(t) + c2ρ2(t)]}, (45)

the eigenstate can be represented in terms of amplitude α0 and phase ϕ:

α = α0eiϕ, (46)

where

α0 =
�

α2
R + α2

I , (47)

ϕ = tan−1(αI/αR). (48)

The substitution of Eqs. (44) and (45) into Eqs. (47) and (48) leads to

α0 =

�
Ω(c2

1h3 − c1c2h2 + c2
2h1)

h̄(4h1h3 − h2
2)

, (49)

ϕ(t) = tan−1

⎛
⎝2h1c2ρ1(t)− h2[c1ρ1(t)− c2ρ2(t)]− 2h3c1ρ2(t)�

4h1h3 − h2
2[c1ρ1(t) + c2ρ2(t)]

⎞
⎠ . (50)

The time behavior of ϕ(t) is illustrated in Fig. 2. The considered domain for ϕ(t) in this
figure is −π/2 < ϕ(t) < π/2, i.e., ϕ(t) ≡ mπ + δ(t) → δ(t) where m is an integer and
−π/2 < δ(t) < π/2 at a given time. The direct differentiation of Eq. (50) with respect to time
gives

dϕ(t)
dt

= −Ωe−Λ(t)

2�0ρ2(t)
. (51)

Thus, we can represent ϕ in another way such that

ϕ(t) = − Ω
2�0

� t

0

e−Λ(t�)

ρ2(t�)
dt� + ϕ(0). (52)

It may be instructive to compare this equation with Eq. (34). The time behavior of ϕ(t) is the
same as that of θn(t) when we neglect some constants.

By operating �q| from left in Eq. (40), the coherent state in configuration space is obtained.
Then, a suitable choice of phase leads to (Choi & Yeon, 2008)

�q|α� = 4

�
Ω

2ρ2(t)h̄π
exp

�
α

�
Ω

ρ2(t)h̄
q − 1

4ρ(t)h̄

×
�

Ω
ρ(t)

− 2i�0eΛ(t) ρ̇(t)

�
q2 − 1

2
α2

0 −
1
2

α2

�
. (53)

The relation between coherent state and number state eigenfunction is given by

�q|α� = exp
�
−1

2
α2

0

�
∑
n

αn
√

n!
�q|φn(t)�. (54)
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Fig. 2. The time evolution of ϕ for various values of γ. We used �0 = 1, Ω = 1, c1 = c2 = 25,
ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.
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Fig. 2. The time evolution of ϕ for various values of γ. We used �0 = 1, Ω = 1, c1 = c2 = 25,
ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.
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We can easily show that the probability density |�q|α�|2 is Gaussian from a fundamental
evaluation. As mentioned earlier, the only pure states for which the WDF is positive
everywhere are those that their corresponding probability density is Gaussian in cases like
this. We can confirm from Fig. 3 that the trajectory of the peak of |�q|α�|2 oscillates like a

Fig. 3. Probability density in coherent state as a function of q and t. The value of γ is 0.1 for
(a) and 0.3 for (b). We used h̄ = 1, �0 = 1, μ(0) = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1,
h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.

classical state and converges near to origin as time goes by due to the influence of damping
factor γ. Although coherent state is a pure quantum state, its properties lie on a borderline
between those of classical state and quantum states.
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From the early days of quantum mechanics, there have been great efforts for the problem
of generating arbitrary quantum states including nonclassical states of an optical field
mode. In particular, the superposition of coherent state (which is the main topic in this
section) and the superposition of squeezed state (that will be treated in the next section)
attracted much attention in the literature. A widely accepted criterion that a state to
be classified as nonclassical one is exist: A quantum state has nonclassicality when the
Glauber-Sudarshan P-function (Glauber, 1963; Sudarshan, 1963) fails to show the properties
of a classical probability density. However, in many cases, this definition may hardly be
applied to investigate the nonclassicality for a direct interpretation of experiments due to quite
singular characteristics of P-function and the difficulty in determining P-function from given
measurements. In fact, even for the simple harmonic oscillator, the exact characterization
of the nonclassicality of a quantum state in terms of measurable quantities is somewhat
ambiguous. A hierarchy of observable conditions for nonclassical quantum states, which
allows one to verify whether the P-function for a specific state shows the properties of a
classical probability density or not, has been reported (Richter & Vogel, 2002), while the global
criteria for nonclassicality of states are yet the subject of researches.

Meanwhile, a method to reconstruct characteristic functions of a quantum state, such as
the density matrix, the WDF, and the P-function, from experimentally accessible data is
established, which is known as optical homodyne tomography (Smithey et al., 1993; Kiesel
et al., 2008). It is possible to reconstruct the P-function up to sufficiently large thermal photon
number whereas other criteria for nonclassicality, such as the Klyshko criterion (Klyshko,
1996), negativities of the WDF, and the entanglement potential (Asbóth, 2005), start to fail
as the number of thermal photon increases (Kiesel et al., 2008). Though both definitions of
nonclassicality in terms of P-function and in terms of WDF are sufficient but not necessary and
leave some families of nonclassical quantum states outside their scope (Lvovsky & Shapiro,
2002). Of course, a satisfaction of the requirements of either definition does not automatically
grantee satisfaction of the other. While the condition for nonclassicality based on P-function is
more general than that based on WDF and covers more broad range of nonclassical quantum
states, the negativity of the WDF, that is our main concern in this Chapter, is recognized as
very strong indication for nonclassical character of quantum states.

The nonclassical properties of quantized light is highlighted by superposing two distinct
states. Let us consider a superposition of two coherent states, that the corresponding wave
function is represented in the form

�q|ψ(t)� = 1√
N
(�q|α0eiϕ�+ eiφ�q|α0e−iϕ�), (55)

where
N = 2{1 + exp(−2α2

0 sin2 ϕ) cos[α2
0 sin(2ϕ)− φ]}. (56)

Here, the total phase difference between two constituent states in superposition is 2ϕ, and the
relative phase between the two components of the superposition is φ. Strictly speaking, this
definition of cat state is somewhat different from that of Tara et al (Tara et al., 1993) [or that of
Schleich et al. (Schleich et al., 1991), for φ = 0]: The cat state of Tara et al. is defined in terms
of |αeiϑ� and |αe−iϑ� instead of |α0eiϕ� and |α0e−iϕ�, where ϑ is an arbitrary real constant.
The interaction of coherent states with nonlinear medium can be a source for generating
superposed coherent states (Tara et al, 1993). Not only the quadrature squeezing but also
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mode. In particular, the superposition of coherent state (which is the main topic in this
section) and the superposition of squeezed state (that will be treated in the next section)
attracted much attention in the literature. A widely accepted criterion that a state to
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2002). Of course, a satisfaction of the requirements of either definition does not automatically
grantee satisfaction of the other. While the condition for nonclassicality based on P-function is
more general than that based on WDF and covers more broad range of nonclassical quantum
states, the negativity of the WDF, that is our main concern in this Chapter, is recognized as
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The nonclassical properties of quantized light is highlighted by superposing two distinct
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Here, the total phase difference between two constituent states in superposition is 2ϕ, and the
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Schleich et al. (Schleich et al., 1991), for φ = 0]: The cat state of Tara et al. is defined in terms
of |αeiϑ� and |αe−iϑ� instead of |α0eiϕ� and |α0e−iϕ�, where ϑ is an arbitrary real constant.
The interaction of coherent states with nonlinear medium can be a source for generating
superposed coherent states (Tara et al, 1993). Not only the quadrature squeezing but also

35
Nonclassical Properties of Superpositions 
of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media



12 Will-be-set-by-IN-TECH

the Sub-Poissonian and oscillatory photon statistics are typical consequences of nonclassical
effects of quantum interference produced by superposition.

While the coherent states among all pure quantum states have the most properties of
classicality, their superposition represented in Eq. (55) reveals remarkable features of
nonclassicality. By substituting Eq. (53) into Eq. (55), we easily get the wave function in
configuration space:

�q|ψ(t)� = 4

√
Ω

2ρ2(t)h̄π

2√
N

exp

[
− 1

4ρ(t)h̄

(
Ω

ρ(t)
− 2i�0eΛ(t) ρ̇(t)

)
q2 − 1

2
α2

0 +
iφ
2

]

× exp

(
α0

√
Ω

ρ2(t)h̄
q cos ϕ − 1

2
α2

0 cos(2ϕ)

)

× cos

(
α0

√
Ω

ρ2(t)h̄
q sin ϕ − 1

2
α2

0 sin(2ϕ)− φ

2

)
. (57)

Though the illustration for the probability density |�q|ψ(t)�|2 given in Fig. 4 is somewhat
complicate, the principal trajectory of |�q|ψ(t)�|2 is very similar to that of |�q|α)�|2 given in Fig.
3. The superposition in a case like this become a family of Schrödinger cat states only when
the amplitude of the electromagnetic field is sufficiently large. Theoretical results of several
previous researches (Kis et al., 2001; Varada &. Agarwal, 1993) show that certain quantum
states can be approximated by superposing macroscopically distinguishable coherent states.

As is well known, WDF provides a possible method to describing a quantum system in terms
of a quasi-distribution in phase space. It enables us to analyze the interference between two
component states involved in the superposition. The WDF for the superposed coherent state
is obtained from

W(q, p, t) =
1

πh̄

∫ ∞

−∞
�ψ(t)|q + x��q − x|ψ(t)�e2ipx/h̄dx. (58)

Performing the integration after inserting Eq. (57) into the above equation gives

W(q, p, t) =
2

πh̄N
exp

(
2

√
Ω

h̄ρ2(t)
qα0 cos ϕ

)
exp

(
− 2

h̄Ω
K(q, p, t)

)

×[exp(−2α2
0) cosh Θ1 + exp(−2α2

0 cos2 ϕ) cos(Θ2 − φ)], (59)

where

K(q, p, t) =
Ω2

4ρ2(t)
q2 +

[
ρ(t)p − �0eΛ(t) ρ̇(t)q

]2
, (60)

Θ1 =
4ρ(t)α0 sin ϕ√

Ωh̄

(
p − �0eΛ(t) ρ̇(t)

ρ(t)
q

)
, (61)

Θ2 = 2

√
Ω

h̄ρ2(t)
qα0 sin ϕ − α2

0 sin(2ϕ). (62)
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Fig. 4. Probability density for superposition of coherent states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). We used h̄ = 1, �0 = 1, μ(0) = 1, φ = 1, Ω = 1,
c1 = c2 = 25, ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.

From Fig. 5, we can find the nonclassical characteristics of the superposed coherent state.
The two bells that are Gaussian type correspond to the two constituent coherent states, and
the ripple given in the middle between them is taken place from quantum interference.
Interference occurs when the two bells do not overlap, but the WDF should have non-zero
values along their common intervals in q and/or p coordinates (Dragoman, 2001). As you can
see, some parts of the ripple take on negative value. This is a clear signal for the existence of
nonclassical features of the system. The number of peaks in the structure of the ripple becomes
large as the distance between the two bells increases. We can confirm from this aspect that the
wavelength of interference fringe is inversely proportional to the value of α0. The wavelength
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From Fig. 5, we can find the nonclassical characteristics of the superposed coherent state.
The two bells that are Gaussian type correspond to the two constituent coherent states, and
the ripple given in the middle between them is taken place from quantum interference.
Interference occurs when the two bells do not overlap, but the WDF should have non-zero
values along their common intervals in q and/or p coordinates (Dragoman, 2001). As you can
see, some parts of the ripple take on negative value. This is a clear signal for the existence of
nonclassical features of the system. The number of peaks in the structure of the ripple becomes
large as the distance between the two bells increases. We can confirm from this aspect that the
wavelength of interference fringe is inversely proportional to the value of α0. The wavelength

37
Nonclassical Properties of Superpositions 
of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media



14 Will-be-set-by-IN-TECH

Fig. 5. Quadrature plot of WDF for superposition of coherent states. We used h̄ = 1, γ = 0.1,
�0 = 1, μ(0) = 1, φ = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1, t = 1, h1 = h3 = Ω/(2w), h2 = 0, and
ρ1,0 = ρ2,0 = 0.5.

of interference fringe is a major factor that determine the shape of interference in probability
density displayed in Fig. 4 (and Figs. 6 and 7 for the superposed squeezed state). Recall that
the interference pattern in probability density for an arbitrary superposition state is connected
with its WDF via Eqs. (38) and (39). If we consider, in the context of classical mechanics,
that the physical attributes of a system exist objectively even when it is unknown, classical
mechanics fails to give a reasonable explanation for the negative values in the superposition
states.

If we consider that the last term in Eq. (59) involving cos(Θ2 − φ) is the interference term,
the structure of interference varies according to the value of φ. The superposition with
φ = 0 for simple harmonic oscillator and the corresponding WDF are studied in detail by
several researchers (Bužek et al., 1992; Raimond et al., 1997; Schleich et al., 1991; Varada &.
Agarwal, 1993). In particular, some researchers (Simon et al., 1997; Yurke & Stoler, 1986) are
interested in superpositions with φ = π/2 for a little different aspect than here, thanks to their
experimental realizability, for this family of states, through the evolution of a coherent state in
a Kerr medium. For φ = π/2, Eq. (59) becomes

W(φ = π/2; q, p, t) =
2

πh̄Nπ/2
exp

[
−2

√
Ω

h̄ρ2(t)
qα0 cos ϕ

]
exp

(
− 2

h̄Ω
K(q, p, t)

)

×[exp(−2α2
0) cosh Θ1 + exp(−2α2

0 cos2 ϕ) sin Θ2], (63)

where
Nπ/2 = 2{1 + exp(−2α2

0 sin2 ϕ) sin[α2
0 sin(2ϕ)]}. (64)

Nonclassical features for this family of states are studied extensively in the literature (Ahmad
et al., 2011).
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4. Superposition of squeezed states

The investigation of the properties of squeezed state and its generation is also a central topic
in quantum optics since it enables us to utilize an optical field with reduced quadrature noise.
We introduce a squeeze operator as

b̂ = μâ + νâ†, (65)

where μ and ν obey
|μ|2 − |ν|2 = 1. (66)

As is the case of â and â†, this operator and its Hermitian conjugate satisfy the boson
commutation relation, [b̂, b̂†] = 1. Let us consider only real values for μ and ν on the purpose
to simplify the problem. Squeezed state |β� is the eigenstate of b̂:

b̂|β� = β|β�. (67)

For convenience in further study, we introduce a squeezing parameter as d = μ/ν. Then, the
wave function of squeezed state in configuration space can be evaluated in terms of d using
Eq. (67):

�q|β� = Nq exp

[
− q2

2ρ(t)h̄

(
Ω

2ρ(t)
d + 1
d − 1

− i�0eΛ(t) ρ̇(t)
)
+

dα + α∗
d − 1

√
Ω

h̄ρ2(t)
q

]
, (68)

where a normalization factor Nq is given by

Nq =

(
Ω

2ρ2(t)h̄π

d + 1
d − 1

)1/4
exp

(
− d + 1

d − 1
α2

0 cos2 ϕ + iδs,q(α, α∗)
)

, (69)

with an arbitrary real phase δs,q(α, α∗). Considering Eqs. (66) and (67), it is easy to show that
the eigenvalue β can be written in the form

β = μα + να∗. (70)

Now we represent β as
β = β0eiϕβ , (71)

where β0 and ϕβ. are real. Execution of an algebra with the substitution of Eq. (46) into Eq.
(70) yields

β0 = α0

√
μ2 + ν2 + 2μν cos(2ϕ), (72)

ϕβ = tan−1
(

d − 1
d + 1

tan ϕ

)
. (73)

Let us take δs,q(α, α∗) in the form

δs,q(α, α∗) = −α2
0 sin ϕ cos ϕ. (74)
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�0 = 1, μ(0) = 1, φ = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1, t = 1, h1 = h3 = Ω/(2w), h2 = 0, and
ρ1,0 = ρ2,0 = 0.5.
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Then, Eq. (68) reduces to a simple form which is

�q|β� =
(

Ω
2πh̄ρ2(t)

d + 1
d − 1

)1/4
exp

[
− 1

2ρ(t)h̄

(
Ω

2ρ(t)
d + 1
d − 1

− i�0eΛ(t) ρ̇(t)
)

q2

+
dα + α∗

d − 1

(√
Ω

h̄ρ2(t)
q − α0 cos ϕ

)]
. (75)

The squeezed state which have this wave function belongs to a nonclassical state. If
we recall that any non-commuting observables in quantum mechanics can be determined
simultaneously in classical mechanics with any order of precision, classical analogue for
squeezing is unthinkable.

A superposition of squeezed states may also be useful in understanding nonclassical features
of quantum states. Let us consider the superposition of �q|β� and �q|β∗� with an arbitrary
relative phase φ. The wave function for this system is given by

�q|Ψ(t)� = 1√N (�q|β0eiϕβ �+ eiφ�q|β0e−iϕβ �), (76)

where N is a normalization constant of the form

N = 2
[

1 + exp
(
−2(d − 1)

d + 1
α2

0 sin2 ϕ

)
cos[α2

0 sin(2ϕ)− φ]

]
. (77)

Substituting Eq. (75) into Eq. (76) and, then, executing some algebra results in

�q|Ψ(t)� =
(

Ω
2ρ2(t)h̄π

d + 1
d − 1

)1/4 2√N exp

[
− 1

2ρ(t)h̄

(
Ω

2ρ(t)
d + 1
d − 1

− i�0eΛ(t) ρ̇(t)
)

q2

+
(d + 1)α0 cos ϕ

d − 1

(√
Ω

h̄ρ2(t)
q − α0 cos ϕ

)
+

iφ
2

]

× cos

[
α0 sin ϕ

(√
Ω

h̄ρ2(t)
q − α0 cos ϕ

)
− φ

2

]
. (78)

Figures 6 and 7 are probability densities, |�q|Ψ(t)�|2, with the squeezing for q-quadrature
and for p-quadrature, respectively. By comparing these with Fig. 4, we see that the width of
densities are narrowed for the squeezing for q-quadrature and broadened for p-quadrature.
Thus the uncertainty of q is reduced for the case of the squeezing for q-quadrature, while
increased for p-quadrature. Therefore, through application of squeezed states, we are
able to reduce noise dispersion in one quadrature at the expense of increased noise in the
complementary quadrature as compared with that of coherent state. For this reason, squeezed
states of light can be applied to high precision interferometer that provides high resolutions
in measurement beyond the standard limits.

All wave functions that are given in Eqs. (32)[or (33)], (53), (57), (75), and (78) satisfy
Schrödinger equation when supplemented by some time-dependent phase factors suitable
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Fig. 6. Probability density for superposition of squeezed states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). The same values as that of Fig. 4 are used except for
d = 2.

for each. The phase (factor) for number state is given in Eq. (34) and that for other wave
functions can also be derived from the same method as that of the number state (Choi, 2011).

The quantum wave functions have no reality of their own and are just associated with the
probability to find photon in a certain domain as mentioned previously. The mathematical
description in classical optics for the interference in phase space is very similar to that in
quantum optics, but the classically represented optical waves have a real character.
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Fig. 6. Probability density for superposition of squeezed states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). The same values as that of Fig. 4 are used except for
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The quantum wave functions have no reality of their own and are just associated with the
probability to find photon in a certain domain as mentioned previously. The mathematical
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Fig. 7. Probability density for superposition of squeezed states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). The same values as that of Fig. 4 are used except for
d = −2.

Using the same method as that of previous section, the WDF that corresponds to Eq. (78) is
evaluated to be

W(q, p, t) =
2

πh̄N exp
(
− 2

h̄Ω
Ks(q, p, t)

)

× exp

[
d + 1
d − 1

(
2

√
Ω

h̄ρ2(t)
qα0 cos ϕ − 2α2

0 cos2 ϕ

)]

×
[

exp
(
− d − 1

d + 1
2α2

0 sin2 ϕ

)
cosh

(
d − 1
d + 1

Θ1

)
+ cos(Θ2 − φ)

]
, (79)
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where

Ks(q, p, t) =
Ω2

4ρ2(t)
d + 1
d − 1

q2 +
d − 1
d + 1

[ρ(t)p − �0eΛ(t) ρ̇(t)q]2. (80)

The WDF with squeezing is plotted in Fig. 8: (a) corresponds to squeezing for q-quadrature

Fig. 8. Quadrature plot of WDF for superposition of squeezed states with d = 3 for (a) and
d = −2 for (b). All values used here are the same as those in Fig. 5.

and (b) for p-quadrature. The width of two bells is shortened along the direction of q for (a)
and shortened along the direction of p for (b) when they are compared to that of coherent state
shown in Fig. 5.
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We can represent the position of two bells in polar coordinate as (α0,±ϕ) (Schleich et al., 1991).
For ϕ = 0 and ϕ = π, the two bells overlap: There are no interferences in this case, but
are quantum transitions between two different quantum states overlapped (Dragoman, 2001).
On the other hand, for ϕ = π/2, they are separated from each other with maximum distance.
The microscopical pattern of the structure of interference is directly related to the value of
φ. Of course, these rules mentioned in this paragraph are equally applied to the case of the
superposition of coherent state.

The WDF plays a crucial role in analyzing nonclassical characteristics of quantum states.
You can confirm the nonclassical features for the superposed squeezed states from negative
values in interference structure displayed in Fig. 8, which are very similar to that of previous
section. The methods for interpreting quantum superpositions are different from that for
simple addition of probability distributions, because, in quantum mechanics, we deal with
superpositions of probability amplitudes instead of those of probabilities themselves. This
is closely related to the appearance of interference terms in the distribution functions of
probability. The novel effects of nonclassical states that admits no analogue in classical
mechanics have drawn special attention both in theoretical and experimental physics thanks
to their applicability in modern technology employing optical and/or other dynamical
systems (Ourjoumtsev et al, 2006).

The development of modern technology in experimental photon engineering have made it
possible to produce Schrödinger cat states and/or kitten states (small Schrödinger cat states)
on the basis of effective nonlinear operations that can be realized via projective measurements
and post-selection. Projective measurements based on the Hilbert space formulation of
quantum theory produce complete determinations of the post-measurement states through
the projection-valued measures of a Hermitian operator (von Neumann, 1932). Kitten states
can be produced by squeezing a single-photon. An interesting and useful way to obtain
a squeezed single-photon is subtracting one photon from a single-mode squeezed vacuum
beam generated by an optical nonlinear process, so-called degenerate optical parametric
down-conversion (Ourjoumtsev et al., 2006). A sufficiently large Schrödinger cat states with a
smaller overlap between two constituent states can be created by subtracting multiphoton
from a squeezed vacuum beam (Neergaard-Nielsen et al., 2011). Other methods for
preparation of superposition states include a squeezed Schrödinger cat state prepared by
conditional homodyning of a two-photon Fock state (Ourjoumtsev et al., 2007), high-fidelity
superposition states prepared using cavity QED technology (de Queirós et al., 2007), and
preparation of entangled non-local superposition states (Ourjoumtsev et al., 2009).

5. Conclusion

Nonclassical features of superpositions of coherent states and squeezed states for
electromagnetic field in linear media whose electromagnetic parameters vary with time
are examined. The expansion of Maxwell equations in charge-source free medium gives
second order differential equations for both position function u(r) and time function q(t).
The Hamiltonian associated with the classical equation of motion for q(t) varies with time.
Among several methods that are useful in managing time-dependent Hamiltonian systems,
the quantum invariant operator method is used in order to solve quantum solutions of the
system. The annihilation and the creation operators related to quantum invariant operator
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satisfy boson commutation relation. The wave functions in number state are derived by taking
advantage of the annihilation and the creation operators.

Coherent state is obtained from the expansion of the wave functions of number state. By
solving the eigenvalue equation of squeeze operator, squeezed state is also obtained. We
can confirm from Figs. 4, 6 and 7, that the detailed structure of probability densities for
superposition states are somewhat complicated due to the interference between the two
component states. We cannot observe nonclassical properties of the coherent state from WDF,
because the value of WDF for a single coherent state is always positive. However, a minor
nonclassicality of the coherent state has been reported (Johansen, 2004): A particular quantum
distribution function for the coherent state of simple harmonic oscillator, the so-called
Margenau-Hill distribution, can take negative values in some regions, but the negative values
are relatively very small. This appearance reflects the nonclassicality demonstrated in weak
measurements which are, in general, performed under the situation where the coupling of a
measuring device to the measured system is very weak. The average values obtained from
the weak measurement reveal a time-symmetric dependence on initial and final conditions
(Shikano & Hosoya, 2010), providing a natural definition of conditional probabilities in
quantum mechanics and, consequently, enabling a more complete description for quantum
statistics. However, the interpretation of the results of weak measurements is somewhat
controversial on account of its peculiar feature that the measured (weak) value can take
strange ones which are outside the range of the eigenvalues of a target observable and may
even be complex. The detailed analysis of the strange features of weak measurements may
provide a better understanding for the essential differences between quantum and classical
statistics.

From Figs. 5 and 8, we can see the interference structure produced between the two main
bells. If we consider Eqs. (38) and (39), this determines the pattern of interference fringe
in real space of q and p. Though two main bells are always positive, interference structure
takes positive and negative values in turn, where the appearance of the negative values
is an important signal for the nonclassicality of the system. In fact, nonclassical quantum
states are general and ubiquitous. Not only any pure state of the harmonic oscillator can
be represented in terms of nonclassical quantum states but also even the number state is a
class of nonclassical quantum states (Kis et al., 2001). Nonclassical states in physical fields
such as various optical systems, ion motion in a Paul trap, and quantum dot can be applied
to fundamental problems in modern technology ranging from high-resolution spectroscopy to
low-noise communication and quantum information processing (Kis et al., 2001). In particular,
nonclassical properties of correlated quantum systems are expected to play the key role to
overcome some limitations relevant to information processing in classical computer system
and classical communication.

6. References

Ahmad, M. A.; Bukhari, S. H.; Khan, S. N.; Ran, Z.; Liao, Q. & Liu, S. (2011). Nonclassical
features of entangled coherent states. J. Mod. Opt., Vol. 58, No. 10, pp. 890-895.

Asbóth, J. K.; Calsamiglia, J. & Ritsch, H. (2005). Computable measure of nonclassicality for
light. Phys. Rev. Lett., Vol. 94, No. 17, pp. 173602(1-4).

Bartelt, H. O.; Brenner, K.-H. & Lohmann, A. W. (1980). The Wigner distribution function and
its optical production. Opt. Commun., Vol. 32, No. 1, pp. 32-38.

45
Nonclassical Properties of Superpositions 
of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media



20 Will-be-set-by-IN-TECH

We can represent the position of two bells in polar coordinate as (α0,±ϕ) (Schleich et al., 1991).
For ϕ = 0 and ϕ = π, the two bells overlap: There are no interferences in this case, but
are quantum transitions between two different quantum states overlapped (Dragoman, 2001).
On the other hand, for ϕ = π/2, they are separated from each other with maximum distance.
The microscopical pattern of the structure of interference is directly related to the value of
φ. Of course, these rules mentioned in this paragraph are equally applied to the case of the
superposition of coherent state.

The WDF plays a crucial role in analyzing nonclassical characteristics of quantum states.
You can confirm the nonclassical features for the superposed squeezed states from negative
values in interference structure displayed in Fig. 8, which are very similar to that of previous
section. The methods for interpreting quantum superpositions are different from that for
simple addition of probability distributions, because, in quantum mechanics, we deal with
superpositions of probability amplitudes instead of those of probabilities themselves. This
is closely related to the appearance of interference terms in the distribution functions of
probability. The novel effects of nonclassical states that admits no analogue in classical
mechanics have drawn special attention both in theoretical and experimental physics thanks
to their applicability in modern technology employing optical and/or other dynamical
systems (Ourjoumtsev et al, 2006).

The development of modern technology in experimental photon engineering have made it
possible to produce Schrödinger cat states and/or kitten states (small Schrödinger cat states)
on the basis of effective nonlinear operations that can be realized via projective measurements
and post-selection. Projective measurements based on the Hilbert space formulation of
quantum theory produce complete determinations of the post-measurement states through
the projection-valued measures of a Hermitian operator (von Neumann, 1932). Kitten states
can be produced by squeezing a single-photon. An interesting and useful way to obtain
a squeezed single-photon is subtracting one photon from a single-mode squeezed vacuum
beam generated by an optical nonlinear process, so-called degenerate optical parametric
down-conversion (Ourjoumtsev et al., 2006). A sufficiently large Schrödinger cat states with a
smaller overlap between two constituent states can be created by subtracting multiphoton
from a squeezed vacuum beam (Neergaard-Nielsen et al., 2011). Other methods for
preparation of superposition states include a squeezed Schrödinger cat state prepared by
conditional homodyning of a two-photon Fock state (Ourjoumtsev et al., 2007), high-fidelity
superposition states prepared using cavity QED technology (de Queirós et al., 2007), and
preparation of entangled non-local superposition states (Ourjoumtsev et al., 2009).

5. Conclusion

Nonclassical features of superpositions of coherent states and squeezed states for
electromagnetic field in linear media whose electromagnetic parameters vary with time
are examined. The expansion of Maxwell equations in charge-source free medium gives
second order differential equations for both position function u(r) and time function q(t).
The Hamiltonian associated with the classical equation of motion for q(t) varies with time.
Among several methods that are useful in managing time-dependent Hamiltonian systems,
the quantum invariant operator method is used in order to solve quantum solutions of the
system. The annihilation and the creation operators related to quantum invariant operator
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satisfy boson commutation relation. The wave functions in number state are derived by taking
advantage of the annihilation and the creation operators.

Coherent state is obtained from the expansion of the wave functions of number state. By
solving the eigenvalue equation of squeeze operator, squeezed state is also obtained. We
can confirm from Figs. 4, 6 and 7, that the detailed structure of probability densities for
superposition states are somewhat complicated due to the interference between the two
component states. We cannot observe nonclassical properties of the coherent state from WDF,
because the value of WDF for a single coherent state is always positive. However, a minor
nonclassicality of the coherent state has been reported (Johansen, 2004): A particular quantum
distribution function for the coherent state of simple harmonic oscillator, the so-called
Margenau-Hill distribution, can take negative values in some regions, but the negative values
are relatively very small. This appearance reflects the nonclassicality demonstrated in weak
measurements which are, in general, performed under the situation where the coupling of a
measuring device to the measured system is very weak. The average values obtained from
the weak measurement reveal a time-symmetric dependence on initial and final conditions
(Shikano & Hosoya, 2010), providing a natural definition of conditional probabilities in
quantum mechanics and, consequently, enabling a more complete description for quantum
statistics. However, the interpretation of the results of weak measurements is somewhat
controversial on account of its peculiar feature that the measured (weak) value can take
strange ones which are outside the range of the eigenvalues of a target observable and may
even be complex. The detailed analysis of the strange features of weak measurements may
provide a better understanding for the essential differences between quantum and classical
statistics.

From Figs. 5 and 8, we can see the interference structure produced between the two main
bells. If we consider Eqs. (38) and (39), this determines the pattern of interference fringe
in real space of q and p. Though two main bells are always positive, interference structure
takes positive and negative values in turn, where the appearance of the negative values
is an important signal for the nonclassicality of the system. In fact, nonclassical quantum
states are general and ubiquitous. Not only any pure state of the harmonic oscillator can
be represented in terms of nonclassical quantum states but also even the number state is a
class of nonclassical quantum states (Kis et al., 2001). Nonclassical states in physical fields
such as various optical systems, ion motion in a Paul trap, and quantum dot can be applied
to fundamental problems in modern technology ranging from high-resolution spectroscopy to
low-noise communication and quantum information processing (Kis et al., 2001). In particular,
nonclassical properties of correlated quantum systems are expected to play the key role to
overcome some limitations relevant to information processing in classical computer system
and classical communication.
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Bužek, V.; Vidiella-Barranco, A. & Knight, P. L. (1992). Superpositions of coherent states:
Squeezing and dissipation. Phys. Rev. A, Vol. 45, No. 9, pp. 6570-6585.

Choi, J. R. (2004). Wigner distribution for the time-dependent quadratic-Hamiltonian
quantum system using the Lewis-Riesenfeld invariant operator. Int. J. Theore. Phys.,
Vol. 44, No. 3, pp. 327-348.

Choi, J. R. (2010a). Invariant operator theory for the single-photon energy in time-varying
media. Chinese Phys. B Vol. 19, No. 1, pp. 010306(1-5).

Choi, J. R. (2010b). Interpreting quantum states of electromagnetic field in time-dependent
linear media. Phys. Rev. A, Vol. 82, No. 5, pp. 055803(1-4).

Choi, J. R. (2011). An approach to dark energy problem through linear invariants. Chinese.
Phys. C, Vol. 35, No. 3, pp. 233-242.

Choi, J. R. & Yeon, K. H. (2005). Quantum properties of light in linear media with
time-dependent parameters by Lewis-Riesenfeld invariant operator method. Int. J.
Mod. Phys. B, Vol. 19, No. 14, pp. 2213-2224.

Choi, J. R. & Yeon, K. H. (2008). Time-dependent Wigner distribution function employed in
coherent Schrodinger cat states: |Ψ(t)� = N−1/2(|α�+ eiφ| − α�). Phys. Scr., Vol. 78,
No. 4, pp. 045001(1-9).

de Queirós, I. P.; Cardoso, W. B. & de Almeida, N. G. (2007). Superposition of coherent states
prepared in one mode of a dissipative bimodal cavity. J. Phys. B: At. Mol. Opt. Phys.,
Vol. 40, No. 1, pp. 21-27.

Dragoman, D. (2001). Quantum interference as phase space filtering. Optik, Vol. 112, No. 1, pp.
31-36.

Eliezer, C. J. & Gray, A. (1976). A note on time-dependent harmonic-oscillator. SIAM J. Appl.
Math., Vol. 30, No. 3, pp. 463-468.

Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Phys. Rev., Vol. 131,
No. 6, pp. 2766-2788.

Johansen, L. M. (2004). Nonclassical properties of coherent states. Phys. Lett. A, Vol. 329, No.
3, pp. 184-187.

Kiesel, T.; Vogel, W.; Parigi, V.; Zavatta, A. & Bellini, M. (2008). Experimental determination
of a nonclassical Glauber-Sudarshan P function. Phys. Rev. A, Vol. 78, No. 2, pp.
021804(R)(1-4).

Kis, Z.; Vogel, W. & Davidovich, L. (2001). Nonlinear coherent states of trapped-atom motion.
Phys. Rev. A, Vol. 64, No. 3, pp. 033401(1-10).

Klyshko, D. N. (1996). Observable signs of nonclassical light. Phys. Lett. A, Vol. 213, No. 1-2,
pp. 7-15.

Kozaki, S. (1978). Reflection of electromagnetic wave from a time-varying medium. Electron.
Lett., Vol. 14, No. 25, pp. 826-828.

Leonhardt, U. (1997). Measuring the Quantum State of Light. Cambridge University Press,
Cambridge, England.

46 Quantum Optics and Laser Experiments Nonclassical Properties of Superpositions of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media 23

Lewis, H. R. Jr. & Riesenfeld, W. B. (1969). An exact quantum theory of the time-dependent
harmonic oscillator and of a charged particle in a time-dependent electromagnetic
field. J. Math. Phys, Vol. 10, No. 8, pp. 1458-1473.

Lvovsky, A. I. & Shapiro, J. H. (2002). Nonclassical character of statistical mixtures of the
single-photon and vacuum optical states. Phys. Rev. A, Vol. 65, No. 3, pp. 033830(1-6).

Mogilevtsev, D. & Kilin, S. (2000). Why the ąőcoarse-grainingąŕ of Wigner function is always
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Photon Localization Revisited
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1. Introduction

Whilst quantum electrodynamics (QED) underwent an impressive development and reached
its maturity in the middle of the last century, one of its basic concepts—the photon wave
function in free space—was deprived of such fortune. Although the photon wave function in
coordinate representation was introduced already in 1930 by Landau and Peierls, the concept
was found to suffer from inherent difficulties that were not overcome during the century
—see review (Bialynicki-Birula, 1996). The common explanation presented in textbooks,
e.g., (Akhiezer & Berestetskii, 1965; Mandel & Wolf, 1995), may be summed up as follows:
(i) no position operator exists for the photon, (ii) while the position wave function may be
localized near a space-time point, the measurable quantities like the electromagnetic field
vectors, energy, and the photodetection probability remain spread out due to their non-local
relation with the position wave function.

However, just before the turn of the century both of these widely-espoused notions were
disproved (Bialynicki-Birula, 1998; Hawton, 1999) and in the new century a fresh interest in
the photon localization problem seems to have been awakened, see, e.g., (Bialynicki-Birula &
Bialynicka-Birula, 2009; Chan et al., 2002; Hawton, 2007; Keller, 2000; 2005), meeting the needs
of developments in near-field optics, cavity QED, and quantum computing. Recently, into the
study of quantum phenomena in general and photon localization in particular, the so-called
localized waves were involved (Belgiorno et al., 2010; Besieris et al., 1994; Ciattoni & Conti,
2007; Jáuregui & Hacyan, 2005; Saari et al., 2005). These belong to the propagation-invariant
non-diffracting localized solutions to the linear wave equation—a research subject emerged
in the 1980-ies, see the 1st collective monograph on the field (Hernández-Figueroa et al.,
2008). Experimental feasibility of some of the localized waves has been demonstrated already
(Alexeev et al., 2002; Bowlan et al., 2009; Grunwald et al., 2003; Reivelt & Saari, 2002; Saari
et al., 2010; Saari & Reivelt, 1997; Sõnajalg et al., 1997).

(Bialynicki-Birula, 1998) writes that the statement “even when the position wave function
is strongly concentrated near the origin, the energy wave function is spread out over space
asymptotically like r−7/2 ” —citation from (Mandel & Wolf, 1995), p. 638—is incorrect and
that both wave functions may be strongly concentrated near the origin. He demonstrates,
on one hand, that photons can be essentially better localized in space—with an exponential
falloff of the photon energy density and the photodetection rates. On the other hand,
he establishes—and it is even somewhat startling that nobody has done it earlier—that
certain localization restrictions arise out of a mathematical property of the positive frequency
solutions which therefore are of a universal character and apply not only to photon states but
hold for all particles. More specifically, it has been proven in the Letter (Bialynicki-Birula,

3
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(Alexeev et al., 2002; Bowlan et al., 2009; Grunwald et al., 2003; Reivelt & Saari, 2002; Saari
et al., 2010; Saari & Reivelt, 1997; Sõnajalg et al., 1997).

(Bialynicki-Birula, 1998) writes that the statement “even when the position wave function
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asymptotically like r−7/2 ” —citation from (Mandel & Wolf, 1995), p. 638—is incorrect and
that both wave functions may be strongly concentrated near the origin. He demonstrates,
on one hand, that photons can be essentially better localized in space—with an exponential
falloff of the photon energy density and the photodetection rates. On the other hand,
he establishes—and it is even somewhat startling that nobody has done it earlier—that
certain localization restrictions arise out of a mathematical property of the positive frequency
solutions which therefore are of a universal character and apply not only to photon states but
hold for all particles. More specifically, it has been proven in the Letter (Bialynicki-Birula,
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1998) for the case of spherically imploding-exploding one-photon wavepacket that the
Paley-Wiener theorem allows even at instants of maximal localization only such asymptotic
decrease of the modulus of the wave function with the radial distance r that is slower than
the linear exponential one, i.e., anything slower than ∼ exp(−Ar), where A is a constant.
The latter is what the Paley-Wiener theorem says about a function whose Fourier spectrum
contains no negative frequencies. In (Bialynicki-Birula & Bialynicka-Birula, 2009) the same
results have been obtained using a set of space-dependent photon creation and annihilation
operators without any reference to the mode decomposition. The latter paper shows also that
one may sharply localize either electric or magnetic but not both footprints of photons.

The purpose of the chapter is to give an overview and an analysis of the most
striking contradictions in the notions of photon localization presented in textbooks and in
abovementioned new studies.

The first Section reproduces derivation of main textbook formulas concerning the photon
localization problem. In the next Section we demonstrate, following (Bialynicki-Birula, 1998),
a superficiality of the common textbook notion. Here we also publish for the first time our
generalizations to the exponential localization models found in (Bialynicki-Birula, 1998).

In Section 4 we take a closer look at the localization restrictions caused by the circumstance
that the photon wave function is mathematically an analytic signal with respect to time
variable, which obeys the Paley-Wiener theorem. Here we present some supporting graphical
illustrations as well.

Section 5 reproduces results of our paper (Saari et al., 2005) on two-dimensional localization
of photon packets constructed from certain localized wave solutions to the wave equation. A
discussion follows why such packets seemingly violate the localization restrictions set by the
Paley-Wiener theorem.

2. Common treatment of the problem

In this Section we outline the standard approach to the photon localizability problem
following the monograph (Mandel & Wolf, 1995). Only these formulas will be presented
that are requisite for introduction, comparison and contrasting with what follows in the next
Sections.

A field state containing one photon with wavevector k and polarization s is given through
acting of the photon creation operator a+(k, s) on the vacuum state |vac�. Any one-photon
state which is at least partially localized needs a linear superposition of such plane-wave states
of the form

|1ph� = ∑
s

∫
d3k φ(k, s)a+(k, s) |vac� , (1)

in which φ(k, s) is any properly normalized weight function. The vector function

Φ(r, t) = ∑
s

∫
d3k φ(k, s)εk,sei(kr−ωt) , (2)

where εk,s are (generally complex) unit polarization vectors and the frequency ω = c |k|,
then represents the corresponding position space wave function (known as the Landau-Peierls
wave function) of the photon in state |1ph�. Its modulus squared, integrated over a volume
V, gives the probability of locating a particle within the volume V.
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However, the vector function defined in Eq. (2) does not transform locally under Lorentz
transformations. Moreover, there is no procedure to measure Φ(r, t). Measurable may be the
quantities like energy or the photoelectric detection probability of the photon. It can be shown
that neither of them are localized in the volume into which Φ(r, t) has been confined.

The average photon energy is

�1ph| Ĥ |1ph� = ∑
s

∫
d3k �ω |φ(k, s)|2 .

By introducing the function

ΦE(r, t) = ∑
s

∫
d3k

√
�ωφ(k, s)εk,sei(kr−ωt) , (3)

cf. Eq. (2), which might be called the energy wave function to distinguish it from Φ(r, t), and
differs from Φ(r, t) only in having the k-dependent factor

√
�ω in the expansion, we readily

find that
�1ph| Ĥ |1ph� =

∫
d3r |ΦE(r, t)|2 . (4)

|ΦE(r, t)|2 therefore plays the role of energy density. But this energy density is not locally
connected with the photon density |Φ(r, t)|2. Indeed, from the Fourier expansions of Φ(r, t)
and ΦE(r, t) we find with the help of the convolution theorem that they are connected through
the spatial convolution

ΦE(r, t) =
∫

d3r� G(r − r�)Φ(r�, t) , (5)

where the spatial function G(...) is the three-dimensional Fourier transform of
√
�ω, or

G(r) =
(�c)1/2

(2π)3

∫
d3k

√
keikr . (6)

Because of the spread associated with G(r), ΦE(r, t) can be non-zero at positions where Φ(r, t)
is zero.

Following (Mandel & Wolf, 1995) and by introducing an exponential factor with vanishing
parameter ε in order to regularize the integral, one gets

G(r,ε) =
(�c)1/2

(2π)3

∫
d3k

√
keikre−εk .

This integral can be taken in spherical coordinates

G(r,ε) =
(�c)1/2

(2π)3

∫ ∞

0
dk k2

√
ke−εk

∫ π

0
dθ eikr cos θ sin θ

∫ 2π

0
dφ

=
(�c)1/2

2π2
1
r

∫ ∞

0
dk k3/2e−εk sin kr (7)

=
3(�c)1/2

8π3/2
1

r(r2 + ε2)5/4 sin
(

5
2

arctan
r
ε

)
.

51Photon Localization Revisited



2 Will-be-set-by-IN-TECH

1998) for the case of spherically imploding-exploding one-photon wavepacket that the
Paley-Wiener theorem allows even at instants of maximal localization only such asymptotic
decrease of the modulus of the wave function with the radial distance r that is slower than
the linear exponential one, i.e., anything slower than ∼ exp(−Ar), where A is a constant.
The latter is what the Paley-Wiener theorem says about a function whose Fourier spectrum
contains no negative frequencies. In (Bialynicki-Birula & Bialynicka-Birula, 2009) the same
results have been obtained using a set of space-dependent photon creation and annihilation
operators without any reference to the mode decomposition. The latter paper shows also that
one may sharply localize either electric or magnetic but not both footprints of photons.

The purpose of the chapter is to give an overview and an analysis of the most
striking contradictions in the notions of photon localization presented in textbooks and in
abovementioned new studies.

The first Section reproduces derivation of main textbook formulas concerning the photon
localization problem. In the next Section we demonstrate, following (Bialynicki-Birula, 1998),
a superficiality of the common textbook notion. Here we also publish for the first time our
generalizations to the exponential localization models found in (Bialynicki-Birula, 1998).

In Section 4 we take a closer look at the localization restrictions caused by the circumstance
that the photon wave function is mathematically an analytic signal with respect to time
variable, which obeys the Paley-Wiener theorem. Here we present some supporting graphical
illustrations as well.

Section 5 reproduces results of our paper (Saari et al., 2005) on two-dimensional localization
of photon packets constructed from certain localized wave solutions to the wave equation. A
discussion follows why such packets seemingly violate the localization restrictions set by the
Paley-Wiener theorem.

2. Common treatment of the problem

In this Section we outline the standard approach to the photon localizability problem
following the monograph (Mandel & Wolf, 1995). Only these formulas will be presented
that are requisite for introduction, comparison and contrasting with what follows in the next
Sections.

A field state containing one photon with wavevector k and polarization s is given through
acting of the photon creation operator a+(k, s) on the vacuum state |vac�. Any one-photon
state which is at least partially localized needs a linear superposition of such plane-wave states
of the form

|1ph� = ∑
s

∫
d3k φ(k, s)a+(k, s) |vac� , (1)

in which φ(k, s) is any properly normalized weight function. The vector function

Φ(r, t) = ∑
s

∫
d3k φ(k, s)εk,sei(kr−ωt) , (2)

where εk,s are (generally complex) unit polarization vectors and the frequency ω = c |k|,
then represents the corresponding position space wave function (known as the Landau-Peierls
wave function) of the photon in state |1ph�. Its modulus squared, integrated over a volume
V, gives the probability of locating a particle within the volume V.

50 Quantum Optics and Laser Experiments Photon Localization Revisited 3

However, the vector function defined in Eq. (2) does not transform locally under Lorentz
transformations. Moreover, there is no procedure to measure Φ(r, t). Measurable may be the
quantities like energy or the photoelectric detection probability of the photon. It can be shown
that neither of them are localized in the volume into which Φ(r, t) has been confined.

The average photon energy is
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When ε → 0, or more generally whenever ε � r, this reduces to

G(r) = ± 3(�c)1/2

8
√

2π3/2
r−7/2 . (8)

For the derivations in the next sections it is useful to notice that when in the spherically
symmetric case a 3D Fourier integral is transformed into corresponding 1D one, the factor
(kr)−1 sin kr appears in the integrand. This factor represents spherically symmetric standing
wave and the integral is nothing but a superposition over such waves of different frequencies.

One can conclude from Eqs. (5) and (8) that—citation from (Mandel & Wolf, 1995)
follows—"even when the position wave function Φ(r, t) is strongly concentrated near
the origin, the energy wave function is spread out over space asymptotically like r−7/2.
Alternatively, we may say that even when the probability distribution of the photon is
strongly localized near the origin, the energy distribution extends over large distances and
falls off as r−7." As the EM field operators contain the same k-dependent factor

√
�ω and

are proportional to ΦE(r, t), the corresponding measurable quantities, incl. the probability
of photodetection, bear the same non-local relation to the photon probability distribution
|Φ(r, t)|2. Again, one can conclude that—citation from (Mandel & Wolf, 1995) continues – "for
a photon which is strongly localized close to the origin, there is a non-vanishing probability
falling off as r−7 that it will be detected by a photoelectric detector at a distance r."

3. Exponential localization

In this section we see that the statements cited in the previous paragraph are incorrect.

Due to the orthogonality of the polarization vectors ε∗k,s · εk,s� = δss� (s, s� = 1, 2) the total
energy of a one-photon state Eq. (4) breaks into two non-interfering contributions from both
polarization states. Therefore one may consider only one polarization at a time (or assume
φ(k, s = 2) ≡ 0). Thus, the problem of the best localization of a photon reduces to the
question: what is the fastest possible falloff with the distance r of the modulus of vector
function ΦE(r, t)?

The most consistent treatment of the photon (energy) wave function is based on the
Riemann-Silberstein (RS) complex vector which is given (in the SI system) by the following
linear combination of the EM field vectors (Bialynicki-Birula, 1996; 1998)

F(r, t) =
D(r, t)√

2ε0
+ i

B(r, t)√
2μ0

.

Upon quantization of the electromagnetic field, the RS vector becomes the field operator
F̂(r, t). It can be most conveniently decomposed into circularly polarized plane-wave modes
with polarization vectors e±(k) for left-handed and right-handed photons, which are related
as e−(k) = (e+(k))

∗. Using the RS operator with such decomposition for expressing the
energy density of a one-photon state, the energy breaks into two independent contributions
from both polarizations already before integration over space, i. e., the energy density turns
out to be given as

|ΦE(r, t)|2 = |F+(r, t)|2 + |F−(r, t)|2 . (9)

where
F±(r, t) =

∫
d3k d(k)e±(k) f±(k)ei(kr−ωt) . (10)
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Here d(k) is the frequency dependent normalization factor d(k) = (2π)−3/2
√
�ω =√

�c/ (2π)3k1/2 and the weight functions φ(k, s = 1, 2) have been expressed for the circularly
polarized one-photon states as (2π)−3/2 f±(k), cf. Eq. (3).

Again, since both polarization states in Eq. (9) contribute independently (incoherently) to the
total energy density, one may consider only one polarization at a time. Thus, the problem of
the best localization of a photon reduces to the question: what is the fastest possible falloff
with the distance r = |r| of the modulus of vector functions F±(r, t)?

Since we are interested in a uniform localization in all directions (in 3D space, later
in a 2D plane), the expansion in Eq. (10) has to contain plane waves with many very
different directions of vectors k. As the constituents of the expansion are transversal plane
waves obeying the condition k × e+(k) = −ike+(k), the polarization vectors e±(k)
correspondingly possess various directions as well—that highly complicates study of falloff
properties of |F+(r, t)|.
Fortunately, such study can be conveniently carried out if we express, following
(Bialynicki-Birula, 1996; 1998), the RS vector in terms of a “superpotential” Z(r, t),

F(r, t) = ∇×
[

i
∂

∂ct
Z(r, t) +∇× Z(r, t)

]
. (11)

The complex vector field Z(r, t) is a complexified version of the Hertz potential, which must
obey the homogeneous wave equation and therefore has the following decomposition into
plane waves

Z(r, t) =
∫

d3k
[
h+(k)ei(kr−ωt) + h∗−(k)e−i(kr−ωt)

]
, (12)

where h±(k) now are arbitrary vector functions of k, whose directions are not governed by any
transversality condition. Like in the case of well-known problem of dipole radiation we may
take unidirectional set of vectors h±(k) which depend only on the modulus of k. In such case
we stand a good chance of finding model closed-form expressions for the integral in Eq. (12)
with the help of tables of integrals and/or transforms, as we see below Thereafter one can
derive F+(r, t) (or F−(r, t)) from Eq. (11) and study falloff behavior of photon energy density
|F+(r, t)|2 (or |F−(r, t)|2), which is also proportional to the photon detection probability.

As we are interested in one polarization state we will deal with the first (positive frequency)
term in Eq. (12) only and let us choose h+(k) in the form (Bialynicki-Birula, 1998)

h+(k) ≡ h(k) = ml3 h(σ)
σ

, (13)

where m is a constant vector that includes the normalization factor and σ = kl is wavenumber
measured in units of a characteristic length l that will play the role of photon wave function
falloff parameter, i. e., l controls the volume of spherically symmetric localization. Since the
wave vector dependence of h(k) in Eq. (13) is isotropic, the 3D integral in Eq. (12) – like in
derivation Eq. (7)—reduces into 1D integral in spherical coordinates yielding

Z(r, t) = 4πml2
∫ ∞

0
dk h(lk)

sin kr
r

e−ikct (14)

= 2πi m
l
r

[
g(

ct + r
l

)− g(
ct − r

l
)

]
, (15)
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where the function g is given by the Fourier transform of h(σ) over positive frequencies only

g(τ) =
� ∞

0
dσ h(σ)e−iστ . (16)

If we split the function under the transform into two factors h(σ) = h̄(σ) exp(−σ), we notice
that the Fourier integral can be expressed as the Laplace transform at a point in the complex
plane, whose real coordinate has value 1

g(τ) = L �
h̄(σ); σ, 1 + iτ

�
. (17)

Eq. (17) opens possibility to carry out search of such functions h̄(σ) in rich tables of the Laplace
transform, which correspond to strong falloff of g(τ). Indeed, for all spectra of the form

h̄Hn (σ) = 2−1σ− n+1
2 exp

�
− 1

σ

�
Hn

��
1
σ

�
, (18)

which contains only half-integer negative powers of the wavenumber irrespective of the order
n of the Hermite polynom Hn and due to the exponential factor approaches zero very rapidly
as the wavenumber approaches zero, there is a closed-form Laplace transform in (Bateman &
Erdelyi, 1954) Sect. 4.11, Eq. (18) or Sect. 5.6, Eq. (8), which yields

gHn (τ) = 2n−1√π (1 + iτ)
n−1

2 exp
�
−2

√
1 + iτ

�
, (19)

or, consequently, with the help of Eq. (15)

Z(r, t) = 2nπ3/2i m
l
r

⎡
⎣
�
1 + i ct+r

l
� n−1

2 exp
�
−2

�
1 + i ct+r

l

�
−

− �
1 + i ct−r

l
� n−1

2 exp
�
−2

�
1 + i ct−r

l

�
⎤
⎦ (20)

A particular case with n = 1, when

h̄1(σ) = σ− 3
2 exp

�
− 1

σ

�
, (21)

Z(r, t) = 2π3/2i m
l
r

�
exp

�
−2

�
1 + i

ct + r
l

�
− exp

�
−2

�
1 + i

ct − r
l

��
(22)

was found in (Bialynicki-Birula, 1998) and from Eq. (22) Z(r, t = 0) and i∂ctZ(r, t = 0), which
turn out to be real quantities, were calculated there as well.

The Hertz vector given by Eqs. (20), (22) describes a broadband single photon state having the
form of a spherical shell converging for negative and diverging for positive values of time t,
attaining the maximal localization at instant t = 0. The function Z(r, t) and its time derivative
∂ctZ(r, t) fall off exponentially at large r as exp(−√

2r/l) (multiplied by some power of r), and
this property will be shared by their space derivatives involved in Eq. (11). Hence, the photon
energy density as defined by Eq. (9) will also exhibit an exponential falloff.

Browsing tables of integrals reveals that for obtaining the exponential falloff the spectra
need not contain negative powers of the wavenumber in combinations prescribed by special
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polynomials like in Eq. (18). For example, the spectra containing only a single half-integer
negative power

h̄n(σ) = σ−n− 1
2 exp

(
− q

σ

)
, (23)

(were q is an optional dimensionless parameter) with the help of (Gradshteyn & Ryzhik, 2000)
Eq. (3.472-5) gives

gn(τ) = (−1)n
√

π

1 + iτ
∂n

∂qn exp
[
−2

√
q (1 + iτ)

]
.

We see that by putting q = 1 we reach exactly the same exponential factor as in Eq. (19).

As shown in the previous Section, the spectrum of the Landau-Peierls (LP) wave function
Eq. (2) contains factor k−1/2 as compared to the spectrum of photon wave function Eq. (3) or
Eq. (10) due to the extra factor

√
�ω or d(k) in the expansion of the energy wave function.

Hence, in order to obtain the photon position wave function from the Hertz potential with
the model spectra Eqs. (19), (21), (23) by the same procedure, one has to use the spectra with
an additional factor (�c)−1/2 σ−1/2, i.e., the spectra with integer powers of the wavenumber.
Specifically, instead of Eq. (23) we must start (if omitting constants and taking q = 1) with

h̄LP
n (σ) = σ−n−1 exp

(
− 1

σ

)
.

Fortunately, for such spectrum a closed-form Laplace transform exists (Bateman & Erdelyi,
1954) Eq. (5.16-40) yielding

gLP
n (τ) = (24)

= L
(

σ−η−1 exp
(
− 1

σ

)
; σ, 1 + iτ

)
= 2 (1 + iτ)η/2 Kη(2

√
1 + iτ) , η = n ,

where Kη is the modified Bessel function (or the Macdonald function) of order η. This result
can be used also for obtaining gLP

Hn
(τ) corresponding to energy wave function spectrum

Eq. (18) if to write out explicitly the Hermite polynomial. Parenthetically, as the last transform
formula is valid for any, even complex value of η, then for the half-integer value η = 1/2 we
recover Eq. (22), since K± 1

2
(z) =

√
π/2ze−z. Moreover, for any, incl. integer order, the last

equality holds asymptotically

lim
|1+iτ|→∞

L
(

σ−η−1 exp
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− 1

σ

)
; σ, 1 + iτ

)
=

√
π (1 + iτ)η/2−1/4 e−2

√
1+iτ .

For the particular case η = 1 this result coincides with (Bialynicki-Birula, 1998) Eq. (34) .

Hence, we have reached a general result: if the wavenumber spectrum of decomposition of
the Hertz vector Z(r, t) into plane waves has the form

h(k) ∝
(

1
kl

)α

exp
(
−kl − 1

kl

)

then, irrespective of the value of power α, at large distances the falloff of Z(r, t) as well as of
wave functions F(r, t), Φ(r, t) and corresponding photon energy and probability densities is
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dominantly governed by exponential factor, the exponent being proportional to square root
of the distance.

Follows inescapable conclusion—for the first time made by (Bialynicki-Birula, 1998) on the
basis of one particular spectrum—that the textbook statements, cited in the end of previous
Section, are incorrect. Both functions—the position wave function and the energy wave
function—may be strongly (= exponentially) concentrated near the origin. The incorrect
statements seemingly stem from an idea that asymptotic behavior of convolution of two
functions is governed by the one with slower falloff. Apparently such understanding is
superficial and need not to be correct if none of the functions has finite support.

4. Limits of uniform localization in all directions

Having shown possibility of asymptotic falloff as ∼ exp(−A
√

r), where A is a constant,
naturally the question arises whether a stronger localization is allowed, e. g., according
to the exponent with a higher power of the radius rγ, 1/2 < γ ≥ 1. The answer
comes from inspection of Eq. (16) with the help of the Paley-Wiener theorem—or criterion,
see (Bialynicki-Birula, 1998). According to this theorem, the Fourier transform g (τ) of a
square-integrable function h (σ) that vanishes for all negative values of σ (i. e., for negative
frequencies in our context) must obey the following integrability condition:

∫ ∞

−∞
dτ

|log |g (τ)||
1 + τ2 < ∞ . (25)

This condition does not allow for the exponential falloff with γ ≥ 1 but anything arbitrarily
weaker than that is allowed. For example, g (τ) ∼ exp(−Aτn/(n+1)) and even g (τ) ∼
exp(−Aτ/ log τ), etc, i. e., almost linear exponential functions are allowed (Bialynicki-Birula,
1998).

Let us take a closer look at how the Paley-Wiener criterion restricts localization of a function
whose spectrum contains only positive frequencies, i. e., constitutes an analytic signal.

An 1D right-moving wave function with white spectrum is ultimately (i. e., delta-) localized
forever: Ψ (x, t) ∼ δ(x − ct). If we cut off the negative frequency half of the spectrum, we get

Ψ+ (x, t) ∼ δ−(x − ct) ,

δ−(y) ≡ 1
2π

∫ ∞

0
dkeiky =

1
2

[
δ(x − ct) +

i
π

P
A

x − ct

]
,

where the principal value (P) term corrupts the delta-localization. Since |δ−(y)| =
1/2π |y| , the falloff is slow: reciprocally proportional to the distance from the wave peak.
Parenthetically, two counterpropagating δ−-pulses colliding at the origin do not constitute an
analytical wave (but still an analytic signal in respect of time) because the wavenumber takes
now values of both signs. The imaginary part of such standing-wave-type wave function
vanishes at the instant t = 0, i. e., it is delta-localized at that instant.

This simple example of ultimate localization in 1D helps to study the case of uniform
localization in 3D space. Let us take the spectrum h(lk) in the integral Eq. (14),
which is nothing but a superposition of standing spherical waves, in the form h(lk) =
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4π−1 sin2 (lk/2) /k. Then for the instant t = 0 with the help of Eq. (3.828-3) of Ref.
(Gradshteyn & Ryzhik, 2000) we get

∫ ∞

0
dk 4π−1k−1 sin2 (lk/2) sin kr = 1, r < l, (26)

= 1/2, r = l,
= 0, r > l .

In other words, in the case of such spectrum Z(r, t = 0) is confined into spherical cell of
radius l. The support of Z(r, t = 0) is finite and in this sense the localization is the strongest.
There is no restrictions by the Paley-Wiener theorem here, because strictly at the instant t = 0
of maximal localization the integral is nothing but the sine transform for which the theorem
does not apply. Indeed, the sine transform tables give examples of the resultant functions with
arbitrarily abrupt falloff. However, it does not mean as if the photon localization restriction
was lifted at the instant t = 0. The explanation is that according to Eq. (11) the energy wave
function involves also the time derivative of Z(r, t) at t = 0, but the sine transforms of two
functions h(lk) and h(lk)k (the additional frequency factor k enters the integrand as the Fourier
image of ∂/∂ct) cannot simultaneously possess arbitrarily abrupt falloffs.

As soon as t �= 0 Eq. (26) is replaced by the Fourier transform over positive frequencies, which
can be evaluated through the Laplace transform L as follows

Z(r, t) = 4πmlr−1 I (r, t) ,

I (r, t) = 4π−1
∫ ∞

0
dk k−1 sin2 (lk/2) sin kr e−ikct (27)

= 4π−1 lim
ε→0

L
{

k−1 sin2 (lk/2) sin kr; k, ε + ict
}

= π−1 lim
ε→0

[
arctan(

l − r
ε + ict

)− arctan(
l + r

ε + ict
) + 2 arctan(

r
ε + ict

)

]
, (28)

where ε is the real part of the Laplace transform variable. As one can see in Fig. 1, falloff
of I (r, t �= 0) obeys the Paley-Wiener restriction indeed—asymptotically it is slower than
exponential decay with linear exponent. Naturally, I (r, t = 0) returns the behavior of Eq. (26),
i. e., the strict confinement into spherical cell of radius l. Sharp peaks and long tails of the
modulus of I (r, t �= 0) originate from the imaginary part of I (r, t) which is—as it is known for
an analytic signal—related to the real part through the Hilbert transform. The latter resembles
operation of taking derivative but is non-local, thus explaining appearance of the peaks and
tails.

Let us take a closer look at the real part of I (r, t), because it deserves interest not only as the
main contribution to |I (r, t)|. Common classical Hertz potential is a real quantity and contains
negative frequencies ω = −kc as well. Since k as wavenumber in spherical coordinates is by
definition positive everywhere in the integrand of Eq. (27) except in the exponent, where it
stands for the frequency ω = ±kc, integration over negative frequencies as well is equivalent
to adding to the integral its complex conjugate I∗ (r, t) . Hence, expressions for classical fields
would be governed by the real part of Eq. (28), which is free from the Paley-Wiener restrictions.
As one can see in Fig. 2, it constitutes a spherical bipolar pulse of rectangular profile, which
collapses—with negative half-cycle ahead– to the origin at negative times and expands –
with negative half-cycle behind—from the origin at positive times. At all times it preserves
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Fig. 1. (color online). Radial dependence of Eq.(28) at various time instants in units l/c: a
(red line), t = 0; b (blue), t = 0.1; c( green), t = 3. For comparison falloff of π−1 exp(−r/l) is
shown (dotted line d).

strict confinement. Between the stages of collapse and expansion the profile undergoes a
transformation which is characteristic for all few- and sub-cycle focusing pulses and is caused
by the Gouy phase shift (Saari, 2001). Having in mind that sections along horizontal lines in
Fig. 2 give radial dependences at fixed instants like in Fig. 1, one can verify that the sharp
peaks in the imaginary part correspond indeed to the abrupt steps in the real part.

Fig. 2. (color online). Four value levels of the real part of I(r,t) depicted in 2D plane of its
arguments. In white areas the function ReI(r,t) equals strictly to zero, i. e., its support has
finite volume.
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5. Localization in two dimensions

What if we allow nonuniform localization? Is a two-dimensional localization of the
one-photon state also restricted with the Paley-Wiener criterion? As shown in (Saari et al.,
2005) the answer to the latter question is NO, if we construct the wave functions from certain
so-called localized waves (Besieris et al., 1998; Bialynicki-Birula & Bialynicka-Birula, 2006;
Hernández-Figueroa et al., 2008; Recami et al., 2003; Saari & Reivelt, 2004; Salo et al., 2000),
which are recently discovered solutions to the linear wave equation. This Section reproduces
examples from (Saari et al., 2005).

As the first example leading to a stronger localization that one might expect from the
Paley-Wiener theorem, we will consider the photon field which is a superposition of
cylindrical solutions of the wave equation. Let us again use the Hertz potential approach, this
time putting Z(r, τ) = mΨ(r, τ), where τ ≡ ct, m is again a constant vector that includes the
proper normalization factor and is directed along the axis z (any other orientation gives similar
results), and Ψ(r, τ) is a wavepacket of Bessel functions J0 with the exponential spectrum and
a specific dispersion law for the axial wavenumber kz(ω) = const = k0

Ψ(ρ, z, τ) = Δ
∫ ∞

|k0|
dk J0

(
kρρ

)
e−kΔe−i(kτ−k0z) , (29)

where the radial coordinate ρ has been introduced and kρ =
(
k2 − k2

0
)1/2 is the lateral

component of the wave vector of the monochromatic plane-wave constituents represented
with the weight function e−kΔ whose width is Δ−1 (spectral width of the packet). The integral
can be taken with the help of a Laplace transform table and we obtain

Z(ρ, z, τ) = mΔ
exp

(
− |k0|

√
ρ2 + (Δ + iτ)2

)

√
ρ2 + (Δ + iτ)2

eik0z . (30)

Eq. (30) describes a simple cylindrical pulse modulated harmonically in the axial direction
and radially converging (when τ < 0) to the axis and thereafter (when τ > 0) expanding from
it, the intensity distribution resembling an infinitely long tube coaxial with the z axis and with
a time-dependent diameter (see Fig. 6. in (Saari & Reivelt, 2004)). It follows from Eqs. (30) and
(11) that

|Z(ρ → ∞, z, τ = 0)| ∼ ρ−1 exp(−ρ/l) , (31)

|F(ρ → ∞, z, τ = 0)|2 ∼
[
ρ−2 + O(ρ−3)

]
exp(−2ρ/l) , (32)

where l ≡ |k0|−1 is the characteristic length (or length unit). Thus, while the photon is
completely delocalized in the axial direction, its energy density falloff in the lateral directions
is exponential with the linear exponent at all times the conditions τ � ρ � Δ are fulfilled,
see Fig. 3. The time derivative as well as the spatial derivatives contain the same exponential
factor, ensuring the exponential falloff of the the Riemann-Silberstein vector in Eq. (32).

Hence, a one-photon field given by Eq. (30) serves as the first and simplest example where
the localization in two transversal dimensions is governed by different rules than uniform
localization in three dimensions.
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strict confinement. Between the stages of collapse and expansion the profile undergoes a
transformation which is characteristic for all few- and sub-cycle focusing pulses and is caused
by the Gouy phase shift (Saari, 2001). Having in mind that sections along horizontal lines in
Fig. 2 give radial dependences at fixed instants like in Fig. 1, one can verify that the sharp
peaks in the imaginary part correspond indeed to the abrupt steps in the real part.

Fig. 2. (color online). Four value levels of the real part of I(r,t) depicted in 2D plane of its
arguments. In white areas the function ReI(r,t) equals strictly to zero, i. e., its support has
finite volume.
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5. Localization in two dimensions

What if we allow nonuniform localization? Is a two-dimensional localization of the
one-photon state also restricted with the Paley-Wiener criterion? As shown in (Saari et al.,
2005) the answer to the latter question is NO, if we construct the wave functions from certain
so-called localized waves (Besieris et al., 1998; Bialynicki-Birula & Bialynicka-Birula, 2006;
Hernández-Figueroa et al., 2008; Recami et al., 2003; Saari & Reivelt, 2004; Salo et al., 2000),
which are recently discovered solutions to the linear wave equation. This Section reproduces
examples from (Saari et al., 2005).

As the first example leading to a stronger localization that one might expect from the
Paley-Wiener theorem, we will consider the photon field which is a superposition of
cylindrical solutions of the wave equation. Let us again use the Hertz potential approach, this
time putting Z(r, τ) = mΨ(r, τ), where τ ≡ ct, m is again a constant vector that includes the
proper normalization factor and is directed along the axis z (any other orientation gives similar
results), and Ψ(r, τ) is a wavepacket of Bessel functions J0 with the exponential spectrum and
a specific dispersion law for the axial wavenumber kz(ω) = const = k0

Ψ(ρ, z, τ) = Δ
∫ ∞

|k0|
dk J0

(
kρρ

)
e−kΔe−i(kτ−k0z) , (29)

where the radial coordinate ρ has been introduced and kρ =
(
k2 − k2

0
)1/2 is the lateral

component of the wave vector of the monochromatic plane-wave constituents represented
with the weight function e−kΔ whose width is Δ−1 (spectral width of the packet). The integral
can be taken with the help of a Laplace transform table and we obtain

Z(ρ, z, τ) = mΔ
exp

(
− |k0|

√
ρ2 + (Δ + iτ)2

)

√
ρ2 + (Δ + iτ)2

eik0z . (30)

Eq. (30) describes a simple cylindrical pulse modulated harmonically in the axial direction
and radially converging (when τ < 0) to the axis and thereafter (when τ > 0) expanding from
it, the intensity distribution resembling an infinitely long tube coaxial with the z axis and with
a time-dependent diameter (see Fig. 6. in (Saari & Reivelt, 2004)). It follows from Eqs. (30) and
(11) that

|Z(ρ → ∞, z, τ = 0)| ∼ ρ−1 exp(−ρ/l) , (31)

|F(ρ → ∞, z, τ = 0)|2 ∼
[
ρ−2 + O(ρ−3)

]
exp(−2ρ/l) , (32)

where l ≡ |k0|−1 is the characteristic length (or length unit). Thus, while the photon is
completely delocalized in the axial direction, its energy density falloff in the lateral directions
is exponential with the linear exponent at all times the conditions τ � ρ � Δ are fulfilled,
see Fig. 3. The time derivative as well as the spatial derivatives contain the same exponential
factor, ensuring the exponential falloff of the the Riemann-Silberstein vector in Eq. (32).

Hence, a one-photon field given by Eq. (30) serves as the first and simplest example where
the localization in two transversal dimensions is governed by different rules than uniform
localization in three dimensions.
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Fig. 3. Curves of the radial dependence in a decimal logarithmic scale. Curve A is for
|Z(ρ, 0, τ = 0)|; B, |Z(ρ, 0, τ = 2.5l)|; C is the same as B but with Ψ taken from Eq. (33); D,∣∣∣ ∂

∂τ Z(ρ, 0, τ = 0)
∣∣∣; E is a reference curve exp(−ρ/l). The curves A, B, and C have been

normalized so that |Z(0, 0, 0)| = 1. The values of the remaining free parameters are Δ = 0.1l
and β = 0.8.

The next example is readily available via the Lorentz transformation of the wave function
given by Eq. (29) along the axis z, which gives another possible solution of the scalar wave
equation. The result is a new independent solution but it can also be considered as the wave
given by Eqs. (29) and (30), which is observed in another inertial reference frame (Saari &
Reivelt, 2004):

Ψ(ρ, z, τ) = Δ
exp

(
− |k0|

√
ρ2 + (Δ − iγ (βz − τ))2

)

√
ρ2 + (Δ − iγ (βz − τ))2

× exp (iγk0 (z − βτ)) , (33)

where the relativistic factors γ ≡ (1 − β2)−1/2 and β ≡ v/c < 1 have been introduced,
v being a free parameter—the relative speed between the frames. In the waist region (see
Fig. 4) this wave function has the same radial falloff as was given by Eq. (31), see curve
"C" in Fig. 1, while the axial localization follows a power law. The strongly localized waist
and the whole amplitude distribution move rigidly and without any spread along the axis z
with a superluminal speed c/β. Such wave with intriguing properties, named the focused X
wave (FXW) (Besieris et al., 1998; Saari & Reivelt, 2004), belongs to the so-called superluminal
propagation-invariant localized waves. Although the FXW is not experimentally generated
yet, a set-up based on a cylindrical diffraction grating has been proposed and its properties
analyzed (Valtna et al., 2007). It should be noted here that there is nothing unphysical in the
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superluminality of the localized waves since a superluminal group velocity does not mean
as if energy or information could be transmitted faster than c. This is an experimentally
verified fact for the so-called Bessel-X pulse which is another representative of the family of
superluminal waves (Alexeev et al., 2002; Bowlan et al., 2009; Saari et al., 2010; Saari & Reivelt,
1997). For a detailed analysis of the startling superluminality see (Saari, 2004; Saari et al., 2010)
and references therein.

Fig. 4. (color online). The superluminal FXW given by Eq. (33). Shown are the dependences
(a) of the modulus and (b) of the real part of the wavefunction on the longitudinal (z,
increasing to the right) and a transverse (say, x) coordinates. The distance between the grid
lines on the basal plane (x, z) is 22λ, where λ = 2π|k0|−1, k0 being negative. The values of
the remaining free parameters are Δ = 30λ and β = 0.995 or γ = 10.

Hence, in its waist (cross-sectional) plane a one-photon field given by the FXW possesses the
same strong localization at any time as the previously considered cylindrical field does in any
transversal plane at the instant t = 0.
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given by Eq. (29) along the axis z, which gives another possible solution of the scalar wave
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v being a free parameter—the relative speed between the frames. In the waist region (see
Fig. 4) this wave function has the same radial falloff as was given by Eq. (31), see curve
"C" in Fig. 1, while the axial localization follows a power law. The strongly localized waist
and the whole amplitude distribution move rigidly and without any spread along the axis z
with a superluminal speed c/β. Such wave with intriguing properties, named the focused X
wave (FXW) (Besieris et al., 1998; Saari & Reivelt, 2004), belongs to the so-called superluminal
propagation-invariant localized waves. Although the FXW is not experimentally generated
yet, a set-up based on a cylindrical diffraction grating has been proposed and its properties
analyzed (Valtna et al., 2007). It should be noted here that there is nothing unphysical in the
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as if energy or information could be transmitted faster than c. This is an experimentally
verified fact for the so-called Bessel-X pulse which is another representative of the family of
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Fig. 4. (color online). The superluminal FXW given by Eq. (33). Shown are the dependences
(a) of the modulus and (b) of the real part of the wavefunction on the longitudinal (z,
increasing to the right) and a transverse (say, x) coordinates. The distance between the grid
lines on the basal plane (x, z) is 22λ, where λ = 2π|k0|−1, k0 being negative. The values of
the remaining free parameters are Δ = 30λ and β = 0.995 or γ = 10.

Hence, in its waist (cross-sectional) plane a one-photon field given by the FXW possesses the
same strong localization at any time as the previously considered cylindrical field does in any
transversal plane at the instant t = 0.

61Photon Localization Revisited



14 Will-be-set-by-IN-TECH

By making use of the historically first representative of localized waves – the so-called focus
wave mode (FWM)—see (Brittingham, 1983; Sezginer, 1985) and also reviews (Besieris et al.,
1998; Saari & Reivelt, 2004) and references therein – one readily obtains an example of the field
that exhibits even much stronger than simple exponential localization. The FWM is given by
the scalar function

Ψ(ρ, z, τ) = a
exp

[
− ρ2

2l(a−i(z−τ))

]

a − i (z − τ)
exp

[
− i (z + τ)

2l

]
, (34)

where again l is a wavelength-type characteristic length and the constant a controls the axial
localization length. This wave function is depicted in Fig. 5. Since the FXW in the limit β → 1
becomes a FWM (Besieris et al., 1998; Saari & Reivelt, 2004), Fig. 5 qualitatively resembles
Fig. 4(b) (a 3D animated color plot of FWM is avalable in open-access on-line paper (Sheppard
& Saari, 2008)).

Fig. 5. (color online). The luminal FWM given by Eq. (34). Shown are a surface plot of the
real part of the wave function and (in the basement plane) a contour plot of its modulus. For
details and animation of the time dependece see (Sheppard & Saari, 2008),
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-1-150&seq=3 .

Multiplying Eq. (34) by m to build the vector Z(ρ, z, τ) and inserting the latter into Eq. (11)
we obtain that in this example the photon localization in the waist plane is quadratically
exponential (Gaussian falloff):

|Z(ρ → ∞, z = τ)| ∼ exp(−ρ2/2la), (35)

|F(ρ → ∞, z = τ)|2 ∼ ρ6 exp(−ρ2/la) . (36)

In Eq. (36) only the highest-power term with respect to ρ is shown.
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6. Discussion

To start discussing our results that seem to be at variance with the Paley-Wiener restriction,
let us ask first whether the wave functions considered are something extraordinary. The
answer is: yes, they are indeed, since browsing various integral transform tables reveals rather
few examples where both the real and imaginary part of a wave function and of its time
derivative have simultaneously an exponential or stronger localization in conjunction with
other requisite properties. Fortunately, the list of proper wave functions with an extraordinary
strong localization is growing—in addition to an optically feasible version (Reivelt & Saari,
2002; 2004) of the FWM various new interesting solutions with Gaussian falloff can be
derived (Kiselev, 2007). Yet, it could be argued that the well-known Gaussian beam pulse
has the same quadratically exponential radial profile in the waist region. However, resorting
to the family of the Gaussian beams (the Gauss-Laguerre and Gauss-Hermite beams, etc.) is
irrelevant here. The reason is that all these beams are solutions of the wave equation only in
the paraxial approximation not valid in the case of any significant localization of wide-band
(pulsed) superpositions of the beams and at large values of the radial distance. As a matter
of fact, e.g., an exact solution corresponding to a lowest-order (axisymmetric) Gaussian beam
has a weak power-law radial falloff in the waist region (Saari, 2001; Sheppard & Saghafi, 1999).

The next possible objection to the physical significance of the results obtained might arise
from the infinite total energy (Besieris et al., 1998; Hernández-Figueroa et al., 2008) of
the waves given by Eqs. (30), (33), and (34). However, at any spatial location the wave
function is square integrable with respect to time, thus the condition of the Paley-Wiener
theorem has been satisfied. Moreover, physically feasible finite-energy (i. e., finite-aperture)
versions of localized waves generally exhibit even better localization properties, although
not persistently. A finite-energy version of the FXW, called the modified focused X wave
(MFXW) (Besieris et al., 1998; Valtna et al., 2006), has the same exponential factor as in
Eq. (33), which is multiplied by a fraction that allows to force the axial localization to follow
an arbitrarily strong power-law. The latter circumstance indicates that the strong lateral
localization of the fields considered does not appear somehow at the expense of their axial
localization.

As a matter of fact, energy-normalization of a wave function depends on how many photons
it describes. It is easy to see that derivations and results presented here hold for any number
state with N ≥ 1 and also for incoherent mixtures of such states (which is important for
experimental studies). Here it is not of interest to consider coherent states since generally for
states of electromagnetic field that have classical counterparts one can escape—already in the
case of uniform spherical localization—the constraints imposed by the Paley-Wiener theorem
(Bialynicki-Birula, 1998).

The final crucial question is: are our results in contradiction with those of (Bialynicki-Birula,
1998) reproduced in Section 3? The answer is no, since in the case of the cylindrical waves the
radial distance and temporal frequency are not directly Fourier-conjugated variables. In order
to clarify this point, let us first take a closer look at Eqs. (14) and (15). The sine in Eq. (14)
results from the imploding and exploding spherical wave constituents of the standing wave,
like an odd one-dimensional standing wave arises from counterpropagating waves. We saw in
Section 4 that although strictly at the instant τ = 0 the function Z(r, t) can possess arbitrarily
abrupt falloff, simultaneously its time derivative and hence the wave function F(r, t) cannot.
In contrast, the time derivative of the wave function given by Eq. (30) or Eq. (29) has the same
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strong localization is growing—in addition to an optically feasible version (Reivelt & Saari,
2002; 2004) of the FWM various new interesting solutions with Gaussian falloff can be
derived (Kiselev, 2007). Yet, it could be argued that the well-known Gaussian beam pulse
has the same quadratically exponential radial profile in the waist region. However, resorting
to the family of the Gaussian beams (the Gauss-Laguerre and Gauss-Hermite beams, etc.) is
irrelevant here. The reason is that all these beams are solutions of the wave equation only in
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strong exponential falloff as the function itself, which persists for some (not too long) time,
see Fig. 3. By comparing Eqs. (29) and (14) we notice that while in Eq. (14) the argument of the
sine function is the product of the distance with the Fourier variable, in Eq. (29) the argument
of the Bessel function is the product of the radial distance ρ with the radial wavenumber kρ the
latter depending on the Fourier variable through the square-root expression with the constant
parameter k0—the lower limit of the integration. As it follows also from Eqs. (31) and (32)
the condition k0 �= 0 is crucial for obtaining the exponential falloff. Hence, in the case of the
cylindrical waves considered by us, the apparent violation of the rules set by the Paley-Wiener
theorem results from the specific complicated relation between the radial distance and the
Fourier variable.

7. Conclusion

The problem of photon localization is of rather fundamental nature in quantum
electrodynamics. Despite of almost 80-year history of the problem – and the related problem
of the photon wave function—the interest in the revision of it has quickened in the recent
years. One of the stimulus for that might be developments in modern optics, particularly
in femtosecond and quantum optics, thanks to which the somewhat academic problem is
transforming into a practical one. Indeed, e. g., availability and applications of single- and
sub-cycle photon pulses will force a revision of traditional notions in optics based on the
narrow-band approximation. In particular, phrases like "localization cannot be better than
wavelength" are loosing sense in the case of such pulses.

Ultrawideband by definition are the so-called localized waves—an emerging new field in
wave acoustics and physical optics. We have shown that an interdisciplinary "technology
transfer"—application of methods and solutions found in the field of localized waves—is
productive for the study of photon localization.
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strong exponential falloff as the function itself, which persists for some (not too long) time,
see Fig. 3. By comparing Eqs. (29) and (14) we notice that while in Eq. (14) the argument of the
sine function is the product of the distance with the Fourier variable, in Eq. (29) the argument
of the Bessel function is the product of the radial distance ρ with the radial wavenumber kρ the
latter depending on the Fourier variable through the square-root expression with the constant
parameter k0—the lower limit of the integration. As it follows also from Eqs. (31) and (32)
the condition k0 �= 0 is crucial for obtaining the exponential falloff. Hence, in the case of the
cylindrical waves considered by us, the apparent violation of the rules set by the Paley-Wiener
theorem results from the specific complicated relation between the radial distance and the
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7. Conclusion

The problem of photon localization is of rather fundamental nature in quantum
electrodynamics. Despite of almost 80-year history of the problem – and the related problem
of the photon wave function—the interest in the revision of it has quickened in the recent
years. One of the stimulus for that might be developments in modern optics, particularly
in femtosecond and quantum optics, thanks to which the somewhat academic problem is
transforming into a practical one. Indeed, e. g., availability and applications of single- and
sub-cycle photon pulses will force a revision of traditional notions in optics based on the
narrow-band approximation. In particular, phrases like "localization cannot be better than
wavelength" are loosing sense in the case of such pulses.

Ultrawideband by definition are the so-called localized waves—an emerging new field in
wave acoustics and physical optics. We have shown that an interdisciplinary "technology
transfer"—application of methods and solutions found in the field of localized waves—is
productive for the study of photon localization.
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1. Introduction

Heisenberg’s uncertainty principle is one of the manifestations of quantum complementarity.
In particular, it states that upon measuring both the momentum and the position of a
particle, the product of uncertainties has a fundamental lower bound proportional to Planck’s
constatnt. Hence, one cannot measure position and momentum simultaneously with a
prescribed accuracy. In general, the quantum complementarity principle does not permit to
identify a quantum state from measurements on a single copy of the system unless some extra
knowledge is available.

One of the consequences of fundamental assumptions of quantum mechanics is the fact that
determination of an unknown state can be achieved by appropriate measurements only if we
have at our disposal a set of identically prepared copies of the system in question. Moreover, to
devise a successful approach to the above problem of state reconstruction one has to identify
a collection of observables, so-called quorum, such that their expectation values provide the
complete information about the system state.

The problems of state determination have gained new relevance in recent years, following
the realization that quantum systems and their evolutions can perform practical tasks such
as teleportation, secure communication or dense coding. It is important to realize that if we
identify the quorum of observables, then we also have a possibility to determine expectation
values of physical quantities (observables) for which no measuring apparatuses are available.

Quantum tomography is a procedure of reconstructing the properties of a quantum object
on the basis of experimentally accessible data. This means that quantum tomography can be
classified by the type of object to be reconstructed:

1. state tomography treats density operators, which describe states of quantum systems;

2. process tomography discusses linear trace-preserving completely positive maps;

3. device tomography treats quantum instruments, and so on.

In what follows, we briefly describe the theory of quantum state tomography (cf. e.g. (Nielsen
& Chuang, 2000; Weigert, 2000)).

The aim of quantum state tomography is to identify the density operator characterizing the
state of a quantum system under consideration. Let H and S(H) denote the Hilbert space
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corresponding to the system and the set of all density operators on H, respectively. We
assume that the dimension of H is finite, dimH = N. According to the famous Born rule,
if an observable corresponding to a Hermitian operator Q with discrete spectrum is measured
in a system whose state is given by the vector |ψ�, then 1) the measured result will be one
of the eigenvalues λ of Q, and 2) the probability of measuring a given eigenvalue λi will
be �ψ|Pi|ψ�, where Pi denotes the projection onto the eigenspace of Q corresponding to λi.
These statements are based on the existence of the spectral resolution for any observable
Q. However, if Q is given as a square matrix of order N > 4, then it is well known that
the problem of calculation of eigenvectors and eigenvalues of Q over the field C of complex
numbers is not solvable by radicals in the general case. Even more, it is not solvable by any
finite procedure in the situation, where only arithmetic operations are allowed. This means
that, in fact, for a given Q we are not able to find effectively the spectral decomposition
Q = ∑ λiPi. Therefore, we will suppose that the information about the state ρ ∈ S(H) is
extracted from the expectation values of some observables Q1, . . . , Qr, i.e.,

qi = Tr(ρQi), (1)

where qi are real numbers inferred from the measurement and Qi are self-adjoint operators on
H. (We do not assume the knowledge of spectral decompositions for Qi.)

The question, how to construct a quorum of meaningful observables for a given quantum state
is quite fundamental. Usually, one can identify only a small number of observables Q1, . . . , Qr,
where r � N2, with clear physical meaninig, and their expectation values are not enough for
the determination of a quantum state. As a natural remedy for this situation we can ask about
the results of the measurements of these observables (their mean values) at different time
instants t1, . . . , ts during the time evolution of the system in question (Jamiołkowski, 1982;
1983).

Summing up, as the fundamental objects in modern quantum theory one considers the set of
states

S(H) := {ρ : H → H; ρ ≥ 0, Tr ρ = 1}, (2)

and the set of bounded hermitean (self-adjoint) operators

B∗ := {Q : H → H; Q = Q∗}. (3)

Time evolutions of systems are governed by linear master equations of the form (in the
so-called Schrödinger picture)

dρ(t)
dt

= K ρ(t), (4)

or in the dual form (in the so-called Heisenberg picture)

dQ(t)
dt

= L Q(t), (5)

where superoperators K and L act on operators from the sets S(H) and B∗(H), respectively.
They represent dual forms of the same physical idea. Both sets S(H) and B∗(H) can be
considered as subsets of the vector space B(H) of all bounded linear operators on H and
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they can be treated as scenes on which problems of quantum mechanical systems should be
discussed.

Since in this paper we will consider finite-dimensional Hilbert spaces, therefore in fact B(H)
denotes the set of all linear operators on H. If we introduce in B(H) the scalar product by the
equality

�A, B� := Tr(A∗B), (6)

then B(H) can be regarded as yet another inner product space, namely the so-called
Hilbert-Schmidt space. It is not difficult to see that B∗(H) with scalar product defined by (6)
is a real vector space and dimB∗(H) = N2.

If one does not intend to describe the full dynamics but instead to give a “snapshot” of its
effect at a particular time instant t, then one introduces the idea of a quantum channel which
mathematically is represented by a completely positive trace preserving (CPTP) map. A
completely positive map (a superoperator) is a transformation on density operators defined
by the expression

ρ̃ = Φ(ρ(0)) = ∑
i

A∗
i ρ(0)Ai , (7)

where Ai ∈ B(H) are called Kraus operators (Kraus, 1971) or noise operators of the map Φ. The
trace preservation condition implies that

∑
i

Ai A∗
i = I . (8)

Let us observe that a unitary evolution is a spacial case of the CPTP transformation, where
there is only one unitary Kraus operator.

According to one of fundamental postulates of quantum theory one assumes that
measurements change the state of the system in a way radically different from unitary
evolution. The process of making a von Neumann measurement is formally described by
an expression of the form (7) with the Kraus operators being some commuting self-adjoint
idempotent operators Pi with the property ∑ Pi = I. A more general concept of measurement
was introduced in the 1970-s by Davies and Lewis. This concept is formally expresses as a
positive operator-valued measure (POVM) which is defined as a set of positive semidefinite
operators {Mk} satisfying ∑ Mk = I and, obviously, every such Mk can be expressed in the
form Mk = FkF∗

k (cf. e.g. Nielsen & Chuang, 2000). The operators Mk need not commute,
and the result of a particular measurement depends, in general, on the order in which the
measurements of Mk are performed.

The idea of stroboscopic tomography for open quantum systems appeared for the first time
in the beginning of 1980’s (although expressed in different terms (Jamiołkowski, 1982; 1983;
1986)). The main motivation came from quantum optics and the theory of lasers. In particular,
using the concept of observability, in (Jamiołkowski, 1983) and (Jamiołkowski, 1986) the
question of the minimal number of observables Q1, . . . , Qη for which the quantum systems
can be (Q1, . . . , Qη)-reconstructible was discussed.

On the other hand, theory of frames, which are collections of vectors that provide robust and
usually non-unique representations of vectors, has been the subject of research in last decades
and has been applied in these disciplines where redundancy played a vital and useful role.
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However, in some applications it is natural to model and describe considered systems by
collections of families of subspaces, and to split a large (global) frame system into a set of much
smaller frame systems in these subspaces. This has led to the development of a suitable theory
based on fusion frames (families of subspaces), which provides the framework to model these
more complex applications (Casazza & Kutyniok, 2004; Casazza et al., 2008). In particular,
a sequence of the so-called k-order Krylov subspaces which appear naturally in stroboscopic
tomography (Jamiołkowski, 1986) and are defined by (see also the next Section)

Kk(L, Q) := SpanR1

{
Q, LQ, . . . , Lk−1Q

}
, (9)

where Q is a fixed observable and L is a generator of time evolution of the system in question,
constitutes a fusion frame in the Hilbert-Schmidt space B∗(H) if (Jamiołkowski, 2000)

r
�
i=1

Kμ(L, Qi) = B∗(H). (10)

In the above equality μ denotes the degree of the minimal polynomial of the superoperator
L and Q1, . . . , Qr represent fixed observables. The symbol � denotes Minkowski sum of
subspaces (10) (see (Hauseholder, 2009; Jamiołkowski, 2010)). We recall that for two subspaces
K1 and K2 of the vector space H, by K1 �K2 one understands the smallest subspace of H which
contains K1 and K2.

It is well known that the Krylov subspaces Kk(L, Q) for k = 1, 2, . . . form a nested sequence
of subspaces of increasing dimensions that eventually become invariant under L. Hence for a
given Q, there exists an index μ = μ(Q), often called the grade of Q with respect to L for which

K1(L, Q) � · · · � Kμ(L, Q) = Kμ+1(L, Q) = Kμ+2(L, Q) · · · . (11)

It is easy to see, that for a given operator Q, the natural number μ(Q) is equal to the degree
of the minimal polynomial of L with respect of Q. Clearly, μ(Q) ≤ μ(L), where μ(L) denotes
the degree of the minimal polynomial of superoperator L (cf. e.g. (Jamiołkowski, 2000)).
Now, let us observe that even if observables Q1, . . . , Qr are linearly independent, the Krylov
subspaces Kk(L, Qi) for i = 1, . . . , r can have nonempty intersections. At the same time they
can constitute a fusion frame for the space of all observables B∗(H).

In the statistical description of physical systems the main role of observables is to statistically
identify states, or some of their properties. A typical goal of an experiment can be to decide
among various alternatives or hypothesis about states. As a very good reference on such
type of problems we recommend the review book (Paris & Rehacek, 2004). The details
of a particular identification problem depend on our prior knowledge and the properties
we want to discuss. One can say that owing to both the a priori knowledge about states
and the knowledge of our technical possibilities we define the alternatives that we should
experimentally verify.

In general, depending whether the set of alternatives is finite or not, one makes a distinction
between discrimination and estimation problems. One can introduce three different types of
problems:
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1. State estimation problem. In its most general form, one wants to identify the state of a system
assuming that no additional (prior) knowledge is available. In other words, the whole state
space of a system constitutes the set of possible hypotheses.

2. Sufficient statistics for families of states. In this case we are interested in considering only
a subset of the whole set of states. We encode prior knowledge about the preparation
of states in a multiparameter family of states and consider them as a possible set of
hypotheses. For example, we can assume that one considers states which are pure states
or have a particular block-diagonal form.

3. State discrimination problem. A particular case of the problem 2). One assumes that we
want to identify the state which belongs to a finite set {ρ1, . . . , ρp} and our aim is to
distinguish among these p possibilities. It is an obvious observation that in this case the
set of observables used for identification can be restricted in an essential way.

All above problems create very interesting particular questions and we will discuss them in
separate publications. A general description and some results concerning the problems 2 and
3 based on the idea of fusion frames are discussed in the present paper.

The organization of the paper is as follows: In Section 2, we summarize some concepts and
results of the theory of frames; Section 3 presents the main ideas of stroboscopic tomography.
We conclude the paper in Section 4 by discussing some applications of the notions of frames
and fusion frames to problems of open quantum systems and we discuss some examples of
algebraic methods in low-dimensional quantum systems.

2. Frames and fusion frames

Frames were first introduced by Duffin and Schaeffer in 1952 as a natural concept that
appeared during their research in nonharmonic Fourier analysis (Duffin & Schaeffer, 1952).
After more than three decades Daubechies, Grossman and Meyer (Daubechies et al., 1986)
initiated the use of frame theory in the description of signal processing. Today, frame theory
plays an important role in dozens of applied areas, cf. e.g. (Christensen, 2008; Heil, 2006;
Kovacevic & Chebira, 2008).

Let us consider a Hilbert space H (dimH = N < ∞) with scalar product �·|·� which is linear
in the second argument. A collection of vectors F = {| fi� : i ∈ I}, | fi� ∈ H, is called a frame
if there are two positive constants α, β > 0 such that for every vector x ∈ H

α � x �2 ≤ ∑
i∈I

|� fi|x�|2 ≤ β � x �2 . (12)

One assumes that the number of vectors | fi� is greater or equal to N. The frame is tight when
the constants α and β are equal, α = β. If α = β = 1, then F is called a Parseval frame. The
numbers � fi|x� are called frame coefficients.

For a given frame F we can introduce the analysis Θ and synthesis Θ∗ operators. They are
defined by the equality

Θ(x) = ∑
i∈I

� fi|x�|ei�, (13)
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r
�
i=1
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where |ei� stands for the standard basis in Cm (we will consider only finite dimensional
frames, so that I = {1, . . . , m} and m ≥ N). Composing Θ with its adjoint operator Θ∗,
we obtain the frame operator

F : H → H, (14)

defined by

Fx := Θ∗Θx =
m

∑
i=1

� fi|x�| fi�. (15)

It is not difficult to see that any collection of vectors {| fi�}m
i=1 constitutes a frame for the

vector space N := span{| fi�}m
i=1, N ⊆ H. On the other hand a family of elements {| fi�}m

i=1
in H is a frame for H if and only if span{| fi�}m

i=1 = H. This means that a frame may
contain more elements than it is necessary for it to be a basis. In particular, if {| fi�}m

i=1 is
a frame for H and {|gi�}n

i=1 is an arbitrary finite collection of elements in H, then the set
{| f1�, . . . , | fm�, |g1�, . . . , |gn�} is also a frame for H.

Generally speaking, frame theory is the study of how {| fi�}m
i=1 should be chosen in order to

guarantee that the frame operator Θ∗Θ is well-conditioned. In particular, {| fi�}m
i=1 is a frame

for H if there exist frame bounds α, β such that

α I ≤ Θ∗Θ ≤ β I, (16)

and is a tight frame iff Θ∗Θ = αI. It is an obvious observation that F = Θ∗Θ is a self-adjoint
and invertible operator.

Fusion frame theory (theory of frames of subspaces) is an emerging mathematical theory that
provides a natural setting for performing distributed data processing in many fields Casazza
& Kutyniok (2004); Casazza et al. (2008). In particular, one can apply these ideas in quantum
state tomography. The notion of fusion frame was introduced in Casazza & Kutyniok (2004)
and further developed by Casazza et al. (2008). A fusion frame in a Hilbert space H ∼= CN is
a finite collection of subspaces {Wi}m

i=1 of H, such that there exist constants 0 < α < β < ∞
satisfying, for any |ϕ� ∈ H, the two inequalities

α � |ϕ� �2 ≤
m

∑
i=1

� Pi|ϕ� �2 ≤ β � |ϕ� �2, (17)

where Pi denotes the non-orthogonal projection on Wi. In other words, a collection {Wi}m
i=1

is a fusion frame if and only if

α I ≤
m

∑
i=1

Pi ≤ β I. (18)

The constants α and β are called fusion frame bounds. An important class of fusion frames is
the class of tight fusion frames, for which α = β. This equality leads to the operator relation
∑m

i=1 Pi = αI. Let us note that definition given in (Casazza & Kutyniok, 2004; Casazza et al.,
2008) for fusion frames applies to weighted subspaces in any Hilbert space as well. However,
since the scope of this paper is limited to non-weighted subspaces only, the definition of
a fusion frame is presented for this restricted situation. If we compare the definition of a
quantum channel and that of a tight fusion frame, it becomes evident that every quantum
channel can be considered a special case of a fusion frame (18) with α = β = 1.
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Now, let us recall that for a given operator M : H → H and a given fixed nonzero vector
|x� ∈ H, one introduces the kth-order Krylov subspace of H by the equality

Kk(M, x) := span{|x�, M|x�, . . . , Mk−1|x�}. (19)

The above definition can also be written as

Kk(M, x) := span{p(M)|x�; deg(p) ≤ k − 1} , (20)

where p denotes an arbitrary polynomial and deg(p) is its degree. It is an obvious observation
that the size of a Krylov subspace depends on both M and |x�. Note also that there exists such
k that Kk(M, x) = Kk+1(M, x) and this k is the degree of the minimal polynomial of M with
respect to |x�. If by μ(λ, M) we denote the minimal polynomial of the operator M, then the
minimal polynomial of M with respect to any vector |x� ∈ H divides μ(λ, M).

For a given operator M : H → H Krylov subspaces generated by a fixed set of vectors
|x1�, . . . , |xr� constitute a fusion frame in H if and only if the following equality is satisfied

r
�
i=1

Kμ(M, xi) = H. (21)

3. Stroboscopic tomography of open quantum systems

Quantum theory — as a description of properties of microsystems — was born more then
a hundred years ago. But for a long time it was merely a theory of isolated systems. Only
around fifty years ago the theory of quantum systems was generalized. The so-called theory of
open quantum systems (systems interacting with their environments) was established, and the
main sources of inspiration for it were quantum optics and the theory of lasers. This led to the
generalization of states (now density operators are considered to be a natural representation
of quantum states), and to generalized description of their time evolution. At that time the
concept of so-called quantum master equations — which preserve positive semi-definiteness of
density operators — and the idea of a quantum communication channel were born, cf. e.g. (Gorini
et al., 1976; Kossakowski, 1972; Kraus, 1971; Lindblad, 1976). On the mathematical level, this
approach initiated the study of semigroups of completely positive maps and their generators.
Now, for the convenience of the readers, we summarize the main ideas and methods of
description of open quantum systems and the so-called stroboscopic tomography.

The time evolution of a quantum system of finitely many degrees of freedom (a qudit) coupled
with an infinite quantum system, usually called a reservoir, can be described, under certain
limiting conditions, by a one-parameter semigroup of maps (cf. e.g. (Gorini et al., 1976;
Jamiołkowski, 1974; Kossakowski, 1972)). Let H be the Hilbert space of the first system
(dimH = N) and let

Φ(t) : B�(H) → B�(H), t ∈ R1
+, (22)

be a dynamical semigroup, where B�(H) denotes the real vector space of all self-adjoint
operators on H. If one introduces the scalar product of operators A, B by the formula
�A, B� = Tr(A∗B), then B�(H) can be considered as yet another inner product space, namely
the so-called Hilbert-Schmidt space with the norm defined by � ρ �2= Tr(ρ∗ρ). States of the
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system are described by density operators ρ ∈ S(H), where

S(H) := {ρ ∈ B�(H); ρ ≥ 0, Tr ρ = 1} . (23)

Usually one assumes that the family of linear superoperators Φ(t) satisfies

1. Φ(t) is trace preserving, t ∈ R1
+,

2. � Φ(t)ρ �≤ � ρ � for all ρ ∈ B�(H),

3. Φ(t1) ◦ Φ(t2) = Φ(t1 + t2),

for all t1, t2 in R1
+, and if t → 0, then lim Φ(t) = I. Since such defined Φ(t) is a contraction, it

follows from the Hille-Yosida theorem that there exists a linear superoperator K : B�(H) →
B�(H) such that Φ(t) = exp(tK) for all t ≥ 0 and

dρ(t)
dt

= Kρ(t), (24)

where ρ(t) = Φ(t)ρ(0). One should stress that the above conditions for semigroup Φ(t)
imply preservation of positivity of density operators, ρ(0) ≥ 0 ⇒ ρ(t) = Φ(t)ρ(0) ≥ 0 for all
t ∈ R1

+. Now, the above equation (usually called the master equation) defines an assignment
(the trajectory of ρ(0))

R1
+ � t �→ ρ(t) ∈ S(H), (25)

provided that we know the initial state of the system ρ(0) ∈ S(H). The fundamental question
of the stroboscopic tomography reads: What can we say about the trajectories (initial state
ρ(0)) if the only information about the system in question is given by the mean values

Ei(tj) = Tr (Qiρ(tj)), (26)

of, say, r linearly independent self-adjoint operators Q1, . . . , Qr at some instants t1, . . . , tp,
where r < N2 − 1 and tj ∈ [0, T] for j = 1, . . . , p, T > 0. In other words, the problem
of the stroboscopic tomography consists in the reconstruction of the initial state ρ(0), or a
current state ρ(t) for any t ∈ R1

+, from known expectation values (26). To be more precise
we introduce the following description. Suppose that we can prepare a quantum system
repeatedly in the same initial state and we make a series of experiments such that we know the
expectation values EQ(tj) = Tr (Qρ(tj)) for a fixed set of observables Q1, . . . , Qr at different
time instants t1 < t2 < · · · < tp. The basic question is: can we find the expectation value of
any other operator Q ∈ B�(H), that is any other observable from B�(H), knowing the set of
measured outcomes of a given set Q1, . . . , Qr at t1, . . . , tp, i.e. knowing Ej(tk) for j = 1, . . . , r
and where 0 ≤ t1 < t2 < · · · < tp ≤ T, for an interval [0, T]?

If the problem under consideration is static, then the state of a N-level open quantum system
(a qudit) can be uniquely determined only if r = N2 − 1 expectation values of linearly
independent observables are at our disposal. However, if we assume that we know the
dynamics of our system i.e. we know the generator K or L := (K)∗ (in the Heisenberg
picture) of the time evolution, then we can use the stroboscopic approach based on a discrete
set of times t1, ..., tp. In general, we use the term “state-tomography” to denote any kind of
state-reconstruction method.
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With reference to the terminology used in system theory, we introduce the following
definition: An N-level open quantum system S is said to be (Q1, . . . , Qr)-reconstructible on
the interval [0, T], if for every two trajectories defined by the equation (24) there exists at least
one instant t̂ ∈ [0, T] and at least one operator Qk ∈ {Q1, . . . , Qr} such that

Tr (Qkρ1(t̂)) �= Tr (Qkρ2(t̂)). (27)

The above definition is equivalent to the following statement. An N-level open quantum
system S is (Q1, . . . , Qr)-reconstructible on the interval [0, T] iff there exists at least one set of
time instants 0 < t1 < · · · < tp ≤ T such that the state trajectory can be uniquely determined
by the correspondence

[0, T] � tj �−→ Ei(tj) = Tr (Qiρ(tj)), (28)

for i = 1, . . . , r and j = 1, . . . , p.

Let us observe that in the above definition of reconstructibility we discuss the problem of
verifying whether the accessible information about the system is sufficient to determine the
state uniquely and we do not insist on determining it explicitly.

The positive dynamical semigroup {Φ(t), t ∈ R1
+} is determined by the generator K :

B�(H) → B�(H) (the Schrödinger picture) and it is related to the generator L of the
semigroup in the Heisenberg picture by the duality relation

Tr[Q(Kρ)] = Tr[(LQ)ρ]. (29)

For a given set of observables Q1, . . . , Qr, the subspace spanned on the operators

Qi, LQi, . . . , (L)k−1Qi,

will be denoted by

Kk(L, Qi) := SpanR1

{
Qi, LQi, . . . , Lk−1Qi

}
, (30)

as the Krylov subspace in the Hilbert-Schmidt space B�(H). If k = μ, where μ is the degree
of the minimal polynomial of the generator L, then the subspace Kμ(L, Qi) is an invariant
subspace of the superoperator L with respect to Qi. It can be easily seen that the subspace
Kμ(L, Qi) is essentially spanned on all operators of the form (L)kQi, where k = 0, 1, . . ..
Furthermore, it is the smallest invariant subspace of the superoperator L containing Qi (i.e.
the common part of all invariant subspaces of the operator L containing Qi).

One can now formulate the sufficient conditions for the reconstructibility of an N-level open
quantum system (c.f. Jamiołkowski (1983; 2000)).

Let S be an N-level open quantum system with the evolution governed by an equation of
the form Q̇(t) = LQ(t) (the Heisenberg picture), where L is the generator of the dynamical
semigroup Ψ(t) = exp(tL). Suppose that, by performing measurements, the correspondence

[0, T] � tj �−→ Ei(tj) = Tr (ρ(0)Qi(tj)) (31)
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the common part of all invariant subspaces of the operator L containing Qi).
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Let S be an N-level open quantum system with the evolution governed by an equation of
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can be established for fixed observables Q1, . . . , Qr at selected time instants t1, . . . , tp. The
system S is (Q1, . . . , Qr)-reconstructible if

r
�
i=1

Kμ(L, Qi) = B�(H). (32)

The above condition has been obtained by using the polynomial representation of the
semigroup Ψ(t). Indeed, if μ(λ, L) denotes the minimal polynomial of the generator L and
μ = deg μ(λ, L), then Ψ(t) = exp(tL) can be represented in the form

Ψ(t) =
μ−1

∑
k=0

αk(t)L
k, (33)

where the functions αk(t) for k = 0, . . . , μ − 1 are particular solutions of the scalar linear
differential equation with characteristic polynomial μ(λ, L). Since the functions αk(t) are
mutually independent, therefore for arbitrary T > 0 there exists at least one set of moments
t1, . . . , tμ (μ = deg μ(λ, L)) such that

0 ≤ t1 < t2 < · · · < tμ ≤ T , (34)

and det[αk(tj)] �= 0. Taking into account these conditions one finds that the state ρ(0) can be
determined uniquely if operators of the form

fkl := (L)kQl (35)

for l = 1, . . . , r and k = 0, 1, . . . span the space B�(H). In other words, we can say that
ρ(0) can be determined if vectors (35) constitute a frame in Hilbert-Schmidt space B�(H) or,
equivalently, if Krylov subspaces Kμ(L, Ql) for l = 1, . . . , r constitute a fusion frame in B�(H).

It should be noted that almost all the above considerations can be generalized to infinite
dimensional Hilbert spaces (Lindblad, 1976, Jamiołkowski, 1982). Such approach is
also discussed in a recent literature on infinite dimensional Kraus operators describing
amplitude-damping channels and laser processes. For instance, the above techniques are used
in the description of such situations in which beamsplitters allow photons to be coupled to
another optical modes representing the environment (cf. e.g. Fan & Hu).

3.1 Minimal number of observables

The question of an obvious physical interest is to find the minimal number of observables
Q1, . . . , Qη for which an N-level quantum system S with a fixed generator L can be
(Q1, . . . , Qη)-reconstructible. It can be shown that for an N-level generator there always exists
a set of observables Q1, . . . , Qη , where

η := max
λ∈σ(L)

{dim Ker(λI − L)}, (36)

such that the system is (Q1, . . . , Qη)-reconstructible (Jamiołkowski, 2000). Moreover,
if we have another set of observables Q̃1, . . . , Q̃η̃ such that the system is
(Q̃1, . . . , Q̃η̃)-reconstructible, then η̃ ≥ η. The number η defined by (36) is called the
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index of cyclicity of the quantum open system S (Jamiołkowski, 2000). The symbol σ(L) in (36)
denotes the spectrum of the superoperator L.

In particular, if we consider an isolated quantum system characterized by Hamiltonian
H0, then the minimal number of observables Q1, . . . , Qη for which the system is
(Q1, . . . , Qη)-reconstructible is given by

η = n2
1 + n2

2 + · · ·+ n2
m , (37)

where ni = dim Ker (λi I − H0) for all λi ∈ σ(H0), i = 1, . . . , m (for details cf. Jamiołkowski
(1982; 2000)).

Now let us assume that the time evolution of an N-level quantum system S is described by
the generator L given by

Lρ =
1
2
{
[Rρ, R] + [R, ρR]

}
= −1

2
[
R, [R, ρ]

]
, (38)

that is, we consider the so-called Gaussian semigroup. The symbol R in (38) denotes a
self-adjoint operator with the spectrum

σ(R) = {λ1, . . . , λm} . (39)

In the sequel ni stands for the multiplicity of the eigenvalue λi for i = 1, . . . , m. One can
assume that the elements of the spectrum of R are numbered in such a way that the inequalities
λ1 < λ2 < . . . < λm are fulfilled. The following theorem holds:

The index of cyclicity of the Gaussian semigroup with a generator L given by (38) is expressed
by the formula

η = max{κ, γ1, . . . , γr} , (40)

where r = (m − 1)/2 if m is odd or r = (m − 2)/2 if m is even, and

κ := n2
1 + n2

2 + . . . + n2
m , (41)

γk := 2
m−k

∑
i=1

ni ni+k . (42)

In order to prove the above theorem and to determine the value of η for the generator L

defined by (38) we must find the number of nontrivial invariant factors of the operator L. Let
us observe that if σ(N) = {λ1, . . . , λm}, then the spectrum of the operator L is given by

σ(L) =
{

νij ∈ R ; νij = (λi − λj)
2 , i, j = 1, . . . , m

}
. (43)

The above statement follows from the fact that the operator L can also be represented as

L = R2 ⊗ I + I ⊗ R2 − 2R ⊗ R , (44)

where I denotes the identity in the space H. Since R is self-adjoint therefore the algebraic
multiplicity of λi, i.e. the multiplicity of λi as the root of the characteristic polynomial of R,
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is equal to the geometric multiplicity of λi, ni = dim Ker (λi I − R) . Of course, we have
n1 + . . . + nm = dimH.

From (44) we can see that the multiplicities of the eigenvalues of the operator L are not
determined uniquely by the multiplicities of λi ∈ σ(R). But if we assume that λ1 < . . . < λm
and λk = (k − 1)c + λ1, where k = 1, . . . , m, and c = const > 0, then the multiplicities of all
eigenvalues of L are given by

γ|i−j| = dim Ker [(λi − λj)
2I − L] (45)

for i �= j and
dim Ker (L) = n2

1 + . . . + n2
m = κ (46)

when i = j. Now, as we know, the minimal number of observables Q1, . . . , Qη for which the
qudit S can be (Q1, . . . , Qη)-reconstructible is given by (36), so in our case

η = max
i,j=1,...,m

{
dim Ker [(λi − λj)

2I − L]
}

, (47)

where λi ∈ σ(R). Using the above formulae and the inequality γk < κ for k > r, where r is
given by (m − 1)/2 if m is odd and (m − 2)/2 if m is even, we can observe that also without
the assumption λk = (k − 1)c + λ1 one obtains

η = max{κ, γ1, . . . , γr} . (48)

This completes the proof.

3.2 The choice of moments of observations

Another natural question arises: what are the criteria governing the choice of time instants
t1, . . . , tμ? The following theorem holds:

Let us assume that 0 ≤ t1 < t2 < . . . < tμ ≤ T. Suppose that the mutual distribution of time
instants t1, . . . , tμ is fixed, i.e. a set of nonnegative numbers c1 < . . . < cμ is given and tj := cjt
for j = 1, . . . , μ, and t ∈ R+ . Then for T > 0 the set

τ(T) :=
{
(t1, . . . , tμ) : tj = cjt, 0 ≤ t ≤ T

cμ

}

contains almost all sequences of time instants t1, . . . , tμ, i.e. all of them except a finite number.

As one can check, the expectation values Ei(tj) and the operators (L)kQi are related by the
equality

Ei(tj) =
μ−1

∑
k=0

αk(cjt)
(
(L)kQi, ρ0

)
, (49)

where we assume that tj = cjt and the bracket (·, · ) denotes the Hilbert-Schmidt product in
B∗(H). One can determine ρ0 from (49) for all those values t ∈ R+ for which the determinant
Ω(t) is different from zero, i.e.

Ω(t) := det [αk(cjt)] �= 0 . (50)
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One can prove that the range of the parameter t ∈ R+ for which Ω(t) = 0 consists only of
isolated points on the semiaxis R+, i.e. does not possess any accumulation points on R+. To
this end let us note that since the functions t → αk(t) for k = 0, 1, . . . , μ − 1, are analytic on
R, the determinant Ω(t) defined by (50) is also an analytic function of t ∈ R. If Ω(t) can be
proved to be nonvanishing identically on R, then, making use of its analyticity, we shall be in
position to conclude that the values of t, for which Ω(t) = 0, are isolated points on the axis R.

It is easy to check that for k = μ(μ − 1)/2

dkΩ(t)
dtk

∣∣∣
t=0

= ∏
1≤j<i≤μ

(ci − cj) . (51)

According to the assumption c1 < c2 < . . . < cμ, we have Ω(k)(0) �= 0 if k = μ(μ − 1)/2.
This means that the analytic function t → Ω(t) does not vanish identically on R and the set of
values of t for which Ω(t) = 0 cannot contain accumulation points. In other words, if we limit
ourselves to an arbitrary finite interval [0, T], then Ω(t) can vanish only on a finite number of
points belonging to [0, T]. This completes the proof.

4. Frames and fusion frames in stroboscopic tomography. Generalizations to
subalgebras

As we have seen the concepts of frames and fusion frames appear in stroboscopic tomography
in natural way. The conclusion is based on the discussed above polynomial representations
of semigroups which describe evolutions of open systems. The possibility to represent the
semigroup Φ(t) = exp(t L) in the form

Φ(t) =
μ−1

∑
k=0

αk(t)L
k, (52)

where μ stands for the degree of the minimal polynomial of the superoperator L and αk(t),
k = 0 . . . , μ − 1, denote some functions of the eigenvalues of L gives the equality (32) as a
sufficient condition for stroboscopic tomography. On the other hand, this equality means that
the Krylov subspaces Kμ(L, Qi), i = 1, . . . , r, constitute a fusion frame in the Hilbert-Schmidt
space B∗(H) of all observables. Moreover, this also means that the collection of vectors

f jk := LkQj, (53)

for j = 1, . . . , r and k = 0, 1, . . . , μ − 1, constitute a frame in B∗(H) and the system in
question is (Q1, . . . , Qr)-reconstructible. In this case every element Q of the space B∗(H) can
be represented as

Q = ∑
j,k
�F−1 f jk|Q� f jk = ∑

j,k
� f jk|Q�F−1 f jk, (54)

where F denotes the frame operator of the collection of vectors (53). One can say even more.
If Q ∈ B∗(H) also has another representation Q = ∑j,k cjk fjk for some scalar coefficients cjk,
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in natural way. The conclusion is based on the discussed above polynomial representations
of semigroups which describe evolutions of open systems. The possibility to represent the
semigroup Φ(t) = exp(t L) in the form

Φ(t) =
μ−1

∑
k=0

αk(t)L
k, (52)

where μ stands for the degree of the minimal polynomial of the superoperator L and αk(t),
k = 0 . . . , μ − 1, denote some functions of the eigenvalues of L gives the equality (32) as a
sufficient condition for stroboscopic tomography. On the other hand, this equality means that
the Krylov subspaces Kμ(L, Qi), i = 1, . . . , r, constitute a fusion frame in the Hilbert-Schmidt
space B∗(H) of all observables. Moreover, this also means that the collection of vectors

f jk := LkQj, (53)

for j = 1, . . . , r and k = 0, 1, . . . , μ − 1, constitute a frame in B∗(H) and the system in
question is (Q1, . . . , Qr)-reconstructible. In this case every element Q of the space B∗(H) can
be represented as

Q = ∑
j,k
�F−1 f jk|Q� f jk = ∑

j,k
� f jk|Q�F−1 f jk, (54)

where F denotes the frame operator of the collection of vectors (53). One can say even more.
If Q ∈ B∗(H) also has another representation Q = ∑j,k cjk fjk for some scalar coefficients cjk,

79Fusion Frames and Dynamics of Open Quantum Systems



14 Will-be-set-by-IN-TECH

j = 1, . . . , r and k = 0, 1, . . . , μ − 1, then

∑
jk
|cjk|2 = ∑

jk
|�F−1 f jk|Q�|2 + ∑

j,k
|cjk − �F−1 f jk|Q�|2. (55)

It is obvious that every frame in finite-dimensional space contains a subset that is a basis.
As a conclusion we can say that if { f jk} is a frame but not a basis, then there exists a set of
scalars {djk} such that ∑j,k djk fjk = 0. Therefore, any fixed element Q of B∗(H) can also be
represented as

Q = ∑
j,k

(
�F−1 f jk|Q�+ djk

)
fjk. (56)

The above equality means that every Q ∈ B∗(H) has many representations as superpositions
of elements from the set (53). But according to equality (55) among all scalar coefficients {cjk}
for which

Q = ∑
j,k

cjk fjk, (57)

the sequence {�F−1 f jk|Q�} has minimal norm. This is a general method in frame theory
(Christensen, 2008) and at the same time the main observation connected with the idea of
stroboscopic tomography.

In conclusion, one can say that the Krylov subspaces Kμ(L, Qi) in the space B∗(H) generated
by the superoperator L can be used in an effective way for procedures of stroboscopic
tomography if they constitute appropriate fusion frames in this space.

4.1 Generalizations to subalgebras

Now, we will discuss some problems of reconstruction of quantum states when the Krylov
subspaces playing such important role in the stroboscopic tomography are replaced by some
subalgebras of the Hilbert-Schmidt space B�(H). Just as the fundamental theorem of algebra
ensures that every linear operator acting on a finite dimensional complex Hilbert space has a
nontrivial invariant subspace, the fundamental theorem of noncommutative algebra asserts the
existence of invariant subspaces of H for some families of operators from B(H). It is an
obvious observation that an algebra generated by any fixed operator Q and the identity on
H can not be equal to B�(H). This statement is based on the Hamilton-Cayley theorem.
However, already for two operators Q1, Q2 and the identity we can have Alg(I, Q1, Q2)
=B(H) (for details cf. below).

In general, the famous Burnside’s theorem states (cf. e.g. (Farenick, 2001)) that an operator
algebra on a finite-dimensional vector space with no nontrivial subspaces must be the algebra
of all linear operators. In the sequel we will use the following version of this theorem:

Fundamental theorem of noncommutative algebras. If A is a proper subalgebra of B(H) containing
identity, and the dimension of the Hilbert space H is greater or equal to 2, then A has a
proper nonzero invariant subspace in H (i.e., the subspace is invariant for all members Q
of the algebra A).

We will apply the above theorem for the following problem. Given a set F = {Q1, . . . , Qr} of
observables, we would like to establish conditions, when the operators Q1, . . . , Qr generate the
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whole algebra B(H). In other words, we want to determine whether every element in B(H)
can be represented in the form π(Q1, . . . , Qr), where π is a polynomial in noncommutative
variables.

Let us observe that according to the fundamental theorem if A is a subalgebra of the full complex
algebra B(H), then a nontrivial invariant subspace in H exists if and only if

dimA < dimB(H). (58)

If a set of generators of A is known, then the above inequality can be verified by a finite
number of arithmetic operations. The procedures possessing such property are called effective.
A very important example of an effective procedure can be formulated when we discuss the
problem of the existence a common one-dimensional invariant subspace for a pair of operators
Q1, Q2. In other words, we ask about a common eigenvector for two operators Q1, Q2. An
answer to this question is given by the following procedure. Let the symbol [Q1, Q2] denote,
as usual, the commutator of the operators Q1, Q2. Then a common eigenvector for Q1 and Q2
exists if and only if the subspace K of H defined by

K :=
N−1⋂

j=1
k=1

Ker[Qj
1, Qk

2] , (59)

where N = dimH, satisfies the condition dimK > 0 (this is the so-called Shemesh criterion
(Shemesh, 1984)). A short proof of this condition is possible.

First of all, let us observe that if |ψ� is a common eigenvector of the operators Q1 and Q2, i.e.,

Q1|ψ� = α|ψ� and Q2|ψ� = β|ψ�, (60)

then |ψ� belongs to Ker[Qj
1, Qk

2] for all j, k greater then 1. This fact and the inequality
dimK > 0 means that the gist of the Shemesh condition is in observation that the subspace K
is invariant under Q1 and Q2. Indeed, if |ψ� belongs to K, then by the definition of subspaces
Ker[Qj

1, Qk
2] one can check that Q1|ψ� ∈ K and Q2|ψ� ∈ K. Now, let us choose a basis for K

and extend it to a basis in H. We then observe that there exists a nonsingular matrix S such
that matrices SQ1S−1 and SQ2S−1 have block-triangular forms and the submatrices which
correspond to subspace K commute. This means that these submatrices have a common
eigenvector and therefore the same is true for Q1 and Q2. D. Shemesh observed that the
condition dimK > 0 is equivalent to the singularity of the matrix

M :=
N−1

∑
j=1
k=1

[Qj
1, Qk

2]
∗[Qj

1, Qk
2], (61)

where * denotes complex conjugate transpose. For our purposes, on the basis of Burnside’s
theorem, more interesting is the case when matrices Q1, Q2 do not have common eigenvectors
and the algebra A(Q1, Q2) generated by them coincides with B(H). This situation may be
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expressed by the following inequality

det M > 0, (62)

which can be checked by an effective procedure, that is, by a finite number of arithmetic
operations. It is obvious, that the matrix M is in general semipositive definite, and the above
condition means the strict positivity of M.

4.2 Examples

In order to illustrate algebraic methods in reconstruction problems, we will discuss some
algebraic procedures in low dimensional cases. For quantum systems of qubits and qutrits one
can formulate an explicit form of some conditions in a matrix form which is sometimes more
transparent then the general operator form. We will use the so-called vec operator procedure
which transforms a matrix into a vector by stacking its columns one underneath the other. It is
well known, that the tensor product of matrices and the vec operator are intimately connected.
If A denotes a N × N matrix and aj its j-th column, then vec A is the N2-dimensional vector
constructed from a1, . . . , aN . Moreover if A, B, C are three matrices such that the matrix
product ABC is well defined, then

vec(ABC) = (CT ⊗ A) vec B. (63)

In the above formula CT denotes the transposition of the matrix C. In particular we have

vec A = (I ⊗ A) vec I = (AT ⊗ I) vec I. (64)

Let us agree that when we say that a set of matrices generates the set B(H), we are thinking
about B(H) as an algebra, while when we say that a set of matrices forms a basis for B(H), we
are talking about B(H) as a vector space (here we identify B(H) with the set of all matrices
on H = CN).

For qubits, that is for two-dimensional Hilbert space, one can show by a direct computation
that

det(vec I, vec Q1, vec Q2, vec(Q1Q2)) = det([Q1, Q2]) (65)

and
det(vec I, vec Q1, vec Q2, vec[Q1, Q2]) = 2 det([Q1, Q2]), (66)

where on the left hand side we have the determinants of the 4 × 4 matrices and on the right
hand sides [Q1, Q2] denotes the commutator of the two 2 × 2 matrices.

From the last equality it follows, that if matrices I, Q1, Q2 and [Q1, Q2] are linearly
independent, then the algebra which is spanned by them has the dimension 4, so Q1, Q2 and
I generate B(H). In other words, two operators Q1, Q2 and the identity generate B(H) if
and only if the matrix [Q1, Q2] has the determinant different from zero. In a similar way one
can show that the matrices Q1, Q2, Q3, such that no two of them generate B(H), can generate
B(H) if and only if the double commutator [Q1, [Q2, Q3]] is invertible. In general, the matrices
Q1, . . . , Qr generate B(H) iff at least one of the commutators [Qi, Qj] or double commutators
[Qi, [Qj, Qk]] is invertible (Aslaksen & Sletsjøe, 2009).
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In the case of qutrits, that is for a three-dimensional Hilbert space, one can show by direct
calculation that if [Q1, Q2] is invertible and ω([Q1, Q2]) �= 0, where for Q ∈ B(H) the
symbol ω(Q) denotes the linear term in the characteristic polynomial of Q, then one can
construct an explicit basis for B(H). Indeed, if Q1, Q2 belong to B(H), and (dimH) = 3,
then the determinant of the 9-dimensional matrix Ω build from vec transformations of
I, Q1, Q2, Q2

1, Q2
2, Q1Q2, Q2Q1, [Q1, [Q1, Q2]], [Q2, [Q2, Q1]] satisfies the equality

det Ω = 9 det([Q1, Q2])ω([Q1, Q2]). (67)

That is, if det([Q1, Q2]) �= 0 and ω(Q) �= 0, then the columns of the matrix Ω correspond to a
basis for B(H).

Of course, one can also use the Shemesh criterion to characterize pairs of generators for B(H),
where dimH = 3.

5. Conclusions

Papers written by mathematicians are usually focused on characterization of various
properties of discussed objects and search for necessary and sufficient conditions for desired
conclusion to hold. Concrete constructions offen play a minor role. The problems of frames
and fusion frames are no exceptions. The main purpose of this paper was to discuss properties
of some Krylov subspaces in a given Hilbert space as a natural examples of fusion frames and
their applications in reconstruction of trajectories of open quantum systems.
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1. Introduction 
Optical phenomena in materials with a space modulation of dielectric constant at distances 
close to the light wavelengths (so called photonic band-gap structures or photonic crystals) 
are of a great interest now because of the existence of band gaps in their photonic band 
structure (Bykov, 1972; Yablonovitch, 1987; John, 1987). These band gaps represent 
frequency regions where electromagnetic waves are forbidden, irrespective of the spatial 
propagation directions. Inside the band gaps, the photon density of states is equal to zero 
and so the emission of light sources embedded in these crystals should be inhibited in these 
spectral regions (Vats et al., 2002). Since the time the effect is predicted, many experiments 
have been devoted to studies of spontaneous emission of molecules embedded in photonic 
crystals (Gaponenko et al., 1999; Gorelik, 2007). Typical structures of photonic crystals and 
calculations of corresponding photonic band structures are presented in a book by Prof. 
Joannopoulos (Joannopoulos et al., 2008). Besides the emission inhibition effect, a number of 
new optical phenomena in 3D photonic crystals, interesting from the applied point of view, 
are under intensive study now. The main research directions are the following:  

 Effects of light localisation (John, 1987; Kaliteevskii et al., 2005; Vignolini et al., 2008).  
 Radiation of photonic crystals filled with organic (rhodamine 6G, 1,8-naphthoylene-

1’,2’-benzimidazole, stilbene) and inorganic (ZnO, ZnS, rare-earth ions Eu3+, Tb3+, Er3+) 
luminophores near by the edges of photonic band-gap (Gaponenko et al., 1999; Aliev et 
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allows modifying optical properties of such systems by filling the pores with various 
substances.  

Synthetic opal photonic crystals containing nonlinear optical substances give a good chance 
to observe quantum optics phenomena in spatially nonuniform media where the photon 
mean free path is close to the light wavelength. Moreover, in this case the input optical 
power that is necessary to observe phenomena may be lower than the power required 
usually for observing the same phenomena in uniform nonlinear substances. The reason for 
it is the existence of diffuse transfer of photons that can result in photon accumulating inside 
photonic crystals and, consequently, in local optical power increasing. In particular, the 
possibility of experimental manifestation of Raman scattering and spontaneous parametric 
down-conversion in synthetic opals is discussed (Gorelik, 2007). The latter phenomenon is 
of special interest as it is convenient method to obtain bi-photon fields consisting of 
correlated photon pairs (Kitaeva & Penin, 2005). In the recent years, crystals with chirped 
structure of quadratic susceptibility (Kitaeva & Penin, 2004), and materials with spatially 
regular and stochastic distribution of quadratic optical susceptibility (Kalashnikov et al., 
2009), are considered as sources of bi-photons. It is quite possible synthetic opal photonic 
crystals will be ranked with these sources.  

2. Fundamentals of quantum optics phenomena in photonic crystals 
Optical processes in nano-structured materials with a period close to the light wavelength 
are essentially different from those in bulk uniform media. It is due to the regularities of 
propagation of Bloch optical waves in such periodic structures (“photon confinement”).  

2.1 Luminescence 

Consider the spontaneous emission transition in two-level system presented in Fig. 1.  

 
Fig. 1. Spontaneous emission transition in two-level system 

The downward transition probability Wnm is determined in accordance with Fermi’s golden 
rule as follows 

 
2

int
2 ˆ ( )nm nW m H n g E     


,  (1) 

where int
ˆm H n  is a matrix element of the perturbation operator, ( )ng E    is a density 

of final states of micro-object. In case of placing the micro-object into photonic crystal, the 
( )ng E    spectrum is characterised by a density of optical states g(ω) in photonic crystal. 
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The spontaneous emission spectrum S(ω) is completely determined by the spectral 
distribution of transitions frequencies ωnm and the density of optical states g(ω) within a 
region of these frequencies (Vats et al., 2002).  

When frequencies ωnm are in photonic band gap, where g(ω) = 0, spontaneous emission must 
be completely inhibited. In general case, a dip in spontaneous emission spectrum should 
appear. The spectral position of this dip is correspondent to positions of reflection spectrum 
maximum and transmission spectrum minimum (Gaponenko et al., 1999). As a result of 
spontaneous emission inhibition the localisation of photon near by irradiative atom inside 
photonic crystal becomes possible if the transition frequency is within a band gap region or 
in the vicinity of band gap edges (John, 1987). In this case, bonded atom-photon state is 
coming into being. The photon emitted returns to the atom due to Bragg reflection and is re-
absorbed by this atom. The existence of a group of such atoms may result in forming narrow 
photonic impurity band like an impurity band in semiconductor at sufficient concentrations 
of impurity atoms. Kinetics of luminescence in the vicinity of band gap edges demonstrates 
non-exponential behaviour (John, 1987).  

2.2 Enhanced Raman scattering 

Consider an elementary Stokes Raman scattering process as a disintegration of exciting 
photon (ћωex, kex) into scattered photon (ћω’, k’) and optical phonon (ћΩ, Κ) (Fig. 2).  

 
Fig. 2. Elementary Stokes Raman scattering process  

The Stokes process probability W(ω’) is determined by the density of optical states g(ω’) in 
the region of scattered light frequencies (Poulet & Mathieu, 1970) 
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,  (2) 

where int
ˆ 0m H  is the modulus of the matrix element of the Hamiltonian of the radiation-

substance interaction.  
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In general, the density of optical states g(ω) in photonic crystal is defined by a photon 
dispersion law and has maxima near by the band gap edges, where ( / ) 0d dk  . In the 
frame of one-dimensional model it can be determined as follows  

 2 2 1( ) ( / )( / )g k d dk    .  (3) 

Exciting photons with the frequency ωex in the vicinity of band gap edges have the velocity 
values close to zero. It results in increasing the interval intt  of radiation-substance 
interaction in photonic crystal compared with the interval intt  in uniform material, 
according to the following expression 

 1
int int ( / )

eff

ct t d dk
n

     ,  (4) 

where c = 3108 m/s and neff is an effective refractive index of photonic crystal. Besides, the 
interval intt  may be enlarged because of the presence of “diffuse” photons whose motion is 
like to Brownian motion. Such diffuse photon transfer is most probably due to multiple 
photon reflections from disordered elements in photonic crystal structure. Both considered 
mechanisms give a reason to expect the enhancement of Raman scattering by substances 
infiltrated into photonic crystal.  

2.3 Spontaneous parametric down-conversion 

Spontaneous parametric down-conversion is a process of spontaneous disintegration of 
pump photons (ћωp, kp) into pairs of signal (ћωs, ks) and idler (ћωi, ki) photons. As this 
process is a second-order nonlinear process it occurs in media with no inversion symmetry. 
In case of spatially uniform media with a non-zero second-order nonlinear susceptibility χ(2) 
the energy and momentum conservation is as follows 

 ,  p s i p s i     k k k   (5) 

In frequency-degenerated ( / 2s i p    ) and collinear ( / 2s i pk k k  ) regime at equal 
polarization of photons in pair (i.e., signal and idler photons are identical) the spectrum of 
bi-photons is determined by the following expression (Kalashnikov et al., 2009) 

 
2sin( )bp

xJ
x

    
 ,  (6) 

where 2 2 2( / 2) ( / )bp bpx L d k d    , Ωbp is a frequency turning out of / 2p , L is a sample 
length in the pump propagation direction.  

For spatially nonuniform media with regular structures (photonic crystals) a periodic 
modulation of linear and nonlinear susceptibilities should be considered in general case. By 
taking into account the χ(2) periodic modulation the bi-photons spectrum should be 
determined by an additive sum of single harmonics of χ(2) susceptibility (Kitaeva & Penin, 
2005). The spectrum of each of these harmonics is shifted relative to the spectrum in uniform 
medium, according to the following “quasi-synchronism” condition (see also Fig. 3) 
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 0m s i pm     k k k q k ,  (7) 

where m = 1, 2, 3 …, and q is a vector of photonic crystal reciprocal lattice (q = 2π/d, d is a 
period of photonic crystal structure).  

 
Fig. 3. Spontaneous parametric down-conversion process in photonic crystal 

The intensity of each summand is determined by the square of magnitude of corresponding 
harmonic amplitude. An additional contribution to the parametric down-conversion 
spectrum should be given by interference of non-coinciding harmonics. At the absence of 
absorption the parametric down-conversion intensity JωΦ per unit spectral Δω and angular 
ΔΦ intervals is determined by a magnitude of phase quasi-synchronism turning out Δm for 
the m-th order nonlinear diffraction (Kitaeva & Penin, 2004)  
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where I0 is a pump intensity, (2)
m  is an amplitude of the m-th Fourier component of spatial 

distribution of nonlinear susceptibility χ(2). The phase quasi-synchronism turning out Δm is 
defined via the phase synchronism turning out Δ in spatially uniform medium as follows  

 m mqL    .  (9) 

In contrast to parametric down-conversion spectrum of spatially uniform sample the bi-
photon field spectrum of photonic crystal should be broadened, and the interference effects 
may appear in its spectral intensity distribution (Kitaeva & Penin, 2004, 2005; Nasr et al., 
2008; Kalashnikov et al., 2009). One of the reasons that cause an additional broadening of the 
bi-photon spectrum in photonic crystal is the presence of structure disordered domains with 
period d varied along a pump propagation direction. Besides, observable spectrum should 
be determined by the density of optical states g(ω) in the region of scattered light frequencies 
as a result of periodical modulation of linear susceptibility.  
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3. Characterisation of samples and experimental setup 
Nanodisperse globules of silica dioxide were synthesized using a modified Stöber method 
(Stöber et al., 1968) through hydrolysis of tetraethoxysilane Si(OC2H5)4 at high values of 
water concentration. Bulk synthetic opals were obtained by natural sedimentation of α-SiO2 
globules with the following annealing of samples at 800 0C during several hours. Annealing 
was performed in order to remove organic residua, extra- and intra-globular ethoxygroups, 
and chemically bound water (Samarov et al., 2006). Dimensions of obtained samples were 
about 1.0x1.0x0.2 cm3.  

Characterization of initial opals was performed by analyzing the surface structure with the 
use of X-Ray Microanalyzer JEO JXA 8200 and by measuring transmission and reflection 
spectra within a visible spectral range (Fig. 4, 5). Opal samples in these studies were 
composed of hexagonal close-packed layers of monodisperse α-SiO2 globules which are 
arranged in the face centred cubic lattice. The value of globules diameter D in various 
samples was from 250 nm to 270 nm, and the distance d between the (111) planes was from 
204 nm to 220 nm.  

 
Fig. 4. Image of the opal surface in [111] direction. Diameter of globules D = 270 nm 

Parameters of photonic stop-band in [111] direction (spectral position of stop-band centre λc 
and its spectral width Δλg) were determined from transmission and reflection spectra as the 
parameters of non-transmission or reflection band (spectral position of maximum and 
spectral band width) formed in accordance with Bragg diffraction mechanism. The spectral 
position of reflection maximum (or transmission minimum) assigned as stop-band centre λc 
is dependent of an incident angle θ, effective refractive index neff and distance d between the 
(111) planes as follows (Podolskyy et al., 2006):  

 2 2( ) 2 sinc effd n    .  (10) 

The effective refractive index neff is determined by the refractive index ns of α-SiO2 globules 
(ns = 1.47), the refractive index np of substance in opal pores (for initial opal it is air, np = 1) 
and the volume fraction f occupied by α-SiO2 globules (in our case, f  0.74) as follows:  

 
Quantum Optics Phenomena in Synthetic Opal Photonic Crystals 

 

93 

 2 2 2(1 )eff s pn f n f n     .  (11) 

 
Fig. 5. Typical transmission and reflection spectra of initial opals (D = 255 nm). Transmission 
spectrum was measured at normal incidence to (111) plane (θ = 00), reflection spectrum was 
measured at θ = 70 

Photonic crystals based on synthetic opals were obtained by further infiltration of initial 
opals with organic luminophores (rhodamine 6G, 2,5-bis(2-benzoxazolyl)hydroquinone, 
pironin G, astrofloksin) or nonlinear optical substances (Ba(NO3)2, LiIO3, KH2PO4, Li2B4O7). 
In most cases the infiltration was performed by a multiple soaking of samples in 
corresponding supersaturated solutions at room temperature. For example, synthetic opals 
were filled with rhodamine 6G by soaking samples in a dilute ethanol solution with laser 
dye concentrations of 10-4 M or 510-3 M. After soaking the obtained samples were in the air 
until ethanol was evaporated. In case of infiltration with Ba(NO3)2, LiIO3, KH2PO4 an 
additional annealing of samples was performed at temperatures lower than melting ones 
(595 oC for Ba(N03)2 and 120 oC for LiIO3) to remove water. In case of Li2B4O7 the initial opal 
was in Li2B4O7 melt at 860 0C.  

Reflection and transmission spectra of opals after infiltration were measured to prove the 
existence of corresponding substance in pores. Two types of changes in the spectra were 
registered. First, in opals with organic luminophores, an additional non-transmission band 
caused by absorption of embedded molecules was observed (Fig. 6). Second, the band 
caused by Bragg diffraction was shifted if a quantity of embedded substance was enough to 
change essentially the value of neff, according to expression (11) (Podolskyy et al., 2006).  

In some experiments, in order to diminish (or exclude) the photonic stop-band effects and to 
study phenomena in a regular matrix of nano-emitters the opal samples were additionally 
soaked in water-glycerine solutions or pure glycerine. Opal infiltration with any water-
glycerine solution yields in decreasing dielectric contrast in the synthetic opal photonic 
crystals as the refractive index of a water-glycerin solution np (variable from 1.39227 till 
1.47399 in our experiments) is close to that of SiO2 globules nS. It causes the shift of the stop-
band center λc to the longer wavelengths (10) and the narrowing of stop-band region Δλg 
with increasing glycerin concentration.  
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 2 2 2(1 )eff s pn f n f n     .  (11) 

 
Fig. 5. Typical transmission and reflection spectra of initial opals (D = 255 nm). Transmission 
spectrum was measured at normal incidence to (111) plane (θ = 00), reflection spectrum was 
measured at θ = 70 
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For studying luminescence and light scattering phenomena in synthetic opals photonic 
crystals the incoherent and coherent light sources were used. The incoherent light sources 
were two light emitting diodes Edixeon EDST-3LAx (λ = 400 nm and 517 nm, Δλ1/2  30 nm, 
and the average power P = 30 mW). The coherent light sources were the pulsed nitrogen 
laser (λ = 337 nm, Δλ1/2 = 0.1 nm) with the pulse repetition frequency of 100 Hz and P = 3 
mW, the semiconductor laser (λ = 407 nm, Δλ1/2 = 1 nm, P = 60 mW), and the diode-pumped 
solid state laser (λ = 532 nm, Δλ1/2 = 1 nm, P = 120 mW). As a rule, the forward and back 
scattering geometry along the [111] direction were used. Length of samples along the 
excitation direction was from 2 mm to 3 mm. Some experiments on light scattering were 
performed in the right angle geometry. The secondary emission from the sample surface 
was collected along the [111] direction by using lens with an aperture of about 0.17π sr. The 
angular dependences of emission spectra were obtained within an angles region from 10 to 
50 with the use of circle diaphragms. Spectral analysis was performed by using modernized 
spectrometer DFS-12. Signal registration was carried out in a regime of photon counting 
with accumulation.  

 
Fig. 6. Transmission spectra of initial opal (1) and the same opal infiltrated with pironin G 
(2). Spectra were measured at normal incidence to (111) plane (θ = 00) 

4. Results and discussion 
In emission spectra of synthetic opal photonic crystals under optical excitation three typical 
regions are clearly observed (Gaponenko et al., 1999; Gorelik, 2007; Gruzintsev et al., 2008). 
One of them takes place in the opal-luminophores spectra, and is beyond doubt caused by 
the irradiative transitions between luminophore molecule levels. The other regions are 
inherent in emission spectra of opals filled with nonlinear optical substances. The first one is 
in a spectral range typical for Raman scattering region. The position of the second one is 
more distanced from an exciting line and is rather correlated with a stop-band position.  

4.1 Luminescence of organic molecules in synthetic opals 

As mentioned above synthetic opals are characterised by a presence of band gap in one 
space direction. This is why a complete inhibition of spontaneous emission should be 
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absent. Nevertheless, the use of opals as containers of emitting organic molecules allows 
changing the irradiative transitions probabilities remarkably (Bechger et al., 2005). It may be 
actual for substances with intra-molecular proton transfer, such as 2,5-bis(2-
benzoxazolyl)hydroquinone, to control the probabilities of transitions with and without 
proton transfer.  

4.1.1 Laser dyes molecules 

Luminescence spectra of laser dyes (rhodamine 6G and pironin G) are shown in Fig. 7 
(Moiseyenko et al., 2008, 2010). As seen from Fig. 7, for both molecules embedded into opal 
matrix a partial inhibition of luminescence intensity takes place within a region 
corresponding to the stop-band. For the rhodamine 6G spectrum, enhancement of the short-
wavelength tail of the emission band is observed, while the long-wavelength tail of the 
spectrum is not altered essentially (Fig. 7, a). At the same time, the opal-pironin G spectrum 
is concentrated inside a long-wavelength region though it is rather not amplified (Fig. 7, b).  

 
Fig. 7. Luminescence spectra of rhodamine 6G (a) and pironin G (b) put into optical cell with 
an ethanol (1) and infiltrated into opals (2) at a 517 nm diode excitation. Rectangles point to 
stop-band positions. 

Following Bechger et al., 2005, observed transformations may be explained in such a way. 
When the light with wavelength λem shorter than a stop-band centre λc is emitted in the [111] 
direction it encounters Bragg diffraction at higher angles. Because of diffuse propagation 
more light is detected in the [111] direction at these higher angles. For the light of any longer 
wavelengths (λem > λc) all the directions in opal volume are equivalent and that light escapes 
the sample without being enhanced. As mentioned above, spectral distribution of 
spontaneous emission is defined by density of photon states g(ω). In both cases the spectral 
intensity maximum is near by the stop-band edge where the density of states g(ω) has 
maximum (Fig. 7). An absence of total inhibition inside stop-band region can be connected 
with a structure disorder that results in appearance of local states in the stop-band 
(Kaliteevskii et al., 2005). From these points of view luminescence spectra of rhodamine 6G 
and pironin G in opals with additional water-glycerine solutions (Fig. 8) may be interpreted 
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as follows. Infiltration with any water-glycerine solution results in lowering dielectric 
contrast. It causes a shift of stop-band centre λc to longer wavelengths. In accordance with 
our calculations by using expressions (10, 11), the stop-band shift is equal to 6 nm by 
varying glycerine volume concentration from 66 % till 100 %. It corresponds exactly to the 
luminescence maximum shift observed in the opal-rhodamine 6G spectrum (Fig. 8, a). In 
case of pironin G, we have somewhat different behaviour (Fig. 8, b, and Fig. 9).  

 
Fig. 8. Luminescence spectra of rhodamine 6G (a) and pironin G (b) placed into opals filled 
with a water-glycerin solution and in the optical cell with pure glycerine. In case (a) 
glycerine volume concentrations are 66 % (1), 75 % (2), 100 % (3), and curve 4 is the 
spectrum in pure glycerine. In case (b) glycerine volume concentrations are a 40% (1), 60% 
(2), 80% (3), 100% (4), and curve 5 is the spectrum in pure glycerine.  

 
Fig. 9. Concentration dependences of stop-band center λc (1), pironin G luminescent maxima 
in opals (2) and water-glycerine solution in optical cell (3). The bars are stop-band widths.  

Without infiltrating opals with a solution the condition λem > λc takes place and we have a 
weak emission in the long-wavelength region discussed above (Fig. 7, b). By increasing 
glycerine concentration the relation between λem and λc becomes the opposite (λem < λc) and 
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the short-wavelength tail of the luminescence band is being enhanced. At glycerine 
concentrations close to 85 volume per cents (marked by the arrow in Fig. 9), the dielectric 
contrast vanishes (∆λg = 0) and luminescent band position becomes just the same as in the 
optical cell (a so-called solvent effect). After passing through this concentration, the stop-
band width ∆λg starts growing due to increasing refractive index np. In this case we have an 
inversion of photonic bands, something like that occurring in narrow-gap semiconductors. 
The luminescent band in such inverse opal is shifting towards a “blue” side.  

4.1.2 Intra-molecular proton transfer substances  

2,5-bis(2-benzoxazolyl)hydroquinone belongs to a class of substances that manifests intra-
molecular excited-state proton transfer. This substance is tautomerized in the conditions of 
ultraviolet excitation and shows a pronounced luminescence in green-red region with a 
large Stokes shift. When 2,5-bis(2-benzoxazolyl)hydroquinone in a hexane solution is 
excited within a main absorption band (280 nm – 420 nm), the irradiative transitions in both 
structural forms appear the spectrum (curve 1 in Fig. 10). The band in the 430 nm – 470 nm 
region is correspondent to the transitions without proton transfer, the band in the 580 nm – 
620 nm region is due to the transitions with proton transfer. In condensed states these bands 
may be shifted towards the greater wavelength region. Thus a wide intensive band 
observed in the polycrystalline state spectrum within a 600 nm – 750 nm region is a result of 
the shift of a “proton-transfer” band. A shoulder of this band (in the 490 nm – 560 nm 
region) is most likely due to the impurity luminescence. It is proved by diminishing this 
band intensity in amorphous state (impurity-free state, according to our obtaining 
procedure) and by results presented by Chayka et al., 2005.  

 
Fig. 10. Luminescence spectra of 2,5-bis(2-benzoxazolyl)hydroquinone in a hexane solution 
at a 400 nm diode excitation (1), in polycrystalline state at a 350 nm wide-band mercury 
lamp excitation (2), in polycrystalline (3) and amorphous (4) states, and into synthetic opal 
volume (5) at a 337 nm nitrogen laser excitation.  
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Spectral intensity distribution in the spectrum of 2,5-bis(2-benzoxazolyl)hydroquinone in 
synthetic opal is like to that in amorphous state (curves 4, 5 in Fig. 10). It allows assuming 
amorphous state of the substance in opal pores. The “blue” shift observed in this case may 
be explained in the following way. As a “proton-transfer” band is near by the stop-band 
region (600 nm – 640 nm in opal under study), the probability of these transitions decreases. 
It may result in increasing probabilities of impurity irradiative transitions and transitions 
without proton transfer. The latter transitions have not been observed in a “free” condensed 
state (Chayka et al., 2005). Another reason to make these processes observable is an 
accumulation of the shorter wavelength radiation because of Bragg reflection from the {111} 
planes at higher incident angles (Bechger et al., 2005).  

4.2 Light scattering by synthetic opals filled with nonlinear optical dielectrics 

Emission spectrum of synthetic opals with dielectrics observed within a wide spectral region 
under ultraviolet excitation may be divided into two parts. The first part is the spectrum 
located in the vicinity of the excitation line. The second one is in a region of 440 nm – 650 nm 
including a stop-band. By now the secondary emission of initial and dielectrics infiltrated 
opals has been given no universal explanation which should be satisfied by all experimental 
facts (Gorelik, 2007; Gruzintsev et al., 2008; Moiseyenko et al., 2009a, 2009b, 2012).  

4.2.1 Enhanced spontaneous Raman scattering 

Consider a total emission spectrum of initial synthetic opals; some of them were in air for a 
long time. The others were excited just after high temperature annealing. In all spectra a 
quite intensive band in the vicinity of the excitation line was observed. Its spectral position 
was independent of the stop-band position and previous technology conditions (Fig. 11). In 
the spectrum of a long time air-conserving sample a wide band with maximum at 570 nm 
was also observed. The fact that the band has vanished after annealing, i.e. after removing 
water in opal pores, reveals the impurity OH-groups luminescence origin of this band.  

 
Fig. 11. Emission spectra of two different initial opals after thermal annealing at 800 0C (a). 
Emission spectra of opal conserved for a long time in the air at 70 % moisture (b)  before (1) 
and just after (2) annealing at 700 0C. The rectangles point to the stop-band positions.  
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In order to understand the nature of the band near by the excitation line an influence of 
infiltrated substance on the emission spectrum has been studied (Moiseyenko et al., 2009a, 
2009b). These spectra measured under spectral correct conditions with a 2 cm-1 resolution 
are presented in Raman shift scale after subtracting excitation line profile (Fig. 12, a). As 
seen from Fig. 12, spectral intensity distribution is dependent of kind of substance into opal 
pores. This fact together with mentioned above regularities allows us to suppose that the 
band observed within a typical vibrational spectrum range is caused by Raman scattering in 
substances forming photonic crystal. Such process becomes possible to be detected owing to 
an essential increase of field due to a slow diffuse motion of exciting photons into opal 
volume, and also, as a result of surface enhanced conditions inside opal pores.  

However, obtained spectra are too wide compared with the usual Raman spectra. It may be 
explained, if remember, that band spectral profile is determined by spectral profile of 
excitation line and Raman spectrum of substance. In our initial experiments we have used a 
source with a significant width of the exciting line (Δλ1/2 ≈ 30 nm). Another reason for 
spectrum broadening is a possible amorphous state of substances which form the sample 
structure. In case of amorphous state, a density of vibrational states g(Ω) can be 
quantitatively described by calculating reduced Raman spectrum JR(Ω) for the Stokes 
component (Cardona, 1975) (Fig. 12, b).  

 
Fig. 12. Emission spectra (a) in the vicinity of the 400 nm exciting line and the corresponding 
reduced Raman spectra (b) for  initial synthetic opal (1) and opals infiltrated with CuCl2 (2), 
Ba(NO3)2 (3), and LiIO3 (4)  

To diminish a role of exciting radiation parameters in forming measured spectrum, we have 
used a 532 nm laser radiation with Δλ1/2 ≈ 1 nm to excite emission in opal filled with KH2PO4 
(Fig. 13). The significant band width in this case may testify amorphous state of substance in 
opal pores. The presence of the anti-Stokes component should be pointed out.  
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Fig. 13. Emission spectrum in the vicinity of the 532 nm laser exciting line for synthetic opal 
infiltrated with KH2PO4  

The emission spectral distribution typical for Raman spectrum was observed in the opal-
Li2B4O7 spectrum in the right angle geometry (Fig. 14). The A1(TO) Raman Li2B4O7 spectrum 
measured earlier (Moiseyenko et al., 2006) at the excitation of a 532 nm Q-switched Nd:YAG 
laser with mean power of 250 mW is also presented in Fig. 14.  

 
Fig. 14. The emission spectrum of opal infiltrated with Li2B4O7 (1) and A1(TO) Raman 
Li2B4O7 spectrum (2) at the 532 nm laser excitation  

Both spectra have a similar structure in the 100 cm-1 – 550 cm-1 spectral range, but the bands 
in the opal-Li2B4O7 spectrum are shifted towards the excitation line and have a greater 
halfwidth. However, the values of bands halfwidths (no more than 30 cm-1) give no reason 
to conclude amorphous state of the substance in opal pores. The broadening of bands is 
rather caused by structural disordering and the existence of polydomain structure. The 
bands shifts are most probably due to the small sizes of the unit Li2B4O7 scattering volume 
defined by the pores sizes (no more than 100 nm in our samples). The coincidence of high-
frequency Raman range and the stop-band spectral region results in a crucial decrease of 
emission intensity at Raman shifts higher than 600 cm-1. 
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In order to experimentally prove the enhancement effects in synthetic opal photonic crystals 
Raman spectra in opal-Li2B4O7 and single Li2B4O7 crystal were measured in the low-
frequency region under the same conditions (Fig. 15). As seen from Fig. 15, integral 
scattering intensity in the opal-Li2B4O7 spectrum is about of a three times higher than the 
one in the single Li2B4O7 crystal spectrum. Taking into account the lesser quantity of lithium 
tetraborate in opal matrix in the same scattering volume (no more than 26 % from total 
volume, as lithium tetraborate is situated only in opal pores) we can estimate the Raman 
enhancement coefficient as high as 10. Two enhancement mechanisms can be proposed. The 
first one is a photon slowing in accordance with a dispersion law in photonic crystals and 
the second is a multiple reflection from disordered planes resulting to diffuse photon 
motion (Gorelik, 2007). 

 
Fig. 15. Low-frequency region in non-polarised Raman spectra of opal infiltrated with 
Li2B4O7 (1) and single Li2B4O7 crystal (2) under the same conditions at the 532 nm diode 
pumped solid state laser excitation. The right angle geometry was used. The longer 
wavelength tale of excitation line was subtracted.  

4.2.2 Spontaneous parametric down-conversion 

Emission spectra of photonic crystals infiltrated with any nonlinear optical substances 
mentioned above are similar after subtracting the longer wavelength tale of excitation line 
and the bands corresponding to Raman scattering processes (Fig. 16). The spectra contain a 
wide asymmetric band within a 410 – 600 nm range. This band spectral position is different 
for opals with different infiltrators but it is correlated with the stop-band position. The 
emission intensity decreases within a stop-band region but it does not vanish completely 
because of the existence of point defects and structural disordering in photonic crystals.  

Photos of secondary emission made far from sample surface reveal the angular distribution 
of spectral intensity (Moiseyenko et al., 2009b). Emission spectra measured at different 
scattering angles and treated by subtracting the longer wavelength tale of excitation line and  
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Fig. 13. Emission spectrum in the vicinity of the 532 nm laser exciting line for synthetic opal 
infiltrated with KH2PO4  

The emission spectral distribution typical for Raman spectrum was observed in the opal-
Li2B4O7 spectrum in the right angle geometry (Fig. 14). The A1(TO) Raman Li2B4O7 spectrum 
measured earlier (Moiseyenko et al., 2006) at the excitation of a 532 nm Q-switched Nd:YAG 
laser with mean power of 250 mW is also presented in Fig. 14.  

 
Fig. 14. The emission spectrum of opal infiltrated with Li2B4O7 (1) and A1(TO) Raman 
Li2B4O7 spectrum (2) at the 532 nm laser excitation  
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defined by the pores sizes (no more than 100 nm in our samples). The coincidence of high-
frequency Raman range and the stop-band spectral region results in a crucial decrease of 
emission intensity at Raman shifts higher than 600 cm-1. 
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Fig. 16. Emission spectra of opals infiltrated with Ba(NO3)2 (1), LiIO3 (2), and KH2PO4 (3) at a 
400 nm diode excitation in the forward scattering geometry. Spectral stop-band positions are 
525 nm – 590 nm (1), 560 nm – 615 nm (2, 3). 

bands in Raman scattering region are presented in Fig. 17 (Moiseyenko et al., 2012). The 
spectral intensity distribution and the emission maximum position are quite different at 
various scattering angles. When dielectric contrast becomes negligible (by infiltrating opal 
with pure glycerine) a shifted symmetric emission band is observed (curve 4 in Fig. 17). In 
this case the sample may be considered as practically transparent matrix with periodic 
distributed nonlinear substance which is responsible for generating secondary emission. The 
symmetric form of spectral distribution is typical for spontaneous parametric down-
conversion in uniform media (Kitaeva & Penin, 2005).  

Thus, all elicited regularities together with chosen conditions of the samples heat treatment 
(Samarov et al., 2006) are the reasons to exclude the fluorescence of nano-composite 
components and the OH-groups fluorescence observed in synthetic opals within a 520 nm – 
650 nm range (Gruzintsev et al., 2008). Taking into account angular dependences of spectral 
intensity, the emission observed may be interpreted as spontaneous parametric down-
conversion in spatially nonuniform nonlinear optical media. Additional contribution to the 
emission within a 407 – 437 nm region may be given by enhanced Raman scattering 
discussed above. 

As shown earlier, spontaneous parametric down-conversion intensity per a unit angle and 
spectral interval is determined by the value of quasi-synchronism Δm for the m-th order 
nonlinear diffraction. In case of 3D photonic crystals based on synthetic opals this 
magnitude is defined by the structure disordering degree, the nonlinear substance filling  
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Fig. 17. Emission spectra of opal infiltrated with Ba(NO3)2 at a 407 nm laser excitation in the 
forward scattering geometry. The spectrum (1) was measured within a full angle range. The 
spectra (2) and (3) were registered at the angles of 50 and 30 to the pump propagation 
direction, respectively.  The spectrum (4) was measured within a full angle range after 
additional sample infiltration with glycerine.  

factor and by the existence of polydomain structure which forms additional superlattice. In 
our samples typical domain size was about of 70 mkm. Then the phase quasi-synchronism 
condition becomes true for the greater number of directions and wavelengths. It results in 
broadening the parametric down-conversion spectrum like that occurred in chirped 
structures with quadratic nonlinearity (Nasr et al., 2008). Besides spectrum broadening 
effects, nonlinear diffraction by 3D grating of quadratic optical susceptibility and bi-photon 
field interference may result in more complicated changes in spatial and frequency 
distribution of far field compared with that observed in polydomain crystals (Kitaeva & 
Penin, 2004).  

5. Conclusion 
In accordance with Fermi’s golden rule, modification of luminescence spectra of organic 
molecules in synthetic opals is determined by the density of optical states in the vicinity of 
photonic stop-band. Inside stop-band region the partial inhibition of spontaneous emission 
is observed for all substances. If the wavelength, corresponding to the intensity maximum in 
spectrum of “free-state” substance, is shorter than wavelength, corresponding to the stop-
band center, the amplification of dye luminescence at the high-energy edge of stop-band 
occurs. In the contrary case a weak luminescence is observed at the low-energy edge of stop-
band without any amplifying.  
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Fig. 17. Emission spectra of opal infiltrated with Ba(NO3)2 at a 407 nm laser excitation in the 
forward scattering geometry. The spectrum (1) was measured within a full angle range. The 
spectra (2) and (3) were registered at the angles of 50 and 30 to the pump propagation 
direction, respectively.  The spectrum (4) was measured within a full angle range after 
additional sample infiltration with glycerine.  

factor and by the existence of polydomain structure which forms additional superlattice. In 
our samples typical domain size was about of 70 mkm. Then the phase quasi-synchronism 
condition becomes true for the greater number of directions and wavelengths. It results in 
broadening the parametric down-conversion spectrum like that occurred in chirped 
structures with quadratic nonlinearity (Nasr et al., 2008). Besides spectrum broadening 
effects, nonlinear diffraction by 3D grating of quadratic optical susceptibility and bi-photon 
field interference may result in more complicated changes in spatial and frequency 
distribution of far field compared with that observed in polydomain crystals (Kitaeva & 
Penin, 2004).  

5. Conclusion 
In accordance with Fermi’s golden rule, modification of luminescence spectra of organic 
molecules in synthetic opals is determined by the density of optical states in the vicinity of 
photonic stop-band. Inside stop-band region the partial inhibition of spontaneous emission 
is observed for all substances. If the wavelength, corresponding to the intensity maximum in 
spectrum of “free-state” substance, is shorter than wavelength, corresponding to the stop-
band center, the amplification of dye luminescence at the high-energy edge of stop-band 
occurs. In the contrary case a weak luminescence is observed at the low-energy edge of stop-
band without any amplifying.  
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The possibility of practical controlling probabilities of irradiative transitions without and 
with proton transfer by choosing properly the stop-band spectral position has been 
demonstrated. The “blue” shift of the luminescence spectrum of rhodamine 6G has been 
observed in opal additionally infiltrated with pure glycerine.  

The emission band observed near by the exciting line is most probably due to Raman 
scattering in substances forming photonic crystal structure. It becomes possible to be 
detected owing to the essential increase of radiation field caused by the slow diffuse transfer 
of pump photons into sample volume. 

Secondary emission of nonlinear photonic crystals under coherent and incoherent optical 
pumping observed within a 410 – 600 nm range has an asymmetric continual spectrum with 
a width of about 200 nm. The spectral intensity distribution and the intensity maximum 
position are dependent of the exciting radiation parameters (wavelength of excitation, 
degree of coherence, angle range of pumping wave vectors), of the emission detection angle, 
of the structure disordering degree. The emission observed is analyzed in terms of 
spontaneous parametric down-conversion phenomenon which occurs in spatially 
nonuniform nonlinear medium. 
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1. Introduction

Studying of various aspects of laser field influence on physical processes is one of the most
topical problems of modern applied and fundamental physics. Scientific interest is due to
numerous unknown before phenomena, which are caused by laser radiation application and
make enable coming to the main point of atomic and molecular structure of matter. These
phenomena are of great importance over such fields of physics as holography, fiberglass
optics, telecommunications, material authority, biophysics, plasma physics, nuclear fusion
and so on. The lasers which generate radiation within the range from deep infrared to
ultraviolet one and even the soft X-rays region with intensities up to 1022 W/cm2 inclusive
are made accessible at present. The sources of laser radiation had been put into practice of
modern experiment widespread owing to its unique properties. The laser physics progress
is generally concentrated on ever shorter and more powerful laser pulses production and on
application of the lasts into various fields of scientific studies. New experimental conditions
require continual improvements in computations and development of model of external field
description.

Influence of laser field on kinematics and cross-sections of various quantum electrodynamics
(QED) processes of the both first and second orders in the fine structure constant has
been an object of study over a long period of time already. The characteristic feature
of electrodynamics processes of the second order in the fine-structure constant in a laser
field is associated with the possibility of their nonresonant and resonant modes. At this
rate resonant cross-sections of scattering of particles may exceed the corresponding ones
in external field absence in several orders of magnitude. Resonant character relates to the
fact that lower-order processes, such as spontaneous emission or one-photon production and
annihilation of electron-positron pairs, are allowed in the field of a light wave. Therefore,
within a certain range of energy and momentum values a particle in an intermediate state may
fall within the mass shell. Then the considered higher-order process effectively decomposes
into two consecutive lower-order processes. Occurrence of resonances in a laser field is one of
the fundamental problems of QED in strong fields.

Theoretical study of QED processes in an external laser field basis on solutions of the Dirac’s
equation for an electron in the field of a plane electromagnetic wave namely the Volkov
functions (Volkov (1935)). Also one has to use the Green function of an intermediate particle in
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a plane wave field when studying processes of the second order in the fine structure constant.
The analytical expression of the Green function was obtained (Schwinger (1951); Brown &
Kibble (1964)).

Several of significant reviews are already devoted to studying of QED processes in the field
of a plane monochromatic wave. The review Nikishov & Ritus (1979) is to be mentioned as
one of the earliest works, in which first order processes in the field of a plane electromagnetic
wave are studied generally. Processes of an electron scattered by an atom and a multiphoton
ionization were considered in Ehlotzky et al. (1998). Theoretical studies of resonant and
coherent effects of QED in light field were systematized in the monograph Roshchupkin &
Voroshilo (2008) and several QED processes in strong field were reviewed by Ehlotzky et al.
(2009).

Detailed consideration of resonant processes in the field of a plane monochromatic wave
was fulfilled by Roshchupkin (1996). It is necessary to emphasize, that, when the resonance
conditions are satisfied, the amplitude of process of particles scattering in the field of a plane
monochromatic wave becomes infinite nominally. The infinity is eliminated by introducing
of radiative corrections into Green’s function of an intermediate particle according to the
Breit–Wigner prescription under consideration as usual. The resonant peak altitude is
determined by the lifetime of a particle in the intermediate state (Oleinik (1967)).

Since 1996 experiments of verification of QED in strong fields had been started at SLAC
National Accelerator Laboratory (Bula et al. (1996); Burke et al. (1997)) along with theoretical
study. The earliest results were related to studying of photon emission by an electron
in a collision with laser pulse and photoproduction of electron–positron pairs by a
gamma-quantum in the field of a laser. Verification of QED in strong pulsed fields is also
expected in the frame of the wide-ranging FAIR project (Darmstadt, Germany). Within the
FAIR project the laser facility PHELIX was developed and constructed. It enables to get laser
pulses with power up to petawatt range. The earliest experiments at this laser facility have
been put into practice (Bagnoud et al. (2009)).

The present paper reviews studies of a number of resonant processes in the field of an intense
pulsed laser. The earliest studies on spontaneous bremsstrahlung of an electron in a collision
with a laser pulse and photoproduction of electron–positron pairs by a high–energy photon in
the pulsed field were performed by Narozhniy & Fofanov (1996). Second order processes in
the pulsed fields which allow resonances were analytically studied for the case of moderately
strong field (Lebed’ & Roshchupkin (2010); Padusenko & Roshchupkin (2010); Lebed’ &
Roshchupkin (2011); Voroshilo et al. (2011)). These works were performed in recent several
years therefore the systematization and generalization of them is definitely significant. It
is important to underline that resonant divergences in amplitudes of studied processes are
eliminated in a consistent manner due to account of a pulsed character of the external field in
mentioned works.

Amplitude of a field strength of intense ultra short laser pulses changes greatly in space and
time. Thus, description of the external field as a plane monochromatic wave becomes the
problematic one. The external field is modeled usually as a plane quasi-monochromatic wave
for description of interaction of particles with a pulsed laser field when the characteristic
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number of the external field oscillations in an electromagnetic pulse N is large:

N =
ωτ

2π
� 1, (1)

where ω is the characteristic frequency of wave field oscillation, τ is the characteristic pulse
duration. Quantity τ can approach a value of even tens of femtoseconds for fields within
the optical range of frequency, thus the condition (1) is satisfied for the majority of modern
intense pulsed lasers. Fields are named the quasi-monochromatic ones when the condition (1)
is satisfied.

Hereinafter we consider the external electromagnetic pulse as a plane electromagnetic
elliptically polarized wave propagating along z-axis with the four-potential (Narozhniy &
Fofanov (1996))

A (ϕ) = g
( ϕ

ωτ

)
· cF0

ω

(
ex cos ϕ + δey sin ϕ

)
, ϕ = (kx) = ωt − kx, (2)

where ϕ is the wave phase; c is the velocity of light in vacuum, F0 is the strength of a wave
electric field in a pulse peak, k = (ω/c, k) is the wave four-vector; δ is the wave ellipticity
parameter (δ = 0 corresponds to the linear polarization case, δ = ±1 corresponds to the
circular polarization case); ex = (0, ex), ey =

(
0, ey

)
are the wave polarization four-vectors

meeting the standard conditions: e2
x = e2

y = −1, (exk) =
(
eyk

)
= 0. The function g (ϕ/ωτ)

is the envelope function of the external wave four-potential that allows to take into account
the pulsed character of a laser field. Generally it is chosen to be equal to unity in the center
of a pulse and to decrease exponentially when |ϕ| � ωτ. Thus, in this case it is possible to
consider the parameter τ as the laser pulse characteristic duration.

Nonlinear effects in the processes of interaction of particles with the field of wave are
governed by the classical relativistic-invariant parameter

η0 =
eF0λ̄

mc2 . (3)

Its value equals to the ratio of work done by the field at the wavelength to the particle rest
energy. The parameter (3) is one of the most important characteristics of the external field
and means the velocity of particle oscillation in the field of a wave in the case η0 � 1.
Multiphoton processes occurring when particles interact in a light field are characterized also
by the Bunkin–Fedorov quantum parameter (Bunkin & Fedorov (1966))

γ0 = η0
mvc
h̄ω

. (4)

In the Eqs. (3), (4) e and m are the electron charge and mass, respectively; λ̄ = c/ω is the
characteristic wavelength, v is the particle velocity. The multiphoton parameters (3), (4) vary
considerably with external field intensity. Thus, within the range of optical frequencies (ω ∼
1015 s−1) the classical parameter η0 ∼ 1 when F0 ∼ 1010 ÷ 1011 V/cm, and γ0 ∼ 1 when
F0 ∼ (

105 ÷ 106) (c/v) V/cm. Consequently, we study all the processes within the range of
moderately strong field when the considered parameters obey the following conditions:

η0 � 1, γ0 � 1. (5)
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The relativistic system of units, where h̄ = c = 1 and the standard metric for 4-vectors (ab) =
a0b0 − ab will be used throughout this paper.

2. Resonant spontaneous bremstrahlung of an electron scattered by a nucleus in
the field of a pulsed light wave

We consider in this section the problem of spontaneous bremsstrahlung (SB) of an electron
scattered by a nucleus in the external field of a pulsed light wave (see Fig. 1). Studying
of SB when an electron is scattered by a nucleus or by an atom in presence of an external
electromagnetic field has had a long-standing interest. Analytic expressions for the radiation
spectrum of SB in a plane monochromatic wave in the nonrelativistic case have been derived
by Karapetian & Fedorov (1978) for any atomic potential field in the Born approximation and
by Zhou & Rosenberg (1993) for a short-range potential in the low-frequency approximation.
Resonant SB of a nonrelativistic electron scattered by a nucleus in a plane-wave field was
studied by Lebedev (1972). Borisov et al. (1980) considered resonant SB, which accompanies
collisions of ultrarelativistic electrons for the case of large transferred momenta. In the general
relativistic case the problem of electron-nucleus SB in the field of a plane monochromatic wave
was studied by Roshchupkin (1985). It should be noted that the theory of SB in presence of
an external field is also developed in Lötstedt et al. (2007); Schnez et al. (2007). They contain
important numeric calculations for the case of a strong field. Nonresonant SB in a pulsed field
was considered by Lebed’ & Roshchupkin (2009). Resonant SB of an electron scattered by a
nucleus in the field of a pulsed light wave was studied in the general relativistic case (Lebed’
& Roshchupkin (2010)).

                          (a)                                                                (b) 
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Fig. 1. Feynman diagrams of electron-nucleus SB in the field of a pulsed light wave.
Incoming and outgoing double lines correspond to the Volkov functions of an electron in
initial and final states; inner lines designate the Green function of an electron in a pulsed
field. Wavy lines correspond to four-momenta of spontaneous photon and “pseudophoton”
of nucleus recoil.

2.1 Amplitude of resonant spontaneous bremsstrahlung

The process of electron-nucleus SB in a pulsed light field (2) in the Born approximation on
interaction of an electron with a nucleus, which corresponds to the transition of an electron
from an initial state with the four-momentum pi = (Ei, pi) into a final state with the

four-momentum p f =
(

Ef , p f

)
, is described by two Feynman diagrams (Fig. 1).
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The S-matrix element is given by

S f i = −ie2 � d4x1d4x2ψ̄ f (x2 |A )
�
γ̃0 A0 (|x2|) G (x2x1 |A ) Â� (x1, k�) +

+Â� (x2, k�) G (x2x1 |A ) γ̃0 A0 (|x1|)
�

ψi (x1 |A ) .
(6)

Here, ψi (x1|A) and ψ̄ f (x2|A) are wave functions of an electron in initial and final states in
the field (2), and G (x2x1 |A ) is the Green function of an intermediate electron in the field
of a pulsed light wave (2). Hereafter, expressions with hats above mean scalar products

of corresponding four-vectors with the Dirac γ̃-matrices. In the amplitude (6) A0

����xj

���
�

is

the Coulomb potential of a nucleus, and A�
μ

�
xj, k�

�
is the four-potential of a spontaneously

radiated photon. They have the following forms

A0

����xj

���
�
=

Ze���xj

���
, (7)

A�
μ

�
xj, k�

�
=

�
2π

ω� ε∗μ exp
�

ik�xj

�
, j = 1, 2. (8)

Here, ε∗μ and k� = (ω�, k�) are the polarization four-vector and the four-momentum of a
spontaneous photon, k�xj = ω�tj − k�xj.

The SB amplitude of an electron scattered by a nucleus in the field of a moderately strong
pulsed wave (6) in the general relativistic case was derived early (Lebed’ & Roshchupkin
(2009)). This amplitude may be presented in the following form

S f i =
∞

∑
l=−∞

Sl , (9)

where Sl is the process partial amplitude with emission or absorption of |l| laser-wave
photons, that is

Sl = −i
Ze3√π�
2ω�Ef Ei

ū f

�
Bli (γ̃0, ε̂∗) + Bl f (ε̂

∗, γ̃0)
�

ui. (10)

Here, the functions Bli (γ̃0, ε̂∗) and Bl f (ε̂
∗, γ̃0) correspond to the diagrams of electron-nucleus

SB in Fig. 1; ui, ū f are the Dirac bispinors.

Let us consider the diagram (a):

Bli (γ̃0, ε̂∗) =
∞

∑
r=−∞

2ωτ2

q2 + q0 (q0 − 2qz)

∞�

−∞

dξ
Λl+r (ξ)

�
q̂i + m + ξ k̂

�
Λ−r (ξ)

q2
i − m2 + 2ξ (kqi) + i0

, (11)

where the four-vector q = (q0, q) is the transferred four-momentum, qi is the four-momentum
of an intermediate electron for the diagram (a) (Fig. 1)

⎧⎨
⎩

q = p f − pi + k� + lk,
qi = pi − k� + rk,
q f = p f + k� + (l + r) k;

(12)
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Fig. 1. Feynman diagrams of electron-nucleus SB in the field of a pulsed light wave.
Incoming and outgoing double lines correspond to the Volkov functions of an electron in
initial and final states; inner lines designate the Green function of an electron in a pulsed
field. Wavy lines correspond to four-momenta of spontaneous photon and “pseudophoton”
of nucleus recoil.

2.1 Amplitude of resonant spontaneous bremsstrahlung

The process of electron-nucleus SB in a pulsed light field (2) in the Born approximation on
interaction of an electron with a nucleus, which corresponds to the transition of an electron
from an initial state with the four-momentum pi = (Ei, pi) into a final state with the

four-momentum p f =
(

Ef , p f

)
, is described by two Feynman diagrams (Fig. 1).
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The S-matrix element is given by

S f i = −ie2 � d4x1d4x2ψ̄ f (x2 |A )
�
γ̃0 A0 (|x2|) G (x2x1 |A ) Â� (x1, k�) +

+Â� (x2, k�) G (x2x1 |A ) γ̃0 A0 (|x1|)
�

ψi (x1 |A ) .
(6)

Here, ψi (x1|A) and ψ̄ f (x2|A) are wave functions of an electron in initial and final states in
the field (2), and G (x2x1 |A ) is the Green function of an intermediate electron in the field
of a pulsed light wave (2). Hereafter, expressions with hats above mean scalar products

of corresponding four-vectors with the Dirac γ̃-matrices. In the amplitude (6) A0

����xj

���
�

is

the Coulomb potential of a nucleus, and A�
μ

�
xj, k�

�
is the four-potential of a spontaneously

radiated photon. They have the following forms

A0

����xj

���
�
=

Ze���xj

���
, (7)

A�
μ

�
xj, k�

�
=

�
2π

ω� ε∗μ exp
�

ik�xj

�
, j = 1, 2. (8)

Here, ε∗μ and k� = (ω�, k�) are the polarization four-vector and the four-momentum of a
spontaneous photon, k�xj = ω�tj − k�xj.

The SB amplitude of an electron scattered by a nucleus in the field of a moderately strong
pulsed wave (6) in the general relativistic case was derived early (Lebed’ & Roshchupkin
(2009)). This amplitude may be presented in the following form

S f i =
∞

∑
l=−∞

Sl , (9)

where Sl is the process partial amplitude with emission or absorption of |l| laser-wave
photons, that is

Sl = −i
Ze3√π�
2ω�Ef Ei

ū f

�
Bli (γ̃0, ε̂∗) + Bl f (ε̂

∗, γ̃0)
�

ui. (10)

Here, the functions Bli (γ̃0, ε̂∗) and Bl f (ε̂
∗, γ̃0) correspond to the diagrams of electron-nucleus

SB in Fig. 1; ui, ū f are the Dirac bispinors.

Let us consider the diagram (a):

Bli (γ̃0, ε̂∗) =
∞

∑
r=−∞

2ωτ2

q2 + q0 (q0 − 2qz)

∞�

−∞

dξ
Λl+r (ξ)

�
q̂i + m + ξ k̂

�
Λ−r (ξ)

q2
i − m2 + 2ξ (kqi) + i0

, (11)

where the four-vector q = (q0, q) is the transferred four-momentum, qi is the four-momentum
of an intermediate electron for the diagram (a) (Fig. 1)

⎧⎨
⎩

q = p f − pi + k� + lk,
qi = pi − k� + rk,
q f = p f + k� + (l + r) k;

(12)
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q f is the four-momentum of an intermediate electron for the diagram (b) (Fig. 1). The integral
functions Λl+r, Λ−r are specified as

⎧
⎪⎪⎨
⎪⎪⎩

Λl+r (ξ) = γ̃0

∞�
−∞

dφ · Ll+r (φ) · exp {iq0τφ − i (ξωτ) φ},

Λ−r (ξ) =
∞�

−∞
dφ� · F−r (φ�) · exp {i (ξωτ) φ�}.

(13)

The integration variables in Eqs. (13):

φ =
ϕ

ωτ
, φ� = ϕ�

ωτ
. (14)

The integral functions F−r (φ�), Ll+r (φ) in Eqs. (13) are stepless depended on the integration
variables (14), and are determined as

F−r (φ�) = ε̂∗ · L−r
�
χqi pi , γqi pi (φ

�) , βqi pi (φ
�)
�
+

+ (e+b) · g (φ�) L−r+1
�
χqi pi , γqi pi (φ

�) , βqi pi (φ
�)
�

,
(15)

where

b =
1
4

η0m

�
ε̂∗ k̂γ̃

(kpi)
+

γ̃k̂ε̂∗
(kqi)

�
, (16)

e+ = ex + iδey, (17)

L−r
�
χqi pi , γqi pi (φ

�) , βqi pi (φ
�)
�
=

=
1

2π

2π�

0

dϕ exp
�

i
�
γqi pi

�
φ�� sin

�
ϕ − χqi pi

�
+ βqi pi

�
φ�� sin 2ϕ + rϕ

��
.

(18)

The arguments of functions (18) are defined by the expressions

tan χqi pi = δ

�
eyQqi pi

�
�
exQqi pi

� , Qqi pi =
qi

(kqi)
− pi

(kpi)
, (19)

γqi pi

�
φ�� = η0g

�
φ�� · m

��
exQqi pi

�2
+ δ2

�
eyQqi pi

�2, (20)

βqi pi

�
φ�� = 1

8

�
1 − δ2

�
η2

0 g2 �φ�� m2
�

1
(kqi)

− 1
(kpi)

�
. (21)

Expressions for integral functions Ll+r (φ) ≡ Ll+r

�
χp f qi , γp f qi (φ) , βp f qi (φ)

�
may be easily

obtained from the appropriate expressions (18)-(21) after following replacements of indices
and four-momenta: −r → l + r, qi → p f , pi → qi.

Functions Ln (χ, γ, β) determine probabilities of multiphoton processes produced by the
presence of a strong external field. Note that properties of these functions were studied by
Roshchupkin et al. (2000) in detail. Thus, they may be represented as series in integer-order
Bessel functions, i.e.

Ln (χ, γ, β) = exp (−inχ)
∞

∑
s=−∞

exp (2isχ) · Jn−2s (γ) · Js (β). (22)
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The form of integral functions (18) is considerably simplified for the case of a circular
polarization of an external light wave:

L−r
(
χqi pi , γqi pi

(
φ�) , 0

)
= exp

(
irχqi pi

) · J−r
(
γqi pi

(
φ�)) . (23)

It is obvious from Eqs. (11), (13) that the essential range of the integration variable ξ is
determined by the condition

|ξ| � 1
ωτ

� 1. (24)

In view of quick oscillation of the integrand under |ξ| � (ωτ)−1 the integrals in Eqs. (13)
are small. Note that the expression of the amplitude Bl f (ε̂

∗, γ̃0) may be easily obtained from
Eqs. (11), (13)-(21), if the replacements qi → q f , γ̃0 ↔ ε̂∗ will be performed.

We emphasize, that dependence of the integrand denominator in Eq. (11) on the integration
variable expresses consequence of accounting of the field pulsed character. The similar
correction is absent in the monochromatic wave case, thus the resonant infinity in the
amplitude of SB of an electron scattered by a nucleus in a light field occurs.

2.2 Resonance conditions

Fulfillment of the energy-momentum conservation law for components of a process of the
second order caused a phenomenon when a virtual intermediate particle becomes real –
that is, on-shell. Thus, the resonant divergence occurs in the process’s amplitude. The
energy-momentum conservation law for QED processes in a pulsed light field does not fulfill
strictly. This peculiarity is inessential when nonresonant processes are studied. On the
contrary, the energy-momentum nonconservation in the case of resonant SB of an electron
scattered by a nucleus in a pulsed light field results following resonance conditions

q2
j − m2 �

(
kqj

)

ωτ
, j = i, f . (25)

(it follows from consideration of Eqs. (11), (24)). Therefore, the four-momentum of an
intermediate electron occurs near the mass shell.

It is convenient to set down expressions which determine qi, f and q (12) in following form for
the both amplitudes (a) and (b) (Fig. 1), respectively

{
pi + rk = qi + k�,
q = p f − qi + (l + r) k; (26)

{
q f + rk = p f + k�,
q = q f − p f + (l + r) k.

(27)

Eqs. (26)-(27) represent the four-momentum conservation laws for the diagrams’ vertices.
These laws are fulfilled for only the values r > 0 under the conditions (25).

It is easy to ascertain that if a spontaneous photon propagates in the same direction as a
photon of an external field, the conditions (25) cannot be satisfied simultaneously with the
conservation laws (26) or (27) because the transit amplitude equals zero in this case. Therefore,
resonances occur only when these photons propagate nonparallel to each other.
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Expressions for integral functions Ll+r (φ) ≡ Ll+r
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may be easily

obtained from the appropriate expressions (18)-(21) after following replacements of indices
and four-momenta: −r → l + r, qi → p f , pi → qi.

Functions Ln (χ, γ, β) determine probabilities of multiphoton processes produced by the
presence of a strong external field. Note that properties of these functions were studied by
Roshchupkin et al. (2000) in detail. Thus, they may be represented as series in integer-order
Bessel functions, i.e.

Ln (χ, γ, β) = exp (−inχ)
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∑
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are small. Note that the expression of the amplitude Bl f (ε̂

∗, γ̃0) may be easily obtained from
Eqs. (11), (13)-(21), if the replacements qi → q f , γ̃0 ↔ ε̂∗ will be performed.

We emphasize, that dependence of the integrand denominator in Eq. (11) on the integration
variable expresses consequence of accounting of the field pulsed character. The similar
correction is absent in the monochromatic wave case, thus the resonant infinity in the
amplitude of SB of an electron scattered by a nucleus in a light field occurs.

2.2 Resonance conditions

Fulfillment of the energy-momentum conservation law for components of a process of the
second order caused a phenomenon when a virtual intermediate particle becomes real –
that is, on-shell. Thus, the resonant divergence occurs in the process’s amplitude. The
energy-momentum conservation law for QED processes in a pulsed light field does not fulfill
strictly. This peculiarity is inessential when nonresonant processes are studied. On the
contrary, the energy-momentum nonconservation in the case of resonant SB of an electron
scattered by a nucleus in a pulsed light field results following resonance conditions

q2
j − m2 �

(
kqj

)

ωτ
, j = i, f . (25)

(it follows from consideration of Eqs. (11), (24)). Therefore, the four-momentum of an
intermediate electron occurs near the mass shell.

It is convenient to set down expressions which determine qi, f and q (12) in following form for
the both amplitudes (a) and (b) (Fig. 1), respectively

{
pi + rk = qi + k�,
q = p f − qi + (l + r) k; (26)

{
q f + rk = p f + k�,
q = q f − p f + (l + r) k.

(27)

Eqs. (26)-(27) represent the four-momentum conservation laws for the diagrams’ vertices.
These laws are fulfilled for only the values r > 0 under the conditions (25).

It is easy to ascertain that if a spontaneous photon propagates in the same direction as a
photon of an external field, the conditions (25) cannot be satisfied simultaneously with the
conservation laws (26) or (27) because the transit amplitude equals zero in this case. Therefore,
resonances occur only when these photons propagate nonparallel to each other.
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Taking Eq. (25) into account, we can use Eqs. (26), (27) for a moderately strong field (5) to find
the frequency of a spontaneous photon in the resonance (the resonant frequency) for the both
direct and exchange amplitudes (Figs. 1(a) and 1(b), respectively). Within zeroth order with
respect to the small parameter (ωτ)−1 the resonant frequency is specified:

ω�
res ≡ ω�

j = rωj
1

1 ± dj
, j = i, f , (28)

where the signs “+” and “–” correspond to index values i and f , respectively,

ωj = ω · κj

κ�j
, dj = r

(
nn�) · ω

κ�j
, (29)

κj = Ej − npj, κ�j = Ej − n�pj, (30)

n =
k
ω

= (1, n) , n� = k�
ω

=
(
1, n�) . (31)

It is obvious from Eq. (29), that within a rather broad range of electron energies and scattering
angles we have dj � 1 (except an ultrarelativistic electron with the energy ∼ m2/ω, moving
within a narrow cone close to the direction of the momentum of a spontaneous photon).
Therefore, resonances are mainly observed when the frequency of a spontaneous photon is
multiple to ωj (29).

Eqs. (28)-(31) for the resonant frequency imply that we may separate four characteristic
domains of the frequency ωj: the nonrelativistic case, ωj ∼= ω; the limiting case of
ultrarelativistic energies, when an electron moves within a narrow cone related to a photon
of an external field ωj � ω; an ultrarelativistic electron moves within a narrow cone with a
spontaneous photon, ωj � ω; otherwise, ωj ∼ ω. Here, we consider resonant frequencies in
detail.

The four-momentum conservation law (26) and the function F−r explicit form (15) result that
this function represents the amplitude of such process: an electron with the four-momentum
pi absorbs r photons of the external wave and emits a photon with four-momentum k�. This
process was considered by Nikishov & Ritus (1979) in the case of a plane monochromatic
wave, and by Narozhniy & Fofanov (1996) in the case of a pulsed light wave. The
expression for the transferred four-momentum q (see the second equality in Eq. (26)) shows

that the quantity Ll+r

(
χp f qi , γp f qi (φ) , βp f qi (φ)

)
defines the amplitude of scattering of an

intermediate electron with the four-momentum qi by a nucleus in the field of a light wave
with absorption or emission of |l + r| wave photons. In the nonrelativistic limiting case this
process was studied by Bunkin & Fedorov (1966). Denisov & Fedorov (1967) considered this
process in the general relativistic case. The process when an electron scattered by a nucleus in
a pulsed light wave was studied by Lebed’ & Roshchupkin (2008).

Consequently, if the interference between the direct and the exchange amplitudes is
absent, the process of resonant electron-nucleus SB in the field of a light wave effectively
decomposes into two consecutive processes of the first order: emission of a photon with the
four-momentum k� by an electron in a pulsed light wave and scattering of an electron by a
nucleus in a pulsed light wave (see Fig. 2).
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Fig. 2. Resonant electron-nucleus SB in the field of a pulsed light wave.

The difference for the other diagram (Fig. 1(b)) is concluded in the both replacement of the
intermediate electron four-momentum (qi → q f ) and interchange of sequence of first order
processes. Thus, an electron is scattered by a nucleus with absorption or emission of r wave
photons, and then it spontaneously emits a photon with the four-momentum k� with |l + r|
wave photons absorption.

As it was pointed above, the integral functions (18) are determined by the integer-order Bessel
functions (23) for the case of a circularly polarizated external wave. It is not difficult to verify
that for given type polarization under the resonance conditions the arguments of the Bessel
functions (20) may be represented as

γqi pi

(
φ�) = 2r · η0g

(
φ�) ·

√
u
ur

·
(

1 − u
ur

)
. (32)

Here, u, ur are the relativistic invariant parameters

u =
(kk�)
(kqi)

, ur = 2r · (kpi)

m2 . (33)

Equations (32)-(33) imply
γqi pi

(
φ�) ∼ η0 � 1. (34)

Consequently, within the range of fields specified by Eq. (5) the first resonance, that is, the
resonance with r = 1, provides the main contribution to the resonant cross section, when
the Bessel function has the largest value. This implies that the Compton scattering of a light
wave by an initial electron is mainly due to absorption of one photon of an external field.

However, the argument of the Bessel function Jl+r

(
γp f qi (φ)

)
is of the order of magnitude:

γp f qi (φ) ∼ γ0 � 1. Thus, scattering of an intermediate electron by a nucleus in a pulsed wave
field under these conditions is generally a multiphoton process.

Interference of the resonant amplitudes (which correspond to direct and exchange diagrams)
implies the equality of their resonant frequencies, i.e. ω�

i = ω�
f . Within the field range specified

by Eq. (5) the condition of interference between direct and exchange resonant amplitudes is
written as:

(
v f − vi

) (
n − n�)+

(
v f × vi

) (
n� × n

)
=

(
n�n

) ·
rω ·

(
κi + κ f

)

EiEf
. (35)
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Consequently, if the interference between the direct and the exchange amplitudes is
absent, the process of resonant electron-nucleus SB in the field of a light wave effectively
decomposes into two consecutive processes of the first order: emission of a photon with the
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The difference for the other diagram (Fig. 1(b)) is concluded in the both replacement of the
intermediate electron four-momentum (qi → q f ) and interchange of sequence of first order
processes. Thus, an electron is scattered by a nucleus with absorption or emission of r wave
photons, and then it spontaneously emits a photon with the four-momentum k� with |l + r|
wave photons absorption.

As it was pointed above, the integral functions (18) are determined by the integer-order Bessel
functions (23) for the case of a circularly polarizated external wave. It is not difficult to verify
that for given type polarization under the resonance conditions the arguments of the Bessel
functions (20) may be represented as
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m2 . (33)

Equations (32)-(33) imply
γqi pi

(
φ�) ∼ η0 � 1. (34)

Consequently, within the range of fields specified by Eq. (5) the first resonance, that is, the
resonance with r = 1, provides the main contribution to the resonant cross section, when
the Bessel function has the largest value. This implies that the Compton scattering of a light
wave by an initial electron is mainly due to absorption of one photon of an external field.

However, the argument of the Bessel function Jl+r

(
γp f qi (φ)

)
is of the order of magnitude:

γp f qi (φ) ∼ γ0 � 1. Thus, scattering of an intermediate electron by a nucleus in a pulsed wave
field under these conditions is generally a multiphoton process.

Interference of the resonant amplitudes (which correspond to direct and exchange diagrams)
implies the equality of their resonant frequencies, i.e. ω�

i = ω�
f . Within the field range specified

by Eq. (5) the condition of interference between direct and exchange resonant amplitudes is
written as:

(
v f − vi

) (
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(
v f × vi

) (
n� × n

)
=

(
n�n

) ·
rω ·

(
κi + κ f
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Here, vj = pj/Ej is the electron velocity before (j = i) and after (j = f ) scattering. The
quantity involved in the right-hand side of Eq. (35) is small compared with the unity.
Therefore, this equality is satisfied when directions of motion of photons (a spontaneous
photon and a photon of an external field) or electrons (before and after scattering) are close to
each other. It follows from Eq. (35) and from the fact that resonances vanish, when direction of
spontaneous photon motion is close to direction of external field photon motion, that resonant
amplitudes, which correspond to the processes shown on Figs. 1(a) and 1(b), interfere when
an electron is scattered on the small angles, i.e.

θ = ∠
(

vi,v f

)
∼ (1 − nvi) · (ω/|vi| Ei) � 1. (36)

Hereinafter, we consider the resonance of one diagram. We assume that the spontaneous
photon frequency is equal

ω� ≈ ω�
res = ω�

i . (37)

2.3 Amplitude integration

Let us study the process of resonant SB of an electron scattered by a nucleus in a pulsed light
field at the expense of only one photon absorption, i.e. r = 1. The condition (24) allows to
simplify the integration in Eq. (11)

∞∫

−∞

dξ
exp {iξωτ (φ� − φ)}

q2
i − m2 + 2ξ (kqi) + i0

=
exp {−2iβ (φ� − φ)}

2 (kqi)
iπ

(
sgn

(
φ� − φ

)− 1
)

. (38)

Eq. (38) contains the relevant parameter, which determines resonant electron-nucleus SB in
the field of a pulsed light wave:

β =
q2

i − m2

4 (kqi)
ωτ. (39)

As it can be seen from Eq. (39), values of the parameter β are defined by process
kinematics and external pulsed-wave properties. This parameter specifies how closely the
four-momentum of an intermediate electron coincides with the value on the mass shell under
resonance conditions for electron-nucleus SB in the field of a pulsed light wave.

The subsequent analysis will be performed for the particular form of the envelope function of
the pulsed light wave four-potential. We choose the Gaussian function:

g
( ϕ

ωτ

)
= exp

{
−

(
2ϕ

ωτ

)2
}

= exp
{
− (2φ)2

}
. (40)

Under the condition (34) the function F−r (φ�) (15) in the amplitude may be expanded in
the Taylor series. We may keep only linear terms with respect to the parameter η0. For the
envelope function (40), after simple computation we obtain the amplitude of resonant SB of
an electron scattered by a nucleus in a pulsed light field:

Bli (γ̃0, ε̂∗) = 2π · γ̃0 (q̂i + m) F̂
q2 + q0 (q0 − 2qz)

· −iωτ
√

π

4 (kqi)
exp{− β2

4
} · I (q0, β) , (41)
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F̂ = −1
2

exp{iχqi pi} · γqi pi (0) · ε̂∗ + (e+b) . (42)

I (q0, β) = τ

∞∫

−∞

dφ · Jl+1 (φ) exp {i (q0τ + 2β) φ}
(

erf
(

2φ +
iβ
2

)
+ 1

)
. (43)

Here, the function erf (2φ + iβ/2) is the error function.

2.4 Cross-section of spontaneous bremsstrahlung

Let us calculate the differential probability during the entire time of electron-nucleus SB in
a pulsed light field from the amplitude, Eqs. (9)-(10), (41)-(43) in standard manner (see
Berestetskii et al. (1982)) for the spontaneous photon frequency (37):

dw =
∞

∑
l=−∞

dwl , (44)

dwl =
Z2e6π

2ω�Ef Ei
·
∣∣∣ū f Bliui

∣∣∣2 · d3 p f d3k�

T (2π)6 . (45)

Here, T is some comparatively large (T � τ) interval of the observation time. The
energy-momentum conservation law for SB of an electron scattered by a nucleus in a pulsed
light field does not fulfill strictly, however, under the condition (1) the essential range of
integration is converged. Energies of a final electron are negligibly differ from the values,
which are specified by the strict energy conservation law. We exclude small scattering angles
from the consideration:

θ = ∠
(

pi,p f

)
�

√
ω

|pi| (ωτ)
� 1. (46)

The differential cross section of SB of an electron scattered by a nucleus in the field of a pulsed
light wave is obtained by means of division of the probability per unit time per a flux density
of scattered particles vi = |pi| /Ei. Thus, we derive

dσ =
∞

∑
l=−∞

dσl , (47)

where dσl is the partial cross section of a process with a spontaneous photon in the frequency
interval dω� within the solid angle dΩ�, and a final electron within the solid angle dΩ f with
emission (l > 0) or absorption (l < 0) of wave photons. It may be written in the form

dσl
dω�dΩ�dΩ f

=
Z2e6ω�π (ωτ)2

(2π)2 q4

∣∣∣p f

∣∣∣
|pi|

exp{−β2/2}
64 (kqi)

2 ×

×
∣∣∣ū f Miui

∣∣∣2 · τ

T

T/2τ∫

−T/2τ

dφ · J2
l+1 (φ)

∣∣∣∣erf
(

2φ +
iβ
2

)
+ 1

∣∣∣∣
2
,

(48)

Mi = γ̃0 (q̂i + m) F̂. (49)

117Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field



10 Will-be-set-by-IN-TECH
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It is taken into account that d3 p f =
∣∣∣p f

∣∣∣ Ef dEf dΩ f and d3k� = ω�2dω�dΩ�. It is important
to note that the main contribution into the sum (47) is given by the processes with emission
(absorption) of |l| � γ0 number of wave photons within the range of a moderately strong field

for electron relativistic energies
(

Ei, f � m
)

. Therefore, the energy contribution of stimulated

photons may be neglected (|l|ω/Ei, f � η0m/Ei, f � 1) in Eq. (12). Thus, it is easy to sum over
all possible partial processes of electron scattering by a nucleus (47).

If polarization effects are not of interest, then averaging over polarizations of an initial electron
and summation over polarizations of a final electron and a spontaneous photon are to be
done. Performing the relevant procedures of averaging and summation, we derive the general
relativistic expression for the resonant differential cross section of electron-nucleus SB in a
pulsed light field in the case of electron large-angle scattering (46)

dσres

dΩ� =
1

π2 · Eiκ
2
i |qi| u

(nn�)2 |pi| (1 + u)
· Pres · dσsdW(1). (50)

Here,

dσs = 2Z2r2
e

∣∣∣p f

∣∣∣ m2

|qi| q4

(
m2 + Ef qi0 + p f qi

)
dΩ f (51)

is the differential cross section of scattering of an intermediate electron with the
four-momentum qi by a nucleus in a wave field; re is the classical electron radius.

dW(1) =
αη2

0m2

4Ei

{
2 +

u2

1 + u
− 4u

u1

(
1 − u

u1

)}
· du

(1 + u)2 (52)

is the probability that an electron with the four-momentum pi absorbs one photon from an
external field and emits a photon with the four-momentum k�. The function Pres in Eq. (50)
has the form

Pres =
π (ωτ)2

64 (kqi)
2 · Pβ

res, (53)

Pβ
res = exp{−β2/2} · 1

2ρ

ρ∫

−ρ

dφ ·
∣∣∣∣erf

(
φ +

iβ
2

)
+ 1

∣∣∣∣
2
, (54)

ρ = T/τ. (55)

Here, the parameter ρ is the relation between the observation time and the pulse duration,
its value is determined by conditions of the concrete experiment. Thus, if an external field
is represented as electromagnetic pulses abiding one by one, then the parameter ρ assumes
sense of the ratio of a distance between the nearest-neighbor pulses to the characteristic pulse
duration. Dependence of the function Pres (53) on the parameter β (39) defines magnitude and
shape of the resonant peak in the cross section of an electron-nucleus SB process in a pulsed
light field (see Fig. 7).
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Fig. 3. Shape of the first resonant peak in the cross section of electron-nucleus SB in a pulsed
light field (ρ = 3). The dashed line represents the Gaussian function: exp(−β2/2).

2.4.1 Resonant width

In the frame of subsequent analysis we are to estimate the magnitude of the resonant width.
For this purpose we consider the case when the four-momentum of an intermediate photon
occurs near the mass shell:

β =

�
q2

i − m2�
4 (kqi)

ωτ � 1. (56)

Thus, we can easily write

Pres ≈ π

4
· (a1/a2)�

q2
i − m2

�2
+ 4m2Γ2

τ

, (57)

where the width Γτ , caused by the pulsed character of an external wave, is equal to:

Γτ =
2√
a2

(kqi)

m
1

ωτ
, (58)

and the coefficients a1 and a2 are specified by

a1 =
1

2ρ

ρ�

−ρ

(erf (φ) + 1)2 dφ, (59)

a2 =
1
2
− 1

4
√

πa1ρ

⎛
⎝√

2erf
�√

2ρ
�
+

ρ�

−ρ

φ exp
�
−φ2

�
(erf (φ) + 1) dφ

⎞
⎠ . (60)

It is important to underline that the relationship for the function (53) under the condition (56)
turns into the standard resonant expression (57), which is usually used in the Breit-Wigner
prescription. It is convenient to represent the resonant peak profile Pres in the form (57) to
compare obtained results with corresponding ones for the case of a monochromatic wave.
Note, that in the monochromatic wave case the resonant infinity in the cross section is
eliminated by radiative corrections introducing into the Green function. The Breit-Wigner
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In the frame of subsequent analysis we are to estimate the magnitude of the resonant width.
For this purpose we consider the case when the four-momentum of an intermediate photon
occurs near the mass shell:

β =

�
q2

i − m2�
4 (kqi)

ωτ � 1. (56)

Thus, we can easily write

Pres ≈ π

4
· (a1/a2)�

q2
i − m2

�2
+ 4m2Γ2

τ

, (57)

where the width Γτ , caused by the pulsed character of an external wave, is equal to:

Γτ =
2√
a2

(kqi)

m
1

ωτ
, (58)

and the coefficients a1 and a2 are specified by

a1 =
1

2ρ

ρ�

−ρ

(erf (φ) + 1)2 dφ, (59)

a2 =
1
2
− 1

4
√

πa1ρ

⎛
⎝√

2erf
�√

2ρ
�
+

ρ�

−ρ

φ exp
�
−φ2

�
(erf (φ) + 1) dφ

⎞
⎠ . (60)

It is important to underline that the relationship for the function (53) under the condition (56)
turns into the standard resonant expression (57), which is usually used in the Breit-Wigner
prescription. It is convenient to represent the resonant peak profile Pres in the form (57) to
compare obtained results with corresponding ones for the case of a monochromatic wave.
Note, that in the monochromatic wave case the resonant infinity in the cross section is
eliminated by radiative corrections introducing into the Green function. The Breit-Wigner
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broadening prescription is concluded in addition of the imaginary part of the electron mass,
that is m → m − iΓR. Here, the radiation width is specified

ΓR =
1
3

αη2
0

σc (qi)

σT
· (kqi)

m
, (61)

where σc (qi) is the total cross section of the Compton scattering of an external field photon
by an intermediate electron with the four-momentum qi (it is the most probable way out of an
electron from an intermediate state), σT is the cross section of the Thomson scattering.

The resonant width (58) providing by finite time of particle-field interaction is so-called transit
width. In real experiments the transit width value is generally determined by geometry of an
experiment and linear sizes of space where a particle interacts with an external field. It can
be seen from Eq. (58) that the transit width is specified by the pulse duration and process
kinematics. Influence of the pulse duration on the resonant behavior of the electron-nucleus
SB cross section was discussed by Schnez et al. (2007). The electromagnetic pulse duration has
to be longer than the lifetime of an intermediate electron state. Otherwise, an electron will not
have enough time to interact with a wave. Thus,

τ � 1
ΓR

. (62)

Requirements (62), (58) implies that values of the quantity ωτ have to satisfy the following
condition:

ωτ � 1
αη2

0

ωm
(kqi)

. (63)

Comparison of the resonance widths for the pulse duration values (63) implies that Γτ ∼ ΓR
within a sufficiently broad range of electron energies and scattering angles. Consequently, the
both radiation and transit widths have to be simultaneously considered in resonant SB study.
An exception is the case of ultrarelativistic energies when

1
αη2

0

ωm
(kqi)

� ωτ � 1
αη2

0
. (64)

In this case Γτ � ΓR and the expressions for the resonant differential cross section of
electron-nucleus SB in a pulsed field (50)-(52), (57)-(60) are correct without radiation width
accounting.

It should be pointed that we excluded other causes of the resonant peak widening from
consideration. Thus, we assume that the Doppler broadening of the resonance (the real
electron bunch is not monochromatic) and broadening caused by collisions of electrons are
negligible.

2.4.2 Range of relativistic energies

In this section we consider the range of electron relativistic energies: Ei � m. Here we
eliminate the case when ultrarelativistic electrons are moving within a narrow cone with a
spontaneous photon or an external field photon from consideration. Then |di| � 1 (it follows
from Eq. (29)). Therefore, the resonant frequency ω�

i (28) in this case is of the order of the
external field frequency. Depending on the spontaneous photon emission angle with respect
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to direction of the initial electron momentum the resonant frequency falls within the interval:

ω · κi
Ei + |pi| ≤ ω�

i ≤ ω · κi
Ei − |pi| . (65)

This frequency reaches its minimum and maximum when a spontaneous photon is emitted
along direction of the initial electron motion and in opposite direction, respectively.

The invariant parameters (33) assume the form

ur = 2r · ωκi
m2 , u ∼= (

nn�) · ω�
κi

� 1. (66)

Taking the radiation width into account, we may represent the resonant denominator (57) as

(
q2

i − (m − iΓR)
2
)2

+ (2mΓτ)
2 =

(
2ω� |pi|

)2 ·
[(

cos θ�i − cos θ�res
)2

+ C2
τ

]
. (67)

Here we introduced the notations

θ�i, f = ∠
(

k�, pi, f

)
, θi, f = ∠

(
k, pi, f

)
, (68)

cos θ�res =
Ei − (ω/ω�) · κi

|pi| , Cτ =
mΓτ

√
1 + μ2

τ

ω� |pi| , (69)

μτ =
ΓR
Γτ

=

√
a2

6
αη2

0ωτ. (70)

For the resonant angles that are not too close to zero and π we can expand cos θ�i in Eq. (67)
into the Taylor series near the resonant angle θ�res with an accuracy up to the term of the first
order with respect to t = θ�i − θ�res. The solid angle which corresponds to spontaneous photon
emission is written as dΩ� = sin θ�resdϕdt. Then the resonant cross section (50) assumes the
following form

dσres =
1

4π2 · dϕ · d (t/y)

1 + (t/y)2 · Eiκi

(nn�) |pi| Γτ

√
1 + μ2

τm
· dW(1)dσS (qi) . (71)

Here, y = mΓτ (1 + μτ)/(ω� |pi| sin θ�res) ∼ (ωτ)−1 � 1. Since the resonance angular width is
very small, we may integrate the expression (71) with respect to the azimuthal angle dϕ, and
with respect to d (t/y) within the limits from zero to +∞ (we extend the integration limits to
infinity because of integral fast convergence). Finally, we derive

dσres =
Eiκi

2 (nn�)m |pi| Γτ

√
1 + μ2

τ

· dW(1)dσS (qi) , (72)

where

dW(1) = αη2
0
(
nn�) m2

2Eiκi

{
1 − 2u

u1
·
(

1 − u
u1

)}
dω�. (73)

Derived expressions (72)-(73) for the resonant cross section are valid within the range of field
intensities (5) when an electron scatters into the large angles θ � ω/|pi|. Spontaneous
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broadening prescription is concluded in addition of the imaginary part of the electron mass,
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where σc (qi) is the total cross section of the Compton scattering of an external field photon
by an intermediate electron with the four-momentum qi (it is the most probable way out of an
electron from an intermediate state), σT is the cross section of the Thomson scattering.

The resonant width (58) providing by finite time of particle-field interaction is so-called transit
width. In real experiments the transit width value is generally determined by geometry of an
experiment and linear sizes of space where a particle interacts with an external field. It can
be seen from Eq. (58) that the transit width is specified by the pulse duration and process
kinematics. Influence of the pulse duration on the resonant behavior of the electron-nucleus
SB cross section was discussed by Schnez et al. (2007). The electromagnetic pulse duration has
to be longer than the lifetime of an intermediate electron state. Otherwise, an electron will not
have enough time to interact with a wave. Thus,
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. (62)

Requirements (62), (58) implies that values of the quantity ωτ have to satisfy the following
condition:

ωτ � 1
αη2

0

ωm
(kqi)

. (63)

Comparison of the resonance widths for the pulse duration values (63) implies that Γτ ∼ ΓR
within a sufficiently broad range of electron energies and scattering angles. Consequently, the
both radiation and transit widths have to be simultaneously considered in resonant SB study.
An exception is the case of ultrarelativistic energies when

1
αη2

0

ωm
(kqi)

� ωτ � 1
αη2

0
. (64)

In this case Γτ � ΓR and the expressions for the resonant differential cross section of
electron-nucleus SB in a pulsed field (50)-(52), (57)-(60) are correct without radiation width
accounting.

It should be pointed that we excluded other causes of the resonant peak widening from
consideration. Thus, we assume that the Doppler broadening of the resonance (the real
electron bunch is not monochromatic) and broadening caused by collisions of electrons are
negligible.

2.4.2 Range of relativistic energies

In this section we consider the range of electron relativistic energies: Ei � m. Here we
eliminate the case when ultrarelativistic electrons are moving within a narrow cone with a
spontaneous photon or an external field photon from consideration. Then |di| � 1 (it follows
from Eq. (29)). Therefore, the resonant frequency ω�

i (28) in this case is of the order of the
external field frequency. Depending on the spontaneous photon emission angle with respect
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to direction of the initial electron momentum the resonant frequency falls within the interval:

ω · κi
Ei + |pi| ≤ ω�

i ≤ ω · κi
Ei − |pi| . (65)

This frequency reaches its minimum and maximum when a spontaneous photon is emitted
along direction of the initial electron motion and in opposite direction, respectively.

The invariant parameters (33) assume the form

ur = 2r · ωκi
m2 , u ∼= (

nn�) · ω�
κi

� 1. (66)

Taking the radiation width into account, we may represent the resonant denominator (57) as

(
q2

i − (m − iΓR)
2
)2

+ (2mΓτ)
2 =

(
2ω� |pi|

)2 ·
[(

cos θ�i − cos θ�res
)2

+ C2
τ

]
. (67)

Here we introduced the notations

θ�i, f = ∠
(

k�, pi, f

)
, θi, f = ∠

(
k, pi, f

)
, (68)

cos θ�res =
Ei − (ω/ω�) · κi

|pi| , Cτ =
mΓτ

√
1 + μ2

τ

ω� |pi| , (69)

μτ =
ΓR
Γτ

=

√
a2

6
αη2

0ωτ. (70)

For the resonant angles that are not too close to zero and π we can expand cos θ�i in Eq. (67)
into the Taylor series near the resonant angle θ�res with an accuracy up to the term of the first
order with respect to t = θ�i − θ�res. The solid angle which corresponds to spontaneous photon
emission is written as dΩ� = sin θ�resdϕdt. Then the resonant cross section (50) assumes the
following form

dσres =
1

4π2 · dϕ · d (t/y)

1 + (t/y)2 · Eiκi

(nn�) |pi| Γτ

√
1 + μ2

τm
· dW(1)dσS (qi) . (71)

Here, y = mΓτ (1 + μτ)/(ω� |pi| sin θ�res) ∼ (ωτ)−1 � 1. Since the resonance angular width is
very small, we may integrate the expression (71) with respect to the azimuthal angle dϕ, and
with respect to d (t/y) within the limits from zero to +∞ (we extend the integration limits to
infinity because of integral fast convergence). Finally, we derive

dσres =
Eiκi

2 (nn�)m |pi| Γτ

√
1 + μ2

τ

· dW(1)dσS (qi) , (72)

where

dW(1) = αη2
0
(
nn�) m2

2Eiκi

{
1 − 2u

u1
·
(

1 − u
u1

)}
dω�. (73)

Derived expressions (72)-(73) for the resonant cross section are valid within the range of field
intensities (5) when an electron scatters into the large angles θ � ω/|pi|. Spontaneous

121Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field



16 Will-be-set-by-IN-TECH

photon frequency and emission angle with respect to the initial electron momentum are
unambiguously related to each other by Eq. (69), where the spontaneous photon frequency is
chosen from the interval (65).

Note, that the conventional cross section dσ∗ of electron-nucleus bremsstrahlung (in external
field absence) may be factorized as a product of the cross section dσS (pi) of electron-nucleus
elastic scattering (see (51)) and the probability dWγ of photon emission

dσ∗ = dσS · dWγ, (74)

dWγ =
α

4π2 ·
{

q2 − (
n�q

)2 · m2

κ�iκ
�
f

}
· dω�

ω�κ�iκ
�
f
· dΩ�, q = p f − pi. (75)

Let us calculate the ratio of the resonant cross section (72) to the conventional cross section
of electron-nucleus bremsstrahlung (74) (in absence of an external field). At that we take into
account the resonant relation (69) between spontaneous photon frequency and emission angle

Rres =
dσres

dσ∗
/

dΩ� = f1 · π2η2
0

ωτ√
1 + μ2

τ

(
m
|pi|

)2
, (76)

where the function f1 ∼ 1 and has a rather cumbersome form:

f1 =

√
a2κ�f

2 |pi|
1 − (nn�) m2

κiκ
�
i

(
1 − (nn�) m2

2κiκ
�
i

)

4 sin2
(

θ
2

)
−

(
cos θ�f − cos θ�i

)2 m2

κ�
i κ

�
f

. (77)

Let us choose for calculation the laser field characteristic according to SLAC experiments (Bula
et al. (1996)): laser-wave frequency, ω = 2.35 eV; laser pulsewidth, τ = 1.5 ps; field strength
in a pulse peak, F0 = 6 · 109 V/cm; ratio between observation time and laser pulse width,
ρ = 5. Fig. 4 displays the ratio of the resonant differential cross-section of electron-nucleus SB
to the cross section of bremsstrahlung in absence of an external field (76) as a function of the
electron velocity.

Eq. (76) and Fig. 4 show that within the range of electron relativistic energies the resonant
differential cross section of electron-nucleus SB, when the scattered electron ejection angle is
detected simultaneously with the spontaneous photon emission angle, may be five orders of
magnitude greater than the corresponding cross section in external field absence. Within the
range of electron ultrarelativistic energies this ratio decreases drastically: Rres ∼ (m/Ei)

2 → 0.

The ratio (76) as a function of the spontaneous photon azimuthal angle is of interest from a
perspective of experimental testing of obtained results. In the actual experiment usually the
radiation detection over the azimuthal angle is technically implemented significantly easier
than over the polar angle. Fig. 5 displays lg Rres (76) as a function of the spontaneous photon
azimuthal angle.

Fig. 5 shows that the ratio (76) may change its order of magnitude with the azimuthal angle
value. This dependence is characterized by presence of two maxima in distribution over the
azimuthal angle. Thus, when the final electron azimuthal angle coincides with the initial
electron angle (it is scattering in the plane of the vectors (k, pi)) the maxima in distribution
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Fig. 4. Ratio Rres (76) as a function of the initial velocity for electron momentum preset
orientations in initial (θi = 163◦, ϕi = 0◦) and final (θ f = 150◦,ϕ f = 0◦) states and
spontaneous photon fixed orientation: solid line, θ� = 120◦, ϕ� = 10◦; dashed line, θ� = 120◦,
ϕ� = 60◦.

Fig. 5. Ratio Rres (76) as a function of the azimuthal angle of a spontaneous photon for
electron momentum preset orientations in initial and final states and the spontaneous photon
fixed polar angle: θi = 163◦, θ f = 150◦, θ� = 120◦. Solid line, ϕi = ϕ f = 90◦; dashed line,
ϕi = 90◦, ϕ f = 320◦.

correspond to spontaneous photons emission just within this plane (solid line). In the case
when a final electron scatters in another way the peak position in distribution over the
azimuthal angle is specified by both initial and final azimuthal angles. The value of the ratio
of the resonant differential cross section of electron-nucleus SB to the ordinary bremsstrahlung
cross section as a function of the azimuthal angle may be changed in two orders of magnitude.
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cross section as a function of the azimuthal angle may be changed in two orders of magnitude.
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2.4.3 Range of nonrelativistic electron energies

In this section we assume that initial and final electron energies are small in comparison with
the light speed: Zα � vi, f � 1. It follows from Eqs. (28)-(31) that resonant frequencies for
nonrelativistic electrons are given by

ω�
i, f = rω

(
1 + vi, f

(
n� − n

)) ∼= rω. (78)

Thus, resonances occur when the spontaneous photon frequency is multiple to the external
field frequency. The condition of interference between direct and exchange resonant
amplitudes (35) is written as

(
v f − vi

) (
n − n�) = 2r · (nn�) · ω

m
� 1, (79)

and, consequently, interference appears when an electron scatters into the small angels θ ∼
ω/mvi � 1.

The resonant cross section in the case when a nonrelativistic electron scatters into the large
angles is obtained from Eq. (50):

dσres =
1

2 (nn�) viΓτ

√
1 + μ2

τ

dW(1)dσs, (80)

where

dW(1) =
1
2

αη2 (nn�) ·
{

1 − 2u
u1

·
(

1 − u
u1

)}
dω�, (81)

u
u1

=
(
nn�) ω�

2ω
,

dσs = (2Z)2 r2
e

∣∣∣p f

∣∣∣
|qi|

m4

q4 dΩ f . (82)

The resonant frequency of a spontaneous photon depends on the emission angle of this photon
with respect to the initial electron momentum and lies within a narrow interval:

ω
(

1 − 2vi cos2 (θi/2)
)
≤ ω�

res ≤ ω
(

1 + 2vi sin2 (θi/2)
)

. (83)

The transit width Γτ (58) and the radiation width ΓR (61) in the nonrelativistic limit are given
by

Γτ =
2√
a2

1
τ

, ΓR =
1
3

αη2ω. (84)

We may write the ratio of the resonant cross section (50) to the corresponding conventional
nonrelativistic cross section of electron-nucleus bremsstrahlung as

Rres = f2 · π2η2
0

ωτ√
1 + μ2

τ

v−3
i , (85)
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where the function f2 ∼ 1 and has the form

f2 =

√
a2

2
1 − (1/2) sin2 θ�

4 sin2 (θ/2)−
(

cos θ�f − cos θ�i
)2 . (86)

Fig. 6. Dependence of Rres (85) on the polar angle of a spontaneous photon for a
nonrelativistic electron with the initial velocity vi = 0.1. Orientations of the electron
momentum in initial (θi = 163◦, ϕi = 90◦) and final (θ f = 150◦, ϕ f = 320◦) states are fixed.
The azimuthal angle, corresponding to emission of a spontaneous photon, is (solid line)
ϕ� = 60◦, (dashed line) ϕ� = 160◦, and (dash-dotted line) ϕ� = 270◦.

Fig. 6 shows the dependence of quantity Rres (85) on the polar angle of spontaneous photon
emission for a nonrelativistic electron with the initial velocity vi = 0.1. Fig. 6 shows that for
the case of electron kinetic energies of several kiloelectronvolts the resonant differential SB
cross section may be 5–6 orders of magnitude greater than the corresponding cross section of
bremsstrahlung in external field absence when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered into the large angle.

2.4.4 Range of ultrarelativistic energies of electrons moving within a narrow cone with a
photon from the wave

In this section we consider an ultrarelativistic electron that moves (in initial or final states)
within the narrow cone related to an external field photon. Therefore, the quantities κi, f (30)
in Eqs. (28)-(31) may be written as

κi, f =
(

1 + δ2
i, f

)
· m2/2Ei, f , δi, f = θi, f · Ei, f /m. (87)

Taking these relations into account and using Eqs. (28)-(31) we find that the resonant
frequencies are much less than the external field frequency. They are given by:

ω�
i, f = rωi, f , ωi, f =

(
1 + δ2

i, f

)

2 (nn�) ·
(

m
Ei, f

)2

· ω � ω. (88)
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Fig. 6 shows the dependence of quantity Rres (85) on the polar angle of spontaneous photon
emission for a nonrelativistic electron with the initial velocity vi = 0.1. Fig. 6 shows that for
the case of electron kinetic energies of several kiloelectronvolts the resonant differential SB
cross section may be 5–6 orders of magnitude greater than the corresponding cross section of
bremsstrahlung in external field absence when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered into the large angle.
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photon from the wave
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in Eqs. (28)-(31) may be written as
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From Eq. (88) follows that the condition of interference between direct and exchange resonant
amplitudes implies that δi = δ f and θi ∼= θ f , that is, initial and final electrons form the
equal angles with the external field photon momentum and are located on different sides
of this photon momentum. Also, it can be seen from (35) that θi ∼ ωm2/E3

i � 1. When an
ultrarelativistic initial electron moves within the narrow cone with an external field photon
and scatters into the large angle θi � ωm2/E3

i the resonant cross section is derived from
Eq. (50) under the condition (87):

dσres =

(
1 + δ2

i
)

m

4 (nn�) EiΓτ

√
1 + μ2

τ

· dW(1) · dσS (qi) . (89)

Here, the spontaneous photon resonant frequency is given by Eq. (88) with value r = 1, and
the angle of spontaneous photon emission is not close to direction of initial electron motion.
Ratio of the resonant cross section (89) to the conventional cross section of electron-nucleus
bremsstrahlung may be derived from Eq. (76) with respect to Eq. (87):

Rres = f3 · π2η2
0

ωτ√
1 + μ2

τ

(
m
Ei

)2
, (90)

where the function f3 ∼ 1 and has a rather cumbersome form.

It may be easily estimated that for the pulsed field parameters ω = 2.35 eV, τ = 1.5 ps,
F0 = 6 · 109 V/cm, ρ = 5 and the electron energy Ei = 5 MeV the resonant cross section is
of the order of the ordinary cross section when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered on the large angle.

2.4.5 Range of ultrarelativistic energies of electrons moving within a narrow cone with a
spontaneous photon

We suppose that an ultrarelativistic electron (an initial or a final one) moves within the narrow
cone with a spontaneous photon. Then the quantities κ�i, f (30) may be written in an analogous
to Eq. (87) form, where

δi, f → δ�i, f = θ�i, f · Ei, f /m. (91)

Here, depending on the electron energy we may deal with one of two possible situations.
It is provided that m � Ei, f � m2/ω, than resonant frequencies fall within the interval
ω � ω�

i, f � Ei, f and are given by

ω�
i, f = rωi, f , ωi, f =

2 (nn�)(
1 + δ�2i, f

) ·
(Ei, f

m

)2

· ω. (92)

It was demonstrated by Roshchupkin (1985) that resonances do not occur for energies Ei, f �
m2/ω. It is obviously that direct and exchange resonant amplitudes may interfere with each
other only when initial and final electrons move within the narrow cone with a spontaneous
photon, so δ�i = δ�f .
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When an ultrarelativistic initial electron moves within the narrow cone with a spontaneous
photon and scatters on the large angle θ � ω/Ei we may use Eqs. (50)-(52) to find the
resonant cross section. In this case, it is convenient to represent the resonant denominator
in the following form

�
q2

i − (m − iΓR)
2
�2

+ (2mΓτ)
2 = m4

��
x − δ�i

2
�2

+ y2
�
· u2

(1 + u)2 , (93)

where

x =
u1
u

+
(1 + u) Γ2

τ

�
1 + μ2

τ

�

u · m2 − 1, y =
2 (1 + u) Γτ

�
1 + μ2

τ

u · m
. (94)

Here, the invariant parameters u, u1 are given by

u ∼= ω�
Ei − ω� , u1 = 2

�
nn�� · ωEi

m2 . (95)

Now Eqs. (50)-(52), (93) are to be taken into account, the solid angle is to be written as dΩ� =�
m2/2E2

i
�

dϕdδ�i
2, and integration should be performed with respect to the azimuthal angle,

and δ�i
2 within the limits from zero to +∞. Thus, we derive the following expression for the

resonant cross section:

dσres = Υ (xy) · qi0

mΓτ

�
1 + μ2

τ

· dW(1) · dσS (qi) . (96)

Here,

Υ (xy) =
1
π

∞�

0

dδ�i
2

�
x − δ�i

2
�2

+ y2
=

1
2
+

1
π

arctg
�

x
y

�
(97)

is a smoothed step function. In regions far from the resonance |u1 − u| � 2 (1 + u) (Γτ/m)
and at the resonance point u1 = u this function takes the following limiting values:

Υ (xy) =

⎧⎨
⎩

1, if u < u1,
0.5, if u = u1,
y · u/π (u − u1) , if u > u1.

(98)

The probability is given by

dW(1) = αη2 · m2

4Ei
·
�

2 +
u2

1 + u
− 4u

u1

�
1 − u

u1

��
· du

(1 + u)2 . (99)

We consider ratio of the resonant cross section (96) to the conventional cross section of
electron-nucleus bremsstrahlung in the case when an ultrarelativistic electron moves within
the narrow cone with a photon producted in bremsstrahlung and scatters on the large angles.
Using the results obtained by Baier et al. (1973) we may write the following expression:

Rres =
dσ

(1)
res

dσa
= Υ (xy) · Ei

mΓτ

�
1 + μ2

τ

· dW(1)

dWpi (k�)
. (100)
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From Eq. (88) follows that the condition of interference between direct and exchange resonant
amplitudes implies that δi = δ f and θi ∼= θ f , that is, initial and final electrons form the
equal angles with the external field photon momentum and are located on different sides
of this photon momentum. Also, it can be seen from (35) that θi ∼ ωm2/E3

i � 1. When an
ultrarelativistic initial electron moves within the narrow cone with an external field photon
and scatters into the large angle θi � ωm2/E3

i the resonant cross section is derived from
Eq. (50) under the condition (87):

dσres =

(
1 + δ2

i
)

m

4 (nn�) EiΓτ

√
1 + μ2

τ

· dW(1) · dσS (qi) . (89)

Here, the spontaneous photon resonant frequency is given by Eq. (88) with value r = 1, and
the angle of spontaneous photon emission is not close to direction of initial electron motion.
Ratio of the resonant cross section (89) to the conventional cross section of electron-nucleus
bremsstrahlung may be derived from Eq. (76) with respect to Eq. (87):

Rres = f3 · π2η2
0

ωτ√
1 + μ2

τ

(
m
Ei

)2
, (90)

where the function f3 ∼ 1 and has a rather cumbersome form.

It may be easily estimated that for the pulsed field parameters ω = 2.35 eV, τ = 1.5 ps,
F0 = 6 · 109 V/cm, ρ = 5 and the electron energy Ei = 5 MeV the resonant cross section is
of the order of the ordinary cross section when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered on the large angle.

2.4.5 Range of ultrarelativistic energies of electrons moving within a narrow cone with a
spontaneous photon

We suppose that an ultrarelativistic electron (an initial or a final one) moves within the narrow
cone with a spontaneous photon. Then the quantities κ�i, f (30) may be written in an analogous
to Eq. (87) form, where

δi, f → δ�i, f = θ�i, f · Ei, f /m. (91)

Here, depending on the electron energy we may deal with one of two possible situations.
It is provided that m � Ei, f � m2/ω, than resonant frequencies fall within the interval
ω � ω�

i, f � Ei, f and are given by

ω�
i, f = rωi, f , ωi, f =

2 (nn�)(
1 + δ�2i, f

) ·
(Ei, f

m

)2

· ω. (92)

It was demonstrated by Roshchupkin (1985) that resonances do not occur for energies Ei, f �
m2/ω. It is obviously that direct and exchange resonant amplitudes may interfere with each
other only when initial and final electrons move within the narrow cone with a spontaneous
photon, so δ�i = δ�f .
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When an ultrarelativistic initial electron moves within the narrow cone with a spontaneous
photon and scatters on the large angle θ � ω/Ei we may use Eqs. (50)-(52) to find the
resonant cross section. In this case, it is convenient to represent the resonant denominator
in the following form

�
q2

i − (m − iΓR)
2
�2

+ (2mΓτ)
2 = m4

��
x − δ�i

2
�2

+ y2
�
· u2

(1 + u)2 , (93)

where

x =
u1
u

+
(1 + u) Γ2

τ

�
1 + μ2

τ

�

u · m2 − 1, y =
2 (1 + u) Γτ

�
1 + μ2

τ

u · m
. (94)

Here, the invariant parameters u, u1 are given by

u ∼= ω�
Ei − ω� , u1 = 2

�
nn�� · ωEi

m2 . (95)

Now Eqs. (50)-(52), (93) are to be taken into account, the solid angle is to be written as dΩ� =�
m2/2E2

i
�

dϕdδ�i
2, and integration should be performed with respect to the azimuthal angle,

and δ�i
2 within the limits from zero to +∞. Thus, we derive the following expression for the

resonant cross section:
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(97)

is a smoothed step function. In regions far from the resonance |u1 − u| � 2 (1 + u) (Γτ/m)
and at the resonance point u1 = u this function takes the following limiting values:

Υ (xy) =

⎧⎨
⎩

1, if u < u1,
0.5, if u = u1,
y · u/π (u − u1) , if u > u1.

(98)

The probability is given by

dW(1) = αη2 · m2

4Ei
·
�

2 +
u2

1 + u
− 4u
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�
1 − u
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��
· du

(1 + u)2 . (99)

We consider ratio of the resonant cross section (96) to the conventional cross section of
electron-nucleus bremsstrahlung in the case when an ultrarelativistic electron moves within
the narrow cone with a photon producted in bremsstrahlung and scatters on the large angles.
Using the results obtained by Baier et al. (1973) we may write the following expression:

Rres =
dσ

(1)
res

dσa
= Υ (xy) · Ei

mΓτ

�
1 + μ2

τ

· dW(1)

dWpi (k�)
. (100)
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Here, dWpi (k
�) is the probability that an electron with the four-momentum pi emits a photon

with the four-momentum k�. For electron energies m � Ei � m2�ω the expression (100) may
be written as

Rres =

√
a2

8
π

η2
0ωτ�
1 + μ2

τ

· 1
ln (Ei/m)

. (101)

If the considered process characteristics satisfy the conditions (64), than the parameter μτ � 1
(70) and the resonant shape is specified by the laser pulse duration. Eq. (101) implies, when
the ultrarelativistic electron energy grows, the resonant cross section decreases drastically.

3. Resonant photoproduction of an electron-positron pair on a nucleus in the field
of a pulsed light wave

The most general computations of the resonant Coulomb electron-positron pair
photoproduction (CPP) on a nucleus in the field of an electromagnetic plane wave was
performed by Roshchupkin (1983). Borisov et al. (1981) studied the resonant CPP in the
special case of ultrarelativistic electron and positron energies where the incident photon and
the wave photon fly toward each other. The work of Lötstedt et al. (2008) in which resonant
cross sections were calculated for strong external fields should also be noted. The resonant
CPP in the pulsed light wave was studied in detail in the work of Lebed’ & Roshchupkin
(2011).

We consider the photoproduction of an electron-positron pair on a nucleus in a pulsed light
field (2). The interaction of an electron and positron with a nucleus is considered in the first
order of the perturbation theory (the Born approximation). Note that CPP is a crossed channel
of bremsstrahlung due to electron scattering by a nucleus. Spontaneous bremsstrahlung of an
electron scattered by a nucleus in a pulsed light field was studied early. In consideration of
the known calculation procedure we may obtain the amplitude of CPP process on a nucleus
in the field of a moderately strong pulsed wave from the expressions (9)-(18) by the following
replacement:

p− → p f , p+ → −pi, ki → −k�, (102)

where p−, p+, ki are the four-momenta of an electron, a positron and an initial photon,
respectively. For CPP on a nucleus q = (q0, q) is the four-vector is the transferred momentum,
q− and q+ are the four-momenta of an intermediate electron and an intermediate positron
(for the diagrams on Fig. 7 (a) and (b), respectively). These quantities are expressed by the
relationships: ⎧⎨

⎩
q = p− + p+ − ki + lk,
q− = ki + rk − p+,
q+ = ki + rk − p−.

(103)

3.1 Resonance conditions

Let us consider the resonances that occur when an intermediate particle reaches the mass
shell. The conditions of resonant CPP on a nucleus in a pulsed light field is determined by the
relationship

q2± − m2 <∼
(kq±)

ωτ
. (104)
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Fig. 7. Photoproduction of an electron–positron pair on a nucleus in a pulsed light wave.

Consequently, the four-momentum of an intermediate particle appears near the mass surface
under the resonant conditions.

It is convenient to write Eqs. (103), which define the four-momenta q and q±, for amplitudes
(a) and (b) in Fig. 7, respectively, as

{
ki + rk = q− + p+,
q = p− − q− + (l + r) k;

(105)

{
ki + rk = p− + q+,
q = p+ − q+ + (l + r) k.

(106)

Eqs. (105)-(106) represent the four-momentum conservation laws for the diagrams vertices
(Fig. 7) that, in view of the condition (104), hold only for r > 0.

Taking into account the condition (104) we will obtain the initial photon frequency ωres
i for

which a resonance can be observed (the resonant frequency) from the Eq. (105). Within the
zeroth order with respect to the small parameter (ωτ)−1 for the diagrams (a) and (b) (see
Fig. 7), we obtain

ωres
i = ω±

i ≡ rω · (np∓)
(niq±)

, (107)

n = k/ω = (1, n) , ni = ki/ωi = (1, ni) . (108)

Within the region of moderately strong fields (5) the energy conservation law (q0 ≈ 0) may be
written as

ωi ≈ E− + E+. (109)

Therefore, it follows from Eq. (107) that within the moderately strong fields region resonances
are possible only for ultrarelativistic positron p+ (diagram (a), Fig. 7) and electron p−
(diagram (b), Fig. 7), if they move within a narrow cone with the incident γ-ray photon ki. In
this case resonant frequencies (107) take the form

ω±
i =

E±
1 − W±/E±

, W± =
m2

rω
·
(

1 + δ2
i±
)

2 (nni)
, (110)

where
δi± = θi± · (E±/m) , θi± = ∠ (ki, p±) � 1. (111)
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field (2). The interaction of an electron and positron with a nucleus is considered in the first
order of the perturbation theory (the Born approximation). Note that CPP is a crossed channel
of bremsstrahlung due to electron scattering by a nucleus. Spontaneous bremsstrahlung of an
electron scattered by a nucleus in a pulsed light field was studied early. In consideration of
the known calculation procedure we may obtain the amplitude of CPP process on a nucleus
in the field of a moderately strong pulsed wave from the expressions (9)-(18) by the following
replacement:
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where p−, p+, ki are the four-momenta of an electron, a positron and an initial photon,
respectively. For CPP on a nucleus q = (q0, q) is the four-vector is the transferred momentum,
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(for the diagrams on Fig. 7 (a) and (b), respectively). These quantities are expressed by the
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Let us consider the resonances that occur when an intermediate particle reaches the mass
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Consequently, the four-momentum of an intermediate particle appears near the mass surface
under the resonant conditions.

It is convenient to write Eqs. (103), which define the four-momenta q and q±, for amplitudes
(a) and (b) in Fig. 7, respectively, as

{
ki + rk = q− + p+,
q = p− − q− + (l + r) k;

(105)

{
ki + rk = p− + q+,
q = p+ − q+ + (l + r) k.

(106)

Eqs. (105)-(106) represent the four-momentum conservation laws for the diagrams vertices
(Fig. 7) that, in view of the condition (104), hold only for r > 0.

Taking into account the condition (104) we will obtain the initial photon frequency ωres
i for

which a resonance can be observed (the resonant frequency) from the Eq. (105). Within the
zeroth order with respect to the small parameter (ωτ)−1 for the diagrams (a) and (b) (see
Fig. 7), we obtain

ωres
i = ω±

i ≡ rω · (np∓)
(niq±)

, (107)

n = k/ω = (1, n) , ni = ki/ωi = (1, ni) . (108)

Within the region of moderately strong fields (5) the energy conservation law (q0 ≈ 0) may be
written as

ωi ≈ E− + E+. (109)

Therefore, it follows from Eq. (107) that within the moderately strong fields region resonances
are possible only for ultrarelativistic positron p+ (diagram (a), Fig. 7) and electron p−
(diagram (b), Fig. 7), if they move within a narrow cone with the incident γ-ray photon ki. In
this case resonant frequencies (107) take the form

ω±
i =

E±
1 − W±/E±

, W± =
m2

rω
·
(

1 + δ2
i±
)

2 (nni)
, (110)

where
δi± = θi± · (E±/m) , θi± = ∠ (ki, p±) � 1. (111)
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Hence the resonances are possible only for the electron (positron) energies above some
threshold value W±: E± > W± ∼ m2/ω.

Using Eqs. (110) it is easy to obtain the positron energy at resonance:

E+ =
1
2

⎧
⎨
⎩1 ±

�
1 − ωth

i
ωi

⎫
⎬
⎭ · ωi, (112)

where ωth
i is the threshold frequency of an incident γ-ray photon,

ωth
i =

2m2

ω (1 − cos θi)
, θi = ∠ (k, ki) . (113)

As we see from Eq. (113), the threshold energy of an initial photon appreciably depends on
its orientation relative to wave propagation direction. Thus, the threshold energy is minimal
when an incident photon propagates towards the wave. In the opposite case, when an initial
photon moves parallel to external field photons, no resonances are observed. Note that the
electron energy can be obtained from Eq. (112) by reversing the sign in front of the square
root. It follows from Eq. (112), that the energies of produced electron and positron near the
threshold (ωi − ωth

i � ωth
i ) are equal E+ = E− ∼= ωth

i /2. If, alternatively, the frequency
of an incident γ-ray photon is great (ωi � ωth

i ) then electron and positron energies differ
considerably (E+ = ωi − ωth

i /4 ≈ ωi, E− ≈ ωth
i /4).

The condition of interference of resonant amplitudes, that is ω+
i = ω−

i , assumes the form

(np−) (niq−) = (np+) (niq+) . (114)

Using the energy conservation law (109) and Eq. (110) we derive that the interference of
resonant amplitudes appears when an electron p− and a positron p+ propagate within a
narrow cone with an incident γ-ray photon ki, with δi− = δi+ and θi− ∼ ω/E−.

Below, we will consider the resonance of one diagram. We will assume that the initial photon
frequency is

ωi ≈ ωres
i = ω−

i . (115)

3.2 Resonant amplitude

The amplitude of CPP on a nucleus in a pulsed light field under resonance conditions (107)
has the form

S(±) =
∞

∑
l=−∞

S(±)
l , (116)

where S(±)
l is the partial amplitude, which corresponds to processes with emission (l > 0) or

absorption (l < 0) of laser-wave |l| photons

S(±)
l = −i

Ze3√π√
2ωiE−E+

ū− [Bl− (γ̃0, ε̂i) + Bl+ (ε̂i, γ̃0)] u+. (117)
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Here, the functions Bl− (γ̃0, ε̂i) and Bl+ (ε̂i, γ̃0) correspond to the CPP diagrams in Figs. 7(a)
and 7(b), respectively

Bl− (γ̃0, ε̂i) =
∞

∑
r=−∞

2ωτ2

q2 + q0 (q0 − 2qz)
· iπ
2 (kq−)

×

×
∞∫

−∞

dφLl+r (φ) exp {i (q0τ + 2β) φ} ·γ̃0 (q̂− + m)×

×
∞∫

−∞

dφ�F−r
(
φ�) exp

{−2iβφ�} (
sgn

(
φ� − φ

)− 1
)
,

(118)

β =
q2− − m2

4 (kq−)
ωτ. (119)

Here, functions F−r (φ�) and Ll+r (φ) are defined by relations (15)-(21) with the replacement
(102).

With allowance of the four-momentum conservation law (that is the first Eq. in (105)), the
matrix function F−r

(
χq−p+ , γq−p+ (φ�) , βq−p+ (φ�)

)
(15) under resonance conditions defines

the amplitude of the production of an electron-positron pair with the four-momenta q− and
p+ by a photon with the four-momentum ki in a pulsed light field through r wave photons
absorption. This process was considered by Nikishov & Ritus (1979) in the case of a plane
monochromatic wave, and by Narozhny & Fofanov (1997) in the case of a pulsed light
wave. With allowance of the transferred four-momentum q (see the second equality in (105))
the quantity Ll+r

(
χp−q− , γp−q− (φ) , βp−q− (φ)

)
γ̃0 defines the amplitude of scattering of an

intermediate electron with the four-momentum q− by a nucleus in a pulsed light field with
absorption or emission of |l + r| photons of the wave (Lebed’ & Roshchupkin (2008)).

Consequently, if the interference between direct and exchange amplitudes is absent, the
process of resonant CPP on a nucleus in a pulsed light field effectively decomposes into
two consecutive processes of the first order. The distinction for the diagram (b) on Fig. 7
is concluded in replacement of the four-momentum of an intermediate electron q− → −q+
and change of sequence of first order processes.

Integral functions (18) are determined by the integer-order Bessel functions (23) for the case
of a circularly polarized external wave. For circular polarization of a wave under resonance
conditions the arguments of the Bessel functions (20) for CPP on a nucleus may be represented
as

γq−p+
(
φ�) = 2r · η0g

(
φ�) · 1 + z+

z+zr

√
z+zr − (1 + z+)2, (120)

where the invariant parameters z+ and zr are defined by

z+ =
(kp+)
(kq−)

≈ E+

ωi − E+
, zr = 2r · (kki)

m2 . (121)

It was expected for this part of the amplitude that the Bunkin-Fedorov quantum parameter
becomes a classical one under resonance conditions (see Eqs. (32)-(33)).

γq−p+
(
φ�) ∼ η0 � 1. (122)
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Consequently within the field range, specified by Eq. (5), the first resonance, that is, the
resonance with r = 1, provides the main contribution to the resonant cross section, when
the Bessel function has the largest value. This implies that the single-photon production of an
electron–positron pair in a pulsed field proceeds mainly through absorption of one external
field photon. However, the argument of the Bessel function Jl+r

(
γp−q− (φ)

)
is of the order

of a magnitude γp−q− (ϕ) ∼ γ0 � 1, i.e. it saves the quantum nature. Thus, scattering of
an intermediate electron by a nucleus in the field of a moderately strong pulsed wave is a
multiquantum process.

We perform the subsequent analysis for the case of wave circularly polarization (δ = ±1) at
expense of one wave photon absorption, i.e. r = 1. In view of the envelope function (40), after
simple manipulations we obtain the amplitude (118) in the form

Bl− (γ̃0, ε̂i) =
2π · γ̃0 (q̂− + m) F̂
q2 + q0 (q0 − 2qz)

· −iωτ2√π

4 (kq−)
exp{− β2

4
} · I (q0, β) , (123)

F̂ = −1
2

exp{iχq−p+} · γq−p+ (0) · ε̂i +
((

ex + iδey
)

b
)

, (124)

I (q0, β) =

∞∫

−∞

dφ · Jl+1 (φ) exp {i (q0τ + 2β) φ}
(

erf
(

2φ +
iβ
2

)
+ 1

)
. (125)

Here, erf (2φ + iβ/2) is the error function.

3.3 Resonant cross section

The differential cross section of CPP on a nucleus in a pulsed light field may be easily obtained
by standard mode (Berestetskii et al. (1982)) from the amplitude, Eqs. (116)-(117), (123)-(125)

dσ(±) =
∞

∑
l=−∞

dσ
(±)
l , (126)

where dσ
(±)
l is the partial cross section of CPP on a nucleus in a pulsed light field with

emission (l > 0) or absorption (l < 0) of |l| wave photons.

Under resonance conditions and for ultrarelativistic electron and positron energies, the energy
contribution from external pulsed field photons may be neglected. Therefore, the resonant
cross section (126) may be summed over all possible partial processes. Thus, the differential
cross section of CPP on a nucleus in a pulsed light field with the positron energy in the interval
[E+, E+ + dE+] within the solid angle [Ω+, Ω+ + dΩ+] and the final electron within the solid
angle [Ω−, Ω− + dΩ−] assumes the form

dσ
(±)
1res

dE+dΩ+dΩ−
=

Z2e6

(2π)2
|p−| |p+|

ωiq4 |ū−M−u+|2 · Pres, (127)

M− = γ̃0 (q̂− + m) F̂. (128)

In Eq. (127) the function Pres is defined by the expression (53), where the replacement
qi → q− has to be performed. We don’t take polarization effects into consideration. After
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performing of corresponding averaging and summation procedures and considering that
dΩ+ =

(
m2/2E2

+

)
dδ2

i+dϕaz we derive

dσ
(±)
1res =

1
2π2 · m2ωi

z+
· Pres · dσs (q−) dW(1)

pairdδ2
i+dϕaz. (129)

Here,

dσs (q−) = 2Z2r2
e
|p−|m2

|q−| q4

(
m2 + E−q0− + p−q−

)
dΩ− (130)

is the differential cross section of scattering of an intermediate electron with the
four-momentum q− by a nucleus, and

dW(1)
pair = α

η2
0m2

4ωi

{
4 (1 + z+)2

z+z1

(
1 − (1 + z+)2

z+z1

)
− 2 +

(1 + z+)2

z+

}
· dz+
(1 + z+)2 (131)

is the probability of production of an electron-positron pair with the four-momenta q− and
p+ by the an incident photon with the four-momentum ki at the expense of one wave photon
absorption. We can perform integration in Eq. (129) over the azimuthal angle dϕaz and dδ2

i+.
At that replacement dδ2

i+ → dβ is to be carried out. The parameter β (119) under resonance
conditions assumes the form

β =
ωτ

2

[
1 − (1 + z+)2

z+z1

(
1 + δ2

i+

)]
. (132)

We derive consequently

dσ
(±)
1res =

√
π

2
· ωτ

2
· ωi

m2z1
· dσs (q−) dW(1)

pair. (133)

Within the kinematical region of resonance, CPP on a nucleus in external field absence was
investigated by Baier et al. (1973). It was concluded that amplitudes (a) and (b) (see Fig. 7)
have poles within different regions of pair emission angles, therefore, they do not interfere.
At that, the cross section is factorized, i.e.

dσpair = dWki (p+, q−) · dσS (q−) , (134)

where q− = ki − p+; dWki (p+, q−) is the probability of production of an electron-positron pair
(p+q−) by an incident γ-ray photon with the four-momentum ki. We express the resonant
cross section (133) in terms of ordinary one (134),

Rres =
dσ

(±)
1res

dσpair
=

ωi
4mΓτ (1 + z+)

·
dW(1)

pair

dWki (p+, q−)
. (135)

The transit width Γτ of the resonance was introduced here. It has the form

Γτ =

√
2
π

· 1
ωτ

· (kq−)
m

. (136)
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It is obvious from Eq. (136) that the transit width is specified by the pulsed field frequency and
duration as well as by the particle energy and process kinematics. We underline that when
CPP on a nucleus in the field of a plane monochromatic wave is studied the divergence in the
differential cross section is eliminated by introducing of radiative corrections into the Green
function of an intermediate particle according to the Breit-Wigner prescription as usual. It is
concluded in addition of the imaginary part of the electron or positron mass: m → m − iΓR.
Here, the radiation width of resonance ΓR is introduced phenomenologically. It has the form

ΓR =
1
3

αη2
0 ·

σc (q−)
σT

· (kq−)
m

, (137)

where σc (q−) is the total cross section of the Compton scattering of an external field photon
by an intermediate electron with the four-momentum q− (it is the most probable channel
of an electron escape from an intermediate state), and σT is the Thompson cross section.
Comparison of resonant widths (136) and (137) ascertains that the transit width exceeds the
radiation one if laser pulse parameters satisfy the condition

ωτ <
3

αη2
0
· σc (q−)

σT
. (138)

Moderately strong fields of optical frequencies and the picosecond range of widths meet
the inequality (138). The titanium-sapphire laser (Ti:Sapphire) or the solid-state laser based
on aluminum-yttrium garnet Y2Al5O12 with neodymium Nd admixtures (Nd:YAG) can
be used as sources of such pulsed fields. Titanium-sapphire lasers have a broad lasing
band (700-1100 nm) and a wide range of pulse duration (10 ps –10 fs) due to various
choices of pulse compression. The PICAR picosecond Nd:YAG laser (designed at the
International Educational-Scientific Laser Center of the Moscow State University named by
M.V. Lomonosov) appropriate field characteristics to be achieved through the combined action
of active-passive mode locking and a negative feedback (Gorbunkov et al. (2005)).

Ratio of cross-sections (135) is simplified considerably in the logarithmic approximation:

Rres =
π

8

√
π

2
·η2

0ωτ ·
[

ln
E+

m

]−1
. (139)

Let us estimate the ratio of the cross sections (139) for PICAR picosecond Nd:YAG laser with
additional amplifiers with parameters η0 ≈ 0.1, λ = 1064 nm (ω = 1.17 eV), τ = 25 ps. An
incident γ-ray photon with an energy near the threshold value (113) ωi = 5 · 105m = 255 GeV
propagates towards the pulsed laser wave. We obtain the following ratio of cross-sections:
Rres ≈ 40. Consequently, the resonant cross-section of CPP on a nucleus in a pulsed light field
may exceed the corresponding one in external field absence by an order of magnitude.

4. Resonant scattering of a lepton by a lepton in the pulsed light field

Study of various processes of leptons scattering in an external electromagnetic fields is one of
the fundamental directions of QED. Cross sections of basic scattering processes in the external
field absence were obtained in the middle of the twentieth century. Thus, the scattering of
an electron by an electron was considered by Möller (1932), the scattering of an electron by
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a positron - Bhabha (1938), the scattering of an electron by a muon - by Bhabha (1938) and
Massey & Corben (1939). The detailed consideration of nonresonant scattering of an electron
by a muon in a pulsed light field was performed by Padusenko et al. (2009).

We underline that the Bunkin–Fedorov quantum parameter γ0 (4) is the main one which
determines multiphoton processes in leptons nonresonant scattering. However in the case
of leptons resonant scattering the influence of the quantum parameter γ0 does not appear (it
becomes a classical one due to resonance conditions and possess the values in order to η0),
thus the classical parameter η0 (3) determines multiphoton processes. Therefore study of
lepton by a lepton resonant scattering is carried out within the intensity range (5), that is
within the framework of the first order of the perturbation theory with respect to an external
laser field.

The electron mass me is considerably less than the muon one mμ (me � mμ), therefore the
corresponding classical parameters (3) satisfy the following condition as well

η0μ � η0e. (140)

The classical parameters η0μ and η0e are defined by Eqs. (3), where replacements m → mμ

and m → me are to be performed. Hereinafter we consider resonances for direct Feynman
diagrams of scattering type exceptionally (Fig. 8). Exchange diagrams for identical leptons
and annihilation diagrams of scattering of a lepton by an antilepton are outside of attention.
Such a problem statement is possible due to fact that resonances for direct diagrams of
scattering type and resonances for exchange (annihilation) diagrams within the intensity
range (5) occur within essentially different nonoverlapping kinematical regions (Roshchupkin
& Voroshilo (2008)). For direct scattering amplitude within the fields range (5) the process of
lepton by a lepton resonant scattering occurs when leptons scatter forwards into the small
angles in the frame of the reference related to the center of inertia of initial particles and
effectively decomposes into two processes of the first order similar to the Compton scattering
of a wave by a lepton.

The S-matrix element for a direct amplitude (see Fig. 8) is given by

S = ie2 ∫ d4x1d4x2Dμμ� (x1 − x2)×
×

[
ψ̄p�1 (x1 |A ) γ̃μψp1 (x1 |A )

] [
ψ̄p�2 (x2 |A ) γ̃μ�

ψp2 (x2 |A )
]

.
(141)

Here, Dμμ� (x1 − x2) is the Green function of an intermediate free photon; ψpj (x |A ) and
ψ̄p�j (x |A ) are the wave functions of initial and final leptons in the field of a pulsed light

wave (2), respectively (j = 1, 2).

The amplitude of scattering of a lepton l1 (with the mass m1 and the four-momentum p1)
by a lepton l2 (with the mass m2 and the four-momentum p2) in a pulsed light field may be
represented as a sum of partial components with emission (l > 0) and absorption (l < 0) |l|
wave photons:

S =
∞

∑
l=−∞

Sl , (142)

Sl =
(2π)4 ie2

2
√

E1E2E�
1E�

2

δ (qx) δ
(
qy
)

δ (q0 − qz) Dls. (143)
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1p
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2p2p

Fig. 8. The Feynman diagram of direct amplitude of scattering of a lepton l1 by a lepton l2 in
the field of a pulsed light wave. External incoming and outgoing double lines correspond to
the wave functions of leptons in initial and final states in the field of a plane wave (the
Volkov functions), and an inner dashed line corresponds to a Green function of a free photon.

Here, the arguments of delta-functions are the four-vector q = (q0, q) components

q = p�1 + p�2 − p1 − p2 + lk. (144)

The function Dls in Eq. (143) has the form

Dls =
∞

∑
s=−∞

∞�

−∞

�
ūp�1 Λν

l−s (ζ) up1

� �
ūp�2 Λsν (ζ) up2

�

q�21 + 2ζ (kq�1) + i0
dζ. (145)

Here, q�1 is the four-vector of an intermediate photon

q�1 = p�2 − p2 + sk = p1 − p�1 + (l − s) k, (146)

and functions Λν
l−s

(ζ), Λsν (ζ) are represented by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λν
l−s (ζ) = τ

∞�

−∞

dφ1 · Gν
l−s

(φ1) · exp
�

i
q0 + qz

2
τφ1

�
· exp {−i (ζωτ) φ1} ,

Λsν (ζ) = τ
∞�

−∞
dφ2 · Gsν (φ2) · exp {i (ζωτ) φ2} .

(147)

Functions Gν
l−s (φ1) in Eq. (147) have the form

Gν
l−s (φ1) = aνLl−s (φ1) + η01 (φ1)

m1
4ωκ1

γ̃ν k̂ [ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] +

+η01 (φ1)
m1

4ωκ�1
[ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] k̂γ̃ν+

+
�

1 − δ2
�

η2
01 (φ1)

m2
1

8ω2κ1κ�1
kν k̂ [(Ll−s+2 (φ1) + Ll−s+2 (φ1))],

(148)

aν = γ̃ν +
�

1 + δ2
�

η2
01 (φ1)

m2
1

4ω2κ1κ�1
kν k̂, (149)

η0j

�
φj

�
= η0j · g

�
φj

�
. (150)
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Here, ε̂± is the compression of four-vectors ε± = ex ± iδey with the Dirac’s γ̃ν-matrices.
The expression for the function Gsν (ϕ2) is ensued from Eqs. (148)-(149) by following indices
replacement: 1 → 2, l − s → s, l − s ± 1 → s ± 1, l − s ± 2 → s ± 2 and by the index ν omission
also. By means of κj and κ�j in functions Gν

l−s (φ1) and Gsν (ϕ2) the following expressions are
denoted {

κj = Ej − npj,
κ�j = E�

j − np�
j.

(151)

Here, n is the unit vector along the direction of external wave propagation

n =
k
|k| . (152)

There are the integral functions Ll−s (φ1), Ls (φ2) which determine probability of emission
and absorption of external wave photons in Eqs. for Gν

l−s (φ1), Gsν (φ2). They have the form
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(j = 1 for n = l − s, j = 2 for n = s) with the arguments
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Before performing of integration of the function Dls (145) over the variable ζ we remind
that the subject of studying is the resonant character of amplitude behavior caused by quasi
discrete structure: charged particle + plane electromagnetic wave. It is obvious that the
resonant character of lepton-lepton scattering occurs when the denominator of the function
Dls approaches zero. We should underline that the possibility of lepton-lepton resonant
scattering in a pulsed light field is provided by the both energy (with accuracy q0 � 1/τ � ω)
and momentum conservation laws fulfillment. Thus, the squared four-momentum of an
intermediate photon q�1 vanishes. It implies that the considered particle falls within the mass
shell, i.e. an intermediate virtual photon becomes a real one. In this case the correction to
the intermediate photon squared four-momentum in the denominator of the expression (145)
is caused by the external field pulsed character and is essential through integration of the
function Dls (145) over the variable ζ. Hence, the following correlation is valid

q�21 �
(
kq�1

)
ωτ

. (157)
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1p
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Fig. 8. The Feynman diagram of direct amplitude of scattering of a lepton l1 by a lepton l2 in
the field of a pulsed light wave. External incoming and outgoing double lines correspond to
the wave functions of leptons in initial and final states in the field of a plane wave (the
Volkov functions), and an inner dashed line corresponds to a Green function of a free photon.

Here, the arguments of delta-functions are the four-vector q = (q0, q) components

q = p�1 + p�2 − p1 − p2 + lk. (144)

The function Dls in Eq. (143) has the form
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Here, q�1 is the four-vector of an intermediate photon

q�1 = p�2 − p2 + sk = p1 − p�1 + (l − s) k, (146)
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Gν
l−s (φ1) = aνLl−s (φ1) + η01 (φ1)

m1
4ωκ1

γ̃ν k̂ [ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] +

+η01 (φ1)
m1

4ωκ�1
[ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] k̂γ̃ν+

+
�

1 − δ2
�

η2
01 (φ1)

m2
1

8ω2κ1κ�1
kν k̂ [(Ll−s+2 (φ1) + Ll−s+2 (φ1))],

(148)

aν = γ̃ν +
�

1 + δ2
�

η2
01 (φ1)

m2
1

4ω2κ1κ�1
kν k̂, (149)

η0j

�
φj

�
= η0j · g

�
φj

�
. (150)

136 Quantum Optics and Laser Experiments Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field 31

Here, ε̂± is the compression of four-vectors ε± = ex ± iδey with the Dirac’s γ̃ν-matrices.
The expression for the function Gsν (ϕ2) is ensued from Eqs. (148)-(149) by following indices
replacement: 1 → 2, l − s → s, l − s ± 1 → s ± 1, l − s ± 2 → s ± 2 and by the index ν omission
also. By means of κj and κ�j in functions Gν

l−s (φ1) and Gsν (ϕ2) the following expressions are
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Here, n is the unit vector along the direction of external wave propagation
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There are the integral functions Ll−s (φ1), Ls (φ2) which determine probability of emission
and absorption of external wave photons in Eqs. for Gν
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Before performing of integration of the function Dls (145) over the variable ζ we remind
that the subject of studying is the resonant character of amplitude behavior caused by quasi
discrete structure: charged particle + plane electromagnetic wave. It is obvious that the
resonant character of lepton-lepton scattering occurs when the denominator of the function
Dls approaches zero. We should underline that the possibility of lepton-lepton resonant
scattering in a pulsed light field is provided by the both energy (with accuracy q0 � 1/τ � ω)
and momentum conservation laws fulfillment. Thus, the squared four-momentum of an
intermediate photon q�1 vanishes. It implies that the considered particle falls within the mass
shell, i.e. an intermediate virtual photon becomes a real one. In this case the correction to
the intermediate photon squared four-momentum in the denominator of the expression (145)
is caused by the external field pulsed character and is essential through integration of the
function Dls (145) over the variable ζ. Hence, the following correlation is valid

q�21 �
(
kq�1

)
ωτ

. (157)
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The condition (157) determines such a kinematical region, which is accepted to name the
resonant one. In the case of external field modeling as a plane monochromatic wave there is
the intermediate particle squared four-momentum alone in a process amplitude denominator.
Therefore, when a denominator is equal zero the resonant divergence occurs. It is eliminated
by radiative corrections introducing into the Green function according the Breit–Wigner
prescription. But now there is an addition in a denominator, caused by the laser wave pulsed
character. Thus, the divergence in the process amplitude disappears.

Finally, the function Dls (145) assumes the form:

Dls =
∞

∑
s=−∞

iπωτ2
�
kq�1

�
�

ūp�μ Δν
l−supμ

� �
ūp�e Δsνupe

�
, (158)

where integral functions Δν
l−s, Δsν are defined by following expressions

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δν
l−s =
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−∞

dφ1 · Gν
l−s (φ1) · exp

�
i
�

q0 + qz

2
τ + 2βτ

�
φ1

�
,

Δsν =
∞�

−∞
dφ2 · Gsν (φ2) · exp {−2iβτφ2} (sgn (φ1 − φ2)− 1) ;

(159)

βτ ≡ q�21
4
�
kq�1

�ωτ. (160)

Here βτ is the relevant parameter which is defined by the both resonant scattering kinematics
and external pulsed wave characteristics.

4.1 Resonance conditions

In this section we analyze in detail the case when an intermediate photon falls within the mass
shell. Inner line discontinuity at the Feynman diagram appears and the studying process is
effectively decomposes into two consecutive processes of the first order: a lepton l1 with the
four-momentum p1 emits a real photon with the four-momentum q�1 at the expense of external
wave photons absorption, then a real photon is absorbed by a lepton l2 with external wave
photons emission or vice versa.

Generally speaking owing to condition (157) the squared four-momentum of an intermediate
photon is founded within the very narrow region near zero. We will show below that this
region depends on initial four-momenta of scattered particles and their scattering angles.
However, the given region has to be taken into consideration in the denominator of the
resonant amplitude exceptionally (145). Thus, the four-momentum conservation laws for
resonant diagram vertexes may be written as two equalities:

p1 + |s| k = p�1 + q�1, (161)

p2 + q�1 = p�2 + s� · k. (162)

The equality (161) expresses the four-momentum conservation law in the process when an
intermediate real photon is emitted by a lepton l1 at the expense of |s| external wave photons
absorption. The equality (162) corresponds to the four-momentum conservation law in the
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process when an intermediate real photon is absorbed by a lepton l2 with s� = |s|+ l external
wave photons emission.

Remind that integral functions (153) are determined by the integer-order Bessel functions for
the case of a circularly polarizated external wave. It is not difficult to verify that for this
polarization under the resonance conditions (157) the arguments of the Bessel functions (154)
may be represented as

γ0j

(
φj

)
= 2s� · η0j

(
φj

)√
u

us�
·
(

1 − u
us�

)
. (163)

u ≡
(

kpj

)
(

kp�j
) − 1 =

κj

κ�j
− 1, us� ≡ 2s� · ωκj

m2
j

. (164)

It was expected, that for processes of resonant lepton-lepton scattering the influence of the
Bunkin-Fedorov quantum parameter does not reveal, in opposite the nonresonant case. Since
γ0e ∼ η0e � 1 (see Eq. (163)), then the most probable case when a lepton l1 absorbs and a
lepton l2 emits equally the only one external wave photon is realized, i.e.:

s� = |s| = 1, l = s + s� = 0. (165)

The region of resonant scattering is to be defined. We use the frame of reference related to
a center of initial particles inertia, that is p1 + p2 = 0. In this frame the particle relative
momentum p = p1 = −p2 and after scattering changes only the direction: |p� | = |p|. We
introduce also the unit vectors along the directions of initial and final momenta n f and ni

n f =
p�
|p� | , ni =

p
|p| . (166)

With expressions (157) consideration it is easy to verify that in view of chosen direction of
intermediate photon motion the resonance occurs if leptons scatter into the small angles in
the frame of reference related to a center of inertia:

θ = ∠
(

n f , ni

)
= θres = 2

ω

|p| sin θi � 1, (167)

where θi = ∠ (n, ni) is the angle between the directions of wave propagation and the initial
relative momentum p.

Meanwhile the resonance for exchange (annihilation) amplitude occurs in the essentially
different kinematical region (see Roshchupkin & Voroshilo (2008)).

Thus, we expand the Bessel functions (148) as series in order of γ0j ∼ η0j � 1 and keep the
summands proportional to the first order of the parameter η0j. Under the condition (165) we
obtain:

Gν
l−s (φ1) = g (φ1) · Gν

1 , (168)

Gsν (φ2) = g (φ2) · G1ν. (169)
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The condition (157) determines such a kinematical region, which is accepted to name the
resonant one. In the case of external field modeling as a plane monochromatic wave there is
the intermediate particle squared four-momentum alone in a process amplitude denominator.
Therefore, when a denominator is equal zero the resonant divergence occurs. It is eliminated
by radiative corrections introducing into the Green function according the Breit–Wigner
prescription. But now there is an addition in a denominator, caused by the laser wave pulsed
character. Thus, the divergence in the process amplitude disappears.

Finally, the function Dls (145) assumes the form:
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Here βτ is the relevant parameter which is defined by the both resonant scattering kinematics
and external pulsed wave characteristics.

4.1 Resonance conditions

In this section we analyze in detail the case when an intermediate photon falls within the mass
shell. Inner line discontinuity at the Feynman diagram appears and the studying process is
effectively decomposes into two consecutive processes of the first order: a lepton l1 with the
four-momentum p1 emits a real photon with the four-momentum q�1 at the expense of external
wave photons absorption, then a real photon is absorbed by a lepton l2 with external wave
photons emission or vice versa.

Generally speaking owing to condition (157) the squared four-momentum of an intermediate
photon is founded within the very narrow region near zero. We will show below that this
region depends on initial four-momenta of scattered particles and their scattering angles.
However, the given region has to be taken into consideration in the denominator of the
resonant amplitude exceptionally (145). Thus, the four-momentum conservation laws for
resonant diagram vertexes may be written as two equalities:

p1 + |s| k = p�1 + q�1, (161)

p2 + q�1 = p�2 + s� · k. (162)

The equality (161) expresses the four-momentum conservation law in the process when an
intermediate real photon is emitted by a lepton l1 at the expense of |s| external wave photons
absorption. The equality (162) corresponds to the four-momentum conservation law in the
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process when an intermediate real photon is absorbed by a lepton l2 with s� = |s|+ l external
wave photons emission.

Remind that integral functions (153) are determined by the integer-order Bessel functions for
the case of a circularly polarizated external wave. It is not difficult to verify that for this
polarization under the resonance conditions (157) the arguments of the Bessel functions (154)
may be represented as
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It was expected, that for processes of resonant lepton-lepton scattering the influence of the
Bunkin-Fedorov quantum parameter does not reveal, in opposite the nonresonant case. Since
γ0e ∼ η0e � 1 (see Eq. (163)), then the most probable case when a lepton l1 absorbs and a
lepton l2 emits equally the only one external wave photon is realized, i.e.:

s� = |s| = 1, l = s + s� = 0. (165)

The region of resonant scattering is to be defined. We use the frame of reference related to
a center of initial particles inertia, that is p1 + p2 = 0. In this frame the particle relative
momentum p = p1 = −p2 and after scattering changes only the direction: |p� | = |p|. We
introduce also the unit vectors along the directions of initial and final momenta n f and ni

n f =
p�
|p� | , ni =

p
|p| . (166)

With expressions (157) consideration it is easy to verify that in view of chosen direction of
intermediate photon motion the resonance occurs if leptons scatter into the small angles in
the frame of reference related to a center of inertia:

θ = ∠
(

n f , ni

)
= θres = 2
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|p| sin θi � 1, (167)

where θi = ∠ (n, ni) is the angle between the directions of wave propagation and the initial
relative momentum p.

Meanwhile the resonance for exchange (annihilation) amplitude occurs in the essentially
different kinematical region (see Roshchupkin & Voroshilo (2008)).

Thus, we expand the Bessel functions (148) as series in order of γ0j ∼ η0j � 1 and keep the
summands proportional to the first order of the parameter η0j. Under the condition (165) we
obtain:

Gν
l−s (φ1) = g (φ1) · Gν

1 , (168)

Gsν (φ2) = g (φ2) · G1ν. (169)
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where the matrices Gν
1 and G1ν have the following form

Gν
1 = (−1)

γ01
2

exp (iχ1) γ̃ν +
η01m1
2ωκ1

[
kνε̂− − εν− k̂

]
+

η01m1
4ω

(
1
κ�1

− 1
κ1

)
ε̂− k̂γ̃ν, (170)

G1ν =
γ02
2

exp (−iχ2) γ̃ν +
η02m2
2ωκ2

[
kνε̂+ − ε+ν k̂

]
+

η02m2
4ω

(
1
κ�2

− 1
κ2

)
ε̂+ k̂γ̃ν. (171)

The resonant region of scattering angles in the frame of reference related to a center of inertia
is determined as

|θ − θres| � θres

ωτ
� θres, (172)

and expressions for the parameter βτ (160) assumes the form

βτ =
1
2

ωτ

(
1 − θ

θres

)
� 1. (173)

Finally, the resonant amplitude of a lepton l1 scattered by a lepton l2 in the field of a pulsed
electromagnetic moderately strong wave of a circularly polarization in the frame of reference
related to a center of inertia takes the form

S = S0 · Υτ , (174)

where

S0 =
iπ3/2e2 M̂

p2
√

E1E2E�
1E�

2

δ
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P�
x
)

δ
(

P�
y
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δ
(
E� − E − P�

z
)

, (175)

M̂ =
(

ūp�1 Gν
1 up1

) (
ūp�2 G1νup2

)
. (176)

The function Υτ in Eq. (174) is represented by

Υτ =
ωτ

θ · θres
exp{− β2

τ

4
} · Iτ (q+τ) . (177)

Here, Iτ (q+) is the integral function:

Iτ (q+τ) = τ

∞∫

−∞

dφ · g (φ) · exp
{

i
(

q0 + qz

2
τ + 2βτ

)
φ

}
·
[

erf
(

2φ +
iβτ

2

)
+ 1

]
. (178)

In Eqs. (177) and (178) the parameter βτ is determined by the expression (173). We underline,
that presence of three delta-functions in the resonant amplitude (174)-(178) is considered as
realizing of three following conservation laws:

P�
x = 0, P�

y = 0, E� − E = P�
z, (179)

where P� =
(

P�
x, P�

y, P�
z

)
is the momentum of the inertia center after scattering, E and E� are

particle total energies before and after scattering, correspondingly.
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4.2 Resonant cross-section

In view of finite duration of an external pulsed light field there is a sense to define the
differential probability over all the observation time T in the process of scattering of a lepton
l1 by a lepton l2. Thus,

dW = |S|2 d3 p�

(2π)3
d3P�

(2π)3 . (180)

Using the expressions for the amplitude (174)-(178) and performing uncomplicated
computations we obtain the differential probability per time unit and per volume unit:

dW
T

= dw =
e4

2 (2π)3 p4E1E2E�
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· (ωτ)2
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·
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x
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y
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z
)

d3 p�d3P�.
(181)

The differential cross section we obtain from Eq. (181) by division by a density of the scattered
particles flux j = |p|/E. The integration of the differential cross section over d3P� should be
performed via the delta-functions. We present d3 p� as

d3 p� = E�
1E�

2
∣∣p�∣∣ dΩ� dE�

E� , (182)

where dΩ� is the elementary solid angle of particles scattering, and introduce a new
integration dimensionless variable: dE� → dξ (ξ = q0/ω, E� = ξω + E, dE� = ωdξ). After
simple transformations we derive

dσl1 l2
res
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e4E

2p4E1E2
· ω (ωτ)2
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ūp�2 G1νup2

)∣∣∣2 exp
(
−β2

τ/2
)
· H. (183)

Here, the function H has the form

H =
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(184)

The differential cross section of resonant scattering of nonpolarized leptons in the field of a
pulsed light wave into the elementary solid angle may be represented as

dσl1 l2
res

dΩ� = r2
e

4πm2
e m2

1m2
2

p4E1E2
η2

01η2
02 · f0 · fres. (185)

Here, the function f0 is determined by

f0 =

[
2d f ih f i |p| (E1 + E2)
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(186)
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where the matrices Gν
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The resonant region of scattering angles in the frame of reference related to a center of inertia
is determined as

|θ − θres| � θres

ωτ
� θres, (172)

and expressions for the parameter βτ (160) assumes the form

βτ =
1
2

ωτ

(
1 − θ

θres

)
� 1. (173)

Finally, the resonant amplitude of a lepton l1 scattered by a lepton l2 in the field of a pulsed
electromagnetic moderately strong wave of a circularly polarization in the frame of reference
related to a center of inertia takes the form

S = S0 · Υτ , (174)

where

S0 =
iπ3/2e2 M̂
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, (175)

M̂ =
(

ūp�1 Gν
1 up1

) (
ūp�2 G1νup2

)
. (176)

The function Υτ in Eq. (174) is represented by

Υτ =
ωτ

θ · θres
exp{− β2

τ

4
} · Iτ (q+τ) . (177)

Here, Iτ (q+) is the integral function:
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2
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]
. (178)

In Eqs. (177) and (178) the parameter βτ is determined by the expression (173). We underline,
that presence of three delta-functions in the resonant amplitude (174)-(178) is considered as
realizing of three following conservation laws:

P�
x = 0, P�

y = 0, E� − E = P�
z, (179)

where P� =
(

P�
x, P�

y, P�
z

)
is the momentum of the inertia center after scattering, E and E� are

particle total energies before and after scattering, correspondingly.
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4.2 Resonant cross-section

In view of finite duration of an external pulsed light field there is a sense to define the
differential probability over all the observation time T in the process of scattering of a lepton
l1 by a lepton l2. Thus,

dW = |S|2 d3 p�

(2π)3
d3P�

(2π)3 . (180)

Using the expressions for the amplitude (174)-(178) and performing uncomplicated
computations we obtain the differential probability per time unit and per volume unit:
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(181)

The differential cross section we obtain from Eq. (181) by division by a density of the scattered
particles flux j = |p|/E. The integration of the differential cross section over d3P� should be
performed via the delta-functions. We present d3 p� as

d3 p� = E�
1E�

2
∣∣p�∣∣ dΩ� dE�

E� , (182)

where dΩ� is the elementary solid angle of particles scattering, and introduce a new
integration dimensionless variable: dE� → dξ (ξ = q0/ω, E� = ξω + E, dE� = ωdξ). After
simple transformations we derive
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Here, the function H has the form
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(184)

The differential cross section of resonant scattering of nonpolarized leptons in the field of a
pulsed light wave into the elementary solid angle may be represented as

dσl1 l2
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p4E1E2
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01η2
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Here, the function f0 is determined by

f0 =
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(186)
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The following designations are used in Eq. (186)

h f i = (exni) cos χ f i + δ
(
eyni

)
sin χ f i, (187)

d f i = 2
(

nτf i

)√(
exτf i

)2
+

(
eyτf i

)2
, (188)

tgχ f i = δ

(
ey · τf i

)
(

ex · τf i

) , (189)

τf i =
n f − ni∣∣∣n f − ni

∣∣∣
. (190)

The function fres in Eq. (185) has the form

fres =

(
ωτ

θ2
res

)2
· f (ρ, βτ) , (191)

f (ρ, βτ) = exp
(
−β2
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· 1
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dφg2 (φ)

∣∣∣∣erf
(
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)
+ 1

∣∣∣∣
2
. (192)

We underline that the dependence of the function fres on the parameter βτ (173) determines
resonant peak magnitude and shape. It is easy to notice that when leptons scatter into the
resonant angle θ � θres than the parameter βτ becomes equal zero (see Eq. (173)). At that
the function fres (191) possesses the finite value as opposed to the plane monochromatic wave
case when fres → ∞ is correct.

The significant issue is the influence of the pulse finite duration on the cross section resonant
behavior. The pulse duration has to exceed the time required for the Compton scattering of an
external field photon by each of leptons l1 and l2. If this condition is not satisfied than particles
do not have time to interact with a wave under the resonance conditions. Consequently, the
following correlation for the pulse duration is valid:

ωτ � 1
αη2

0j

Ej

κj
. (193)

Thus, experimental treatment of resonant scattering of a lepton by a lepton may be verified
in the fields created by picosecond pulsed lasers which generate the radiation within the
optical frequencies range. Such scientific facilities are employed in SLAC National Accelerator
Laboratory (Bula et al. (1996); Burke et al. (1997)) research centers and also in the frame of the
FAIR project (Bagnoud et al. (2009)).

We can integrate the differential cross section (185) within the narrow range of scattering
angles near the resonance (172). Under the resonance conditions the vector τf i (190) may
be represented as

τf i ≈ 1
θres

(
n f − ni

)
, (194)
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and
(

niτf i

)
� 0. We perform the integration over the parameter βτ (173) (instead the

scattering angle θ ), and finally derive

dσl1 l2
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dϕ f
= 16πr2

e η2
01η2

02
m2

e m2
1m2

2

E1E2 |p|4
(ωτ)

θ2
res

· f0 · F (ρ) , (195)

where function F (ρ) is determined by

F (ρ) =

∞∫

−∞

dβτ · f (ρ, βτ) . (196)

Here, the function f (ρ, βτ) is specified by Eq. (192). The limits of the integration in Eq. (196)
are extended over the infinity owing to the integral quick convergence (though the values of
the parameter βτ � 1 within the resonant region).

Fig. 9. The dependence or the differential cross-section of scattering of an electron by an
electron (an electron by a positron) in a pulsed light field (195) (in units of respective
cross-sections in an external field absence) on the initial polar angle when an azimuthal angle
is fixed ϕi = π/4 and value of the parameter ρ = 2. The external laser wave frequency
amounts to the value ω = 2.35 eV, the pulse duration is equal to τ = 1.5 ps, the field strength
in a pulse peak F0 = 6 · 109 V/cm. The cases of particles relative velocities V = 0.2 (solid
line), V = 0.6 (dotted line), and V = 0.9 (dash-dotted line) are represented.

Let us consider the ratio of the derived resonant differential cross section (195) to the
differential cross section of scattering of the same leptons in an external field absence for such
processes: scattering of an electron by an electron, scattering of an electron by a positron,
scattering of an electron by a muon. Figs. 9, 10 show the dependencies of the considered ratio
on the initial polar angle θi. We should underline that under scattering of both an electron by
an electron and an electron by a positron within the small angles range (172) the respective
cross-sections coincide each with other.

In accordance with the Figs. 9, 10 we consider that within the broad range of particles
velocities the resonant cross sections of scattering of an electron by an electron (an electron by
a positron, an electron by a muon) in a pulsed light field exceed the corresponding differential
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We underline that the dependence of the function fres on the parameter βτ (173) determines
resonant peak magnitude and shape. It is easy to notice that when leptons scatter into the
resonant angle θ � θres than the parameter βτ becomes equal zero (see Eq. (173)). At that
the function fres (191) possesses the finite value as opposed to the plane monochromatic wave
case when fres → ∞ is correct.

The significant issue is the influence of the pulse finite duration on the cross section resonant
behavior. The pulse duration has to exceed the time required for the Compton scattering of an
external field photon by each of leptons l1 and l2. If this condition is not satisfied than particles
do not have time to interact with a wave under the resonance conditions. Consequently, the
following correlation for the pulse duration is valid:

ωτ � 1
αη2

0j

Ej

κj
. (193)

Thus, experimental treatment of resonant scattering of a lepton by a lepton may be verified
in the fields created by picosecond pulsed lasers which generate the radiation within the
optical frequencies range. Such scientific facilities are employed in SLAC National Accelerator
Laboratory (Bula et al. (1996); Burke et al. (1997)) research centers and also in the frame of the
FAIR project (Bagnoud et al. (2009)).

We can integrate the differential cross section (185) within the narrow range of scattering
angles near the resonance (172). Under the resonance conditions the vector τf i (190) may
be represented as

τf i ≈ 1
θres

(
n f − ni

)
, (194)
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and
(
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� 0. We perform the integration over the parameter βτ (173) (instead the
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F (ρ) =
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Here, the function f (ρ, βτ) is specified by Eq. (192). The limits of the integration in Eq. (196)
are extended over the infinity owing to the integral quick convergence (though the values of
the parameter βτ � 1 within the resonant region).

Fig. 9. The dependence or the differential cross-section of scattering of an electron by an
electron (an electron by a positron) in a pulsed light field (195) (in units of respective
cross-sections in an external field absence) on the initial polar angle when an azimuthal angle
is fixed ϕi = π/4 and value of the parameter ρ = 2. The external laser wave frequency
amounts to the value ω = 2.35 eV, the pulse duration is equal to τ = 1.5 ps, the field strength
in a pulse peak F0 = 6 · 109 V/cm. The cases of particles relative velocities V = 0.2 (solid
line), V = 0.6 (dotted line), and V = 0.9 (dash-dotted line) are represented.

Let us consider the ratio of the derived resonant differential cross section (195) to the
differential cross section of scattering of the same leptons in an external field absence for such
processes: scattering of an electron by an electron, scattering of an electron by a positron,
scattering of an electron by a muon. Figs. 9, 10 show the dependencies of the considered ratio
on the initial polar angle θi. We should underline that under scattering of both an electron by
an electron and an electron by a positron within the small angles range (172) the respective
cross-sections coincide each with other.

In accordance with the Figs. 9, 10 we consider that within the broad range of particles
velocities the resonant cross sections of scattering of an electron by an electron (an electron by
a positron, an electron by a muon) in a pulsed light field exceed the corresponding differential
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Fig. 10. The dependence of the differential cross-section of scattering of an electron by muon
in a pulsed light field (195) (in units of respective cross-sections in an external field absence)
on the initial polar angle when an azimuthal angle is fixed ϕi = π/4 and the value of the
parameter ρ = 2. The cases of particles relative velocities V = 0.2 (solid line), V = 0.6 (dotted
line) and V = 0.9 (dash-dotted Line) are represented.

cross sections in an external field absence within the whole polar angles range. Hereby, the
greatest exceeding appears for the case of particles small relative velocities (V = 0.2), at that
the exceeding reaches into five orders of the magnitude (for scattering of an electron by an
electron (positron)), and two orders for scattering of an electron by a muon. Also there is a
suppression of the resonant cross section in the case of leptons high relative velocities within
the range of the initial polar angles θi ≈ 60◦.

5. Resonant scattering of a photon by an electron in the pulsed laser field

Oleinik (1967) specified resonances in the Compton effect in the field of a plane
monochromatic wave for the first time, but his studies had a rather fragmentary form (see also
Belousov (1977)). The resonance of direct and exchange diagrams in the general relativistic
case for the field of a weakly intensive plane monochromatic electromagnetic wave was
considered by Voroshilo & Roshchupkin (2005). Scattering of a photon by an electron in a
pulsed light field for the direct diagram resonance in the range of weak fields (5) was studied
in work Voroshilo et al. (2011).

5.1 Process amplitude

The amplitude of scattering of a photon with the four momentum ki = (ωi, ki) by an electron
with the four momentum pi = (Ei, pi) in an pulsed field (2) (Fig. 11) is given by the expression

S f i = S(d)
f i + S(e)

f i , (197)

S(d)
f i =−ie2

∫
d4rd4r�Ψ̄p f (r)γ̃

μG(r, r�)γ̃νΨpi (r
�)A∗

μ(k f r)Aν(kir�), S(e)
f i = S(d)

f i

(
k f ↔ −ki

)
,

(198)
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Fig. 11. The Feynman diagram of the Compton effect in the field of a pulsed light wave.

where p f = (Ef , p f ) and k f = (ω f , k f ) are four momenta of an outgoing electron and a
photon; γ̃ν (ν = 0, 1, 2, 3) are the Dirac matrices; Aμ(kir�) is the wave function of a photon (8);
eμ is the photon polarization four-vector; G(r, r�) is the Green function of an electron in the
field (2).

The case when a laser field intensity meets the following condition

η2
0 � ϕ−1

0 � 1, ϕ0 = ωτ, (199)

is considered through this section. This condition allows both to carry out the decomposition
with respect to the small parameter and to neglect the interference of contributions of the
pulsed wave anterior and posticous parts.

The amplitude (197) accurate within terms ∼ η2
0 assumes the form

S f i ≈ Bδ(2)(pi,⊥ + ki,⊥ − p f ,⊥ − k f ,⊥)δ(pi,− + ki,− − p f ,− − k f ,−)e�
∗
νeμ · ūp f Tνμ

f i upi , (200)

Tνμ
f i = ∑

j

⎛
⎝T(j)νμ

0,0 + η0 ∑
l,l�∈(|l−l� |+|l� |=1)

T(j)νμ
l−l� ,l� + η2

0

⎛
⎝T(j)νμ

0,0 + ∑
l,l�∈(|l−l� |+|l� |=2)

T(j)νμ
l−l� ,l�

⎞
⎠
⎞
⎠, (201)

where j = e, d; indices d, e are concerned to direct and exchange diagrams; B is the
normalization factor; pi,⊥, ki,⊥, p f ,⊥, k f ,⊥ are the projections of corresponding vectors on the
wave polarization plane; pi,− = Ei − pi,z, ki,− = ωi − ki,z, p f ,− = Ef − p f ,z, k f ,− = ω f − k f ,z
are differences between zeroth components of the corresponding four momentum and its
projection on direction of wave propagation; q, f are four momenta of an intermediate particle,
which conform to direct and exchange diagrams on Fig. 11, at that under the four momenta
conservation laws we have

q⊥ = pi,⊥ + ki,⊥, q− = pi,− + ki,−; f⊥ = pi,⊥ − k f ,⊥, f− = pi,− − k f ,−. (202)

The summands in Eq. (201), proportional to the zeroth degree of η0 determine the amplitude
of the Compton effect in external field absence (Klein & Nishina (1929)). The summands,
proportional to the first degree of the parameter η0, determine the corrections (for them
|l − l� |+ |l� | = 1 is valid) specified by participation of one wave photon in the process. The
summands, proportional to the second degree of the parameter η0, determine the corrections
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Fig. 10. The dependence of the differential cross-section of scattering of an electron by muon
in a pulsed light field (195) (in units of respective cross-sections in an external field absence)
on the initial polar angle when an azimuthal angle is fixed ϕi = π/4 and the value of the
parameter ρ = 2. The cases of particles relative velocities V = 0.2 (solid line), V = 0.6 (dotted
line) and V = 0.9 (dash-dotted Line) are represented.

cross sections in an external field absence within the whole polar angles range. Hereby, the
greatest exceeding appears for the case of particles small relative velocities (V = 0.2), at that
the exceeding reaches into five orders of the magnitude (for scattering of an electron by an
electron (positron)), and two orders for scattering of an electron by a muon. Also there is a
suppression of the resonant cross section in the case of leptons high relative velocities within
the range of the initial polar angles θi ≈ 60◦.

5. Resonant scattering of a photon by an electron in the pulsed laser field

Oleinik (1967) specified resonances in the Compton effect in the field of a plane
monochromatic wave for the first time, but his studies had a rather fragmentary form (see also
Belousov (1977)). The resonance of direct and exchange diagrams in the general relativistic
case for the field of a weakly intensive plane monochromatic electromagnetic wave was
considered by Voroshilo & Roshchupkin (2005). Scattering of a photon by an electron in a
pulsed light field for the direct diagram resonance in the range of weak fields (5) was studied
in work Voroshilo et al. (2011).

5.1 Process amplitude

The amplitude of scattering of a photon with the four momentum ki = (ωi, ki) by an electron
with the four momentum pi = (Ei, pi) in an pulsed field (2) (Fig. 11) is given by the expression
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Fig. 11. The Feynman diagram of the Compton effect in the field of a pulsed light wave.

where p f = (Ef , p f ) and k f = (ω f , k f ) are four momenta of an outgoing electron and a
photon; γ̃ν (ν = 0, 1, 2, 3) are the Dirac matrices; Aμ(kir�) is the wave function of a photon (8);
eμ is the photon polarization four-vector; G(r, r�) is the Green function of an electron in the
field (2).

The case when a laser field intensity meets the following condition

η2
0 � ϕ−1

0 � 1, ϕ0 = ωτ, (199)

is considered through this section. This condition allows both to carry out the decomposition
with respect to the small parameter and to neglect the interference of contributions of the
pulsed wave anterior and posticous parts.

The amplitude (197) accurate within terms ∼ η2
0 assumes the form

S f i ≈ Bδ(2)(pi,⊥ + ki,⊥ − p f ,⊥ − k f ,⊥)δ(pi,− + ki,− − p f ,− − k f ,−)e�
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where j = e, d; indices d, e are concerned to direct and exchange diagrams; B is the
normalization factor; pi,⊥, ki,⊥, p f ,⊥, k f ,⊥ are the projections of corresponding vectors on the
wave polarization plane; pi,− = Ei − pi,z, ki,− = ωi − ki,z, p f ,− = Ef − p f ,z, k f ,− = ω f − k f ,z
are differences between zeroth components of the corresponding four momentum and its
projection on direction of wave propagation; q, f are four momenta of an intermediate particle,
which conform to direct and exchange diagrams on Fig. 11, at that under the four momenta
conservation laws we have

q⊥ = pi,⊥ + ki,⊥, q− = pi,− + ki,−; f⊥ = pi,⊥ − k f ,⊥, f− = pi,− − k f ,−. (202)

The summands in Eq. (201), proportional to the zeroth degree of η0 determine the amplitude
of the Compton effect in external field absence (Klein & Nishina (1929)). The summands,
proportional to the first degree of the parameter η0, determine the corrections (for them
|l − l� |+ |l� | = 1 is valid) specified by participation of one wave photon in the process. The
summands, proportional to the second degree of the parameter η0, determine the corrections
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specified by participation of two wave photons in the process (for them |l − l� | + |l� | = 2 is
valid).

In the case of a plane monochromatic wave the resonance is associated with the fact that
an intermediate particle falls within the mass shell: q2 = m2, f 2 = m2. The corrections
to the Compton effect probability, which are specified by processes with one wave photon
participation, are the nonresonant. They are proportional to the second order of the parameter
η0 and, therefore, are small in comparison with the Compton effect probability. But among
processes with two wave photons participation there are such ones, which may have the
resonant behavior. The both resonance of direct diagram through an electron intermediate
state and resonance of exchange diagram through a positron intermediate state permit the
processes with l� = −1, l = 0. The resonance of the exchange diagram through an electron
intermediate state permits the process with l� = 1, l = 0. These processes may have resonant
character in the case of a pulsed field (2) (Voroshilo et al. (2011)).

The expressions for T(d,e)νμ
l−l� ,l� in Eq. (201) for resonant processes have the form:

T(d)νμ
1,−1 ≈ πω

8(kq−1)
· I(β−1(q−1), l∗)

[
Mν

1(p f , q−1) (q̂−1 + m) Mμ
−1(q−1, pi)

]
, (203)

T(e)νμ
∓1,±1 ≈ πω

8(k f∓1)
· I(β∓1( f∓1), l∗)

[
Mν

±1(p f , f∓1)
(

f̂∓1 + m
)

Mμ
∓1( f∓1, pi)
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Here

I(βl� , l∗)=
π

4(kql� )

(
erfi

(√
2

2

(
βl� − l∗ϕ0

4

))
+ i

)
exp

{
− ϕ2

0l2∗ + 8 (βl� − l∗ϕ0/4)2

16

}
, (205)

where erfi(z) is the error function of imaginary argument; βl� is the resonant parameter:

βl� (ql� ) =
q2

l� − m2

4(kql� )
ωτ. (206)

Exactly the parameter βl� determines the process behavior character. Thus, the values
βl� � 1 correspond to the resonant behavior. The opposite case βl� � 1 corresponds to the
nonresonant one. Under the values βl� � 1 the function I(βl� , a) has the following asymptotic
form:

I(βl� , l∗) ≈
√

π

2
1

βl�
exp

{
− 1

32
l2∗ϕ2

0

}
. (207)

In Eqs. (203)-(206) the quantities q−1 = pi + ki − k, f∓1 = pi − k f ± k correspond to the “strict”
four momentum conservation law (like the monochromatic wave case, when summands ∼ η2

0
are neglected); the quantity l∗ are the invariant parameter which are determined from the
following equation:

pi + ki + l∗k = p f + k f . (208)

It follows from Eq. (205) that |l∗| ∼ ϕ−1
0 . Consequently, in the zero-order approximation with

respect to the parameter ϕ−1
0 the frequency of a scattered photon is amount:

ω f ≈ ω
(0)
f , ω

(0)
f =

(piki)

Ei + ωi −
(
[pi + ki]n f

) , (209)
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where n f is the directive unit vector for the final photon emission.

Bispinor matrices Mν
±1 in (203), (204) are determined by:

Mν
±1(p f , q−1) = ± y0(p f , q−1)

2
e∓iχ · γν+

+
m
4

(
2

(kq−1)

[
ε̂(∓)kν − k̂ε(∓)ν

]
+

[
1

(kp f )
− 1

(kq−1)

]
ε̂(∓) k̂γν

)
.

(210)

Here, quantities ε(±) = ex ± iδey; y0(p f , q), χ ≡ χ(p f , q) are the kinematical parameters

y0(p f , q) = mη
√
−g2(p f , q), tan χ =

δ(gey)

(gex)
, g ≡ g(p f , q) =

p f

(kp f )
− q

(kq)
. (211)

5.2 Resonant kinematics

5.2.1 Resonance conditions for the direct diagram

The parameter β ≡ β (q−1) which corresponds to the resonant process with l� = −1, l = 0
(one field photon emits in the beginning, and one photon absorbs at the end of the process)
may be written in the form:

β

ϕ0
=

1
2

1 − ũ[
1 + ũ

(
ωi/ωi,res − 1

)]
(

ωi
ωi,res

− 1
)

. (212)

Here, the invariant parameter ũ and the frequency ωi,res, which corresponds to the resonant
maximum, are determined by:

ũ =
(kki)

(piki)
, 0 ≤ ũ ≤ u1, u1 =

2(kpi)

m2 , (213)

ωi,res =
(kpi)

Ei − ω − ([pi − k]ni)
, (214)

where ni is the unit vector along the propagation direction of incident photon. We rewrite this
expression as

ωi,res =
mu1

2

(Ei − ω)/m +
√
(Ei − ω)2 /m2 + u1 − 1 · cos θ̃S

1 − u1 +
(
(Ei − ω)2 /m2 + u1 − 1

)
sin2 θ̃S

, (215)

where
θ̃S = ∠(S, ni), S = pi − k. (216)

We consider that the correlation ω � m is valid in the region υi = |pi|/Ei � ω/m � 1 (it
is the nonrelativistic case, which also corresponds to the rest frame of an final electron) and
obtain:

ωi,res =
ω

1 − ω/m
(
1 − cos θ̃

) ≈ ω
(

1 +
ω

m
(1 − cos θ̃)

)
, θ̃ = ∠(k, ni) ≈ π − θ̃S. (217)
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specified by participation of two wave photons in the process (for them |l − l� | + |l� | = 2 is
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where n f is the directive unit vector for the final photon emission.
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Therefore, in this case the resonant frequency is closely approximated to the laser field
frequency.

In range where the correlation ω/m � υi < 1 is valid (it is the ultrarelativistic case) we derive:

ωi,res ≈ mu1
2

Ei/m +
√

E2
i /m2 − 1 cos θ̃S

1 − u1 +
(
E2

i /m2 − 1
)

sin2 θ̃S
.

In the ultrarelativistic case (u1 > 1, Ei/m > m/ω � 1) under (m/ω)
√

u1 − 1 < θ̃S � 1
(θ̃S ≈ θ̃pi = ∠(pi, ni)) we obtain:

ωi,res ≈ u1Ei

1 − u1 + (Ei/m)2 θ̃2
S

. (218)

Fig. 12 demonstrated dependence of the resonant frequency on the angle θ̃S for different
energies of an electron.
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Fig. 12. The dependence of ratio of the resonant frequency of an ingoing photon to the laser
field frequency ωi,res/ω (215) from the angle θ̃S (216) under ω/m = 10−5 for different
energies of an ingoing electron.

The resonance of the amplitude, which corresponds to the direct diagram, is feasible only
when the condition ũ < 1 is satisfied, so that for the values u1 > 1 the angle θ̃S is restricted by
the interval:

α0 < θ̃S < π, α0 = arccos
Ei − ω

|S| . (219)
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The cases close to realization of the condition ũ = 1 (θ̃S = α0) also have to be excluded,
because the frequency of a resonant photon in these cases has to be infinite, but it is impossible
to put into practice. Therefore, the condition of the direct diagram resonance is determined
by: ����1 −

ωi
ωi,res

���� ∼
1
ϕ0

� 1. (220)

Under the condition (220) the resonant parameter assumes the form:

β

ϕ0
≈ 1

2
(1 − ũ)

�
ωi

ωi,res
− 1

�
, 0 < ũ <

�
u1, u1 < 1;
1, u1 > 1.

(221)

5.2.2 Resonance conditions for the exchange diagram

For the processes with l� = ±1, l = 0 which permit the resonance of the exchange diagram
through an electron (l� = 1) and a positron (l� = −1) intermediate states the resonant
parameters β∓ ≡ β ( f±1) have the form:

β∓
ϕ0

=
1
2

υ� ± 1�
υ�

�
1 − ω f /ω

(∓)
f ,res

�
± 1

�
⎛
⎝1 − ω f

ω
(∓)
f ,res

⎞
⎠ , (222)

where the upper sign is concerned to an electron intermediate state, the lower sign is

concerned to a positron one; the invariant parameter υ� and the frequencies ω
(∓)
f ,res of a final

photon, which correspond to the resonant maximum, are defined by:

υ� =

�
kk f

�
�

pik f

� , ω
(∓)
f ,res =

(kpi)

(Ei − pin f ) (υ� ± 1)
. (223)

It follows from Eq. (223) that the resonance via positron intermediate state can be observed
under limitations on parameter υ� and, hence, angle θ̃�S = ∠(S, n f ):

υ� > 1(u1 > 1) 0 ≤ θ̃�S ≤ α0 and π − α0 ≤ θ̃�S ≤ π. (224)

Equating the expressions (209), (223) we obtain that under the exchange diagram resonance
directions of a scattered photon correspond to the condition of the resonant maximum; these
directions lie on the surface of a cone (see Fig. 13); axis of the cone coincides with the vector
h∓ and the opening angle θ�h∓ = ∠(h∓, n f ):

cos θ�h∓ = h∓0
���h∓��, h∓ = (h∓0 , h∓) = (kpi) [pi + ki]− (piki) [k ± pi] . (225)

Thus, the four vector has to be a spatially similar one (h∓)2 ≤ 0, i.e. the inequality

ũ2
1(1 − ũu1)∓ 2ũ1u1 + u2

1 ≤ 0, (226)

has to be met.
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Therefore, in this case the resonant frequency is closely approximated to the laser field
frequency.
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The resonance of the amplitude, which corresponds to the direct diagram, is feasible only
when the condition ũ < 1 is satisfied, so that for the values u1 > 1 the angle θ̃S is restricted by
the interval:

α0 < θ̃S < π, α0 = arccos
Ei − ω

|S| . (219)
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The cases close to realization of the condition ũ = 1 (θ̃S = α0) also have to be excluded,
because the frequency of a resonant photon in these cases has to be infinite, but it is impossible
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5.2.2 Resonance conditions for the exchange diagram
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It follows from Eq. (223) that the resonance via positron intermediate state can be observed
under limitations on parameter υ� and, hence, angle θ̃�S = ∠(S, n f ):

υ� > 1(u1 > 1) 0 ≤ θ̃�S ≤ α0 and π − α0 ≤ θ̃�S ≤ π. (224)

Equating the expressions (209), (223) we obtain that under the exchange diagram resonance
directions of a scattered photon correspond to the condition of the resonant maximum; these
directions lie on the surface of a cone (see Fig. 13); axis of the cone coincides with the vector
h∓ and the opening angle θ�h∓ = ∠(h∓, n f ):

cos θ�h∓ = h∓0
���h∓��, h∓ = (h∓0 , h∓) = (kpi) [pi + ki]− (piki) [k ± pi] . (225)

Thus, the four vector has to be a spatially similar one (h∓)2 ≤ 0, i.e. the inequality
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has to be met.
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The invariant parameter ũ1 is equal to:

ũ1 =
2(pki)

m2 . (227)
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Fig. 13. Geometry of emission of an outgoing photon in the case of occurrence of the
exchange diagram resonance.

From the inequality (226) we derive the following condition on the initial photon frequency;
at this frequency the exchange diagram resonance through the electron intermediate state
occurs: ⎧⎪⎨

⎪⎩

ω f

1 +
√

u1ũ
≤ ωi,res ≤ ω f

1 −√
u1ũ

, ũ < u−1
1 ;

ωi,res ≥ ω f

1 +
√

u1ũ
, u−1

1 < ũ < u1.
(228)

Here, the function f has the form

f =
1 − υi cos θ

1 − υi cos θ̃
, (229)

where θ = ∠(k, ki), θ̃ = ∠(k, pi).

For a positron intermediate state the resonance occur under the condition that the initial
photon frequency exceeds a certain threshold value:

ωi,res ≥ ω f√
u1ũ − 1

, u−1
1 < ũ < u1. (230)

Values of initial photon frequencies meet the condition of the direct diagram resonance
ωi = ωi,res (214). They are founded within the frequencies interval (228); the exchange
diagram resonance through an electron intermediate state occurs under these frequencies.
Consequently, the direct diagram resonance is always accompanied by the exchange diagram
resonance through an electron intermediate state, and within the region

u1 > 1, 1/u1 < ũ < 1 (231)

through a positron intermediate state also.
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Fig. 14 shows the resonant region of final photon frequency values ωi (in units of the initial
electron energy Ei), which is determined by the system of the equations and the inequalities
(215), (228), (230), as a function of the parameter α = (θ − θ̃) (m/E) when ω = 2.36 eV,
Ei = 48.0 GeV (since Ei � ω, then θ̃S ≈ θ̃), θ = 163◦.

resonance of direct diagram (line thickness 1
0 ); 

resonance of exchange diagram through electron state; 
resonance of exchange diagram through positron state. 

Fig. 14. Resonant region of frequencies ωi(α) of an ingoing photon (in units of the ingoing
electron energy Ei), which is determined by the system of equations and inequalities (215),
(228), (230).

5.3 Resonant probability for the direct diagram

We consider the case when the conditions of the direct diagram resonance (220) are realized.
Thought it is accompanied by the exchange diagram resonance, but its contribution may be
neglected in the following cases:

1. when an initial photon is emitted out of the strictly defined and narrow region of an initial
photon directions when the exchange diagram resonance occurs (see Fig. 14);

2. when the total probability is obtained, since the contribution to the total probability from
the exchange diagram is ∼ (ωτ)−1 � 1 and, therefore, it may be neglected.

The differential probability is obtained by standard mode (Berestetskii et al. (1982)). After
averaging over initial particle polarizations and summation over final particle polarizations

and also the integration over frequencies ω f and the azimuthal angle ψ� = ∠
(

ex, k f ,⊥
)

of a
final photon emission we obtain the differential probability:

dWres
f i ≈ 2e4η4

0m2

πωiEiVũ1
(ωτ)2 Pres (β)

[
f (u�, ũ1) f (u, ũ1)− g(u�, ũ1)g(u, ũ1)

] du�
(1 + u�)2 τ. (232)
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exchange diagram resonance.
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Fig. 14. Resonant region of frequencies ωi(α) of an ingoing photon (in units of the ingoing
electron energy Ei), which is determined by the system of equations and inequalities (215),
(228), (230).

5.3 Resonant probability for the direct diagram

We consider the case when the conditions of the direct diagram resonance (220) are realized.
Thought it is accompanied by the exchange diagram resonance, but its contribution may be
neglected in the following cases:

1. when an initial photon is emitted out of the strictly defined and narrow region of an initial
photon directions when the exchange diagram resonance occurs (see Fig. 14);

2. when the total probability is obtained, since the contribution to the total probability from
the exchange diagram is ∼ (ωτ)−1 � 1 and, therefore, it may be neglected.

The differential probability is obtained by standard mode (Berestetskii et al. (1982)). After
averaging over initial particle polarizations and summation over final particle polarizations

and also the integration over frequencies ω f and the azimuthal angle ψ� = ∠
(
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of a
final photon emission we obtain the differential probability:
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πωiEiVũ1
(ωτ)2 Pres (β)

[
f (u�, ũ1) f (u, ũ1)− g(u�, ũ1)g(u, ũ1)

] du�
(1 + u�)2 τ. (232)
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Here,

u =
(kki)

(qki)
,

u� =
(kk f )

(qk f )
,

ũ1 =
u1

1 − ũ
,

ures =
ũ

1 − ũ
,

(233)

at that 0 ≤ u ≤ ũ1, 0 ≤ u� ≤ ũ1, 0 ≤ ũ� ≤ ũ1. In Eq. (232) Pres (β) is the function, which
determines the resonant profile (see Fig. 15). It is obtained by

Pres (β) =
1

2π

∞∫

−∞

|I1(β, l∗)|2d (ϕ0l∗) . (234)

We determine the resonance width at a half of the probability maximum (see Fig. 15). The
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Fig. 15. Dependence of the function Pres (234), which determines the resonant profile, on the
resonant parameter β (221).

width which corresponds to the resonant parameter β is equal to Δβ ≈ 3.40. Therefore, the
width specified by the field pulsed character is obtained by

Γimp =
Δ
(
q2 − m2)

4m
= Δβ

ũ1
2

m
ϕ0

≈ 1.70
mũ1
ϕ0

. (235)

We compare the resonance width specified by the field pulsed character (235) with the
radiation width:

ΓR =
q0
m

W1 =
e2m
4
√

π
η2

0 F (ũ1) , (236)

152 Quantum Optics and Laser Experiments Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field 47

where W1 is the total probability of the intermediate state decay in a weakly intensive field;
the function F (ũ1) is defined by

F(ũ1) =

(
1 − 4

ũ1
− 8

ũ2
1

)
ln (1 + ũ1) +

1
2
+

8
ũ1

− 1

2 (1 + ũ1)
2 . (237)

This ratio equals
Γimp

ΓR
≈ 8.51

e2η2
0(ωτ)

ũ1
F (ũ1)

. (238)

When the condition (199) is met the appraisal value of ratio is equal to Γimp/ΓR ≥ 103 � 1.
Therefore, the width specified by the field pulsed character is the major one and the radiation
widening may be neglected.

After the integration over the invariant parameter u� we derive the total probability of
photon-electron scattering under the direct diagram resonance

Wres
f i ≈ 2e4η4

0m2

πωiEiVũ1
(ωτ)2Pres (β) [F(ũ1) f (u, ũ1)− G(ũ1)g(u, ũ1)] τ, (239)

G(u�, ũ1) =

ũ1∫

0

g(u�, ũ1)
du�

(1 + u�)2 =

=
1

4ũ1(1 + ũ1)2

(
−4ũ1 − 8ũ2

1 − 5ũ3
1 + (4 + 10ũ1 + 8ũ2

1 + 2ũ3
1) ln(1 + ũ1)

)
.

(240)

Ratio of the total probability (239) to the total probability of the Compton effect in external
field absence is expressed as

Wres
f i

wCompt
≈ τ

T
Pres (β) · R(u, ũ1), R(ũ, u1) =

2η4
0(ωτ)2

π2
[F(ũ1) f (u, ũ1)− G(ũ1)g(u, ũ1)]

ũ1F(ũ1)
,

(241)
where T is the observation time (T � τ), which is determined by conditions of the concrete
experiment.

When u1 � 1 we derive

R(ũ, u1) ≈
4η4

0(ωτ)2

π2
(1 − ũ)

u1

(
1 − 2

ũ
u1

(
1 − ũ

u1

))
. (242)

Fig. 16 demonstrates the ratio of the resonant probability of scattering of a photon by an
electron in the field of a pulsed wave to probability of the Compton effect as a function of
parameters ũ, u1 within the resonant peak (β = 0) under τ/T = 1, η0 = 0.05. It can be
seen from Fig. 16 that the resonant probability may exceed considerably the probability of the
Compton effect in external field absence. This fact becomes apparent particularly in the case
u1 � 1 (but it should be noticed here, that in view of infrared divergence the formulae (239),
(241) are correct within the region u1 � η2

0). Within the region u1 � 1 this effect disappears.
Under conditions η2

0 ∼ u1 � 1 within the range of optical frequencies Ei/m � m/ω ∼ 105

for the ratio of probabilities is correct R ∼ 103.
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ũ

1 − ũ
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4ũ1(1 + ũ1)2
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Fig. 16 demonstrates the ratio of the resonant probability of scattering of a photon by an
electron in the field of a pulsed wave to probability of the Compton effect as a function of
parameters ũ, u1 within the resonant peak (β = 0) under τ/T = 1, η0 = 0.05. It can be
seen from Fig. 16 that the resonant probability may exceed considerably the probability of the
Compton effect in external field absence. This fact becomes apparent particularly in the case
u1 � 1 (but it should be noticed here, that in view of infrared divergence the formulae (239),
(241) are correct within the region u1 � η2
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Fig. 16. Ratio of the resonant probability of scattering of a photon by an electron in the field
of a pulsed wave to the probability of the Compton effect in external field absence (241) as a
function of the parameter u1 (213) in the resonance peak (β = 0) under τimp/T = 1, η = 0.05.

6. Conclusions

Performed studies of resonant QED processes in a pulsed light field result:

1. The QED processes of the second order in a pulsed light field may occur under resonant
conditions when the four-momentum of an intermediate particle lies near the mass surface.

2. The resonant behavior of the cross-section is specified by characteristics of the laser pulse.
The resonant infinity in the process amplitude is eliminated by accounting for the pulsed
character of an external field.

3. The differential cross section of the resonant process may be several orders of magnitude
higher than the corresponding cross section in external field absence.

The results can be tested in the experiments on verification of quantum electrodynamics in
presence of strong fields (SLAC and FAIR).
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1. Introduction  
Following a number of  initial experiments in a magneto optical trap published by us in the 
period 2008-2009 (Olivares et al, 2008, 2009), there has been an increase in activity in the 
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The probe beam can be disposed at a small angle or collinear with respect to the pump 
beam. The laser frequency is scanned close to the atomic resonance. In the case of a two-
level atom system the spectral feature looks like Fig.2. The upper feature is the detected 
absorption feature when the pump beam is blocked. It shows a Doppler-broadened line 
which is much broader than the natural linewidth. In the case of weak absorption the 
feature is a Gaussian profile. The atoms in the vapour move with different velocities in 
different directions following the Boltzmann velocity distribution. Considering the velocity 
component of the atoms along the probe beam we have that some atoms move with velocity 
component in the same direction as the probe beam propagation and other in the opposite 
direction. The lower feature is the detected intensity with pump laser (Fig.3). It shows a 
spike just at the atomic resonance frequency 0 . This spike is known as Lamb dip. When the 
laser is tuned at 0   , it will be absorbed only by atoms moving toward the probe laser 
with longitudinal velocity 0/c    . The beam will not be absorbed by atoms with 
different longitudinal velocities because they are not in resonance so they don’t contribute to 
absorption. Atoms with zero velocity absorb light from the pump laser and become 
saturated. The probe laser moves through a saturated transparent group of atoms reducing 
the absorption and producing the Lamb dip. 
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Fig. 2. Absorption line. 
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Fig. 3. Doppler free saturated absorption line. 
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2.1 Multilevel atoms 

In the case of a three level system with two closely spaced upper levels and one ground 
level the spectral features presents two ordinary Lamb dips at the resonance frequencies of 
the associated transitions and one cross over peak situated just between these two dips at 
the average of these frequencies as shown in Fig.4. When the laser is tuned at the cross over 
frequency it is absorbed by one transition from atoms moving toward the laser and by the 
other transition of the same atom by the laser beam oriented in the opposite direction.  The 
increase of the population of the upper level caused by the strongest laser (pump beam) 
produces an increase of the transmission of the probe beam at the cross over frequency.  
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Fig. 4. Positive cross over. 

When the system has two closely spaced ground levels and one single upper level the cross 
over is still half between the ordinary Lamb dips but it exhibits a reduction of transmission 
due a process named “optical pumping” (Fig.5). Here the laser is absorbed by one optical 
transition from atoms moving toward the laser. The atoms decay to the second ground level 
producing an increase of absorption of the probe laser beam driven in the opposite 
direction.  
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Fig. 5. Negative cross over. 
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2.2 The saturated absorption spectrometer 

The optical setup of the saturated absorption spectrometer is depicted in Fig.6. The signal 
obtained by the photodiode PD1 can be used as a reference for the Doppler limited spectra.  

 
 
 

 
 

Fig. 6. Saturated absorption spectrometer. The pump beam is indicated with a broader line. 
The signal obtained by the photodiode PD2 contains the Doppler free feature. 

2.3 Semiquantitative ideas at two level atoms 

The saturated absorption spectra can be calculated with a simplified model for two level 
atoms. The differential contribution to the absorption coefficient by atoms with velocity 
between   and d   can be written as 

  0 0 1 2( , )d P P Fdn       (1) 

where 0  is the optical depth at the centre of the resonance, 1P  and 2P  are the relative 
populations of the ground and excited state respectively, 
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is the normalized Lorentzian absorption profile for atoms with natural linewidth 
 including the Doppler shift and 

 
2 /mv kTdn e d  (3) 

the Boltzman distribution for velocities along the beam axis. The transmission of the probe 
beam through the cell is ( )e   . In the case that the pump laser is turned off and the probe 
laser beam intensity is low we have that few atoms will be excited and most of the atoms 
will remain in its ground state. In this case 2 0P   and 1 1P  . For example in the case of 
rubidium when 0 1  , T = 300ºK, and 6 MHz   we obtained by numerical integration of 
Ec. 2 the profile shown in Fig.1. To obtain the relative populations of the ground and excited 
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states when the system is illuminated by the strong pump laser it is neccesary to write the 
rate equation for a two level system as 

  1 2 12 1 21 2
1 ( )pP P I S B P B P
c

     (4) 

where   corresponds to the excited lifetime, pI  is the intensity of the pump laser and  
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cB
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is the stimulated emission coefficient, 

 12 1 2 12( / )B g g B  (6) 

the absorption coeficient, 1g  and 2g  are the degeneracy’s of the ground and excited states 
respectively, and 
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
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the atom lineshape, with 0 0( / )c       . The minus sign is explained because the 
pump laser is in the counterpropagating direction in relation to the probe laser. In stationary 
state we have 1 2 0P P   and as 1 2 1P P   we have 

 1 2 21 2P P P    (8) 

Solving Ec. 4 for 2P  in stationary state and assuming that 1 2g g we have that 
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1 4 /
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where / sats I I , I the intensity of the pump laser and 2 32 /satI hc    is the saturation 
intensity. To plot a profile with one single Lamb dip we used the calculated excited 
population from Ec.9. For example, Fig. 2 was obtained integrating numerically the 
transmission coefficient for rubidium atoms with 0 780  nm, 0 1  , 300T  K and  

6  MHz and considering the pump laser. 

2.4 Energy level diagram 

The energy level diagram (Fig. 7) contains two ground hyperfine levels separated by nearly 
3 GHz and four excited levels separated by less than the Doppler broadened line. As the 
atoms pumped by the cooling laser from the F = 3 level into the F’ = 4 level decay into the F 
= 2 level it is necessary to optically pump the atoms from this level back to the F = 3 level 
through the F’ = 3 level. This is done by the repumping laser. 



 
Quantum Optics and Laser Experiments 

 

160 

2.2 The saturated absorption spectrometer 

The optical setup of the saturated absorption spectrometer is depicted in Fig.6. The signal 
obtained by the photodiode PD1 can be used as a reference for the Doppler limited spectra.  

 
 
 

 
 

Fig. 6. Saturated absorption spectrometer. The pump beam is indicated with a broader line. 
The signal obtained by the photodiode PD2 contains the Doppler free feature. 

2.3 Semiquantitative ideas at two level atoms 

The saturated absorption spectra can be calculated with a simplified model for two level 
atoms. The differential contribution to the absorption coefficient by atoms with velocity 
between   and d   can be written as 

  0 0 1 2( , )d P P Fdn       (1) 

where 0  is the optical depth at the centre of the resonance, 1P  and 2P  are the relative 
populations of the ground and excited state respectively, 

 2
0 0

/ 2( , )
( / ) / 4

F
c
 

   



   

 (2) 

is the normalized Lorentzian absorption profile for atoms with natural linewidth 
 including the Doppler shift and 

 
2 /mv kTdn e d  (3) 

the Boltzman distribution for velocities along the beam axis. The transmission of the probe 
beam through the cell is ( )e   . In the case that the pump laser is turned off and the probe 
laser beam intensity is low we have that few atoms will be excited and most of the atoms 
will remain in its ground state. In this case 2 0P   and 1 1P  . For example in the case of 
rubidium when 0 1  , T = 300ºK, and 6 MHz   we obtained by numerical integration of 
Ec. 2 the profile shown in Fig.1. To obtain the relative populations of the ground and excited 

PD1

PD2 

 
Cold Atoms Experiments: Influence of Laser Intensity Imbalance on Cloud Formation 

 

161 

states when the system is illuminated by the strong pump laser it is neccesary to write the 
rate equation for a two level system as 

  1 2 12 1 21 2
1 ( )pP P I S B P B P
c

     (4) 

where   corresponds to the excited lifetime, pI  is the intensity of the pump laser and  

 
3

21 3
08

cB
h 

 
 (5) 

is the stimulated emission coefficient, 

 12 1 2 12( / )B g g B  (6) 

the absorption coeficient, 1g  and 2g  are the degeneracy’s of the ground and excited states 
respectively, and 

 2 2
/2( )

/ 4
S 





   (7) 

the atom lineshape, with 0 0( / )c       . The minus sign is explained because the 
pump laser is in the counterpropagating direction in relation to the probe laser. In stationary 
state we have 1 2 0P P   and as 1 2 1P P   we have 

 1 2 21 2P P P    (8) 

Solving Ec. 4 for 2P  in stationary state and assuming that 1 2g g we have that 

 2 2 2
/ 2

1 4 /
sP

s 


    (9) 

where / sats I I , I the intensity of the pump laser and 2 32 /satI hc    is the saturation 
intensity. To plot a profile with one single Lamb dip we used the calculated excited 
population from Ec.9. For example, Fig. 2 was obtained integrating numerically the 
transmission coefficient for rubidium atoms with 0 780  nm, 0 1  , 300T  K and  

6  MHz and considering the pump laser. 

2.4 Energy level diagram 

The energy level diagram (Fig. 7) contains two ground hyperfine levels separated by nearly 
3 GHz and four excited levels separated by less than the Doppler broadened line. As the 
atoms pumped by the cooling laser from the F = 3 level into the F’ = 4 level decay into the F 
= 2 level it is necessary to optically pump the atoms from this level back to the F = 3 level 
through the F’ = 3 level. This is done by the repumping laser. 



 
Quantum Optics and Laser Experiments 

 

162 

 
Fig. 7. Energy level diagram. The transitions for cooling and optical repumping are 
indicated with arrows. 

3. Detailed saturated absorption using density matrix elements 
The transition rate is given by 
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is the square of the reduced matrix element, 98.99 10  Vm/CeK    the Coulomb constant,   
the lifetime of the excited atoms and 1fL  . The optical Bloch equations for the relative 

populations 11  to 66  of the 85Rb D2 line are given by 
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where 1 2 3 4 5 65, 7, 3, 5, 7 and 9g g g g g g      ,  the levels labeled with N = 1 and 2 
corresponds to the ground states and the levels labeled with N = 3 to 6 are the excited states, 

/T d   is the transit time broadening with d the diameter of the beam and   the average 
velocity of the atoms along the beam diameter, ' T    , / 2 T     and 

33 44 55 66e         is the total population of the various excited states. In stationary 
state the time derivatives of the relative popuations become zero. The absorption of the laser 
light in a vapor with density n and length dx   
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The angle brackets indicate the average over the velocity distribution for vapor at 
temperature T , given by 
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Fig. 7. Energy level diagram. The transitions for cooling and optical repumping are 
indicated with arrows. 
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33 44 55 66e         is the total population of the various excited states. In stationary 
state the time derivatives of the relative popuations become zero. The absorption of the laser 
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Extending the absorption equations to te Doppler-free saturation spectroscopy we have  

  if if ff ii
if

dI h n W dx       (20) 

where the population depends on the transition rate  ,dW W I    determined by the 
probe beam with intensity dI  and the transition probability  ,pW W I     due to the 
pump beam with intensity pI  propagating in the opposite direction, 
and  ii ii W W     . 

4. Experimental details 
The experiment was installed in a 6x12 feet optical top 1 that was passively damped. The 
experiment included two tuneable diode lasers, two saturated absorption spectrometers, 
two scanning interferometers, a complete vacuum system, beam expanders, polarizing 
optics, infrared camera, optics and mechanics components, a rubidium cells, and 
photodiodes. 

4.1 The saturated absorption spectrometer 

The saturated absorption spectrometer is shown in Fig.8. The laser beam was lifted 15 cm 
above the optical top level by the mirrors M1 and M2, and directed to the first optical glass 
beam divider. A small part of the beam was directed to the second optical glass divider, the 
strongest beam went to the trap. The second beam divider drives the strongest beam to the 
interferometer and the small beam act as a pump laser in the rubidium cell. The beam 
reflected off the mirror M3 acts as a test weak beam that was measured by a photodiode 2. 

 
Fig. 8. Saturated absorption spectrometer. Pump and probe laser are collinear. PD = 
photodiode, OGD = optical glass divider, M1, M2, M3 = mirrors. Distance between closest 
optical components are given in inches. 
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4.2 Scanning confocal interferometer 

The scanning confocal Fabry-Perot interferometer (Fig.9) is a nice tool to check if the laser is 
running in single mode operation specially. One of the main features of the Fabry-Perot 
interferometer is that it can measure with high resolution the spectral content of the laser. A 
basic Fabry-Perot consists of two identical spherical mirrors with radius R separated by a 
distance L. The use of two curved mirrors is convenient as they permit a good match to the 
Gaussian beam coming from the laser.  

 
Fig. 9. Confocal scanning Fabry-Perot interferometer. 

Two parameters defines the properties of a Fabry-Perot, the free spectral range and the 
finesse or resolution. The free spectral range (FSR) is defined by 
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cFSR
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where n is the index of refraction of the air between the mirrors, c the speed of light, L the 
distance between mirrors. Near the centre of the mirrors we have that every time the 
distance between mirrors is changed by a quarter wavelength ( /4) the same part of the 
spectrum will be reproduced. The mirrors used in our interferometer 3 have a radius of  75 
mm and a FSR = 1GHz. The resolution of the interferometer is given by its finesse 
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where   is the full with at half maximum of the interference maxima and R reflectivity of 
the mirrors.  The finesse depends on the mirror reflectivity, the losses due to imperfections 
on the mirror surfaces or dust, and the alignment of the mirrors. In our interferometer the 
highest finesse reported was larger than F* = 450. A cylindrical piezoelectric transducer 
(PZT) is attached to one mirror and can move it in small displacements. To displace the 
mirror a high voltage is applied between the inner and the outer side of the PZT. The 
interferometer can be used in scanning mode when the laser wavelength is fixed and the 
piezo transducer is displaced continuously with a ramp function. In this case it is possible to 
observe the detailed spectra of the laser. Another option is to scan the laser wavelength with 
a ramp function and the distance between mirrors remains constant. In this case one can 
observe the laser spectra and change its absolute position in the oscilloscope by applying a 
                                                 
3 Toptica Photonics, Model FPI100 
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constant voltage to the PZT. This option is very useful for finding the resonances needed for 
cooling. 

4.3 Vacuum system 

For optimal conditions to form an atomic cloud it is necessary to reach an ultra high vacuum 
level with pressures lower than 10-7 Pa (10-9 Torr). Our vacuum system (Fig. 10) was built 
with pipes with nominal 2.75 inch diameter conflate type flanges made of 308 steel. The 
connections between the pipes and other devices were sealed with cooper gaskets. Our 
system consisted in a rotary vane pump, followed by a turbomolecular pump 4 and an ion 
pump 5. To measure the low vacuum level up to 1.33x10-2 Pa (10-4 Torr) we used a 
Convectron 6 gauge. To measure vacuum pressures lower than 1.33x10-3 Pa (10-5 Torr) we 
used a Bayard Alpert gauge 7.  Both gauges were connected to a multi-gauge controller 8. 
The ultra high vacuum was measured alternatively with the indicator of ionic pump 
controller. The vacuum process started with the onset of the rotary vane pump to obtain a 
vacuum close to 1.33x10-2 Pa (10-4 Torr). After obtaining this vacuum pressure we started the 
turbomolecular pump, to obtain a vacuum close to 10-5 Pa (10-7 Torr). To obtain lower 
vacuum pressures the system was heated in a process called baking to evaporate the water 
molecules embedded inside the pipes and chamber. For this we rolled around the pipes and 
flanges along the vacuum line a heater that was made of a nearly 10 m long AWG26 
nichrome wire. To electrically isolate the nichrome wire from the pipes we inserted it into a 
series of 1 m fiber glass spaghettis that were coupled one by one. To do this we slide the 
outer part at end of one spaghetti into the inner part of the following.  The ionic pump was 
heated with its own heater, when the pump was switched off. The temperature used in the 
vacuum process was 120 ºC. To reach this temperature we increased the temperature 10 ºC 
every 30 minutes with a Variac transformer by increasing the current along the nichrome 
wire. The complete baking process took at least 5 days. The first day was used to reach the 
120 ºC baking temperature. This temperature was kept constant during the next 3 days. In 
the fifth day we initiated the decrease of the temperature at the same rate as at the heating 
stage, that is a decrease of 10 ºC every 30 minutes. This was a precaution to protect the glass 
and the glue, because all have different temperature expansion coefficients. To obtain a 
homogeneous temperature along the vacuum line we made a temperature measurement at 
different places. For this we installed several thermocouples in some points between the 
heating wires and the pipes. We also covered the heater with aluminium foil. With the 
baking of the vacuum line we could reduce the pressure by more than one order of 
magnitude. The ultimate vacuum was less than 100 nPa (1nTorr). 

4.4 Observation optical cell: discussion of different methods  

Three versions of observation cells were used in our trap. In the first case we bored a 30 mm 
hole in the centre of a 2.75 inch conflate type blank flange 9. On the flat side we constructed a 
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5 Varian, Model VacIon Plus 20 StarCell 
6 Granville Phillips, Model 275238 
7 Varian, 580 Nude ion gauge thoria iridium  
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Fig. 10. Vacuum system a: optical table, b: turbomolecular pump, c: reduction nipple CF 4.5 
to 2.75 inch 10, d, j: tee CF 2.75 flange 11 , e: Convectron vacuum sensor, f, p: nipple 12, g, o: 
manual valve for ultra high vacuum 13 , h: Bayard-Alpert UHV sensor, i: short nipple CF 2.75 
flange 14, k: window 15, l: six way cross 16, blank flange for back side 17, m: 8 pins electrical 
feedthrough, n: bottle with seven horizontal windows and one vertical window, q: ion 
pump, r: aluminium plate support for ionic pump with dimensions 30x19.5x1 cm mounted 
in 4 rods of 2 inch diameter, s: L form mount for tubing. 

cell that uses four optical glass plates with 4 mm wall thickness and dimensions 35 x 50 mm. 
On the top of the cell we glued a 35 x 35 mm optical glass plate. The cell was glued to the 
flat side of the flange. The plates were glued with high vacuum Torr seal 18. The second 
version consisted in an optical glass cell with outer wxlxh wall dimensions 55x55x52.5 mm 
and 2.5 mm wall thickness 19. The cell was glued on the 4.5 inch side of a zero length reducer 
from nominal conflate flange 4.5 inch to 2.75 inch. We did not remove the edge of the 4.5 
inch side so the cell was installed very tight. This caused that the glass broke after some heat 
up vacuum procedures. The cell could be repaired several times with the vacuum Torr seal. 
The first two versions of cells are shown in Fig.11. 
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constant voltage to the PZT. This option is very useful for finding the resonances needed for 
cooling. 

4.3 Vacuum system 

For optimal conditions to form an atomic cloud it is necessary to reach an ultra high vacuum 
level with pressures lower than 10-7 Pa (10-9 Torr). Our vacuum system (Fig. 10) was built 
with pipes with nominal 2.75 inch diameter conflate type flanges made of 308 steel. The 
connections between the pipes and other devices were sealed with cooper gaskets. Our 
system consisted in a rotary vane pump, followed by a turbomolecular pump 4 and an ion 
pump 5. To measure the low vacuum level up to 1.33x10-2 Pa (10-4 Torr) we used a 
Convectron 6 gauge. To measure vacuum pressures lower than 1.33x10-3 Pa (10-5 Torr) we 
used a Bayard Alpert gauge 7.  Both gauges were connected to a multi-gauge controller 8. 
The ultra high vacuum was measured alternatively with the indicator of ionic pump 
controller. The vacuum process started with the onset of the rotary vane pump to obtain a 
vacuum close to 1.33x10-2 Pa (10-4 Torr). After obtaining this vacuum pressure we started the 
turbomolecular pump, to obtain a vacuum close to 10-5 Pa (10-7 Torr). To obtain lower 
vacuum pressures the system was heated in a process called baking to evaporate the water 
molecules embedded inside the pipes and chamber. For this we rolled around the pipes and 
flanges along the vacuum line a heater that was made of a nearly 10 m long AWG26 
nichrome wire. To electrically isolate the nichrome wire from the pipes we inserted it into a 
series of 1 m fiber glass spaghettis that were coupled one by one. To do this we slide the 
outer part at end of one spaghetti into the inner part of the following.  The ionic pump was 
heated with its own heater, when the pump was switched off. The temperature used in the 
vacuum process was 120 ºC. To reach this temperature we increased the temperature 10 ºC 
every 30 minutes with a Variac transformer by increasing the current along the nichrome 
wire. The complete baking process took at least 5 days. The first day was used to reach the 
120 ºC baking temperature. This temperature was kept constant during the next 3 days. In 
the fifth day we initiated the decrease of the temperature at the same rate as at the heating 
stage, that is a decrease of 10 ºC every 30 minutes. This was a precaution to protect the glass 
and the glue, because all have different temperature expansion coefficients. To obtain a 
homogeneous temperature along the vacuum line we made a temperature measurement at 
different places. For this we installed several thermocouples in some points between the 
heating wires and the pipes. We also covered the heater with aluminium foil. With the 
baking of the vacuum line we could reduce the pressure by more than one order of 
magnitude. The ultimate vacuum was less than 100 nPa (1nTorr). 

4.4 Observation optical cell: discussion of different methods  

Three versions of observation cells were used in our trap. In the first case we bored a 30 mm 
hole in the centre of a 2.75 inch conflate type blank flange 9. On the flat side we constructed a 
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pump, r: aluminium plate support for ionic pump with dimensions 30x19.5x1 cm mounted 
in 4 rods of 2 inch diameter, s: L form mount for tubing. 

cell that uses four optical glass plates with 4 mm wall thickness and dimensions 35 x 50 mm. 
On the top of the cell we glued a 35 x 35 mm optical glass plate. The cell was glued to the 
flat side of the flange. The plates were glued with high vacuum Torr seal 18. The second 
version consisted in an optical glass cell with outer wxlxh wall dimensions 55x55x52.5 mm 
and 2.5 mm wall thickness 19. The cell was glued on the 4.5 inch side of a zero length reducer 
from nominal conflate flange 4.5 inch to 2.75 inch. We did not remove the edge of the 4.5 
inch side so the cell was installed very tight. This caused that the glass broke after some heat 
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Fig. 11. Left: 55x55x55 mm glass cell, right: glass cell constructed with 35x50x4 mm plates.  

The third version (Fig. 12) consisted in a cell prepared by a glass blower. The cell has a 2.75 
inch conflate type adapter and 7 optical windows with 1 inch useful area 20. 

 
Fig. 12. Side and top view of observation cell. 

4.5 Optical layout, detectors and IR camera 

The main part of the magneto optical trap optics was purchased as one single item 21. Our 
optical layout (Fig.13) include a larger list of parts. The rays coming from each laser are 
vertically polarized. After leaving the first optical glass divider (OGD1 in Fig.13) each laser 
beam is driven to a  polarizing beamsplitter cube. The polarization of the repumping laser is 
rotated in 90 degrees by means of a half wave plate and becomes horizontally polarized 
before entering the polarizing beam splitter cube. The polarization of the cooling laser is 
maintained vertical and reflected by the beamsplitter cube. By this mean, the cooling laser 
and the repumping laser become collinear. Both lasers were driven over a line of holes of the 
optical top and continued collinear at least at 4 meters from the exit of the polarizing beam 
splitter cube. The polarization of the cooling laser was orthogonal to the polarization of the 
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repumping laser. The combined laser beams were simultaneously expanded by a laser beam 
expander consisting of a  f = 50 mm  lens followed by two f = 300 mm. The diameter of the 
three lenses was 25 mm. The diameter of the lasers was nearly 3 mm and at the exit it was 12 
mm giving an expansion of 4x. The laser disk was rounded by an iris diaphragm.  

 
 
 
 

 
 
 
Fig. 13. Combination of repumping and cooling laser beams followed by simultaneous beam 
expansion. OGD = optical glass divider, L = lenses, HWP = half wave plate, PBSC = 
polarizing beam splitter cube, ID = iris diaphragm. 

After passing the iris diaphragm, both lasers were divided in a 0.3/0.7 divider. Most of the 
laser power (70%) was directed to the horizontal plane (Fig. 14). A polarizing beam splitter 
cube divided both lasers equally. Each pair of beams that leaved the polarizing beam splitter 
cube were divided again by means of two non polarizing beam splitter cubes. By this 
method it was possible to obtain two sets of counter propagating pairs of beams. In each leg 
of this arrangements quarter wave plates to with the correct circular polarizations. We 
installed a surveillance IR camera to observe the cloud and an IR CCD 22 with a 50 mm lens. 

                                                 
22 Altec Vision, Model PL-B771U  
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Fig. 11. Left: 55x55x55 mm glass cell, right: glass cell constructed with 35x50x4 mm plates.  
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The small part of the optical power (0.3 that was obtained at the 0.70/0.30 beam divider was 
directed vertically to the optical top as shown in Fig. 15 and directed parallel to the 
horizontal plane to a half wave plate that rotated both lasers in nearly 45º. A polarizing 
beam splitter cube disposed after the half wave plate divided the beam in two parts with the 
same intensity. One part went upwards and the other crossed the polarizing beam splitter 
cube and was directed by means of two mirrors in the counter propagating downward 
direction. Two quarter wave plates were used to obtain the correct circular polarization. 
With our experimental conditions we tried to balance the power from every ray as best as 
possible. 

 
 
 
 

 
 

Fig. 14. Beam division in the horizontal plane and use of quarter wave plates to obtain the 
desired circular polarization. HWP = half wave plate, PBSC = polarizing beam splitter cube, 
NPBSC = non polarizing beam splitter cube, M = mirror, BD = beam divider 0.3 to vertical 
plane. 
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Fig. 15. Beam division in the vertical plane and use of quarter wave plates to obtain the 
correct circular polarization. QWP = quarter wave plate, PBSC = polarizing beam splitter 
cube, M = mirror. 

4.6 Introduction of neutral atoms using a rubidium getter 

A rubidium getter 23 is used to introduce the neutral atoms into the vacuum chamber. The 
main feature of this getter is that it allows introducing a controlled amount of atoms. The 
rubidium is released as a vapour when a current flows through the getter. The current 
required to release the necessary amount of neutral atoms is close to 3.7A. A diagram of the 
getter is shown in Fig.16. The getter is contained in a chamber with a trapezoidal section and 
released from a small aperture at the upper part. When the getter cools down, condensation 
and solidification of the material closes the exit. To start the vapour emission it is necessary 
to increase the current to 8A during nearly 2 seconds. The pulse duration should be 
controlled precisely by means of a programmable current power supply 24 to avoid the 
destruction by melting of the getter.  

The code for the power supply was made with Labview6.0. The code set 5 s at 3 A, 2 s at 8 
A, 4 s at 6 A and fixed the current at 3.7 A the rest of the time. Several getters were soldered 
to pair of pins of an 8 pin conflate flanged power feedthrough 25. Care was taken to label the 
                                                 
23 Saes Getters, Model RB/NF/3.4/12 FT10+10 
24 Instek, Model PSM-2010 
25 Kurt K. Lesker, Model EFT0084033 
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earths. The soldering was made by means of thermocouple point soldering  device. This 
uses three 5.1 mF, 350 V electrolytic capacitors in parallel. 70 V is enough to sold the parts. 
We used only one getter for more than 100 hours and it is still working.  

 
Fig. 16. View of the rubidium getter. 

4.7 The pump and the probe laser 

The pump and probe lasers used in our experiments are Littrow cavity diode lasers 26 
delivering about 50 mW of single longitudinal mode emission near 780 nm at a laser line 
width of nearly 1 MHz. Each laser was protected with a 60 dB optical isolator 27. The optical  
isolators were placed inside the laser case after the grating. The use of the optical isolators is 
essential to obtain a reproducible magneto optical trap as it is very difficult to avoid 
reflections back into the laser. These reflections can destroy the single mode emission of the 
lasers. 

4.8 Description of the Pound Drever Hall method for frequency stability of the pump 
and probe lasers 

The setup of a cold atom cloud requires fixed cooling and repumping laser frequencies. It is 
possible to obtain the cloud of cooled atoms without stabilizing the laser but it makes the 
work more difficult. The Pound Drever Hall method permits the stability of the frequency of 
the laser frequencies close to the resonances. Fig. 17 shows the optical setup of the Pound 
Drever Hall detector. A diode laser is collimated by a aspheric lens of short focal distance 
and its wavelength controlled by a grating that reflects its first diffraction order back into 
the laser cavity. The wavelength is roughly adjusted by rotating the grating. A piezo electric 
transducer (PZT) can produce fine angular displacements of the grating and control the 
frequency of the lasers single mode emission at the MHz level. An optical isolator installed 
in front of the laser permits to avoid unwanted back reflections into the laser cavity. These 
reflections could destroy the single mode emission of the laser. Laser exiting the optical 
isolator is driven to the confocal scanning Fabry Perot interferometer. Two mirrors (2M) 
lifted the laser to 15 cm from the optical top. The beam was conducted by means of an 
optical glass divider, a mirror and a pair of mirrors that placed the beam at the level of the 
interferometers axis. The beam passes a polarizing beam splitter cube, a quarter wave plate 
                                                 
26 Toptica Photonics, Model DL100 
27 TV-Linos,  Model FI-790 
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and was focused with an f = 200 mm lens to the interferometer. The light reflected from the 
interferometer becomes horizontally polarized after passing twice the quarter wave plate 
and was reflected by the polarizing beam splitter cube into a fast photodiode 28. 

 

 
Fig. 17. Optical setup for Pound Drever Hall stabilization method. 

The reflected electric field from a Fabry Perot interferometer is given by 

 
 1

1 e

i

r ii

e R
E E

R









 (23) 

where R is the mirror reflectivity and FSR2 /      . The laser is modulated at a 
frequency / 2 20 MHz  . The incident laser amplitude can be written as a carrier with 
two weak sidebands as 
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is a Lorentzian function, and   the laser linewidth. A modulated spectra for 
/ 2 20 MHz   modulation frequency and laser linewidth 10 MHz   is depicted in 

Fig.18.  
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Fig. 18. Laser modulated with 20 MHz sinusoidal function. Sidebands can be seen at both 
sides of the central feature. 

Two sidebands can be found on each side of the central feature. The signal produced by the 
fast photodiode is mixed with the modulation sinusoidal signal. The error function (Fig.19) 
is obtained when the product of these two functions is passed through a low pass filter.  
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Fig. 19. Error function considering a FSR = 1GHz, finesse = 500 and 20 MHz modulation.  

4.9 Polarizing optics: left and right circulating light 

Laser beams with opposite helicity polarizations impinge on an atom from opposite 
directions. Magnetic levels of the atoms are shifted by the magnetic field. The net result is a 
position-dependent force that pushes the atoms into the center of the magneto optical trap. 

In our experiment we used 1 inch diameter multiple order quarter wave plates 29 and 1 inch 
diameter multiple order half wave plates 30. The wave plates can be installed in optical 
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rotating mounts 31 but in our case we used fixed mounts constructed by us. Multiple order 
wave plates require specification of the used wavelength. In our case the required 
wavelength was 780 nm.  A linear polarized beam incident on a multiple order quarter wave 
plate produces circular polarized light when the electrical field of the incident laser is 
oriented at 45 degrees with respect to the optical axis of the quarter wave plate. One of the 
vector components of the E- field is parallel to the optical axis and the other perpendicular. 
A good method to check the orientation of optical axis of a quarter wave plate is to construct 
an optical isolator as shown in Fig. 20. 

 
Fig. 20. Optical isolator. PBSC = polarizing beam splitter cube, M = mirror. 

Incident light coming from the left side with its polarization vector parallel to the plane of 
the paper passes the polarizing beam splitter cube and continues through the quarter wave 
plate. When the optical axis of the plate is rotated in 45º respect to the electrical field the 
wave becomes circular. The reflected light turns into perpendicular to the plane of the paper  

and becomes fully reflected by the polarizing beam splitter cube. With the aid of a 
photodiode it is possible to find the largest reflected signal by rotating the quarter wave 
plate slightly back and forth. The optical axis of the half wave plate can be found using the 
linear incident laser light and a polarizing beam splitter cube. When this plate is rotated a 
45º relative to the incident field, the field rotates 90º. In general when the half wave plate is 
rotated at an angle  , the electrical field rotates at an angle 2 . This can be used to obtain a 
transmission of 0.4 and reflectivity of 0.6. This is correct but the transmitted E-fields are 
slightly rotated to vertical or horizontal.  

4.10 Anti Helmholtz coils: magneto optical trap 

The force acting on the atoms in the magneto optical trap is position space dependant being 
larger for atoms that are more distant from the center of the trap. The MOT coils are two 
copper solenoids with same dimensions and number of windings. The coils are disposed in 
anti Helmholtz configuration one over the other. Fig. 21 shows a diagram of the coils. The 
current in one coil flows in opposite direction with respect to the other coil. It is 
recommended (Wieman, 1995) to have a variable magnetic field gradient with a maximum 
of 0.2 T/m. We used normally between 0.10 and 0.15 T/m. We used a 1.15 mm diameter 
(AWG 17), enameled copper wire. Each coil has 196 windings ordered in 14 sheets with 14 
windings per sheet. To drive the coils we used two 5A variable current supplies.  
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Fig. 18. Laser modulated with 20 MHz sinusoidal function. Sidebands can be seen at both 
sides of the central feature. 

Two sidebands can be found on each side of the central feature. The signal produced by the 
fast photodiode is mixed with the modulation sinusoidal signal. The error function (Fig.19) 
is obtained when the product of these two functions is passed through a low pass filter.  
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Fig. 19. Error function considering a FSR = 1GHz, finesse = 500 and 20 MHz modulation.  
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Fig. 21. Construction of anti Helmholtz coils. 

5. Finding the spectral lines for repumping and cooling laser 
To find the spectral lines for the repumping and cooling laser it is necessary to change the 
current and temperature of each laser controller and scan the laser piezo element attached at 
the grating at large amplitudes and measure the whole absorption spectrum from the atoms 
in the rubidium cell with a photodiode. This should be made for each laser. A typical 
absorption spectrum of rubidium is shown in Fig.22. Lamb dips are useful to identify the 
lines. 
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Fig. 22. Saturated absorption spectra used to find spectral lines for the repumping and 
cooling laser. 

6. Doppler free spectra of cooling and repumping laser 
A detailed view of the Doppler free spectra for the cooling and repumping lasers is shown 
in Fig. 23. To obtain these spectra we reduced the scan amplitude of the grating piezo and 
changed slowly the offset voltage of the piezo to isolate each line. Additionally it was 
possible to heat the rubidium cell with a nichrome wire to obtain more defined lines. 
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Fig. 23. Doppler free spectra of a) repumping and b) cooling lasers. The arrows indicate the 
frequencies to be locked. 

7. Signals needed to stabilize the repumping and cooling laser 
Fig.24 shows a typical measured modulated laser spectra and Fig.25 shows the error 
function obtained experimentally. In both cases, the interferometer cavity length was held 
fixed and the laser was scanned continuously. The alignment procedure of the light reflected 
from the interferometer into the fast photodiode can be best done using a surveillance 
camera an trying to group the multiple reflections on a single point at the photodiode.  
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Fig. 24. Laser modulated profile recorded with interferometer. 
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Fig. 21. Construction of anti Helmholtz coils. 

5. Finding the spectral lines for repumping and cooling laser 
To find the spectral lines for the repumping and cooling laser it is necessary to change the 
current and temperature of each laser controller and scan the laser piezo element attached at 
the grating at large amplitudes and measure the whole absorption spectrum from the atoms 
in the rubidium cell with a photodiode. This should be made for each laser. A typical 
absorption spectrum of rubidium is shown in Fig.22. Lamb dips are useful to identify the 
lines. 
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Fig. 22. Saturated absorption spectra used to find spectral lines for the repumping and 
cooling laser. 

6. Doppler free spectra of cooling and repumping laser 
A detailed view of the Doppler free spectra for the cooling and repumping lasers is shown 
in Fig. 23. To obtain these spectra we reduced the scan amplitude of the grating piezo and 
changed slowly the offset voltage of the piezo to isolate each line. Additionally it was 
possible to heat the rubidium cell with a nichrome wire to obtain more defined lines. 
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Fig.24 shows a typical measured modulated laser spectra and Fig.25 shows the error 
function obtained experimentally. In both cases, the interferometer cavity length was held 
fixed and the laser was scanned continuously. The alignment procedure of the light reflected 
from the interferometer into the fast photodiode can be best done using a surveillance 
camera an trying to group the multiple reflections on a single point at the photodiode.  
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Fig. 24. Laser modulated profile recorded with interferometer. 
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Fig. 25. Experimental error function. 

To lock the laser frequency to the needed resonance, we have stored one single Doppler free 
spectrum and recalled and displayed it on the oscilloscope screen. The amplitude scan was 
decreased close to the zero crossing of the error function. Adjustments of the error signal 
position relative to the Doppler free spectra could be done by changing the absolute cavity 
length of the interferometer. This was done by changing the offset bias voltage of the 
interferometer. 

8. Demonstration of a cloud of cold atoms 
After controlling and locking the laser frequencies and finding the necessary magnetic field 
strength it was possible to observe a cloud of atom that was visible with the surveillance 
camera. Simultaneously we observed the cloud with our second CCD camera. The correct 
magnetic field direction was found by trial and error. For this we changed the polarity on 
the magnetic field power supplies while adjusting the best laser frequencies. Fig.26 shows a 
typical image obtained with our surveillance camera in our initial setup.  

 
Fig. 26. Cloud of atoms obtained with surveillance camera. Left: no cloud, right: cloud of 
cold atoms.  

Fig. 27 shows image taken with a modified Samsung photo camera. In this case we removed the 
optics from the camera and the IR filter. We placed a 50 mm camera lens in front of the camera. 
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Fig. 27. Image taken with modified Samsung camera. The chamber can be seen. 

Fig. 28 shows the cloud image obtained with the IR Altec Vision CCD camera. The cloud 
diameter was nearly 2.0 mm at its full width. 

 
Fig. 28. Cloud of atoms obtained with our Altec Vision IR CCD camera. Left is the cloud 
image and right a 3D plot of intensity of the same cloud.  

8.1 Optical method: using a Glan Thomson polarizer for laser intensity imbalance  

We introduced an optical method, previously developed for laser printers (Duarte, 2005),  to 
study the effect of the laser intensity imbalance on the cloud formation. The method uses 
two Glan Thomson polarizers to produce a controlled imbalance between pump and probe 
laser. Each Glan Thomson polarizer was installed in front of the polarizing beam splitter 
cubes the produces the first division of the cooling and repumping laser respectively as seen 
in Fig.13. The laser intensity was controlled at will by rotating the Glan Thomson polarizer. 
The polarizing beam splitter cube contributes for further reduction of the laser intensity. We 
measured the intensity behind the beam splitter cube after each intensity reduction and 
recorded simultaneously the cloud with our camera. The laser polarization was slightly 
rotated after passing the beam splitter polarizing cube not affecting the overall functioning 
of the cloud. A more precise method could be realized by fixing the Glan Thomson 
polarizers for maximum transmission and rotating at will the field in front ofs each Glan 
Thomson polarizer by means of a half wave plate disposed in front of it. By this method the 
laser field polarization would be kept fixed after passing the Glan Thomson. 
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Fig. 25. Experimental error function. 
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laser field polarization would be kept fixed after passing the Glan Thomson. 
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9. Study of intensity imbalance on cloud formation 
The maximum optical power for the cooling and repumping lasers was nearly 48 mW. The 
imbalance was started keeping the repumping laser at 48 mW and changing the optical 
power from the cooling laser. The visibility of the cold cloud reached its minimum value as 
the power was decreased to 10 mW that is nearly 1/5 of its initial value.  On the other hand 
as the cooling laser is kept at 48 mW, the optical power from the repumping laser was 
decreased to up to 103 microwatts. At this power the cloud was faintly visible. The power 
ratio between full visibility and threshold was 1/466 for the repumping laser when the 
cooling laser was kept at its maximum value. In summary the lasers had large intensity 
difference and the cloud was still visible. To our knowledge this is the largest power 
difference disclosed in the open literature between the repumping and cooling lasers. 

10. Conclusion 
We cooled and trapped rubidium atoms in a magneto optical trap and proved the stability 
of the cloud for different laser intensities. We studied the effect of laser intensity imbalance 
on cloud formation. We found that the cloud was still visible when the repumping laser 
intensity was at 1/466 part of its maximum intensity with the cooling laser at its maximum 
intensity with typical maximum power of 49 mW for each laser. Decreasing the cooling laser 
intensity to 1/5 of its maximum value produced destruction of the cloud.       
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