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basis is beneficial in many respects, there are also difficulties
associated with the expansion of LCA to meet this demand.

Bioenergy and sustainability policies across the globe are
increasingly turning to life cycle assessment (LCA) to guide
challenging decisions and select between technology paths,
driven by carbon footprinting. Its use for bioenergy has made
LCA mainstream, bringing with it all the benefits of a life cycle
approach, but also the difficulties associated with applying it
in practice. Although a conceptually simple tool, it can
become convoluted in practice [1]. These difficulties are
amplified as its use expands, along with the transition from
attributional (aLCA) to consequential (cLCA) and from retro-
spective to prospective.

1. Introduction

Life cycle assessment (LCA) has become prevalent in research,
industry and policy. From its origins in energy analysis in the
1960s and 70s, LCA has grown into a wide-ranging tool used to
explore potential impacts to a range of environmental metrics
and resource depletion. In that time, it has evolved rapidly
from a tight, company based, attributional tool to one that is
being more commonly used by policy makers and standards
bodies for broad and interrelated effects beyond the project,
for example, to help design large scale energy solutions.
Whilst enabling complex issues to be assessed over a life cycle
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The public discourse around climate and the potential
impact of biofuels has played a major, if indirect, role in the
evolution of life cycle analysis, and in the development of
consequential LCA. The public discourse surrounding bio-
fuels, and to a lesser extent bioenergy as a whole, has been
volatile since its inception and is highly polarized [2]. The
popular press often contains overblown statements from both
those opposed and those in favour, as well as the more
measured voices (see, for example, [3—6]). Anti-bioenergy
rhetoric has been particularly vitriolic, in some specific cases
for very good reason (for example, regarding oil palm on peat
lands), which has come to represent all bioenergy for much of
the public sphere [7,8].

One particular aspect of the public debate has been closely
tied to LCA's expansion, although the link is not immediately
obvious: “food versus fuel” and the subsequent possibility of
market-driven conversion of land to additional agriculture
internationally. Popularization of the highly intuitive “food
versus fuel” (more properly “feed versus fuel”) concept took
hold strongly [7—10]. This led to a spate of anti-biofuels arti-
clesin the press and NGO campaigns (e.g., [9]) in the late 2000s,
and had a chilling effect on investment in R&D for (better)
biofuels technologies [10]. It also influenced the policy
discourse [11,12] and resultant demands on accounting tools
[2,14] leading to some serious methodological developments
and challenges.

These aspects of the public and political discourse have led
to large changes in the nature of “life cycle assessment” and
contributed to two somewhat distinct avenues of develop-
ment and use, with a new one growing up alongside but
seldom in concert with traditional LCA. One of the complex-
ities associated with LCA is that it can be applied to a range of
products or systems, over a product life cycle. The scope of
analysis is set by defining a system boundary that explicitly
identifies which aspects of the supply chain and processes are
included, which allows for comparison of studies with the
same boundary.

Traditionally LCA has been applied retrospectively to
relatively contained (in terms of system boundaries) products
or systems. This is now known as attributional LCA (aLCA).
Recently there has been a move to apply life cycle assess-
ments in larger scale decision contexts; effectively describing
how environmental impacts might change in response to
potential policy decisions (e.g., Ref. [13]). This is known as
consequential LCA (cLCA). In effect, such use expands the
system boundaries to include the activities contributing to
any resultant changes. This adds to the complexity of the
models and often means that a cLCA will include additional
economic concepts such as marginal costs and data, and
market mediated effects [15] and will look at impacts over a
wider geographical and temporal range. Whilst aLCA tradi-
tionally focused on the use of linear, static models; cLCA
cannot [15]. Nevertheless, a consistent approach for cLCA has
not yet been established (see, e.g., Refs. [15,16]).

The emergence of two branches of LCA with markedly
different perspectives is one of the biggest challenges facing
the LCA community, largely because their languages are
widely disparate and the same terms (even “LCA”) may carry
different meanings between them. The aLCA (original, old
school, ISO governed), direct community and the cLCA

(outcomes projected from taking a particular course) com-
munity do not overlap much, and language is nascent and
inconsistent. The issue is inherently one of scale (and
perspective — existing or concrete vs. projected). aLCA is micro
scale and project specific; while cLCA, with its reliance on
highly aggregated (by necessity) global economic models is
macroscale. Joining the two areas is non-trivial. There are few
examples of integrated a/c LCA teams, and unfortunately,
there are few social sciences analyses of these communities.
To the best of our knowledge, there has been only one, in
which the authors were involved [17]. The issue of language
(especially around what each group means by “uncertainty”)
and mismatches in both discourse and goals between the
communities are central themes that emerged. Taken
together, these can make it challenging to discuss deficits and
improvements or develop shared standards.

This paper examines the changing nature of LCA, focusing
particularly on its use within bioenergy, which is driving
many of these changes. Drawing on publication landscape
analysis of the studies and method articles published in the
peer-reviewed literature, we outline the stages of LCA devel-
opment and the focus of work in the area. In the context of
some of the demands LCA is faced with, the paper highlights
methodological challenges and how effective the changes
made to develop policy-relevant LCAs have been so far, with a
particular example of land use change. The landscape anal-
ysis also suggests how LCA is likely to be used in the future.

2. History, trajectory and drivers in LCA
development

The use of LCA has increased rapidly since its conception, so
that it is now a well-known and widely used tool across in-
dustry, academia and policy. From its start in the 1960s to
wide-spread use in a little over 50 years, LCA has passed
through three stages of development and adoption (Fig. 1),
characterised by adoption drivers.

LCA emerged in the late 1960's as a tool developed and used
by companies for resource management [18,19]. It was pre-
dominantly single issue, such as waste, or single product
based. In the US this was largely linked to Resource and
Environmental Profile Analyses (REPAs) [20], and in the early
1970's solid waste management was a primary driver. Later in
that decade the energy crisis drove companies to adopt an
approach of energy management based on life cycle thinking
(Fig. 1).

Many of these early LCAs, unfortunately, were not pub-
lished as they were either commercially sensitive or internal
company reports never intended for public distribution. One
of the first of these encompassing a wider range of environ-
mental impact analysis was produced for Coca Cola [21].
Though their proprietariness limited their availability, these
initial early studies, and their clear value in design, set the
scene for the wider ranging assessments that were to come
after. They also helped to begin defining the methodology
associated with determining impacts over a wide range of
environmental issues. The first publication mentioning the
term “life cycle assessment” and setting out a methodology,
still generally used today, was in 1990 [22].
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Fig. 1 — Trajectories and drivers in LCA development.

Towards the end of the 1980s and into the 90s, global
environmental issues rose up the agenda [23], expanding from
local and regional issues to encompass more international
ones, including those garnering worldwide attention, such as
ozone depletion and climate change. During this period the
UN Conference on Environment and Development in Rio
brought 150 nations together to set standards for global
warming and individual nations and collectives (such as the
EU) were beginning to take stock of the impacts of environ-
mental pollution and hazards (e.g., [24]). The Brundtland [25]
report, released by the UN in 1987, spurred increased inter-
est in sustainability and sustainable development, and aca-
demic interest in LCA began to grow alongside, as it was seen
to be an effective tool to calculate impact across a range of
issues.

In the early 1990s the Society of Environmental Toxicology
and Chemistry (SETAC) [26] standards were developed. These
were based on the establishment of a retrospective tool to
quantify the impacts of a particular product. At this stage the
tool began to be used for regulatory purposes, but was still
based on a retrospective approach. It was also associated with
marketing, eco-labelling, packaging legislation and the suite
of integrated product policy based (IPP) [27] regulations in the
EU. The SETAC standards were adopted and amended to ISO
standards in the late 1990s, forming the ISO 14040 series (ISO
14040—49 in 1997—-2000). These were later revised in 2006
[28,29].

Major policies incorporating LCA started with REPA [24],
EPDs [30] and the IPP [27] for regulatory use, then surged with

the major (federal & EU) level legislations that would govern
state and member state energy: RED [31], EISA [32]. Out of
these things such as RTFO [33], and RFS2/LCFS [34,35] grew.
LCA has expanded in both number and breadth and has
become a wide ranging and far reaching environmental tool,
even to the extent of setting policy [36,37]. These policy-
triggered jumps are tied to energy and bioenergy policies for
GHG accounting. However, while this regulatory to policy
trajectory was emerging, LCA was taking hold of the academic
interest.

3. The development of LCA in the academic
space

Academic interest in LCA began to grow at the same time that
broader climate and sustainability issues were gaining atten-
tion and publications in the academic literature provide a
valuable window into the expansion of the method.

The publication record reveals a rapidly expanding interest
in assessment using LCA and in the method itself, taking hold
within a remarkably short period. Fig. 2 shows the significant
rise over recent years: 1992 is the first year with over ten
publications in the area, rising above 1700 in 2013. The time
course shows two distinct eras, an earlier, slower phase dur-
ing which the concept was emerging, followed by a steep
expansion reflecting recognition of the tool's use beyond
compliance accounting.
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Fig. 2 — Annual LCA related publications.

3.1 Materials and methods

To identify and assess trends in the development of LCA as a
tool and the evolution of its scope and methodologies, we
assessed the publication landscape for LCA in the Scopus
database from the first recorded publication in 1978 through
2013. Using Scopus advanced search options all publications
on life cycle analysis in the academic literature in the
assessment period were collected. A base search for all of the
permutations on the phrase LCA in either title or abstract was
then filtered using a series of iterative, compound Boolean
searches to exclude records that are not related to life cycle
assessment, using relevant environmental keywords selected
from Scopus's list of keywords in the full search results and
from terms identified in titles and abstracts. Errata were
removed to avoid double counting. Finally, automated and
direct comparison further reduced the publication set to a
final set of records specific to LCA. These were then filtered for
specific words in the titles and/or abstracts to assess shifts in
publication and research trends. Searches were carried out in
March and July 2014 and checked against each other, revealing
no significant differences.

3.2 Early growth of LCA as regulatory LCA

The turn of the millennium introduced an era of dramatic
growth and change in LCA. The increase in LCA studies
forms roughly two categories, between publications relating
to regulatory topics, such as packaging, waste and green-
house gases (Fig. 3), and the wider issues of policy (Fig. 4).
Fig. 4 shows the beginning of more policy development
using LCA, especially within the energy area, suggesting
that energy a major driver for the expansion. This is borne
out by the general discussion in this area. Interestingly,
about half of the energy related policy LCAs relate to

bioenergy, showing the special influence of bioenergy in
this field.

3.3.  Rapid growth of LCA/Policy LCA

Currently the predominant driver for much energy policy, and
hence many energy related LCAs, is greenhouse gas ac-
counting (e.g., RED [31], etc.). The change in drivers is fairly
recent; GHGs overtook waste in the LCA publication record
only in 2010 (Fig. 3). While recent, the speed of the shift is
significant, clear in the volume of papers and studies pro-
duced in this period (from 33 in 2000 to 858 in 2013). The rate of
LCA studies as a whole also shifts, from a slower, steadier
accumulation relying mostly on additional waste and pack-
aging analyses up to the early-mid 2000s, into a rapid explo-
sion of papers dominated by GHG comparisons. The metric for
emissions changed over the period, as well, to meet policy
demands. From “emissions to air, water and soil”, air emis-
sions evolved into aggregated GHG emissions, using the IPCC
GWPs. The expansion to include other potentially related
sources of GHG emissions, driven by the intersection of bio-
fuels with agriculture, led to a still wider GHG metric. This
suggests that not only has the driver for using LCA changed, so
has the force of that driver.

3.4. Biofuels and bioenergy LCA

The impact biofuels and bioenergy has had on the growing use
of LCA from the early 1990s is clear from Fig. 5, with biofuels
dominating bioenergy systems assessed. It is embedded in the
period of rapid growth illustrated in Fig. 4. Work on biofuels
technologies has expanded dramatically in the scientific
literature. Alongside this has been a significant increase in
number of LCA publications on biofuels and bioenergy (Fig. 5)
that did much to drive the increasing number of LCA publi-
cations as a whole. Packaging grew very little. Waste, both
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Fig. 3 — Annual LCA publications on regulatory topics.

waste processing systems and waste from other systems,
accounts for about half the growth, and bioenergy (almost all
of which are biofuels) the rest.

In the period, probably contributing to this sudden jump in
growth rate, a number of simplified LCA tools became widely
available, such as GREET [38] and GHGenius [39], enabling a
wider audience to use the technique. Since the approach has a
great deal of detail and complexity behind its simple result,
this has introduced a new set of challenges, including unex-
pected — or unrecognized — difficulties in comparing studies
or results.

The focus of work in GHG in the energy arena has provided
arange of attributional type LCAs which illustrate the range of
impacts across an array of energy technologies. Within these

lie a collection of uncertainties (e.g., data gaps and varying
scopes) [40] and sensitivities (e.g., missing or complex mech-
anisms), predominantly based on geographical and temporal
differences, speed of technology change and improvement
[41], and within the bioenergy arena, feedstock variation and
land use change [42]. Despite these uncertainties and sensi-
tivities these are essentially attributional LCAs. This increase
in publications and interest in LCA reflects not only the in-
crease in regulatory (i.e., compliance) ones that are mostly
attributional LCAs (aLCA)), but also in the opening of a newer
form incorporating potential effects of technology decisions.
The onset of expansion in the more consequential
approach taken by some LCAs (cLCA), is clear in the growing
use of indirect and/or consequential analyses shown in Fig. 6.
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addressing bioenergy and biofuels.

Consequential LCA is broader, exploring not only the impacts
of the production and use of a particular product in isolation,
but the wider changes to the overall system that may arise
from using that product, and often exclude the unchanged
elements [43]. For example, a consequential analysis of a
renewable energy technology might look at the impacts of the
production, use and disposal of the technology, with
increased emphasis on the impact of the offset of energy (or
other substituted product) that would have been alternatively
produced. It is essentially a policy tool, rather than a tech-
nology assessment tool, since policy decisions must take into
account a broader range of factors [44]. Consequential analysis
expands the system boundaries beyond those that have been

traditionally set, and makes it an appealing tool for policy
makers [31,45,46]. This emphasis can be seen in the increased
use of the broad impact terms for indirect or consequential
factors (Fig. 6), which are converging as the concept and label
of cLCA gains popularity.

The expansion of the tool is not without problems. The
systems LCA is asked to analyse are complex, and are
becoming increasingly so. Many of the consequential LCAs to
date have been developed from a series of attributional LCAs
(e.g., a portfolio range of technologies working together or
offsetting each other), but this is perhaps a simplification of
the more complex reality, and some of these studies have
been shown to give misleading results [47].
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Fig. 6 — Annual LCA publications using or about consequential analysis.

Please cite this article in press as: McManus MC, Taylor CM, The changing nature of life cycle assessment, Biomass and Bio-
energy (2015), http://dx.doi.org/10.1016/j.biombioe.2015.04.024



http://dx.doi.org/10.1016/j.biombioe.2015.04.024
http://dx.doi.org/10.1016/j.biombioe.2015.04.024

BIOMASS AND BIOENERGY XXX (2015) 1—14 7

Bioenergy introduces many of these challenges into LCA,
hence its impact as a driver for the recent evolution of LCA.
Many of the bioenergy and biofuel technologies are nascent,
or there are gaps in what is known or understood about their
supply chains and mechanisms [48]. Consequential LCAs on
bioenergy generally include data from several countries, in-
dustries and sectors, and will vary due to policy assumptions
and market perturbations. In essence the system boundaries
are being set on a global level, and there are problems with
this, such as managing level of tractable detail, accounting for
regional variation in substitutions or offsets or allocating im-
pacts across multiple products (co-products) from shared
production.

3.4.1. Bioenergy's influences on LCA — the example of land
use in LCA
The issue of land use (both direct and indirect) change in the
bioenergy arena has large-scale policy impacts (e.g., RTFO [33],
RED [31], EISA [32], LCFS [35], RSF2 [34]), through carbon
payback and GHG accounting for market-mediated land use
changes potentially associated with biomass use. Together
these have had major impact on the nature of the emissions
metric in LCA studies and in methods of calculation. In the
more recent discourse a consequential approach to the anal-
ysis is more generally taken when discussing the impacts of
land use change associated with bioenergy policies.
Consequential LCA emerged in the wider debate with the
concept of indirect land use change (ILUC) [49], which is based
around global market responses to changes in demand for
commodity grains, with effects felt in other areas, illustrated
in Fig. 7. While direct land use change is prescriptive and fully
causal for the particular project, indirect land use change is
reflective of a change in state that could arise from the policy

decision. The traditional inventory summation is insufficient
for such analyses, which instead must use additional eco-
nomic models and parameters. Panel 7a shows the static base
case, assuming no change in demand from any factor, fuel or
otherwise. Domestic production increases on lands from
other uses, either other agricultural production or otherwise,
would be Fig. 7b.

Fig. 7c illustrates the common form of the ILUC concept, in
which the market drives conversion of land to new agricul-
tural production. The quantity of land converted is estimated
using various forms of equilibrium models for the global
economy [50]. Because demand for grain as food is assumed to
change little in response to price (i.e., has low elasticity value)
[51], the idea follows that an area of land given over to bio-
energy production gives rise to an equal amount of land being
given over to food production elsewhere. Due to the global
nature of trade this could be either close by (Fig. 7b) or in a
completely different global region (Fig. 7c). The actual esti-
mate of land conversion would depend on productivity and
based on assumptions about the type of land converted.
Environmental protections are generally assumed to be less
rigorous in the external region. From this conversion, the GHG
emissions are estimated with land-type specific emissions
factors.

Estimates of the GHG impacts of ILUC can vary widely
[52,53]; for extremes ranges a particular biofuel's carbon
footprint may span from below the fossil equivalent to over
thousands of times worse [49]. Estimates vary depending on
which model and economic database is used, productivity
assumptions, management regime assumptions, emissions
factors used, and scope of comparison, among other factors
[54,55]. Estimates are particularly sensitive to the starting
state of land converted (the baseline) [56,57]. The ranges of
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Fig. 7 — Direct and indirect land use change mechanisms.
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calculated values for ILUC reflect the system complexity as
well as the method's maturity. As the models and data used to
provide ILUC factors have improved so the GWP value asso-
ciated with it has decreased across a given scenario. For
example, for US corn ethanol the initial value was in 2008 was
estimated at 104 g/MJ CO,eq and while estimated in 15 g/MJ
CO,eq in 2012 [49]. Meta-analyses have illustrated this trend
across a range of biofuel production scenarios and models
[50,52,53,55,58]. As the number and range of scenarios
assessed has grown, so has the range of estimated values,
especially for analyses considering different management
regimes (see, e.g., [59]), making robust cross-comparison more
challenging.

The market interactions and assumptions that underlie
calculations of possible indirect land use change are complex.
Fig. 8 illustrates this with statistics for annual US corn grain
production and allocations. The data suggest complexities
that mean the simple land displacement model is insufficient.
Panel 8a shows the US corn allocations since 1980 and the
amount of land used in its production. The bulk of production
is used for livestock feed (US corn is overwhelming grain corn,
not sweet corn directly consumed by humans). Panel 8b
shows land use for corn and 8c shows corn productivity over
the same period.

Comparison to other shocks or rare events may provide
some guidance for scenario assumptions. In many ways, the
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Fig. 8 — Production and Use Data for US corn grain. (a) Uses of annual corn crop in the US for fuel ethanol, livestock and other
uses, with harvest area over the same period. Livestock feed is the largest use of grain, and does not include DDG(S) feed co-
products from ethanol production. The fraction of the harvest to ethanol production has increased, along with overall

production, and generally does not represent a decrease in
grain yield in the US from 1866 to present and (c) Historical
than compensated for expanded use across sectors and ha

absolute quantities to other uses. (b) Historical changes in corn
harvest area of corn. Yield gains in the modern era have more
rvest areas have not yet returned to early 20th century levels,

although land has been returning to production since the mid-1980's [48,49].
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market behaviour in response to the 2012 US Midwestern
drought mirrored the price spike of 2008 that generated such
consternation and later retrenching [60,61]. While total pro-
duction was about 12% below normal, the drought did not
overly affect food use (—2%); rather the impact was mostly to
export (—53%) and livestock feed (largely met by DDGS), with
stocks playing the bufferingrole for which they exist (here, ~3%
draw). Since exports and stocks are generally most influential
on commodity grain prices [62], the intersection among food,
fuel, nature and prices is a remarkably complex one [63]. Taken
together, this means that the food versus fuel debate is an
oversimplification (see Fig. 7c), and one that could lead to
perverse consequences [64]. However, managing analyses of
sufficient breadth and completeness to provide some estimate
of long term impact is beset with difficulties, from data avail-
ability and uncertainty to sheer computational magnitude.

Large increases in crop productivity in the US since the
1800s (see Fig. 8c) have resulted in increasing corn production
without extra land allocation. This productivity increase has
been due to a number of advances; including strain selection,
genetic modification (GM), and advanced crop protection and
management. Fig. 7d shows this added complexity in terms of
land use change. To add to the complexity, a variety of other
agricultural products also influence international land use
(Fig. 7e).

The static nature of the scenario analyses produces a
common implicit assumption, that over the course of a field or
project lifetime, there will be no improvements in manage-
ment and/or productivity for other reasons. Indeed, many
estimates assume current (and frequently current-worst-
practice) productivity estimates over the full time horizon.
The difference between that and a 10% increase in produc-
tivity is significant in most cases, for example reducing esti-
mated carbon payback time for maize on degraded or
croplands from about 75 years to just over 10 years [55,56].
Even with the increased agricultural inputs associated with
intensification and higher productivities, GHG mitigation
benefits increased under these scenarios [65]. Incorporations
of productivities are still static.

This is indicative of a more subtle, and more computa-
tionally challenging, assumption embedded in estimates of
land availability: the amount of agriculturally-viable land is
taken as finite. While essentially physically true (ignoring
remediation), the amount of land effectively available is not
fixed and instead depends on assumptions about manage-
ment and productivity, among others, illustrated in panel 7d.
Co-cropping or “land-sparing” agriculture [66—68] both result
in increased effective land, although without policy supports
may not increase conservation or carbon sequestration [69].
Such things are extremely challenging to include in a life
cycle-based assessment, and rely on larger scale scenario
comparison exercises. System boundary consistency here is
crucial, because studies with differing system boundaries are
not directly comparable.

The estimates of the impacts of the various bioenergy
crops and fuels are therefore strongly sensitive to factors
neither historically included nor readily tractable in an LCA,
such as changes in productivity and other temporal issues.
These illustrate that the implicit equivalence of fixed land
amount for fixed grain (product) amount is incorrect. This

poses some extremely daunting challenges for projecting
(much less quantifying) impacts for systems that have an
agricultural component. It also extends to other resource use,
such as water. For setting long term policy, these are key is-
sues for assessment methods to address because static ana-
lyses cannot adequately reflect the range of potential
outcomes.

3.5.  The rapidly evolving present of LCA

LCA has become a tool used to help drive and shape policy.
Because of its history of efficacy, much of the emerging at-
tempts to quantify such effects are appearing in LCA devel-
opment and the published literature. Fig. 9 shows the
expansion of LCA use in sustainability categories. Presently
there is a drive towards ecosystem services, water and social
impacts as well as the move from attributional to conse-
quential LCA (Fig. 9). Although cLCA's expansion began
around 2006, its uptake correlates with the growing emphasis
on social and ecosystem service metrics that has started to
expand from about 2010. Social aspects have expanded almost
as rapidly as have indirect or consequential, and the begin-
nings of a formalisation of Social LCA can be seen just starting
to emerge.

The emergence of consequential LCA illustrates the weight
being placed on evaluating the impact of decisions on holistic
sustainability. Social and economic effects are increasingly
receiving the same weight as environmental ones. While so-
cial impacts have long been recognized as relevant for LCA
(see, e.g., Ref. [70]), efforts to shape the tools to quantify such
impacts have emerged with increasing interest in the last 5
years or so, from 2010 on, along with initiatives to set guide-
lines [71]. The trend to codify broader assessment approaches
is not limited to social LCA. In this area, tools are much
younger, though some approaches have started to emerge
[72—74], along with increasing emphasis on integrated sus-
tainability assessments [75].

Still too small to be seen in the aggregate publications,
dynamic LCA is also beginning to develop as a means of
incorporating temporal factors. Bioenergy introduces a num-
ber of time-dependent components to both the attributional
and consequential analysis, some of which are handled in
scenarios, others with ad hoc annualization, and still others
not at all. These issues include, among others: field matura-
tion and yield changes; technology and process changes over
the length of the time horizon, which can be decades or cen-
turies; market response times [76]; “carbon payback”; and the
time separation between carbon uptake and release in com-
bustion. The distinction between fossil and so-called biogenic
carbon is a special case of the final item: the carbon released
from fossil fuel is of prehistoric origin, while uptake and
release of biogenic carbon are separated by as little as a year
(annual crops) to many decades (woody residues). Manage-
ment regimes also strongly influence the results and esti-
mates of soil carbon storage [77]. This is of particular interest
to bioenergy as biogenic carbon, and its storage, is considered
as part of the life cycle of the fuel.

Temporal modelling is not standard in LCA, and temporal
issues are handled on an ad hoc basis. In energy research,
temporal issues are often considered as part of scenarios, or to
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accommodate changes in future electricity grid mixes
(e.g., Refs. [78,79]). Currently time issues are generally
included by comparison between results between time points
or linear averaging over the project timeline. So-called dy-
namic LCA is emerging to allow for time-dependent terms.
However the level of inclusion of temporal issues even within
a dynamic LCA varies, with some including temporal issues in
the inventory [80], and some on the impact assessment [81].
Discussion and development of temporal factors in LCA is
active [82], but routines have not yet made their way into
common use.

4. The future of LCA and emerging
challenges

Attributional LCA assesses technology and process for
particular bioenergy projects or proposed technologies.
Consequential LCA takes into consideration the systemic re-
sponses to bioenergy expansion, e.g. land use change and food
crops. But LCAs need to model displacement of alternative
products as a dynamic response to market interactions as well
as focusing on only one use of a crop or system. The same is
true for ecosystem services. These are symptomatic of LCA's
future. The normalization of the tool for policy is spawning
new methodological structures, among them social LCA and
hybrid approaches.

Isolated comparisons are of limited value in assessing po-
tential impacts across any entire system, like global climate,
but methods remain immature for such challenging analyses.
The concept illustrated by ILUC - that of indirect and/or
market- or otherwise mediated impacts - is a component of
planning beyond the bioenergy discourse, but part of the
wider discussion of land management. This is one of the

examples of where issues found in the bioenergy LCA arena
are shaping LCA in general. However, examples of land use
illustrate that there is a far more complex interaction than is
often presented [63], and ILUC is an area in which the capa-
bilities of the modelling are rapidly outpacing the scientific
understanding and experimental data. There are also sub-
stantial concerns the indirect land use approach is funda-
mentally flawed, for example Zilberman et al. [83] who state
that ILUC is a “second best solution to a first class problem”.

Thus the expansion and evolution of LCA faces four main
categories of developmental challenges: establishing mecha-
nisms and models; gaps in data and knowledge; incorporating
temporal and dynamic components; and comparability limi-
tations derived from differing on scenarios and system
boundaries.

Since the concept of aggregate consequences and potential
impacts is integral to long-term strategic decision making, the
cLCA approach will extend into other sectors. Some of these
will still be linked through land use, such food products and
alternative energy and electricity sources, but the principle
applies particularly where there are intersections with a core
shared resource, e.g. industrial production with minerals or
water. A consistent approach is required across sectors, which
starts with uniformity in system boundaries and the decision
points in defining the scenarios that determine that system
boundary. Indirect land use change in the consequential
approach is one aspect, but other products or resources have
other potential impacts as a consequence of a policy decision.

Given the range of policy factors, and influences on
stakeholder decisions [84], the future of LCA, or some similar
tool or suite of tools, seems set to expand, and it is a transi-
tional and exciting time for the approach [21,85]. Fig. 10 il-
lustrates the mediated feedbacks among methods and policy
that are likely to inform development. Land use and carbon
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paybacks are used in this paper as an example of the issues
described. But there are others, including the use of cLCA to
explore impacts of changing energy mixes on carbon outputs
due to changes in the grid [86], and the difficulties in associ-
ated modelling (e.g. offsetting simple marginal, dynamic
marginal, or average grid mix). These offer similar challenges.

Effective policy guiding consequential LCAs would also
therefore benefit from other tools, including and beyond
economic equilibrium models [47,87]. This idea that LCA
should be used as part of a suite of tools is not new; academics
and practitioners discussed it more than a decade ago (e.g.,
Ref. [88]), it is critical to wider sustainability policy planning.
Indeed, Guineé et al. [21] propose that what is now needed is
Life Cycle Sustainability Analysis (LCSA), which will comprise
a suite of tools and multiple metrics required for a more
comprehensive approach to impact assessment. This would
set LCA amongst a suite of tools and enable it to develop more
effectively to answer more specific questions [89].

5. Conclusions

Bioenergy has contributed to the fastest era of both change
and use in LCA's short history. The pace of LCAs adoption has
meant that it is sometimes used to answer questions it
cannot, and this has given rise to questions about its effec-
tiveness. There have been three phases in LCAs evolution thus
far, traditionally based on a retrospective analysis, moving
towards the more forward looking consequential analysis.
Methods and data have not caught up with demand.

In order for LCA to develop effectively from a tight attri-
butional tool to the wider reaching consequential tool that can
be effectively used by and for policy makers investment is
required from both the technical and the policy based com-
munity. Targeting that investment in three main areas can
support the expansion of LCA and maintain or bolster credi-
bility and reliability of the approach:

e Creating fora for greater integration between the attributional
and consequential communities, and with end user stakeholders
to develop effective and objective tools

e Developing transparent mechanisms to convey uncertainty and
comparability

e Data compilations/research to fill data gaps and research into
and validation of feedback mechanisms in the methods.

Life cycle assessment will only ever be as good as the data
and assumptions it uses. It will also only ever be as good as the
people who use the results, in that any results must be used in
the context for which they were developed. To do otherwise
will contribute to decreasing faith in the tool.

These issues are described in relation to bioenergy not only
because bioenergy is an emerging energy source that is much
assessed in terms of GHGs and environmental impact, but
also because the complex global nature of agriculture and
food and energy markets means that many of the issues
described are emerging here. It is an early case in which the
sectors are inseparable. During this period of change the links
and connections between bioenergy LCA and policy are
shaping each other. It is likely that the changes seen in LCA as
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a result of policy push will bleed into other LCA arenas,
especially where it is important to policy makers that a sus-
tainable solution is chosen. This has placed bioenergy in the
forefront of LCA development.
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