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Recently, the social and commercial interest in location-based services (LBS) has been
increasing significantly. The scientific field of indoor localization and navigation has
undergone rapid development due to many studies considering advanced mobile and
communication technologies [1]. The purpose of developing new localization algorithms
and navigation systems is to enable autonomous mobile systems [2] to use these solutions
in performing a specific task or to assist people who have lost their ability to navigate [3]
(e.g., blind people, people with Alzheimer’s disease). A secure, user-friendly, and accurate
indoor positioning system (IPS) that can run on a smartphone could open the door to
many innovative applications and create new business opportunities. The global indoor
location market is expected to reach a worth of $40.99 billion by 2022 [1]. A low-cost real-
time locating systems (RTLS) are very useful as they can guide people through airports,
shopping malls, museums, etc. [1], or improve production control and logistics [4]. Modern
smartphones are equipped with numerous sensors (inertial sensors, camera, barometer) and
communication modules (WiFi, Bluetooth, NFC, LTE/5G, ultra-wideband), which enable
the implementation of different localization algorithms, namely visual localization, inertial
navigation system and radio localization [1]. For the mapping of indoor environment
and localization of autonomous mobile systems, LIDAR sensor is also commonly used
besides smartphone sensors [2,5,6]. Since visual localization and the inertial navigation
systems (INS) are sensitive to external disturbances, the sensor fusion approaches based on
Kalman filters and (deep) neural networks can be used to implement robust localization
algorithms, as proposed in [3,7]. The localization algorithms need to be optimized in
order to be computationally efficient, which is essential for real-time processing and low
energy consumption on a smartphone or robot. A practical indoor positioning system
(IPS) should have characteristics such as ease of implementation, acceptable localization
accuracy, scalable system, feasible system cost and minimal computational complexity.

In general, there are two main approaches to indoor localization, namely infrastructure-
based and infrastructureless approaches [1]. The latter generally uses fingerprints of envi-
ronmental features such as sound, light, magnetic field, or is based on smartphone sensors
(e.g., accelerometer, gyroscope, etc.). Infrastructure-based methods can use pre-installed
visual sensors or wireless technologies such as ZigBee, WiFi, Ultra-Wideband (UWB) [2,6],
Radio Frequency Identification (RFID) [5], and Bluetooth Low Energy (BLE) [1]. An
infrastructure-based indoor positioning system can be expensive, either because of the
methods required or because of the expensive hardware components. Installing the nec-
essary infrastructure is often time-consuming and labor-intensive, which drives up the
price. To solve this problem, authors S. Tomažič and I. Škrjanc [8] developed an automated
indoor localization system that combines all the necessary components to realize low-cost
Bluetooth localization with the least data acquisition and network configuration overhead.
The proposed system incorporates a sophisticated visual-inertial localization algorithm for
a fully automated collection of Bluetooth signal strength data. The visual-inertial SLAM
algorithm, which is part of the ARCore library, successfully fuses information from the
camera and inertial sensors to provide accurate localization in large spaces over a long pe-
riod of time. A suitable collection of measurements can be made quickly and easily, clearly
defining which part of the space is not yet well covered by measurements. An automated
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system has many advantages in various approaches to data collection, e.g., quick and
easy construction of datasets for model development or fingerprinting, beacon parameter
studies, in-depth studies of beacon location and density in a given environment, and quick
maintenance of the database as the environment changes [8].

Radio-based indoor positioning can generally be divided into three groups: Proximity,
Time of Flight (TOF) measurements [9], and Received Signal Strength Indicator (RSSI)-based
methods [10]. In some cases, these were also supplemented with an Angle of Arrival (AOA)
localization approach [11]. Depending on the localization approach chosen to compute
the current position, the following methods are most commonly used: triangulation,
trilateration, and fingerprinting. Among these, fingerprinting is perhaps the most popular
due to its simplicity: it is based on signal strength (RSSI) and its procedure is essentially to
collect the signal from the transmitters and assign it to a specific position [1]. Since the RSSI
suffers from low stability due to interference with objects and environmental effects, the
authors Shi et al. [10] proposed a tri-partition RSSI classification and its tracing algorithm
as an RSSI filter, which enables lower variance range. Using the filter improves the accuracy
of trilateration-based positioning by 20.5%. In recent years, many commercial WiFi devices
support the collection of physical layer channel state information (CSI). CSI is an index that
can characterize signal characteristics with finer granularity than RSSI. Compared to RSSI,
CSI can avoid the effects of multipath and noise by analyzing the properties of multichannel
subcarriers. To improve the indoor location accuracy and the efficiency of the algorithm,
Wang et al. [12] proposed a hybrid fingerprint location technology based on RSSI and
CSI. The accurate hybrid fingerprint database was constructed after the dimensionality
reduction of the obtained high-dimensional data values. Weighted k-nearest neighbor
(WKNN) algorithm was applied to reduce the complexity of the algorithm during the
online positioning phase.

BLE is one of the most widely used technologies in ubiquitous computing and many
Internet-of-Things (IoT) applications because it offers many advantages such as low power
consumption and low cost. As 5G technology is rising across the world and UWB chip is
available in the latest smartphones, IPS can leverage and integrate these technologies in the
future to develop a better IPS [1]. Authors Blaszkiewicz et al. [13] presented an interesting
positioning solution, which utilizes existing radiating cables in tunnels or corridors without
the need to deploy a dense network of reference nodes. Radiating cables are mostly used
to provide radio communication in tunnels or corridors, but can also be used to estimate
the position of a mobile terminal along the cable.

To improve indoor localization based on the time-of-arrival (TOA) principle, Deng et al. [9]
proposed a clock synchronization solution for dynamic networks called Multi–Gaussian
Variational Message Passing (M-VMP) method. The latter improved the positioning accu-
racy and convergence speed for mixed Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
environments. To optimize the anchor node density in TOA positioning approach the
authors Deng et al. [14] developed a location source optimization algorithm based on fuzzy
comprehensive evaluation. Authors Groth et al. [11] went one step further and developed a
calibration-free single-anchor indoor localization method, including a dedicated algorithm
and all necessary hardware modules. They showed that a single base station equipped
with an ESPAR antenna to perform the measurements could be used to find the position of
an unknown BLE tag without calibration or recalibration, since low-cost reference mod-
ules installed on walls inside the test area provided enough reference information for the
positioning algorithm.

Global navigation satellite systems (GNSS) have long been employed for LBS to
navigate and provide accurate and reliable location information in outdoor environments.
However, GNSS signals are too weak to penetrate buildings and unable to provide reliable
indoor LBS. In order to overcome this problem, authors Uzun et al. [15] proposed an indoor
positioning system using Global Positioning System (GPS) signals in the 433 MHz Industrial
Scientific Medical (ISM) band. The proposed method is based on down-converting (DC)
repeaters and an up-converting (UC) receiver. The repeaters receive outdoor GPS signals at

2



Sensors 2021, 21, 4793

1575.42 MHz (L1 band), down-convert them to the 433 MHz ISM band, then amplify and
retransmit them to the indoor environment. When GPS signals at 433 MHz are received by
the up-converting receiver, it amplifies these signals and up-converts them back to the L1
frequency. Then, the commercially available GPS receiver calculates the pseudo-ranges.

In the field of indoor localization, visible light positioning (VLP) systems are also very
promising. Authors Amsters et al. [16] presented an innovative solution for calibrating VLP
systems using a mobile robot to facilitate data acquisition. The new approach significantly
improved performance compared to previous studies, almost doubling the accuracy of
LED localization. The authors showed that the ambient illumination had little impact
on the proposed method. Authors Jaenal et al. [17] developed an appearance-based
robot localization in 2D with a sparse, lightweight map of the environment consisting
of descriptor–pose image pairs. The authors proposed a piecewise approximation of the
geometry of descriptor manifold through a tessellation of the so-called Patches of Smooth
Appearance Change (PSACs), which defines their appearance map. The authors’ proposal
is based on the assumption that the global image descriptors form a manifold articulated
by the camera pose that adequately approximates the Image Manifold. On the map, the
presented robot localization method applies both a Gaussian Process Particle Filter (GPPF)
to perform camera tracking and a place recognition technique for re-localization within the
most likely PSACs according to the observed descriptor.

Due to the benefits of indoor positioning technology, numerous indoor navigation
applications have been deployed in large buildings, such as hospitals, airports, and train
stations, to guide visitors to their destinations. A commonly used user interface displayed
on smartphones is a 2D floor map with a route to the destination. Navigation instructions,
such as turn left, turn right, and go straight on, are displayed on the screen when the
user arrives at an intersection. However, due to the limitations of a 2D navigation map,
users may be under mental pressure and become confused while making a connection
between the real environment and the 2D navigation map before proceeding. For this
reason, authors Huang et al. [18] developed ARBIN, an augmented reality-based navigation
system that displays navigation instructions on the real environment screen for ease of use.
The positions are determined using BLE beacons and RSSI models.

Several indoor localization solutions are already being used in practice or are ripe
for implementation in real-world environments. Nevertheless, there is still much room
for development of new approaches and standards in the field of indoor localization.
Hopefully, these new standards will make new solutions as useful as GNSS is for outdoor
localization and navigation.
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Citation: Tomažič, S.; Škrjanc, I. An

Automated Indoor Localization

System for Online Bluetooth Signal

Strength Modeling Using

Visual-Inertial SLAM. Sensors 2021,

21, 2857. https://doi.org/

10.3390/s21082857

Academic Editor: David Plets

Received: 18 March 2021

Accepted: 16 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; igor.skrjanc@fe.uni-lj.si
* Correspondence: simon.tomazic@fe.uni-lj.si; Tel.: +386-1-4768-760

Abstract: Indoor localization is becoming increasingly important but is not yet widespread because
installing the necessary infrastructure is often time-consuming and labor-intensive, which drives
up the price. This paper presents an automated indoor localization system that combines all the
necessary components to realize low-cost Bluetooth localization with the least data acquisition and
network configuration overhead. The proposed system incorporates a sophisticated visual-inertial
localization algorithm for a fully automated collection of Bluetooth signal strength data. A suitable
collection of measurements can be quickly and easily performed, clearly defining which part of the
space is not yet well covered by measurements. The obtained measurements, which can also be
collected via the crowdsourcing approach, are used within a constrained nonlinear optimization
algorithm. The latter is implemented on a smartphone and allows the online determination of
the beacons’ locations and the construction of path loss models, which are validated in real-time
using the particle swarm localization algorithm. The proposed system represents an advanced
innovation as the application user can quickly find out when there are enough data collected for
the expected radiolocation accuracy. In this way, radiolocation becomes much less time-consuming
and labor-intensive as the configuration time is reduced by more than half. The experiment results
show that the proposed system achieves a good trade-off in terms of network setup complexity and
localization accuracy. The developed system for automated data acquisition and online modeling
on a smartphone has proved to be very useful, as it can significantly simplify and speed up the
installation of the Bluetooth network, especially in wide-area facilities.

Keywords: indoor localization; visual-inertial SLAM; constrained optimization; path loss model;
particle swarm optimization; Bluetooth low energy; beacon

1. Introduction

Recently, the social and commercial interest in Location-Based Services (LBS) is increas-
ing significantly. The scientific field of indoor localization and navigation has experienced
rapid development through many studies that consider advanced mobile and commu-
nication technologies [1]. The purpose of developing new localization algorithms and
navigation systems is to enable autonomous mobile systems to use these solutions in
performing a specific task or to assist people who have lost their ability to navigate [2]
(e.g., blind people, people with Alzheimer’s disease). A secure, user-friendly, and accurate
localization method that can run on a smartphone could open the door to many innovative
applications and create new businesses opportunities. The global indoor location market is
expected to reach a worth of $40.99 billion by 2022 [3]. A low-cost indoor positioning sys-
tem (IPS) is very helpful as it can guide people through airports, shopping malls, museums
etc. [1,4]. In these environments, it can be very difficult to figure out where to go without
spending a lot of time looking for directions. Accurate indoor localization represents a ma-
jor challenge, mainly due to the fact that GNSS (Global Navigation Satellite System) signals
are not available indoors [5]. The modern smartphone is increasingly used as a Personal
Navigation System (PNS) because it contains many sensors (accelerometer, gyroscope,
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magnetometer, altimeter, camera) and communication modules (Bluetooth, WiFi, NFC,
5G, ultra-wideband), and, last but not least, almost everyone has it in their pocket [1,6].
Moreover, smartphones contain increasingly powerful multicore processors that allow the
implementation of computationally intensive localization algorithms. A practical Indoor
Positioning System (IPS) should have characteristics such as ease of implementation, accept-
able localization accuracy, scalable system, feasible system cost and minimal computational
complexity [7].

There are two main approaches to indoor localization, namely infrastructure-based
and infrastructure-less approaches [8]. The latter generally uses fingerprints from environ-
mental features such as sound, light, magnetic field or smartphone sensors. Infrastructure-
based methods may use pre-installed visual sensors or wireless technologies such as
ZigBee [9], WiFi, Ultra-Wideband (UWB) [3], Radio Frequency Identification (RFID) [10]
and Bluetooth Low Energy (BLE) [1]. An infrastructure-based indoor positioning system
can be expensive, either because of the methods required or because of the expensive
hardware components. Among all these technologies, BLE is one of the most widely used
in ubiquitous computing and many Internet-of-Things (IoT) applications because it has
many advantages such as low power consumption and low cost [7,11]. BLE transmitters
or beacons are portable and easy to deploy, they have the potential to provide high po-
sitioning accuracy, and they can provide advanced services to users. ZigBee consumes
less energy than BLE, but it is not as widely supported on smartphones. WiFi is widely
supported but it has a higher energy requirement than BLE [1]. Regarding Ultra-Wideband
(UWB), which is an emerging technology (still not supported on smartphones) in the field
of indoor positioning, Dardari et al. [12] provided a detailed comparative analysis of UWB
positioning technologies.

Bluetooth low-energy transmitters are used in combination with various standards
or protocols, such as iBeacon [13] and Eddystone [14], which define how data packets
are transmitted. For localization purposes, the advertising mode, in which data packets
are sent periodically, is most established. In this mode, beacon messages are advertised
on the three primary channels 37, 38 and 39, to reduce interference with other wireless
technologies (e.g., with WiFi channels 1, 6 and 11) and increase redundancy. In addition
to broadcast transmissions, the advertising channels allow a device to be discovered and
securely connected.

Radio-based indoor positioning can generally be divided into three groups: Proximity,
Time of Flight (TOF) measurements, and Received Signal Strength Indicator (RSSI)-based
methods [15]. In some cases, these have also been supplemented with an Angle of Arrival
(AOA) localization approach [16]. Depending on the localization approach chosen to calcu-
late the current position, the following methods are most commonly used: Triangulation,
trilateration and fingerprinting. Among these, fingerprinting is perhaps the most popular
due to its simplicity: It is based on signal strength (RSSI) and its procedure is basically to
collect the signal from the transmitters and assign it to a specific position. It consists of
two phases: The offline (the calibration or training) phase [11] and the online (the position-
ing) phase [17]. The most common fingerprinting matching algorithms can be classified
as: (a) probabilistic; (b) deterministic, such as k-nearest neighbor (or weighted k-nearest
neighbor); and (c) machine learning- and sparse sampling-based [18,19]. Positioning using
BLE fingerprinting has the potential to achieve high accuracy if sufficiently dense training
data are available. However, this process is time- and labor-intensive, which is its main
drawback [20]. Another problem associated with the fingerprinting method is that the time
complexity of the execution phase increases with the size of the localization area. Moreover,
the instability of RSSI in the indoor environment forces frequent updating of the radio
map database [21]. Therefore, a better alternative to the fingerprinting approach could be
model-based methods, among which trilateration is the most popular [15]. Localization
solutions based on trilateration mostly use path loss models to estimate the range from
the RSSI of the available beacons [11]. In addition to the trilateration localization method,
weighted centroid localization also relies on the signal propagation model to estimate
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the distance from the RSSI [22]. The advantages of using models over the fingerprinting
approach are a more effortless adjustment of the radio maps as the environment changes
and better extrapolation of RSSI signals for areas where measurements have not been made.

The main challenge in fingerprinting- and model-based IPS is that accuracy is affected
by several factors, such as signal-related and environment-related factors [15]. In terms of
signal-related factors, the following can often occur: Large fluctuations, reflection, path loss,
non-line-of-sight conditions and multipath fading, and many of these factors also depend
on the type of material present in the environment [23]. For environment-related factors,
the main ones are changes in hardware or furniture, the presence of people, or ambient
humidity conditions [24].

Regardless of the localization technology used, there are several more or less labor-
intensive approaches to collect localization data in the modeling or fingerprinting calibra-
tion phase, which can be classified as follows [11,18,20]:

• A fully manual approach consisting of a calibration phase, e.g., the traditional man-
ual survey, where the user collects the signal at discrete and uniformly distributed
survey points.

• A semi-automated approach that attempts to reduce the time and effort of the cali-
bration phase, e.g., with the use of interpolation-based methods, the user attempts
to construct a signal map from a sparse set of fingerprints collected while walking
through a space.

• A fully automated approach that does not require any calibration phase. It uses only
online RSSI measurements or those that in some way merge the calibration phase and
the positioning phase, e.g., implicit or explicit crowdsourcing that involves users in
data collection.

An automated system has many advantages in various approaches to data collection,
e.g., quick and easy construction of datasets for model development or fingerprinting,
beacon parameter studies, in-depth studies of beacon location and density in a particular
environment, and rapid maintenance of the database as the environment changes [8,20].

Related Work

In this section, the works related to the study presented in this article are analyzed.
First, an overview of the most commonly used technologies in indoor positioning is given,
with a later focus on the technologies that use radio frequency signals, with a greater
emphasis on BLE technology.

Self-localization of Unmanned Ground Vehicles (UGV) in indoor environments is
already a well-developed field, as they can be equipped with more powerful hardware
and additional sensors, e.g., depth camera, stereo camera, LIDAR, ultrasonic sensors,
etc. [25]. In conjunction with the sensor LIDAR, the method of simultaneous localization
and mapping (SLAM) [26] in particular has become established, which can also process the
information obtained from the camera [27] (visual SLAM). Within the visual localization
approach, several algorithms have been developed to determine an agent’s motion (person,
vehicle, robot) to which the camera is attached. The established methods include: Simulta-
neous Localization and Mapping (SLAM) [27], Visual Odometry (VO) [28,29], Structure
From Motion (SFM) and image-to-map matching [30]. The SLAM and SFM methods are
fairly computationally demanding since they construct a 3D map of the environment in
addition to the motion estimation.

For indoor localization purposes, the Inertial Navigation System (INS) [16,31] based
on the Inertial Measurement Unit (IMU) is often used as a complementary system to
radio- or visual-based localization. The pedestrian inertial navigation system, which uses a
dead reckoning approach, usually consists of a pedometer (or step counter) and a digital
compass, which enable to calculate the current pose according to the starting point [3,32].

According to the currently existing solutions and studies [33], the most suitable smart-
phone indoor localization approach is based on the measurement of WiFi [2], Bluetooth [34]
and geomagnetic field signals [35]. However, localization methods based on only one
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technology or sensor often cannot provide the required positioning accuracy, so new ap-
proaches based on sensor fusion [3,36] are needed. Many studies show that a combination
of inertial sensors and camera-based techniques has great potential since they provide bet-
ter robustness and higher localization accuracy [37]. The fusion of data from a camera and
inertial sensors can be performed using Kalman filters as proposed by Sirtkaya et al. [38].
Since image processing places a heavy load on the processor and therefore the battery,
visual localization is not always the best choice for indoor localization. Using visual lo-
calization within a smartphone application can also be inconvenient as the user has to
constantly provide the correct direction of the camera according to the environment [39].
This is not necessary with the radiolocation, which is a significant advantage.

The disadvantage of indoor radiolocation over visual localization is that it requires
some infrastructure. From this point of view, WiFi localization takes precedence over
Bluetooth-based localization because WiFi networks are already present in most buildings.
However, WiFi localization does not enable high localization accuracy in existing networks
since WiFi access points are usually rather sparsely located [2]. Due to this disadvantage
in WiFi localization, Bluetooth Low Energy (BLE) [5,40] has been established for the
purpose of indoor localization. BLE has many advantages over WiFi: from the low price of
transmitters, low power consumption and better robustness to the smaller size of integrated
circuits [41,42]. Li and Ma [43] took a hybrid approach using BLE and WiFi. They used
BLE tags and BLE/WiFi repeaters. Their system performs position calculations based on
two values: RSSI fingerprint and cell of origin. They conducted experiments in a rest area
and an office area and obtained errors of 1.2 and 1.37 m for these areas, respectively.

In the field of radiolocation, three approaches based on an analysis of Bluetooth signal
strengths have been established: Methods that consider the strongest base station; methods
that require the construction of path loss models, i.e., models of signal strengths (and
use trilateration) [1,11,24]; and methods based on the principle of “fingerprints” [21,42].
Tosi et al. [44] reviewed in their study the main methodologies adopted to investigate BLE
performance: they provided an analysis of the maximum number of connectable sensors,
throughput, latency, power consumption and maximum achievable range, with the aim
of identifying the current limitations of BLE technology. Zue et al. [45] proposed a graph
optimization-based approach that combines fingerprinting-based methods and range-
based methods. The authors performed a test in an area of 90 m × 37 m with two different
numbers of beacons, namely 24 beacons (sparse) and 48 beacons (dense), to see the effect
of beacon density on the position estimates. They obtained errors of 2.26 and 1.27 m
with the sparse beacon environment and dense beacon environment, respectively. In [46],
the authors implemented a fingerprinting algorithm with fuzzy logic type-2 that is suitable
for use as an indoor positioning method with BLE beacons with an average localization
error of 0.43 m. Since this solution is based on fingerprinting, it requires a time-consuming
offline phase and needs several additional algorithms for support. Thus, the computational
resource consumption and algorithmic program complexity are comparatively high.

In previous studies, researchers have already focused on developing automated or
semi-automated data acquisition systems [47]. Peng et al., developed an efficient method
to create and update a fingerprint database using an Unmanned Ground Vehicle (UGV)
platform. To collect BLE and WiFi fingerprints, they used a smartphone installed on the
UGV. According to the obtained results, the root mean square error of the positioning
results was reduced by 20% compared to the traditional fingerprint collection methods.
Gao et al. [48] proposed the so-called path survey technique, in which radio maps are
created from a sparse set of BLE and WiFi fingerprints. These were collected in such a
way that a person walked through a room. With the obtained results, they showed that
with a path-survey technique (and using Gaussian processes), the created maps are of the
same quality as in the case of manual collection. The authors of [18] proposed a semi-
automated fingerprint collection system (static rotating platform) to simplify and speed
up the data collection process for 50%. Similarly, Nastac et al. [49] discussed the problem
of automated data acquisition in fingerprint-based indoor positioning. As a platform for
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collecting data, they used a robot with simple wheel encoder sensors for odometry-based
positioning. The benefit of using a robot was most evident in the time savings, as the data
acquisition time could be reduced from 16 to 2 h for 3000 observations. In the process,
the measurement accuracy could also be increased compared to the manual approach.

When setting up a BLE network, the main challenge is to mark the BLE transmitters’
locations on the map of the space and then collect the RSSI measurements for constructing
the path loss model. These tasks are rather time-consuming since the network operator
spends at least half a minute to measure the locations of each beacon (e.g., using a tape
measure) or to collect the signal strengths at each measurement point. Therefore, this paper
presents a fully automated approach for data collection and online model development on
a smartphone, which is a significant advance over state-of-the-art solutions. The latter have
one of the drawbacks, such as the requirement for manual measurement and inserting the
beacon’s locations, offline data processing, or the use of expensive accessories, such as a
wheeled robot. The proposed system allows real-time determination of in which part of the
space there is a lack of measurements or which transmitter model is not yet good enough.
With the implemented fusion of visual SLAM and inertial navigation on a smartphone,
the proposed system enables accurate localization during BLE data collection, which is
a prerequisite for good models of signal strengths. These are used for parallel online
localization with the Particle Swarm Optimization (PSO)-based method, which enables
reinitialization of the SLAM algorithm and real-time validation of the models. In the online
model development phase, the beacon’s locations and the model parameters are calculated
using the constrained nonlinear optimization method. Assume that the model construction
completion criterion is met and the BLE localization accuracy is satisfactory. In this case,
the visual SLAM algorithm can be turned off and the position is calculated using only the
PSO method, which results in a lower CPU and battery load. In contrast to fingerprinting
methods, the proposed system is quickly adaptable to changes in the room (e.g., a new
beacon or furniture layout) and supports a crowdsourcing approach to data collection.

The paper is organized as follows. Section 2 describes a fully automated data collec-
tion approach based on visual-inertial SLAM. Section 3 provides the background to the
online path loss model construction on a smartphone. In Section 4 the particle swarm
optimization (PSO) method is proposed and described in detail. Section 5 presents the
results of path loss model construction and Section 6 deals with pedestrian localization
using the proposed algorithm. A discussion and concluding remarks are presented in
Sections 7 and 8, respectively.

2. SLAM-Based Fully Automated Approach for Data Collection

When gathering measurements of BLE signal strengths, real-time localization that
enables accurate determination of reference positions in space is essential. In previous stud-
ies, we have already shown that an algorithm combining an inertial and visual navigation
system is best suited for this purpose [37,50]. We have developed a visual odometry that
can very accurately determine the position of the smartphone in the short term by tracking
incremental movements. The problem with visual odometry is that the position drifts over
time and the error accumulates [51]. To improve the localization accuracy over time using
a camera and the smartphone’s inertial sensors, we used Google’s ARCore library [52]
in our fully automated system for data acquisition and model development. The AR-
Core algorithm is based on the state-of-the-art visual-inertial SLAM [53,54] or Concurrent
Odometry and Mapping (COM) [55], which allows determining the pose of a smartphone
with a monocular camera in an unknown environment, such as ORB-SLAM [56], MIMC-
VINS [57] or LSD-SLAM [27]. Feature detection helps in calculating the relative change in
position by searching for the same unique feature between frames. Using motion tracking
capabilities, ARCore tracks the smartphone’s position relative to the world Coordinate
System (C. S.) by identifying key feature points (see Figure 1). This visual information is
combined with inertial measurements (i.e., linear acceleration and angular velocity) from
IMU to estimate the relative 6-DOF pose (position and orientation) of the smartphone with
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respect to the world coordinate system. ARCore has the ability to track up to 20 images
simultaneously, with tracking occurring on the smartphone. In addition, ARCore can store
up to 1000 reference images in an image database.
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Figure 1. The ARCore tracking algorithm calculates transformation from camera C. S. to world C. S.

ARCore’s tracking algorithm computes the 3D transformation from the world C. S. to
the camera C. S. (Figure 1). To simplify pose representation, a 3D-to-2D transformation
is required. First, to obtain the current 2D pose of a smartphone in the world C. S.,
the camera C. S. must be transformed to the current C. S. (from 3D to 2D), and second,
the transformation g2D

WP from the current C. S. to the world C. S. must be determined.
The rotation matrix RWP determines the heading and the translation vector TWP determines
the position of the smartphone in 2D space [37]. The world C. S., which is determined by
the first frame, is not movable and it represents a reference C. S. in which the final result of
the visual localization is expressed.

The concept of the ARCore COM algorithm is shown in Figure 2. The algorithm is
divided into three main modules:

• Motion tracking module;
• Mapping module;
• Localization module.

ARCore takes visual data (captured images from smartphone camera) and inertial
data (from IMU) as the main input sources. Each of the modules has a clear responsibility
for the continuous COM process and they are highly dependent on each other.

The motion tracking module, also known as the front-end module, receives input
data to compute a locally accurate pose estimate. From the visual data, it identifies good
feature points and provides the captured feature descriptors. These descriptors also define
orientation, gravity direction, scale and other aspects. The estimated pose is based on the
feature descriptor correspondences from the previous frame. This module maintains only
a limited history of tracked motion and treats any previously generated estimated feature
point pose as fixed. Inertial sensors help correlate spatial features observed in one frame
with spatial features observed in a subsequent frame to efficiently determine the change
in pose. Therefore, the estimated pose can be performed with high frequency (due to the
limited matching time) with a locally accurate pose. On the other hand, the estimated pose
has almost no control over the drift or no means to check for loop closure since only a very
limited history is stored.
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Figure 2. The concept of the ARCore concurrent odometry and mapping algorithm [55].

The mapping module, also called the back-end module, takes as input the previously
defined feature descriptors from the current frame. In this module, a 3D representation
of the environment is created based on a stored variety of maps, feature descriptors,
and estimated device location. It has an extensive history of 3D feature positions in the
environment and poses of the smartphone. Matching the newly generated features with
the fixed features in the multitude of maps is an extensive process. Therefore, the updating
is done with a relatively low frequency. The 3D representation is sent to the localization
module. Within the mapping module, ARCore provides spatial understanding based on
plane detection in the depth map. Using the same feature points used for motion tracking,
ARCore looks for clusters of points that appear to lie on common surfaces. These can
be anything, such as floors, tables, or walls. These surfaces are stored as planes with a
specific boundary.

The localization module identifies discrepancies between stored and observed feature
descriptors. It performs loop closure by minimizing these discrepancies (e.g., with a least
squares adjustment or bundle adjustment [58]) to output a localized pose. If the error
(difference between estimated pose and matched pose) is greater than a certain threshold,
the localized pose snaps to the pose from the descriptor matching. This can happen for a
variety of reasons (e.g., significant drift). Difficulties occur for real-world surfaces without
texture (e.g., white wall) because ARCore uses feature points to detect surfaces. No useful
features can be found in textureless regions. In case the SLAM algorithm fails, inertial
navigation based on a pedometer and a digital compass becomes crucial. Inertial navigation
is combined with visual localization using an extended Kalman filter (as described in our
previous work [37]).

In summary, the ARCore algorithm performs two types of outputs from the input data
(see Figure 2). First, it provides a locally accurate and high frequency estimated pose with
no control segment such as loop closure or drift correction. Second, it provides a localized
pose with a lower update frequency due to extensive steps such as descriptor matching
(with the full history) or an adaptation process.

Suppose path loss models for the current space do not already exist on the server.
In that case, the visual-inertial localization method described above allows any smartphone
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application user to begin collecting BLE signal strength data for online path loss model
construction and subsequent radiolocation. The smartphone user only needs to walk
through the room while the visual-inertial localization system simultaneously determines
their current pose and creates a visual and radio map of the environment. While using
the smartphone application, it collects the following data into the database: BLE signal
strengths with time and pose (position and orientation of the smartphone) where individual
RSSI of a beacon with a unique ID is captured. The local data stored on the smartphone are
used for online model construction, as described in the next section. The collected data,
along with the path loss model parameters, are also sent to the server, where they are used
for further post-processing and realization of the crowdsourcing approach.

3. Online Path Loss Model Construction

Measurements of BLE signal strengths can be described using a path loss (or path
attenuation) model that determines a reduction in signal strength as the receiver moves
away from the transmitter. The model has the general form of a nonlinear equation with
three parameters:

d = K1 · ratioK2 + K3, (1)

where ratio = R/TXP = R/−59 (TXP = −59 dBm represents a signal strength at distance
of d = 1 m). From Equation (1) the signal strength R can be expressed:

R = TXP · (d− K3

K1
)K−1

2 , (2)

where the distance d is equal to:

d =
√
(x− x0)2 + (y− y0)2 + h2. (3)

Equation (3) contains the position (x, y) at which the signal strength R is measured,
the location of the beacon in space (x0, y0) and the distance h, which represents the height
difference between the smartphone and the known height at which the beacon is fixed.
Constrained nonlinear optimization (in which a trust-region method [59,60] is used) can
be used to determine the model parameters K1, K2, K3 and the position of the beacon in
space (x0, y0) in a way that model (2) fits the measurements well. Since the optimization
problem has multiple solutions, it is very important to strictly set the boundaries of model
parameters and limit the space of beacons’ locations.

Constrained Nonlinear Optimization

Constrained nonlinear minimization [61–63] involves finding the vector x, representing
the local minimum of the scalar function f (x), taking into account the given constraints on
the vector x. These constraints can be given as: A linear constraint (A · x ≤ b, Aeq · x = beq),
a nonlinear constraint (c(x) ≤ 0 or ceq(x) = 0) or a constraint with given bounds (box
constraints) l ≤ x ≤ u. In the following, the emphasis will be on nonlinear optimization
with box constraints l (vector of lower bounds) and u (vector of upper bounds). In this case,
we solve the following problem:

min{ f (x) such that l ≤ x ≤ u}. (4)

In the vector of lower and upper bounds, some of the components may be uncon-
strained (equal to ±∞). In the optimization process, the method returns a sequence of
strictly feasible points. With the goal of preserving feasibility while achieving robust
convergence behavior, the following techniques are used. In the first technique, the un-
constrained Newton step is substituted with a scaled modified Newton step. In this way,
the two-dimensional subspace S is defined using the preconditioned conjugate gradient
method [64]. The latter ensures global convergence. In the second technique, reflec-
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tions [61] are used to increase the step size. The scaled modified Newton step is obtained
by considering the Kuhn–Tucker necessary conditions for Equation (4):

(D(x))−2g = 0, (5)

where D(x) is a diagonal scaling matrix:

D(x) = diag(|rk|−1/2). (6)

The vector r(x) is defined below according to the gradient g = ∇ f (x) and bounds,
for each 1 ≤ i ≤ n:

• If ui < ∞ and gi < 0 then ri = xi − ui;
• If li > −∞ and gi > 0 then ri = xi − li;
• If ui = ∞ and gi < 0 then ri = −1;
• If li = −∞ and gi > 0 then ri = 1.

It is important to point out that the nonlinear system in Equation (5) is not differentiable
when ri = 0. However, by taking into account the restriction l < x < u and main-
taining strict feasibility, such points can be avoided. According to the nonlinear system
of Equation (5), the scaled modified Newton step sk is computed as the solution of the
linear system:

M̂kDksN
k = −ĝk, (7)

at the kth iteration, where:

ĝk = D−1
k gk = diag(|rk|1/2)gk (8)

and:
M̂k = D−1

k HkD−1
k + diag(gk)Jr

k . (9)

In Equation (9), Jr(x) represents the Jacobian matrix of |r(x)| and H is the Hessian
matrix. The Jacobian matrix Jr is diagonal, where each element is equal to 0, −1 or 1.
For the case where all elements of l and u are finite, the Jacobian matrix is equal to
Jr = diag(sign(g)). If there is a point at which gi = 0, then ri might not be differentiable.
However, at such a point the Jacobian Jr

ii = 0 is determined. Such non-differentiability is
not a problem, since it is not important which value ri takes. Indeed, the function |ri| · gi is
continuous, although |ri| is discontinuous at this point.

Equation (7) considers the use of the affine transformation x̂ = Dkx (the matrix
Dk is a symmetric matrix: Dk = DT

k ). This transformation converts the constrained
nonlinear optimization problem into an unconstrained nonlinear optimization problem,
minimizing the function in the new x̂ coordinates. This means that in this case the following
minimization problem is solved:

min{ψ̂k(ŝ) =
1
2

ŝT M̂k ŝ + ĝT
k ŝ such that ‖ŝ‖ ≤ ∆k} (10)

or, if s = D−1
k ŝ is considered, then the following minimization problem can be solved in

the original space:

min{ψk(s) =
1
2

sT Mks + sT gk such that ‖Dks‖ ≤ ∆k}, (11)

where:
Mk = Hk + Ck (12)

and:
Ck = Dkdiag(gk)Jr

k Dk. (13)
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In Equation (10) ∆k is a positive scalar representing confidence interval width. During the
optimization, it is adjusted according to the rules of the trust-region method [59,60].

The second technique of the constrained nonlinear optimization provides feasibility
with the following condition l ≤ x ≤ u to be satisfied. Within this technique, so-called
reflections are used, which have the purpose of increasing the step size. A single reflection
step can be described as follows. If p represents a step that exceeds the first bound
constraint (the ith upper or ith lower bound), then the reflection step is defined as pR = p
and pR

i = −pi for the ith element for which a constraint is required.

4. Localization with Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization method that was initially de-
scribed by Kennedy, Eberhart and Shi [65,66]. In a practical application [67], they showed
that the PSO method could be used to simulate social behavior within a school of fish or a
flock of birds. PSO is a stochastic optimization method that robustly solves a given prob-
lem in successive iterations according to the selected objective function. This determines
whether the candidate solutions of the problem are appropriately improved at each step.
The candidate solutions are represented by particles forming a particle swarm. The solution
to the optimization problem can be achieved by moving these particles within a constrained
region using simple mathematical formulas. These determine a new position and velocity
of the particles in each iteration. In the case where all particles converge to a common
position, the global optimum of the objective function is found.

Let the position of the particle be denoted by xi ∈ Rn and its velocity by vi ∈ R. In the
swarm with S elements, the best position of each particle is denoted by pi and the best
position of the whole swarm is denoted by g. The number of all required particles S can
be inferred from the experimental results or calculated using the suggested formulas (e.g.,
S = 2

√
n + 10, where n is the search area’s dimension).

In the PSO method [66] a new position of particle xk+1
i is determined by the model

of particle movement that takes into account its current current velocity vk
i , position xk

i ,
the distance dk

pi
between the particle’s best known position pk

i and the particle’s current
position xk

i and the distance dk
gi

between the best position of the whole swarm gk at a given
time and the particle’s current position xk

i :

xk+1
i = xk

i + vk+1
i , (14)

where:
vk+1

i = ωvk
i + ∆vk

i , (15)

∆vk
i = ϕgrg(gk − xk

i ) + ϕprp(pk
i − xk

i ) = ϕgrgdk
gi
+ ϕprpdk

pi
. (16)

The parameter ω can be used to determine whether accurate local exploration
(a low value) or faster convergence (a high value) is preferred. The parameter repre-
sents the remembering rate or inertia weight [66], which determines to what extent the
previous direction of the particle is preserved. The parameter ϕg is a swarm confidence
factor (or a social learning factor) and the parameter ϕp is a self confidence factor (or cog-
nitive learning factor). The parameters rg and rp, which change randomly in the interval
[0, 1], represent random accelerations in the directions of the best position of the particle
pi and the best position of the whole swarm g. In the process of the PSO configuration,
according to a given optimization problem, great emphasis should be put on the choice of
parameters ω, ϕp and ϕg, which have the most significant impact on the performance of
the method [68–71].

The goal of PSO-based localization is to find a particle (i.e., the position of the smart-
phone) (x, y) in two-dimensional space for which the corresponding vector of signal
strengths RP = [ fR1(d1), fR2(d2), ..., fRm(dm)], obtained by the constructed path loss mod-
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els Ri = fRi (di) (for i = 1, ..., m), is the most similar to the vector of current measurements
of signal strengths RM according to the objective function:

fc =
m

∑
i=1
|RMi − RPi |, (17)

where m is the number of BLE transmitters considered for the calculation of the current
position. The distance di (for i = 1, ..., m) represents the Euclidean distance between
the current position of the smartphone (x, y) and the position of the ith BLE transmitter
(x0i , y0i ).

Using the path loss models, the PSO localization method generates fingerprints for
all particles in the swarm that represent the local radio map. The particles are uniformly
distributed in the grid of the chosen size at the beginning of each optimization.

5. Online Path Loss Model Construction Results

In order to evaluate the proposed system for automated localization data collection,
online modeling and real-time PSO localization on a smartphone (Samsung Galaxy S9),
an experiment was performed in am ∼80 m2 laboratory, where ten Bluetooth beacons from
Kontakt.io [72] were installed. The beacons were distributed around the room (taking
into account certain constraints due to the layout of walls, doors, pillars and windows),
as shown in Figure 3 (green squares). To reduce the influence of the presence of human
bodies on the measurements of the signal strengths, the transmitters were mounted at the
height of 2 m above the floor.
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Figure 3. Locations of BLE beacons (green squares) and walked path (determined with the visual-
inertial SLAM) during automated measurement capture. The ground truth path is marked with the
red dashed line. The white pixels represent empty space and grey pixels represent occupied space.

The measurements of the signal strengths from all ten beacons were collected in a
way that a pedestrian repeatedly walked the path that is shown in Figure 3 while the
smartphone recorded the data. The current position of the smartphone (calculated every
50 ms) was tracked by the algorithm combining the SLAM and the inertial navigation
system (see Section 2). All of the positions where the measurements of the signal strengths
were performed can be seen in Figure 3. This figure shows that the obtained position points
deviate slightly from the intended route (the lines were marked on the ground). Part of this
error is due to the visual-inertial localization algorithm (strong magnetic interference affects
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the digital compass) determining the position relative to the starting point, and part is due
to the inaccurate walking of pedestrians along the line. Our results on visual localization
include that under optimal environmental conditions, the errors are at most of a few tens of
centimeters in a typical room-sized environment (without significant drift errors). However,
as the speed of movement increases and in low light conditions, the overall performance
may decrease.

Using the constrained nonlinear optimization and the signal strengths measurements
from all Bluetooth beacons distributed in the room, the path loss models are constructed
online on the smartphone. Figure 4 shows the fitting of the models to the measurements
of the signal strengths after 30, 70 and 150 s of walking (for the BLE beacon with MAC
address DA:57:30:EC:6A:D1 and position (−0.7, 11.10)) to demonstrate the influence of the
amount of the collected measurements. After 30 s of walking, the pedestrian covered a
distance of about 10 m along the corridor. After 70 s, half a T-shaped path was covered,
and after 150 s, the pedestrian covered the entire T-shaped path (i.e., 36 m) from the
start and back. The online construction of the path loss models and the determination of
the beacons’ locations are performed in iterations every 10 s when enough new data are
collected. The constrained nonlinear optimization runs in parallel to the real-time PSO
localization on the smartphone, which means that they do not affect each other when
individual CPU cores are fully utilized.
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Figure 4. Fitting the online constructed path loss models (2) to the measurements of the signal
strengths after 30, 70 and 150 s of walking (for the BLE beacon with MAC address DA:57:30:EC:6A:D1).
Since the data contain a lot of noise, the coefficient of determination for all models is quite low:
R2 = 0.5.

In the laboratory where the experiment was conducted, there were many obstacles
(walls, wooden barriers, pillars) between the transmitters and the receiver (smartphone),
while the pedestrian walked along the path shown in Figure 3. Due to absorption and
reflection from the obstacles, the signal strength measurements were very noisy and
scattered at the same distance from the beacon (see Figure 4).

During data collection and online model development, the measurements and the path
loss models shift left and right according to the distance d (see Figure 4) since the positions
of the beacons are estimated with the constrained nonlinear optimization algorithm in
addition to the model parameters. With more available data, the positions of the beacons
converge towards the correct position (see the upper part of Figure 5). Still, after a certain
number of iterations, they do not improve any more because the measurements contain
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a lot of noise. For model improvement, it is crucial to collect measurements at different
distances (from 1 m to 10 m) from the beacon because, in this way, the whole RSSI signal
range is covered (e.g., from −59 to −100 dBm). The lower part of Figure 5 shows the BLE
signal range (the difference between maximum and minimum signal strength) as a function
of the travelled distance. As the signal range increased, the error of the beacon’s location
decreased. When the signal range reached values close to 40 dBm, the error entered the
steady-state. After 30 s of data acquisition, the amount of data was still too small or the
measurements are not well distributed throughout the room, which is reflected in the
transmitter’s inaccurate position and a worse model 1 in Figure 4. After 70 s, the signal
range and the beacon’s location were satisfactory and the path loss model was also close to
the optimum. With the additional data, the models and beacons’ locations can be improved
only slightly.
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Figure 5. The upper part of the figure shows the error between the beacon’s actual location (with MAC
address DA:57:30:EC:6A:D1) and the position calculated by the constrained nonlinear optimization
method. The error depends on the time or the travelled distance. The lower part of the figure shows
the BLE signal range (the difference between maximum and minimum signal strength) as a function
of time or the travelled distance.

In the online data collection process and model development, it is essential to know
when there is enough data for a given beacon. For this purpose, two (stopping) criteria can
be used, first, when the beacon’s location changes less than the selected threshold during
two consecutive iterations (in our case 0.1 m) and second, when the signal range is large
enough (in our case 35 dBm). The duration of collecting the measurements and the path
length are worse for estimating whether there are enough measurements. Namely, if the
measurements are collected only in the same position (for a long time) or at a long distance
from the transmitter, they are not useful for the model construction.

Once the positions of all beacons and the path loss models are computed, the goal
of the proposed system is achieved. However, if there are any changes to the space (e.g.,
change in the position of the beacons), the whole process can be repeated very quickly.
The data and models can be created by one user or by multiple users of the smartphone
application. With the crowdsourcing approach, large amounts of data can be collected
on the server, which means that the models created online can definitely be improved
offline using more sophisticated and computationally intensive methods (e.g., using the
SUHICLUST algorithm that creates fuzzy path loss models with confidence intervals [50]),
if necessary.
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6. Particle Swarm Localization Results

In order to evaluate the online developed path loss models and the PSO-based local-
ization algorithm, the measurements of signal strengths were collected with a smartphone
along the same path used to construct the models and determine the beacons’ locations
(see Figure 3). As the pedestrian walked along the path, each time the smartphone receiver
measured at least one new signal strength that was greater than−95 dBm, a vector of signal
strengths RM was created from which the current position was determined. In our exper-
iment, this happened on average every 30 ms, with each beacon sending a packet every
100 ms. For each beacon, the measurements of the signal strengths were independently fil-
tered using the Savitzky–Golay filter (with frame length 99) [73] to reduce variability. Each
vector of current measurements (or fingerprint) consists of at least three signal strengths
from different beacons. In our experiment, the fingerprints contained five elements, as this
is optimal according to our previous study [50]. To determine the accuracy of the PSO
localization algorithm in real time, the visual-inertial SLAM algorithm was used to record
the positions where the vectors RM were created.

During the experiment, the pedestrian walked for 5 minutes in the laboratory. Their
current location (see Figure 6) was determined in real time using the PSO localization
method on a smartphone (Samsung Galaxy S9), where the latest path loss models were
used. These were created online from the latest available data and they were further
improved with new data if the stopping criteria were not yet met (see previous subsection).
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Figure 6. The indoor positioning results (after 5 min of walking) obtained using the online constructed
path loss models and the PSO localization method.

When selecting the PSO search area, the current position of the receiver (i.e., the
smartphone) must be approximately known. During PSO initialization, the position can
be calculated using the location of the nearest beacon (with the highest signal strength) or
using the fast linear trilateration method. In this case, the room-level accuracy is acceptable.
Thereafter, when PSO provides the first positioning results, the current position of the
receiver can be used in the next iteration to determine the PSO search area (all particles are
arranged around the current position).

With the aim of obtaining the optimal parameters of the PSO method, the offline sim-
ulation experiments were performed in the Matlab environment. In this way, the following
parameters were obtained: ω = 0.06, ϕp = 0.1 and ϕg = 0.1. The optimal size of the search
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area with a square shape is 0.8 m × 0.8 m. By choosing the boundaries of the search area,
a filtering effect is achieved in addition to reducing the computational complexity.

Since the PSO algorithm must operate in real-time on a smartphone, the parame-
ters were chosen as a trade-off between computational speed and localization accuracy.
By running simulations, the number of particles and iterations needed was also determined.
The use of eight particles and twenty iterations within the PSO optimization proved to
be optimal, as a larger number of particles or iterations only increases the computational
complexity and does not improve the result.

As path loss models and beacons’ locations were more accurately determined with
more available data, the localization error decreased. The graph of the cumulative distribu-
tion function (Figure 7) shows that after 310 s of walking in 70 % of the position estimates,
the error was less than 1 m and the average error was less than 0.8 m. For comparison,
when incomplete models built with a smaller dataset were used, the results show that after
30 s of walking in 44 % of the position estimates the error was smaller than 1 m and after
70 s there were 52 % of the position estimates where the error was smaller than 1 m.
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Figure 7. The cumulative distribution functions for the positioning errors in determining the positions
by the PSO method after 30, 70 and 310 s of walking.

The results of the online construction of the path loss model show that in the first 80 s
after data collection began, the models and the beacons’ locations changed drastically. Con-
sequently, the positioning errors obtained with the PSO localization method (see Figure 8)
were substantially larger in the first 80 s (or for the first eight model series). Thereafter,
the mean positioning error decreased more slowly. The decrease of error can be described
by an exponential model e = 0.35 exp(−0.04t) + 0.98 exp(−0.0006t) (where t is time) with
the coefficient of determination R2 = 0.8. In the first evaluation of the mean error, about
150 positions and in the last evaluation, about 5500 positions were used for error estimation.
The number of calculated positions (with PSO method) used for estimating the mean
error increased practically linearly with time. Since path loss model construction and PSO
localization can run simultaneously on a smartphone, the comparison of the current radio
and visual-inertial localization results can be used as a real-time criterion to determine in
which part of space additional signal strength data need to be collected to improve the
latest online computed models and consequently the localization accuracy.
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Figure 8. The mean localization error as a function of time or the travelled distance. The decrease of
error can be described by an exponential model e = 0.35 exp(−0.04 t) + 0.98 exp(−0.0006 t) with the
coefficient of determination R2 = 0.8.

When comparing the computational complexity, the localization algorithm based on
the PSO method turns out to be better than the one based on the nonlinear trilateration [74],
as it is 20 times faster for the same localization accuracy (on the smartphone, it spends
about 5 ms computing a position). The experiment was performed on a Samsung Galaxy
S9 smartphone (with a Samsung Exynos 9810 processor) using offline signal strength
measurements and prebuilt path loss models. Average execution time for both localization
methods was calculated from 5000 repetitions of the different position calculations.

7. Discussion

With the implementation of an automated system for BLE data collection, online path
loss model construction, and real-time PSO localization on a smartphone, radiolocation
becomes significantly less time- and labor-intensive by reducing configuration time (i.e., the
time from the start of data collection to the moment when Bluetooth localization becomes
operational) by more than 90%. With the manual collecting of signal strength data in the
∼80 m2 laboratory, where at least 80 measurement points are needed (previous studies
showed that at least one measurement point per square meter is required), the network
operator would spend about 40 min (half a minute to manually measure each location in the
room and collect the signal strengths). To measure ten beacons’ locations in our laboratory,
the network operator would spend an additional 5 min. A non-automated localization
system also requires some time to transfer the data to the computer and compute the path
loss models or create the map of fingerprints. For comparison, the proposed automated
system required 5 min for collecting all signal strength data (more than 5000 measurement
points), calculating path loss models, and determining all beacons’ locations.

Compared to our previous study [37,50,74], in which a visual odometry algorithm was
developed to determine the reference positions during the collection of signal strengths,
the new proposed automated system has many advantages. The visual-inertial SLAM
does not require an initial camera calibration with a checkerboard to obtain intrinsic and
extrinsic parameters describing the transformation between the camera and base coordinate
systems. Therefore, the smartphone does not need to be at the same height above the
ground during the walk. The visual-inertial SLAM also includes loop closure, which is very
important to reduce position drift and error accumulation. Therefore, the proposed system
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can be used for data collection in wide area facilities such as airports, hospitals, museums,
etc. The visual localization system based on SLAM is very accurate, but it can also fail,
especially in dark places and places where the surfaces are without texture. In such a case,
the fusion with inertial sensors and methods becomes crucial. The visual-based localization
system has proven to be less suitable to be used as a primary localization system, as the
image processing puts a heavy load on the processor, which drains the battery quickly.
During the experiment, the two big cores of the Samsung Exynos 9810 processor (with four
big cores operating at 2.9 GHz and four small cores operating at 1.9 GHz) were loaded
more than 90% on average while using visual localization. By contrast, PSO localization is
computationally much less demanding and can run on a small core (loaded less than 60%
on average), saving energy.

In addition to the visual-inertial SLAM, another important component of the proposed
system is the constrained nonlinear optimization, which allows constructing path loss
models and determining the beacons’ locations online on a smartphone. The results of the
experiment show that the beacons’ locations can be determined fairly accurately, as the
final average errors are less than half a meter for all the beacons. These errors are not
problematic since the obtained beacons’ locations can also be represented as virtual beacons’
locations that best fit the corresponding path loss models with the constrained parameters.
In this way the deviations (due to the obstacles) in the path loss model can be partially
compensated for with the virtual beacon’s location and consequently the model can better
fit the measurements. It has been found that the constraints on the parameters of the
path loss model can be quite stringent, since the same beacons located in open space have
very similar path loss models. The constraints on the beacons’ locations do not impose an
additional burden since the dimensions of the area where the transmitters are located are
usually known. When implementing algorithms on a smartphone, the main concern is that
they can run in real time or in limited time. Therefore, a trade-off between the accuracy and
speed of the algorithms is required. Since the proposed system is designed to support the
crowdsourcing approach, all the collected data are transferred to the server database where
the models already created online can be additionally improved if needed. The proposed
solution is suitable for both BLE network operators and end users. Anyone who enables
visual localization on a smartphone can start simultaneous localization and data collection.
Based on the proposed criteria (signal range, beacons’ location stability and accuracy
of radiolocation compared to visual-inertial localization), the following information is
available to the user collecting data: For which beacon in the room there are not enough
measurements yet or in which part of the room the radiolocation is still poor and additional
measurements are needed.

For real-time radiolocation on a smartphone, the PSO-based method was chosen
instead of nonlinear trilateration. The reason is that PSO localization has been shown to be
much faster. However, in order to achieve good localization accuracy, the parameters of the
PSO optimization method must be carefully chosen, otherwise the algorithm may become
slow and inefficient. The PSO localization is more flexible in the sense of a small temporary
radio map generation, which consumes very little memory for the same accuracy as the
fingerprinting method. The obtained localization results are slightly worse (with an average
error of 0.8 m) than in the case where the locations of the beacons are known and the path
loss models are constructed offline using more sophisticated methods [50] (with an average
error of 0.5 m). Since most location applications (for large facilities such as airports) do
not require high localization accuracy, the obtained results represent a good compromise
according to the complexity of the network deployment and the localization accuracy.

The proposed system is not limited to collecting BLE signal strengths and PSO radi-
olocation. Depending on the needs, it can be modified to collect data about the WiFi, UWB
or geomagnetic field signals and perform localization based on these signals.
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8. Conclusions

This paper presents a sophisticated indoor localization system that combines visual-
inertial positioning for accurate data collection and Bluetooth positioning for real-time
smartphone tracking with low power consumption. The visual-inertial SLAM algorithm,
which is part of the ARCore library, successfully fuses information from the camera and
inertial sensors to provide accurate localization in large spaces over a long period of
time. In this way, a suitable collection of measurements of signal strengths can be made
quickly and easily, clearly defining which part of the space is not yet well covered by
measurements. The path loss models and the beacons’ locations are determined online on a
smartphone using the constrained nonlinear optimization, which is the main contribution.
The constrained nonlinear optimization considers all the necessary bounds on the model
parameters and the map of the space when constructing the path loss models. The obtained
beacons’ locations are determined fairly accurately (with an average error of 0.5 m) and
the models fit the measurements well, although they contain a lot of noise. From the
obtained radiolocation results, it can be seen that the proposed PSO-based localization
algorithm (with an average error of 0.8 m) combined with online constructed models can
meet most localization requirements in smartphone applications. The developed system
for automated data collection and online modeling on a smartphone has proven to be very
useful as it can greatly simplify and speed up the installation of the Bluetooth network,
especially in wide-area facilities such as airports, hospitals, museums etc., where the
configuration time can be reduced by more than 90%. Further development of the system
will focus on the more sophisticated fusion of the radiolocation and inertial system.
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Abstract: In this paper, an indoor positioning system using Global Positioning System (GPS) signals in
the 433 MHz Industrial Scientific Medical (ISM) band is proposed, and an experimental demonstration
of how the proposed system operates under both line-of-sight and non-line-of-sight conditions on
a building floor is presented. The proposed method is based on down-converting (DC) repeaters
and an up-converting (UC) receiver. The down-conversion is deployed to avoid the restrictions on
the use of Global Navigation Satellite Systems (GNSS) repeaters, to achieve higher output power,
and to expose the GPS signals to lower path loss. The repeaters receive outdoor GPS signals at
1575.42 MHz (L1 band), down-convert them to the 433 MHz ISM band, then amplify and retransmit
them to the indoor environment. The front end up-converter is combined with an off-the-shelf GPS
receiver. When GPS signals at 433 MHz are received by the up-converting receiver, it then amplifies
and up-converts these signals back to the L1 frequency. Subsequently, the off-the-shelf GPS receiver
calculates the pseudo-ranges. The raw data are then sent from the receiver over a 2.4 GHz Wi-Fi link
to a remote computer for data processing and indoor position estimation. Each repeater also has an
attenuator to adjust its amplification level so that each repeater transmits almost equal signal levels
in order to prevent jamming of the off-the-shelf GPS receiver. Experimental results demonstrate that
the indoor position of a receiver can be found with sub-meter accuracy under both line-of-sight and
non-line-of-sight conditions. The estimated position was found to be 54 and 98 cm away from the
real position, while the 50% circular error probable (CEP) of the collected samples showed a radius of
3.3 and 4 m, respectively, for line-of-sight and non-line-of-sight cases.

Keywords: down-conversion; GPS; indoor positioning; navigation; RF repeaters; up-conversion

1. Introduction

Global indoor positioning is an emerging market whose size is forecast to grow
from USD 6.1 billion to USD 17.0 billion by 2025 [1]. Many researchers, in the field of
indoor positioning, have proposed different solutions to solve this sophisticated problem.
Some of the proposed technologies for indoor positioning are based on IEEE 802.11 [2–7],
Bluetooth [8–11], Zigbee [12], radio frequency identification devices (RFIDs) [13], visible
light [14], acoustic [15,16], and ultrasound [17,18]. GNSS-based solutions have also proven
to be a candidate for the indoor positioning problem [19–21]. Some of the GNSS-based
solutions are based on high sensitivity GNSS (HS-GNSS) [22], assisted GNSS (A-GNSS) [23],
pseudolites [24–31], GNSS repeaters [32,33], repealites [34,35], and peer-to-peer cooperative
positioning [36]. Among the GNSS-based techniques, HS-GNSS and A-GNSS technologies
require no infrastructure within the indoor environment, while pseudolite and repeater-
based approaches require infrastructure.

Ideally, from a navigational point of view, a GPS-based solution to the indoor posi-
tioning problem would result in integrated outdoor and indoor applications such as asset
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tracking, vehicular navigation, and emergency services. However, GPS-based solutions
currently experience a multitude of weaknesses due to (a) reflections and multipath errors
from the indoor environment, (b) attenuation (up to 30 dB [37]) from walls and other
structural components, (c) non-line-of-sight conditions caused by corners and objects,
(d) changes in the indoor environment due to people and moving objects, and (e) RF de-
vices operating in the same frequency band and their interference to the indoor positioning
system.

In addition to the listed drawbacks, GPS-based systems operating in L1, L2, and L5
bands also suffer from the restrictions on the use of GNSS repeaters. Such restrictions
aim to prevent repeaters from interfering with other GNSS systems in the vicinity. The
Electronic Communications Committee (ECC), European Telecommunication Standards
Institute (ETSI), and the US policy “Manual of Regulations and Procedures for Federal
Radio Frequency Management” present the practices and restrictions on the use of GNSS
repeaters [38–41]. These standards reduce the coverage of GPS repeaters by limiting the
output power and the maximum allowable amplification for repeater structures in the L1,
L2, and L5 frequency bands.

In [32,42], a GPS-based indoor positioning technique with three repeaters is shown;
however, the repeaters operate solely in the L1 band and, therefore, are restricted to the
aforementioned restrictive policies in their usage.

This paper presents a new GPS-based approach that does not contradict the restrictions
in the aforementioned standards. The proposed indoor positioning system in this paper
operates in the 433 MHz ISM band, hence it is not subject to the amplification restrictions in
GPS frequencies. The proposed repeaters down-convert GPS signals in the 1575.42 MHz (L1
band) to the 433 MHz ISM band, allowing signal coverage to be increased, with the higher
permitted power levels in the 433 MHZ ISM band. In addition to the higher power levels
permitted in the 433 MHz ISM band, the free space path loss in the 433 MHz frequency
is 11.22 dB less, as presented in Figure 1, while the penetration through walls is higher
than at 1575.42 MHz (GPS frequency) or 2.4 GHz (Wi-Fi frequency). Therefore, in terms of
coverage and compatibility with existing rules on the use of repeaters, the proposed system
could outperform the existing indoor positioning systems that are operating at frequencies
higher than 433 MHz.
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The system we propose in this paper differs from the existing systems with its fol-
lowing properties. The down- and up-conversion schemes have previously been pro-
posed in [43–45] for indoor positioning applications with GPS signals. While in [43,44], a
down-converting repeater is proposed, neither indoor positioning nor GPS signal down-
conversion is demonstrated. In [45], only the down-converting repeater and up-converting
receiver circuits are presented, to show that GPS signal fidelity is preserved. However,
in [45], it is not shown how the proposed circuits perform in an indoor environment for
positioning. In [46], the indoor positioning of an up-converting receiver at a point on a
line between two down-converting repeaters (1-dimensional (1D) positioning) is proposed;

28
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however, non-line-of-sight conditions and two-dimensional (2D) positioning of the receiver
are not addressed. In [47], we refer to the patent application of a system that can be used
with different positioning systems (i.e., BeiDou, Galileo, GLONASS) by changing the regis-
ter sets in the down- and up-converters to work in the 433 MHz frequency band or even
in other ISM bands. In the latter case, the indoor antennas should also be changed to the
selected frequency band.

Upon review of readily available publications and to the best of the authors’ knowl-
edge, this paper is the first experimental study that demonstrates that 2D indoor positioning
can be achieved by transmitting GPS signals, at 433 MHz, from three repeaters in an indoor
environment, where the position of the receiver can be estimated by calculating the distance
between each repeater and the receiver, on the plane that is formed by the deployed re-
peaters. The indoor positioning concept that is proposed in this paper is described visually
in Figure 2.
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Figure 2. The proposed indoor positioning system. i: index of the repeaters (i = 1, 2, 3); j: index of
the satellites (j = 1, 2, . . . , n ); Ri: ith repeater; Sj: jth satellite; di: indoor distance from repeater Ri to
the receiver (with a clock bias of treceiver

bias ); DSj
Ri: distance from ith repeater (Ri:) to the jth satellite (Sj );

τi: propagation delay of the ith repeater; tSj
bias: satellite clock bias of the jth satellite.

In this particular paper, we present two experiments for 2D indoor positioning in the
433 MHz ISM band: one experiment is under line-of-sight conditions, and another is under
non-line-of-sight conditions. Note that adding a 4th repeater will allow us to achieve 3D
indoor positioning.

The rest of the paper is organized as follows: Section 2 introduces the proposed indoor
positioning system and describes its hardware, software and algorithms.
Section 3 describes the experimental framework and the real-life environment where
we tested our system. Section 4 analyzes and discusses the results we achieved when
the proposed system and technique are used for 2D indoor positioning. Finally, Section 5
concludes this paper.

2. Indoor Positioning System in 433 MHz ISM Band

The proposed indoor positioning system is composed of two unique subsystems:
GPS down-converting repeaters and an up-converter integrated with an off-the-shelf GPS
receiver. The block diagrams of the GPS down-converting repeaters and the up-converter
with the off-the-shelf GPS receiver are presented in Figure 3. The red dashed line represents
the 433 MHz RF link.
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2.1. GPS Down-Converting Repeater

The GPS down-converting repeater subsystem comprises RF blocks and supporting
blocks, which are presented in Table 1. The RF blocks refer to the components that together
form the RF path, through which the GPS signal propagates, while the supporting blocks
sustain the regular operation of RF blocks. The GPS down-converting repeater subsystem
is implemented using the listed components and blocks in Table 1.

Table 1. Repeater subsystem and its components.

Blocks Components Block Properties

Directional GPS Antenna Tango 20 off-the-shelf active GPS antenna
with conic reflector

34.45 dBi gain
60 degree 3 dB beam width

Directional GPS Antenna TB-JEBT-4R2GW + bias tee Provides DC to GPS antenna and transmits RF to
down converter

Down-Converter ADRF6820 quadrature demodulator, 8.7 dB block loss
Programmable over SPI from controller block

Down-Converter ZX10Q-2-5-S 90 degree power combiner Combines down-converter I/Q outputs

Signal Power Conditioner LHA-13LN + low noise amplifier 22.43 dB gain
0.9 dB noise figure

Signal Power Conditioner DAT-31R5A-SP + digital step attenuator
(variable attenuator)

0 to 31.5 dB adjustable attenuation by 0.5 dB step
size and can be adjusted from controller

Signal Power Conditioner DBP.433.T.A.30 band pass filter at 433 MHz 1.7 dB insertion loss at 433 MHz, 19 MHz 3 dB
bandwidth

Signal Power Conditioner LHA-13LN + as the second low noise
amplifier

22.43 dB gain
0.9 dB noise figure

433 MHz Dipole 433 MHz dipole on FR4 2.1 dBi gain
80 degree 3 dB beam width on both sides

Supporting Blocks Voltage Regulator Provides DC to system components and blocks

Supporting Blocks Controller with Wi-Fi for programming
attenuator and down-converter

Wi-Fi connection to remote PC, SPI connection to
ADRF6820, and attenuator

The implemented GPS down-converting repeater is depicted in Figure 4. Fabricated
and modelled 1575.42 MHz outdoor directional GPS antenna and 433 MHz dipole antenna
are demonstrated in Figure 5. The RF blocks of the GPS down-converting repeater subsys-
tem are as follows; a directional outdoor GPS antenna (proposed in [32]) and its bias-tee, a
1575.42 to 433 MHz down-converter, a signal power conditioner and filter block (where an
LNA, a variable attenuator, a 433 MHz band pass filter, and a second LNA are cascaded),
and an indoor 433 MHz dipole antenna. The supporting blocks are a controller over Wi-Fi
that interfaces between the RF blocks and the user, and a voltage regulator that provides
the required DC to RF blocks.

The active directional GPS antennas pick-up the GPS signals from satellites in the 3 dB
beam width. The conic reflector reduces the beam width by 30 degrees. Therefore, the 3 dB
beam width of the fabricated antenna is measured as 60 degrees. A bias-tee is placed before
the down-converter to provide the DC voltage that is required by the active directional
GPS antenna.
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When the GPS signal at 1575.42 MHz is received by the antenna, the signal passes to
the down-converter. The down-converter converts the signal from 1575.42 to 433 MHz.
The amplifiers in the signal power conditioner and filter block then amplify the signal. The
amplification level can be adjusted by changing the attenuation of the digital step attenuator,
which is able to attenuate the signal from 0 to 31.5 dB. By adjusting the attenuation value of
each attenuator, the gain of the overall down-converter subsystem may be set to different
values. The bandpass filter at 433 MHz is also deployed to eliminate signals and harmonics
out of the band. Furthermore, the signal power conditioner block has another amplifier
following the band pass filter. After the second amplifier, the down-converted GPS signals
are retransmitted to indoors via a 433 MHz dipole antenna at each repeater.

In terms of adjustments, the repeater board attenuation levels can be set to different
values from a remote computer using a Wi-Fi connection. In this way, the gain of a repeater
can be adjusted to prevent near-far effects and also keep the signal level from each repeater
at a similar level. With this structure, the down-conversion of GPS signals enables users to
deploy higher gain GPS receivers than those that are limited by international standards.
Additionally, operating in 433 MHz allows us to further increase the gain of the proposed
repeaters.

2.2. Up-Converting Receiver

The up-converting receiver subsystem is comprised of the RF blocks and supporting
blocks, which are presented in Table 2.
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Table 2. Receiver subsystem and its components.

Blocks Components Block Properties

433 MHz Dipole 433 MHz dipole on FR4 2.1 dBi gain,
80 degree 3 dB beam width on both sides

Signal Power Conditioner DBP.433.T.A.30 band pass filter at 433 MHz 1.7 dB insertion loss at 433 MHz, 19 MHz 3 dB
bandwidth

Signal Power Conditioner LHA-13LN + low noise amplifier 22.43 dB gain
0.9 dB noise figure

Signal Power Conditioner DAT-31R5A-SP + digital step attenuator
(variable attenuator)

0 to 31.5 dB adjustable attenuation by 0.5 dB step
size and can be adjusted from controller

Signal Power Conditioner LHA-13LN + as the second low noise
amplifier

22.43 dB gain
0.9 dB noise figure

Up-Converter I/Q power divider, bias tees Provides I/Q inputs and required DC levels to
ADRF6720-27

Up-Converter ADRF6720-27 quadrature modulator 1.2 dB block loss
Programmable over SPI from controller block

Off-the-shelf GPS Receiver LEA-6T chipset
Supporting Blocks Voltage Regulator Provides DC to system components and blocks

Supporting Blocks Controller with Wi-Fi for programming
attenuator and down-converter

Wi-Fi connection to remote PC, SPI connection to
ADRF6820, and attenuator

The up-converting receiver is implemented using the listed components and blocks
in Table 2 and is presented in Figure 6. The aforementioned 433 MHz dipole antenna in
Figure 5e is also used as the receiver indoor antenna. The RF blocks of the up-converting
receiver are (a) a 433 MHz indoor dipole antenna, (b) a signal power conditioner block
where a 433 MHz band pass filter, (c) an LNA, (d) a variable attenuator, (e) a second,
cascaded LNA, (f) an I/Q power divider, (g) bias tees that provide the required DC to I/Q
inputs of the up-converter, (h) a 433 to 1575.42 MHz up-converter, and (i) an off-the-shelf
GPS receiver (u-Blox LEA-6T®). The controller over Wi-Fi provides interfaces between RF
blocks and the user. Moreover, a voltage regulator is designed to provide the required DC
voltage to the RF blocks. In this subsystem, the controller is also connected to the custom
GPS receiver, and the raw data from the GPS receiver can be sent over Wi-Fi to a remote
computer.
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The retransmitted 433 MHz positioning signals are picked up by the 433 MHz indoor
dipole antennas. In the receiver subsystem, the received signals are first filtered and then
amplified. Similar to the repeater subsystem, the amplification levels are adjusted by
changing the attenuation of the digital step attenuator, which is able to attenuate the signal
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from 0 to 31.5 dB. By adjusting the attenuation value of the attenuator, the gain of the
overall up-converter subsystem may be set to different values. The subsystem also utilizes
a second amplifier to further amplify the signal. These up-converted GPS signals then
propagate to the off-the-shelf GPS receiver, which is integrated within the up-converting
receiver subsystem.

As mentioned previously, for further flexibility, the up-converting repeater attenuation
levels can be set to different values from a remote computer using a Wi-Fi connection.
Using a remote computer with an internet connection, where the ephemeris data of GPS
satellites are available, the estimation of the indoor position starts when the raw data are
sent from the receiver. Therefore, one can conclude that the established Wi-Fi link between
the proposed up-converting receiver, and the computer where calculations are done will
provide a hot start to the system.

2.3. Algorithm for Indoor Position Estimation

In an indoor environment, although the signal loss and GPS coverage problems can
be overcome with the proposed repeaters, this solution requires additional algorithms that
takes the non-line-of-sight propagation and repeater delay into account. The proposed
technique introduces a new path in that the distance between satellite and the receiver
becomes different from that of the normal operation of an off-the-shelf receiver during
which there is a line-of-sight distance between the satellite and the receiver. The GPS
signals in the proposed scheme come to the repeater first and, then, reach to the receiver as
seen in Figure 2.

As part of the indoor position estimation, an algorithm (run on MATLAB®) is designed
and run on a remote computer that is connected to the system via Wi-Fi. The Wi-Fi link is
established with a Wi-Fi module on the controller block of the receiver board. The raw data
(such as pseudo-range, carrier-to-noise ratio, satellite azimuth, and elevation angles, etc.)
obtained from the off-the-shelf receiver are transmitted to the remote computer through the
Wi-Fi connection. The routine summarized in Figure 7 has the following four steps: raw
data reception, satellite selection and satellite-to-repeater distance calculations, cleaning
pseudo-range from satellite-to-repeater distances and satellite biases, and finally, running
the least squares navigation (LSNAV) algorithm, which is a least squares solution that
minimizes the sum of the square of the residual errors [48].
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In the first part, we remove the biases from the GPS pseudo-range measurement using
the models of the troposphere, ionosphere, GPS satellite clocks, GPS satellite movement
during signal propagation, and Earth rotation.

Navigation data are also collected as part of raw data from the off-the-shelf receiver,
which contains GPS time of the week (ITOW) of the navigation epoch. ITOW field indicates
the GPS time at which the navigation epoch occurred. Each navigation solution is triggered
by the tick of the 1 kHz clock nearest to the desired navigation solution time. This tick
is referred to as a navigation epoch. If the navigation solution attempt is successful, one
of the results is an accurate measurement of time in the time base of the chosen GNSS
system, called GNSS system time. The difference between the calculated GNSS system
time and receiver local time is called the clock bias (and the clock drift is the rate at which
this bias is changing). Navigation data also contain an Earth-centered Earth-fixed (ECEF)
coordinates solution of the off-the-shelf receiver; however, this solution would not be
correct in our system, since the satellite signals come from three different repeaters. This
result in erroneous the off-the-shelf receiver position.

The data of each satellite, received by the off-the-shelf receiver on the up-converting
receiver, are recorded. The recorded data include GPS satellite ID numbers, satellite
azimuth and elevation angles, carrier-to-noise ratios (CNR) related to each satellite signal,
and the GPS time of the week. GPS satellites transmit ephemeris through which the
receiver can estimate the position of the satellites in the Earth-centered Earth-fixed (ECEF)
coordinates system. In addition to a GPS satellite’s location (current and predicted),
ephemeris includes the orbital parameters, clock bias, date, timing, health, and an almanac
(a reduced subset of ephemeris of all satellites) exist. The ephemeris data can be collected
using an online server to enable hot start in the proposed system. Moreover, the ephemeris
data are used to calculate the satellite’s clock bias.

Each of the collected pseudo-range is a sum of the following distance terms: satellite-
to-repeater distance, the receiver clock bias, satellite clock bias, repeater delay, the indoor
distance from the corresponding repeater to the indoor receiver position.

The second step of the MATLAB® algorithm is designed for choosing the GPS satellites,
which are seen from the repeaters. For each repeater, specific satellites are chosen based
on their CNR levels and locations. Each satellite’s position, clock bias, and distance from
the corresponding repeater are calculated using the satellite’s ephemeris data. In the third
step of the algorithm, the pseudo-range (PR) from each repeater to the selected satellite
for the corresponding repeater is cleaned by subtraction operation on the right-hand side
of Equation (1). Thus, the indoor distance from the receiver to each repeater is calculated.
The calculated indoor distances also include the receiver clock bias. The indoor distances
between each repeater and the indoor receiver is calculated using Equation (1).

di + treceiver
bias = PRSj

Ri −
(

DSj
Ri + τi × c + tSj

bias × c
)

(1)

In Equation (1), i is the index of the repeaters (i = 1, 2, 3), j is the index of the satellites
(j = 1, 2, . . . , n), Ri represents the ith repeater, Sj represents the jth satellite, di represents
the indoor distance from repeater Ri to the receiver (with a clock bias of treceiver

bias ), DSj
Ri stands

for the distance from ith repeater (Ri) to the jth satellite (Sj), τi is the propagation delay of
the ith repeater, tSj

bias is the satellite clock bias of the jth satellite, and c represents the speed
of the light. When more than one satellite is chosen for a repeater, the di + treceiver

bias value is
calculated by averaging the calculations from each satellite selected for that repeater. Thus,
all the distances in Figure 2 can be solved with the proposed system.

The final step of the proposed algorithm is using the LSNAV algorithm to calculate the
2D indoor position for each sample collected. The indoor distances between the receiver
and each repeater with receiver clock bias are calculated using Equation (1). Then, these
calculated values and the repeater positions are given as the inputs to the LSNAV algorithm.
It is important to note that the calculated indoor distances still have a receiver clock bias.
Since the receiver clock bias (treceiver

bias ) is the same in all indoor distances, it is removed by
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the LSNAV algorithm by subtracting them from each other, and the indoor position is
calculated. This algorithm is run for each sample. The obtained results are filtered with a
moving average filter, and the indoor position is estimated as an average of these filtered
points. More details regarding the estimation are provided under Section 4.

3. Experimental Setups for Indoor Positioning

The indoor positioning experiments were performed in the Sabancı University Faculty
of Engineering and Natural Sciences. The floorplan is depicted in Figure 8.
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Figure 8. The location of repeaters on the floor plan of Sabancı University Faculty of Engineering
and Natural Sciences (FENS) Building 2nd Floor.

The satellite positions in the sky have been observed as depicted in Figure 9, and the
directional GPS antenna orientations are set accordingly.
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The hardware delays from GPS antennas, amplifiers, attenuators, filters, converters,
bias-tees, and cables are measured and presented as group delays (τi) in Table 3. The
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group delay of each repeater is measured with a 20 GHz oscilloscope. As a result, for
each repeater, GPS antenna and cabling have different measured values in the order of
nanoseconds. These values are used in Equation (1) to calibrate the system. Moreover, each
repeater position is also provided in Table 3. As mentioned earlier, two experiments are
presented in this paper. While the repeater positions are fixed in the same location in both
experiments, as presented in Table 3, the receiver position is different for each experiment.
In the first experiment, the receiver is located at the intersection of 2 corridors, in that it is
on the line-of-sight of all 3 repeaters. However, in the second experiment, the receiver is
located closer to Repeater 1 (R1), in that it is not on the line-of-sight of Repeater 2 (R2).

Table 3. Repeater configurations.

Repeater Number (Ri) Measured Group Delay (τi)
Position

(Latitude, Longitude)

R1 48.5 ns 40.89072, 29.37955
R2 103 ns * 40.89048, 29.37941
R3 86 ns 40.89044, 29.37966

The latitudes and longitudes are given in degrees. * Repeater 2 has a third LHA-13LN+ amplifier.

In all experiments, there has been no switching, and all three repeaters have been
transmitted simultaneously.

3.1. Setup for Experiment 1

Figure 10 shows the first experimental setup and indoor distances between each
receiver and repeater. The repeater configurations are kept as provided in Table 3. Although
Repeater 2 has a third amplifier, its attenuator is set to 15 dB. Therefore, its gain is 7 dB
higher from Repeaters 2 and 3. The outdoor GPS antenna directions are set such that the
beam of an antenna does not overlap in azimuth with other GPS antennas in the setup. The
directional GPS antennas in Repeaters 1, 2, and 3 are, respectively, towards the geographic
east, south, and west. In this experiment, the receiver is located at the intersection of two
perpendicular corridors to provide a line-of-sight condition.
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The real values of the indoor distances d1, d2, and d3 are determined with a physical
measurement using a laser pointer for a later comparison with the estimated values.
The distance measurements are performed with respect to the known coordinates of the
building.

3.2. Setup for Experiment 2

Figure 11 shows the second experimental setup and indoor distances between each
receiver and repeater. In this experiment, a non-line-of-sight condition is formed by locating
the receiver closer to Repeater 1. Repeater 2 does not directly see the receiver due to the
corner at the intersection of two perpendicular corridors. The repeater configurations are
kept as provided in Table 3. Repeater 2, which has an additional amplifier, is used with
5 dB attenuation to compensate for the non-line-of-sight condition and the scattering from
the corner. Therefore, its gain is 17 dB higher than Repeaters 2 and 3.

The outdoor GPS antenna directions are the same as Experiment 1.
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Figure 11. Distance between the receiver and each repeater, directional GPS antenna azimuth (Az)
and elevation (El), and the attenuator value in each repeater in Experiment 2.

The real values of indoor distances d1, d2, and d3 are determined with a physical
measurement using a laser pointer for a later comparison with the estimated values. The
distance measurements are performed with respect to the well-known coordinates of the
building.

4. Results and Discussion

In this section, the techniques performed for the indoor position estimation with the
proposed hardware, algorithm, and methods are presented along with the experimental
data gathered in the experiments in a real indoor environment. Among these, the estimated
indoor position, the satellites seen by each directional outdoor GPS antenna during the
experiments, estimated distances from each repeater to the receiver with receiver clock bias,
the CNR of each satellite signal within the angle of view of the corresponding repeater, and
the 50% CEP from the estimated position are graphically visualized and presented in this
section. The MATLAB® routine with LSNAV algorithm, presented in Section 2, has been
utilized for the position estimation of each sample collected in the experiments.

The satellites, in the angle of view of each repeater in Experiments 1 and 2, are
presented in Figure 12. It should be noted that for this approach to work properly, it is
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important to know which repeater transfers the signal, coming from a particular satellite,
into the building. This is in fact one of the reasons for the decision to utilize directional
GPS antennas.
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Figure 12. Satellites in each repeater’s angle of view in Experiments (a) 1 and (b) 2.

The association of the repeater, used for the signal of a particular GPS satellite, is
accomplished by using the position, the azimuth, and the elevation of the directional
GPS antenna and considering the GPS satellites that are in the targeted region of that
particular antenna. If a satellite falls into the targeted region of multiple GPS antennas,
we do not use any measurement based on that satellite, since we cannot be sure which
repeater transferred the signal of that satellite into the building. In these experiments,
therefore, the satellite labeled as G19 in Figure 12 (red point) has been ignored, while the
satellites represented with green points have been utilized in position estimation for both
experiments. Additionally, although the directional antenna beam widths are 60 degrees,
the experiment results have shown that the GPS antennas can receive signals from a
90-degree angle in azimuth (Figure 12).
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4.1. Results of Experiment 1

The first experiment is performed in the real indoor environment, which is presented
in Figure 10, to demonstrate the performance of the proposed indoor positioning system
under line-of-sight conditions. The position for each sample is estimated with the LSNAV
algorithm using the GPS satellite’s signal, which is within the angle of view of each repeater.
As mentioned previously, G19 is ignored because it is seen by more than one repeater.
Under these conditions, the CNR of the received GPS signals, from the selected satellites
for the indoor position estimation, is provided in Figure 13.
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Figure 13. CNR of each GPS signal received by the repeaters.

The sum of the indoor distances (d1, d2, and d3), including receiver clock bias (treceiver
bias ),

are calculated in Equation (1) and subtracted from each to obtain the difference terms
(d2 + treceiver

bias )−(d1 + treceiver
bias ) and (d3 + treceiver

bias )−(d1 + treceiver
bias ) for each sample. Figure 14a,b

shows the indoor distance difference terms in which the receiver clock biases are removed
due to the subtraction, while in Figure 14c, it demonstrates the individual distances with
the receiver clock bias (d1 + treceiver

bias , d2 + treceiver
bias , d3 + treceiver

bias ).
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multipath, an abrupt change in CNR occurs. For these samples, that do not have good 
CNR from all three repeaters, LSNAV does not result in a solution. 

Moreover, a moving average filter with a five-sample window size has been applied 
over the 74 results from LSNAV, which then give 69 location estimations. The resulting 
69 locations are depicted in Figure 15a,b with red dots. Figure 15a presents the results on 
a latitude–longitude graph, whereas Figure 15b presents the results on a local reference 
frame where the center is the real position of the receiver, which was previously deter-
mined by physical measurements in the experimental setup with respect to the building 
whose coordinates and plan are well known. We calculated the radius of 50% CEP as 3.3 

Figure 14. The indoor distance differences (a,b) and indoor distances with the receiver clock bias term (c).

As seen in Figure 14c, the indoor distances with receiver clock bias (d1 + treceiver
bias , d2

+ treceiver
bias , d3 + treceiver

bias ) can go up to thousands of meters. When the receiver clock bias is
removed, with subtraction, the indoor differences can be found in the range of tens of
meters. The calculated indoor distance difference terms (blue curve in Figure 14a,b) are
averaged with a moving average filter of a five-sample window size. The resulting terms
(red curve in Figure 14a,b) show a closer result to the measured indoor distance differences
(black dashed line in Figure 14a,b), which can be calculated using the measured indoor
distances d1, d2, and d3 in Figure 10.

Figure 15a depicts the GPS repeater and outdoor GPS antenna positions according to
their latitude and longitude in Experiment 1. These results show that the LSNAV algorithm
has resulted in a solution for 74 out of 100 collected samples. The reason why the LSNAV
does not result in a solution for every sample collected is addressed subsequently in the
CNR provided in Figure 13. For some samples, due to environmental changes or multipath,
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an abrupt change in CNR occurs. For these samples, that do not have good CNR from all
three repeaters, LSNAV does not result in a solution.
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Figure 15. The results of the Experiment 1: (a) repeater positions, outdoor GPS antenna positions, collected samples
(red dots), real position of the receiver (black square), estimated position (blue square), and CEP (blue circle) on latitude–
longitude graph; (b) collected samples (red dots), real position of the receiver (black square), estimated position (blue
square) on local reference frame whose center is the real position of the receiver.

Moreover, a moving average filter with a five-sample window size has been applied
over the 74 results from LSNAV, which then give 69 location estimations. The resulting
69 locations are depicted in Figure 15a,b with red dots. Figure 15a presents the results on
a latitude–longitude graph, whereas Figure 15b presents the results on a local reference
frame where the center is the real position of the receiver, which was previously determined
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by physical measurements in the experimental setup with respect to the building whose
coordinates and plan are well known. We calculated the radius of 50% CEP as 3.3 m
and plotted it in Figure 15a. Moreover, the indoor position is estimated as the mean of
these 69 points obtained with moving average filtering. The real position of the receiver
is represented with a black square, while the estimated position is presented with a blue
square in Figure 15a,b. The estimated location is obtained by averaging 69 points, which
are the output of the moving average filter, and is 54 cm away from the real position, as
can be seen in Figure 15b.

Because the estimated position from 69 points is 54 cm away from the real position
(Figure 15), a sub-meter accuracy has been achieved for line-of-sight conditions. In addition
to the 50% CEP with a radius of 3.3 m from the estimated position, we also calculated each
of the 69 points distances from the real position and presented it in Figure 16. The average
error of the individual samples, from the real position, is 3.37 m.
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4.2. Results of Experiment 2

Experiment 2 setup in Figure 11 is set to demonstrate the performance of the proposed
indoor positioning system under non-line-of-sight conditions in a real indoor environment.
The CNR of GPS signals received from the selected GPS satellites are provided in Figure 17.

Similar to Experiment 1, the average position is estimated with the LSNAV algorithm.
In this experiment also, G19 is ignored, as it is within the angle of view of more than one
repeater. Additionally, although G15 is seen by Repeater 2, its CNR is much lower than
G24; therefore, it is also ignored in the calculations.
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Figure 17. CNR of each GPS signal received by the repeaters.

The indoor distances (d1, d2, and d3), with receiver clock bias (treceiver
bias ) and their

difference at each sample (d2 + treceiver
bias )−(d1 + treceiver

bias ) and (d3 + treceiver
bias )−(d1 + treceiver

bias ) are
plotted and demonstrated in Figure 18. The resulting terms (red curve in Figure 18a,b)
show a closer result to the measured indoor distance differences (black dashed line in
Figure 18a,b), which can be calculated using the measured indoor distances d1, d2, and d3
in Figure 11.
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30 location estimations have been obtained (Figure 19a,b with red dots). Figure 19a 
demonstrates the results on a latitude–longitude graph, whereas Figure 19b presents the 
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Figure 18. The indoor distance differences (a,b) and indoor distances with the receiver clock bias term (c).

Figure 19a depicts the GPS repeater and outdoor GPS antenna positions, according to
their latitude and longitude, in Experiment 2. In this experiment, the LSNAV algorithm
has resulted in solutions for 35 out of 100 collected samples. Then, a moving average
filter with a five-sample window size has been applied over these 35 converged solutions,
and 30 location estimations have been obtained (Figure 19a,b with red dots). Figure 19a
demonstrates the results on a latitude–longitude graph, whereas Figure 19b presents the
results on a local reference frame in which the center is the real position of the receiver,
which was previously determined by distance measurement in the experimental setup
with respect to the known coordinates of the building structure. The indoor position is
estimated as the mean of these 30 points. The real position of the receiver (black square)
and estimated position (blue square) have been plotted in Figure 19a,b. It is seen that the
estimated position is 98 cm away from the real position in Figure 19b.
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Figure 19. The results of the Experiment 2: (a) repeater positions, outdoor GPS antenna positions, collected samples
(red dots), real position of the receiver (black square), estimated position (blue square), and CEP (blue circle) on latitude–
longitude graph; (b) collected samples (red dots), real position of the receiver (black square), estimated position (blue
square) on local reference frame whose center is the real position of the receiver.

The 50% CEP is calculated to have a radius of 4 m and drawn also in Figure 19a.
Moreover, the distance error from the real receiver position for each of the 30 points

has been depicted in Figure 20. The average error of the individual samples from the real
position is 4.17 m.
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Figure 20. Deviation from the real position for each of 30 points.

Under non-line-of-sight conditions in the experiments, while estimated position error
increases, it is still possible to achieve sub-meter accuracy. To quantify the increased error
amount, one can compare the radius of the 50% CEP circles in Figures 15a and 19a. The
radius of the 50% CEP is higher in Experiment 2. Additionally, when CNR values in
Figure 17 are compared with those in Figure 13, we can conclude that the non-line-of-
sight condition reduces the CNR. In the proposed system, variable attenuators are used to
compensate for the non-line-of-sight conditions. To adjust, we can easily set the attenuation
level, the retransmitted GPS power levels, and adjust the CNR levels so that the receivers
can receive almost equal signal levels from each direction and each satellite. That is the
reason why the attenuation level of Repeater 2 is set to a lower level in Experiment 2.

5. Conclusions

The implemented 433 MHz down-converting repeaters with variable attenuators and
433 MHz up-converting receiver with variable attenuator have been used in 2D positioning
successfully for the first time. It is also shown that, with the help of cascaded LNA and
variable attenuator, the proposed system for 2D positioning has gained immunity to the
non-line-of-sight conditions. The power level of the signals that are transmitted to the
receiver can be adjusted by varying the attenuation so that a receiver can pick up different
satellite signals coming from different indoor paths almost equally. The GPS signals, which
are down-converted and retransmitted by repeaters, are sent to the indoor environment and
picked-up by an up-converting receiver. After up-conversion, the raw data are collected
by an off-the-shelf receiver and then transmitted over Wi-Fi to a remote computer for
processing. The estimated positions are found to be only 54 and 98 cm away from the
actual receiver position, for line-of-sight and non-line-of-sight cases, respectively. Therefore,
experiment results show that sub-meter accuracy can be achieved with the transmission of
GPS signals in the 433 MHz ISM band in an indoor environment.
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Turkey (TÜBİTAK), Grant No: 116E752.

Institutional Review Board Statement: Not Applicable.

46



Sensors 2021, 21, 4338

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. MarketsandMarkets. Indoor Location Market by Component (Hardware, Solutions, and Services), Deployment Mode, Organiza-

tion Size, Technology, Application, Vertical (Retail, Transportation and Logistics, Entertainment), and Region—Global Forecast
to 2025 (Report Code: TC 2878). May 2020. Available online: https://www.marketsandmarkets.com/Market-Reports/indoor-
location-market-989.html (accessed on 20 May 2021).

2. Vasisht, D.; Kumar, S.; Katabi, D. Decimeter-Level Localization with A Single Wifi Access Point. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’16), Santa Clara, CA, USA, 16–18 March 2016;
pp. 165–178.

3. Cypriani, M.; Lassabe, F.; Canalda, P.; Spies, F. Open Wireless Positioning System: A Wi-Fi-Based Indoor Positioning System. In
Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, AK, USA, 20–23 September
2009; pp. 1–5.

4. Zou, H.; Jiang, H.; Lu, X.; Xie, L. An Online Sequential Extreme Learning Machine Approach to Wifi Based Indoor Positioning. In
Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6 March 2014; pp. 111–116.

5. Ciurana, M.; Cugno, S. WLAN Indoor Positioning Based on TOA with Two Reference Points. In Proceedings of the 4th Workshop
on Positioning, Navigation and Communication 2007 (WPNC’07), Hannover, Germany, 22–22 March 2007; pp. 23–28.

6. Hoang, M.K.; Haeb-Umbach, R. Parameter Estimation and Classification of Censored Gaussian Data with Application to Wifi
Indoor Positioning. In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2013), Vancouver, BC, Canada, 26–31 May 2013; pp. 3721–3725.

7. Faheem, F. Ibeacon Based Proximity and Indoor Localization System. Master’s Thesis, Purdue University, West Lafayette, IN,
USA, 2016.

8. Faragher, R.; Harle, R. Location Fingerprinting with Bluetooth Low Energy Beacons. IEEE J. Sel. Areas Commun. 2015, 33,
2418–2428. [CrossRef]

9. Madhavapeddy, A.; Tse, A. A Study of Bluetooth Propagation Using Accurate Indoor Location Mapping. In Proceedings of the
UbiComp 2005: Ubiquitous Computing, Tokyo, Japan, 11–14 September 2005; pp. 105–122.

10. Zafari, F.; Papapanagiotou, I.; Christidis, K. Microlocation for Internet of Things Equipped Smart Buildings. IEEE Internet Things
J. 2016, 3, 96–112. [CrossRef]

11. Castillo-Cara, M.; Lovón-Melgarejo, J.; Bravo-Rocca, G.; Orozco-Barbosa, L.; García-Varea, I. An Analysis of Multiple Criteria and
Setups for Bluetooth Smartphone-Based Indoor Localization Mechanism. J. Sens. 2017, 2017. [CrossRef]

12. Aykac, M.; Ergun, E.; Aldin, N.B. Zigbee-Based Indoor Localization System with The Personal Dynamic Positioning Method and
Modified Particle Filter Estimation. Analog. Integr. Circuits Signal Process. 2017, 92, 263–279. [CrossRef]

13. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor Location Sensing Using Active RFID. Wirel. Netw. 2004, 10, 701–710.
[CrossRef]

14. Kuo, Y.-S.; Pannuto, P.; Hsiao, K.-J.; Dutta, P. Luxapose: Indoor Positioning with Mobile Phones and Visible Light. In Proceedings
of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp.
447–458.

15. Liu, K.; Liu, X.; Li, X. Guoguo: Enabling Fine-Grained Smartphone Localization Via Acoustic Anchors. IEEE Trans. Mob. Comput.
2016, 15, 1144–1156. [CrossRef]

16. Huang, W.; Xiong, Y.; Li, X.Y.; Lin, H.; Mao, X.; Yang, P.; Liu, Y.; Wang, X. Swadloon: Direction Finding and Indoor Localization
Using Acoustic Signal by Shaking Smartphones. IEEE Trans. Mob. Comput. 2015, 14, 2145–2157. [CrossRef]

17. Priyantha, N.B. The Cricket Indoor Location System; Massachusetts Institute of Technology: Cambridge, MA, USA, 2005.
18. Hazas, M.; Hopper, A. Broadband Ultrasonic Location Systems for Improved Indoor Positioning. IEEE Trans. Mob. Comput. 2006,

5, 536–547. [CrossRef]
19. Peterson, B.; Bruckner, D.; Heye, S. Measuring GPS Signals Indoors. In Proceedings of the 10th International Technical Meeting of

the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, USA, 16–19 September 1997; pp. 615–624.
20. Moeglein, M.; Krasner, N. An Introduction to SnapTrack Server-Aided GPS Technology. In Proceedings of the 11th International

Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), Nashville, TN, USA, 15–18 September
1998; pp. 333–342.

21. Garin, L.J.; Chansarkar, M.; Miocinovic, S.; Norman, C.; Hilgenberg, D. Wireless Assisted GPS-SiRF Architecture and Field Test
Results. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GPS 1999), Nashville, TN, USA, 14–17 September 1999; pp. 489–498.

22. Andrianarison, M. New Methods and Architectures for High Sensitivity Hybrid GNSS Receivers in Challenging Environments.
Ph.D. Thesis, University of Toulouse, Toulouse, France, 2018.

47



Sensors 2021, 21, 4338

23. Monnerat, M.; Couty, R.; Vincent, N.; Huez, O.; Chatre, E. The Assisted GNSS, Technology and Applications. In Proceedings of
the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach,
CA, USA, 21–24 September 2004.

24. Klein, D.; Parkinson, B.W. The Use of Pseudo-Satellites for Improving GPS Performance. J. Institude Navig. 1984, 31, 303–315.
[CrossRef]

25. Rapinski, J.; Cellmer, S.; Rzepecka, Z. Modified GPS/Pseudolite Navigation Message. J. Navig. 2012, 65, 711–716. [CrossRef]
26. Rizos, C.; Roberts, G.; Barnes, J.; Gambale, N. Experimental Results of Locata: A High Accuracy Indoor Positioning System. In

Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland,
15–17 September 2010. [CrossRef]

27. Kee, C.; Jun, H.; Yun, D. Indoor Navigation System Using Asynchronous Pseudolites. J. Navig. 2003, 56, 443–455. [CrossRef]
28. Xingli, G.; Baoguo, Y.; Xianpeng, W.; Yongqin, Y.; Ruicai, J.; Heng, Z.; Chuanzhen, S.; Lu, H.; Boyuan, W. A New Array Pseudolites

Technology for High Precision Indoor Positioning. IEEE Access 2019, 7, 153269–153277. [CrossRef]
29. Petrovski, I.; Okano, K.; Kawaguchi, S.; Torimoto, H.; Suzuki, K.; Toda, M.; Akita, J. Indoor Code and Carrier Phase Positioning

with Pseudolites and Multiple GPS Repeaters. In Proceedings of the 16th International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 1135–1143.

30. Xu, R.; Chen, W.; Xu, Y.; Ji, S. A New Indoor Positioning System Architecture Using Gps Signals. Sensors 2015, 15, 10074–10087.
[CrossRef]

31. Ma, C.; Yang, J.; Chen, J.; Tang, Y. Indoor and Outdoor Positioning System Based on Navigation Signal Simulator and Pseudolites.
Adv. Space Res. 2018, 62, 2509–2517. [CrossRef]

32. Ozsoy, K.; Bozkurt, A.; Tekin, I. Indoor Positioning Based on Global Positioning System Signals. Microw. Opt. Technol. Lett. 2013,
55, 1091–1097. [CrossRef]

33. Fluerasu, A.; Jardak, N.; Vervisch-picois, A.; Samama, N. GNSS Repeater Based Approach for Indoor Positioning: Current Status.
In Proceedings of the European Navigational Conference ENC-GNSS 2009, Naples, Italy, 3–6 May 2009.

34. Vervisch-Picois, A.; Samama, N. First Experimental Performances of The Repealite Based Indoor Positioning System. In
Proceedings of the 2012 International Symposium on Wireless Communication Systems, Paris, France, 28–31 August 2012; pp.
636–640.

35. Selmi, I.; Samama, N.; Vervisch-Picois, A. A New Approach for Decimeter Accurate GNSS Indoor Positioning Using Carrier Phase
Measurements. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation, Montbeliard,
France, 28–31 October 2013.
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Abstract: In this paper, we present a novel, low-cost approach to indoor localization that is capable
of performing localization processes in real indoor environments and does not require calibration
or recalibration procedures. To this end, we propose a single-anchor architecture and design based
on an electronically steerable parasitic array radiator (ESPAR) antenna and Nordic Semiconductor
nRF52840 utilizing Bluetooth Low Energy (BLE) protocol. The proposed algorithm relies on received
signal strength (RSS) values measured by the receiver equipped with the ESPAR antenna for every
considered antenna radiation pattern. The calibration-free concept is achieved by using inexpensive
BLE nodes installed in known positions on the walls of the test room and acting as reference nodes
for the positioning algorithm. Measurements performed in the indoor environment show that the
proposed approach can successfully provide positioning results better than those previously reported
for single-anchor ESPAR antenna localization systems employing the classical fingerprinting method
and relying on time-consuming calibration procedures.

Keywords: Internet of Things (IoT); wireless sensor network (WSN); switched-beam antenna;
electronically steerable parasitic array radiator (ESPAR) antenna; indoor positioning; received signal
strength (RSS); fingerprinting

1. Introduction

Positioning and navigation systems play an important role in daily lives, since global
navigation satellite system (GNSS) applications cover a number of different location-based
services, such as wildlife protection, road applications, and security and safety [1]. Even
though GNSS provide reliable positioning outdoors [2], the satellite signals cannot reach
indoors [3], so global positioning system (GPS) receivers cannot be applied in indoor
environments. Considering that people spend more than 80% of their lifetime indoors [4],
indoor positioning is at least as important as outdoor positioning. Additionally, differ-
ent applications may benefit from indoor positioning, such as marketing and sales [5],
health [6], or security and emergency solutions [7]. Thus, a number of indoor position-
ing technologies have been developed and are currently the subjects of further research.
Non-radio technologies such as magnetic [8], visual [9], and inertial [10] technologies can
be distinguished. On the other hand, radio technologies include ultra-wideband (UWB)
signals [11] and radio frequency (RF) standards, of which the most popular are Wi-Fi and
Bluetooth [12], RFID [13], and NFC [14].

Considering RF methods, there are two popular approaches for indoor positioning:
geometry mapping and fingerprinting [15]. Due to its popularity, most often 2.4 GHz
solutions based on common systems such as 802.11, 802.15.4, or Bluetooth Low Energy
(BLE) are utilized. The last technology provides the benefits of relatively inexpensive
devices to create positioning systems, as well as being low maintenance due to the long
battery life of such devices. Additionally, BLE devices often come with integrated inertial
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measurement units (IMU), so one can relatively easily implement additional data fusion
algorithms relying on IMU sensors [16].

The geometry mapping approach utilizes the estimation of geometric parameters,
such as the angle of arrival (AoA) of the signal and the distance of its source with respect
to certain reference information [17]. The main drawback of this approach is the potential
estimation error that may occur due to the multipath effect in the propagation environment.

Fingerprinting is an approach that minimizes multipath effects by using an offline
map of signal features collected in certain locations of the area as a reference to find the
best match for the signal received from the unknown position [18]. The advantage of
the solution is the relatively low computational power needed to perform the estimation.
Nevertheless, in large areas, the calibration phase might be time- and effort-consuming,
since the density of the radio map impacts the accuracy of the final estimation. This can
be minimized through the utilization of the channel state information (CSI) [19], which
includes the amplitude and phase of each orthogonal frequency-division multiplexing
(OFDM) channel subcarrier [15] to improve the estimation accuracy in locations outside of
the reference points. Unfortunately, this approach requires much higher computational
power to perform the signal processing, making the system more expensive, and it is not
applicable in BLE.

The fingerprinting approach has two crucial downsides that limit its applicability.
First is the aforementioned calibration phase, which requires a large number of precisely
measured spatial samples of the signal properties to assure the best positioning results [20].
In dynamic environments, the system needs to be recalibrated regularly as the radio map
becomes outdated when the propagation environment changes over time. A number of
solutions have been researched to simplify the recalibration process [21–23]; nevertheless,
in most cases, additional infrastructure is needed. The other drawback is the number of
reference nodes that need to be installed on site to collect information about the signal. To
some extent, the more reference nodes are used, the more accurate the estimation is, as
the received signal strength (RSS) vectors are longer [24]. On the other hand, the number
of devices that create the positioning system also affects the final cost of the installation.
To solve this issue, single-anchor positioning has been proposed as one of the solutions
for simplification and cost reduction in indoor positioning system installations [25–27]. In
such solutions, instead of many reference modules, only a single device equipped with a
reconfigurable antenna able to modify its radiation pattern is used.

In this paper, we present a novel method for calibration-free single-anchor indoor
positioning. The solution is evaluated utilizing cost-effective BLE modules as auxiliary
reference nodes located in fixed positions on room walls. The nodes act as beacons,
transmitting reference signals to be considered during position estimation; in this way, the
solution is less sensitive to changes in the environment. Additionally, no human-operated
calibration or recalibration is needed, since the system is based on current signals received
from the reference nodes. Furthermore, simple BLE beacons have relatively long battery life
and low retail cost, thus the use of reference modules does not significantly influence the
total cost of the system. As a result, such systems could be particularly valuable in scenarios
where regular maintenance is difficult or impossible, including busy organizational units
such as hospitals or airports. For the single-anchor localization device, the BLE module
together with the energy-efficient electronically steerable parasitic array radiator (ESPAR)
antenna were chosen. With the aforementioned antenna, the beam can be controlled by
shortening or opening passive elements surrounding the active element in the center.

The resulting novel, calibration-less, single-anchor localization system was tested,
providing better results than other systems previously reported in the literature [26,27].
Additionally, the calibration-free approach decreases the risk of accuracy loss over time
and reduces the system maintenance costs. According to the authors’ knowledge, there is
no other calibration-free indoor positioning system using the single-anchor ESPAR antenna
concept. Therefore, the main contribution of this paper is the original approach to single-
anchor position estimation by utilizing the angular diversity capabilities of an ESPAR
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antenna and the reference signals of the reference nodes, providing zero-calibration func-
tionality. Additionally, the proposed approach provides at least 13.7% higher accuracy than
available single-anchor approaches relying on time-consuming prior calibration [26,27].

The rest of this paper is organized as follows. In Section 2, the related work is described.
Section 3 includes the antenna characterization. Section 4 presents the proposed calibration-
free algorithm. The test environment and results are presented in Sections 5 and 6, respec-
tively, while concluding remarks are presented in Section 7.

2. Related Work

An analysis of the parameters of RF signals allows one to estimate the position of
a transceiver based on spatial information. To this day, a number of position estimation
techniques have been developed [28], however from the perspective of applicability in
wireless sensor networks (WSNs), those that do not impose high computation costs and are
the easiest to introduce in real scenarios are the most interesting. From this point of view,
algorithms that rely on RSS values are the most attractive, as they provide relatively high
accuracy while keeping the implementation complexity reasonably low. Consequently, such
algorithms can easily be implemented in simple WSN nodes with integrated RSS readouts.

One of the most popular RSS-based localization methods is the trilateration method [29],
which is a trigonometric approach where the distances from three access points (APs) of
known locations are calculated based on the chosen propagation model. Knowing the
positions of the APs and the estimated distances of the mobile nodes from each of them,
the positions of the node can be estimated by solving the equation:





R1 =
√
(x− X1)

2 + (y−Y1)
2(z− Z1)

2

R2 =
√
(x− X2)

2 + (y−Y2)
2(z− Z2)

2

R3 =
√
(x− X3)

2 + (y−Y3)
2(z− Z3)

2

(1)

where Rj is the estimated range from APj and Xj, Yj, Zj are the coordinates of APj. The
main drawback of this approach is the influence of the environment on the RSS values and
the need to use complex propagation models to provide a proper mathematical description
of the environment. Similarly, in an approach called centroid localization, N closest APs
are chosen based on RSS values and the node positions are estimated by calculating the
centroid formula [30]:

(x, y) =
(

X1 + X2 + · · ·+ XN
N

,
Y1 + Y2 + · · ·+ YN

N

)
(2)

Another approach to indoor positioning based on the strength of the received signal is
called fingerprinting [31]. In this method, two phases can be distinguished, namely offline
and online phases. During the offline phase, the system learns the RSS values at the number
of defined reference points by collecting measurements across the scene from all of the APs.
The values are stored in the database together with the coordinates of each point. During
the online phase, the actual position estimation is performed and RSS values are collected
and compared with the values in the database. The localization of the device is estimated
by calculating the Euclidean distance between the each vector of the RSS values from the
offline phase and the ones measured during the online phase, which can be described as:

Dj =

√√√√ I

∑
i=1

(
RSSonlinei

− RSSo f f linei,j

)2
(3)

where I is the total number of APs for which RSS values are stored, RSSonlinei
is the RSS

value measured during the online phase by the ith AP, RSSo f f linei,j
is the RSS value for

the ith AP stored in the database, and j is the consecutive number of fingerprints. In the
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simplest version, to determine the position, the distance is calculated for every reference
point and the estimated position is the reference position for which the Euclidean distance
has the lowest value. A number of improvements to this method have been presented, such
as the arithmetic mean distance from K nearest neighbors (KNN) [32] and the weighted
mean distance (WKNN).

Indoor positioning based on a single anchor allows one to achieve the localization
functionalities using smaller infrastructure in terms of the number of devices. Since UWB
signals are more robust to multipath effects [33], to achieve higher estimation accuracy,
UWB ranging is often utilized in single anchor positioning. In [34], the authors propose
a hybrid approach, which combines UWB ranging modules with data processing from
inertial sensors that consist of a 3-axis accelerometer for the step counting and 3-axis mag-
netometer for the azimuth angle estimation. Additionally, a real-time Kalman filter is used
to smooth the ranging results. Inertial measurement data can also be a support for direction
of arrival (DoA) and ranging based on typical 2.4 GHz protocols. For example, in [35], the
authors present a fusion algorithm for BLE transceiver signal angle and distance estima-
tion based on Kalman filtering and simplified pedestrian dead reckoning (PDR). Angle
estimation is achieved with signal-phase measurements on a uniform linear antenna array,
while the range is estimated with a path loss model based on RSS. A 10-element uniform
linear antenna array was also used for DoA fingerprinting in [36]. In this approach, the
angle of arrival is estimated using the minimum variance distortionless response (MVDR)
estimator. Position estimation was performed based on a DoA fingerprinting approach
using spatial spectrum measurements, where the measured spatial spectrum is compared
with the set of training data using the Pearson correlation coefficients. In [37], the au-
thors propose a multipath-based, single-anchor positioning system, which non-coherently
acquires directional measurements by exploiting specular multipath components.

Switched-beam antennas are often used for single anchor positioning systems, whereby
a single base station in a given area can perform the positioning instead of a number ref-
erence nodes, which reduces the deployment cost of the system [25–27]. The benefit of
such an approach is that it can be integrated with the most popular wireless communi-
cation standards such as Wi-Fi and BLE to reduce the number of base stations used as
APs. The most promising switched-beam antenna concepts, which can be used in practical
single-anchor localization systems, are those that are inexpensive for mass production and
easy to integrate with low-cost transceivers, with simple microcontrollers performing RSS
measurements and localization estimation [26,38].

Due to the RSS instability and changes in the environment, the radio map for the
fingerprinting method deteriorates over time and needs to be updated regularly. Therefore,
solutions that simplify or automate the recalibration process give the user the possibility to
reduce the maintenance efforts and costs of the system. One such solution was presented
in [39], where radio maps for the offline phase of fingerprinting were generated automati-
cally. The authors used IoT Wi-Fi sensors as scanning nodes to analyze the environment.
The obtained RSS measurements were then utilized to periodically generate new radio
maps using a pre-processed path loss template. The updates were generated by estimating
the RSS values for each cell of the 1 m × 1 m grid. In [23], invariant RSS statistics were
introduced to eliminate the need for offline recalibration. Particle filters can also be adopted
to use crowd-sourced fingerprinting maps for the recalibration [21] and to fuse PDR and
positioning estimation data in order to determine and re-estimate the divergence of particle
trajectories. These re-estimated trajectories can be adopted to update the radio map. In [22],
APs were used to detect permanent changes in RSS values and to modify the radio map
accordingly. The update was performed using a Voronoi diagram, excluding from the
recalibration those APs for which RSS characteristics changed significantly. Then, the RSS
delta was added to each fingerprint as a final stage of recalibration.

Often, the advantages of CSI are harnessed to achieve calibration-free localization. This
can be done as described in [40], where the construction of a theoretical CSI fingerprinting
database without a site survey was presented. In this approach, the constellation diagram

54



Sensors 2021, 21, 3431

is utilized to represent the relation between the phase difference and AoAs. Theoretical
AoAs are derived with respect to existing access points (APs) for any given position and
are transformed into the phase difference for a fingerprinting database.

Among other positioning methods, solutions based on product-moment [41] and
least-squares [42] correlations between the RSS and the estimated signal strength have
been presented. Such methods do not require offline calibration and differ only in the
optimization criteria to be calculated; nevertheless, they require assumptions based on the
channel propagation models. A further step was taken by the authors of [43], whereby the
relation between the RSS and the distance from the APs was used to construct the Voronoi
diagram of the area relative to the particular AP locations. During the positioning, the
ambiguity region was estimated as the Voronoi cell of the AP of the strongest RSS and was
split into two half-planes by analyzing the relative relation between the RSS of each pair of
APs. The final position was estimated as the center mass of the final ambiguity region.

3. ESPAR Antenna for Single-Anchor Localization

The ESPAR antenna considered for the proposed calibration-free indoor positioning
system is an interesting, less expensive, more energy-efficient alternative solution to com-
plex antenna arrays [44,45]. Radiation patterns from ESPAR antennae can be modified
by changing load impedances connected to passive elements located around the active
element. For the proposed calibration-free single-anchor indoor localization method, a
simplified concept, as previously presented in [45], was implemented. In this design, as
depicted in Figure 1, the antenna consists of 12 passive elements located around the active
element, to which the signal output of the transceiver is connected. Each of the 12 passive
elements can be shorted or opened through single-pole, double-throw (SPDT) field-effect
transistor (FET) switches steered individually from a microcontroller. Shorted passive
elements become reflectors while opened ones are directors for the active element. As a
result, a directional radiation pattern, as shown in Figure 2, can be created and rotated with
a 30◦ discrete step, forming 12 different directional radiation patterns. The utilization of
FET switches brings a significant reduction of power consumption via the antenna circuit as
compared to varactor-based solutions [46] and can be successfully used in DoA estimation
of battery-powered IoT modules [38,47].
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Figure 2. Simulated ESPAR antenna radiation pattern gain (in dBi) at 2.484 GHz for the steering
vector V1

max = [111110000000].

The antenna designed with FEKO electromagnetic simulation software in [45] has a
center frequency of 2.484 GHz and directional radiation patterns at 3 dB beamwidth of 73.2◦,
which can be formed by shorting five consecutive passive elements. Therefore, the antenna
configurations can be denoted using the steering vector Vn

max = [v1 v2 · · · vs · · · v11 v12],
where vs = 0 when the sth element is shorted and vs = 1 when it is opened. All of
the vectors considered following the steering vector notation and the corresponding ra-
diation patterns are presented in Table 1. It has to be noted that from the localization
system perspective, each configuration can be considered as a separate AP for indoor
positioning, as each RSS from incoming RF signals for each radiation pattern has a different
spatial distribution.

Table 1. The antenna’s main beam directions for different steering vectors applied to the Electronically
Steerable Parasitic Array Radiator (ESPAR) antenna.

n ϕn
max Vn

max

1 90◦ 111110000000
2 120◦ 011111000000
3 150◦ 001111100000
4 180◦ 000111110000
5 210◦ 000011111000
6 240◦ 000001111100
7 270◦ 000000111110
8 300◦ 000000011111
9 330◦ 100000001111

10 0◦ 110000000111
11 30◦ 111000000011
12 60◦ 111100000001

The antenna was constructed following the described design on 1.55 mm FR4 laminate.
The passive elements were constructed with a 2-mm-diameter silver-plated copper rod,
while the active element used the same 25.6-mm-long copper rod as an extension of the
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SMA connector soldered directly to the laminate. To provide beam-switching capability to
the antenna, NJG1681MD7 GaAs FET MMICs SPDT switches were chosen. The antenna
prototype, as presented in Figure 3, was equipped with Arduino Shield headers for the
convenient connection of different WSN modules compatible with the standard. Addition-
ally, 12 LEDs were installed at the bottom of the PCB to represent the status of each passive
element. A similar antenna prototype was used in [26] for indoor positioning based on the
fingerprinting method.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 23 
 

 

Table 1. The antenna’s main beam directions for different steering vectors applied to the 

Electronically Steerable Parasitic Array Radiator (ESPAR) antenna. 

𝒏 𝝋𝒎𝒂𝒙
𝒏  𝑽𝒎𝒂𝒙

𝒏  

1 90° 111110000000 

2 120° 011111000000 

3 150° 001111100000 

4 180° 000111110000 

5 210° 000011111000 

6 240° 000001111100 

7 270° 000000111110 

8 300° 000000011111 

9 330° 100000001111 

10 0° 110000000111 

11 30° 111000000011 

12 60° 111100000001 

The antenna was constructed following the described design on 1.55 mm FR4 

laminate. The passive elements were constructed with a 2-mm-diameter silver-plated 

copper rod, while the active element used the same 25.6-mm-long copper rod as an 

extension of the SMA connector soldered directly to the laminate. To provide beam-

switching capability to the antenna, NJG1681MD7 GaAs FET MMICs SPDT switches were 

chosen. The antenna prototype, as presented in Figure 3, was equipped with Arduino 

Shield headers for the convenient connection of different WSN modules compatible with 

the standard. Additionally, 12 LEDs were installed at the bottom of the PCB to represent 

the status of each passive element. A similar antenna prototype was used in [26] for indoor 

positioning based on the fingerprinting method. 

 
(a) 

Sensors 2021, 21, x FOR PEER REVIEW 8 of 23 
 

 

 
(b) 

Figure 3. ESPAR antenna: (a) top view; (b) bottom view. 

4. Proposed Calibration-Free Algorithm 

In this paper, we propose a novel, low-complexity RSS-based method of RF-based 

indoor positioning using ESPAR antennas that is dedicated to WSN applications. The 

method integrates aspects of the aforementioned fingerprinting and trilateration 

approaches and uses active auxiliary reference nodes to decrease the negative influence 

of indoor RF signal propagation effects, as well as over-time radio map drift. Additionally, 

by employing the switched-beam ESPAR antenna, the system can implement the single-

anchor approach, whereby the RSS measurements and position estimation are performed 

with only one device, resulting in a significant reduction of the total number of APs in the 

system. Furthermore, RSS analysis based on beam-switching is much less complex and 

hardware-independent than direction findings based on phase-shift analysis, which 

additionally is impossible to implement in certain WSN nodes where IQ samples are not 

available for the system developer. 

The algorithm utilizes simple transmitters as auxiliary reference nodes installed in 

known positions. The reference nodes transmit signals that are received by the base 

station (BS) equipped with the ESPAR antenna. For each antenna configuration, the RSS 

for each reference node is measured and stored in a database. At the same time, the RSS 

of the localized node is also measured and stored for analysis in the next step. For each 

reference node, the RSS vector of jth device can be denoted as: 

𝐕𝑟𝑒𝑓𝑗
= [𝑅𝑆𝑆𝑟𝑒𝑓𝑗1

, 𝑅𝑆𝑆𝑟𝑒𝑓𝑗 2
, … , 𝑅𝑆𝑆𝑟𝑒𝑓𝑗12

] (4) 

where 𝑅𝑆𝑆𝑟𝑒𝑓𝑗 𝑖
 is the received signal strength of jth node for the ith antenna 

configuration. 

The RSS vector for the localized node can be defined by analogy as: 

𝐕𝑙𝑜𝑐 = [𝑅𝑆𝑆𝑙𝑜𝑐1
, 𝑅𝑆𝑆𝑙𝑜𝑐2

, … , 𝑅𝑆𝑆𝑙𝑜𝑐12
] (5) 

where 𝑅𝑆𝑆𝑙𝑜𝑐𝑖
 is the received signal strength for ith antenna configuration. 

For the localization, two stages can be distinguished. In the first phase, the algorithm 

looks for the reference nodes closest to the localized node. In order to do this, the 

Euclidean distance 𝐷𝑗 between 𝐕𝑟𝑒𝑓𝑗
 and 𝐕𝑙𝑜𝑐 for each jth reference node is calculated 

as: 

Figure 3. ESPAR antenna: (a) top view; (b) bottom view.

57



Sensors 2021, 21, 3431

4. Proposed Calibration-Free Algorithm

In this paper, we propose a novel, low-complexity RSS-based method of RF-based in-
door positioning using ESPAR antennas that is dedicated to WSN applications. The method
integrates aspects of the aforementioned fingerprinting and trilateration approaches and
uses active auxiliary reference nodes to decrease the negative influence of indoor RF signal
propagation effects, as well as over-time radio map drift. Additionally, by employing the
switched-beam ESPAR antenna, the system can implement the single-anchor approach,
whereby the RSS measurements and position estimation are performed with only one
device, resulting in a significant reduction of the total number of APs in the system.
Furthermore, RSS analysis based on beam-switching is much less complex and hardware-
independent than direction findings based on phase-shift analysis, which additionally is
impossible to implement in certain WSN nodes where IQ samples are not available for the
system developer.

The algorithm utilizes simple transmitters as auxiliary reference nodes installed in
known positions. The reference nodes transmit signals that are received by the base station
(BS) equipped with the ESPAR antenna. For each antenna configuration, the RSS for each
reference node is measured and stored in a database. At the same time, the RSS of the
localized node is also measured and stored for analysis in the next step. For each reference
node, the RSS vector of jth device can be denoted as:

Vre f j
=
[

RSSre f j1
, RSSre f j2

, . . . , RSSre f j12

]
(4)

where RSSre f ji
is the received signal strength of jth node for the ith antenna configuration.

The RSS vector for the localized node can be defined by analogy as:

Vloc = [RSSloc1, RSSloc2, . . . , RSSloc12] (5)

where RSSloci
is the received signal strength for ith antenna configuration.

For the localization, two stages can be distinguished. In the first phase, the algorithm
looks for the reference nodes closest to the localized node. In order to do this, the Euclidean
distance Dj between Vre f j

and Vloc for each jth reference node is calculated as:

Dj = ‖Vloc −Vre f j
‖ =

√√√√ 12

∑
i=1

(
RSSloci

− RSSre f ji

)2
(6)

Since each of the RSS values is measured for different antenna characteristics, the
reference nodes for which the calculated distance is the lowest are considered to be in the
closest vicinity of the localized node. All of the calculated distances Dj can be ordered from
the lowest to the highest value:

Dj=k1 ≤ Dj=k2 ≤ Dj=k3 ≤ · · · ≤ Dj=k J (7)

where J is the total number of reference nodes and k1, . . . , k J are indices of the distances
arranged in growing order. Then, for the second phase, K reference nodes for which the
calculated distance is the lowest are chosen, so that the actual position can be estimated
based on the position of the chosen nodes with indices {k1, . . . , kK} using the weighted K
nearest neighbors method. To this end, the weights for each node are calculated as:

wj =
Dj

∑K
i=1 Dki

(8)
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for j = {k1, . . . , kK}, where K is the number of reference nodes chosen for the second phase.
With this result, the final (x, y) position estimation of the localized node is determined as a
sum of the weighted positions of the considered K reference nodes:

(x, y) =

(
kK

∑
j=k1

wjxj,
kK

∑
j=k1

wjyj

)
(9)

where (xn, yn) are the coordinates of the jth reference node.
An exemplary localization for 8 reference nodes and K = 3 is illustrated in Figure 4.

The nodes for which the distance Dj is the smallest were chosen for the second phase of the
estimation process and are marked in red. Red and yellow arrows represent signals chosen
for the estimation. The hatched area represents the potential position of the localized node
based on the position of the chosen reference nodes. The final estimation of the localized
node position is represented by the orange circle. A complete flow diagram of the position
estimation procedure is shown in Figure 5.
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Figure 4. Proposed calibration-free algorithm overview. The position of localized node Vloc (marked
as a yellow dot) is calculated using 3 reference nodes (K = 3, marked in red), for which the associated
Euclidean distances Dj=k2 < Dj=k1

< Dj=k8 calculated in the first phase of the estimation are the
smallest (see text for explanations).
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5. Test Environment

To verify the proposed calibration-free indoor positioning procedure using single-
anchor estimation based on an ESPAR antenna, a dedicated test area and equipment
were prepared. For the experiment, the ESPAR antenna was connected to a dedicated,
custom-made WSN module based on the Bluetooth Low Energy (BLE)-compliant Nordic
nRF52840 SoC. The antenna output of the board was connected to the ESPAR antenna
through an SMA connector, while the antenna was steered using GPIO connectors, as
shown in Figure 6.
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Figure 6. The ESPAR antenna connected to the custom-made nRF52840 wireless sensor network
(WSN) board via Arduino Shield header pins. The WSN board’s radio frequency (RF) signal output
is connected to the ESPAR antenna’s center element via a black SMA cable.

Additionally, 25 BLE Nordic nRF52840 dongles, each with an integrated 2.4 GHz
PCB antenna, were prepared as the reference and localized nodes. The nRF52840 SoC is
equipped with a 32-bit ARM Cortex-M4F, has output power programmable from +8 dBm
to −20 dBm, and has −96 dBm sensitivity. Even though the functionality and computation
power of the nRF52840 dongles exceed the requirements for reference nodes, they were
chosen to assure the integrity of the system, minimizing the potential influence of hardware
diversity on the obtained positioning evaluation results. Nevertheless, in real applications,
for the localized and reference devices, simple BLE beacons, which retail for 2–3 USD per
item, can be utilized.

For the test environment, a 5.6 m × 6.6 m laboratory room was chosen, as the dimen-
sions of this room were most similar to test environments in which other single-anchor
positioning methods were evaluated in the literature [26,27]. The base station equipped
with the ESPAR antenna was installed on the ceiling in the center of the room, while the
24 reference nodes were placed at even distances on the walls 1.5 m above the floor, which
was 1.5 m below the base station, as shown in Figures 7 and 8. The positions of the devices
were measured with a precise laser distance measurer and the measuring tape to assure
appropriate placement accuracy. The localized node and all of the reference nodes were
set into advertising mode and the transmission power was set to 0 dBm. To conduct the
measurement session, a 4.5 m × 4.5 m grid was added on the floor with a 0.5 m step, which
resulted in 90 test points, as illustrated in Figure 9.
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integrated with the custom-made WSN board in a single housing mounted on the ceiling.
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Figure 8. The ESPAR antenna integrated together with the custom-made WSN board installed within
a custom-made housing and mounted on the ceiling.

Figure 10 presents the RSS values measured in the base station equipped with the
ESPAR antenna from a single reference node for each of the 12 antenna configurations. One
can easily notice that an approximately 8 dB spread between the maximum and minimum
values is present in the measurements. The results show that in the proposed setup, there
is noticeable angular diversity between the directions of ESPAR antenna radiation patterns,
which is necessary for the proposed single-anchor positioning process. Similar results were
obtained for all of the considered reference nodes.
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Figure 10. Received signal strength from a single reference module with respect to ESPAR antenna
configurations. Error bars represent the maximal received signal strength (RSS) deviation within
100 measurement packets. The standard deviation for RSS values σ = 0.316 dB.
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6. Measurement Results and Discussion

To evaluate the proposed method, for every grid point, a series of measurements in
the aforementioned test environment were conducted. To this end, the localized device
was placed at each point of a 4.5 m × 4 m grid shown in Figure 9. At every test point, RSS
measurements of 100 transmitted packets were collected for each antenna configuration
from each of the reference nodes and the localized node, giving a total of 30,000 randomly
collected RSS values for one grid point. To avoid RSS fluctuation between Bluetooth
channels, a single channel (number 38) was chosen for the analysis. For each test point, the
mean value of the RSS measurements was calculated. Measurements took approximately
20 min for each test point.

In Table 2 and Figure 11, the resultant accuracy for different numbers of K chosen
for the second phase of the estimation are presented. The results indicate that the more
reference modules are considered in the algorithm in the second phase, the more accurate
the estimation is. However, one can notice that for more than 4 reference modules, the
increase of the accuracy is less significant.

Table 2. The estimation accuracy results (maximum error, mean value, and root mean square error
(RMSE)) calculated for varying numbers of reference modules considered for the second phase of the
proposed localization algorithm.

K Max. Error (m) Mean Error (m) RMSE (m)

3 5.36 2.16 2.40
4 4.51 1.87 2.10
5 3.93 1.67 1.94
8 3.95 1.54 1.78
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Figure 11. Root mean square error (RMSE) for different numbers of modules of the lowest Euclidean
distance considered for the second phase of the proposed localization algorithm.

To examine how much the number of reference nodes could be reduced, additional
tests were performed. To this end, three different layouts for reference nodes were inves-
tigated: 4 nodes in the corners of the room (only green reference nodes—see Figure 8),
4 nodes in the middle of each wall (only blue reference nodes), and a total of 8 nodes
with a combination of both blue and green reference nodes. For each configuration, the
algorithm was set to choose 2, 3, and 4 nodes of the lowest Euclidean distance for the
position estimation. The results are presented in Table 3.
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Table 3. Estimation accuracy of the proposed localization algorithm, including the maximum error,
mean value, and root mean square error (RMSE) calculated for various limited layouts of reference
modules.

K Reference Modules
Configuration Max. Error (m) Mean Error (m) RMSE (m)

2

corners (4 modules) 4.89 2.22 2.46

middle (4 modules) 4.89 2.02 2.24

corners and middle
(8 modules) 5.52 2.19 2.49

all (24 modules) 5.42 2.29 2.54

3

corners (4 modules) 4.09 1.82 2.05

middle (4 modules) 3.68 1.97 2.14

corners and middle
(8 modules) 3.97 1.98 2.18

all (24 modules) 5.36 2.16 2.40

4

corners (4 modules) 3.98 1.72 1.85

middle (4 modules) 3.85 1.74 1.86

corners and middle
(8 modules) 4.64 1.88 2.14

all (24 modules) 4.51 1.87 2.10

The results show that even a significant reduction of the number of reference modules
does not affect the accuracy of the estimation. In fact, for every analyzed case with a
different number of modules K, the accuracy increased when compared to the configuration
with 24 reference nodes. Additionally, for each value of K, the reduced configurations
exhibited very similar accuracy when compared to each other. Thus, it can be concluded
that 4 reference nodes per room of a similar size is enough to obtain sufficient position
estimation. Nevertheless, one can easily notice that the obtained results are not satisfactory,
since both the mean error and maximal error are similar or higher to those that would be
calculated with a simple method that always provides estimation in the center of the room
(mean error of 1.81 m).

To investigate the possibility for further accuracy improvement, the influence of the
RSS normalization, as proposed in [48], on the accuracy was verified. The aim of this
modification of RSS values is to mitigate the potential influence of hardware diversity
between the reference nodes or uneven distance of the ESPAR antenna from the nodes. To
this end, each RSS vector was normalized by rescaling the elements to fall into the range of
[0, 1] using the following formula:

RSSnormre f j i
=

RSSre f ji
−min

(
Vre f j

)

max
(

Vre f j

)
−min

(
Vre f j

) (10)

where Vre f j
=
{

RSSre f j1
, . . . , RSSre f j12

}
for the jth reference node, RSSnormre f j i

∈ [0, 1],
and:

RSSnormloci
=

RSSloci
−min(Vloc)

max(Vloc)−min(Vloc)
(11)
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where Vloc =
{

RSSloc1 , . . . , RSSloc12

}
and RSSnormloci

∈ [0, 1]. In consequence, the Eu-
clidean distances rely only on the information regarding the direction of each node and
can be calculated as:

Dnorm j =

√√√√ 12

∑
i=1

(
RSSnormloci

− RSSnormre f j i

)2
(12)

The accuracy results obtained for normalized RSS vectors are shown in Table 4.

Table 4. The overall estimation accuracy results (maximum error, mean value, and RMSE) calculated
with received signal strength (RSS) normalization introduced in the proposed localization algorithm.

K Reference Modules
Configuration Max. Error (m) Mean Error (m) RMSE (m)

2

corners (4 modules) 5.04 2.42 2.62

middle (4 modules) 4.06 1.63 1.87

corners and middle
(8 modules) 5.09 2.36 2.59

all (24 modules) 4.21 2.18 2.38

3

corners (4 modules) 3.95 1.63 1.82

middle (4 modules) 3.58 1.39 1.58

corners and middle
(8 modules) 3.52 1.84 2.04

all (24 modules) 3.90 1.99 2.18

4

corners (4 modules) 3.58 1.68 1.82

middle (4 modules) 4.13 1.63 1.76

corners and middle
(8 modules) 3.93 1.55 1.77

all (24 modules) 3.84 1.86 2.04

It can be noticed that for almost all of the considered configurations, the RSS nor-
malization provides a further increase of accuracy as compared to the results in Table 3.
The best accuracy is achievable for 4 reference nodes and K = 3 is used in the second
phase of the algorithm, resulting in a mean localization error of 1.39 m, indicating that
this configuration is optimal for this method. As shown in Table 5, the reference nodes
installed in the middle of each wall provide 13.7% higher accuracy when compared to
the fingerprinting ESPAR-antenna-based approach presented in [26], which resulted in
a mean localization error of 1.61 m for measurements conducted in a room of a similar
size. Additionally, the proposed system provides 17.7% higher accuracy when compared
to the single-anchor DoA-based approach presented in [27] for a switched-beam antenna,
where measurements were performed in an area measuring 7.2 m× 8 m with 24 test points,
resulting in a mean localization error of 1.69 m.

Table 5. Comparison of accuracy results for the presented approach and other single-anchor indoor
positioning methods.

Positioning Method Mean Error (m) Calibration Needed

Calibration-free single-anchor 1.39 NO
Single-anchor fingerprinting [26] 1.61 YES

Single-anchor DoA [27] 1.69 YES
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Figures 12 and 13 present further analyses of the obtained results for individual test
points. One can notice that high error values occur only incidentally, and in most cases
near the walls or the furniture.
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To verify the reproducibility of the estimation results and the stability of RSS measure-
ments, for each test point, the collected measurements were respectively divided into 2, 3, 5,
10, 20, and 50 equal datasets of 50, 30, 20, 10, 5, and 2 RSS values measured from each node.
For each dataset, position estimation was performed and the results were compared with
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the results achieved for the full dataset of 100 RSS values. Additionally, the approximated
time difference between the first and the last estimation and the standard deviation of the
mean estimation error were calculated. As shown in Table 6, even for the estimation where
2 packets per node were used, the obtained results were stable and very similar to those
for the mean value calculated with the full dataset of 100 packets per node.

Table 6. Deviation of mean estimation error results calculated for a reduced number of RSS values.

Number of Packets 50 30 20 10 5 2

Number of
estimations for each

test point
2 3 5 10 20 50

Approximated time
difference between

the first and last
estimation [min]

10 12 16 18 19 19.6

Maximal difference of
mean estimation error

when compared to
full dataset [m]

0 0.01 0.01 0.01 0.03 0.07

Standard deviation of
mean error [m] 0.0001 0.0004 0.001 0.002 0.008 0.01

7. Conclusions

In this paper, a calibration-free single-anchor indoor localization method, including a
dedicated algorithm and all necessary hardware modules, has been proposed. It has been
shown that a single WSN base station equipped with an ESPAR antenna to perform the
measurements can be used to find the position of an unknown BLE tag without calibration
or recalibration, since inexpensive reference modules installed on walls within the test
area provide enough reference information for the positioning algorithm. An analysis of
different layouts of reference modules indicated that the use of only 4 modules is suffi-
cient for the method to provide reliable results. Moreover, optional normalization of RSS
vectors allows further increases of the accuracy. Since the algorithm does not need high
computational power, it can be implemented in a simple WSN sensor, which additionally
contributes to the system’s cost effectiveness. Measurements in a real-life 5.6 m × 6.6 m
environment have shown that the proposed single-anchor approach employing an ESPAR
antenna in a base station mounted on the ceiling is applicable in real-life scenarios, achiev-
ing a mean accuracy of 1.39 m, which is approximately 13.7% better than the accuracy of the
fingerprinting method (1.61 m) reported previously with a similar setup and antenna [26]
and approximately 17.7% better than the single-anchor approach presented in [27], both
of which additionally require much a more time-consuming deployment calibration and
regular recalibrations to adjust to changing propagation environments. Furthermore, the
obtained results are reproducible and can be achieved even for a significantly reduced num-
ber of RSS measurements. As a consequence, the proposed calibration-free single-anchor
indoor localization method using an ESPAR antenna can be effectively implemented in
real, cost-efficient deployments, providing reliable position estimation.
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Abstract: There are several tools, frameworks, and algorithms to solve information sharing from
multiple tasks and robots. Some applications such as ROS, Kafka, and MAVLink cover most problems
when using operating systems. However, they cannot be used for particular problems that demand
optimization of resources. Therefore, the objective was to design a solution to fit the resources of
small vehicles. The methodology consisted of defining the group of vehicles with low performance or
are not compatible with high-level known applications; design a reduced, modular, and compatible
architecture; design a producer-consumer algorithm that adjusts to the simultaneous localization and
communication of multiple vehicles with UWB sensors; validate the operation with an interception
task. The results showed the feasibility of performing architecture for embedded systems compatible
with other applications managing information through the proposed algorithm allowed to complete
the interception task between two vehicles. Another result was to determine the system’s efficiency
by scaling the memory size and comparing its performance. The work’s contributions show the
areas of opportunity to develop architectures focusing on the optimization of robot resources and
complement existing ones.

Keywords: absolute position system; cooperative algorithm; intercepting vehicles; indoor position-
ing; robot framework; UWB sensors

1. Introduction

The use of an operating system has made it possible to standardize the technologies
for the problem of cooperativity between several robots or vehicles. To this end, the devices,
the sensors, the communication modules, the protocols, and the programming languages
are designed to be compatible with each other. This conception of unified platforms such as
ROS, Kafka, AEROSTACK, MAVLink among others, resolves several hardware problems
and allows a more user-friendly environment for software developers [1–4]. However, high
compatibility leads to a significant increase in resource usage. Another consequence is to
lose the diversity of solutions that are the result of particular case investigations.

In this research, a case study shows the importance of maintaining research with
custom designs than generic designs. A basic platform scenario requires resources at three
fundamental layers. The perception layer (indoor systems) uses a GoPro-type internal cam-
era [5,6] or a VICON type external camera sophisticated system [7,8]. The communication
layer involves the use of transmitters, routers, and standardized protocols such as WiFi,
Zigbee, or Bluetooth [9]. The third layer of applications involves the use of a compatible
information management system, i.e., master and slave workstations using a computer
architecture with an operating system such as Ubuntu or similar. The above implies a

Sensors 2021, 21, 3022. https://doi.org/10.3390/s21093022 https://www.mdpi.com/journal/sensors
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high energy consumption in managing information compared to the energy required for
actuators who achieve vehicles’ displacement. However, it is essential to consider the
advantages of these solutions. For example, end-users, developers, and interested people
can program solutions in a more friendly way.

In another perspective, there are tailor-made solutions so specific, complex, and cus-
tomized that they require specialized equipment and are not compatible with other systems.
Therefore, the proposal is based on a methodology that combines customized solutions
with generic ones to be implemented in low-performance vehicles or incompatible with
operating systems. For this, a reduction or replacement of tools is proposed without losing
compatibility with high-level technologies. Given the characteristics of this architecture, al-
gorithms based on hardware or technology constraints should be implemented. Finally, the
actual functionality should be validated through a known task and where the optimization
of resources can be compared.

A significant difference between the design of a generic and a customized platform
lies in taking advantage of the sensor’s characteristics. In particular, UWB sensors allow
sending messages and obtaining the position by triangulation. Consequently, known tools
cannot be applied directly, and an intermediate algorithm has to be used. The libraries
of programming languages based on operating systems are very advanced compared to
embedded systems. It is important to remember that the migration of a tool or algorithm
of custom technology to a general one is always possible. However, in the opposite
direction, it is not always guaranteed. Therefore, it is essential not to miss the opportunity
to investigate code optimization for embedded systems.

1.1. Contribution

The design and implementation of an alternative architecture for small vehicles is
the main contribution of this work. Simultaneous localization and sharing information
with a UWB technology reduced computing resources and consumption energy. A suitable
producer–consumer algorithm gives a solution to manage the concurrent processes in
reduced-scale hardware. Other contributions are listed as follow:

• Enable incompatible hardware with high-level architectures.
• Manage information packets between embedded systems.
• Achieve an interception task among vehicles avoiding the use of additional hardware

or complex infrastructure.
• Make compatible an architecture that uses operating systems with one that does not.
• Adapt to the confinement conditions when performing experiments at home.
• The small vehicle platform allows test different autonomous navigation strategies,

lowering the risk and cost of large-scale testing.

1.2. Organization

The article is organized as follows. Section 2 presents a brief review of the state-of-
the-art in robotic systems architectures. The customized architecture for small vehicles
and its underlying concepts are presented in Section 3. The experiments, results and
discussions are developed during Section 4. Conclusions and future Work can finally be
found in Section 5.

2. Background and Related Work
2.1. Robotic System Architectures

Software-oriented solutions in multi-vehicle tasks have consistently been standardized
on architecture with at least three layers with particular purposes. These layers’ functions
are the quantification of physical variables, the communication between sensors and
processing devices, and the applications that solve the tasks [10].

This architecture seeks to centralize the sensors’ information in an integrated manner
on the devices running the applications. Sophisticated communication systems are used to
guarantee the exchange of information. The processing and storage devices use operating
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systems to program the solutions to the tasks. The above clearly shows that the software-
oriented perspective allows for more excellent compatibility. However, poor performance
or incompatibility can occur with specific problems.

2.1.1. Localization Sensors

The Inertial Navigation Systems (INS) are fed with data from their Inertial Measure-
ment Unit (IMU), composed mainly of sensors such as gyroscopes and accelerometers.
INS are cost-effective solutions that do not require additional infrastructure. The main
disadvantage of these systems lies in the cumulative position error that grows during
the operation of the vehicle [11]. However, the combination of the information from an
INS with a global positioning system allows to improve the accuracy of the positioning
estimates [12].

A variety of technologies applied to indoor global positioning systems have been
sought. The results in [13] showed that accuracy depends on the implementation and
methodology used. In particular, the technologies, which were applied in the development
of autonomous vehicles, are global positioning systems by vision such as VICON [7,8], or
Optitrack [14,15], Virtual Reality (VR) systems [16,17] and RF technology [18–20]. Mean-
while, the use of Ultra-Wide Band (UWB), part of the RF technologies, attracted interest
during the last years [21], because with this technology it is also possible to obtain a good
performance in terms of accuracy [22].

Typical tasks that autonomous vehicles must fulfill depend on the quality of the
information about the vehicle’s absolute and relative position within its workspaces, such
as Simultaneous Localization and Mapping (SLAM), obstacle avoidance, trajectory tracking,
and cooperation. The integration of absolute and relative positioning systems is, therefore,
necessary. The most recent research efforts present various technologies to achieve a good
precision in detecting the global and relative position and thus perform a satisfactory
SLAM. On the other hand, UWB and vision systems have been combined to improve the
estimation of the position in the workspace [23]. Other strategies bet on the fusion of
UWB data with those coming from INS [24], and Optitrack [25]. Additionally, it has been
tried to improve UWB systems’ results on a platform of mobile robots using Gaussian
processes [26] and neural networks [27].

2.1.2. Communication Protocols

Indoor Wireless Communications are technologies that allow devices to be uniquely
identified and exchanged over a limited distance of 10 m to 100 m [9]. There are several
criteria for selecting Bluetooth, UWB, ZigBee, or Wi-Fi technology. The most commonly
used technologies are Bluetooth or WI-FI because most robots have it by default. ZigBee
is identified as an alternative for users looking to work with a more significant number
of devices, a low transfer rate, and requiring less energy consumption. Finally, UWB
technologies are less present as a combination of high transfer rate and low normalized
energy consumption.

2.1.3. Applications

Applications such as ROS, Kafka, and MAVLink are versatile tools to incorporate
most devices, infrastructures, programming languages, and technologies. For example,
ROS is defined as a robotic middleware to help manage the complexity and heterogeneity
inherent in distributed systems [1]. Apache Kafka is a distributed messaging system widely
used in big data applications [2] and MAVLink is a communication protocol used for
the bidirectional communications between drones and ground stations over a wireless
channel [4]. In this sense, by having approved research platforms, it is possible to leave
aside hardware problems and focus on algorithms’ performance.

There are different examples of applications that use ROS in its architecture as
in [28–30]. In [31] Apache Kafka was used to parallelize a set learning architecture. In
contrast, in [29], small drones are used to collect data to test obstacle avoidance algorithms.
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Finally, MAVLink being a communication protocol, can be found implemented in several
tools such as ROS. In [32] MAVLink was used with ROS to communicate with the pixhawk
drone and perform autonomous flights. In [33], they used the protocol to communicate
with real drones to validate the performance of the proposed architecture.

The element relationships of the Robotic System Architectures with the software
developed are shown in Table 1.

Table 1. Comparison between similar applications and tools.

Software
(Tool)

Computer
Architecture

Supported
System

Comm.
Devices

Infrastructure

ROS [28] x64
ARM

GNU/Linux Wi-Fi
Network
Camera

FCU

Kafka, ROS [29] ARM GNU/Linux 4G
Network

VPN
Cloud Service

Cameras

MAVLink [34] ARM Android 4.3 Zigbee
X-bee Modules

Tablet
Camera

Proposed
architecture

x64. . .
STM, EV3

Linux. . .
µC Based

Wi-Fi Network
UWB

Table 1 shows that the proposed architecture incorporates non-compliant devices such
as EV3 devices and UWB technology as localization, communication, and
infrastructure devices.

Some architectures propose using cloud services to improve the computational ca-
pacity and intelligence in vehicles such as AGVs [35]. Some examples suggest using
architectures based on the edge-fog model as seen in [30]. The authors used the publish-
subscribe model of ROS to perform 3D scenario reconstruction through SLAM and proof
of concept presented in [36]. In the case AVG [37] the authors give an application-oriented
to AGV collaboration, while in [38] they use ROS. Other similar examples can be seen
in [39–41].

2.1.4. Cooperative Tasks

Cooperative tasks have been investigated in various scenarios with software-oriented
architectures. [42,43]. Information sharing using algorithms among aerial or ground
vehicles has been studied. These algorithms are proposed to solve the path planning
problem [44], for the surveillance of multiple moving ground targets [45] or intercepting
intruders [46]. Tools of general-purpose have proposed the simulation of these algorithms.
However, real implementation of the hardware of these algorithms requires a particular
adaptation. The adaptation to solve this problem is shown in Section 3.

3. Customized Architecture for Small Vehicles

The previous section showed a typical software-oriented architecture with the most
common technologies. In this section, an alternative hardware-oriented architecture will
be developed. Figure 1 shown a general comparison of layers and technologies employed.
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Figure 1. Comparison of software-oriented architecture (left-side) and proposed architecture
(right-side).

The small vehicle platform allows test different autonomous navigation strategies,
lowering the risk and cost of large-scale testing. The platform enables destructive testing at
a meager cost, infrastructure and energy consumption reduced.

3.1. Small Vehicles Models
3.1.1. Ground Robot

We used a robot as a mobile reference point within the workspace. The robot with
3-DOF (x, y, θ) is of a differential configuration, so it has two independent, active wheels
and a fixed wheel as a support point. The odometry of the vehicle uses encoders and a
gyroscope as a relative reference system. The vehicle’s operation is executed intrinsically
in the controller using the dynamic model proposed in [47].

Figure 2 shows the robot with its differential system variables as it travels along a
given path in an absolute coordinate system XAYA. The mobile is composed of two wheels
with diameter φ, each placed at a distance L from the intermediate point P. The velocities
of the wheels are denoted by vd (dextram = right) and vs (sinestram = left) respectively, so
that the system inputs are:

[L, φ, θ, vs, vd] ∈ R5. (1)

Figure 2. Ground vehicle model.
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According to the model of direct kinematics presented in [47], the robot motion is
given by the following matrix equation in (2).

ξA =



(ωd + ωs)cosθ
(ωd + ωs)sinθ

ωd −ωs


, (2)

3.1.2. Aerial Vehicle

A 6-DOF nano-quadcopter (x,y,z, pitch, roll, yaw) to follow the ground reference
robot’s trajectory was used. The internal odometry consisted of INS, whose IMU integrates
an accelerometer, gyroscope (in three axes) and a barometric pressure sensor. Additionally,
the INS data are merged with the height estimation obtained employing an optical flow
sensor and the absolute positioning system’s data. The operation of the vehicle is done in
an autonomous, semi-autonomous way or by using teleoperation.

To operate the vehicle, we assumed the 12-state model, studied in [48,49] and validated
in [50]. According to Figure 3, the model requires two reference systems: the non-inertial
one X′Y′Z′ located at the center of gravity of the quadcopter, orientated as shown, and
the inertial one x, y, and z relative to the center of the earth. Of the 12 parameters, the
variables x, y and z represent the coordinates of the center of gravity, u, v and w are the
linear velocities along the X′, Y′ and Z′ axes, and ψ, θ and φ represent the rotation angles
(pitch, roll and yaw) with the corresponding angular velocities. All variables are expressed
within the inertial reference system. The model is non-linear and is described in [50,51].

Figure 3. Nano-quadcopter. (a) Body frame. (b) Inertial frame.

3.2. Sensor Information Sharing

A particular research objective was proposed a 3D global positioning platform oriented
to devices with limited hardware. The low-cost UWB sensors were used to perform
simultaneous localization and information exchange between the small vehicles.

The system consists of anchors and tags that communicate with UWB pulses. The
anchors within the workspace serve as absolute reference points for the tags. Likewise,
the tags are used as a mobile reference point to triangulate the anchors’ signals and,
simultaneously, as a communication interface to other external devices. Two-Way Ranging
(TWR) algorithms are used to detect a single tag, and a Time Difference of Arrival (TDoA)
algorithm is used to detect the position of one or more tags inside the same workspace.
The diagram of the operation is shown in Figure 4.
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Figure 4. Different configurations of the absolute positioning system mounted within a workspace:
(a) existence of only one tag: a location algorithm based on “two way ranging” TWR is used. (b)Two
or more tags are present: a location algorithm based on “time difference of arrival” TDoA is used.

3.3. Producer-Consumer Algorithm

A reduced algorithm based on an analogy to the producer–consumer problem was
another particular research objective. This consideration helps to perform tasks to share
information with two or more complex sensors to localize small vehicles. Furthermore, this
algorithm is reduced to achieve accessible communication among multiple robots and an
extra path planning task was executed at the same time.

Collaboration in navigation among autonomous robots represents a problem of syn-
chronization between the transmission and reception of positioning and movement data.
In this problem, there appear two parallel processes (producer and consumer), which
exchange information by a finite memory buffer [52]. Here the producer is in charge of
generating and inserting data into the buffer, trying not to saturate it. Otherwise, the
consumer extracts the data from the buffer one by one, preventing the buffer from emp-
tying. Applications of this problem are commonly in concurrency, and message passing,
although trivial, is extremely useful when needed [53]. Figure 5 shows the flowchart of the
consumer–producer problem.

Figure 5. Flowchart of the producer–consumer problem.

The producer–consumer problem is somehow analogous to the problem of cooperative
follow-up of a trajectory. In said problem, one or more dependent robots follow the
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trajectory generated by a master robot until finally coinciding in (almost) the same point.
The master robot draws the trajectory in the workspace, so it operates as a producer of
information on points. On the other hand, the dependent robots receive their information
on the trajectory needed to get to the master, beginning from their starting points. It is,
though, possible to view the dependent robots as consumers of information.

The FIFO (First In-First Out) buffer can be modelled as an ordered set D of qi infor-
mation elements. The state of this kind of memory is determined through the sequence
{q0, q1, · · · , qm}, ordered by the moment insertion of its elements by (3) and (4). In this
buffer, a new information element q0 is always placed at the end of its queue by the
insertion instruction of an I(q0, D):

I(q0, D) = q0 ∪ D. (3)

The operation raises all elements’ position in the buffer by one place and increases,
consequently, the cardinality by one unit: I(q0, D)| = |D| + 1. On the other hand, the
instruction of an extraction procedure E(D), removes, when executed, the first element qm
from the queue of the m data elements in D:

E(D) = D \ qm. (4)

It is clear that this command lowers the cardinality of the set D by one unit:
|E(D)| = |D| − 1.

For implementation of the algorithm in the robots, we used the following general
considerations. Let W ⊂ R3 be the workspace and R the set of positions of the i robots,
with i ∈ Z+, i = 1, . . . n and n > 1 . The value of the instantaneous position at time t of

each robot is represented by Ri(t) = (xi(t), yi(t), zi(t)). The trajectory
t f
t0

Ri of the robot i
between the starting point Ri(t0) and the endpoint Ri(t f ) are characterized by a sequence
of positions Ri(tj) which corresponds to the equidistant sequence of sampling moments
tj = t0 + j · ∆t, within the interval between the initial t0 and final time t f , separated by a

sampling interval ∆t between each moment, such that:
t f
t0

Ri = {Ri(t)}∀t ∈ [t0, . . . , t f ]. To
the master robot we assign, as identifier, the number 1. In this way the path of this robot is

symbolized with
t f
t0

Ri. The elements of the trajectory are then successively in D1 loaded
elements with the insertion command:

I(R1(tj), D0). (5)

The follower robots Rs, with s ∈ {2, 3, .., n}, reconstruct the path by successively
extracting the leading elements in the D1 buffer:

Rs ← (D1). (6)

The Algorithm 1 for the case of the master robot (producer) can be summarized as
follows:

Algorithm 1 Producer algorithm

1: procedure PRODUCER(D1, trajectory)
2: Initialize |D1| = 0 (empty)
3: RM starts trajectory at R1(t0)
4: while trajectory is not finish do
5: RM inserts its position in memory D1
6: Delay ∆t

The Algorithm 2 for the case of the follower robot (consumer) can be summarized as
follows:
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Algorithm 2 Consumer algorithm

1: procedure CONSUMER(RM, D1)
2: if RM starts trajectory at R1(t0) then
3: while position R1(tj) is changing or D1 is not empty do
4: Extract an element from D1 and send it to robot s, as its next position ps
5: Move to ps(xs, yS, zs)

4. Experiments, Results and Discussion
4.1. Experiments

The experiments performed were divided into two parts: (1) the characterization
of the sensor information sharing with small vehicles and (2) intercepting and landing
of the aerial vehicle on the ground vehicle with shared information using the producer–
consumer algorithm.

4.1.1. Experiment 1: Characterization

This experiment aimed to characterize the absolute positioning system and, after that,
estimate the tracking accuracy in 2D and 3D. The system was placed within a controlled
environment, and functionality tests were carried out within the fixed position’s polygon,
defined by the anchors. The 2D tracking tests consisted of following prior defined trajecto-
ries using the ground vehicle. The corresponding robot was tagged to know in real-time its
position in the xy plane, left side of Figure 6. In the xyz space, we used a nano quadcopter
with a tag integrated, as shown on the right side of Figure 6. The data obtained was used
to reconstruct the trajectory and to know the accuracy of the system.

Figure 6. Diagram of the characterization experiment. (a) In 2D. (b) In 3D.

We used a Loco Positioning System (LPS), which employes a UWB DMW1000 module
from Decaway and whose precision is estimated by the manufacturer to be within ±0.1
m. The LPS is composed of a Loco Positioning Node (anchors) and a Loco Positioning
Deck (tags). For triangulation of the signal, the system supports configurations with 4, 6
and 8 anchors and uses the TWR algorithm (a single tag) and TDoA in the existence of
two or more tags. A minimum of four anchors must triangulate the signal within a 3D
space, so we selected this configuration during our experiments. Four anchors (numbered
from 0 to 3) were placed at a distance 0.16 m above the floor, forming a rectangle with
dimensions m by n. We decided to place the absolute reference system’s origin in the center
of this m× n rectangle. Table 2 shows the values of m, n and the coordinates of each anchor.
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Table 2. Positions of the anchors employed to characterize the positioning system.

Size Anchor’s Coordinates (x, y, z)
m [m] n [m] Anchor 0 [m] Anchor 1 [m] Anchor 2 [m] Anchor 3 [m]
1.86 5.0 (−0.93, −2.50, 0) (0.93, 2.50, 0) (−0.93, 2.50, 0) (0.93, −2.50, 0)
1.90 5.0 (−0.95, −2.50, 0) (0.95, 2.50, 0) (−0.95, 2.50, 0) (0.95, −2.50, 0)
5.20 1.9 (−2.50, −0.95, 0) (2.50, 0.95, 0) (−2.50, 0.95, 0) (2.50, −0.95, 0)
2.00 2.0 (−1.00, −1.00, 0) (1.00, 1.00, 0) (−1.00, 1.00, 0) (1.00, −1.00, 0)

A LEGO EV3 ground robot was used in its differential configuration. We employed a
gyroscope with an accuracy of ±3 degrees and an optical encoder with an accuracy of ±1◦

to measure the wheels’ rotation. The controller of the EV3 ground robot contains an ARM
9 processor with 64 MB of RAM and an SD card reader on which the GNU/Linux-based
EV3dev Operating System (OS) was installed. The trajectories and odometry of the EV3
land mobile as described in [54] were implemented using Python as the programming
language and the EV3dev OS libraries.

The airbone vehicle used is a Crazyflie 2.1 quadcopter, which has as main controller an
STM32F405 and uses the nRF51822 for communication with the Crazyradio-PA telemetry
system. The architecture of the Crazyflie quadcopter allows for the stacking of accessories,
known as decks. We used the Flowdeck V2 as an optical flow sensor and the LPS Deck as a
tag, compatible with LPS. The Crazyflie quadcopter’s architecture is open to implement
tools and algorithms made by the community of developers. Crazyflie quadcopter uses
the Kalman Extended Filter, as proposed by [55,56] for the fusion of data of the IMU, the
Flowdeck V2 and the LPS. The implemented control algorithms are based on [57,58].

For the individual tests, we worked with the TWR mode. We assigned tag 1 to the
Crazyflie quadcopter and tag 2 to the LEGO EV3 robot. As a test to determine the UWB
triangulation system’s accuracy, we implemented a desired trajectory in the workspace for
both robots. A computer was interfaced with a Crazyradio-PA to acquire the position data
of each tag. For this purpose, a circle of 0.61 m radius and different heights, 0.02 m in the
EV3 robot and 0.5 m in the Crazyflie quadcopter.

4.1.2. Experiment 2: Intercepting and Landing Task

The experiment’s objective was to validate the operation of the proposed consumer-
producer algorithm when solving the combined task of intercepting and landing, where
the Crazyflie 2.1 quadcopter must intercept the LEGO EV3 lander and land on top of it.
The initial position of the EV3 robot was x = 0 m, y = 0.66 m and z = 0.02 m, and its given
path was an arc with a radius of 0.5 m and an arc length of also 0.5 m. The initial position
of the Crazyflie quadcopter was at x = 0 m, y = 0 m and z = 0 m, and during the trajectory
tracking phase, the quadcopter was asked to maintain a height of 0.5 m.

Figure 7 shows the flowchart of both the producer and consumer algorithms imple-
mented on a computer to manage the dataflow of the EV3 robot, the Crazyflie quadcopter
and the TDoA mode of the LPS. In this case, process A (producer) is the EV3 robot, and
process B (consumer) is the Crazyflie quadcopter. The process starts when the computer
has verified the communication between the EV3 robot and the Crazyflie quadcopter. The
computer sends then to the EV3 robot the information about the trajectory to be followed.
When the EV3 robot starts to move, it sends its position data to the computer. In parallel to
the EV3 robot following the demanded path, the computer starts the producer-consumer
algorithm and instructs the Crazyflie quadcopter to start its takeoff. When the Crazyflie
quadcopter reaches the reference height of 0.50 m, it starts receiving the buffer position
data of the EV3 robot from the computer.

The EV3 robot sends its position data continuously and independently to the D1
buffer in the computer until it reaches the endpoint of the given trajectory. The Crazyflie
quadcopter consumes the position data added by the EV3 robot in the buffer D1 and
computes its movements by comparing its position with the buffer’s positions. At the
moment, the Crazyflie quadcopter does not encounter any more position data in the buffer
D1 it starts a landing maneuver and touches down on top of the EV3 robot.

82



Sensors 2021, 21, 3022

Figure 7. Flowchart of the process A (producer) implemented for the mobile robot EV3 and of the
process B (consumer) implemented for the Crazyflie quadcopter.

The details about the algorithm’s implementation can be viewed in the block diagram
in Figure 8. It illustrates the relationship of the tools used between the computer, the EV3
robot and the Crazyflie quadcopter during the algorithm’s execution. The white arrows
indicate the internal communication flow, while the dotted arrows represent external
communication flow.

The algorithm was implemented on a Python script using multi-threaded program-
ming and executed on a computer with a Core i7 processor with 8 GB of RAM. The Python
script sends orders over the local network to the EV3 robot using the MQTT protocol
through an MQTT broker installed in the EV3dev OS in the EV3 robot. MQTT was used
because it is ideal for machine-to-machine (M2M) communication due to this protocol’s
lightness. On the other hand, the EV3 robot was connected with a wireless network card.

The communication between the UWB tags and the computer was done using the
Crazyradio-PA telemetry system, which communicates wirelessly, using the NRF24 proto-
col. One Crazyradio antenna can communicate with up to 8 tags.
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Figure 8. Block diagram illustrating the interaction between the components during the execution of
the algorithm.

4.1.3. Experiment 3: Performance

This experiment aimed to evaluate the scaling of the system about the size of the
consumer’s buffer. The proposal consisted of generating a constant amount of information
of 1.92 kbps by the producer. The tested trajectory was the same as in the previous
experiments with a speed of 0.1 m/s. Buffer size started with 0, increments of 1 and up to
14 times (24 Bytes up to 360 Bytes). The units of measurement used were: the consumption
rate in Kbps, the kinetic energy in Kg ·m2/s2, and the processing time of the information
in the queue with s. The break-even point to determine the system’s efficiency was to
compare the increase of the energy and the processing time.

An additional test was to eliminate the information sent by the Ev3 robot to destabilize
the operation of the quadcopter to 50% of the task.

4.2. Results and Discussion

During the characterization process for the anchor positions, as presented in Table 2
of Section 3, it was observed that a square-shaped distribution of the anchors in the
workspace leads to a better performance than a rectangular one (Figure 9). Nevertheless,
the manufacturer recommends a rectangular layout. The best configuration was a square
workspace of 2 m by 2 m and with the anchors at its vertices after trials.
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Figure 9. Performance of anchors in rectangular (green) and square (pink) configuration concerning
a reference path.

Figure 10 shows the results obtained after characterization and tuning of the 2 m × 2 m
workspace. Figure 10 shows the ideal trajectory (dashed line) and the one performed (green
line) by the EV3 robot (green line). We found that the data obtained were consistent;
however, when the robot moved near the anchors, the error increased significantly up to
0.1 m. Figure 10b,c show the EV3 robot’s displacement on each of the x and y coordinate
axes. The path carried out by the EV3 robot in the x-axis is much closer to the given
one than in the y-axis, due to the tag’s orientation. However, there are probabilities of
perturbations that increase the error during some moments, for example, in t = 19.7 s.
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Figure 10. Results of the characterization run for a 2 × 2 m workspace. (a) Trajectory performed
by the robot. (b) x-axis component of the movement. (c) y-axis component of the movement. (d)
Quadratic error on x and y between the performed path and the given ideal trajectory.
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Figure 10 shows the RMS-error calculation of the path in both coordinate axes. In the
x-axis, the error is within a range below 0 to 0.1 m as claimed by the manufacturer of the
UWB system; however, in the y-axis, the maximum error went up to 0.16 m. The average
RMS-error in the x-axis was 0.042 m, again by a factor of 2/3 lower than the RMS-error of
0.062 m in the case of the y-axis.

The producer-consumer algorithm always kept the equilibrium of data. For this
reason, the Crazyflie quadcopter intercepted the EV3 robot with acceptable performance.
Figure 11 illustrates the best result we obtained when executing the algorithm; that is, it
represents the sequence of the points R1(tj) that were stored in D1’s queue, coming from
the EV3 robot, which was later on converted into set points for the Crazyflie quadcopter.
Figure 11a shows the trajectories performed by the EV3 robot (red line) and by the Crazyflie
quadcopter (blue line) in 3D perspective. The ideal trajectory for the quadcopter is shown
by the black dashed line. The projections of the trajectories on the x, y, and z axes are
similarly represented in Figure 11b–d.

Figure 11. The paths taken by the EV3 (green line), and the Crazyflie quadcopter robot (red line)
compared to the ideal path (black dashed line). (a) The trajectory performed in 3D perspective. (b)
Displacement in x. (c) Displacement y. (d) Displacement in z.

Figure 12 shown the RMS-positioning-error of the EV3 robot and the Crazyflie quad-
copter from the ideal path. We restricted the evaluation of the EV3 robot’s performance to
the xy-plane. In Figure 12a, it is seen that the RMS-error in x is always smaller than 0.22 m.
When (t f − t0) < 10 s the error is greater than 0.1 m, for 10 s < (t f − t0) < 19 s you get an
average RMS-error of 0.04 m, and in the interval of 19 s < (t f − t0) < 23 s the RMS-error is
greater than 0.04 m but always less than 0.1 m, due to the proximity to the anchor three.

Figure 12b shown that the RMS-positioning-error in y is greater than the one in x.
This error is because the distance between the two robots at the beginning is 0.61 m and is
interpreted as an error. The Crazyflie quadcopter manages to reduce its RMS-positioning-
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error to less than 0.1 m after the first 6 seconds. Once a level of proximity under 0.1 m is
reached, the average RMS-error in y drops down to a level of 0.032 m.
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Figure 12. RMS-positioning-error between the EV3 robot and the Crazyflie quadcopter. (a) x-axis
error. (b) y-axis error.

Figure 13a shows the performance results of the system about the scalability of the
consumer buffer. The exponential behavior of the data rate with three segments can be
observed. A moderate slope was observed in the first segment from 0 to 8 times the buffer
size, from 8 to 12 a steeper slope and after 12 a sudden increase.
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Figure 13. Buffer size vs. (a) consumption data rate and (b) kinetic energy and execution time
comparison as a system’s performance evaluation.

The results have allowed us to verify that the system can be scaled in terms of buffer
size to increase the consumption data rate. The limitation of this increase is affected by
the response of the quadcopter. Another scenario would be to increase the number of
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quadcopters sharing the information; in this sense, the rate is divided among the robots
cooperating in the same task. The maximum operating limit of the platform is 6.8 Mbps
and a packet length of 1023 bytes.

The results to find the balance point between the energy consumed by the quadcopter
and the execution time are shown in Figure 13b. It was observed that with higher efficiency
of the consumption data rate by the quadcopter, the performance and energy increases;
however, for a rate lower than three and higher than 8, the results showed an excess or lack
of time.

From the results, we can deduce that there is a relationship between the energy
consumption of the quadcopter and the information efficiency. For this, by repeating the
experiments, a buffer with the size of 6 is the optimal value for executing the task.

In buffer size 12, a perturbation was tested by eliminating information from the
producer. Thus, it was verified that the lack of information decreased the energy consump-
tion; therefore, the relationship between the quality of the information and the energy
consumption was verified.

Figure 14 shows the results of the trajectories based on the scalability of the buffer
size. A more stable behavior was observed when the information to be consumed is higher
Figure 14(0–8). However, when the data is missing, there is a more unstable behavior as is
shown in Figure 14(12).

Figure 14. Different tests made using buffer sizes from 0 to 14.
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Finally, a video of the experiments can be seen at https://rodrigovazquezlopez.github.
io/Cooperation/ (accessed on 23 April 2021).

5. Conclusions and Future Work

The research highlighted the advantages of software-oriented robotic system architec-
tures; however, the disadvantages with small vehicle resources were shown. The proposed
hardware-oriented design succeeded in solving a small vehicle system’s particular problem
without losing the advantage of compatibility with widely used tools.

The producer-consumer algorithm successfully solved the problem of synchronization
of messages shared by two or more vehicles. This algorithm was implemented in real
hardware, while other similar algorithms only were simulated. This research also solved
the problem of intercepting an airborne vehicle’s trajectory to a level below 0.04 m and
landing it safely on top of the ground vehicle. The EV3 robot and the Crazyflie quadcopter
are affordable small-scale platforms and offer the experimenter reduced scale equipment
that avoids unnecessary exposure of people to risks.

It was possible to reduce the number of anchors from 6 and 8, as mentioned in
similar publications, to only 4. The square-shaped workspace gives better results than the
recommended rectangular one. Furthermore, in parallel, perpendicular or diagonal paths,
the RMS-positioning-error is reduced, compared to the one in curved paths, i.e., when the
tags rotate in the plane, has to be interference that increases the error. The positioning error
increased due to the proximity between a tag and anyone of the anchors. Even under these
higher noise conditions, the results were satisfactory; that is, an average error of 0.04 m
was achieved.

The LPS platform configuration has the following advantages: Experimental test in
small environments of only 2 m × 2 m × 1 m (width, length and height), the platform is
portable and does not require complex installations. Due to the ongoing epidemic, it is
impossible to work in research laboratories in many places in the world. Therefore, the
possibility of having a compact platform, like the one presented here, allows continuing
developing research in our home-laboratories.

Performance tests showed the ability to scale the memory size and thus process more
information. However, the efficiency of the system does not improve proportionally. A
balance point was found to define a trade-off between data, power consumption, and pro-
cessing time. Therefore, we can suggest considering the efficiency relationship between the
size of the vehicles and their information management systems with the system’s scalability.

For further development, a new intelligent and robust algorithm will be proposed to
be executed intrinsically in the airborne and terrestrial robot and achieve the algorithm’s
implementation with a more significant number of cooperating robots.
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Abstract: This paper addresses appearance-based robot localization in 2D with a sparse, lightweight
map of the environment composed of descriptor–pose image pairs. Based on previous research in the
field, we assume that image descriptors are samples of a low-dimensional Descriptor Manifold that is
locally articulated by the camera pose. We propose a piecewise approximation of the geometry of such
Descriptor Manifold through a tessellation of so-called Patches of Smooth Appearance Change (PSACs),
which defines our appearance map. Upon this map, the presented robot localization method applies
both a Gaussian Process Particle Filter (GPPF) to perform camera tracking and a Place Recognition
(PR) technique for relocalization within the most likely PSACs according to the observed descriptor.
A specific Gaussian Process (GP) is trained for each PSAC to regress a Gaussian distribution over the
descriptor for any particle pose lying within that PSAC. The evaluation of the observed descriptor in
this distribution gives us a likelihood, which is used as the weight for the particle. Besides, we model
the impact of appearance variations on image descriptors as a white noise distribution within the GP
formulation, ensuring adequate operation under lighting and scene appearance changes with respect
to the conditions in which the map was constructed. A series of experiments with both real and
synthetic images show that our method outperforms state-of-the-art appearance-based localization
methods in terms of robustness and accuracy, with median errors below 0.3 m and 6◦.

Keywords: appearance-based localization; computer vision; Gaussian processes; manifold learning;
robot vision systems; indoor positioning; image manifold; descriptor manifold

1. Introduction

Visual-based localization involves estimating the pose of a robot from a query image,
taken with an on-board camera, within a previously mapped environment. The widely
adopted approach relies on detecting local image features (e.g., points, segments) [1,2]
that are projections of 3D physical landmarks. Though this feature-based localization has
achieved great accuracy in the last years [3–5], it presents two major drawbacks that hinder
long-term localization and mapping: (i) lack of robustness against image radiometric
alterations; (ii) inefficiency of 2D-to-3D matching against large-scale 3D models [6]. A
much less explored alternative to feature-based localization consists in localizing the robot
through the scene appearance, represented by a descriptor of the whole image. According
to this framework, localization is accomplished by comparing the appearance descriptor
against a map composed of descriptor–pose pairs, without any explicit model of the scene’s
geometric entities [7,8]. This approach turns out to be particularly robust against perceptual
changes and also appropriate for large-scale localization, as demonstrated by the fact that
it is included in the front-end of state-of-the-art Simultaneous Localization and Mapping
(SLAM) pipelines to perform relocalization and loop closure, typically in the form of Place
Recognition (PR) [3,5].

The accuracy of appearance-based localization is, however, quite limited. Good results
are reported only when the camera follows a previously mapped trajectory (i.e., in one

Sensors 2021, 21, 2483. https://doi.org/10.3390/s21072483 https://www.mdpi.com/journal/sensors
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dimension) [9–11] or when it is very close to any of the poses of the map [8,12]. In this
work, we investigate whether localization based only on appearance can deliver continuous
solutions that are accurate and robust enough to become a practical alternative to methods
based on 3D geometric features. We restrict this work to planar motion, that is, we aim to
estimate the camera pose given by its 2D position and orientation (3 d.o.f.).

To this end, we first assume that images acquired in a certain environment are samples
of a low-dimensional Image Manifold (IM) that can be locally parameterized (or articulated)
by the camera pose. This assumption has been justified by previous works [13,14], but only
exploited under unrealistic conditions, where the IM was sampled from a fine grid of
poses in the environment under fixed lighting conditions. This IM is embedded in an
extremely high-dimensional space: RH×W×3, where W and H stand for the width and
height of the images, respectively. Patently, working in such extremely high-dimensional
space is not only unfeasible, but also impractical since it lacks radiometric invariance. That
is, the IM of a given environment might change drastically with the scene illumination
and the automatic camera accommodation to light (e.g., gain and exposure time). Thus, it
is primarily to project the images (i.e., samples of the IM) to a lower-dimensional space
with a transformation that also provides such radiometric invariances [15]. This projection
can be carried out by encoding the image into a descriptor vector, hence obtaining a new
appearance space, the Descriptor Manifold (DM), which is still articulated by the camera
pose. In this paper, we leverage Deep Learning (DL)-based holistic descriptors [8,16]
to project the IM into a locally smooth DM. We are aware that such smoothness is not
guaranteed for the descriptors employed here, since this feature has not been explicitly
taken into account in their design. This issue will be addressed in future work, but in the
context of our proposal, the selected DL-based descriptors perform reasonably well under
this assumption.

Another capital aspect in appearance-based localization is that it requires an appro-
priate map, which, in our case, is built from samples of the DM that are annotated with
their poses. In this paper, we assume that such samples, in the form of descriptor–pose
image pairs, are given in advance and are representative of the visual appearance of the
environment. Upon this set of pairs, we propose creating Patches of Smooth Appearance
Change (PSACs), that is, regions that locally approximate the geometry of the DM using
neighbor samples (see Figure 1). A tessellation of such PSACs results in a piecewise
approximation of the DM that constitutes our appearance map, where pose data is only
available at the vertices of the PSACs. The appearance smoothness within each PSAC
allows us to accurately regress a descriptor for any pose within the pose space covered
by the PSAC. This is accomplished through a Gaussian Process (GP), which delivers the
Gaussian distribution of the regressed descriptor (refer to Figure 1).

Our proposal solves continuous sequential localization indoors by tracking the robot
pose using a Gaussian Process Particle Filter (GPPF) [17,18] within the described appearance
map. The particles are propagated with the robot odometry and weighted through the
abovementioned Gaussian Process, which is implemented as the GPPF observation model
for the image descriptor.

Pursuing to improve the robustness of our method against appearance changes, we
model the descriptor variations in such situations as a white noise distribution that is
introduced into the estimation of the observation likelihood. Finally, it is worth mentioning
that our proposal can easily recover from the habitual PF particle degeneracy problem
by launching a fast and multihypothesis camera relocalization procedure through global
Place Recognition.

Our localization system has been validated with different indoor datasets affected by
significant appearance changes, yielding notable results that outperform current state-of-
the-art techniques, hence demonstrating its capability to reduce the gap between feature-
based and appearance-based localization in terms of accuracy, while still leveraging the
invariant nature of holistic descriptors.
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Figure 1. The Gaussian Process (GP) associated to a Patch of Smooth Appearance Change (PSACs)
approximates the geometry of a neighborhood of the Descriptor Manifold (assumed to be locally
smooth) with respect to the pose space, predicting the local likelihood p(dq|x, PSACm) of the ob-
servation dq in a given pose x. In this example, the descriptor–pose pairs are extracted from two
previous trajectories of the robot (in red and blue).

2. Related Work

This section reviews two concepts that are essential for the scope of this work: Global
image descriptors and Appearance-based localization.

2.1. Global Image Descriptors

A well-founded way of getting a consistent dimensionality reduction from the Image
Manifold to the Descriptor Manifold is through Manifold Learning tools, like LLE [19] or
Isomap [20]. Their performance, however, is limited to relatively simple IMs that result
from sequences of quasi-planar motions or deformations, like face poses, person gait, or
hand-written characters [21]. Unfortunately, images taken in a real 3D scene give rise
to complex, highly twisted IMs, which also present discontinuities due to occlusion bor-
ders [22]. Moreover, typical Manifold Learning tools are hardly able to generalize their
learned representations to images captured under different appearance settings [15]. This
prevents their application to generating low-dimensional embeddings adequate for cam-
era localization.

Nevertheless, Deep Learning (DL)-based holistic descriptors have recently proven
their suitability to enclose information from complete images, effectively reducing their
dimensionality, while adding invariance to extreme radiometric changes [8,12,23,24]. This
feature has made DL-based descriptors highly suitable for diverse long-term robot applica-
tions [9,25], e.g., Place Recognition (PR), where the goal is to determine if a certain place
has been already seen by comparing a query image against a lightweight set of images [26].
In addition, these descriptors have proven to more sensitively reflect pose fluctuations than
local features [26], which is described, for example, by the equivariance property [27,28].
Since we are targeting robust robot operation under different appearance conditions, global
descriptors arise as the natural choice to address appearance-based localization.

2.2. Appearance-Based Localization

Appearance-based localization is typically formulated as a two-step estimation prob-
lem: first, PR is performed to find the most similar images within the map and, subse-
quently, the pose of the query image is approximated from the location of the retrieved
ones [29,30]. In this scenario, DL-based works have proposed to improve the second
stage through Convolutional Neural Network architectures that estimate relative pose
transformations between covisible images [31–33].

The addition of temporal and spatial sequential information to appearance-based
localization methods based on single instances provides more consistency to the estimation
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of the pose, as it reduces the possibility of losing camera tracking due to, for instance,
perceptual aliasing [26]. Following this idea, SeqSLAM [10,34] proposes a sequence-to-
sequence matching framework that reformulates PR with the aim to incorporate sequen-
tiality, leading to substantial improvements under extreme appearance changes. Building
upon SeqSLAM, SMART [11] integrates odometry readings to provide more consistent
results. More recently, Network-Flow-based formulations have also been proposed to solve
appearance-based sequence matching under challenging conditions, addressing camera
localization [35,36] or position-based navigation and mapping [37]. Despite their relevant
results, the nature of all these works is discrete, unlike our proposal, restricting all possible
estimation to the locations present on the map.

Conversely, CAT-SLAM [38] employs image sequentiality as a source of topometric
information to improve the discrete maps used by FAB-MAP [9], allowing interpolation
within the sequence map through the association of continuous increments on appearance
and pose. Although the estimates produced by this approach are continuous, they are
restricted to the mapped trajectory. Our work overcomes this constraint by requiring
multiple sequences or pose grids as a source for constructing the map PSACs. This way,
we can perform localization even at unvisited map locations near the PSACs, achieving,
consequently, more accuracy and reliability.

An interesting alternative to pose interpolation is the use of Gaussian Processes (GPs)
regression [39], nonparametric, general-purpose tools that allow generalizing discrete
representations to a continuous model, and, hence, can be adapted to perform continuous
localization within discrete maps. For instance, [40,41] employed GPs to generate posi-
tion estimates for omnidirectional images in indoor maps, achieving good performance
although lacking applicability to robot rotations. Our approach is instead designed to work
with both 2D positions and rotations for conventional cameras.

In turn, the authors of [18] proposed Gaussian Process Particle Filters (GPPFs) to
solve appearance-based localization in maps of descriptor–pose pairs. The GP works
as the observation model of the PF, estimating the likelihood of the observed holistic
descriptor at each of the particle positions. This localization pipeline was later improved
in [42] by using only the nearest map neighbors in the GP regression, allowing efficient
localization within large environments. Despite being promising, both works have three
major drawbacks: (i) they define a unique Gaussian Process between poses and descriptors
for the whole environment, assuming that the manifold geometry has a similar shape for
the entire environment, thus leading to inaccurate estimations, (ii) they do not propose a
relocalization process in case of losing tracking, and (iii) they only consider localization
under the same appearance than the map, lacking robustness to radiometric alterations.

Inspired by these works, we employ a GPPF to solve appearance-based localization in
a continuous and sequential fashion within challenging indoor environments. We solve
their first problem by locally modeling the mapping between poses and descriptors via
specific GPs for each PSAC, providing refined estimates for each neighborhood. Our
proposal solves the second issue through a fast and multihypothesis relocalization process
based on global PR within the map. Finally, the last issue is addressed by incorporating a
model of the appearance variation between the mapped and query images to the map.

3. System Description

This section describes our proposal for the process of appearance-based camera lo-
calization. First, we define the elements that form the appearance map, which are key
contributions in this work, and then we address PR-based localization and camera tracking
using a probabilistic formulation based on a GPPF.

3.1. Patches of Smooth Appearance Change

The Patches of Smooth Appearance Change (PSACs) are regions that locally model the
interrelation between camera poses and image descriptors, and represent areas where the
change in appearance is small.
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3.1.1. Definition

The basic building unit of a PSAC is the pair pi = (di, xi), composed by the global
descriptor di ∈ Rd of an image and the pose xi ∈ SE(2) where it was captured.

We assume that these pairs are extracted from any of these two environmental rep-
resentations (Figure 2): either from several robot navigation sequences (at least two) or
from pose grids where the cameras have densely sampled the environment given fixed
position and rotation increments (i.e., a regular grid). Optimally, a subset of these pairs
should be selected so that they constitute the smallest number of samples from which the
Descriptor Manifold (DM) can be approximated with sufficiently good accuracy. These
key samples can be viewed as the equivalent to the key-frames in traditional, feature-based
visual localization, and hence, we denote them key-pairs (KPs). Since determining such
an optimal subset is a challenging issue itself, out of the scope of this work, the KPs are
constantly sampled from the total collection of pairs.

Figure 2. Each PSAC is constructed from descriptor–pose pairs that can be obtained from two
different robot trajectories (left, blue and red) or a grid of poses (right, green). This is better seen
in color.

Each PSAC is built from a group of adjacent KPs and approximates the DM in the
region that they delimit. As explained later, the robot localization takes place within these
PSACs by defining a suitable observation model for the GPPF (refer to Figure 1). Formally,
let the m-th PSAC be

PSACm =

({
KPm,i| i = 1, . . . , Q

}
, GPm

)
, (1)

where Q ≥ 3 is the number of KPs forming the PSAC. In turn, GPm is a Gaussian Process
specifically optimized for that particular PSAC that delivers a Gaussian distribution over
the image descriptor for any pose nearby the PSAC (further explained in Section 3.1.2).

Thus, in order to determine the closeness between a query pair pq = (dq, xq) and a
particular PSAC, we define two distance metrics as follows:

• The appearance distance Da
m,q from the query descriptor dq to the m-th PSAC is defined

as the average of the descriptor distances to each of its constituent key-pairs:

Da
m,q = Da(PSACm, dq) =

1
Q

Q

∑
i
||dq − dm,i||2. (2)

• Similarly, but in the pose space, we define the translational distance Dt
m,q from xq to the

m-th PSAC as

Dt
m,q = Dt(PSACm, xq) =

1
Q

Q

∑
i
||tq − tm,i||2, (3)

with tq being the translational component of the pose xq = (tq, θq).
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Finally, the set of all PSACs covering the environment that has been sampled forms
the appearance mapM:

M = {PSACm|m = 1, . . . , M}, (4)

with M being the number of PSACs. This way, we achieve a much more accurate approxi-
mation of the relation between the pose space and the DM within each PSAC, ultimately
modeling inM, patchwise, the complete shape of the DM.

3.1.2. GP Regression

GPs are powerful regression tools [39] that have previously demonstrated their validity
as observation models in Particle Filters [17,18,42].

In this work, we learn a specific GP for each PSAC from its vertices KPs and also
using all the nearest pairs, in terms of translational distance. Then, for a certain query pose
xq, the GPm delivers an isotropic Gaussian distribution N (µµµm,q, σ2

m,qId), where µµµm,q ∈ Rd

and σ2
m,q ∈ R stand for its mean and uncertainty, respectively. This distribution is finally

employed to estimate the likelihood p(dq|xq, PSACm) of an observed image descriptor dq,
given the query pose xq within the PSACm.

For this, the GP regression employs a kernel k, which measures the similarity between
two input 2-D poses (xi, xj), with this structure:

k(xi, xj) = kRBF(ti, tj) · kRBF(θi, θj) + kW(xi, xj). (5)

This kernel k first multiplies two Radial Basis Function (RBF) kernels kRBF(ai, aj) =

βa exp(−αa||ai − aj||22) (αa and βa are optimizable parameters) for the separated transla-
tional and rotational components of the evaluated poses x = (t, θ). Then, a White Noise
kernel kW(ai, aj) = σ2

Wδ(ai − aj) is added, which models the variation suffered by the image
descriptors taken at the same pose but under different appearances (refer to Figure 3).
This is justified because, although global PR descriptors have demonstrated outstanding
results in terms of invariance, such invariance is not ideal and small differences might
appear. Thereby, since the construction of the mapM is typically carried out considering
just one particular appearance, and we aim for the robot localization to be operational
under diverse radiometric settings, we propose the inclusion of a white noise distribution
accounting for this circumstance in the regression. We model such descriptor variation with
the variance σ2

W , computed as the average discrepancy between the descriptor variances of
pose adjacent pairs pi, under the same σ2

i,same and different σ2
i,diff illumination settings:

σ2
W =

1
N

N

∑
i

(
σ2

i,diff − σ2
i,same

)
. (6)

Artificial
Illumination

Cloudy

Sunny
σ2
   m,qd

x
σ2^m,q

Figure 3. These three images have been captured at the same pose but with different appearances.
Ideally, their descriptors (blue, red, and purple dots) should be identical but, in practice, certain
inaccuracies appear. As the GP learns the descriptor distribution uniquely from the appearance of
the map, this variation is not considered, leading to an underestimated GP uncertainty (red area,
σ̂2

m,q). The inclusion of white noise expands such uncertainty (green area, σ2
m,q), solving this issue.
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3.2. Robot Localization

Once we have defined all the elements involved in the representation of the envi-
ronment, we address here the process of localization within the appearance mapM. We
aim to estimate the robot pose through appearance-based continuous tracking using a
Gaussian Process Particle Filter (GPPF), namely, a PF that employs the GPs described above
as observation models. Being well-known robot localization tools, we do not provide
a deep description of Particle Filters here but instead refer to the reader to the seminar
work [43] for further information.

At time-step t, each of the P particles in the filter represent a robot pose estimation
x(t)p with an associated weight w(t)

p , proportional to its likelihood. Besides, each particle is

assigned to a certain region PSAC(t)
m,p, as explained next.

3.2.1. System Initialization

When the PF starts, we perform global localization based on Place Recognition to
select the most similar PSAC inM to the query descriptor according to its appearance:

PSACm̂ = min
PSACm∈M

Da
m,q. (7)

To account for multihypothesis initialization, we also consider as candidates those
PSACs whose appearance distance is under a certain threshold proportional to Da

m̂,q. Subse-
quently, the particles are uniformly assigned and distributed among all candidate PSACs,
setting their initial weights to w(t0)

p = 1
P .

Note that, if the robot tracking is lost during navigation, this procedure is launched
again to reinitialize the system and perform relocalization.

3.2.2. Robot Tracking

Once each particle is assigned to a candidate PSAC, the robot pose estimation is
carried out following the traditional propagation-weighting sequence:

Propagation. First, the particles are propagated according to the robot odometry:

x(t)p = x(t−1)
p ⊕ υ(t), (8)

with υ(t) ∼ N (υ(t), Συ) representing noisy odometry readings, and ⊕ being the pose
composition operator in SE(2) [44].

Weighting. After the propagation, the translational distance between each particle’s
pose and all the PSACs is computed, so that the particle is assigned to the nearest PSAC
(PSAC(t)

m,p). Then, we use the GP regressed in the PSAC to locally evaluate the likelihood of

the observed descriptor dq at the particle pose x(t)p as follows:

w(t)
p = p

(
dq|x(t)p , PSAC(t)

m,p
)
∼ exp

(
− d

2
ln(σ2(t)

m,p)−
||dq −µµµ

(t)
m,p||22

2(σ2(t)
m,p)

)
, (9)

with d being the dimension of the descriptor.
Finally, apart from propagation and weighting, two more operations can be occasionally

applied to the particles.
Resampling: In order to prevent particle degeneracy, the GPPF resamples when the

number of effective particles is too low, promoting particles with higher weights.
Reinitializing: During normal operation, the GPPF may lose the tracking of the

camera, mainly due to extremely challenging conditions in the images (e.g., very strong
change appearances, presence of several dynamic objects). We identify this situation by
inspecting the translational distance between each particle and the centroid of its assigned
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PSAC, defined as the average pose of all the key-pairs forming the PSAC. If all particles
are at least twice farther from the centroid of their assigned PSAC than its constituent
key-pairs, the tracking is considered lost. Consequently, the PF relocalizes by following the
aforementioned initialization procedure.

4. Experimental Results

In this section, we present three experiments to evaluate the performance of our
appearance-based localization system.

First, we carry out a verification of the regression outcome in Section 4.1, with the
aim to experimentally validate the hypothesis of a smooth Descriptor Manifold within
the regions covered by each PSAC. In Sections 4.2 and 4.3, we test our proposal with four
different state-of-the-art global descriptors in two different datasets, with a combination of
setups for the map sampling. This has provided us with an insight about the error incurred
by our proposal and has allowed us to determine the best configuration for localization.
The second experiment, in Section 4.4, compares the resulting setup with three appearance-
based localization alternatives in terms of accuracy and robustness, revealing that our
system equals or improves their performance in every scenario.

It is important to highlight that this evaluation does not include comparisons with
feature-based localization methods, since they are not compatible with appearance changes
in the images used for both mapping and localization, which is one of the main benefits of
our proposal.

We employed two different indoor datasets for the experiments:

• The COLD-Freiburg database [45], which includes real images from an office gath-
ered with a mobile robot under different appearance conditions. We have used only a
representative subset of the sequences in part A of the dataset (Figure 4a).

• The synthetic SUNCG Dataset [46] rendered through the virtual HOUSE3D environ-
ment [47] allows us to test the localization on a grid map (see Figure 4b).

In turn, regarding the global image representation, we have tested the following
state-of-the-art appearance descriptors:

• NetVLAD: VGG16 [48] based on off-the-shelf, 4096-sized NetVLAD features with
Principal Component Analysis (PCA) whitening [8].

• ResNet-101 GeM: ResNet-101-based [49] fine-tuned generalized-mean features with
learned whitening [12].

• 1M COLD Quadruplet and 1M RobotCar Volume: end-to-end learned condition
invariant features with VGG16 NetVLAD [24] with quadruplet and volume loss
functions in two different datasets.

Although none of these descriptors has been specifically designed to fulfill suitable
properties for our pose regression approach, they have achieved promising results in
terms of localization accuracy, as shown next. We used the GPy tool [50] to implement the
proposed Gaussian Processes and empirically determined σ2

W from Equation (6), for each
descriptor, by randomly sampling N = 2000 adjacent pairs with diverse illumination
settings from the COLD-Freiburg database.

In this evaluation, we employ as metrics the median errors in translation and rotation
(to inspect our method’s accuracy), as well as the percentage of correctly localized frames
(which illustrates the tracking and relocalization capabilities of our method). It is worth
mentioning that traditional trajectory-based evaluation metrics as Absolute Trajectory Error
(ATE) or Relative Pose Errors (RPE) are not applicable to this approach since our proposal,
and appearance-based localization methods in general, yields global pose estimations
that are not guaranteed to belong to a trajectory, due to possible tracking losses and
relocalization situations.

100



Sensors 2021, 21, 2483

(a) (b)
Figure 4. Environments and sequences employed for evaluation. (a) Map of the COLD-Freiburg Part A environment.
Samples of the standard and extended routes are depicted in blue and red, respectively (image from [45]). (b) Map of the
house rendered by the SUNCG environment (the house employed was 034e4c22e506f89d668771831080b291). The dense grid
poses are shown in red and the test sequences in different shades of green. Black regions depict objects, where the robot is
not able to navigate.

4.1. Corridor: Sanity Check

The main assumption of our proposal is the hypothesis of a locally smooth Descriptor
Manifold with respect to the pose, on which PSACs are based. Since this assumption is
not justified by previous work, we have conducted a basic test to evaluate the regression
outcome of the PSACs in a simple scenario.

The proposed experiment studies the evolution of the image descriptor along a simple,
linear trajectory, by comparing the observed descriptor and the mean of the descriptor
distribution resulting from the regression within the PSAC. In this manner, the behavior of
the descriptor can be examined along the corridor axis in order to prove its continuity and
the validity of the PSAC approximation. For this, we have selected a portion of an artificially
illuminated (night) sequence where the robot traveled along a ∼8 m-long corridor, as well
as the NetVLAD image descriptor. For the PSACs, we used a map constructed with images
with the same appearance selected every 20 frames.

In order to represent the evolution of the descriptors, we have applied Principal
Component Analysis (PCA) to them and represented the first PCA element (that with
larger variation). Thus, Figure 5 depicts the trajectory of the robot through the corridor
along with the value of said first PCA element for both the observed descriptor and the
mean of the descriptor distribution regressed by the GPs at each PSAC. The displayed
results demonstrate that the descriptor has a continuous evolution along the corridor,
almost lineal in the central part. Besides, the PSACs are proved to also have a continuous
outcome and to approximate very accurately the values of the observed descriptor along
the sampled trajectory.
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Figure 5. Experimental study of the global image descriptor behavior along a corridor of the COLD-Freiburg database (left
image). The central figure depicts the robot pose trajectory and the PSACs (shadowed areas) through which it navigates.
The rightmost figure compares, along the corridor, the behavior of the first Principle Component Analysis (PCA) component
of the observed descriptor (coral) and the PSAC regression output (blue and green). This is better seen in color.

4.2. COLD: Sequential Map Testing

The COLD-Freiburg database (part A) provides odometry readings and real images
for two different itineraries, namely, (i) extended (∼100 m-long), which covers the whole
environment; (ii) standard (∼70 m), covering a subset of the environment, both depicted
in Figure 4a. The dataset also provides images gathered under three different lighting
conditions: at night (with artificial illumination), and on cloudy and sunny days.

In order to create the appearance maps for the experiments, we employed the first and
second night sequences of the extended itinerary, since images captured under artificial
illumination do not suffer from severe exposure changes or saturation like under the
remaining conditions. From here on, we will refer to these as map sequences. Specifically,
key-pairs from both map sequences have been obtained through Constant Sampling (CS)
every 10, 20, and 30 pairs, resulting in three different maps with diverse density (described
in more detail in Table 1), using Q = 4 KPs to construct every PSAC.

Table 1. Compared statistics of the created appearance maps. The dimension is calculated for a
2048-sized global descriptor.

Dataset Area Map Key-Pairs PSACs Size Construction
(KPs) (Mb) Time (s)

COLD Database ∼900 m2
Samp. 10 559 321 2.18 56.68
Samp. 20 280 159 1.09 32.27
Samp. 30 187 103 0.73 25.92

SUNCG ∼45 m2

Dense 1203 679 4.69 140.94
Sparse pos 451 227 1.76 129.36
Sparse rot 723 432 2.82 136.95

Sparse pos-rot 271 149 1.05 107.93

Finally, we have setup an extensive evaluation with six other sequences including
different routes and illumination conditions: the first night; cloudy and sunny sequences of
the standard part; the first cloudy and sunny sequences; and the third night sequence of the
extended part.

Figure 6 shows a comprehensive test study depicting the localization performance
of our proposal after twenty runs for all test sequences at each map, using the median
translational (top) and rotational (down) errors as metrics. Note that the number of
particles for the PF has been set to P = 103, as we have empirically found that increasing
that number does not improve the accuracy results. The overall performance shows a
median error predominantly below 0.3 m and 6°, which denotes promising results given

102



Sensors 2021, 21, 2483

the pure appearance nature of our approach, i.e., with no geometrical feature employed
for localization.

Figure 6. Comparison of the median translational and rotational errors of our proposal in the COLD-Freiburg dataset,
tested at every sequence and with different Constant Sampling (CS) rates, using each holistic descriptors with 103 particles.
Note that the maps were constructed employing sequences under similar conditions to the night sequences. This is better
seen in color.

The results in Figure 6 show that scene appearance seems to be a key issue regarding
the system’s accuracy, as our proposal achieves better results in less-demanding lighting
conditions like artificial illumination (night) or cloudy. Nevertheless, our system still
demonstrates notable performance under challenging radiometric conditions, such as in
sunny sequences (e.g., presence of lens flares and image saturation), hence proving its
suitability for robust appearance-based localization.

On the other hand, the number of KPs that form the map is another factor influencing
the performance, since the PSACs approximate the pose–descriptor interrelation the closer
their KPs are. Although not particularly significant under advantageous conditions, this
factor severely affects performance under challenging situations, as in sunny sequences,
where localization is hindered as the sampling frequency decreases. Note that a more
elaborate mapping technique than CS would improve these results, since an optimal
selection of KPs would conform PSACs that achieve a more precise description of the DM
geometry. Nevertheless, this will be explored in future work while, in this paper, we rely
on CS to get still nonoptimal but notable results.

Finally, regarding the tested PR descriptors, the results show that in most cases,
all perform similarly, with NetVLAD mostly achieving slightly better results. In turn,
1M COLD Quadruplet seems to struggle under complex illumination conditions, which
might indicate that its empirically estimated white noise variance is unlikely to account
adequately for these cases. The similar performance shown by all descriptors agrees with
the fact that none of them has been specifically trained for appearance-based localization.

4.3. SUNCG: Grid Map Testing

The SUNCG Dataset provides a set of synthetic houses where a virtual camera can
be placed at any pose. This feature allowed us to create a regular grid map in the space of
planar poses with the camera and then to evaluate the impact of the map density in our
proposal. Note that this dataset does not present appearance changes, and hence, the effect
of such a characteristic cannot be evaluated in this experiment.

First, our dense grid map was created by selecting KPs with constant increments of
0.5 m in translation and 36° in rotation (refer to the red dots in Figure 4b). Then, we
used subsampling to generate more grid maps for the evaluation, as described in Table 1,
namely, the sparse-position map (subsampling half of the positions); the sparse-rotation map
(subsampling half of the orientations); and the sparse-position-rotation map (subsampling
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both at the same time). In this case, we created PSACs with Q = 8 KPs for all maps.
Additionally, we have recorded three ∼30 m-long test sequences following the trajectories
shown in shades of green in Figure 4b, generating a synthetic odometry corrupted by zero-
mean Gaussian noise with σu = (0.06 m, 1°).

The results of this experiment are shown in Figure 7, comparing the median errors
in translation (left) and rotation (right) for all the descriptors employed in the previous
experiment and for the described versions of the grid map. Again, we have set P = 103

particles for the PF. As can be seen, our proposal yields median errors under 0.2 m and 6°
in the dense map, while using subsampled maps hinders the process of localization. It can
be noted that subsampling exclusively on rotations does not worsen the accuracy, while
subsampling positions has a noticeable impact on the overall performance. Consequently,
PSACs prove to handle information sparseness more efficiently in orientation than in
position. Not surprisingly, subsampling in both position and orientation clearly achieves
the worst localization performance due to the combined loss of information.

Figure 7. Median tracking errors of our proposal for the test sequences on the SUNCG generated
maps, with 103 particles.

Regarding the holistic descriptors, all of them again demonstrate a similar behavior
for each subsampling case, with 1M RobotCar Volume performing worst. ResNet-101 GeM
and NetVLAD, in turn, achieve the best performance.

These results demonstrate that uniform grid sampling is a rough strategy for mapping
environments, achieving results highly dependent on the sampling density. Besides,
the construction of such maps with real robots becomes largely time-consuming, mostly
being realizable when using virtual environments. Future work should investigate more
elaborated strategies, designed to fulfill more adequate criteria concerning the map creation,
ultimately pursuing an optimal approximation of the DM geometry.

4.4. Comparative Study

Finally, we compare the localization performance between our proposal and state-of-
the-art appearance-based methods of diverse nature in both datasets. For the setup of our
method, we selected the NetVLAD descriptor due to its performance against appearance
changes, and added the KPs every 20 pairs for the COLD dataset, as it represents a fair
trade-off between accuracy and the number of KPs employed.

These are the appearance-based localization methods involved in the comparison:

• Gaussian Process Particle Filter (GPPF) [42], configured with P = 103 particles.
• The Pairwise Relative Pose estimator (PRP) presented in [31]: a CNN-based regressor

that estimates the pose transform between the query and the 5 most similar map
images obtained through PR.

• The Network flow solution proposed in [37]: a sequential sparse localization method
that includes uniform and flow-based mapping, both considered in this study. In order
to make the results comparable, we modified its outcome, which is sparse, to pro-
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duce continuous estimations. For that, we used the following weighting after the
bipartite matching:

xi =
∑Nk

j
yi
yij

xi

∑Nk
j

yi
yij

(10)

where xj is the pose of the each of the Nk = 5 most contributing KPs, yij is the flow

connecting the i-th query and the j-th KP, and yi = ∑Nk
j yij represents the query flow

from the nearer KPs (refer to [37] for further info).
• Our approach, configured with P = 103 particles.

Table 2 shows the compared performance between all the described algorithms after
twenty runs for each scenario. Note that, apart from the median errors, we included
the percentage of correctly localized frames along the trajectory, showing the tracking
robustness and relocalization potential. Concretely, a frame is considered to be correctly
localized when the distance between the estimate and its true pose is below (0.5 m, 10°).

Table 2. Comparative median position and rotation errors, and % of correctly localized frames (m, ◦, (%)) of different state-
of-the-art appearance-based localization methods. A frame is correctly localized when the distance between the estimate
and its true pose is below (0.5 m, 10°) (L: sequences where the tracking got lost. N/A: not applicable). PRP—Pairwise
Relative Pose estimator; PR—Place Recognition. In bold, best result for each sequence.

Dataset Map Sequence GPPF [18,42] + PRP CNN [31] + Network Flow [37] + Network Flow [37] + Our Method
Unif. Sampl NetVLAD PR Unif. Sampl. Flow Sampl C.S.

COLD Database

Night std L 1.17, 10.94 (8%) 0.19, 4.33 (66%) 0.26, 4.66 (60%) 0.2, 3.08 (85%)
Cloudy std L 1.93, 14.59 (4%) 0.31, 4.76 (57%) 0.36, 5.29 (46%) 0.3, 5.82 (56%)

Samp. 20 Sunny std L 2.2, 14.75 (3%) 0.36, 6.91 (40%) 0.42, 7.7 (33%) 0.23, 5.08 (66%)
Night ext L 1.27, 11.07 (8%) 0.22, 3.88 (69%) 0.26, 4.36 (61%) 0.17, 3.38 (82%)

Cloudy ext L 1.46, 12.17 (6%) 0.22, 4.13 (60%) 0.31, 5.12 (52%) 0.2, 3.48 (82%)
Sunny ext L 2.11, 16.59 (2%) 0.3, 6.95 (50%) 0.35, 8.14 (39%) 0.28, 6.67 (54%)

SUNCG

Dense

Test sequence

1.07, 6.07 (17%) 0.75, 12.14 (13%) N/A N/A 0.15, 5.69 (60%)
Sparse pos 1.21, 9.16 (7%) 1.14, 19.76 (2%) N/A N/A 0.46, 4.30 (51%)
Sparse rot 1.24, 12.36 (2%) 0.89, 19.76 (6%) N/A N/A 0.20, 5.15 (57%)

Sparse pos-rot 1.62, 20.16 (0%) 1.51, 24.51 (1%) N/A N/A 0.72, 18.58 (19%)

As can be seen, the challenging radiometric conditions in the COLD-Freiburg database
caused the GPPF method to lose tracking, while the PRP estimator achieved low accuracy
as a result of not exploiting the trajectory sequentiality, performing PR at every time-step
instead. In turn, the solutions based on Network flow provide very accurate estimations
in general, with the best results achieved by the uniformly sampled map under favorable
conditions (i.e., night and cloudy sequences) and slightly worse in the case of severe appear-
ance changes (i.e., sunny sequences). Our proposal, in contrast, demonstrates providing
consistent results regardless of the appearance settings, achieving similar results to the
Network flow solution in favorable conditions and outperforming all other methods under
challenging radiometric settings.

In the case of the SUNCG dataset, the formulation proposed by the Network flow is
incompatible with grid maps covering multiple rotations at the same location, as they are
conceived to work only with positions. In turn, PRP and GPPF obtain low performance,
even worsened in subsampled maps, while our proposal achieves the best results.

Despite its similarity with our approach, GPPF has shown to be unable to achieve
robust localization due to the abovementioned issues: (i) deficiencies from considering a sin-
gle pose–descriptor mapping for the whole environment, (ii) the absence of a relocalization
process, and (iii) its limitation to environments without radiometric changes.

In conclusion, the presented comparison proves that these state-of-the-art localization
methods based on appearance cannot provide both consistent and accurate localization
estimations while operating within maps of diverse nature and captured under differ-
ent appearance conditions. Our method, in turn, achieves higher performance in these
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conditions in terms of precision and robustness, showing notable results given its pure
appearance nature.

5. Conclusions

We have presented a system for appearance-based robot localization that provides
accurate, continuous pose estimations for camera navigation within a 2D environment
under diverse radiometric conditions. Our proposal relies on the assumption that image
global descriptors form a manifold articulated by the camera pose that adequately approxi-
mates the Image Manifold. This way, we gather pose–descriptor pairs from a lightweight
map in order to create locally smooth regions called Patches of Smooth Appearance Change
(PSACs) that shape, piecewise, the Descriptor Manifold geometry. Additionally, we ro-
bustly deal with appearance changes by modeling the descriptor variations under a white
noise distribution.

We implemented a sequential camera tracking system built upon a Gaussian Pro-
cess Particle Filter, which allows for multihypothesis pose estimation. Thus, our system
optimizes a specific GP for each PSAC, subsequently being employed to define a local ob-
servation model of the descriptor for the Particle Filter. Furthermore, our method includes
a relocalization process based on PR in case of tracking loss.

A first set of experiments has shown our proposal’s error baseline in different environ-
ments and for a selection of holistic descriptors, revealing the most suitable configuration
for our system. Finally, we have presented a comprehensive evaluation of the localization
performance, showing that our approach outperforms state-of-the-art appearance-based
localization methods in both tracking accuracy and robustness, even using images with
challenging illuminations, yielding median errors below 0.3 m and 6°. Consequently, we
have proven that pure appearance-based systems can produce continuous estimations
with promising results in terms of accuracy, while working with lightweight maps and
achieving robustness under strong appearance changes.

Future work includes research about (i) building the appearance map in an optimal
way and wisely selecting where to sample the Descriptor Manifold; (ii) the design of a
novel holistic descriptor that is more adequate to perform pose regression while keeping
high invariance to radiometric changes.
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Abbreviations
The following abbreviations are used in this manuscript:

PSAC Patch of Smooth Appearance Change
PR Place Recognition
GP Gaussian Process
GPPF Gaussian Process Particle Filter
PF Particle Filter
SLAM Simultaneous Localization and Mapping
IM Image Manifold
DM Descriptor Manifold
DL Deep Learning
KP Key-pair
CS Constant Sampling
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Received: 12 March 2021

Accepted: 27 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, KU Leuven, 3000 Leuven, Belgium;
Eric.demeester@kuleuven.be (E.D.); peter.slaets@kuleuven.be (P.S.)

2 Department of Electrical Engineering, KU Leuven, 3000 Leuven, Belgium; nobby.stevens@kuleuven.be
* Correspondence: robin.amsters@kuleuven.be

Abstract: Most indoor positioning systems require calibration before use. Fingerprinting requires the
construction of a signal strength map, while ranging systems need the coordinates of the beacons.
Calibration approaches exist for positioning systems that use Wi-Fi, radio frequency identification or
ultrawideband. However, few examples are available for the calibration of visible light positioning
systems. Most works focused on obtaining the channel model parameters or performed a calibration
based on known receiver locations. In this paper, we describe an improved procedure that uses a
mobile robot for data collection and is able to obtain a map of the environment with the beacon
locations and their identities. Compared to previous work, the error is almost halved. Additionally,
this approach does not require prior knowledge of the number of light sources or the receiver
location. We demonstrate that the system performs well under a wide range of lighting conditions
and investigate the influence of parameters such as the robot trajectory, camera resolution and field of
view. Finally, we also close the loop between calibration and positioning and show that our approach
has similar or better accuracy than manual calibration.

Keywords: indoor positioning; visible light positioning; sensor fusion; mobile robot; calibration

1. Introduction

Since their introduction, Global Navigation Satellite Systems (GNSS) are the enabling
technology for applications such as navigation, autonomous vehicles and emergency
services. While GNSS can provide worldwide coverage and require only a receiver to use,
they are typically not useful for indoor spaces. On one hand, building walls significantly
reduce the signal strength, often making positioning impossible or reducing the accuracy [1].
However, even the nominal accuracy of GNSS (around 5 m [2]) is insufficient for indoor
positioning, where an error of a couple of meters can mean that the user is located in
one of several rooms. In order to provide indoor location, researchers have developed
many Indoor Positioning Systems (IPS), yet a single standard like GNSS was not achieved.
Indoor environments come in many different varieties and can favor different positioning
technologies. Current systems are often based on Wi-Fi in order to reduce infrastructure
cost; however, their accuracy is limited to a couple of meters [3]. Other technologies
such as Ultra-WideBand (UWB) [4] and ultrasound [5] can provide much higher accuracy
(centimeters), at the cost of additional specialized infrastructure.

With the introduction of solid-state lighting, a new type of indoor positioning has
emerged. In Visible Light Positioning (VLP), light intensities are modulated at speeds
imperceptible to the human eye, which allows for a one way transmission from transmitter
to receiver. Similar to other positioning systems, the Received Signal Strength (RSS) or
signal travel time can be used to determine the receiver location. Due to the local character
of light, the influence of multipath is significantly reduced, resulting in an accuracy that can
be as low as a couple of centimeters [6]. Existing lighting infrastructure can also be reused
for positioning, thereby reducing the overall system cost significantly. These advantages
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led to an increasing research interest in recent years. However, the installation of new
VLP systems remains an important issue. The majority of indoor positioning systems
require some form of calibration. For example, systems that use range measurements to
determine the receiver position via triangulation assume the locations of all transmitters
to be known. Manually measuring transmitter locations can be a cumbersome process, as
the transmitters are often mounted on ceilings and walls [7]. Fingerprinting systems also
require a calibration procedure, in order to build an RSS map that can later be used for
positioning. These site surveys can be lengthy and labor-intensive processes. Additionally,
this RSS map may have to be updated when changes occur in the environment.

Several calibration procedures have been proposed for IPS using technologies such
as UWB [8], Wi-Fi [9,10] and Radio Frequency Identification (RFID) [11,12]. In the field of
visible light positioning, little literature is available on this subject. Our previous work [13]
proposed a proof-of-concept calibration procedure with a mobile robot. In that procedure,
the total number of lights needed to be determined manually [13]. Counting the number
of transmitters is significantly less time-consuming compared to manually measuring the
positions. However, it is still a tedious process that is prone to errors. In this work, we
therefore introduce an improved calibration algorithm. Detected light sources are filtered
based on their measured coordinates, as well as their place in the frequency spectrum.
Using this new procedure, the number of light sources is no longer required. Additionally,
accuracy is significantly improved. As [13] is a proof-of-concept, much remains unknown
about the robustness of the approach. For example, which parameters have an effect on the
accuracy of the procedure? To find out, we investigate the impact of a variety of factors
on the calibration procedure. Finally, the goal of a calibration procedure is to prepare the
system for positioning. The relation between calibration errors and positioning errors may
be complex. In order to determine whether our system has satisfactory performance, we
use the calibrated parameters for positioning. Following this approach, we close the loop
between calibration and positioning and enable high-performance systems that are easy
to deploy.

Our main contributions can therefore be summarized as follows:

• Improved calibration procedure with nearly double the accuracy compared to previ-
ous work [13].

• Extensive parameter study that investigates the influence of the transmitter waveform,
lighting conditions, robot trajectory, camera resolution, Field Of View (FOV) and
transmitter–receiver distance.

• The calibrated parameters are used for positioning. The accuracy of the resulting
location data are evaluated independently from the calibration.

The rest of this paper is structured as follows: Section 2 describes related work, and
Section 3 introduces the materials and methods used in this paper. Experimental results
are presented in Section 4 and discussed in Section 5. Finally, a conclusion is drawn in
Section 6.

2. Related Work

Table 1 provides an overview of calibration procedures proposed for different types of
indoor positioning systems. In Table 1, “positioning technology” refers to the technology
that is actually used for positioning (after the calibration has completed). During the
calibration itself, other signals such as RGB-D cameras [10] or PDR [14] may be used. The
following section will describe the broad categories of calibration methods in more detail.
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Table 1. Calibration approaches for indoor positioning systems.

Reference Positioning Technology Calibration Method Calibrated Parameters

Calibration of fingerprinting systems

[9] Wi-Fi Robot site survey RSS map
[10] Wi-Fi Robot site survey RSS map
[15] Wi-Fi Robot site survey RSS map
[16] Wi-Fi/LTE signalSLAM RSS map
[17] Magnetic field signalSLAM RSS map
[14] Wi-Fi signalSLAM RSS map
[18] Wi-Fi + PDR crowdsourcing RSS map
[19] Wi-Fi crowdsourcing RSS map
[20] Wi-Fi/Magnetic/PDR crowdsourcing RSS map
[21] Wi-Fi crowdsourcing RSS map

Calibration of range based systems

[7] Ultrasound Network optimization Beacon coordinates

[8] UWB
Autocalibration (initial
solution), Followed by
Network optimization

Range bias Beacon
coordinates

[22] Ultrasound known locations Beacon coordinates
[23] Not specified known locations Beacon coordinates
[24] UWB known locations Beacon coordinates
[25] Wi-Fi known locations Beacon coordinates
[26] UWB Network optimization Beacon coordinates

[27] Ultrasound Autocalibration Network
optimization Beacon coordinates

[28] Ultrasound known locations +
Autocalibration Beacon coordinates

[29] Ultrasound Network optimization Beacon coordinates

Calibration of VLP systems

[30] VLP known locations Receiver parameters

[31] VLP known locations Receiver parameters +
Beacon coordinates

[32] VLP known locations Receiver parameters
[33] VLP known locations Channel model
[34] VLP known locations Channel model

[35] Wi-Fi/ambient
light/magnetic field signalSLAM RSS map

[36] VLP signalSLAM RSS map
[37] VLP known locations Channel model

This work VLP Robot site survey Beacon coordinates

Fingerprinting-based IPS operate in two stages. In the first (offline) stage, a signal
strength map is constructed. RSS values are measured at known locations throughout
the entire space. It is possible to record just one type of signal (e.g., Wi-Fi). However,
accuracy is generally improved by including multiple sources of information (e.g., magnetic
field, Bluetooth, etc.) [38]. Signals already present in the environment are often used, in
order to avoid the need for additional infrastructure. In the second (online) stage, the
receiver location is unknown and one or more RSS values are measured. By matching the
current signal fingerprint to the database, the receiver position is recovered. Contrary to
triangulation-based IPS, fingerprinting approaches do not require transmitter coordinates.
To ensure positioning accuracy, it is however important that the signal strength map is
accurate. The map may also have to be updated periodically, if changes to the environment
are made.

We distinguish four methods to construct the signal strength map:

• Manual site survey
• Robot site survey
• SignalSLAM
• Crowdsourcing

In manual site surveys, a trained expert records signal fingerprints at known locations.
The entire space needs to be visited by the surveyor and as mentioned before, this process
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may have to be repeated. Manual site survey is time-consuming and labor-intensive and is
thus not always practical in large indoor spaces [35]. The use of mobile robots has therefore
been proposed to simplify this task. Mobile robots have been used to collect fingerprints
for RFID [11,12] and Wi-Fi systems [10]. Some authors have even proposed algorithms
that enable a robot to collect data without human intervention [9,15]. These navigation
algorithms were relatively simple and did not follow the optimal trajectory (in terms of
accuracy or time required), but they did succeed in covering the space eventually.

The goal of Simultaneous Localization And Mapping (SLAM) is to reconstruct a map
of the environment, while simultaneously estimating the trajectory of the observer relative
to that map. Solutions to the SLAM problem are most commonly based on Bayesian
filtering [39]. SLAM algorithms have mainly been used for robotics applications, as earlier
implementations required expensive sensors such as laser scanners (LIDAR) or depth
cameras [40]. Recently, researchers started using sensors embedded in conventional smart-
phones to construct signal strength maps. This approach is sometimes also referred to as
signalSLAM. Pedestrian Dead Reckoning (PDR) is often used to obtain a rough estimate of
the user’s trajectory, and drift is corrected by using absolute location fixes (for example,
from GNSS signals or near-field communication tags) [16]. Alternatively, other signals
of opportunity such as Wi-Fi, magnetic field or even ambient light [35] can be used to
compensate PDR drift. When using signalSLAM to calibrate fingerprinting IPS, the main
goal is to reconstruct the trajectory of the user and to add the measured signal strengths
to the map based on that trajectory. Recent approaches tend to use a modified version of
graphSLAM [36]. The main challenge with graph-based signalSLAM is the reduction of
false positives when performing loop closures [14,16,17].

SignalSLAM calibration still requires surveyor to visit the entire indoor space. It is
more efficient compared to manual site survey, as the surveyor can walk around contin-
uously. In manual calibration, the surveyor has to stop and record his or her location
periodically. Crowdsourcing approaches attempt to improve efficiency even further by
removing the dedicated surveyor entirely. Initially, users can go about their regular tasks,
while the systems collect both inertial and signal strength data from their smartphones
in the background. As more data are collected, these systems obtain a more complete
picture of the indoor environment, and position accuracy increases. In contrast to single
site surveys, the map can continuously be updated. Crowdsourcing presents a number of
interesting advantages, yet some challenges still remain. Kim et al. [18] assumed the initial
location of the user was known and suggested it can be obtained from GNSS when the
user enters the building. In contrast, the system described in [19] did not require the initial
position, stride length or phone placement. Instead, a map of the environment was used
to impose constraints that can filter improbable locations. The obtained trajectories were
optimized through backpropagation, and Wi-Fi signal strength was added to the map based
on the optimized path. In the work of Wang et al. [20], seed landmarks were extracted from
the floor plan (e.g., doors), which can be used to obtain global observations. Additional
landmarks were learned as more data entered the system. Yang et al. [21] first transformed
the map into a stress-free floor plan, which is a high dimensional space in which the dis-
tance between two points reflects their walking distance (taking constraints such as walls
into account). The similarity between the stress-free floor plan and the fingerprint space
was used to label RSS signatures with their real locations. Crowdsourcing-based calibration
does require users to give up their personal data, which may be an important barrier to
some. Moreover, the approaches discussed above often required a floor plan, which may
not always be available. Finally, the accuracy of both signalSLAM and crowdsourcing is
typically low (in the range of several meters). Due to the relatively low quality input data
(PDR and radio frequency signals), it is challenging to obtain robust and accurate systems
with signalSLAM or crowdsourcing.

The calibration methods discussed so far are only applicable to fingerprinting-based
IPS. Another category of positioning systems obtains the receiver position based on ranging.
The travel time of a signal or the signal strength are used to determine the distance
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between transmitter and receiver. From the measured distances, the receiver position
can then be obtained via triangulation. These types of IPS require accurate knowledge
of the transmitter locations. Depending on the positioning technology used, additional
parameters may also be required. For example, UWB systems often correct the bias on the
distance measurements [8]. VLP systems based on RSS sometimes calibrate the gain [30] or
Lambertian emission order [33]. For the calibration of range-based systems, we can again
distinguish a few possible methods:

• Manual measurements
• Known locations of receiver(s) and/or transmitters
• Interbeacon ranging (autocalibration)
• Network optimization

Similar to fingerprinting systems, range-based IPS can be calibrated manually. In this
case, the transmitter locations would be measured relative to some reference with rulers or
laser-based measurement devices. While measuring the transmitter locations manually
requires less work than performing a manual site survey for fingerprinting, it is still a
tedious process. Transmitters are often mounted on the ceiling, which can make the process
somewhat inconvenient. Ranging systems can also be calibrated based on known receiver
locations, which may be easier to obtain than the transmitter coordinates [22–24]. However,
ground truth measurements of the receiver locations are still required, which often requires
an additional positioning system. Moreover, errors on the receiver location while calibrat-
ing will subsequently lead to errors on the transmitter locations. If sufficient transmitter
positions are known, the others can be extrapolated without extra measurements [25].

Some IPS can use the same ranging techniques that enable receiver positioning to
obtain the distance between transmitters, from which the transmitter locations can also
be obtained [27,28]. These interbeacon ranging techniques (sometimes also referred to as
autocalibration) do assume that beacons can communicate with each other. Additionally,
the transmitters must be placed sufficiently close together such that they are within mea-
surement range of each other, which may disqualify them from positioning technologies
such as Bluetooth.

Finally, range-based IPS can also be calibrated based on a set of transmitter–receiver
distances. If the quantity of data is large enough, no receiver or transmitter locations are
required; a set of range measurements is sufficient. Calibration can then be formulated as an
optimization problem that minimizes the residual of the trilateration equations [7,8,26,27,29].
Results from these approaches are not always unique, for example, in the case of rotational
symmetry. Additionally, accuracy of the solution can be heavily dependent on the initial
conditions [29].

Both ranging and fingerprinting can be used for VLP. Ranging is generally more accu-
rate and robust. However, as the transmitters are lights that also illuminate the space, they
are generally mounted on the ceiling and are pointing downwards. Therefore, transmitters
likely do not have a line of sight (LOS) to each other. Even when VLP transmitters are
within range of each other, they lack the necessary hardware for receiving signals. There-
fore, autocalibration methods cannot be used by most conventional VLP systems. In fact,
VLP calibration in general is not yet explored in depth. Rodríguez-Navarro et al. [30] pro-
posed a method for calibrating the electrical parameters of a VLP amplification circuit. They
performed an extensive parameter study and found that manufacturing tolerances on the
resistors and capacitors contributed most to positioning errors due to incorrect calibration.
By performing multiple intensity measurements at known locations, a system of equations
can be constructed. The solution that minimizes the error provides the optimal calibration
of the receiver parameters. In [31,32], calibration of transmitter coordinates based on known
receiver locations was proposed. Similarly, Ref [33,37] were able to calibrate the channel
model based on known receiver locations. However, these works either did not indicate
how the receiver position should be obtained [31–33] or used an additional positioning
system to obtain it [37]. Note that not all VLP systems require a calibrated channel model.
Camera-based implementations such as [41] only detect the relative position of the light to
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the camera center, while photodiode-based systems use the signal strength to obtain the
transmitter–receiver distance. Camera-based VLP systems therefore only need the location
of each transmitter. However, the channel model of VLP is relatively well known; therefore,
model-based fingerprinting is sometimes also possible given the transmitter locations [34].

In this work, we will focus on the calibration of light source locations and identifiers
without prior knowledge or additional positioning systems, of which there are few ex-
amples. Liang and Liu [35] crowdsourced the construction of a signal strength map of
opportunistic signals. Similar to [14,16], user trajectories were obtained with the help of a
modified graphSLAM algorithm. Contrary to similar works, they also mapped the location
of light sources and used them as landmarks in the positioning stage. However, as the
lights were not modulated, their identity cannot be uniquely determined, resulting in a
relatively low positioning accuracy (several meters) [35]. Additionally, unmodulated light
sources are not easily distinguished from sunlight, as both increase the ambient lighting.
In contrast, Yue et al. [36] did use modulated Light Emitting Diodes (LED). A modified
version of graphSLAM was again used to construct the signal strength database. Absolute
location fixes were obtained by detecting doors with changes in light intensity and mag-
netic field strength. Following calibration, positioning was performed by fusing PDR with
fingerprint observations via a Kalman filter. Positioning accuracy after calibration was
about 0.8 m on average, which is an improvement of approximately 70% over Wi-Fi-based
fingerprinting under the same conditions. However, in rare occasions the positioning error
can exceed 2 m.

3. Materials and Methods

In our proposed system, specific hardware was placed between the power lines and
the lights, which modulated the intensity of each LED at a unique frequency (see Figure 1).
Contrary to VLC, no data was transmitted. Instead, we used the modulated lights as a
landmark. Detection and identification of the light itself is not the focus of this paper but
was explained in our previous work [13]. The main variables of interest were the identity
(i.e., frequency) and the coordinates in the camera frame of the light source. If the position
of each light is known beforehand, this information can be used to obtain the receiver
location. However, in this work, we will focus on the calibration itself. We chose frequency
division for its easy implementation (see Section 4.2.1), but another modulation technique
could also be used. So long as the light sources can be detected (within the field of view)
and identified, the calibration procedure remains applicable.

Figure 1. Model of the proposed Visible Light Positioning (VLP) system.

3.1. Experimental Setup

In order to evaluate the proposed calibration procedure, we used the same experi-
mental setup as our previous works [13,41] (see Figure 2). Four VLP transmitters were
mounted at a height of approximately 1.5 m. Light intensity of every transmitter was
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modulated by a Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) that was
connected to a signal generator. Every LED had a unique frequency between approx-
imately 1.5 kHz and 5 kHz, so that both low and high frequency modulation can be
evaluated. The complete methodology used to obtain suitable transmitter frequencies was
detailed in [13]. Table 2 lists the selected modulation frequencies, along with the other
main hardware specifications.

Figure 2. Experimental setup used in this paper, which was also used in our previous work [13,41].

Table 2. Hardware specifications.

Specifications Value Unit

LED specifications

Frequency LED 1 1.57 kHz
Frequency LED 2 2.03 kHz
Frequency LED 3 2.87 kHz
Frequency LED 4 4.92 kHz

OpenMV camera specification

Model M7
Resolution 640 × 480 pixels
Frame rate 30 fps

RPI camera specification

Model v2
Resolution 3280 × 2484 pixels
Frame rate ≈0.75 fps

LIDAR specifications

Model RPLIDAR A1
Measurement range 12 m

Measurement frequency 5.5 Hz
Angular resolution 1 ◦

Distance resolution 0.2 cm

Robot specifications

Model Kobuki
Gyroscope measurement range 110 ◦/s

Odometry resolution 2578.33 tics/revolution

Computer specifications

Model Dell OptiPlex 5050
CPU 3.6 × 4 GHz
RAM 16 GB
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A mobile robot was equipped with a custom sensor platform that contained a laser
scanner and a camera (see Figure 3). Two different cameras will be investigated in this
paper. Initially, we used the OpenMV M7 camera during experiments, as the low resolution
allowed us to more quickly process the images and therefore speed up development. Later
experiments used the Raspberry Pi (RPi) camera module. Similar to the OpenMV M7, the
RPi camera allows a high flexibility over settings such as the exposure time. However, the
RPi camera has a much greater resolution compared to the OpenMV camera. Section 4 will
investigate whether this resolution improves accuracy. The sensor platform also contained
a laptop, which recorded all data so that calibration could be performed offline. When
the RPi camera module was used, a Raspberry Pi single-board computer recorded the
images separately from the laptop, as the RPi camera does not have a Universal Serial Bus
(USB) interface. The cost of the main components of the experimental setup is detailed in
Appendix A. The robot platform was driven by a human operator via a remote control.

Figure 3. Mobile robot with custom sensor platform used in this paper, which was also used in our
previous work [13,41].

3.2. Calibration Procedure

Figure 4 provides a graphical overview of the calibration procedure. The parameters
used to obtain the results in Section 4 are listed in Table 3. The initial steps of the improved
procedure were still the same as in [13]. Due to the rolling shutter of our Complementary
Metal-Oxide-Semiconductor (CMOS) camera, modulated light sources are visible as stripe
patterns in the images. The width of the stripes is proportional to the transmitter fre-
quency [42]. The complete image processing pipeline is detailed in our previous work [13]
and returns the frequency and pixel coordinates of the lights as output. The effects of lens
distortion are largest at the edges in a picture. Therefore, only the images where a light
was detected close to the image center were processed further. Measurements of the laser
scanner were used to reconstruct the followed trajectory and a map of the environment by
using the Google Cartographer SLAM algorithm [43]. By combining the trajectory of the
robot with the detected light sources, we obtained a map of the environment with the light
source locations relative to the map frame.
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Figure 4. Calibration procedure overview.

Table 3. Calibration parameters.

Parameter Value Unit

Minimum physical distance between lights 1 m
Minimum distance in frequency spectrum 0.1 kHz

Minimum number of occurrences 2 /
Maximum horizontal distance from image center (OpenMV) 100 pixels

Maximum horizontal distance from image center (RPi) 300 pixels

At this point, we have obtained the world coordinates of detected light sources,
in addition to their frequencies. Unfortunately, the same LED is occasionally labeled
with different frequencies, depending on the image. The Canny edge detection step may
calculate the stripe pattern to be one pixel larger or smaller than the actual value, resulting
in a small spread in the frequency spectrum (see Figure 5). Additionally, the detected
world coordinates of the light sources may also not be a single point, due to noise on the
centroid detection and robot localization. The light may therefore appear as a cluster of
coordinates in the light map (see Figure 5). Previously, we solved this problem by averaging
the world coordinates per detected frequency. Then, the frequencies which were detected
most often were kept, depending on the number of light sources. For example, in our
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experimental setup four lights are present; therefore, the calibration procedure selected the
four frequencies that were detected most often, and the rest were discarded. This approach
has the disadvantage that one first needs to know how many light sources are installed in
the environment, and therefore some manual measurements may still be required.

Figure 5. Filtering pipeline. The top row always indicates a light map, and a unique marker is used to indicate different
frequencies. The bottom row shows the frequency spectrum corresponding to a certain processing step. From left to right:
(1) raw output of the light mapping step, (2) light map after averaging coordinates of unique frequencies and removing
outliers (3) light map after removing spurious observations (4) final results of spatial and spectral filtering.

We now propose a different method, whereby we filter the light sources based on
their physical coordinates and the frequency spectrum. The intermediate results of the
processing steps can be seen in Figure 5. First, outliers are removed from the detected
coordinates per frequency. Outliers are defined as detected positions that have a distance
of more than 2 standard deviations from the average position. Then, the coordinates of the
remaining light sources are averaged per frequency. Light sources that were only observed
a few times are removed. Next, light sources that are close to each other are combined.
Filtering is first performed based on the coordinates of the light sources. Whenever the
distance between two transmitters is below a certain threshold (Table 3), the LED with
the lowest number of observations is removed. In case both lights have an equal amount
of detections, their detected frequencies and positions are averaged. We call this step
“spatial filtering”. Finally, we combine light sources of approximately equal frequency.
Whenever the distance in the frequency spectrum of two light sources is below a certain
threshold (Table 3), the frequency with the largest number of observations is kept and
the other is removed. Similar to the spatial filtering step, we average the frequencies
and positions of light sources with an equal amount of detections. We call this final step
“spectral filtering”. The result of these additional processing steps is a light map with the
correct number of transmitters. The number of light sources therefore no longer needs to
be known beforehand. Instead, one only needs to know (approximately) how far lights are
minimally spaced apart, which is much easier to obtain.
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3.3. Data Processing

The result of the calibration procedure is a map of the environment that includes
transmitter locations and their frequencies. Evaluating the accuracy of frequency detection
is relatively straightforward and was performed by comparing the frequency applied by
the signal generator to the frequency determined by the calibrating procedure. Evaluating
the location of the light sources is more complex. Ideally, we could simply compare the
coordinates determined by the calibration procedure to the coordinates in the physical
setup. However, the calibration procedure produces coordinates relative to the map, which
is not necessarily the same coordinate frame as the experimental setup, and obtaining the
transformation between these frames is challenging. However, we can still compare the
relative placement of the light sources. The distance between different light sources is
irrespective of the coordinate frame. Therefore, in order to obtain the transmitter position
accuracy, we subtracted the distance in the physical setup from the distance obtained in
the light map. The distance error between two lights was therefore calculated by:

εr,ij =
∣∣dmeas,ij − dest,ij

∣∣ =
∣∣∣dmeas,ij −

√
(xest,i − xest,j)2 + (yest,i − yest,j)2

∣∣∣ (1)

where:

• εr,ij is the error on the distance between lights i and j
• dmeas,ij is the manually measured distance between lights i and j
• dest,ij is the distance between lights i and j as estimated by the calibration procedure.
• xest,i and yest,i are the estimated Cartesian coordinates of light source i
• xest,j and yest,j are the estimated Cartesian coordinates of light source j

In Section 4, we will investigate the performance of the system under a range of
conditions. Unless explicitly mentioned otherwise, three experiments are conducted for
every condition and the results from all three experiments are combined before further
processing (for example, in order to obtain the cumulative error distribution).

4. Results
4.1. Baseline Results

Figure 6 compares the calibration results obtained in [13] with the method proposed in
this paper. It is clear that the additional filtering steps significantly improve the calibration
accuracy. On average, light sources can now be detected with an accuracy of approximately
6 cm, compared to 11 cm in [13]. Larger improvements are also visible in the higher
percentiles of the distribution. More than 80% of light sources can be positioned with
an accuracy of 10 cm, compared to 20 cm in [13]. Note that the same experimental data
were used to obtain both error distributions; the difference is therefore purely due to
improvements in data processing.

While this new method can localize the LEDs more accurately, the results of the fre-
quency detection remain unchanged. As was the case in [13], it is challenging to calibrate
the high frequency transmitter. As the frequency increases, the width of the stripes de-
creases, and a detection error of a few pixels results in a large frequency error (error of
several hundred Hz). The lower and medium frequency sources can, however, be identified
with relatively high accuracy (error of maximum 130 Hz).

4.2. Parameter Study

Using a mobile robot is a completely new approach to the calibration of VLP systems.
As with any new technique, much is currently unknown about the effects of certain
parameters on the calibration results. In the following sections, we will therefore investigate
the influence of a number of factors on the calibration procedure. One parameter will
be changed at a time, and unless otherwise specified, we will use the results from the
previous section as a baseline to compare against. In doing so, we aim to create a better
understanding of the strengths and limitations of the proposed approach.
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Figure 6. Cumulative error distribution of this paper compared with our previous work [13].

4.2.1. Transmitter Waveform

In visible light positioning, the light intensity of every LED is modulated in such a
way that they are uniquely identifiable, even when multiple lights are in view at the same
time. Generally, the lights continuously transmit a unique code or frequency [44]. The
former is referred to as Code Division Multiple Access (CDMA), the latter as Frequency
Division Multiple Access (FDMA). In this paper, we use FDMA as a multiple access
technology. However, the calibration procedure can be adapted to support CDMA as well
with relatively minor changes.

When using FDMA, both sine waves and square waves can be used as transmitter
waveforms. A square wave is easier to generate and therefore the cost of the transmitters
can be lower. Therefore, most VLP systems in literature use square waves. However,
square waves have harmonics in the frequency spectrum. When selecting square wave
frequencies, more care is needed to avoid interference. Photodiode-based VLP systems
use the Fourier spectrum to separate the received signal into the components of each
transmitter. Therefore, photodiode-based VLP systems are impacted most by harmonics.
Camera-based VLP systems can use spatial multiplexing and are therefore less affected by
this interference.

On the other hand, ideal sine waves have no harmonics, and therefore the available
bandwidth can be used much more efficiently when photodiodes are used as receivers.
The downside is that a sine wave is not as straightforward to generate with low-cost
components. Additionally, the light intensity changes much more gradually with a sine
wave, which makes frequency detection significantly more challenging (see Figure 7). In the
following sections, we will therefore only use square waves, as our calibration procedure is
not able to detect sine waves with sufficient accuracy.

4.2.2. Robot Trajectory

The motion of the robot platform may influence calibration results. If the robot can stay
in motion, calibration time will be reduced. On the other hand, we expect motion blur may
negatively impact results. During experiments, the robot was driven manually via a remote
control. Two different types of trajectories were tested. In the first trajectory, the robot was
continuously in motion and passed by every light source while covering the experimental
space in a zigzag pattern. Figure 8a shows an example light map constructed from data
recorded during a zigzag experiment. Performance is quite poor in this example—one light
source was not even mapped at all. Other zigzag experiments occasionally resulted in even
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fewer light sources. Moreover, Figure 8c shows that the positioning accuracy of the fixtures
that were detected is quite low. We therefore also tested a second type of trajectory, whereby
the robot drives towards each light source sequentially. Once the camera is directly below
the LED, data were recorded for a few seconds, before continuing to the next light. We
call this as a “stop and go” trajectory, Figure 8b shows a light map constructed based on
data from such an experiment. The light sources are now placed closer to the ITEM profiles
(see Figure 2). Additionally, Figure 8c shows that the relative placement is significantly
more accurate.

Figure 7. Comparison of 2 kHz square wave (left) and sine wave (right).

(a) (b)

(c)

Figure 8. Calibration experiments with different trajectories. (a) Zigzag trajectory. (b) Stop and go trajectory. (c) Cumulative error distribution.
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Table 4 compares the duration of the two types of trajectories, based on the average
of three experiments for each type. Contrary to our expectations, we can observe that
performing the calibration with the stop and go trajectory does not take significantly more
time. The zigzag is an exhaustive search, and therefore takes a long time. In contrast, the
stop and go trajectory is not a continuous motion but only gathers the data that is really
required. Processing time for the stop and go trajectory is slightly increased compared to
the zigzag. Fewer images were rejected, as more light sources were detected close to the
center for this type of experiment. Consequently, more images needed to be processed and
the processing time increased. However, the majority of this time was actually spent on
LIDAR mapping (approximately 80%). Therefore, an increase in image processing only
had a small impact on the overall time required. Additionally, the difference is less than 1 s.
As the calibration can be performed offline, this time delay does not present an obstacle.

Table 4. Duration and processing time of calibration trajectories.

Trajectory Average Duration [s] Average Processing Time [s]

Zigzag 110.75 24.46
Stop and go 115.06 25.26

Many other types of trajectories could be considered. Determining the optimal cali-
bration trajectory is outside the scope of this paper. With these results, we can however
conclude that the robot should briefly stop at each LED in order to obtain accurate results.
Unless otherwise specified, results in the following sections are obtained with a stop and
go trajectory.

4.2.3. Lighting Conditions

Results from the previous section were all obtained under the same lighting conditions.
It is well known that changing illumination levels can influence computer vision algorithms,
and could thus negatively impact our proposed calibration procedure. In this section, we
will therefore calibrate the experimental setup under a range of lighting conditions. More
specifically, we distinguish 4 scenarios:

• Baseline: These lighting conditions applied to the results of the previous sections.
More specifically, the shutters of the windows were closed, and no other light sources
besides the LEDs were present.

• Other day: These experiments are conducted under the same circumstances as the
baseline (closed shutters and no other light sources present) but on a different date
approximately three months later. Baseline experiments took place in early spring
when the sun sets earlier. In contrast, the “other day” experiments took place in
summer, when the sky is clearer and the sun sets much later.

• Shutters open: During these experiments, the shutters of the windows were opened
to allow sunlight to enter the room. These experiments also took place at the later
date compared to the baseline.

• Fluorescent lights on: In addition to opening the shutters, the fluorescent lights are
now also switched on. Fluorescent light is modulated and can in theory produce
stripe patterns in our images. These experiments took place on the same day as the
“Other day” and the “Shutters open” experiments.

For every condition, three experiments were again conducted with the stop and go
trajectory. For every experiment, we determined the error on the light source location as
explained in Section 3. Figure 9 shows that all conditions have similar performance. The
“other day” experiments are very similar to the baseline, indicating that the parameters
(e.g., exposure time) are not overfit to a specific point in time. The difference between
both error distributions generally is not larger than 2 cm. Whether or not the shutters are
opened also does not seem to negatively impact calibration accuracy, as unmodulated light
sources are easily ignored by our calibration procedure. Similarly, we can observe that
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switching on the fluorescent light has little impact. While fluorescent light is modulated,
the frequency is too low compared to the LEDs. Therefore, the additional light sources are
simply ignored.

Figure 9. Influence of environmental conditions on calibration accuracy.

The results of the frequency detection were very similar under different lighting
conditions. In fact, they were identical with only one exception. During one “shutters
open” experiment, one medium frequency light source had a slightly larger error compared
to the other experiments. This phenomenon did not occur during the experiments with the
fluorescent lights, even though the shutters were also opened in this case.

4.2.4. Transmitter–Receiver Distance

Experiments so far were performed with LEDs mounted at a height of approximately
1.5 m. This makes them more easily accessible and thereby makes prototyping and ex-
perimenting easier. As the distance between transmitter and receiver increases, the LEDs
will take up a relatively smaller portion of the image. Consequently, fewer stripes will be
visible, and it will be more challenging to determine the transmitter frequency. This section
will characterize the influence of increasing this distance on the accuracy of frequency
estimation. To that end, we place the camera and an LED on a table and ensure that their
normal planes were parallel. This horizontal setup (Figure 10) was different from how the
LEDs are normally installed. However, whether the lights are mounted horizontally or
vertically made no difference for this experiment; only the relative distance is important.
In contrast, placing the light on a table rather than on the ceiling allowed us to change the
distance much more easily and also enabled us to test performance at larger distances.

The distance between transmitter and receiver was increased from 1 m to 5 m. The
light was modulated at a frequency of approximately 2 kHz. At every distance increment,
images were recorded for approximately 30 s. In postprocessing, we determined the LED
frequency using the process described in Section 3.2. Next, we calculated the difference
between the true frequency (applied by the signal generator) and the frequency estimated
by the calibration procedure. Table 5 shows the frequency estimation accuracy as a function
of the transmitter–receiver distance. For short distances, the accuracy is approximately
95%, similar to Section 4.1. However, starting at a distance of 2 m, light sources can no
longer be detected, hence the accuracy is 0%. The cause for this problem can be found by
comparing images captured at different distances (Figure 11). At a distance of 1 m, several
horizontal stripes are visible, from which the transmitter frequency can be calculated. At
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a distance of 3 m, only 1 stripe is visible, and the transmitter frequency can no longer be
determined. Interestingly, the difference between 1 m and 3 m is much more pronounced
than the difference between 3 m and 5 m.

Figure 10. Experimental setup for transmitter–receiver distance experiments.

Table 5. Frequency estimation accuracy as a function of the transmitter–receiver distance. Field Of
View (FOV) is kept fixed at 60 degrees.

Transmitter—Receiver Distance [m] Detection Accuracy [%]

1.00 94.44
1.50 94.44
2.00 0.00
2.50 0.00
3.00 0.00
3.50 0.00
4.00 0.00
4.50 0.00
5.00 0.00

Figure 11. Example images taken at different transmitter–receiver distances. Images are cropped
around the light source.

Results from the previous sections were obtained by using a camera lens with a field
of view of 60 degrees. When a smaller FOV is used, the LED occupies a relatively larger
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portion of the image, and we may be able to detect it at greater distances. In order to test
this hypothesis, we used a lens set (https://www.arducam.com/product/m12-mount-
camera-lens-kit-arduino-raspberry-pi/, accessed on 12 March 2021) and varied the FOV
from 10 to 60 degrees, at a fixed distance of 5 m. Again, the transmitter frequency was
approximately 2 kHz, images were recorded during 30 s for every experiment, and the
calibration procedure was used to estimate the transmitter frequency. Table 6 shows the
accuracy of frequency estimation as a function of the FOV. It is clear that by sufficiently
decreasing the FOV, the LED can still be detected. Even at a distance of 5 m, we can obtain
the same accuracy of 95% as in Section 4.1 by using a lens with a FOV of 10 degrees. At
shorter distances, a larger FOV can potentially also be used.

Table 6. Frequency estimation accuracy as a function of the FOV. Transmitter–receiver distance is
kept fixed at 5 m.

FOV [◦] Detection Accuracy [%]

10 94.44
20 0.00
40 0.00
60 0.00

4.2.5. Camera Resolution

Similar to lighting conditions, camera resolution can have a significant impact on the
performance of computer vision approaches. In the previous sections, the OpenMV M7 cam-
era was used as an image sensor, which has a relatively low resolution of 640 × 480 pixels.
We now hypothesize that a higher resolution will lead to a higher accuracy, for calibration
of both the position and frequency of the LEDs. The increased resolution provides a higher
granularity and thus potentially a greater accuracy in distinguishing the location of the light
source. Additionally, a higher resolution provides additional stripes in the image, which
may improve frequency detection. To verify this hypothesis, additional experiments were
performed with a Raspberry Pi (RPi) camera sensor. Similar to Sections 4.2.2 and 4.2.3, the
robot followed a stop and go trajectory, and data were recorded for offline postprocessing.
Figure 12 compares images captured with both cameras. The RPi camera is designed for
the low-cost single-board computer of the same name, which is particularly popular for
embedded applications. The maximum resolution of 3280 × 2484 pixels was used, in order
to amplify any effects related to the resolution. Images taken at such a high resolution take
up a lot of space in memory. Therefore, pictures were not continually recorded. Rather, 10
images were taken when the robot was located underneath the light source. Both types
of cameras were equipped with a 60 degree FOV lens. Due to an error in data recording,
there are only two experiments with the RPi camera instead of the usual three.

Figure 12. Example images of the same light taken with different cameras.
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Table 7 contains the main quality metrics for calibration with both camera’s. The
results appear to support our previous hypothesis. The accuracy of transmitter positioning
is improved, although the improvement is rather small. A larger improvement can be seen
in the frequency identification. The high-frequency source can now be identified much
more accurately, due to the increased bandwidth of the RPi camera.

Table 7. Calibration results for different camera sensors.

Camera OpenMV RPI

Average position error [m] 0.06 0.04
Maximum position error [m] 0.13 0.11

Average frequency error [Hz] 236.66 124.51
Maximum frequency error [Hz] 820.00 370.09

Processing time [s] 25.26 63.18
Trajectory time [s] 115.06 265.94

On the other hand, the time required to collect data with the RPi camera is more
than double that of the OpenMV camera. The RPi camera is designed to be used with the
Raspberry Pi single-board computer, which has significantly lower computational power
compared to the laptop that collected the images from the OpenMV camera. Therefore,
capturing each image takes a significantly longer amount of time. The main bottleneck
here is the RPi itself, if one were to use a camera with a USB interface, a laptop could again
be used to capture the images and calibration time would decrease. However, the duration
of an experiment would likely still be higher with higher resolutions, yet less drastically so
with the correct hardware. Processing time is also significantly increased when using the
RPi camera. The higher resolution of the images means that the image processing takes
a few seconds longer. The majority of the time increase can be attributed to the larger
number of LIDAR measurements, which in turn is caused by the longer stationary time
needed to capture the images with an RPi camera.

4.2.6. Field of View

Section 4.2.4 mentioned the effects of changing the field of view to improve the
detection rate. Due to the nature of those experiments, we could not determine the error
on the LED position. We therefore perform additional experiments with a changing FOV
and multiple LEDs. These experiments were performed in the normal experimental setup
(Figure 2). Section 4.2.5 showed that a larger resolution improves calibration performance.
Therefore, we will again use this larger resolution camera in this section. Similar to
Section 4.2.5, the RPi camera was used and images were only captured when the camera
was approximately underneath a light source. By changing the lens, the FOV is again
varied from 10 to 80 degrees. Figure 13 shows example pictures of the same light source for
every FOV.

Figure 14 shows the mean accuracy of transmitter positioning and frequency detection
as a function of the FOV. From 80 degrees onward, the calibration procedure starts failing,
resulting in large errors. For the sake of clarity, these results are not included in these figures.
In general, a smaller FOV leads to a better positioning accuracy, though the improvement is
relatively small. The exception to this is the 40 degree lens, which actually has a larger error
compared to 60 degrees. In contrast, a smaller FOV actually lowers frequency detection
accuracy. The 40 degree lens fits the overall trend better in this case. Therefore, one can
trade off the positioning and frequency accuracy. However, the 60 degrees from previous
sections seems to have already been a good compromise for our setup. As discussed in
Section 4.2.4, a larger height may still necessitate a smaller FOV, as the light sources will
become difficult to detect otherwise.
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Figure 13. Example images for different FOV lenses.

Figure 14. Top: positioning accuracy as a function of the camera FOV. Bottom: frequency accuracy as
a function of the camera FOV.

4.3. Influence on Positioning

The goal of a calibration procedure is to accurately measure the environmental pa-
rameters needed for determining the receiver location. Calibration errors will likely result
in positioning errors, though this is often not a simple linear relation. Therefore, it is chal-
lenging to determine how accurately the calibration needs to be performed in order to
guarantee adequate positioning performance in a later stage. In this section, we evaluate
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the impact of calibration errors on visible light positioning, in order to determine if our
calibration provides satisfactory results.

First, we calibrated the setup with the configuration that was determined to be the
best trade-off between position and frequency accuracy. More specifically, we used an RPi
camera with a field of view of 60 degrees and drove the robot in a stop and go trajectory.
This setup was also calibrated manually as a point of reference. In our previous work, we
described sensor fusion based robot positioning with three filters, namely an Extended
Kalman Filter (EKF), a Particle Filter (PF) and a hybrid Particle/Kalman filter (PaKa) [41].
We now use the parameters from both the manual and robot calibration in these positioning
approaches. We used all data from the conditions described in Section 4.2.3. Positioning
accuracy results were obtained in the same way as described in [41]. Contrary to previous
sections, “positioning accuracy” does not refer to the accuracy on the position of the
transmitters. In this section specifically, “positioning accuracy” refers to the accuracy on
the robot position, the calculation of which is described in [41].

The results from all experiments were combined into one cumulative distribution per
filter, which are shown in Figure 15. It is clear that the proposed calibration procedure
has little impact on positioning accuracy. Occasionally, the new method even improves
accuracy. However, as explained in [41], the accuracy results of the PF and the PaKa can
have a small variation due to the sampling of probability distributions. In general, the
robot calibration is more accurate, albeit only slightly. Of the three positioning approaches,
the hybrid filter seems to be least impacted by the new calibration method. The difference
between the error distributions of the PaKa filter in Figure 15 is often less than 1 mm. All
filters also have no trouble identifying the lights correctly. Even though the new calibration
method introduces an error on the modulation frequency, it is not large enough to cause
ambiguity among the transmitters.

Note that this calibration was performed with an RPi camera but that positioning
was performed with the OpenMV camera. The above results therefore show that device
heterogeneity is not an issue that needs to be specifically taken into account, contrary to
some RSS-based positioning systems [45–48].

Figure 15. Cumulative positioning error distributions of calibration methods for different filters.
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5. Discussion

Amsters et al. [13] proposed a proof of concept for a calibration procedure of VLP
systems. Contrary to [13], the improved procedure described in this paper does not require
prior knowledge of the number of light sources. In the vast majority of cases, the algorithm
was able to determine the correct number of light sources. When using the zigzag trajectory,
or a FOV of 80 degrees, the number of transmitters could be underestimated. In all the
other tests that were performed (29 experiments in total), the calibration algorithm correctly
determined the number of LEDs.

This type of calibration procedure for VLP systems has not been used before. There-
fore, it was unclear how robust the approach is and which factors can influence the results.
During our parameter study (Section 4.2), we obtained several key insights. For example, a
limitation of the procedure is that it cannot be used for calibrating transmitters modulated
with sine waves, which is a consequence of using a camera as a receiver. However, the
majority of VLP systems described in literature use On-Off Keying (OOK) as a modula-
tion scheme, even if only frequencies are transmitted [49]. In case code division is used,
researchers also often opt for OOK. While we performed experiments with FDMA as a
multiple access technology, it would be relatively straightforward to include code division
multiplexing by expanding the image processing pipeline. Another limitation is that we can
only determine the two-dimensional position of the LEDs. Some positioning approaches
require knowledge of the ceiling height, which would have to be measured separately.

The proposed calibration procedure was also not influenced significantly by the
ambient lighting, similar to the positioning approach used as an evaluation [41]. In contrast,
the robot trajectory, height, FOV and resolution all had an impact on calibration accuracy.
A large resolution should be used to increase accuracy of both frequency detection and
transmitter positioning. However, we recommend the use of a USB camera in order to
capture pictures faster. In our experiments, a FOV of 60 degrees provided a good trade-
off between positioning and frequency detection accuracy. In case the distance between
transmitter and receiver is large (as is the case with high ceilings), a smaller FOV may be
required to detect the light sources. Finally, care should be taken to stop the robot at each
light source, rather than using a continuous motion. The latter could lead to poor accuracy
and an underestimation of the number of light sources.

The main objective of the technique is to calibrate the parameters of the system, so that
these can be used for positioning in a later stage. The experimental results in Section 4.3
showed that the parameters of the experimental setup can be determined with sufficient
accuracy. The error on the light source locations did not result in increased positioning
errors. In the case of our experimental setup, the transmitter frequencies could also be
determined with sufficient accuracy so as to not cause ambiguity. It is important to note
that one should take care that the modulation frequencies are sufficiently far apart, as some
error is introduced when calibrating the modulation frequency. We should also note that
certain positioning approaches are more susceptible to calibration errors than others. The
positioning approach used as an evaluation tool made use of sensor fusion. In case of large
measurement errors, the filters can fall back on odometry data. However, this is only the
case when the error on the observation is sufficiently large. More subtle disturbances such
as errors on the transmitter coordinates cannot be filtered. Additionally, with this work
we showed that it is possible to close the loop between calibration and positioning. That
is, we can efficiently calibrate the setup with a mobile robot and then use the determined
parameters for high-accuracy positioning. Manual calibration also leads to errors on the
transmitter locations. As evidenced by our positioning case, these errors are likely of the
same order of magnitude as the robot calibration.

Our work shares similarities with robot-based RFID calibration. Hähnel et al. [11]
also used a mobile robot equipped with a LIDAR and used it to reconstruct a map of
the environment. The position of RFID tags was later estimated based on the path of
the robot. Similarly, Milella et al. [12] also mapped indoor spaces with a mobile robot in
order to localize RFID tags. They used fuzzy logic to determine the likelihood of a tag
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location. Mirowski et al. [16] proposed the use of a mobile robot for calibration of Wi-Fi
localization systems. Contrary to [11,12], they used Quick Response (QR) codes to aid with
loop closures, which raises the question as to how these QR codes should be localized.

Literature on the subject of VLP calibration is limited. Most examples focused on
obtaining the parameters of the channel model [33,37], which we cannot calibrate. However,
the approach which we used as an evaluation tool does not require these parameters as the
channel model is not used [41]. This does limit the calibration procedure to mostly camera-
based positioning systems. It is possible to further extend the proposed calibration system
by including a photodiode on the robot platform and using the intensity measurements to
obtain the parameters of the channel model.

In order to obtain the transmitter locations and identities, we obtained the receiver
position through SLAM, rather than the manual measurements used in [31,50]. Contrary
to [35], we were also able to obtain light source identities. Yue et al. [36] did use modulated
LEDs, yet they have significantly lower accuracy compared to our work. However, our
approach required a dedicated procedure rather than crowdsourcing the required data.
Additionally, our robot needed to be manually driven by a human operator. Neverthe-
less, it may be possible to let the robot perform the calibration autonomously, whereas
crowdsourcing will always require the cooperation of humans.

6. Conclusions

In this work, we outlined an improved calibration procedure for VLP systems, based
on data collection with a mobile robot. The new approach had significantly improved
performance compared to previous work. Accuracy of LED localization was almost dou-
bled. Additionally, whereas previous work remained a proof-of-concept, we performed an
extensive parameter study to characterize the strengths and limitations of the approach.
Based on these results, we suggested the use of high resolution camera, with a FOV of
60 degrees to further improve the accuracy of LED placement and frequency detection.
We showed that ambient lighting has little influence on the proposed procedure. Through
positioning experiments, we determined that the approach is also accurate enough to
calibrate high-performance VLP systems. In doing so, an important barrier to entry is
removed for visible light positioning systems.

Our approach required a dedicated site survey, rather than crowdsourcing. While
less convenient, it did result in much greater accuracy. The procedure was also unable
to calibrate the channel model. In future work, we could add a photodiode to the sensor
platform in order to obtain the Lambertian emission parameters. Additionally, we could
investigate the possibility of letting the robot perform the procedure autonomously, in
order to reduce the human labor required.
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Appendix A

Table A1. Cost of the experimental setup.

Component Amount Cost Per Unit [e]

Mobile robot 1 603.79
LIDAR 1 119.79

LED 4 9.08
ITEM profiles 1 298.74

Lab bench power supply 1 296.45
Signal generator 4 109.09
OpenMV camera 1 76.17

RPi camera 1 26.98
RPi 1 42.2895

laptop 1 459
lens kit 1 82.89

Computer 1 1363.46

Total 3842.2395
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Abstract: UAVs often perform tasks that require flying close to walls or structures and in environ-
ments where a satellite-based location is not possible. Flying close to solid bodies implies a higher
risk of collisions, thus requiring an increase in the precision of the measurement and control of the
UAV’s position. The aerodynamic distortions generated by nearby walls or other objects are also
relevant, making the control more complex and further placing demands on the positioning system.
Performing wall-related tasks implies flying very close to the wall and, in some cases, even touching
it. This work presents a Near-Wall Positioning System (NWPS) based on the combination of an
Ultra-wideband (UWB) solution and LIDAR-based range finders. This NWPS has been developed
and tested to allow precise positioning and orientation of a multirotor UAV relative to a wall when
performing tasks near it. Specific position and orientation control hardware based on horizontal
thrusters has also been designed, allowing the UAV to move smoothly and safely near walls.

Keywords: UAV; unmanned aerial vehicles; NWPS; indoor positioning systems; GPS denied; GNSS
denied; autonomous vehicles

1. Introduction

Most UAVs use a Global Navigation Satellite System (GNSS) to determine their
position. GNSS receivers are small, readily available, and easy to use. Working in areas
where a GNSS constellation is not accessible represents a drawback for UAV use. For
example, using UAV in civil and structural inspection applications is often limited to visual
inspections, and GNSS is required [1,2]. The literature on this subject shows efforts made
to develop aerial platforms capable of performing sound-based [2], contact-based [3], or
hammering inspection [4], even though positioning and navigation for these platforms
have not yet been fully developed in these conditions.

Operations carried out touching the wall or at a short distance away, in the same order
of magnitude as the vehicle size, are a challenge for a UAV’s positioning control system.
Proximity to walls or other objects distorts the aerodynamic currents generated by the UAV
and causes changes in the UAV behavior, which, together with the proximity of the wall,
increases the risk of collisions. Therefore, it is necessary to increase the control effort of
the UAV under these conditions, and this also requires a more precise positioning system
relative to the wall.

UAV positioning systems in applications without GNSS must be precise, with a high
refresh rate and low latency. These positioning systems tend to be expensive. Moreover,
its operation usually requires the deployment of precisely placed equipment and could
require further calibration. These tasks tend to be cumbersome and time-consuming.

UAVs could change how some near-walls tasks are performed. Applications such
as painting a high wall, installing anchor points without scaffolding, performing weld
inspection in hard to reach areas, or carrying out wall thickness measurements. These tasks
are usually expensive and dangerous, making the potential use of UAVs very valuable.
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However, the previously mentioned limitations restrict the use of UAVs in this kind
of applications.

1.1. Positioning without GNSS

Positioning is one of the first and more significant steps required to develop an auto-
matic or autonomous UAV. A positioning system can typically make use of direct measure-
ment sources (beacons, ad hoc signals, etc.), inertial/dead-reckoning measurements (such
as Inertial Measurement Units (IMUs) or Magnetic, Angular Rate, and Gravity sensors
(MARGs)) and environmental correlation measurements (LIDAR, Ultra-wideband (UWB),
etc.). Outdoor applications mostly rely on satellite-based positioning systems [5]. When
a GNSS constellation is not available, the UAV’s navigation system needs to incorporate
other ways to locate the vehicle.

Measurements from inertial sensors are relative readings and usually exhibit an
accumulative positioning error. Environmental correlation measurement systems, on the
other hand, deliver absolute measures. In this field, several wireless technologies and
methods exist that can be employed to position a UAV flying indoors. Regarding the
method used to evaluate distances, there are time-based, power-based, and angle-based
approaches [6]. Time-based methodologies are among the most used, and most of them
are based on Time of Arrival (ToA). Some variants differ on the synchronization method
between transmitter and receiver and exhibit improved techniques for better accuracy [7].
Power-based approaches tend to be very sensitive to multipath or rebound generated by
walls or obstacles. Received Signal Strength Indicator (RSSI) is among the best known, but
the obtained measurements tend to be inaccurate [8]. Finally, angle-based approaches are
uncommon as they require the use of specialized hardware.

Flying indoors usually has to be carried out with limited GNSS access or no access
at all. In these cases, other Indoor Positioning Systems (IPS) must be used. Some of the
characteristics of IPSs are determined by their physical layer. A survey of the most relevant
IPSs currently available appears in [9] and more recently [10]. They include a comparison
and a classification that can ease the IPS selection for the intended task. An IPS can be
based on visible or invisible light (i.e., infrared), sound and ultrasound, magnetic fields,
and RF. Widely used IPS technologies, such as Bluetooth [11], Wi-Fi, and UWB [12], fall
into the last category.

1.2. Accurate Positioning and Movement Near Walls

To be viable in real-world scenarios, three key aspects need to be considered for
the selection or development of a Near Wall Positioning System (NWPS) with UAV: low
deployment complexity, high accuracy to avoid the obstacles in an enclosed and limited
environment, and high refresh rate and low latency to control a fast and agile vehicle in a
dynamically changing environment.

Navigation is another significant capability of an automatic or autonomous system,
and it is deeply connected to the working environment. The requirements are different
when navigating in a large, unobstructed environment or a confined space near walls.
In the last case, moving from one point to another in a controlled and safe way implies
dealing with obstacles, workspace limits, and aerodynamic distortions generated by the
walls, the ceiling, or the ground. The orientation of the tool used to perform the intended
task is another relevant aspect to consider, as it is linked with the UAV movement.

Multirotors are the preferred type of UAV for indoor applications because they can
hold a static position and move indiscriminately in any horizontal direction. Horizontal
movement is generated, in most cases, by tilting the vehicle. When a multirotor operates
close to a wall, it is subject to changing aerodynamic forces. These forces vary with the
distance and angle between the UAV and the wall. In general, these forces can change
from repulsion to attraction with small changes in these parameters [13,14], making them
unpredictable and, consequently, potentially leading to erratic behaviors. The ground and
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wall effect combination [15], as well as the tilt angle of the UAV [16], increase the effect of
this phenomenon.

Both of the presented challenges, the positioning and control of the UAV, need to
be addressed in order to obtain the full potential of the UAV in near-wall applications.
Autonomous and automatic systems require reliable sensor inputs and adequate actuation
outputs in order to be really effective. In addition, they need to be light-weight, simple,
and low cost if they are intended to operate onboard little or medium-sized UAVs. These
design limitations and requirements have been taken into account in the development of
the proposed NWPS.

There are solutions, both commercial and in the research literature [17,18] that address
these challenges. In most of these cases, they are concerned with detecting nearby walls or
other objects and avoid colliding with them. The proposed solution, however, is different
because it is focused on detecting the position and orientation of the wall relative to the
UAV, navigating to reach closer to the wall, and making controlled contact with the tool to
perform certain tasks.

Several tasks can be performed with a UAV that involve carrying some kind of probe
to touch a wall in a controlled way. Tasks such as measuring the depth of carbonatation in
concrete, sclerometry for determining the compressive strength of concrete, measuring dry
film thickness, measuring metallic wall thickness, or detecting steel reinforcement bars in
concrete structures, among others.

The intended task requires precise positioning of the tool or probe, making direct
contact with the wall at a specific point and with a given angle. Both the position and
orientation of the tool are essential factors for the success of the task. In the proposed
architecture, the probe is rigidly attached to the body of the UAV. Therefore, the position
and orientation of the UAV greatly influence the final result.

Regarding the positioning, what is presented in this document has focused on improv-
ing the accuracy in the distance and orientation estimations between vehicle and wall in
the absence of GNSS signals. This requirement is critical to accomplish near-wall tasks. The
new NWPS system merges two positioning solutions: LIDAR range finders and Ultra Wide
Band (UWB) radio signals. At this point, this work has focused on indoor scenarios. How-
ever, this approximation could be applied outdoors after taking into account additional
factors such as the weather conditions.

Regarding the control, multirotors need to tilt in pitch or roll axis to accomplish a
horizontal displacement. This tilting action and the dynamic reactions related to it make
difficult the precise positioning of the tool used to perform the task, it being a sensor or a
manipulator. To overcome these problems, the proposed solution is based on the addition
of small horizontal thrusters to the UAV and related hardware and software. With these
thrusters, the UAV can make horizontal movements without tilting, thus easing the control
of the tool.

The rest of the document has been structured as follows: Section 2 comprises the
results of the literature review performed in relation to Indoor Positioning Systems and
navigation near walls. In Section 3, the proposed positioning system based on UWB
and LIDAR is presented. Section 4 explains in detail the proposed hardware system for
horizontal movement close to walls. Section 5 summarizes the tests performed for both
and highlights the more significant results. In the last section, a discussion of this work
is presented.

2. Related Work

UAV research is a very active field with over 2500 scientific publications in the IEEE
Xplore Digital Library during 2019 [19]. The two main challenges highlighted in the previ-
ous section are not an exception to this trend. This section will describe the most relevant
efforts related to accurate interior positioning systems and navigation with multirotor
UAVs near walls.
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2.1. Precise Indoor Positioning

There are several alternatives available for indoor positioning. A survey and classi-
fication for all kinds of uses can be seen in [10]. In [20], there is a review of positioning
systems for UAVs, as well as a discussion on their accuracy and characteristics. All in all,
the prominent technologies used to perform accurate indoor position estimations (between
1 and 10 cm) are vision, ultrasonic, and UWB-based.

Vision-based systems as OptiTrack [21] or Vicon [22], based on motion capture, are
very accurate, but their bulkiness and high cost make them inadequate. Simultaneous
Location and Mapping (SLAM) is another option to consider. Thus, in [23] a UAV with
stereo cameras is used, with a location error of less than 30 mm in the test set images,
although in real-life scenarios higher errors are expected. In [24] an ultrasonic emitter is
combined with Time of Flight (ToF) ranging cameras to improve the accuracy.

Regarding UltraWideBand (UWB) technology, in [25] a location system is used to
perform indoor positioning with three drones at the same time, obtaining an error of around
250 mm. In subsequent work, this system is fused with SLAM techniques to improve the
accuracy [26]. Similarly, works such as [27] follow the approach of merging UWB data with
other sensors onboard the UAV platform, in this case inertial measuring units (IMU).

In the context of this work, UWB location systems present some advantages such as
a high refresh rate and resistance to multipath propagation. Additionally, in comparison
with methods such as SLAM, the UWB system requires less on-board data processing,
saving weight and resulting in cheaper solutions.

2.2. UAV Movement Near Walls

Disturbances in aerodynamic forces generated by the UAV flight near walls need to be
considered to perform the intended tasks successfully. The aerodynamic forces can be hard
to predict. Small variations in UAV position or attitude can change interaction forces with
the wall from repulsion to attraction. Both CFD techniques [28] and experimental data [29]
have been analyzed to characterize these effects. They showed that flying very close to the
wall can generate an attraction force to the wall and a rolling moment that tilts the UAV
towards the wall. This problem can be mitigated using specific control algorithms on the
UAV controller or making some hardware modifications. In [30], a controller that adapts in
real-time against external disturbances is presented and tested in a near-wall flight.

Hardware modifications focus primarily on protecting the vehicle against damage
caused by wall contacts, or in avoiding or controlling UAV tilting. Regarding hardware
modifications, in [31] a shroud system used to absorb the impact energy is presented. In [32],
a UAV with a spherical-shaped design comprised of an inner frame with a protective cage is
described. For tilting control, there are systems capable of generating lateral forces without
tilting the vehicle, such as in [33,34] that present two platforms capable of changing the
orientation of the thrusters while in flight. This solution offers more accurate handling
of the UAV attitude and a faster response time. However, on the other hand, it needs a
complex and heavier control system. In [35], a payload with two horizontal propellers is
used to perform inspections in vertical walls.

The tilting of the UAV affects also the tool orientation, and most applications require
a specific tool orientation. In [4], the tool is reoriented using articulations and actuators.
However, these types of mechanical contraptions add weight and complexity and decrease
flight time.

3. Proposed NWPS

This section presents the most relevant characteristics of the proposed NWPS. The
system uses the combination of two positioning systems based on different technologies
that give complementary information. The correct blend of both allows obtaining a better
estimate of the UAV position in the planned work scenarios.

Near-wall tasks are a challenge for most IPS as they tend to offer the best accuracy
around the center of the room and worsen as the vehicle approaches the walls. The
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proposed system combines a UWB based IPS for global positioning with a combination
of onboard LIDAR range finders to improve near-wall accuracy. It is an evolution of the
one presented in [36], with improved reliability and a generalized geometry for different
LIDAR sensor configurations.

3.1. UWB-Based IPS

UWB positioning systems are among the most used for accurate indoor positioning.
They are based on measuring the ToF of RF signals in the UWB frequency range (3.1 to
10.6 GHz). They have good refresh rate as well as better accuracy and robustness than
other RF based solutions.

The working principle consists of various anchors located at fixed and known positions
and a moving tag. The tag position is computed using the distances to the anchors. These
distances are measured using a Two Way Ranging (TWR) technique. Then, a triangulation
algorithm uses these distances to compute the absolute position of the tag. Using TWR
instead of Time of Arrival (ToA), both outward and return ToF are measured. This strategy
does not need a synchronization procedure between anchors and tags; however, on the
other hand, it requires more time to perform the measurements and limits the maximum
number of anchors and tags within the desired refresh rate.

Anchor count and their position are to be considered to obtain the best positioning
accuracy. Three are the minimum required to compute a three-dimensional position
estimation, but at least four are recommended, as the UAV or the people around can shade
out some of them. However, too many anchors can lead to suboptimal results and delays
in the triangulation process. The anchors should be positioned carefully to maintain the
line of sight with the tag, for optimal performance.

The proposed NWPS uses a commercially available UWB positioning system known
as Pozyx [37]. It is smaller than other solutions and has some technical advantages. It
can use up to eight anchors simultaneously. According to manufacturer specifications,
positioning error should be below 150 mm near the room center in most scenarios, with
a refresh rate of 25 Hz. However, when flying near walls some artifacts and positioning
errors are expected.

3.2. LIDAR-Based Positioning System

To improve positioning accuracy when flying near walls, a LIDAR based relative
positioning system was developed. A set of m onboard LIDAR sensors measures punc-
tual distances to the wall. A specifically developed algorithm uses these distances to
estimate the UAV position and orientation relative to the wall. A detailed description of
the algorithm follows.

The m LIDAR sensors are placed in the local (UAV) reference frame at the follow-
ing coordinates:

si = (xis, yis, zis), i = 1, 2, . . . , m (1)

The direction in which the sensor i is aiming is given by the unit vector as follows:

ai = (xia, yia, zia), ‖ai‖ = 1, i = 1, 2, . . . , m (2)

Each sensor i. measures a distance di > 0 to the wall. The points in the wall sensed
by each of the sensors are at distances di and directions ai, from the point si. Thus, these
points are at the following coordinates:

pi =
(
xip, yip, zip

)
= si + di · ai (3)

Supposing the sensed surface (the wall) is a plane π, each of these m points should lie
in it and, therefore, verify its equation in the form as follows:

xip

a
+

yip

b
+

zip

c
= 1, i = 1, 2, . . . , m. (4)
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where a, b, and c are the intersection points of the plane π with the axes x, y, and z of the
reference system, respectively. Naming r = 1/a, s = 1/b, t = 1/c Equation (4) becomes

xip · r + yip · s + zip · t = 1, i = 1, 2, . . . , m (5)

There are m equations such as (5), one for each sensor. They form a system of linear
equations (SEL) that can be expressed in matrix-vector form as follows:




x1p y1p z1p
x2p y2p z2p

...
...

...
xmp ymp zmp


 ·




r
s
t


 =




1
1
...
1


 (6)

Naming the three terms of this equation as A, x, and b, respectively, Equation (6)
becomes

A · x = b (7)

Each equation in the SEL depends on a sensor measurement, di. These measurements
are contaminated with noise; thus, in general, rank(A) = 3, and rank(A|b) = 4. Thus, the
SEL will be overdetermined and inconsistent. Although there is no exact solution to this
system, it is possible to compute a solution vector x∗. that is optimum in the sense of least
squares minimization of the error e = ‖A · x− b‖:

‖A · x∗ − b‖ = min
x
‖A · x− b‖ (8)

When A ∈ Rm×3. and rank(A) = 3, the matrix AT ·A. is regular, so pre-multiplying
(7) by AT leads to the following:

(
AT ·A

)
· x∗ = AT · b → x∗ =

(
AT ·A

)−1
·AT · b (9)

Normalization of x∗ leads to the normalized equation of the optimum plane, as follows:

R =
r
‖x∗‖ , S =

s
‖x∗‖ , T =

t
‖x∗‖ , D =

1
‖x∗‖ → R · x + S · y + T · z = D. (10)

where n∗ = (R, S, T) is a unit vector normal to the estimated plane π∗.
The computed plane π∗. is optimum. However, due to the noise that contaminates

the distances di, the points pi do not lie in π∗. A global, normalized estimation of the error
made by assuming the plan π∗. as the better solution can be made using the following:

σ =
‖A · x∗ − b‖
‖x∗‖ (11)

This error estimation can be used as a quality indicator for the goodness of the
estimation of π∗ and to perform the fusion with the other information of the UWB.

In the current stage of development, the proposed LIDAR-based positioning subsys-
tem has four sensors situated in the corners of a rectangle and facing the tool side of the
UAV, the front in this case. They aim in the direction of the X-axis, as shown in Figure 1, and
interact with the wall. The main requirements used for this LIDAR count and configuration
were three: to allow position and orientation estimation of the UAV relative to the wall; to
allow some failure tolerance; and to provide the quality estimator, σ. The selected sensors
are “Benewake TFMini” and have an accuracy of ±6 cm from 0.3 to 6 m, ±1% from 6 to
12 m, and a 100 Hz refresh rate.
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From Figure 1, s1 = (0, u, 0)T , s2 = (0,−u, 0)T , s3 = (0, u,−v)T , s4 = (0,−u,−v)T ,
and ai = (1, 0, 0)T , so

A =




d1 u 0
d2 −u 0
d3 u −v
d4 −u −v


 (12)

Solving (9) for x∗ = (r∗, s∗, t∗)T ,

r∗ = r5
s∗ = − r3·r5

4·u
t∗ = 1

v ·
( r2·r5

2 − 1
) (13)

where
r1 = d1 + d2
r2 = d3 + d4

r3 = d1 − d2 + d3 − d4
r4 = ∑ di

2, i = 1, .., 4
r5 = 4·r1

4·r4−r2
3−2·r2

2

(14)

Other simple mathematical relations compute the wall position and orientation relative
to the UAV. This solution uses only simple algebraic operations, as shown in Equations
(13) and (14). Therefore, it is easy to implement in a microcontroller. It allows real-time
execution with a short delay time and minimal weight penalty for the UAV and generates,
as has been shown, a quality measure of the estimation itself.

3.3. Data Fusion

Both the UWB and the LIDAR-based positioning subsystems deliver position estima-
tions. However, the information that each one provides is different but complementary.
The position from the UWB solution is absolute but without orientation information. The
LIDAR subsystem delivers both distance and orientation information, but relative to the
wall. The distance and orientation to the wall are critical parameters for near-wall tasks.

The fusion of this complementary information could offer an improvement over both
subsystems but has to be adequately fused to unleash its full potential. The first step is to
reference both measurements in the same coordinate system. Then, the data fusion itself
can take place.

Both subsystems have been selected and designed to provide complementary infor-
mation. However, there is no easy way to predetermine which one will offer the best
estimation in real-life scenarios. For instance, when approaching the wall, UWB esti-
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mation should worsen, and LIDAR estimations should improve. However, unexpected
situations can arise, and the estimations need to be evaluated in real-time to choose the
optimal combination.

A specifically designed data fusion function based on fuzzy logic performs this task.
This function uses the quality of the estimations from the LIDAR subsystem, σ, as the input
parameter. Section 3.2 shows a detailed description of this function.

Figure 2 shows a schematic representation of the proposed NWPS estimation process
that is executed on a PIC32 microcontroller. The output is a position estimation with the
potential to improve the measurements of both subsystems. It gives more weight to the
LIDAR information, especially when the UAV is near a wall, and the LIDAR delivers
better accuracy. The performance of this system has been evaluated with several tests, as
described in Section 5.
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estimation.

4. Proposed Hardware for the Horizontal Movement of the UAV

This section presents the most relevant characteristics of the proposed modifications
on the propulsion hardware of the multirotor.

One of the problems of near-wall movements is the aerodynamic distortions due to
interactions between the wall and the prop wash. These distortions present a complex
behavior, generating repulsive or attractive forces depending on the distance between wall
and vehicle. Introducing the tilt angle of the UAV makes the interaction with the wall more
unpredictable. This problem becomes worse when the distance to the wall becomes smaller.
Additionally, flying near the floor or over other objects increases these forces due to the
ground effect.

Another problem is related to the tool orientation. In several applications, the tool
must interact with the wall at a certain angle. That is the case, for instance, of thickness
measurement, which usually requires the tool to be positioned perpendicular to the mea-
sured surface. This task can be hard to accomplish with a conventional multirotor that
needs to pitch or roll to change position.

To eliminate the tilt angle and allow a safer and more accurate horizontal movement,
a horizontal hardware propulsion that consists of four small bidirectional motors and their
propellers is added to the UAV. These thrusters are situated in a horizontal plane (XY), two
of them facing the front, for forward/backward motion and the other two at a 90-degree
angle for sideways motion, as shown in Figure 3.
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Figure 3. Placement of the LIDAR sensors and the horizontal movement hardware on the
UAV platform.

In this case, a dummy tool was mounted at the front of the vehicle in order to make
contact with the wall and simulate an inspection operation. It was mounted along the
X-axis, between the front propellers, far enough to contact the wall while flying.

The four thrusters are controlled independently and share the power source of the UAV.
A dedicated PIC32 microcontroller generates the control signals and is also responsible
for all the NWPS calculations and fusion process explained in Section 3.3 The total weight
added by the entire proposed system, including the propellers and associated electronics,
is less than 200 g. With this configuration, the multirotor can move horizontally up to
3 m/s in X and Y directions without tilting. As vertical motion (in Z-axis) and yaw does
not induce UAV tilting, with this strategy, the vehicle can yaw and displace in 3D without
any induced tilting. The next section details the performance results of this propulsion
system.

Lightweight and simplicity have a severe impact on the flying time of small UAVs.
Keeping it light and simple helps in the final implementation in real-world scenarios. Both
factors were considered from the initial design stages. The developed hardware is simple,
so it does not require modifications to the original propulsion system. Only software
configuration is needed to install it on a Commercial Off-The-Shelf (COTS) multirotor.
Thus, the vehicle propulsion efficiency is not affected in the process. Furthermore, the
little added weight enables its use even on small vehicles where other systems may not
be feasible.

For all the tests in this paper, the proposed system was installed in an octocopter built
using a HobbyKing X930 frame as a base. This frame has a glass fiber core structure, with
aluminum arms for a total 895 mm of diameter. The main propulsion system is composed of
eight Turnigy Aerodrive SK3 2836 brushless motors equipped with 305 × 105 mm propellers.

The power comes from two Lithium Polymer batteries with 3 cells in series and
5000 mAh each one, connected in parallel. All the embedded electronics are powered
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by the same battery using a dc-dc converter to reduce the voltage. A Raspberry Pi 3
microcomputer was also included to log and access easily to all the experimental data
collected and synced by the PIC32 microcontroller using its integrated Wi-Fi connection.

Control Architecture

A newly designed control architecture controls both the main propulsion system of
the UAV and the proposed horizontal thrusters. The new control logic comprises different
UAV behavior modes and allows the addition of new flight modes or modification of the
existing ones to suit the task requirements.

A switch in the remote control lets the human pilot select the flight mode in real-time.
In all flight modes, the UAV main rotors control altitude and yaw. In horizontal displace-
ment flight modes, the vehicle moves without tilting, and the horizontal thrusters control
the horizontal displacement of the UAV. In its current form, there are three flight modes:

• Manual. It allows the usual operation of the UAV, with all movements controlled by
the main rotors. This mode is intended for fast positioning of the UAV and for taking
off and landing maneuvers.

• Manual horizontal. It uses the thrusters for horizontal displacements, manually
controlled by the user. The functions of the sticks in the remote control remain the
same as in typical UAV operations. With this flight mode, a human pilot can be easily
trained for precise horizontal motions, while the UAV main rotors are in charge of the
rest of the movements.

• Auto horizontal. It is adjustable and customizable for the application. In its current
form, one of the sticks of the remote control is used to control the distance to the wall
and the sideways displacement speed of the UAV, while the control system uses the
NWPS fusion algorithm to keep the vehicle perpendicular to the wall surface and at a
distance set by the pilot.

5. Tests and Results

This section shows and analyzes the results of the tests designed and carried out to
evaluate the performance of the NWPS and the hardware for navigation near walls.

All tests were conducted in the same laboratory, a free space with a vertical wall 4 m
long, 4 m wide, and 6 m tall with a second-floor platform that eases the flight observation.
The setup for the UWB system was the same for all the experiments and consisted of five
anchors deployed around the workspace at different heights, following the manufacturers’
advice to obtain the best accuracy.

Three different test groups have been performed to evaluate all the proposed systems.
The first one is comprised of the NWPS tests to evaluate the accuracy of the proposed posi-
tioning system. The second group assesses the horizontal movement hardware capabilities
and advantages. Finally, a final test with both systems working together on a real UAV is
also described and the results presented.

5.1. NWPS Tests Description

Two sets of tests were designed and performed to evaluate the accuracy of the pro-
posed NWPS: one static and the other at a controlled speed.

On the static tests, the UAV was standing in five different positions over the intended
working area, from 1 to 3 m from the wall in 0.5 m increments. Careful measurements
resulted in precise values of distance to the wall in all static positions. The UWB and NWPS
estimations were compared against that values, considered as ground truth.

The second set of tests consisted of wall approaching maneuvers. The dynamic tests
have been designed considering the potential applications, and the approaching maneuver
was selected as it is one of the most common for near-wall tasks. Wall approaching
maneuvers were conducted at different, known and constant speeds. The UAV remained
facing the wall in some of the tests. In the others, it maintained an angle of 20◦ to the wall.
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The comparisons made between the outputs from UWB and NWPS served to assess the
improvements in the NWPS achieved with the incorporation of the LIDAR.

A conveyor belt with regulated speed controlled the approach to the wall in the
dynamic maneuvers. A Hohner 58 series incremental rotary encoder with 2000 pulses per
turn was installed in the 65 mm diameter drive pulley, leading to a final resolution for the
estimated position of 0.1 mm. Two photocell sensors at known and fixed distances to the
wall were also used to provide a precise ground truth reference for both the speed and
position of the UAV.

The microcontroller onboard the UAV captured all the data from the sensors in real-
time to keep a precise synchronization between the different streams and logged it into the
Raspberry Pi 3 equipped onboard.

5.2. NWPS Tests Results

The results for both the static and dynamic tests described previously are presented
and analyzed in order to offer a broad vision of the proposed NWPS performance in
different conditions.

5.2.1. NWPS Static Results

Figure 4 shows the result of the wall distance estimation on the static tests. The initial
distance is 1 m, and it is increased by 0.5 m in each measurement. Both measuring systems
offer very little dispersion over the considered 5000 samples for each test. The average
estimation error rises to 122 mm. As can be seen, the proposed NWPS provides improved
accuracy and stability of measurements over the entire range of distances.
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Figure 4. Results of the estimation of the distance to the wall in the static tests. Comparison between
the Ultra-wideband (UWB) and the proposed Near-Wall Positioning System (NWPS).

5.2.2. NWPS Dynamic Results

A total of 20 tests were performed to evaluate the NWPS dynamic accuracy. A
perpendicular and a 20-degree angle approach to the wall were tested. Each approach
was repeated at five different speeds between 0.2 and 0.5 m/s using the conveyor belt and
encoder system as a ground truth. All tests were repeated twice to reduce the chances of
spurious errors. Figure 5 shows the distance estimation results for the fastest test performed
perpendicular to the wall. As in the static tests, the UWB error increased with the proximity
to the wall. As can be seen, the proposed NWPS behaves substantially better than the
UWB alone.
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Figure 5. Estimation of the distance to the wall in perpendicular approaching maneuvers at 0.5 m/s.
Comparison between conveyor belt measurements and the estimations from the UWB and the
proposed NWPS.

Regarding the 20-degree angle tests, the results are very similar to the perpendicular
approach with the UWB offering good estimations that worsen when the UAV is close to
walls as can be seen in Figure 6. As in the previous case, the LIDAR information in the
proposed NWPS improves the information from the UWB.
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Figure 6. Estimation of the distance to the wall in 20-degree approaching maneuvers at 0.5 m/s.
Comparison between conveyor belt measurements and the estimations from the UWB and the
proposed NWPS.

There are some sudden error spikes in the UWB estimation, which can also be seen in
Figure 5. That kind of error can be potentially dangerous for fast control loops.

Further analysis of the logged data can be seen in Figure 7, that shows a box plot of
the estimation errors during dynamic tests compared to the conveyor belt ground truth,
with data grouped by displacement speed in m/s. As expected, the error tends to increase
with the speed, but the error magnitude and dispersion are higher for the UWB than for
the proposed NWPS system. The high number of outliers in the UWB estimation evidence
the spike-type errors seen in previous graphs.
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5.3. Horizontal Movement Hardware Tests Description

A test was designed to demonstrate the effectiveness and evaluate the benefits of the
horizontal position control hardware. This test, unlike all the others, was performed within
an outdoor flight and was divided into two phases. In the first phase, the UAV performed
a constant height linear movement in one direction and then returned to the origin. This
phase was used to calculate the maximum horizontal speed that can be achieved using the
horizontal thrusters. In the second phase, the UAV autonomously flew the same path as
that of the previous phase and at the same speed. In this phase, however, only the main
rotors were used.

This test was designed to be performed outdoors to be able to make high-speed move-
ments without obstacles. Additionally, flying outdoors, GPS could be used as ground truth
for the displacements and speeds. The test is used to reveal the expected enhancements
of the proposed thruster-based navigation control schema. Moreover, the test shows the
behavior of the proposed horizontal movement hardware in the face of disturbances such
as wind or wind gusts.

5.4. Horizontal Movement Hardware Tests Results

The outdoor test flight was carried out in a UAV airfield, following all the legal and
safety requirements. After the take-off, a flight was performed at a constant altitude of
20 m. The flight consisted of following a straight path back and forth. Using data from the
onboard GPS, the estimated speed was 2.87 m/s one way and 2.8 m/s on the way back.
The pitch angle during this displacement, measured using the UAV IMU was 1 degree.

The same speed was programmed for the second part of the test flight, but in this
case, using the UAV main rotors. The UAV initially tilted 8 degrees in pitch to start the
maneuver and then maintained the setpoint speed with a constant pitch angle of 6 degrees.

To perform wall-related tasks, the UAV could carry a tool, usually at the end of a pole.
The tool movement created by this pitch angle is directly proportional to the distance of
the tool to the multirotor center of rotation. This distance is 850 mm for the multirotor and
dummy tool used in these tests. With that distance and the measured tilt angle, the resulting
vertical tool displacement can be estimated at 118 mm for the start of the maneuver and
89 mm for the continuous movement. These unforeseen displacements make the precise
positioning of the tool difficult.

This test demonstrates the capabilities and advantages of the proposed propulsion sys-
tem to successfully move the multirotor at reasonably high speeds without undesired pitch
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or roll movements. It also tries to illustrate the tilt-induced tool movement, problematic
when performing near-wall tasks, that the proposed navigation system can overcome.

5.5. Description of the Final Test

A final test was designed to verify the compliance with the expected capabilities of
both the proposed NWPS and the navigation control system. The test consisted of real
indoor flight in the absence of GNSS signals, with a UAV using the proposed NWPS and
navigation control hardware. The test was run in four phases:

1. Takeoff and UAV stabilization at a distance of 2.5 m away from the wall.
2. Controlled approach maneuver to the wall using the horizontal thrusters, and the

position estimation generated by the NWPS.
3. Stationary flight at a distance of 1 m to the wall (0.2 m from the tip of the tool).
4. Return to the origin and landing.

5.6. Final Test Results

The test was performed maintaining the same workspace and UWB setup and the
maneuvers were recorded from an elevated platform to better estimate distances to the
wall. A photogram of the recorded flight can be seen in Figure 8:
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Figure 8. UAV flying close to a wall during the final test. The proposed NWPS and horizontal
movement hardware are used to hover at a fixed distance to the wall.

Figure 9 shows the estimation of the distance to the wall, for both the proposed NWPS
and the UWB. The same behavior is observed as in previous tests. The UWB offered
good accuracy in general, with both systems estimations almost overlapping. However,
the UWB system showed some spike-shaped errors and in the experiments performed
underestimated the distance to the wall when flying close to it.

This underestimation problem could be caused by multipath propagation. When the
vehicle is close to the wall part of the UWB signal travels directly, while some bounces off
the wall, travelling a longer path. This may cause the UWB to estimate that the vehicle is
further away from the anchors than what it really is and, consequently, closer to the wall.
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Figure 9. Estimation of the distance to the wall in an indoor flight test. Comparison between results
from the UWB and the proposed NWPS.

6. Discussion

This paper presents a new near-wall positioning system (NWPS) that estimates the
position of a multirotor UAV touching a wall or flying at a short distance away in the
same order of magnitude as the vehicle size in GNSS-denied scenarios. A new strategy for
controlling the position of the UAV and its associated tool near walls is also presented.

The proposed NWPS is based on the combination of UWB sensors and LIDAR range
finders. It has been developed to improve the robustness and accuracy of commercially
available IPS, particularly near walls. This NWPS adds very little weight to the UAV,
and the selected estimation algorithm approach allows the computation of the position
estimation using lightweight and low-cost microcontrollers. The range of the system and
its accuracy is directly related to the LIDAR capabilities. The selected LIDAR sensors allow
a range of up to 12 m. For the best accuracy, direct vision of the wall is required from
all sensors.

The tilting of the UAV induces troublesome displacements of the working tool. This
tilting can create turbulence and dangerous interaction forces with the wall. This pa-
per presents a new strategy that allows the control of the UAV position without tilting.
This strategy is based on the use of small thrusters and associated control algorithms
and hardware.

Both systems have been tried separately in various tests to verify their correct op-
eration and probe their advantages. Then, both systems were tried together, in a set of
real flight tests on a GNSS denied indoor environment, flying near walls, with successful
results. The outcome of the present work walks a few steps towards autonomous UAV
usage in near-wall tasks. The use of UAV in these situations can reduce the operational
costs of expensive processes, i.e., civil and structural inspections.
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Abstract: Location information is one of the basic elements of the Internet of Things (IoT), which is
also an important research direction in the application of wireless sensor networks (WSNs). Aiming
at addressing the TOA positioning problem in the low anchor node density deployment environment,
the traditional cooperative localization method will reduce the positioning accuracy due to excessive
redundant information. In this regard, this paper proposes a location source optimization algorithm
based on fuzzy comprehensive evaluation. First, each node calculates its own time-position distribute
conditional posterior Cramer-Rao lower bound (DCPCRLB) and transfers it to neighbor nodes. Then
collect the DCPCRLB, distance measurement, azimuth angle and other information from neighboring
nodes to form a fuzzy evaluation factor set and determine the final preferred location source after
fuzzy change. The simulation results show that the method proposed in this paper has better
positioning accuracy about 33.9% with the compared method in low anchor node density scenarios
when the computational complexity is comparable.

Keywords: cooperative localization; location source optimization; fuzzy comprehensive evalua-
tion; DCPCRLB

1. Introduction

The Internet of Things (IoT) is a booming new industry and wireless sensor networks
(WSN), as the perception layer of the IoT system [1], provide data collection [2], information
transmission [3], scene recognition [4] and other functions to ensure the normal operation
of the networked system. Wireless sensor networks can replace humans working in harsh
natural environments and complete complex and tedious tasks. They are widely used
in precision agriculture [5], elderly care [6], air monitoring [7], smart home [6], disaster
supervision [8] and many other fields.

Taking into account the actual needs of IoT systems, WSN usually have the charac-
teristics of real-time communication [9], random and irregular distribution of nodes [10],
dynamic topology [11], large scale [12], complex deployment environment [13], etc., which
brings a certain degree of difficulty to information collection, processing and analysis.
Obtaining accurate location and time information of data sources is a prerequisite for
sensor network analysis and application data [9–13]. Therefore, the positioning and time
synchronization technology of WSN is an important part of the application of the IoT,
which has attracted the enthusiasm of researchers at home and abroad.

Common positioning principles include Approximate Perfect Point-In-Triangulation
(APIT) [14], distance vector hop (DV-Hop) [15], received signal strength indicator (RSSI) fin-
gerprint [16] that are range-free method, and RSSI ranging [17], times of arrival (TOA) [18]
and time difference of arrival (TDOA) [19] based on ranging information. The positioning
accuracy of the range-base localization algorithms are usually better than the range-free
positioning localization algorithms. The localization algorithms based on TOA ranging
information is one of the main research directions of sensor network positioning due to
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its low cost and high positioning accuracy [20]. However, due to the relatively high cost
of anchor nodes, it is difficult to deploy them in large numbers in actual applications.
Cooperative localization method can rely on the location information and communication
channels of other nodes to provide coordinated information to improve the positioning
performance of the system [21]. However, the coordinated information in the scene of low
anchor node density may also cause a decrease in positioning accuracy [22], as shown in
Figure 1.
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Figure 1. Different position accuracy with different anchor node density. Under low anchor node
density, the number of neighbor nodes to be located in the position source increases, and the
uncertainty of the localization information of the position source increases, resulting in a decrease in
the position accuracy of the node to be located.

Therefore, it is necessary to optimize and screen out the location source that is help-
ful to improve the positioning performance. The main contributions of this paper are
summarized as follows:

(1) Frist of all, the system model of low anchor node density is defined. Nodes calculate
location and time skew with TOA method in this model.

(2) Then, a novel location source optimization algorithm is proposed for low anchor
node density scenario. In the proposed method, a location source select structure is
established with fuzzy comprehensive evaluation. Distribute conditional posterior
Cramer-Rao lower bound (DCPCRLB), distance measurement and direction angle is
considered as the most significant factors to select location source.

(3) The validity and rationality of the proposed method are verified by experiments.

The structure of this paper is as follows: Section 1 is the introduction, which summa-
rizes the background knowledge and explains the significance of studying the location
source select in cooperative localization. Section 2 lists the related work of this research
direction in recent years. Section 3 gives out the system model of cooperative localization
in low anchor node density, then proposes a novel location source select method based on
fuzzy comprehensive evaluation. Section 4 shows the simulation scenario, analyses the
performances of the proposed method in this paper and discusses the future work of this
studying. Section 5 presents a summary of the research content of this paper.

2. Related Work

In recent years, anchor node selection has been a research topic in cooperative lo-
calization. Researchers pay lot of attention to anchor node selection, but the ambiguity
of nodes position and distance measurement leads to a low accuracy of node position.
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So far, domestic and foreign experts and scholars have done a lot of research on anchor
node selection from different aspects and have achieved good results. The main work is
as follow:

In [23], a localization method called mobile-beacon based iterative localization (MBIL)
is proposed. In this method, the position confidence of the node is calculated with the
number of iterations, the residual energy and the deviation degree error of the localized
node’s estimated location. The confidence is used to optimize the location source, and
could achieve a high positioning performance is achieved in a short time.

Reference [24] analyzes the localization error caused by the selection of anchor nodes
first. Based on above analysis conclusion, they proposes an improved least square localiza-
tion algorithm based on the selection of anchor nodes with distance clustering (LSL-DC).
With distance clustering, the anchor nodes are chosen. The simulation results indicate
LSL-DC algorithm can improve the localization precision.

In [25], distance measure errors are also considered as the most significant factor which
affect position accuracy, a optimizing method called node segmentation with improved
particle swarm optimization (NS-IPSO) is proposed to filter the positioning source by the
distance between nodes and the communication frequency, so as to avoid large distance
measurement errors and improve positioning accuracy.

Reference [26] considers a localization problem in non-uniformly and holes in ap-
plication environment, which affect the accuracy of distance estimation and causes large
position errors in node positioning. They proposed a localization method called boundary-
based anchor selection method for WSNs node localization (BASL). In this method, nodes
first explore WSN connectivity to confirm whether they are boundary region nodes. Then,
the node to be locate selects anchor nodes by checking the number of boundary region
nodes in their shortest path between itself and anchor nodes. The results show that the
BASL method can alleviate localization error which is caused by the hole in the scenarios.

Reference [27] analyzed the impact of horizontal dilution of precision (HDOP) on
positioning accuracy in underwater scenes, and selected the node with the smallest HDOP
as the location source to obtain the highest positioning accuracy, which called generalized
second-order time-difference-of-arrival (GSTDOA) algorithm.

In [28], an enhanced three-dimensional DV-hop algorithm is proposed, which enhance
its location accuracy. Coplanarity is used to select an optimal set of beacon nodes around
an unidentified node for its location estimation.

Reference [29] proposed social network analysis based localization technique with
closeness centrality (SNA-CC). Closeness centrality is obtained by calculating the average
distance value between the node and all its neighbor nodes. This paper uses this as
the importance evaluation criterion of nodes to screen the nodes. After screening, the
positioning accuracy has been improved to a certain extent, and its essence is still in the
screening of distance measurement errors.

In [30], a method called dynamic reference selection-based self-localization algorithm
(DRSL) is proposed which combine location sources with the smallest least square error
were selected to achieve the best positioning accuracy.

The following Table 1 summarizes the above-mentioned location source selection
algorithm literature, the screening factors used, and the method of fusion between factors,
and compares them with the method proposed in this article.
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Table 1. Comparative of different location source selection algorithms.

Location Source Selection Algorithm in
Localization Factors of Location Source Selection Method of Fusion between Factors

MBIL [23] the number of iterations, the rediual
energy and the deviation degree error linear combination

LSL-DC [24] the distance measure error single factor

NS-IPSO [25] the distance measure error and the
communication frequency linear combination

BASL [26] the number of boundary region nodes single factor
GSTDOA [27] HDOP single factor

enhanced three-dimensional DV-hop [28] coplanarity single factor
SNA-CC [29] closeness centrality single factor

DRSL [30] the smallest least square error single factor

Proposed method the DCPCRLB, the distance measurement
and direction angle the fuzzy comprehensive evaluation

The above methods only consider part of the factors that affect the positioning perfor-
mance, and do not include all factors in the positioning source optimization framework.
The main contribution of this paper is a novel optimization algorithm of the fuzzy com-
prehensive evaluation [31] framework, which forms a flexible and fast positioning source
selection framework. At the same time, it is based on many factors to select the location
source such as the DCPCRLB considering the influence of clock, distance observation,
direction angle, etc.

3. Location Source Selection Algorithm Based on Fuzzy Comprehensive Evaluation

In this section, first a two-dimensional positioning scene is shown, and the positioning
principle and positioning method used in this article are basically explained. Then the
DCPCRLB is introduced to pave the way for the proposed location source optimization
method. Finally, the node selection algorithm proposed in this article is introduced, and
the steps and operation process of the algorithm are introduced.

As shown in the Figure 2, the positioning node selection is an optional step after
calculating the distance measurement in the overall positioning process and before the po-
sitioning solution. The addition of positioning node selection can reduce the computational
complexity of subsequent steps, thereby reducing the time-consuming of the overall posi-
tioning process. At the same time, since the node selection screens low-quality positioning
sources, the positioning accuracy can be improved.
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Figure 2. Flow chart of cooperative localization with location source optimization.

3.1. System Model

In the actual layout, the anchor nodes in the same scene are usually at the same
height, so there is a big error in height measurement. Height measurement is usually
achieved by other methods, so two-dimensional scenario is considered. The positioning
scene includes anchor nodes and nodes to be positioned. The position vector of node
i at time l is represented by xi,l =

[
xi,l yi,l

]T , and the clock slope is represented by
ai,l ,

(
t̃i,l − t̃i,l−1

)
/(Tl − Tl−1), t̃i,l represents the local time of node i, and Tl represents

the real time. Assume that the anchor node time is synchronized with the real time, that
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is, for anchor node i, ai,l = 1. The estimated vector of the node i to be located at time l is

θi,l =
[

xi,l yi,l ai,l
]T , its line-of-sight neighbor node set is defined as Ni,l . The set of

vectors to be estimated for all nodes to be located at time l is Θl =
{
· · · , θi,l , · · ·

}
.

Node i obtains TOA observations by receiving information from neighboring node j
at time l as follows:

r̃ij,l = ||xi,l − xj,l ||+ cT
(

ai,l − aj,l

)
+ nij,l , (1)

where ||xi,l − xj,l || represents the Euclidean distance between node i and node j at time l, c
is the speed of light, T is the time difference between adjacent moments, and nij,l is TOA
observation noise, assuming that it conforms to Gaussian distribution as nij,n ∼ N

(
0,σ2

r
)
.

Then the probability density function of r̃ij,l with respect to θi,l , θj,l can be expressed as:

p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
=

1√
2πσ2

r
exp




(
r̃ij,l − ||xi,l − xj,l || − cT

(
ai,l − aj,l

))2

2σ2
r


, (2)

Assuming that the change process of the vector θi,l to be estimated at node i conforms
to the Gaussian Markov process [32], according to the Bayesian formula:

p
(

θi,l

∣∣∣r̃ij,l

)
∝ p(θi,l

∣∣θi,l−1) ∏
j∈Ni,l

p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
, (3)

According to the MAP criterion, the estimated value θ̂i,l of the vector θi,l to be esti-
mated at node i can be expressed as:

θ̂i,l = argmax
θi,l

p
(

θi,l

∣∣∣r̃ij,l , θj,l

)

= argmax
θi,l

p(θi,l
∣∣θi,l−1)∏j∈Ni,l

p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
,

(4)

3.2. Distributed Cramer-Rao Lower Bound

Cramer-Rao lower bound (CRLB) is the inverse matrix of the Fisher Information
Matrix (FIM) of the random variable θi,l , and is a theoretical lower bound of the mean
square error of the target state estimation. The conditional posterior CRLB (CPCRLB) of
the estimated state θ̂i,l of node i can be expressed as:

MSE
(

θ̂i,l

∣∣∣r̃ij,l

)
= E

{[
θ̂i,l − θi,l

][
θ̂i,l − θi,l

]T
∣∣∣r̃i,l

}

≥ F−1(θ̂i,l
∣∣̃ri,l
)
,

(5)

Among them, F
(
θ̂i,l
∣∣̃ri,l
)

represents the conditional FIM of the target state estimated
value θ̂i,l . [33] gives the global Fisher information matrix F(l) iterative calculation formula
of centralized CPCRLB, which can be applied to a centralized network structure with a
central fusion center to realize a centralized cooperative localization. This article is aimed at
a distributed network structure, and each node cannot obtain the global Fisher information
matrix. Therefore, we adjust the above formula to obtain the local Fisher information
matrix iterative formula corresponding to the DCPCRLB:

Fi(l) ≈ B22
i (l − 1)− B21

i (l − 1)
(

B11
i (l − 1) + Fi(l − 1)

)−1
B12

i (l − 1), (6)

where:
B11

i (l − 1) = E
(
−∆θi,l−1

θi,l−1
ln p(θi,l

∣∣θi,l−1)
)

, (7)

B12
i (l − 1) = E

(
−∆θi,l

θi,l−1
ln p(θi,l

∣∣θi,l−1)
)
=
(

B21
i (l − 1)

)T
, (8)
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B22
i (l − 1) = E

(
−∆θi,l

θi,l

(
ln p(θi,l

∣∣θi,l−1) + ln p(̃ri,l
∣∣θi,l)

))
, (9)

where ∆Θl
Θl−1

= ∇Θl−1∇T
Θl

,∇Θl =
[
· · · , ∂

∂θi,l
, · · ·

]T
. F(l) is a global Fisher information

matrix. The DCPCRLB of node i can be obtained by inverting the Fisher information
matrix, that is, CRLB

(
θj,l

)
= F−1

i (l).

3.3. Location Source Optimization Algorithm

In a 2-dimensional wireless sensor network, the node to be located needs to establish
communication with at least three anchor nodes to complete positioning. In the location-
time joint estimation problem, it is necessary to establish communication with at least four
anchor nodes to complete the calculation of the vector to be estimated. In the scenario of
low anchor node density, the cooperative localization method provides neighbor nodes
as pseudo-anchor nodes for the node to be located, but the pseudo-anchor node itself has
low accuracy as the node to be located, and the inappropriate introduction of too many
pseudo-anchor nodes will affect the final estimation result has a serious impact, so it is
necessary to optimize the introduced pseudo-anchor nodes.

In this section, we will introduce the fuzzy comprehensive evaluation method to
design the location source selection algorithm. For node j ∈ Ni,l to participate in the
optimal process of positioning and settlement, the DCPCRLB posCRLBj,l , node distance
measurement r̃ij,l , direction angle αij,l will participate in the judgment as a set of factors:

posCRLBj,l = CRLB1,1

(
θj,l−1

)
+ CRLB2,2

(
θj,l−1

)
+ Z·c2CRLB3,3

(
θj,l−1

)
, (10)

αij,l = arctan
xj,l−1 − xi,l−1

yj,l−1 − yi,l−1
, (11)

CRLB1,1

(
θj,l−1

)
represents the element in the first row and first column of

CRLB
(

θj,l−1

)
, and Z is the scaling constant. The raw data Di,l of the candidate node

for node i is:

Di,l =




posCRLB1,l posCRLB2,l · · · posCRLBN,l
r̃i1,l r̃i2,l · · · r̃iN,l
αi1,l αi2,l · · · αiN,l


, (12)

where M is the number of nodes to be selected for node i. Then standardize the data and
determine the membership function of each factor according to the number of neighbor
anchor nodes and the number of nodes participating in the positioning solution, and
perform fuzzy evaluation on the selected nodes to obtain the evaluation matrix Ai,l :

Ai,l =




a11 a12 · · · a1M
a21 a22 · · · a2M
a31 a32 · · · a3M


, (13)

where:

a1j =

max
j

posCRLBj,l − posCRLBj,l

max
j

posCRLBj,l −min
j

posCRLBj,l
, (14)

a2j =

max
j

r̃ij,l − r̃ij,l

max
j

r̃ij,l −min
j

r̃ij,l
, (15)

a3j =

max
j
‖ϕi,l − αij,l‖ − ‖ϕi,l − αij,l‖

max
j
‖ϕi,l − αij,l‖ −min

j
‖ϕi,l − αij,l‖

, (16)
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Among them, ϕi,l is jointly determined by the direction angle of neighbor anchor
nodes and the number of undetermined sources. The weight function matrix Pi,l =[

w1 w2 w3
]

can be determined by methods such as entropy weight method [34] and
analytical hierarchy process (AHP) [35]. Finally, a fuzzy transformation Qi,l = Pi,l ·Ai,l is
performed to obtain the evaluation results of each candidate node, and the one with the
largest value is selected as the preferred source for positioning.

As shown in Figure 3, after obtaining neighbor node information and distance mea-
surement, the positioning process enters the positioning source optimization algorithm
proposed in this article. First, a certain number of anchor nodes are included in the pre-
ferred location source Si,l , and then according to Equations (10) and (11) to calculate the
raw data Di,l of all other neighbor nodes. The evaluation matrix Ai,l is obtained after
normalization processing according to Equations (14)–(16), and the weight function matrix
Pi,l is obtained according to the method mentioned in [34]. Finally, the evaluation value
matrix Qi,l of each node is obtained through fuzzy transformation, and the node with the
highest evaluation value is selected from it and included in Si,l . If the preferred positioning
source is sufficient, the location source optimization ends and the positioning solution is
entered, otherwise Di,l is recalculated.
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4. Simulation Scenario and Result Analysis
4.1. Simulation Scenario Set

In order to make our simulation environment close to the actual scene, the simulation
scene will be set according to the zone 1 scene in Figure 4a, which is underground parking
lot in Beijing University of Posts and Telecommunications, and Figure 4b is the real scene
of zone 1.
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Figure 4. (a) Simulation scenario. Zone 1 is the used simulation scene. (b) The real scene of zone 1 [22].

The simulation scene is set as a rectangular area of 20 m × 24 m according to the real
size of zone 1. To set the average number of anchor node connections around 3, the number
of anchor nodes is 4, and the maximum communication distance is set to 10 m. The number
of nodes to be located is set to 20 and all nodes conform to the uniform distribution in
the simulation scene. All TOA observations are the line of sight (LOS), and the distance
measurement error conforms to Gaussian distribution with standard deviation of 0.3 m
according to the maximum error of DW1000 (Decawave, Dublin, Ireland). All simulation
results are the average of 1000 independent runs.

The initial position measurement error of nodes conforms to the Gaussian distribution,
the standard deviation of the anchor node is 0.1 m, the node to be located is 10 m. In
the simulation process, the clock slope of node to be located is set as 1 ppm according
to the performance of the crystal oscillator used in the hardware (TG5032CFN, EPSON,
Nagano-ken, Japan). Anchor nodes are static and the velocity of node to be located is set
to 3 m/s as almost the fastest speed of human walking. Root mean square error (RMSE)
and cumulative distribution functions (CDF) are used to evaluate the performance of
proposed method.

4.2. Simulation Result Analysis

It can be seen from Figure 5 that when the number of neighbor anchor nodes is small,
both the DRSL method and the method proposed in this article can effectively improve
the positioning accuracy, further increase the number of adjacent anchor nodes, and
the positioning source optimization algorithm can significantly improve the positioning
accuracy. In addition, the different performance is noticed when all neighbor nodes are used
in the graph to participate in positioning. When the neighbor anchor nodes are sufficient,
the joining of neighbor cooperative nodes is difficult to improve the positioning accuracy.
When the number of neighbor anchor nodes is small, the addition of neighbor cooperative
nodes has a positive impact on the positioning accuracy. The proposed algorithm optimizes
its role in the positioning process by screening collaborative nodes.

These results in Figure 6 show that the position accuracy affected by communication
distance. Obviously, the position accuracy will increase as the communication distance
increases. This is because the number of nodes that can be selected increases after the
communication distance is increased, and the higher the possibility of selecting a higher-
quality node combination, so various methods can obtain better positioning results. At the
same time, the position accuracy of the proposed method is better than other methods. This
is because the method in this article comprehensively considers many factors that affect the
positioning accuracy. The improvement of the communication distance is very effective
for improving the positioning accuracy, but as the communication distance increases, the
improvement effect of the positioning accuracy becomes smaller. This is because it is
difficult for nodes that are too far away to provide effective information for positioning.
Therefore, in practical applications, a rigorous analysis of the communication distance, that
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is, the transmission and reception power, is performed according to the requirements for
positioning accuracy, and a reasonable communication distance is obtained.
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Figure 7 shows the positioning accuracy of the node to be located under different
initial positioning errors. It can be seen from the figure that the positioning accuracy
improves with the decrease of the initial positioning error, because the quality of the
position information of the neighboring nodes will affect the positioning accuracy of the
nodes. The positioning accuracy of the method proposed in this paper is better than
the other two comparison methods. This is because this paper uses DCPCRLB as the
evaluation basis for the location information, which has a better estimate of the quality of
the location information.
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Figure 7. CDF of position error under different initial position error. In the figure, the purple line
represents the DRSL source selection location algorithm proposed in [30], the blue line represents the
MBIL algorithm in [23] and the green line represents the source optimization algorithm proposed in
this article.

In Figure 8, compared with the other three cases, the position accuracy performs
best when vmax = 3 m/s. Although the motion state will cause a certain error in the
position estimation of the node to be located, it also has the advantage of changing the
topology and optimizing the node distribution. Therefore, when vmax = 3 m/s, the
position accuracy is slightly improved compared to the static situation. When the speed
is too high (vmax = 8 m/s or vmax = 15 m/s), the error caused by the movement cannot
be compensated by optimizing the node distribution. The error caused by motion can
be compensated by combining positioning with sensor data such as accelerometer or
gyroscope [36].
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Figure 8. CDF of position error under different maximum node speed vmax. In the figure, the
red line represents the position error CDF when all nodes are static, the orange line represents
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where vmax = 15 m/s. In all cases, anchor node is static, the nodes to be located conform to the
uniform distribution with the maximum speed vmax, and the direction of movement is random.
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Figure 9 compares the positioning performance when using different numbers of
preferred position sources in a low anchor node density scenario. It can be seen that as the
number of preferred positioning sources increases, the position accuracy is improved. As
the number of preferred positioning sources increases, the signal quality of the position
sources and the geometric distribution of the position sources will be improved, and
the position accuracy will be improved to a certain extent, but the improvement effect
will decrease as the number of equipotential sources increases. By comparing the results
with Figure 5, it can be found that there is a limit to improving the positioning effect by
increasing the number of position sources. Too many position sources may also cause a
decrease in position accuracy, which is the fact reflected by the yellow line in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 9. CDF of position error under different number of preferred positioning sources. In the 
figure, the green line represents the location error CDF when the preferred location source is 15, 
the orange line represents the preferred location source is 9, and the red line represents the pre-
ferred location source is 6. The purple line indicates the situation where only anchor nodes are 
used for positioning. 

The above Figure 10 reflects the average positioning time of the proposed method 
and DRSL method under different numbers of neighbor nodes. The time complexity of 
the location source optimization algorithm is mainly related to both the average number 
of neighbor nodes 𝑁ଵ and the number of preferred sources 𝑁ଶ. For the calculation of the 
original data 𝑫௜,௟, the evaluation matrix 𝑨௜,௟ and the fuzzy transformation 𝑸௜,௟ in the al-
gorithm proposed in this paper, the time complexity is 2𝑂(𝑁ଵ), 5𝑂(𝑁ଵ) and 3𝑂(𝑁ଵ). Fi-
nally, a preferred positioning source is obtained after comparison. Repeating the above 
process 𝑁ଶ times is the time complexity of the node. By optimizing part of the algorithm 
process, the time complexity is finally 5𝑂(𝑁ଵ𝑁ଶ). In the proposed method, nodes transmit 
a localization vector including 𝜽௜,௟ = ሾ𝑥௜,௟ 𝑦௜,௟ 𝑎௜,௟ሿ் and a the DCPCRLB 𝑝𝑜𝑠𝐶𝑅𝐿𝐵௜,௟, so 
the communication cost is 2O(1). The computational complexity, run-time and commu-
nication overhead of the three algorithms is shown in Table 2. 

Figure 9. CDF of position error under different number of preferred positioning sources. In the figure,
the green line represents the location error CDF when the preferred location source is 15, the orange
line represents the preferred location source is 9, and the red line represents the preferred location
source is 6. The purple line indicates the situation where only anchor nodes are used for positioning.

Figure 10 reflects the average positioning time of the proposed method and DRSL
method under different numbers of neighbor nodes. The time complexity of the location
source optimization algorithm is mainly related to both the average number of neighbor
nodes N1 and the number of preferred sources N2. For the calculation of the original data
Di,l , the evaluation matrix Ai,l and the fuzzy transformation Qi,l in the algorithm proposed
in this paper, the time complexity is 2O(N1), 5O(N1) and 3O(N1). Finally, a preferred
positioning source is obtained after comparison. Repeating the above process N2 times is
the time complexity of the node. By optimizing part of the algorithm process, the time com-
plexity is finally 5O(N1N2). In the proposed method, nodes transmit a localization vector
including θi,l =

[
xi,l yi,l ai,l

]T and a the DCPCRLB posCRLBi,l , so the communication
cost is 2O(1). The computational complexity, run-time and communication overhead of
the three algorithms is shown in Table 2.
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Table 2. Comparisons of different methods for each node at each iteration.

Method Computational
Complexity Run-Time Communication

Overhead

Proposed method 5O(N1N2) 42.319 ms 2×O(1)
DRSL [30] O

(
N2

1
)
+ 2O(N2) 84.532 ms O(N2)+ O(1)

MBIL [23] O
(

N1N2
2
)

326.443 ms O(N1) + 2×O(N1)

4.3. Future Research Directions

In the next stage of research, the following aspects will be mainly focused on: First, we
plan to analyze other factors which affect position accuracy. Secondly, we shall implement
the proposed method based on hardware platform and apply the proposed method in
realistic scenarios. The measured results in realistic scenarios will be compared with the
simulation results to improve the performances of the proposed method.

5. Conclusions

We propose a new positioning source optimization method for low-anchor node
density wireless sensor networks, which comprehensively considers the positioning per-
formance, distance, location and other factors that affect the positioning accuracy of co-
operative nodes to select positioning sources. First, each node calculates its own CRLB
and transmits it to neighboring nodes through collaborative information. Neighboring
nodes calculate the CRLB, distance measurement and direction angle of neighboring co-
operative nodes to obtain the optimal evaluation matrix, and obtain the fuzzy evaluation
result through weight addition, and obtain the final optimal location source. In the fuzzy
comprehensive evaluation framework, the weights of various evaluation factors can be
flexibly configured. Therefore, the proposed method can screen out different neighbor
nodes as positioning sources according to requirements, and then obtain a combination of
positioning sources with good location performance and distribution, which can improve
the positioning accuracy of the node. Compared with the DRSL and MBIL method, the
positioning signal source obtained by this method can obtain higher positioning accuracy
about 33.9% and 19.4% under low anchor node density, and the sacrificed calculation time
is almost negligible.
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Abstract: In recent times, social and commercial interests in location-based services (LBS) are
significantly increasing due to the rise in smart devices and technologies. The global navigation
satellite systems (GNSS) have long been employed for LBS to navigate and determine accurate and
reliable location information in outdoor environments. However, the GNSS signals are too weak to
penetrate buildings and unable to provide reliable indoor LBS. Hence, GNSS’s incompetence in the
indoor environment invites extensive research and development of an indoor positioning system (IPS).
Various technologies and techniques have been studied for IPS development. This paper provides an
overview of the available smartphone-based indoor localization solutions that rely on radio frequency
technologies. As fingerprinting localization is mostly accepted for IPS development owing to its
good localization accuracy, we discuss fingerprinting localization in detail. In particular, our analysis
is more focused on practical IPS that are realized using a smartphone and Wi-Fi/Bluetooth Low
Energy (BLE) as a signal source. Furthermore, we elaborate on the challenges of practical IPS, the
available solutions and comprehensive performance comparison, and present some future trends in
IPS development.

Keywords: indoor positioning system; fingerprinting localization; Bluetooth low energy; Wi-Fi;
performance metrics; positioning algorithms

1. Introduction

Localization is the discovery of a location of a user, which is a basic need for pervasive applications
such as behavior recognition, smart medication, and smart building that require accurate position
information of the users to yield accurate and timely services. The demand for location-based service
(LBS) has gradually increased at present owing to the rapid development and popularization of smart
devices and technologies. The extensively used technology for LBS is global navigation satellite systems
(GNSS). GNSS based LBS are employed in consumer products such as vehicle navigation, navigation
services on the smartphone and geotagging, and scientific observation systems such as variations
in the earth’s rotation and monitoring the tectonic plates. The global positioning system (GPS) [1],
the Russian GLONASS [2], the European GALILEO [3], and the Chinese BeiDou Satellite Navigation
System [4] are some emerging GNSS. Although GNSS-based LBS are widely used, their performance
is limited to the outdoor environment only. Besides, indoor environments are often complex due to
obstacles and environment changes, resulting in signal fluctuation or noise. Hence, it invites extensive
research on indoor LBS or indoor positioning system (IPS) with alternative wireless technology.

The IPS is realized with the different signal sources or access points (APs). There are two choices
of signal source: Either already deployed APs like Wi-Fi [5,6] and geomagnetic fields [7] or deploy
a new signal source like Bluetooth low energy (BLE) and ultra-wideband (UWB) radio signal tags.
The signal-free solutions in IPS is a dead-reckoning technique that uses off-the-shelf mobile sensors to
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detect position changes. Some of the wireless signal measuring principles in IPS are received signal
strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AOA).
RSS has been widely used for designing IPS owing to its nonrequirement of extra hardware and
easy implementation. Indoor LBS is applicable at asset management, people tracking, trade fairs and
events, etc.

As the indoor environment is complex, multipath propagation and shadowing effect on a radio
signal is common [8]. Hence, the received signal can contain line-of-sight (LOS) and non-line-of-sight
(NLOS) signal components. It results in less accurate time synchronization and propagation time
measurement, which poses a problem on IPS that relies on signal measurement principles like TOA,
TDOA [9], and AOA [10]. Moreover, the RSS is also unstable, owing to the superimposition of multipath
signals of varying phases. Meanwhile, the magnetic signal has a very limited discernibility in addition
to the requirement of proper calibration of the magnetometer in the smartphone.

Since the indoor environment is much complex and less characterized than the outdoor environment,
it is not easy to model the indoor radio signal propagation. The indoor signal propagation model
is usually based on a propagation path and the known obstacles where minor indoor changes can
render the signal propagation model invalid. The localization methods like trilateration [11] and
weighted centroid (WC) localization [12] rely on the signal propagation model to estimate the distance
from the RSS. Moreover, these methods require precise calibration of path loss exponent for every
indoor environment. Fingerprinting localization is the most widely employed IPS that rely on radio
fingerprint to produce localization result. However, this method’s training phase is labor-intensive
and time-consuming, and the time complexity of the execution phase grows with the size of the
localization area. Moreover, the instability of the RSS in the indoor environment enforces frequent
update of the radio map database.

The signal-free localization method relies on mobile sensors such as accelerometers, gyroscope,
magnetometer, and barometer and can track the users by continuously estimating their displacement
from a known starting point. The necessity of a known starting point and integrated sensor readings
to measure a position resulting in an unacceptable accumulated error are dead reckoning-based
IPS problems.

As multiple approaches of techniques and technologies have put forward while realizing an
IPS, there is no fixed set of rules that guide designing an IPS. In recent years, an initiative has been
put forward to set a common benchmark for IPS. For example, the EvAAL framework [13,14] and
the Microsoft competition [15] offer researchers a real and challenging test site with independent
evaluation. Francesco P. et al. have elaborated on the benchmarks for IPS standardization in [16].
Although IPS are yet to achieve standardization, some research works, such as [5,17,18] that are based
on radio frequency (RF), have shown surprising localization accuracy (decimeter level accuracy). In [5],
an approach is presented that can compute subnanosecond time-of-flight employing commodity Wi-Fi
cards. Here, packets are transmitted on multiple Wi-Fi bands and stitched their information together,
mimicking a wideband radio. Reference [17] put forward an approach to jointly estimate the AOA and
time-of-flight by combining channel state information (CSI) values across subcarriers and antennas.
Similarly, [18] presents the fingerprinting localization based on 60 GHz impulse radio to reduce the
effects of NLOS propagation. This work exploits 60 GHz technology’s ability to provide accurate
temporal and spatial information for TOA estimation.

A practical IPS should bear the properties like easy implementation, acceptable (meter level)
localization accuracy, feasible system cost, scalable/robust system, and minimum computational
complexity. However, the localization solutions at hand are more focused only on acquiring better
positioning accuracy. In this paper, we discuss the strength and weaknesses of various state-of-art
approaches compared with performance metrics of practical wireless technology-based IPS. Therefore,
the objective of this survey is to provide a comprehensive outline of available systems and solutions of
smartphone-based IPS that uses RF (particularly Wi-Fi and BLE) as its signal source , so that readers
may be educated in this rapidly growing area.
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This survey paper is organized as follows. Section 2 summarizes some published survey literature
on RF-based IPS. In Section 3, a brief description of some RF-based localization technologies and some
localization solutions are presented. Signal measurement principles and the performance matrices
are elaborated in Sections 4 and 5, respectively. Section 6 presents the challenges of practical IPS,
and Section 7 presents positioning algorithms and a survey of some available solutions. A conclusion
is drawn in Section 8 with discussion of future research trends.

2. Typical Survey Papers on RF-Based IPS

The available IPS put forward in the past decade are designed for various applications utilizing
diverse techniques and technologies. The variations in localization methods, signal sources, and target
applications have resulted in a systematical investigation of IPS. However, the indoor localization
problem is still waiting for a satisfactory and reliable solution. Meanwhile, the literature on different
IPS approaches is summarized in many survey papers based on different research topics [19–30]. This
section outlines the typical survey papers on IPS to differentiate our work from the existing literature.

Pavel et al. presented a comprehensive study on smartphone-based IPS [19]. The main focus of
their discussion is RF and magnetic field-based fingerprinting along with map aided navigation and
inertial sensors. They have elaborated on the fingerprinting algorithm in prospective to wireless local
area networks (WLAN); however, the significant issues of fingerprinting, such as offline workload
and computational complexity, are not discussed. Moreover, this work lacks the evaluation of the IPS
based on comparison criteria. The next review on device-based IPS is presented in [22,25], where they
deal with seamless outdoors-indoors localization solutions for smartphones and indoor localization for
various devices, respectively. As a topic of discussion of [25] is seamless localization, it briefly mentions
the approaches of indoor/outdoor localization and their integration and lacks a clear focus on IPS.
Similarly, [22] reviews IPS that are realized employing a smartphone and tag devices compatible with
various technologies. This work highlights the use of various technologies such as Wi-Fi, BLE, UWB,
ultrasound, etc. in IPS and presents their performance comparison. Nevertheless, the localization
methods for IPS and their issues are not addressed in the paper.

Another focus of survey papers on IPS is based on the classification of localization systems [21,26,28].
A review of IPS’ multiple techniques and technologies was carried out in [26], which also focuses on
the internet of things (IoT). The authors list out the localization system’s applications and tabulate
some of the existing IPS to show their advantages and disadvantages. They review the wide variety
of techniques and technologies for IPS; however, the presented challenges do not wholly reflect the
practical limits and challenges of a pragmatic IPS. Hui Liu et al. have presented a survey of wireless
indoor positioning techniques and systems to summarize the positioning algorithms and the existing
systems and solutions [28]. This work illustrates an IPS’s performance metrics, which can be a basis for
judging any IPS. Besides, a graphical outline of wireless-based positioning systems depicting localization
accuracy (resolution), use areas (scale), and wireless technologies is presented. However, this work does
not address the challenges and future trends of IPS. A short review of IPSs and the employed algorithms
are presented in [21]. Here, a comparison of a few IPSs based on parameters like used technology,
accuracy, and robustness are tabulated.

Wi-Fi fingerprinting-based IPS has been neatly reviewed in [29,30]. In [29], Sunning et al. elaborate
fingerprinting localization based on spatial and temporal signal patterns wherein they further discuss
the various offline workload reduction algorithms for fingerprinting localization. In addition, they
summarize the collaborative localization model of IPS that employ distance and proximity-based
approaches. Moreover, they review the motion assisted Wi-Fi localization, energy efficiency for
smartphones, and list out some future directions. Meanwhile, [30] further elaborates on Wi-Fi-based
fingerprinting by formulating the localization problem and detailing the conventional localization
approaches. Unlike [29,30] explains the available data clustering modules in IPS for computational
complexity reduction. Although both the works are impressive, none of them address other promising
technologies (e.g., BLE, etc.) and techniques (e.g., neural network-based fingerprinting, etc.) for
fingerprinting localization.
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Some other survey papers on IPS are [23,24,27]. The review study in [24] focuses on IPS for
emergency responders. Here, the IPS that were designed for emergency responders is categorized as a
radio signal, IMU, and hybrid-based approach wherein various localization solutions are discussed.
Hakan and Shuang present a survey on IPS that rely on RF, infrared, and ultrasonic technologies [27].
They highlight the benefits of RFID positioning systems. As RSS has been used one way or the other in
most of the RF-based IPS, [23] presents a survey paper on IPS that employs CSI wherein the benefits of
CSI over RSS are highlighted.

In our survey work, we focus on practical IPSs that rely on RF (Wi-Fi or BLE or both) and
smartphones for realizing the real-time localization system. We elaborate on the localization algorithms
targeted for such practical IPSs, highlighting the fingerprinting localization due to its promising
accuracy. We review the challenges that practically limit an RF-based IPS to achieve all the performance
metrics. Moreover, we discuss and tabulate the existing localization solutions that intend to solve a
reliable IPS’s single or multiple challenges. Furthermore, we highlight the future research direction in
RF-based IPS.

3. Wireless Technologies for IPS

Many representative technologies have been employed to develop IPS. The technologies can be
categorized into RF, lightwave, acoustic wave, and mechanical, as shown in Figure 1.

Technologies of 
IPS

Radio frequency

Light wave

RFID/NFC

Wireless personal area networks 

Broadcast wide area networks

Visible light

Infrared

Acoustic wave
Ambient sound

Ultrasound

Mechanical

Magnetic field

Atmospheric pressure

IMU

Figure 1. Categorization of major technologies used in indoor positioning system (IPS) development.

RF technologies such as Wi-Fi and BLE are the most used technologies in IPS development.
Similarly, the magnetic field, inertial measurement unit (IMU), and atmospheric pressure can be
employed for IPS development. Apart from them, lightwave such as visible light and infrared and
acoustic waves such as ambient sound and ultrasound are also utilized in indoor localization. Since this
survey aims to study IPS approaches based on wireless technologies, an overview of the localization
solutions based on some selected RF technologies is emphasized. As Wi-Fi and BLE are the dominating
technologies for IPS development, we present their relative comparison in terms of IPS in Table 1.

The RF technology can be further categorized into broadcast wide area network (WAN), wireless
personal area network (WPAN), and RFID/NFC. The cellular network, TV/FM radio signals, and GPS
repeaters belong to the WAN family, whereas Wi-Fi, BLE, WSN, and UWB belong to the WPAN family.

3.1. RFID/NFC

The radio frequency identification (RFID) systems rely on two main components, namely RFID
tag and RFID reader to fulfill their objective. The RFID reader wirelessly acquires the electronically
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stored information of RFID tags. The reader contains a transceiver to transmit RF signals and read the
data emitted from the tags. The tags can be categorized as passive and active. The passive tags get
energy from incoming radio signals, whereas a battery powers active tags. RFID systems operate in
four frequency bands: Low frequency (125 kHz), high frequency (13.56 MHz), ultra-high frequency
(433, 868–915 MHz), and microwave frequency (2.45 GHz, 5.8 GHz). The property of RFID to detect
and recognize the nearby tag enabled it to be used for IPS.

Some of the RFID localization systems using passive tags are [31–34] where the tags are deployed
on the floor at a fixed distance forming a grid and estimate localization results by detecting multiple
tags. The work in [35,36] are based on active tags where RSS is used to estimate the location of the user.
RFID has also been combined with other technologies for IPS. For example, [37] combines it with the
ultrasonic sensor, [36,38] combine with image sensors to detect the location of objects.

Near Field Communication (NFC) is the short-range (5 cm or less) wireless communication
technology. It is mainly a specialized branch within the family of RFID technologies (high-frequency
band of RFID). Localization can be realized with NFC by deploying several tags at places of interest,
where a location is estimated simply by touching the tag with the NFC equipped device [39,40].

3.2. UWB

UWB uses very low energy for short-range and high-bandwidth communications over a large
portion of the radio spectrum. In general, an emitted radio wave is considered UWB if its bandwidth
exceeds 500 MHz or 20% of the carrier frequency. The properties of UWB, such as very less power
consumption, effective penetration through dense materials, and less sensitive to the multipath effect
owing to a very short duration of UWB pulses make the UWB suitable for IPS development. As of
this writing, Apple (iPhone 11 and 12) and Samsung (Galaxy Note 20 Ultra) have launched their new
smartphones that have UWB chip on it.

IPS based on UWB can estimate location accurately owing to the possibility of precise time
measurements of the propagation time of UWB pulses. Yanjia et al. proposed a robust method to
mitigate the path overlapping effects that induce TOA and AOA based positioning inaccuracy [41].
Their method is based on the spectral observation of beamforming and yields the least-squares
estimation of joint TOA and AOA with a low computational cost. As the performance of UWB based
IPS deteriorates in the NLOS channel, [42] proposed a method to identify NLOS by measuring signal
strengths in the first path and multipath. RSS based UWB IPS system has also been put forward to
have an accuracy between 0.1 to 0.2 m [43].

3.3. Wireless Sensor Networks

Wireless sensor networks (WSN) are the group of spatially dispersed and dedicated sensor nodes
for monitoring and recording the environment’s physical conditions and organizing the collected data
at a central location [44,45]. The nodes of WSN are equipped with a processor, storage, a power supply,
a transceiver, and one or many sensors, with an actuator. WSN operates at an unlicensed band of
2.4 GHz, and it can use several off-the-shelf wireless technologies like Bluetooth, UWB, and ZigBee
where most applications use IEEE 802.15.4 and ZigBee [46]. Some sensor nodes in WSN, called anchor
nodes, are aware of their position information. Therefore, the localization problem in WSN-based IPS is
to determine the location of other nodes based on location information obtained from the anchor nodes.
IPS using WSN normally consists of distance or angle estimation between nodes or their combination
to produce localization results.

3.4. Wi-Fi

Wi-Fi is a technology for radio wireless local area networking (WLAN) of devices based on 802.11
IEEE network standard, operating in the 2.4 and 5 GHz ISM radio bands. The devices that can use
Wi-Fi include PCs, smartphones/tablets, smart TVs, video game consoles, digital audio players, cars,
and printers. Wi-Fi is the most popular means of communicating data wirelessly and is increasingly
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deployed everywhere, including home and public indoor environments. Wi-Fi-based IPS are being
intensively studied owing to the widespread deployment of Wi-Fi hot spots.

The localization methods like fingerprinting [47,48] and trilateration [49] can be realized using
Wi-Fi. Similarly, signal measurement principles like RSS [50], CSI [51], TOA [52], and their hybrid
combination [53] can be used to provide Wi-Fi-based localization service. Although existing Wi-Fi
APs can be employed to design a Wi-Fi-based IPS, those Wi-Fi networks are deployed for wireless
communication, and localization is not their primary purpose. In other words, the Wi-Fi APs are
not dedicated to localization; hence, an enhanced and efficient localization algorithm is required for
practical localization results.

Note that Wi-Fi can be used only on the Android platform, and iOS does not provide a public
API [54,55] at present. Furthermore, some restrictions regarding permissions and allowed frequency of
Wi-Fi scans have been introduced from Android 8.0 (API level 26). Such restrictions have been
further tightened in Android 9 (API level 28) and Android 10 (API level 29). For example, in
Android 10, a successful call to Wi f iManager.startScan() requires ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION, and CHANGE_WIFI_STATE
permissions [56].

Moreover, a Wi-Fi module usually requires 3–4 s to process the startscan command from the
positioning app to acquire a new scan result [57]. In practice, repeated RSS data are acquired until new
scan results are produced to perform sampling per second in Wi-Fi AP. In such a case, subsequent
filtering must be performed on the obtained Wi-Fi data to remove the erroneous statistical analysis.

3.5. BLE

BLE was released as Bluetooth version 4.0 in June 2010. The BLE is designed for devices that do
not require large amounts of data transfer and is intended for short-range wireless transmission with
low power consumption and cost [46,58]. It is reported that the power draw of the smartphone is lower
for BLE than for Wi-Fi [59]. Similar to Wi-Fi, BLE operates at an ISM band of 2.4 GHz. The frequency
band is divided into 40 channels spaced at 2 MHz apart, among which the three channels (37, 38,
and 39) are used for broadcasting advertisement [60]. It is noteworthy that the three advertising
channels are strategically placed to avoid interference with coexisting technologies such as IEEE 802.11
and ZigBee [61]. Moreover, the signal fluctuation in BLE is a consequence of the random use of the
advertisement channels [62].

Similar to Wi-Fi, the localization methods like proximity [63], trilateration [64], and fingerprinting [65]
can be realized using BLE. The tag device can estimate the RSS from a nearby BLE beacon by
intercepting the advertisement packets transmitted by the beacons. The advertisement interval can
range from 100 to 2000 ms. The typical advertisement interval of BLE beacons used in IPS is 300 ms by
considering the normal walking speed (1.3 m/s). Moreover, the scan interval also can be set in the
positioning application. A typical value of the scan interval is 1000 ms (1 s) to produce positioning
results every second.

In contrast to Wi-Fi, the BLE beacon is generally compatible with Android and iOS platforms.
However, the compatibility may differ depending on different beacon packages, e.g., iBeacon and
Eddystone. Apple develops the iBeacon profile (natively supported in iOS), and its signal contains
three main pieces of information, namely, UUID, Major, and Minor [66]. Whereas, Eddystone format
is developed by Google (with Android users in mind) as an open-source protocol for BLE beacons.
The Eddystone broadcasters advertise fields (referred to as frame types), namely, Eddystone-UID
(unique static ID), Eddystone-URL (includes a compresses URL), and Eddystone-TLM (telemetry
data) [67]. When a beacon region is detected by an iOS application (that monitors iBeacon’s signal), some
action (e.g., a push alert to the home screen) is triggered, which can be helpful in real-time scenarios
(e.g., stores in a mall). However, iOS does not have such background operating system support for
Eddystone triggering [68]. In recent times, cross-platform app SDK like FlutterBlue [69], and Universal
Bluetooth Beacon Library [70] have come into the picture that support Android and iOS platforms.
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Table 1. Comparison of Wi-Fi and Bluetooth Low Energy (BLE) technology in terms of IPS.

Parameters Wi-Fi BLE

Deployment cost Low High

AP reliability Not-dedicated to IPS Dedicated to IPS

Hardware efficiency
Requires ≥ 3 s

to scan new RSS data [57] RSS sample acquired every second

AP differentiating parameters SSID, BSSID (MAC) UUID, MAC [65]

Transmission range High (∼50 m) Low (∼30 m)

Power consumption [tag] High [71] Low [71]

Power source [AP] Plugged into mains Powered by coin shaped battery

Channel availability
Three independent channels
at most (2.4 GHz band) [57] Three advertisement channels [72]

Proximity detection Normally final location estimation is available
Immediate, Near,and Far proximity

available [73]

Implementation platform
Only on Android devices

[54,55] iOS and Android devices

3.6. Cellular Networks

The cellular network refers to a long-range wireless network distributed over the cells where
each cell is served by at least one fixedly located transceiver known as a base station. The cellular
network can be classified by the technical standards that have been evolved from 1G (analog) to
the latest 5G (digital). The cellular networks-based IPS benefit from cellular signals such as wide
coverage, existing infrastructure, multiple frequency bands, and supported by a large number of mobile
communication devices.

As the technical standard of cellular networks has evolved with generations, the localization
estimation accuracy has also been increased accordingly. For example, the cell-ID localization in 2G
helped to improve the accuracy of hundreds to tens of meters [74]. Similarly, localization based on
timing via synchronization signals in 3G and reference signals dedicated to localization in 4G has
helped increase localization accuracy. Furthermore, it is expected to attain an accuracy of localization
estimation in the range of centimeters using 5G-based devices where the 5G networks are expected
to use precise localization estimation through all layers of the communication protocol stack [75].
In particular, 5G cellular technology is expected to have a large signal bandwidth (mm-wave) and
beamforming capabilities, making the localization more robust and efficient [76].

4. Signal Measurement Principles

4.1. RSS

The RSS is a measurement of the power present in a received radio signal. The RSS value is
measured in decibel-milliwatt (dBm) and has a typical negative value ranging from nearly 0 dBm
(excellent signal) to less than −100 dBm (poor signal). As the distance between the transmitter and
receiver increases, the RSS gets attenuated due to many factors including the antenna of transmitting
and receiving devices, the number of walls and floors, the number of people and furniture, etc. Note
that the RSS does not decrease linearly as the distance increases [77].

RSS modeling is usually done by the combined effects of large-scale fading and small-scale
fading [78]. The large-scale fading component depicts the signal attenuation as the signal travels
over a distance and is absorbed by objects such as walls and floors along the way to the smartphone.
This fading component predicts the mean of the RSS and usually has a log-normal distribution [79].
Similarly, the small-scale fading describes the fluctuation of signal due to multipath fading. For the
NLOS component, the small-scale fading is modeled with a Rayleigh distribution, whereas, for the LOS
component, it is modeled by Rician distribution. In IPS, the fluctuating RSS are filtered using many
approaches such as Gaussian filter [80], moving average filter [12,81], and exponential averaging [82].
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Owing to walls and other objects between the transmitter and the receiver, NLOS signals in an
indoor environment are common, which can significantly degrade the localization accuracy. The RSS,
while used in parameter estimation (e.g., path loss exponent) methods, is converted to distance
employing a path-loss model. In a practical indoor environment, the localization scenario is so
complex (includes both LOS and NLOS signal propagation) that it is difficult to establish an accurate
model to work. On the other hand, the fingerprinting localization that stores the RSS as a radio map
is less sensitive to the NLOS conditions [83]. Reference [84] classified the methods for reducing the
NLOS error as direct and indirect methods. Here, the direct method refers to directly processing
the measurement results reducing the NLOS propagation error employing Kalman filtering, particle
filtering, etc. The indirect method refers to the fingerprinting localization.

RSS value can be acquired without any extra hardware using off-the-shelf smartphones. Moreover,
RSS does not require any time synchronization between the transmitter and the receiver. Most
importantly, RSS values can be implied to realize any indoor positioning methods, where it can
be converted to distance for lateral approaches and stored in a database for scene analysis. Hence, RSS
has been a prime choice of signal measurement principle in IPS.

4.2. TOA

The TOA is the travel time or time of flight of a radio signal from a transmitter to a receiver.
As the signal travels with a known velocity, the distance can be directly calculated from the TOA.
Figure 2 illustrates a TOA measurement-based localization system.

d1 d2

d3

AP1

AP3

AP2
(xm,ym)

(x1,y1)

(x2,y2)

(x3,y3)

Figure 2. Localization based on time of arrival (TOA) measurement.

Let c be the speed of light, then the distance between ith AP and the tag device can be estimated
by the following relation [85]:

di = (ti − t0)× c, (1)

where t0 and ti are the time instant of signal transmission and signal reception respectively, and
c = 3× 108 m/s. The TOA technique requires precise time synchronization for transmitters and
receivers. The estimated distance can be utilized for the trilateration algorithm to estimate user
location. TOA has been used with various wireless technologies like UWB [86] and Wi-Fi [87].

4.3. TDOA

For TDOA measurement, the difference in arrival time from multiple APs is employed. In TDOA
based localization, the distance difference between the tag device and APs is calculated based on time
difference measurements as shown in Figure 3.
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Figure 3. Localization based on time difference of arrival (TDOA) measurement.

Here, the difference of distance to APs and to the AP where the signal first arrives is [88]:

dij = (ti − tj)c =
√(

xi − xm
)2

+
(
yi − ym

)2 −
√(

xj − xm
)2

+
(
yj − ym

)2, (2)

where ti and tj are the time instant of signal reception from AP i and j, respectively. Geometrically,
with a given TDOA measurement, the tag device must lie on a hyperboloid with a constant range
difference between the two APs. Apart from TOA, TDOA needs time synchronization of APs only.
Besides, the timing measurements at TOA and TDOA can be achieved down to a fraction of chip
duration assuming a LOS condition; however, NLOS can cause information loss during the time
measurement. To incorporate the NLOS condition, [89] suggests modeling the error as a mixture of
LOS and NLOS models for a robust algorithm. Furthermore, [90,91] put forward a three-dimensional
least-square positioning technique and NLOS error estimation approach for positioning in the NLOS
environment, respectively.

4.4. AOA

The AOA information is extracted employing the directionally sensitive antennas [89]. The AOA
measurement determines the direction of propagation of a radio wave incident on an antenna array.
It can be done by measuring the TDOA at individual elements of the antenna array [92]. AOA-based
localization system estimates the location of the tag device as the intersection point of pairs of
hypothetical signal paths particular angles as shown in Figure 4.

At the 2D plane, the AOA approach requires only two APs to determine the location of a tag
device [93]. In AOA-based IPS, time synchronization between the APs and the tag device is not
required. However, it may require relatively complex hardware to obtain angle measurement [94].
For instance, Ubicarse [95] leverages antenna arrays and computes AOA of signals from the APs to
estimate the device orientation.
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Figure 4. Localization based on angle of arrival (AOA) measurement.

4.5. CSI and RTT

The CSI is an emerging approach that tries to replace RSS information in IPS [23,96–98]. The CSI
explains how a signal propagates from a transmitter to the receiver. In other words, it describes
the information that represents a combined effect of scattering, fading, and power decay with the
distance. It is reported that CSI achieves higher robustness compared to Wi-FI RSS information [99].
Moreover, the SpotFi combines CSI values across subcarriers and antennas to jointly estimate the
AOA and time-of-flight for decimeter level localization [17]. However, current smartphones are
not compatible with CSI data collection, making it impossible to implement CSI-based positioning
solutions on the present-day smartphone.

The RTT stands for Round Trip Time that can measure the distance without requiring time
synchronization between the communicating nodes. The time spent by a specific frame is measured
while traveling from a transmitter to a receiver and back again to the transmitter. Wi-Fi RTT was
introduced in Android 9 (API level 28), which is specified by IEEE 802.11 mc standard and built on
a new packet type known as fine timing measurement (FTM) frame [100]. Here, the Wi-Fi RTT API
provides Wi-Fi location functionality to measure the distance to nearby RTT-capable Wi-Fi APs and
peer Wi-Fi Aware devices [101].

The FTM protocol is shown in Figure 5, where a tag device initiates the FTM process by sending an
FTM request to an AP. The AP (that supports FTM protocol) responds to the FTM request either to agree
or to disagree with the ranging process. If the AP agrees, it starts to send an FTM message, waits for
its acknowledgment (ACK), and transmits the FTM result afterward. The transmitting timestamp of
the FTM message and the reception timestamp of its ACK is utilized to infer the propagation delay
between the tag device and the AP. Here, the AP can send multiple FTM messages for averaging the
estimated distances [102]. Table 2 differentiates FTM- and UWB-based approaches.

Table 2. Comparison of fine timing measurement (FTM)- and ultra-wideband (UWB)-based approaches.

Parameters FTM-Based Approach UWB-Based Approach

Time transfer
Reference Broadcast Infrastructure

Synchronization (RBIS) Precision Time Protocol (PTP)

Ranging Fine Timing Measurement (FTM) Two-Way Ranging (TWR)

Cost Low High

Power consumption High Low

Distance estimation accuracy >1 m [103] 5–10 cm

Smartphone compatibility
Wi-Fi RTT introduced in Android

9 (API level 28)
Samsung Galaxy Note 20 Ultra and

iPhone 11/12 contain a chip for UWB
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Figure 5. The fine timing measurement (FTM) protocol.

From Figure 5, RTT is calculated for an FTM message as [104,105]

RTT = (t4 − t1)− (t3 − t2) (3)

The distance (dRTT) between the transmitter and receiver can be estimated by multiplying the
RTT with the speed of light (c) as follows

dRTT =
RTT

2
× c (4)

Multiple trilaterations can be employed with the estimated distance to localize a tag device.
The main challenge on RTT is the NLOS that increases uncertainty in the time measurement [106].
It can be minimized by using LOS/NLOS identification approaches [107,108].

5. The Performance Metrics

Since there are different technologies and methods to realize an IPS, the most important
performance metric is the localization accuracy. In addition to localization accuracy, other performance
indicators of an IPS are complexity, scalability/robustness, and cost.

5.1. Accuracy and Precision

The localization accuracy can be defined as a difference between an estimated location and the
tag device’s actual location. Similarly, the precision indicates the degree to which repeated location
estimates produce identical results under unchanged conditions.

Usually, the mean squared error (MSE) is used as the accuracy indicator. Indoor environments are
often complex due to different obstacles and environmental changes, resulting in signal fluctuation.
In the meantime, high localization accuracy is often expected for adequate location-based service.
The localization accuracy of the IPS depends on the used technology and techniques.

The precision yields information like how convergent the localization result can be over many
trials or how consistently the system works. The cumulative distribution function (CDF) is used as a
precision indicator. The CDF represents the distance error distribution between the estimated location
and the tag device’s actual location. The MSE, as well as CDF, should be exploited while comparing
two or more localization algorithms.

5.2. Complexity

For an IPS, its complexity can be categorized in terms of hardware and software. The adopted
technology and the signal measurement principle for the IPS account for hardware complexity.
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For example, most present-day smartphones supported technologies like Wi-Fi, BLE, and the
geomagnetic field. However, standard mobile devices do not support technologies like UWB and
ultrasound, and the IPS using such technologies should use a dedicated system that requires
proprietary equipment. Moreover, geomagnetic based IPS can produce localization results without
deploying any hardware; however, Wi-Fi and BLE need to be deployed.

As for the chosen signal measurement principle, obtaining RSS from Wi-Fi and BLE are relatively
easy with standard mobile phones since such devices typically need to scan RSS for their routine
functioning. However, it is not easy to obtain accurate time and angle measurements that increase the
IPS complexity.

The complexity depends on the computation load represented by the calculations required
to perform localization regarding the software. In a server-based IPS, the localization algorithm’s
execution is carried out on a centralized server where the positioning could be calculated quickly due
to its powerful processing capability and abundant power supply. Here, the computational complexity
mainly depends on the indoor localization area [109]. However, if the positioning algorithm is executed
in the tag device, it may increase the complexity. Moreover, the complexity concerned with the software
also depends on the technique used for IPS development. For example, fingerprinting localization has
larger complexity, and it grows as the localization environment increases. Here, the complexity can be
minimized using clustering.

5.3. Scalability and Robustness

Scalability in IPS refers to the localization system’s ability to perform well even when any change
in the area of interest for localization and/or on signal source occurs. The changes can be an extension
of the localization area and/or an extension of signal coverage. If an IPS need not be taken down
in such a scenario, it is considered excellent scalability. For example, when any IPS is constructed,
it provides services in a limited area of interest, and an increase in the localization area might be
needed in some future time. In some cases, the transmitting power and signal-broadcasting rate can be
increased for good signal coverage. In such situations, the positioning techniques like proximity, WCL,
and trilateration are easy to expand by merely adding the identical signal sources and updating the
system with the location coordinate information of the added hardware. However, the fingerprinting
based system needs an offline site survey for every change in the localization area or signal source.
When the localization area is expanded, the extended area’s radio map needs to be freshly constructed.
Moreover, when the transmitting power at the APs or signal broadcasting rate (e.g., advertisement
packet broadcasting interval in BLE) is changed, a new site survey for the whole localization area is
required. Hence, fingerprinting localization has relatively low scalability.

Robustness is also an essential factor in IPS that allows the system to function normally without
human intervention when the localization environment changes. For example, some signal sources
could be out of service occasionally, or testbed layout changes could cause some signal to no longer
support LOS propagation. In this scenario, the IPS has to provide localization services with incomplete
or noisy information (RSS fluctuation). The robustness can be gained by introducing redundant
information into a localization estimation. For example, rather than using the only three APs for
trilateration, an IPS can include many supplementary APs to make the system more robust. Moreover,
fingerprinting based IPS can adopt a larger set of RSS samples to increase robustness.

5.4. Cost

The IPS cost factor represents the infrastructure cost and the time and effort for system installation
and maintenance procedures. Particularly, the cost depends on factors like the size of the localization
area, the required accuracy, the used technology, power consumption, etc. The IPS system, such as
PDR, geomagnetic-based, and barometer-based, can be realized with only the smartphone and do not
need any additional infrastructure. Some signal sources like Wi-Fi and BLE require APs deployment;
however, Wi-Fi is already deployed for other purposes. Hence, if the IPS requires no additional
infrastructure or is based on existing infrastructure, the cost can be substantially saved.
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Moreover, if an IPS is robust and scalable, saving in time and labor is possible, which reduces the
system’s cost. In addition, an increase in localization space requires the deployment of more APs in
localization techniques like proximity. Power consumption at both the AP and the tag device is also
a critical cost issue. For example, BLE consumes less power than Wi-Fi, where BLE operates with a
coin-shaped battery, but Wi-Fi needs to be plugged into mains. Furthermore, when the localization
operation is carried out on the server-side, the tag device’s power consumption can be reduced.
Lastly, the location update rates, signal broadcasting rate, and the desired system accuracy can also
affect power consumption.

6. The Problems of Practical IPS

6.1. Complex Indoor Environment and Unstable RSS

The indoor area consists of multiple floors, walls, furniture, and human beings, which results in a
complex radio environment. Hence, RSS exhibits high variability in space and time, even in a fixed
indoor environment owing to various noise factors, interferences, and attenuation. A probable radio
environment at an indoor location is displayed in Figure 6. This instability of RSS results in increased
localization estimation error. Therefore, irrespective of the localization technique, RSS filtration/
smoothing is required to minimize the localization estimation error. Figure 7 shows the fluctuation of
Wi-Fi and BLE RSS in a fixed indoor environment (without any change in the radio environment).

From Figure 7, it is seen that RSS fluctuates a lot even at a fixed point in the indoor environment.
To minimize this problem, a low-pass smoothing filter can be employed. Some of the representative
smoothing filters are moving average filter [12,81], Kalman filter [110–112], Gaussian filter [72,113],
and exponential averaging [114].

Door open/close People 
meovement

Relative 
humidity

Wi-Fi/ BLE

RSS measurement 
at terminal device

ISM devices

Figure 6. Graphical representation of interference at indoor environment.
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Figure 7. Variation of Wi-Fi and BLE RSS at a fixed indoor environment.

6.2. Terminal Device Heterogeneity and Battery Efficiency

Most positioning techniques require either calibrated environmental parameters or the radio map
construction to provide localization service. Such parameters/radio-map, when calibrated/constructed
by a terminal device and localized by another kind of terminal device, may result in an adverse effect
on position estimation owing to the different gains of receivers and antennas [115–117]. For example,
the calibrated signal strength at a unit distance for the log-distance path loss model by two different
terminal devices may not yield the same value. Similarly, the stored signal strength for any RP on a
testbed acquired by a terminal device may differ by certain decibels when measured by a different
terminal device at the same measurement place. Therefore, it is required to address the issue of
terminal device heterogeneity while designing a practical IPS.

The available indoor localization solutions intend to provide high accuracy service with the
terminal device’s consumption of high battery energy. The existing IPSs require active monitoring of the
wireless channels to listen to specific beacon message or advertisement signals periodically. On top of
this, some IPS integrate different technologies for better positioning results. For example, Reference [118]
employs the magnetic field, PDR, and QR code and the BLE signals to enhance the localization
estimation. While it is practical performance-wise, it is not ideal in terms of battery efficiency. Note that
localization service is not the primary task of any terminal device; hence, the battery drainage can lead
to consumer dissatisfaction. Thus, it is worthwhile to focus on energy consumption simultaneously to
the localization accuracy.

6.3. Learning Methodology of Radio Signals in Scene Analysis

The fingerprinting localization technique is predominantly realized in IPS applications owing
to its high reliability. However, the learning methodology of the radio signals in fingerprinting
localization is costly in terms of time-consumption and workload. In other words, a data collector has
to visit every hypothetical grid or the RP that is typically one meter apart to acquire the offline training
dataset. Generally, the training dataset at an RP consists of an average of RSS samples (typically
35 samples) from each AP along with the RP’s coordinate. Moreover, the radio map has to be updated
repeatedly owing to the RSS fluctuation and possible change in the radio environment. This issue on
fingerprinting-based localization intensifies practical limits and challenges in realizing a reliable and
scalable IPS to meet the required accuracy of practical IPS. Many research works have endeavored
to reduce the offline workload of fingerprinting localization [119,120]. Some of the approaches are
the use of a self-guided robot, simultaneous localization and mapping (SLAM) [121,122], machine
learning [123,124], and crowdsourcing [125,126] . In addition, the signal propagation model has been
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employed for generating a fingerprinting database to reduce the offline workload [127–129]. However,
an efficient solution for the data collection problem is yet to discover.

6.4. Computational Time and System Cost

Apart from good positioning accuracy, fast position estimation is also favored for a practical
IPS. Typically, a new position estimation at each second is demanded. Hence, computational time
should also be considered while improvising the positioning method for better positioning results [130].
For example, the positioning result of probability-based fingerprinting is better than deterministic-based
fingerprinting (Wk-NN); however, the computational complexity of the probabilistic approach of
fingerprinting is higher than the deterministic approach [30]. Furthermore, as two or more technologies
are integrated for better localization solution, the computational complexity increases.

Not every novel and efficient localization algorithm may be commercially successful owing to
the system cost. Considering the Wi-Fi and BLE, Wi-Fi APs are already deployed in every building
for communication purposes, whereas BLE needs to be deployed that increases the system cost.
Furthermore, positioning methods requiring lengthy data learning and frequent data updating
procedures raise the system cost. The increased system cost can make the concerned parties reluctant
to adopt IPS for better service.

7. Positioning Algorithms and Survey of Available Solutions

This section presents some positioning algorithms, focusing on fingerprinting localization and
summarizing various state-of-art approaches intended to solve IPS problems. A comparison of
available systems and solutions against the performance metrics is presented in Table 3.

7.1. Proximity-Based

The word proximity is defined as nearness in space, time, or relationship. As the definition
suggests, proximity in IPS provides symbolic location information if an object is present within an
AP’s vicinity where the received signal strength determines the vicinity. A proximity-based IPS is
illustrated in Figure 8.

Tag device somewhere in here

Signal 
source

Figure 8. Graphical representation of proximity-based IPS.

In proximity-based IPS, when a tag device detects an AP, the tag’s position is associated with
the AP’s location. In this scenario, when the tag device detects more than one APs in its vicinity,
the tag device’s location can be referred to the AP’s real location having the strongest signal. The
proximity-based IPS is the simplest among all the algorithms and is very easy to implement. However,
for better localization accuracy or high resolution, a dense deployment of APs is mandatory. Generally,
the IPS using wireless technologies like WSN, BLE [131,132], RFID [133], and NFC [39] is employed
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for proximity-based IPS development. Reference [134] uses pedestrian dead reckoning (PDR) and BLE
beacons to estimate the user location. This work employs the proximity information of the beacons for
correction of the estimated position of PDR.

7.2. Lateral/Angular

The lateral technique estimates the position of a tag device by measuring the distances from
multiple APs. The distance can be obtained from signal measuring principles like RSS, TOA, and
TDOA. Similarly, the angulation technique estimates the tag device’s location by computing angles
relative to multiple APs using AOA. WC localization and trilateration are the lateral methods, whereas
triangulation is the angulation method.

7.2.1. WC Localization

In proximity-based IPS, when the tag device detects multiple APs in its vicinity, the location can
be estimated as a centroid of the real location of the detected APs. Furthermore, a certain weight
can be assigned to each detected AP based on their signal strength to estimate a weighted centroid.
The simplest WC localization equation is defined by the following set of equations [12]:

xw =
∑u

j=1 xj × wj

∑u
j=1 wj

yw =
∑u

j=1 yj × wj

∑u
j=1 wj

wj =
1
dg

j
,

(5)

where (xw, yw) is the estimated WC, (xj, yj) is the previously known AP coordinate, dj is the estimated
distance between the tag device and jth AP, g is the degree of weight, and u is the total number of APs
considered for WC localization.

Figure 9 illustrates the WC localization procedure.

d1

d2

d3

w1= 1/d1
g

w2= 1/d2
g

w3= 1/d3
g

AP1

AP3

AP2

(xw,yw)

(x1,y1)

(x2,y2)

(x3,y3)

Figure 9. Procedure for estimating weighted centroid (WC) localization at a tag device.

The WC localization has the following characteristics [72]:

1. The estimated location is confined inside the APs’ real location only.
2. The estimated location is dragged towards the nearest AP owing to its largest weight.
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The degree of weight (g) can be adjusted as per the distance between the deployed APs. A large
value of g drives the WC location very close to the real location of the AP with the strongest signal,
whereas a very low value (close to zero) yields a geometrical centroid among the u APs.

7.2.2. Trilateration

Trilateration is based on measured distances between a tag device and several APs with their
known real location coordinates. Given the distance to an AP, it is known that the tag device must be
along the circumference of a circle centered at the AP and radius equal to the tag-AP distance. For a
2D localization, at least three noncollinear APs are needed, whereas, for 3D localization, at least four
noncoplanar APs are required to perform trilateration operation.

Let us consider B APs with their real location coordinate xi = (xi, yi ) (i = 1, 2, . . . .B) and unknown
location of the tag device be x = (x, y). The distances between the tag device and the APs is di
(i = 1, 2, . . . , B). The relationship between APs/tag positions and their distances in 2D can be written
as [135]:




(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...
(xB − x)2 + (yB − y)2



=




d2
1

d2
2
...

d2
B




(6)

Equation (6) can be represented as Ax = b where A and b are defined as:

A =




2(xB − x1) 2(yB − y1)

2(xB − x2) 2(yB − y2)
...

...
2(xB − xB−1) 2(yB − yB−1)




(7)

b =




d2
1 − d2

B − x2
1 − y2

1 + x2
B + y2

B
d2

2 − d2
B − x2

2 − y2
2 + x2

B + y2
B

...
d2

B−1 − d2
B − x2

B−1 − y2
B−1 + x2

B + y2
B




(8)

The location of the tag device can be estimated based on the least squares system using x =

(AT A)−1 ATb [136].

7.2.3. Triangulation

In contrast to trilateration, triangulation uses angle measurements in addition to distance
measurements to estimate the position of the tag device. Two angles and one length are required for a
2D localization. Particularly, triangulation utilizes the geometric properties of triangles to estimate the
tag location.

Given the known length between the APs (known location coordinates of the APs) and after
estimating the AOA as shown in Figure 10, the location of the tag device can be estimated as follows [137]:

xm =
y2 − y1 + x1 tan θ1 − x2 tan θ2

tan θ1 − tan θ2

ym = y2 −
(x2 − x1) tan θ1 − (y2 − y1)

tan θ1 − tan θ2
tan θ2,

(9)

where θ1 and θ2 are the estimated angle of incident at two APs with their location coordinates (x1, y1)

and (x2, y2), respectively.
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Figure 10. Triangulation localization using two known APs and AOA.

7.3. Fingerprinting

Fingerprinting is also called scene analysis, where signal strength at reference points (RPs) is
measured and stored in the database along with the location of the coordinate of the RPs. For localization,
new signal strength is measured and compared with the saved ones to estimate a location. Hence,
a fingerprinting localization has two phases of operations as illustrated by Figure 11. In the offline
phase, the area of interest is divided into nonoverlapping hypothetical grids. The typical grid size is 1 m.
The data collector goes from one grid to another to collect RSS from hearable APs. In the online phase,
the freshly acquired RSS is compared to the stored one to estimate the user’s position.
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Figure 11. The working procedure of typical fingerprinting localization.

Fingerprinting is the most widely used indoor localization method due to its good localization
accuracy and nonrequirement of LOS measurements of APs. The technologies like Wi-Fi, BLE,
and geomagnetic field can be used to realize the fingerprinting localization. Although fingerprinting
localization has good localization accuracy, it comes with a time-consuming and labor-intensive offline
phase. In particular, conventional fingerprinting localization can be categorized as deterministic and
probabilistic. The former approach implements fingerprinting data comparison algorithms to find
the estimated position, whereas the latter approach yields localization information by estimating a
probability distribution over the RPs. In addition, neural networks have also been utilized resembling
the scene analysis to produce localization estimation.

7.3.1. Deterministic Fingerprinting Localization

In deterministic fingerprinting localization, the observed RSS is compared against the stored
one in the database, and then the coordinate with the closest match is considered the estimated tag
device’s location. This approach is the basic fingerprinting that is commonly termed as the nearest
neighbor (NN) fingerprinting localization [138]. To improvise the localization result, k-nearest neighbor

186



Sensors 2020, 20, 7230

(KNN) can be employed where k nearest RPs are selected based on their closest match for an enhanced
result [130,139]. Furthermore, individual weights can be assigned to the selected k RPs to have a
weighted k-nearest neighbor (Wk-NN) fingerprinting [72]. Let the positioning distance (Dj) between
the stored RSS at jth RP and the online observed RSS be given by [140]:

Dj =
B

∑
i=1

√
(RSSionline − RSSio f f line)

2 j = 1, 2, ....., N, (10)

where i is the number of APs ranging from 1 to B. The RPs are arranged with ascending order of
Dj and the first k RPs with their known positions Jz[xz, yz] are selected to estimate the final location
(TWk−NN) using the following relation [141]:

TWk−NN =
∑k

z=1 Jz ×Wz

∑k
z=1 Wz

, where Wz =
1

Dz
(11)

7.3.2. Probabilistic Fingerprinting Localization

The probabilistic approach of fingerprinting yields localization information by estimating
a probability distribution over the RPs. Here, a matching probability is calculated between the
online-observed RSS readings and the prestored fingerprinting data in the radio map database.

Since the statistical distribution of RSS at a particular RP can be thought of as Gaussian probability
distribution, the RSS values should obey the normal distribution N (µ, σ2) where µ and σ2 are mean
and variance of RSS data [142], respectively. Now, the likelihood function (L(µ, σ2)) is given by the
following relation [143]:

L(µ, σ2) =
q

∏
i=1

1√
2πσ

exp−
(RSSi−µ)2

2σ2 = (2πσ2)
−q
2 exp

(
− 1

2σ2 ∑
q
i=1(RSSi−µ)2

)
(12)

We can obtain the logarithmic equation of (12) as follows:

log[L(µ, σ2)] = − q
2

log(2q)− q
2

log(σ2)− q
2σ2

q

∑
i=1

(RSSi − µ)2 (13)

Hence, the likelihood equations can be written as:

∂ log[L(µ, σ2)]

∂µ
=

1
σ2

q

∑
i=1

(RSSi − µ)2 = 0

∂ log[L(µ, σ2)]

∂σ2 = − q
2σ2 +

1
2σ4

q

∑
i=1

(RSSi − µ)2 = 0

(14)

From (14), we get,

µ∗ = RSS =
1
q

q

∑
i=1

RSSi (15)

σ∗2 =
1
q

q

∑
i=1

(RSSi − µ)2 (16)

The unique solution (µ∗, σ∗2) of the likelihood equations should also be a local maximum point.
In other words, when |µ| → ∞ or σ2 → ∞ or σ2 → 0, the non-negative function L(µ, σ2) → 0.
Hence, the maximum likelihood equation of µ and σ2 will be (15) and (16), respectively.

Hence, with this idea, the average of RSS reading and its corresponding variance from each AP is
calculated for the construction of a radio map in the offline phase of the probability-based fingerprinting
localization. Later, in the online phase, after acquiring new RSS readings (RSSi, i = 1, 2, 3, . . . , B) at an

187



Sensors 2020, 20, 7230

unknown location from B APs, we can estimate the probability of the RP (x, y) with respect to ith AP
(Pi(x, y)) as follows:

Pi(x, y) =
1√

2πσi
exp

−(RSSi−µ)2

2σ2
i , (17)

where µi and σ2
i are the stored average RSS and its corresponding variance from the ith AP, respectively.

This way, the probability of each RP can be established where the tag’s location could be located at the
RP with maximum probability.

7.3.3. Neural Networks-Based Fingerprinting Localization

The indoor localization problem has been attempted to solve using neural networks too. The radio
map is used as inputs and the targets for training the neural network during the offline state to obtain
the appropriate weights. In the online stage, the input signal strength is multiplied with a trained
weight matrix at different layers to yield either 2D/3D location or probabilities depending on the
activation function at the output layer. In general, an artificial neural network (ANN) with one hidden
layer (shallow) or multiple hidden layers (deep) can be employed in neural networks based localization.
The basic architecture of multilayer perception (MLP) is given in Figure 12.

Activation 
function and 

biases

Activation 
function and 

biases
..... Activation 

function and 
biases

Input layer Hidden layer 1 Hidden layer 2 Output layer

Input (RSS, 
location 

coordinate 
etc.)

Output (2D, 
3D coordinate, 

probability 
etc.)

Feedforward 
weights

Figure 12. A typical architecture of multilayer perception (MLP).

In [144], an indoor localization solution based on deep neural networks (DNN) is presented.
This work employs a four-layered DNN-based probabilistic estimator and RSS preprocessing, where
the raw RSS is normalized to the range between 0 to 1. For offline DNN training, the preprocessed RSS
readings of the radio map database are used. Online positioning consists of two layers: coarse and fine
positioning. At coarse positioning, trained DNN is used to yield probabilities of all the RPs, and the
Hidden Markov model is used to refine the coarse positioning estimate. ANN-based fingerprinting is
used in [145] to estimate the location coordinate. This work uses clustering where a separate ANN is
trained for each cluster or region.

7.3.4. Survey of Available Fingerprinting Localization Solutions

• Fingerprinting localization using Wi-Fi and BLE signals: Pavel et al. present an IPS research
work based on Wk-NN positioning method using BLE beacons [146]. The k-nearest fingerprints
are found in a radio map database by employing the Euclidean distance between the observed
RSS and the database’s referred one. This work further compares the localization methods based
on Wi-Fi and a combination of BLE and Wi-Fi. They recommend that the combination of wireless
technologies help to increase the localization accuracy. Next work based on BLE beacons using
fingerprinting technique is reported in [80] where a Gaussian filter is used to preprocess the
received RSS. This work proposes a distance-weighted filter based on the triangle theorem of
trilateral relations to filter out the wrong distance value caused by an abnormal RSS.
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The traditional Wk-NN fingerprinting has also been realized with Wi-Fi signals. Reference [29]
elaborates recent advances on Wi-Fi fingerprinting localization. They overview advanced
localization techniques and efficient system development utilizing Wi-Fi technology in their
survey work. An improvisation over the conventional Wk-NN fingerprinting using Wi-Fi signals
is put forward in [147,148]. The former approach uses average RSS and standard deviation of
Wi-Fi signals at the RPs from the APs to construct a fingerprint radio map. Both the average
RSS and the standard deviation are processed to estimate a Euclidean distance in the online
phase. With the Euclidean distance, k RPs are selected to estimate a coarse location. Furthermore,
a joint probability for each RP is calculated, based on which the k RPs are selected to estimate
another coarse location. Later, both the coarse localization estimations are fused, employing the
shortest Euclidean distance and the largest joint probability to yield a final localization estimation.
Meanwhile, the later approach proposes to use Manhattan distance instead of Euclidean distance
to compare the closeness of acquired Wi-Fi signal strength with the stored database.
Some of the examples of probability-based fingerprinting localization using Wi-Fi as a signal source
are illustrated in [123,142,149,150]. Similarly, the literature that employ BLE for probability-based
fingerprinting are presented in [59,151].

• Machine learning-based methods: The machine learning algorithm extracts valuable information
from the raw data and represents it as a model or hypothesis, which can be used for other unseen
data to infer things. Although Gaussian process regression (GPR) is widely used in geostatistics
as a Bayesian kringing, it has drawn a lot of attention in the machine learning community in
recent decades. The GPR can be defined as a supervised learning task, which can predict the
RSSs at arbitrary coordinates based on acquired training data. The prediction of RSS across the
testbed with little training data helps to reduce the human workload significantly. Reference [123]
presents a GPR-based fingerprinting IPS using indoor Wi-Fi APs. This work uses a few data
points to train the Gaussian process (GP), where the firefly algorithm is used to estimate the
GP’s hyperparameters. Moreover, it also shows that the probabilistic-based localization performs
better than deterministic-based localization using the predicted radio map. Liu et al. proposed a
GPR-plus method with Bluetooth transmitters using a naïve Bayes algorithm [152]. They compare
their method with [123] and claim that their method is computationally cheaper. Another example
of GPR-based fingerprinting is put forward in [149]. This work estimated the hyperparameters by
using the subspace trust-region method and shows that location estimation with a radio map built
using GPR is better than that of Horus fingerprinting method [153]. The GPR-based IPS in [151]
utilizes BLE beacons for localization where the Hlhyperparameters are optimized employing
limited memory BFGS-B [154]. Here, the predicted RSS data is further preprocessed for RSS
clustering, where the final localization result is obtained with the minimized offline workload and
reduced online computational complexity.
In [155], the use of a support vector machine (SVM) is proposed to estimate the Wi-Fi signal
strength at non-sight-surveyed locations on the testbed. This system creates an RSS reference
surface for each AP using discrete train data with SVM. During the testing phase, the sampled
online RSS from each AP is searched on the corresponding surfaces. Here, the coordinate that is
found in the higher number of such surfaces is estimated as the tag device’s location.

• Crowdsourcing techniques: Although machine learning approaches like GPR are intended to
solve the offline workload problem, they still require a little training data that are manually
acquired from the localization area. Hence, recent literature on solving the offline workload
problem of fingerprinting localization is more focused on the crowdsourcing [156,157]. Here,
the main concept is to crowdsource the RSS data from freely moving users across the testbed. It is
straightforward to understand that unlabeled RSS data are easy to acquire from various users.
However, the main concern is to find a plausible way to label the crowdsourced RSS data with
the ground-truth location.
In [158], a smartphone-based crowdsourcing approach is proposed that employs an accelerometer
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as a pedometer. Here, multidimensional scaling (MDS) is used to create a map that displays
the relative positions of several objects employing only a table of distance values among them.
The walking distance between two RPs is estimated using the accelerometer to form a distance
matrix. The MDS utilizes the distance matrix as its input to map all the RPs into a d-dimensional
Euclidean space forming a "stress-free" floor plan. Meanwhile, a next distance matrix is also
formed utilizing the walking distance between two fingerprint positions, where again the MDS
maps all fingerprints to a d-dimensional Euclidean space to form a fingerprint space. Finally,
the stress-free floor plan and the fingerprint space are mapped to form a radio map database.
X. Tong et al. suggested a FineLoc system for indoor radio map construction employing BLE
beacons and PDR as the source of reference information [159]. The FineLoc system generated the
tag’s trace and then determines the map for the trace. For online positioning, this system merges
the tag’s trace into the existing floorplan.
Similarly, [160] has put forward a trajectory learning method utilizing crowdsourcing measurements
to support the absence of a map. Here, the k-nearest neighbor is used to perform a classification model
with linear discriminant analysis (LDA) and principal component analysis (PCA) for floor detection.
The combination of LDA and PCA employs the acquired training data to make a classification
model. Moreover, [161] uses a commercial software called Trusted Positioning Navigator (T-PN) for
crowdsourcing based IPS. This method forms a crowdsourced fingerprinting database employing the
RSS values and position information from the T-PN software.

• Clustering-based approaches: The conventional fingerprinting is also termed as flat fingerprinting
and can be converted to two-step fingerprinting using clustering or segmentation.The two-step
fingerprinting is realized with a coarse localization step and fine localization step, as the name
suggests. Clustering reduces the searching space of RPs in the online phase of fingerprinting,
which eventually reduces the system’s computational cost. Moreover, it also helps to reduce the
localization estimation error by removing the outliers.
Clustering on IPS can be realized using either hardware (Wi-Fi or BLE) or the RSS clustering.
An example of a clustering module using hardware is Horus [153]. Here, the clustering module is
employed where any cluster is a set of RPs sharing a common set of Wi-Fi APs. This approach
estimates the tag’s position based on the largest posterior probability by Bayesian interference [162].
Similarly, [163] uses BLE beacon proximity to reduce the searching space in the online phase. Here,
BLE’s proximity provides coarse localization, and for fine localization, a selected set of RPs is used
with Wi-Fi fingerprint datasets.
The performance of indoor fingerprinting positioning can be improved with RSS clustering [30].
An RSS clustering method chooses a set of cluster centers to reduce the sum of squared distances
between the RSS value and their corresponding centers. For example, a K-means clustering [164]
begins by choosing both the number of output clusters and the corresponding set of initial cluster
heads, where the clustering algorithm iteratively refines the output clusters to decrease the sum of
squared distances [165]. Hence, K-means clustering has a requirement of an arbitrary selection of
initial cluster centers. On the other hand, affinity propagation clustering (APC) starts by assigning
each point (RP in this study) the same chance to become a cluster center where all the points are
joined in the large space [166]. Reference [167] uses APC for clustering the testbed using Wi-Fi
RSS data. Here, the cluster-head is determined on the coarse localization, and Wk-NN is used
for fine localization. In addition to APC and K-means, other clustering methods in IPS include
fuzzy c-means and hierarchical clustering strategy (HCS) [168–171]. APC has been a widely
used clustering technique in IPS owing to its initialization-independent and better cluster head
selection characteristics. Many kinds of literature on IPS have employed APC for RSS clustering
where their fine localization is either probabilistic-based or deterministic-based [150,167,172,173].
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8. Conclusions and Future Research Trends

We conduct this survey to review the RF-based indoor localization solutions presented in recent
literature. As modern smartphones and wireless technologies are evolving, the paper focuses more
on practical IPS realized in a smartphone and uses Wi-Fi and BLE as their primary signal source. We
described different available wireless technologies and techniques for IPS development. Furthermore,
the paper explains the different performance metrics of IPS and their trade-off. As the available
localization solutions focus on achieving good localization accuracy/precision, their computational
complexity should not be forgotten.

Fingerprinting localization is a promising technique of IPS. However, it is doomed by the
requirement of the offline training phase. Although machine-learning and crowdsourcing approaches
are put forward to solve the issue of data collection, the IPS still awaits feasible solutions. The
RF-based wireless technologies, particularly Wi-Fi and BLE, are widely used for indoor LBS owing to
their characteristics like signal penetration, power consumption, localization accuracy, and convenient
deployment.

Future research direction on RF-based IPS may lead towards a hybrid system integrating multiple
techniques and alternative technologies, efficient learning methodology of radio signals, and deep
learning approaches. As 5G technology is rising across the world and UWB chip is available on
the latest smartphones, future IPS can exploit and integrate these technologies to develop a better
IPS. Future research works can be focused on finding a better solution for easy data acquisition.
For example, machine-learning/hardware (Wi-Fi, BLE, and UWB) assistive crowdsourcing approaches
are worth considering. Since DNN is used successfully in designing IPS, DNN-based IPS is also a good
research topic. Moreover, as there is a lack of standardization (a set of rules that serve as a guide to
designing an IPS), there is also no fixed wireless technology widely accepted as a major technology for
future IPS. Most of the available systems and solutions are disjoint, where no ubiquitous IPS exists.
Hence, the IPS requires a standardization that can narrow down the techniques and technologies,
which fulfills the performance metrics of practical IPS.

We believe that the timely and comprehensive overview of the recent works in this survey will
further encourage new research efforts into the practical IPS.
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Abstract: Real-time monitoring and optimization of production and logistics processes significantly
improve the efficiency of production systems. Advanced production management solutions require
real-time information about the status of products, production, and resources. As real-time locating
systems (also referred to as indoor positioning systems) can enrich the available information, these
systems started to gain attention in industrial environments in recent years. This paper provides
a review of the possible technologies and applications related to production control and logistics,
quality management, safety, and efficiency monitoring. This work also provides a workflow to clarify
the steps of a typical real-time locating system project, including the cleaning, pre-processing, and
analysis of the data to provide a guideline and reference for research and development of indoor
positioning-based manufacturing solutions.

Keywords: RTLS; indoor positioning system (IPS); position data; industry 4.0; traceability; product
tracking

1. Introduction

Getting accurate and actual information of a process status is very important in the management
and development of production systems. Information is often position located; this way, it defines
the actual position of a workpiece or resource in the production area. This location based information
may be suitable to connect information of resources and activities/workpieces. The purpose of this
article is to introduce the potential in tools developed for indoor positioning, as well as the available
technologies and the possible use of data hidden in information.

According to the ISO/IEC 24730-1:2014 standard, the real-time locating system (RTLS) is a wireless
system used to locate the position of an item anywhere in a defined space at a point in time that is or
is close to real-time. Indoors positioning systems (IPS) [1] locate objects in closed structures, such as
office buildings, hospitals, stores, factories, and warehouses, where the GPS proves to be inaccurate [2].
In this paper we focus on how indoor positioning can be utilized in manufacturing and for simplicity,
we refer to these indoor positioning systems as RTLS.

Several surveys and comparative analyses can be found on indoor tracking technology based
on localization techniques [3–5]. One article has attempted to classify techniques and systems by
presenting a comprehensive performance comparison of the accuracy, precision, complexity, scalability,
robustness and cost [6]. Similarly, studies comparing RTLS technologies can also be found in the
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literature [7–13]. Furthermore, a meta-review provides a comprehensive compilation of 62 survey
papers on the topic of RTLS [14], and the classification of current typical RTLS is introduced with a
layered conceptual framework [15]. Many technologies are available such as infrared light, ultrasound,
laser and their combinations. The reviews of these technologies focus on the technical elements and
standalone applications and show that only a few specific industrial applications are available [16].

This paper aims to provide an overview of the applicability of RTLS in manufacturing to support
the practical applications and provide a guideline or reference for implementation, research and
development of indoor positioning and RTLS.

In order to explore the potential applications a systematic examination of literature was performed
in Scopus, following the PRISMA-P protocol. The used keyword set (“real-time positioning systems”
OR “indoor positioning systems”) AND (“manufacturing” OR “industry”) resulted near to 300 articles
from which the thematic groups of the related research were identified.

Positioning data in the production system is the key information for traceability [17], and
digitalization [18]. We overview the potential technologies and the possible traceability levels in
Section 2. The levels represent the identification unit from the transportation unit (highest level—
trucks, ships) to item unit (lowest level–raw material). Determination of the traceability level depends
on more factors such as the complexity of the production process, the number of raw material types
and the conditions of the information system and infrastructure.

We discuss the potential manufacturing applications according to the tasks depicted in Figure 1.
The figure describes how positioning-based information allows for continuous improvement to other
parts of the manufacturing environment, such as production control, logistics, applications in quality
management, safety and RTLS-based efficiency monitoring. These applications and the required data
analysis tasks are discussed in Section 3.

Figure 1. Use of real-time locating system (RTLS)-based positioning information by the different parts
of the manufacturing environment. Continuous improvement is a central element of an RTLS project.

Section 4 describes a workflow to implement an RTLS-based digitalization project such as
installation with the necessary hardware elements and data processing to allow the data integration.
Finally, the applicability of the RTLS in manufacturing is illustrated by a case study presented in
Section 5.
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2. Levels of Location Information in Manufacturing Industries

To determine the appropriate tracking technology, we need to know the identification levels with
the associated technologies. In terms of integration into our system, it is important to see the relevant
characteristics for the selection process of the particular RTLS technology. In the next subsection, we
present the criteria for choosing a method for a tracking solution that arises in a production system.
Based on this information in the second subsection, we show recommended indoor positioning-based
traceability technologies. Please note that a detailed description of the technologies is not the purpose
of this article.

2.1. Identification Levels and Technology Solutions

Different applications require different types of tracking systems. Figure 2 shows the identification
layers based on the possible available levels.

Figure 2. Identification levels in a production system. Layers define the logistic units from raw material
(items) to trucks (transportation).

GPS is used for tracking containers and transportation equipment. At the lower level, where we
consider the intralogistics, GPS is not accurate, or in many cases, it is unusable and not suitable for
general asset tracking due to energy consumption. RTLS can handle indoor container identification as
well as the unit load, transportation unit and package, that is, the third, second and first layers. RFID
and barcode technologies are possible solutions for item identification, but it is essential to consider
whether using a particular technology is appropriate or if it is worthwhile to combine the available
technologies, such as UWB technology (which is not recommended for raw material tracking). This
approach is called hybrid traceability technology in the literature [19]. However, with RFID tags, unit
identification can be achieved with a lower cost [7].

Table 1 shows solutions for these different identification levels (see in Figure 2) with the advantages
and disadvantages. We discuss four different traceability solutions to support the technology chosen. A
decision-making model for selection is proposed in Reference [16], where UWB, RFID, Wifi, Zigbee and
BLE (Bluetooth Low Energy) are compared with several aspects based on the developed methodology.
The steps of this methodology are RTLS definition, market analyses, weights of criteria, ranking.
They made a comparison between the technologies with the many parameters (coverage area, accuracy,
room level usefulness, RF interference potential, bit rate, complexity, initial cost, security and privacy,
health concern). We focus on application-oriented parameters in Table 2.
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2.2. Structuring of Indoor Positioning Systems and Potential Traceability Technologies

Table 1 helps us to choose the right technology in the case of layer 0 and 1. Now we focus on
the applicability of the RTLS. We found a multilevel selection criteria [20], where the three levels are
Economic, Technical and Implementation. We made an overview of the most relevant RTLS technologies
(excluding the no-radio based technologies) in Table 2. It summarizes these technologies with critical
performance criteria, including accuracy, power consumption and costs.

Figure 3 gives us a classification of RTLS. We considered the left side of the figure because there
are very few examples of no radio-based technologies. In the production environment, ultrasound
signal transmission is also accompanied by a radio frequency (RF) pulse to combine the high accuracy
of ultrasound with the high communications capacity of RF, which enables tracking of hundreds of
simultaneously moving tags [21]. The technology is not used independently in the manufacturing
environment because of the communications capacity, and environmental noise can degrade the
localization accuracy [10]. One standalone application of RTLS is tracking the locations of construction
resources such as labor, materials, machinery, and vehicles [22]. This application uses WiFi-based RTLS
because GPS is limited in indoor environments, such as tunnels and buildings under construction.
Another example is the development of a self-governing mobile robot navigation system for indoor
construction applications [23]. Several navigation strategies with a mobile robot were tested with various
combinations of localization sensors, including wheel encoders, sonar/infrared/thermal proximity
sensors, motion sensors, a digital compass, and ultra-wideband (UWB) technology. The findings can
be adapted to several potential construction or manufacturing applications such as robotic material
delivery, inspection, and onsite security. Two RTLS applications of UWB and ultrasound technology
have been tested in the SmartFactory KL [24].

Figure 3. Classification of RTLS [25].

Compared to other technologies, Zigbee has not spread substantially in industry [26]. However,
industrial applications in the literature, such as the Zigbee positioning system for coal miners [27],
have also been studied [28]. Laser-based systems are also used for navigation [29] and production
tracking [30]. RFID is used in the production independently as an identification system [31] because
only the presence of tags, such as barcodes, can be accounted for at the RFID reader. Other technologies
must be used for real-time location [32]. An RFID-based RTLS solution exists, but this solution is less
widely used because it is more expensive and inaccurate than UWB [33]. RTLS must be able to locate,
track and identify objects in an indoor environment; therefore, RFID technology is not appropriate
for RTLS. The literature in this area is controversial, so we consider various types of technology, such
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as BLuetooth, WiFi, Zigbee and UWB, as having the ability to support RTLS. Apple proposed the
iBeacon protocol [34] in 2013 as another tool [35]. The new iPhone 11 from Apple already includes
UWB beacons, which may be suitable for indoor positioning [36]. Moreover, it is essential to mention
5G technology [37], which could be crucial for future smart manufacturing, including highly accurate
indoor localization. Because of the large-signal bandwidth and beamforming capabilities, localization
and tracking could be more robust and efficient [38]. The technique is only now beginning to spread in
industry; currently, it can only be applied in test and development environments [39]. The different
indoor positioning-based traceability technologies can be combined in RTLS (already mentioned
hybrid technology) to take advantage of different solutions in one system; for example, the ZigBee
and UWB technologies or RSS measurements and a fingerprinting location algorithm usage for better
position estimation [40]. To use hybrid technology, a platform is also needed. In general, roughly five
layers are worth defining. A hardware layer, where position data are generated; a processing layer,
where the position is calculated and filtered; a data layer, where location data is stored; a service layer,
where we can optimize the system; a visualization layer, where we can analyze and monitor real-time
location data.

In the next section, we describe potential industrial applications, while in Section 4 we propose a
workflow of setting up an RTLS-based manufacturing support system. Finally, we describe a use case
to illustrate the applicability of RTLS.

Table 2. Review of indoor positioning-based traceability technologies

Techn. Tag Cost [41–43] Module Cost [44] Accuracy Space dim. Power cons. [44,45]
Scale L:<3$ M:<10$ H:>20$ L:<10$ M:<40$ H:>70$ L:>1 m M:10 cm H:<10 cm 2D/3D L:<100 mA H:>200 mA

Zigbee [46] M M M 2D L

RFID [47] L H L/M 2D/3D L

BLE [48] L L L/M 2D L

Wifi [49] H H L/M 2D H

UWB [50] H H H 2D/3D H

3. Industrial Applications of RTLS

An approach to RTLS selection is reviewed [16] and the RTLS based articles and the main
advantages are summarized within Table 3 with the related fields of application in production and
logistics categorized according to areas of use such as Quality Management, Safety and Efficiency
Monitoring. Within the topics, reference is made to existing solutions, but possible directions for
development are also presented in the following subsections.

Table 3. Industrial applications of RTLS technologies.

Application type Application Technology

Production Cycle time optimization UWB [51]

Production Position data-based decision making UWB [52]; RFID [53,54]

Production Activity-Time monitoring in production line UWB [55]

Production Digital Facility Layout Planning Independent [56]

Logistics Logitics management RFID [57]; Hybrid [21]; Independent [20]

Logistics Warehouse management RFID [58]; WiFi [59]

Logistics Pallet management RFID [31]

Logistics Material/component and production tracking WiFi [60]; UWB [31,61]; RFID [31,62–65]; Hybrid [66];
Laser [30]; Barcode [67]

Logistics Assets tracking Bluetooth [68]; RFID [69–72]; Hybrid [73]; UWB [74,75];
Laser [29]; Barcode [67]; ZigBee [46]

Quality Weak spot analyzis in production UWB [76]

Safety Safety management RFID [33]

Safety Collision avoidance UWB [77]
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Table 3. Cont.

Application type Application Technology

Safety Personal protective equipment monitoring Hybrid [78]

Safety Person tracking ZigBee [27]; RFID [79]; UWB [80]

Safety Contact tracking Independent [81]

Efficiency monitoring Performance of manufacturing process RFID [82]

Efficiency monitoring Lean manufacturing UWB [83]; BLE [48]

Efficiency monitoring Human resource monitoring RFID [84]

Different application possibilities exist in manufacturing departments with RTLS. Table 4 presents
various types of applications, where the RTLS-provided information is defined for every industrial
application. The possible benefits define how we can validate the efficiency of the RTLS project. The
applied positioning system provides real-time information about where equipment, semi-finished or
finished products and specified logistic vehicles or workers are located in the manufacturing area [63].

Table 4. Application of RTLS in manufacturing, the useful information it provides and possible benefits.

Application Name Information Provided by RTLS Possible Benefits

Production control with Footprint of semi-finished More efficient production planningRTLS (Section 3.1) products and cycle time control

RTLS in logistics Tracking of logistical assets More cost-effective logistics process planning(Section 3.2) in the production system

Applications in quality Root cause analysis depends on position data Help quality management department
management (Section 3.3) comply with standards and regulations

RTLS for safety Human and material handling equipment Reduction in occupational accidents(Section 3.4) tracking can help in collision detection

RTLS-based efficiency Efficiency indicators provide a realistic Real-time efficiency monitoring assigned to machines
monitoring (Section 3.5) picture of real-time production or tools can support making better decisions

RTLS for collaborative and Operator Precise real-time position of operators to More efficient decision making
4.0 solutions (Section 3.6) predict the possible collaboration situations for the smart operator and collaborative system

3.1. Production Control with RTLS

Cycle time optimization is a critical task, especially in the case of modular or just-in-time (JIT)
production [51]. A positive correlation exists between the potential of RTLS and JIT manufacturing.
Several objects are defined as the main focus for tracking in the case of industry applications (mobile
assets, workers, materials, key components, forklifts, pallets) [20].

The cycle time optimization is also possibly based on the position of products. For that, we
need to know which products being produced are on the assembly line at every moment of time [51].
Pairing a semi-finished product with a tag makes inter-manufacturing tracking possible and makes
the following information available:

• Time spent on the workstation for a given product;
• The production sequence;
• Which products are/have been on rework;
• Which products are/were in quality assurance;
• Average lead time for a particular product type (tact time);
• The goods in production are available with a continuous, real-time production status that supports

production programming and shift design.

A position data-based decision-making approach is presented that relies on advanced data
analytics for asset location systems to help production [52]. A potential use case in construction is
discussed in Reference [68] and another application of material tracking in a pipe spool fabrication
shop in [60].

Similar RTLS-based position data are already available in the literature, where a real-time connection
between operator performance and varying product complexity was designed [55]. Another paper
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proposes an RTLS-based solution for a logistics problem with hybrid traceability technology (WiFi with
RFID) to realize materials tracking, which can automate considerable amounts of warehouse work, such
as stock-taking and storage positioning and checking [63]. Related research proposes an RFID-based
intelligent decision support system architecture to handle production monitoring and scheduling in a
distributed manufacturing environment [53]. Furthermore, RTLS technology can even be an element
of reconfigurable facility layout planning. With its help, the processing steps of the activity and their
relationships can be easily mapped and recorded in a database. More complex material flow can be
provided (with information of the real flow between machines or congestion phenomena), which is not
possible with a simple flowchart [56].

With the proliferation of Industry 4.0, it can be seen that there is also a strong emphasis on
production monitoring. This is evidenced by the numerous references presented in the topic of
production management.

3.2. RTLS in Logistics

Logistics efficiency is largely dependent on the movement of forklifts, pallet trucks and stacker
trucks. For improving the logistics efficiency, we should know our current processes to see the points
where lead time reductions can be achieved in the supply chain. A properly selected RTLS technology
can be a tool for exploring logistics processes [61]. The following information is made available with
logistical vehicles tracking:

• Routes and time spent in specific areas;
• Speed of forklift;
• Data for predictive maintenance;
• Forklift overall equipment effectiveness (OEE).

The objective of [58] is to propose an IoT and advanced data analytics-based warehouse
management system (WMS) to enable smart logistics for Industry 4.0. The proposed IoT-based WMS
can improve warehouse productivity, picking accuracy and efficiency, and it is robust to order variability.
In [67], the authors present a sophisticated algorithm for tracking production and determining the
traceability of a product. Reference [62] gives an example of how to apply RTLS across the supply chain
and manage various assets within shop floors. A forklift based use-case is described in [66] where
movement inside a warehouse determined by the RTLS is associated with assets that it picks up (attach
through UHF-RFID reading) or puts down (detach through the loss of RFID signal).

IR-UWB-based RTLS has been deployed in an in-operation warehouse to track forklifts [75], and an
RFID-enabled positioning system in AGV for a smart factory has also been presented [69]. Observations
and lessons from simulation and testbed studies could be used to guide automated logistics within a
smart manufacturing shop floor. The framework of an R-AGV-based material distribution scheme is
proposed [73] based on an RTLS platform and electronic workshop map. The analysis and experimental
results indicate that the R-AGV-based material distribution system provides new levels of process
visibility and efficiency compared to traditional AGV-based distribution systems.

Tracking of transportation device is mandatory to obtain an accurate picture of intralogistics
processes. A related paper describes an industrial forklift tracking problem that requires precise
internal positioning [74]. It presents a study on the feasibility of meeting this challenge using UWB
technology. Placing two tags on the forklift enables even more robust localization, as the measurements
from the two tags are combined.

Based on the studied articles, it can be seen that much RTLS-related research is being done in
logistics; there are still, of course, unexplored application possibilities.

3.3. Applications in Quality Management

It is possible to see where losses are generated with a real-time tracking system. The monitoring
of the material flow with RTLS and the average duration of the processes provide information about
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problematic weak spots in the production process. Based on this information, possible reasons for the
delay in production is discussed in Reference [76]. Root cause analysis is an essential component of
quality assurance for the customers of the manufacturing company. After exploring the root cause,
different action plans can be implemented, such as a review of the workflow, redesign of the workspace,
education of workers and modification of work instructions.

Another possible advantage is RTLS-based dynamic work instruction. A crucial point in
non-automated and human resource-required production processes is to ensure the well-supported
work of the operators. One possible solution is showing just the information required to process
the actual workpiece and no more. Based on the full traceability, we can show that the actual work
instruction at every workstation based on the product information (from RTLS). There are relatively few
practical applications on the topic, but potential development opportunities can be clearly identified
such as dynamic work instruction.

3.4. RTLS for Safety

Collision avoidance is one possible improvement in the EHS (Environment, Health and Safety).
Real-time alerts and notifications can be developed to prevent accidents based on the movement of
vehicles and workers. A significant portion of the workplace accidents can be traced back to failure to
use the required protective equipment. The monitoring of the personal protective equipment (PPE)
usage is also an available function using RTLS [78]. RTLS technology can be used to control access to
restricted areas for employees by sending automatic alerts whenever someone enters an unauthorized
area [79]. Moreover, in the event of an emergency or natural disaster, such technology can be used to
determine if everyone has already left the area or whether every worker used the designated route to
leave the building [80].

The main purpose of contact-tracking solutions in industry is to help identify the contact matrix
when the infection is recognized. RTLS is one possible solution to support to explore the potentially
infected people [81]. Therefore, it can be used for the protection against the COVID-19 pandemic [85].
RTLS can be used in production systems also to monitor adherence to distance requirements between
the operators. This is a possible useful function for a COVID-19-like epidemic situation. Due to the
pandemic, the field of research for RTLS is topical, but there are also several solutions in the literature
in the field of EHS (Environment, Health and Safety).

3.5. RTLS-Based Efficiency Monitoring

A related research article presents an RFID-based RTLS solution for performance metrics through
RTLS data analysis to evaluate workflow performance and to obtain a lean process [82]. Spaghetti
diagrams (visual representation using a continuous flow line to trace the path of an item or activity
throughout a process) are time-consuming and static and, therefore, do not reflect the dynamics of
logistics systems. RTLS was proposed to overcome this drawback [83].

The efficiency of a human resources personalized measurement is challenging. To achieve set goals,
every organization must devise adequate, effective and efficient means of managing its HR. Related
research reported on the development of an RFID and RTLS-based real-life personnel monitoring
system to accurately and reliably estimate distance and coordinate the location of personnel at any
instant [84]. This method can be used to measure—based on RTLS positioning data—how much
time each product has spent at a particular station. This measurement can be further developed, and
performance indicators can be obtained for workstations where operators work. By breaking down the
overall process into sub-processes, we can refine the zones that allow for personalized performance
tracking. The proposed RTLS can provide a solution to compute availability, a key parameter of OEE
(Overall Equipment Efficiency) based on position data. Position data could improve the accuracy of
the measurement of human resource efficiency (HRE) [86] and integrate other sensor measures for
real-time activity monitoring [55]. Real-time sensor data assigned to the location of tools or machines
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on the shop floor allows online efficiency monitoring and supports the development and maintenance
of digital twins [86] or intelligent decision-making systems.

In terms of human resources, there is still quite a bit of related research. More potential RTLS
applications—like the mentioned personalized performance tracking—can help to achieve more
efficient operations.

3.6. RTLS for Collaborative and Operator 4.0 Solutions

The future of manufacturing will be the personalization, and Industry 5.0 defines by the
co-operation between man and machine [87]. During the current fourth industrial revolution,
companies have realized they need to put humans back into industrial production with collaborative
robots [88]. The workers need to be upskilled to provide value-added tasks in production to handle the
mass customization and personalization for customers. This philosophy overlaps with the Operator
4.0 concept [89].

Shop floor trackers are one of the required technologies of Industry 5.0 [88]. RTLS could be a
suitable solution for the full traceability on the shop floor. The smarter operator is an element of
Operator 4.0 methodology [90], which is used to be the intelligent personal assistant-based solution.
Real-time position data providing precise location information helps the system to make better
decisions for operators and make possible the trajectory prediction of operators [91].

3.7. Analysis of Position Data and Building Data-Driven Solutions

Raw data provided by the RTLS cannot directly be utilized to support the manufacturing.
The purpose of this section is to introduce data based solutions and the related data analysis techniques
needed for data pre-processing and building data-driven solutions. Again, a systematic examination of
literature in Scopus was done, using the keyword set (“indoor positioning” AND (“machine learning”
OR “data science” OR “data mining”). The network of the mentioned keywords can be seen in Figure 4.
Based on this network we can define the key thematic group of machine learning techniques and the
related application areas that will also be discussed in detail in this section.

Data mining techniques are reviewed in Reference [92] to solve indoor navigation systems
problems. The performance of the RTLS is shown via the integration of different features and
classification algorithms, including decision tree, multi-layer perceptrons, and Bayesian networks
[93]. In another article, naive Bayes theorem-based classification techniques and other classification
techniques to enhance the classification accuracy are compared to identify the best location estimation
algorithm [94]. K-nearest neighbor [95], support vector machine [96], decision tree [97], naıve
Bayes [98] and Bayesian network methods [99] are compared and combined with ensemble learning
algorithms to improve the performance, i.e., accuracy, f-score and computation time [100]. Decision
tree-based classification is applied to estimate the position to improve the accuracy [97]. The clustering
machine learning (ML) technique is usually used to improve RTLS accuracy, like K-means clustering
backpropagation NN [101], Spatial Division Clustering (SDC) method [102], affinity propagation
clustering [103]. The feeding behavior of cows is measured with RTLS in [104]. The presence at the
feeder (feeding probability) of the cows was calculated using the logistic regression model. Support
Vector Regression (SVR) is used to calculate the efficient RTLS [105]. Based on the aforementioned
literature study, the common combinations of ML techniques are presented in Table 5 and RTLS
technologies can be seen in Figure 5. Based on the qualitative analysis of the literature it can be
highlighted that many researchers have successfully applied NNs to the indoor positioning problem
via convolutional neural networks (CNNs) [106]. A ZigBee [107] indoor positioning research scheme
based on the location fingerprinting approach uses an NN locating model. This model, with the
signal-index-pair data pre-processing method, is used to increase positioning precision [108]. Related
research uses a particle swarm optimization-based backpropagation (PSO-BP) NN to determine the
relationship between RFID signals and the position of a tag for an RFID-based positioning system [109].
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Furthermore, to improve the quality of training samples, the experimental data are pre-processed via
Gauss filtering.

The following section is devoted to show how RTLS systems and the presented models can be
integrated into one system.

Figure 4. Network of keywords based on Scopus database.
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Figure 5. Concurrence of machine learning (ML) techniques and RTLS technologies in articles.

Table 5. Data mining techniques and areas of RTLS-based application

Method Definition Data Analytic Techniques Application Areas RTLS-Based Applications

Classification

Discriminating data into different labeled
subsets pursuant to class attribute.

Retrieving important and relevant infor-
mation about data and metadata.

Neural network
Support vector machine (SVM)
Decision tree
k-Nearest neighbor
Bayesian network
Genetic algorithm

Pre-defined distribution
(e.g., identification of differences)
Fault detection
Anomaly detection problems

For intralogistics navigation problems [92],
shows the performance of RTLS [93],
find the best location estimation algorithm [94]

Clustering

Grouping the database according to their
similarities.

Discovering similarities and dissimilarities
between the data.

Partition based algorithms
(e.g., K-means, fuzzy c-means)
Hierarchical clustering
(e.g., dendrogram)
Density-based method
Grid-based methods
Model-based methods

Data segmentation
(division into homogeneous sets)
Identification of typical prototypes
(e.g., simultaneous identification of
time-homogeneous periods and their
averages/trends)

Improve RTLS accuracy [101–103]
Pedestrian motion learning [110]

Regression analysis

Identifying and analyzing the relationship
between variables.

Predicting and forecasting the process or
dependent variables.

Multivariate linear regression
Neural network
Regression tree

Creating a model that predicts time
(e.g., creating a model for predicting
temperature)

Used to calculate the efficient RTLS [105]
feeding behavior of cows [104]

4. Steps of setting up an RTLS for Manufacturing Support

An installation of RTLS is described in this section with a proposed workflow to illustrate the
difficulties of RTLS projects. Figure 6 shows the necessary steps for RTLS-based process analysis.
In general, the first step of an RTLS based digitization project is the identification of the requirements,
where we define the physical area on the shop floor and the possible applications. The next step is
the installation of the sensor network. After the system is running and the position information is
being successfully gathered, the accuracy of the system should be validated. The multi-tag concept
substantially improves the object detection probability and makes the system more robust [111,112].
Generally, the position engines of RTLS apply filtering methods to pre-process the position data (e.g., a
Kalman-filter in the case of GPS) [113]. Several accuracy improvement solutions are available based on
RTLS, including regression [114] and k-nearest neighbor classification [95].
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Figure 6. The full setup of RTLS in manufacturing. After the physical system installation, the layout
and zone definition is necessary for system integration into the Manufacturing Execution System.

With the spread of RTLS, position data pre-processing and cleaning methods have become
an important research topic, based mainly on pedestrian dead reckoning [115] and wireless signal
positioning methods [116]. The cleared and filtered position data provides more accurate information
to the production system.

The integration of position data into the Manufacturing Execution System (MES) is a crucial
element of the implementation.

To obtain usable data from the position information, zones of the manufacturing process should
be defined. A zone (Station ID) represents a workstation or storage space, and the RTLS can obtain
zone information from every tag in real-time. Figure 7 shows the connections among the RTLS,
MES and production. At the beginning of production, the operator pairs a product with an RTLS
tag (with a barcode scanner or manually at a PC) to identify the actual product ID in the system.
The RTLS provides the zone information (based on the position data of tags and zones definition)
with a timestamp to the MES with an application programming interface (API). The MES changes the
status of the actual product ID based on the information from RTLS (e.g., the product is tested at a
testing station). If a digital interface is provided at the workstation, then the MES can show the work
instruction for the actual product or can set the optimal cycle time based on the product content [51].
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Figure 7. The real-time connection between the Manufacturing Execution System (MES) and production
is available based on the RTLS.

5. Analysis Based on Position Data—A Case Study

Position data-based production tracking has considerable potential to optimize production
processes. In this section, we present a case study based on an implemented RTLS in a manufacturing
environment. The purpose of the position data in production is to transform to relevant information,
in the interest of comparing the defined production zones with the position based clusters. Hidden
information can be extracted from the position data for production management.

Our use case is an anonymized example from a Tier 1 supplier company from the automotive
sector. The production company used the Sunstone-RTLS Ltd. system, which is accurate to 50 cm with
eight anchors per every 2000–3000 m2. The system architecture is shown in Figure 8. There are seven
workstations that are used to produce a small wire harness. The zones define the workstations, storage
units and routes. The workstations are Tubing station I., Tubing station II., Channeling station, Test
station, Screwdriver station, Packaging station and Quality check. The operator attaches the RTLS tag
to the product at the first station (Tubing station I/II), and the final station is the Packaging.

Figure 8. The infrastructure of the Sunstone-RTLS. Every central unit (CU) has eight anchors (which
collect data from tags), and the CUs can be connected to create a cascade installation.

The goal of the position-based zone identification is to determine the temporary storage at the
temporary station area: a K-means algorithm is applied for position data classification. Figure 9
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shows the classified position data where the algorithm detects the three small storage areas over the
pre-defined zones. These three undefined or unplanned stations could be the cause of several losses.

Figure 9. The production layout with seven pre-defined workstations. The classified and pre-defined
(rectangles) zones are shown. The algorithm detects three small areas behind the Temporary station
and indicates that Tubing station II was not used in this period.

Thanks to the position data, the full traceability of products is available. The cycle time of
workstations can be measured based on the classified zone data. The operator scans the product
identification label at the first workstation, where the system paired it to the current tag ID (ID is
also scanned at the station). The spent time of the actual p product (Tz

p) in the actual zone (z) is the
difference between the last timestamp (Tz

p(l) of the actual product (p) position data in the actual zone
and the first one (Tz

p( f )).
Figure 10 shows the cycle time deviation of every workstation. The boxplot shows the distribution

of the times related to the production of more than 150 products (in one shift). We can notice that
the packaging station has less cycle time and also the smallest deviation. The reason is, we cannot
identify the real finish time at this station due to the fact that they collect the tags traced by the RTLS at
this station after the production, and instead, the operator scans the test label during the packaging.
The figure shows the Tubing station I. is the bottleneck, but we can see in Figure 9, there is a second
station (Tubing station II.), which is a spare workstation. In the current situation, there are not enough
resources to operate both workstations, but it could be the solution to improve the process.
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Figure 10. Boxplots of the cycle times measured at different zones of the production process. (Green
triangles represent the averages, while red lines the medians).

As this example highlighted, the RTLS can provide accurate and real-time information about
the current status of the production process that could be utilised in the development of production
processes.

6. Conclusions, Limits and Future Direction of Research

The purpose of this article was to provide a comprehensive overview of the application and
development possibilities of RTLS in the manufacturing field. The overview of the solutions determined
the value of the positioning data and specified which traceability technologies are suitable for real-time
locating in different situations to ensure traceability. Our research explored the possible applications in
the production and logistics process. Finally, the implementation of RTLS and a data cleaning method
are represented. The end of the article presented a case study, in which we demonstrated what kind of
information an RTLS system can provide.

The research pointed out that information extracted from RTLS is highly applicable for performance
monitoring. Based on this fact, RTLS supported LEAN projects are very important research topics
of the future. This article also introduced that machine learning and state estimation techniques are
getting used more and more widely in the development of position data based models. Another
conclusion of the case study is that typical states of the production process can be easily determined
based on clustering algorithms. Analyzing the sequence of these means a significant increase in the
understanding of the processes and in support of process models. According to this we believe that
process mining is the most relevant research topic for the future.

It is also important to highlight that an installed RTLS makes the integration of more sensor data
available, and in this way the quick implementation of IoT solutions. We believe that this opportunity
is beneficial primarily in the development of existing processes, like the introduction of brown field
Industry 4.0 solutions.

The advantage of these solutions can be exploited well if the production system is supported
by a Manufacturing Execution System (MES), in which a system ensures that information derived
from position data can be used in production process optimizations. In line with this, an RTLS project
should be connected with an MES development. This MES development process can be supported by
semantic models, which are helping to structure sensor and production data. The application of these
models is also a research and development topic for the future.
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7. Batistić, L.; Tomic, M. Overview of indoor positioning system technologies. In Proceedings of the 2018 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0473–0478.

8. Ali, W.H.; Kareem, A.A.; Jasim, M. Survey on Wireless Indoor Positioning Systems. Cihan Univ.-Erbil Sci. J.
2019, 3, 42–47.

9. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S.
Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707.

10. Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun.
Surv. Tutor. 2019, 21, 2568–2599.

11. Sakpere, W.; Adeyeye-Oshin, M.; Mlitwa, N.B. A state-of-the-art survey of indoor positioning and navigation
systems and technologies. S. Afr. Comput. J. 2017, 29, 145–197.

12. Shi, G.; Ming, Y. Survey of indoor positioning systems based on ultra-wideband (UWB) technology. In Wireless
Communications, Networking and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1269–1278.

13. Huang, G.Q.; Zhang, Y.; Jiang, P. RFID-based wireless manufacturing for walking-worker assembly islands
with fixed-position layouts. Robot. Comput.-Integr. Manuf. 2007, 23, 469–477.

14. Mendoza-Silva, G.M.; Torres-Sospedra, J.; Huerta, J. A meta-review of indoor positioning systems. Sensors
2019, 19, 4507.

15. Shang, J.; Yu, S.; Zhu, L. Location-aware systems for short-range wireless networks. In Proceedings of the
2009 International Symposium on Computer Network and Multimedia Technology, Wuhan, China, 18–20
January 2009; pp. 1–5.

16. Gladysz, B.; Santarek, K. An approach to RTLS selection. In DEStech Transactions on Engineering and Technology
Research, Proceedings of the 24th International Conference on Production Research (ICPR 2017), Poznan, Poland, 30 July–3
August 2017; 2017.

17. Saez, M.; Maturana, F.P.; Barton, K.; Tilbury, D.M. Real-time manufacturing machine and system performance
monitoring using internet of things. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1735–1748.

217



Sensors 2020, 20, 6766

18. Macagnano, D.; Destino, G.; Abreu, G. Indoor positioning: A key enabling technology for IoT applications.
In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014;
pp. 117–118.

19. Li, S.; Rashidzadeh, R. Hybrid indoor location positioning system. IET Wirel. Sens. Syst. 2019, 9, 257–264.
20. Hammerin, K.; Streitenberger, R. RTLS—The missing link to optimizing Logistics Management? In Jönköping

University, Production systems, Jönköping, Sweden, 20 May 2019; 2019.
21. Holm, S. Hybrid ultrasound-RFID indoor positioning: Combining the best of both worlds. In Proceedings

of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 155–162.
22. Woo, S.; Jeong, S.; Mok, E.; Xia, L.; Choi, C.; Pyeon, M.; Heo, J. Application of WiFi-based indoor positioning

system for labor tracking at construction sites: A case study in Guangzhou MTR. Autom. Constr. 2011, 20, 3–13.
23. Park, J.; Cho, Y.K.; Martinez, D. A BIM and UWB integrated mobile robot navigation system for indoor

position tracking applications. J. Constr. Eng. Proj. Manag. 2016, 6, 30–39.
24. Stephan, P.; Heck, I.; Krau, P.; Frey, G. Evaluation of Indoor Positioning Technologies under industrial

application conditions in the SmartFactoryKL based on EN ISO 9283. IFAC Proc. Vol. 2009, 42, 870–875.
25. Simões, W.C.; Machado, G.S.; Sales, A.; de Lucena, M.M.; Jazdi, N.; de Lucena, V.F. A Review of Technologies

and Techniques for Indoor Navigation Systems for the Visually Impaired. Sensors 2020, 20, 3935.
26. Lennvall, T.; Svensson, S.; Hekland, F. A comparison of WirelessHART and ZigBee for industrial applications.

In Proceedings of the 2008 IEEE International Workshop on Factory Communication Systems, Dresden,
Germany, 21–23 May 2008; pp. 85–88.

27. Longkang, W.; Baisheng, N.; Ruming, Z.; Shengrui, Z.; Hailong, L. ZigBee-based positioning system for coal
miners. Procedia Eng. 2011, 26, 2406–2414.

28. Uradzinski, M.; Guo, H.; Liu, X.; Yu, M. Advanced indoor positioning using zigbee wireless technology.
Wirel. Pers. Commun. 2017, 97, 6509–6518.

29. Shi, J. Laser guided four-wheel drive AGV trolley. In AIP Conference Proceedings, Wuhan, Chine; AIP
Publishing LLC: 2019; Volume 2073, p. 020060.

30. Alici, G.; Shirinzadeh, B. A systematic technique to estimate positioning errors for robot accuracy
improvement using laser interferometry based sensing. Mech. Mach. Theory 2005, 40, 879–906.

31. Kirch, M.; Poenicke, O.; Richter, K. RFID in logistics and production–Applications, research and visions for
smart logistics zones. Procedia Eng. 2017, 178, 526–533.

32. Zhai, C.; Zou, Z.; Zhou, Q.; Mao, J.; Chen, Q.; Tenhunen, H.; Zheng, L.; Xu, L. A 2.4-GHz ISM RF and UWB
hybrid RFID real-time locating system for industrial enterprise Internet of Things. Enterp. Inf. Syst. 2017,
11, 909–926.

33. Lee, H.S.; Lee, K.P.; Park, M.; Baek, Y.; Lee, S. RFID-based real-time locating system for construction safety
management. J. Comput. Civ. Eng. 2012, 26, 366–377.

34. Martin, P.; Ho, B.J.; Grupen, N.; Muñoz, S.; Srivastava, M. An iBeacon primer for indoor localization:
Demo abstract. In Proceedings of the Proceedings of the 1st ACM Conference on Embedded Systems for
Energy-Efficient Buildings, Memphis, USA, 5–6 November 2014; 2014; pp. 190–191.

35. Yue, H.; Zheng, X.; Wang, J.; Zhu, L.; Zeng, C.; Liu, C.; Liu, M. Research and Implementation of Indoor
Positioning Algorithm for Personnel Based on Deep Learning. International Conference on Emerging
Internetworking, Data & Web Technologies, Tirana, Albania, 15–17 March 2018; pp. 782–791.

36. Otim, T.; Díez, L.E.; Bahillo, A.; Lopez-Iturri, P.; Falcone, F. Effects of the body wearable sensor position on
the UWB localization accuracy. Electronics 2019, 8, 1351.

37. Gohil, A.; Modi, H.; Patel, S.K. 5G technology of mobile communication: A survey. In Proceedings of the
2013 international conference on intelligent systems and signal processing (ISSP), Gujarat, India, 1–2 March
2013; pp. 288–292.

38. Witrisal, K.; Hinteregger, S.; Kulmer, J.; Leitinger, E.; Meissner, P. High-accuracy positioning for indoor
applications: RFID, UWB, 5G, and beyond. In Proceedings of the 2016 IEEE International Conference on
RFID (RFID), Orlando, FL, USA, 3–5 May 2016; pp. 1–7.

39. Horsmanheimo, S.; Lembo, S.; Tuomimaki, L.; Huilla, S.; Honkamaa, P.; Laukkanen, M.; Kemppi, P. Indoor
positioning platform to support 5G location based services. In Proceedings of the 2019 IEEE International
Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6.

40. Rodas, J.; Barral, V.; Escudero, C.J. Architecture for multi-technology real-time location systems. Sensors
2013, 13, 2220–2253.

218



Sensors 2020, 20, 6766

41. Lin, J.R.; Talty, T.; Tonguz, O.K. On the potential of bluetooth low energy technology for vehicular
applications. IEEE Commun. Mag. 2015, 53, 267–275.

42. Jiang, X.; Chen, S. Design of Wireless Point of Sale Based on ZigBee Technology. Sens. Transducers 2014,
164, 120.

43. Abdullah, A.; Ismael, A.; Rashid, A.; Abou-ElNour, A.; Tarique, M. Real time wireless health monitoring
application using mobile devices. Int. J. Comput. Networks Commun. (IJCNC) 2015, 7, 13–30.

44. Lee, J.S.; Su, Y.W.; Shen, C.C. A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi.
In Proceedings of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei,
Taiwan, 5–8 November 2007; pp. 46–51.

45. Kazeem, O.O.; Akintade, O.O.; Kehinde, L.O. Comparative Study of Communication Interfaces for Sensors
and Actuators in the Cloud of Internet of Things. Int. J. Internet Things 2017, 6, 9–13.

46. Cui, Y.; Zhao, J. Real-time location system and applied research report. In Proceedings of the International
Conference on Internet of vehicles, Chengdu, China, 19–21 December 2015; pp. 49–57.

47. Astafiev, A.; Zhiznyakov, A.; Privezentsev, D. Development of Indoor Positioning Algorithm Based on
Bluetooth Low Energy beacons for Building RTLS-Systems. In Proceedings of the 2019 International Russian
Automation Conference (RusAutoCon), Sochi, Russia, 8–14 September 2019; pp. 1–5.

48. Nowotarski, P.; Pasławski, J.; Skrzypczak, M.; Krygier, R. RTLS systems as a Lean Management tool for
productivity improvement. In Proceedings of the ISARC—International Symposium on Automation and
Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; Volume 34.

49. Moreira, A.; Nicolau, M.J.; Meneses, F.; Costa, A. Wi-Fi fingerprinting in the real world-RTLS@ UM at the
EvAAL competition. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–10.

50. Mazhar, F.; Khan, M.G.; Sällberg, B. Precise indoor positioning using UWB: A review of methods, algorithms
and implementations. Wirel. Pers. Commun. 2017, 97, 4467–4491.

51. Ruppert, T.; Abonyi, J. Industrial Internet of Things based cycle time control of assembly lines. In Proceedings
of the 2018 IEEE International Conference on Future IoT Technologies (Future IoT), Eger, Hungary, 18–19
January 2018; pp. 1–4.

52. Gyulai, D.; Pfeiffer, A.; Bergmann, J. Analysis of asset location data to support decisions in production
management and control. Procedia CIRP 2020, 88, 197–202.

53. Guo, Z.; Ngai, E.; Yang, C.; Liang, X. An RFID-based intelligent decision support system architecture for
production monitoring and scheduling in a distributed manufacturing environment. Int. J. Prod. Econ. 2015,
159, 16–28.

54. Gallimore, J.J.; Quill, L.; Cagle, R.; Gruenke, J.; Hosman, C.; Matthews, E.; Faas, P.; Seyba, J.; Young, I. User
Feedback on RFID and Integrated Flightline Data for Maintenance Decisions; Technical Report; University of
Dayton Research Institute: Dayton, OH, USA, 2006.

55. Ruppert, T.; Abonyi, J. Software Sensor for Activity-Time Monitoring and Fault Detection in Production
Lines. Sensors 2018, 18, 2346.

56. Peron, M.; Fragapane, G.; Sgarbossa, F.; Kay, M. Digital Facility Layout Planning. Sustainability 2020, 12, 3349.
57. Zang, Y.; Wu, L. Application of RFID and RTLS technology in supply chain enterprise. In Proceedings of

the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing
(WiCOM), Chengdu, China, 23–25 September 2010; pp. 1–4.

58. Lee, C.; Lv, Y.; Ng, K.; Ho, W.; Choy, K. Design and application of Internet of things-based warehouse
management system for smart logistics. Int. J. Prod. Res. 2018, 56, 2753–2768.

59. Ma, X.; Liu, T. The application of Wi-Fi RTLS in automatic warehouse management system. In Proceedings
of the 2011 IEEE International conference on automation and logistics (ICAL), Chongqing, China, 15–16
August 2011; pp. 64–69.

60. Soleimanifar, M.; Lu, M. Streamlining an indoor positioning architecture based on field testing in pipe
spool fabrication shop. In Proceedings of the Winter Simulation Conference 2014, Savanah, GA, USA, 7–10
December 2014; pp. 3260–3271.

61. Silvia, Z.; Martina, C.; Fabio, S.; Alessandro, P. Ultra Wide Band Indoor Positioning System: Analysis and
testing of an IPS technology. IFAC-PapersOnLine 2018, 51, 1488–1492.

219



Sensors 2020, 20, 6766
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Abstract: Localization estimation and clock synchronization are important research directions in the
application of wireless sensor networks. Aiming at the problems of low positioning accuracy and slow
convergence speed in localization estimation methods based on message passing, this paper proposes
a low-complexity distributed cooperative joint estimation method suitable for dynamic networks
called multi-Gaussian variational message passing (M-VMP). The proposed method constrains
the message to be a multi-Gaussian function superposition form to reduce the information loss in
the variational message passing algorithm (VMP). Only the mean, covariance and weight of each
message need to be transmitted in the network, which reduces the computational complexity while
ensuring the information completeness. The simulation results show that the proposed method is
superior to the VMP algorithm in terms of position accuracy and convergence speed and is close
to the sum-product algorithm over a wireless network (SPAWN) based on non-parametric belief
propagation, but the computational complexity and communication load are significantly reduced.

Keywords: multi-variational message passing (M-VMP); factor graph (FG); second-order Taylor
expansion; cooperative localization; joint estimation of position and clock

1. Introduction

In recent years, wireless sensor network has been widely used in agriculture, warehousing,
production safety, emergency rescue and other fields [1]. The information which sensors collected and
transmitted is valuable when combined with the sensors’ location [2,3]. Therefore, location awareness
of wireless sensor networks has become one of the most important directions in the development
of wireless sensor networks. Global Navigation Satellite System (GNSS) is able to provide location
information for sensor nodes, but it is difficult to apply on sensor networks due to high power
consumption and high cost [2–4]. Furthermore, the poor signal penetration capabilities of GNSS lead
to inadequate location information in indoor scenes. Cooperative localization can overcome these
problems through ranging and exchanging locations between neighbor nodes [5]. Over the past decade,
cooperative localization in wireless sensor networks has drawn considerable attention.

In the recent ten years, cooperative positioning in wireless sensor networks has been widely
concerned. The multidimensional scaling (MDS) algorithm [6,7] calculates the shortest path distance
between nodes according to the connectivity of the network or distance measurement. Then, the relative
coordinate diagram of all nodes is constructed by using the multidimension scale algorithm.
Finally, the relative coordinate diagram is transformed into an absolute coordinate graph according to
the coordinate of the anchor node. The semi-definite programming (SDP) algorithm [8,9] represents
geometric constraints among nodes as a set of linear matrix inequalities, then combines the inequality
into a semi-definite programming problem and obtains the location of each node by global optimization.
The distance-vector (DV) hop algorithm [10,11] firstly measures the minimum number of hops between
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the nodes to be located and each anchor node. Then, the average distance of each hop is determined
according to the number and coordinate between anchor nodes. After the jump number is converted
into distance, the position of the node to be located is obtained according to the trilateral measurement
method. The Approximate Perfect Point-In-Triangulation (APIT) algorithm [12,13] firstly selects
three anchor nodes connected with the node to be located, and then judges whether they are in the
triangle composed of anchor nodes according to the pit test, and then repeats the pit test with a
different anchor node combination. Finally, the center of mass position of these triangles is taken
as the coordinates of the nodes to be located. The SPAWN algorithm [14] decomposes the posterior
probability density function of position variables and represents it as a factor graph. Then, the message
is transmitted by particles on the factor graph to calculate the probability of edge distribution of each
variable. Finally, position estimation is carried out according to minimum mean square error (MMSE)
or map criterion. Although the above cooperative positioning algorithm has high positioning accuracy,
it has high computational complexity and high communication cost, which seriously restricts the
practical application.

For the above problems, a collaborative location algorithm based on factor graph and
VMP is proposed in Reference [15], which has simple message form and small computation.
However, Kullback-Leibler (KL) divergence is used to Gauss the non-Gaussian confidence
of the nonlinear range measurement model. The first kind of convergence hypergeometric
function minimization problem is introduced, which makes the calculation complexity very high.
In Reference [16], a hard decision-based cooperative algorithm is proposed to alleviate the effect of
the outliers. The geometric relationship between agent position and distance is used to avoid a large
deviation coursed by geometric constraints. The authors of Reference [17] propose the distributed
particle filtering evolved variational message passing (DPF-E-VMP) algorithm, which improves the
convergence speed of positioning estimation by using distributed particle filtering (DPF), but this
performance improvement is often accompanied by greater computational consumption. By combining
the average consensus method and VMP algorithm, a joint self-localization tracking algorithm called
cooperative localization with outlier constraints (CLOC) is proposed in Reference [18], which has better
location performance than the separate self-localization algorithm. In Reference [19], KL divergence
is minimized by the Newton conjugate gradient method, but the computational complexity is still
high. But, the information loss caused by VMP parameterization will have a certain influence on the
positioning accuracy. At the same time, the algorithm has been reduced in accuracy and convergence
speed due to the clock synchronization between the nodes to be located.

In this paper, a VMP distributed cooperative localization algorithm based on multi-Gaussian
is proposed. Based on the non-line of sight (NLOS) environment ranging model, the VMP message
passing strategy based on multi-Gaussian is innovated, and the second-order Taylor expansion form of
position and time synchronization joint estimation is derived. Its computational complexity is far less
than the approximate solution based on KL divergence. The time complexity and communication cost
are connected with the traditional VMP algorithm. However, the positioning accuracy and iteration
speed have been greatly improved.

The remainder of this paper will be organized as follows: A two-dimensional (2D) wireless
network is first established as a system model. Then, a traditional cooperative localization algorithm is
introduced and leads to the method proposed in this paper. After that, simulation performance of the
proposed method is investigated. Finally, concluding remarks are presented. A list of symbols that are
used in the paper is given in Table 1.
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Table 1. List of symbols.

Symbol Meaning Symbol Meaning

Si,n
Set of neighbor anchor nodes of

node i at time n Ci,n
Set of neighbor nodes to be
located of node i at time n

xi,n
Position vector of node i at

time n t̃i,n
Measurement value of local

clock of note i at time n

Tn Real time value at time n ai,n
Slope of local clock of node i

at time n

ai j,n
Relative slope of local clock

offset between nodes i, j Ni,n
Set of neighbor nodes of

node i at time n

ρ̃i j,n
Range measurement between

node i, j at time n ωi j,n Measurement noise of ρ̃i j,n

σ2
d Variance of ωi j,n ζi j,n NLOS error of ρ̃i j,n

Ψn
Set of all communicable node

pairs (i, j) at time n Θn
Set of all node pairs (i, j)

with NLOS error at time n

xn
Position vector of all nodes at

time n an
Clock offset of all nodes at

time n

vi,n
Average velocity of node i from

time n− 1 to time n ωi,n Measurement noise of vi,n

σ2
i,n Variance of ωi,n
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n,
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
Covariance of belief b
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
) Cramer-Rao Lower Bound

of
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2. System Model

The anchor nodes are always deployed at the same height, and high vertical dilution of precision
means the system cannot provide reliable vertical positioning results [20], which is usually obtained by
other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes the
anchor node with known location and synchronized local time, and the node with inaccurate location
information and local time out of sync. The position vector of node i at time n is xi,n = [xi,n, yi,n]

T,
and the measured value of local clock t̃i,n = ti(Tn). The slope of local clock at time n between node i
and the external standard clock is ai,n = (t̃i,n − t̃i,n−1)/(Tn − Tn−1). The local clock of all anchor nodes is
synchronized with the external reference clock, i.e., ai,n = 1∀i ∈ S. At time n, node i has neighbor nodes
set as Ni,n, where neighbor anchor node set is Si,n, node set to be located is Ci,n, and all communicable
node pairs (i, j) constitute communicable node set Ψn.

Considering the local clock drift, node i measures time of arrival (TOA) from neighbor node j at
time n as follows:

ρ̃i j,n = ‖ xi,n − x j,n ‖+ ζi j,n + cTai j,n +ωi j,n, (1)

where ‖ xi,n − x j,n ‖ is the Euclidean distance, di j,n, between nodes i, j, T = Tn − Tn−1, ωi j,n is the
observed measurement noise, assuming that it obeys the Gaussian distribution, i.e., ωi j,n ∼ N

(
0,σ2

d

)
,

and ζi j,n is NLOS error, which is expressed as follows:

ζi j,n =

{
0, (i, j) < Θn

λe−λbi j,n , (i, j) ∈ Θn
, (2)
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where bi j,n > 0 [22], λ is a constant and Θn is the set of all node pairs (i, j) with NLOS error at time n.
Where, ai j,n is the relative slope of local clock offset between nodes i, j, defined as follows:

ai j,n ,



ai,n
a j,n

, ti,n > t j,n
a j,n
ai,n

, ti,n > t j,n
, (3)

Define xn , [xT
1,n, xT

2,n, . . . , xT
S+C,n]

T as the position vector of all nodes, an , [a1,n, a2,n, . . . , aS+C,n]
T

as the clock offset slope of all nodes, ρ̃n , [. . . ,ρi j,n, . . .]T as the range measurement in all
node pairs (i, j) ∈ Ψn, and ζn , [. . . , ζi j,n, . . .]T as the NLOS error in all node pairs (i, j) ∈ Θn.
Moreover, all the vector sets from time 1 to time n are defined as follows:
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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1:n , {x1, x2, . . . , xn},
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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1:n , {a1, a2, . . . , an},
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𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 
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Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n ,
{
ρ1,ρ2, . . . ,ρn

}
,
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n , {ζ1,ζ2, . . . ,ζn}. The goal of the algorithm is
to estimate the accurate node location vector xn and the clock slope an by measuring
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n and the
information transmitted between nodes.

3. M-VMP Joint Estimation Algorithm

According to whether the location information is considered as a random variable, the cooperative
localization algorithms are divided into two categories: non-Bayesian estimation and Bayesian
estimation [5]. In non-Bayesian estimation, the location information is estimated by deterministic
methods. The typical algorithms are least square (LS) [23,24] and the maximum likelihood method
(ML) [25]. Bayesian estimation is based on the probability model of location information. The typical
algorithms include the maximum posterior probability (MAP) estimation [26] and the MMSE method [6].
Location information node i estimates by MMSE criteria. The expression is as follows:

ˆ
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n =
∫
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(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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𝑭(𝔃𝑖,𝑛) 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n is the estimation result and
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n = [xi,n, yi,n, ai,n]
T is the vector to be estimated.

3.1. Probability Model

Assume xi,n evolve according to a memory-less Gauss–Markov process, then, there are:

xi,n = xi,n−1 + vi,nT +ωi,n, (5)

where vi,n is the average velocity of node i from time n− 1 to time n, which is measured by the sensor
inside nodes. ωi,n is Gaussian white noise, and its covariance matrix is diag

{
σ2

i,n,σ2
i,n

}
. Since the motions

of all nodes are independent of each other, there are:

p(xn|xn−1) =
∏

i
p(xi,n|xi,n−1) (6)

p(an|an−1) =
∏

i
p(ai,n|ai,n−1), (7)

p
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n
)
= p(x0)

∏
n

p(xn|xn−1), (8)

p
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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1:n
)
= p(a0)

∏
i
p(an|an−1), (9)

where p(x0) is the prior distribution of all nodes’ location information at time 0, which is obtained by
GNSS, base station or in other ways [27]. According to the Bayesian rule, the edge probability function
in (3) is calculated by the following formula:

p(
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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the independent observations at different times ρi j,n:
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means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

1:n) ∝
∏

n
∏

(i, j)<Θn pLOS(ρi j,n)
∏

(i, j)∈Θn pNLOS(ρi j,n), (11)

pLOS
(
ρi j,n

)
∝ exp


−

(
ρi j,n − ‖ xi,n − x j,n ‖ − cTai j,n

)2

2σ2
d


, (12)

pNLOS
(
ρi j,n

)
∝ exp


−

(
ρi j,n − ‖ xi,n − x j,n ‖ − cTai j,n − ζi j,n

)2

2σ2
d


, (13)

According to the above derivation, (10) is expanded to the following formula:

p(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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(i, j)<Θn
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(i, j)∈Θn
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·
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p(x0,n)p(a0,n)

∏
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p(xi,n|xi,n−1)p(ai,n|ai,n−1),

(14)

3.2. Factor Graph Model

Factor graphs intuitively reflect the spatiotemporal relationship between variables [5]. The factor
graph is a dichotomous graph, which contains two kinds of nodes: factor node and variable node.
Variable node represents the information to be evaluated, and factor node represents the messages
passed between variable nodes. The schematic diagram of cooperative localization is shown in Figure 1.

Figure 1. Factor graph model of variational message passing (VMP)-based cooperative localization
problem. The circle represents the factor node and the square represents the variable node.
xi,n = [xi,n yi,n]

T represents the localization variable of the node to be located, fi,n represents the
message that transmits between different times, fi j,n represents the distance information that the
nodes transmit, ζi j,n represents the non-sight distance parameter that affects the information between
nodes and bi j,n represents the non-sight distance error probability function that affects the non-sight
distance parameter.

Factor nodes are further assumed as follows:

fi,0 = p(
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𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,0), fi,n = p(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1), (15)
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fi j,n =


pLOS

(
ρi j,n

)
, (i, j) < Θn

pNLOS
(
ρi j,n

)
, (i, j) ∈ Θn

, (16)

ζi j,n = p
(
bi j,n

)
, (17)

According to the above definition, edge probability of localization is clearly calculated in the
factor graph. Next, a localization algorithm based on the VMP will be introduced.

3.3. VMP-Based Localization Algorithm

VMP uses the exponential model to deliver messages, which greatly reduces communication
consumption. According to the VMP message rules based on the factor graph proposed in Reference [28]
and the assumptions in Section 3.2, the message delivered from factor node to parameter node at time
n is as follows:

µ fi j,n→
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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i,n
(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) = exp
{∫

µbi j,n→ fi j,n

(
bi j,n

)
µ
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n→ fi j,n

(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n
)

ln fi j,n
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n

}
, (18)
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) = p(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1), (19)

µ fi j,n→bi j,n

(
bi j,n

)
= exp

{∫
µ
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𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n→ fi j,n

(
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Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
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CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
)
µ
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n→ fi j,n

(
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𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n
)

ln fi j,n
(
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𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n,

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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)
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n

}
, (20)

where the cooperative messages µ
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n→ fi j,n

(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

j,n
)

are divided into two categories: one is related to the

neighbor anchor node j ∈ Si,n, and the other is related to the neighbor node k ∈ Ci,n to be located.
The calculations are performed below:

µ fi j,n→
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) ∝ N
(
ρi j,n|‖ xi,n − x j,n ‖, σ2

d

)
(21)

µ fi j,n→
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 
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𝜔𝑖,𝑛 Measurement noise of 
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σ𝑖,𝑛
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𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 
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𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 
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𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 
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Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) = exp{Eb(xk)
[N

(
ρik,n|‖ xi,n − xk,n ‖, σ2

d

)
]}, (22)

where E f (·)[g(·)] means the mean of g(·) with respect to f (·). The belief of

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n is obtained as follows:

b(
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i,n) = 1
Zµ fi,n→
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by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n)

∝ 1
ZN

(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1 + vi,nT, σ2
i,n

)∏
j∈Si,n
N

(
ρi j,n|‖ xi,n − x j,n ‖, σ2

d

)

×
∏

k∈Ci,n
exp

{
Eb(xk)

[
N

(
ρik,n|‖ xi,n − xk,n ‖, σ2

d

)]} (23)

where Z is the normalization constant. Obviously, it can be seen that b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) is not a Gaussian function
about
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n, and it is difficult to transmit directly between nodes. To reduce communication overhead,
Reference [19] approximates b(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) by minimizing KL divergence: where G represents a Gaussian
function, and KLD(q(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n)|b(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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i,n)) is the KL divergence between Gaussian function q(
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local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
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𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 
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node 𝑖,𝑗 at time 𝑛 
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2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n), the calculation formula is as follows:

b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) = argmin
q(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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i,n)∈G
KLD
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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3.4. M-VMP-Based Joint Estimation Algorithm

In Section 3.3, the clock drift of node or model loss with single Gaussian distribution are not
considered, which affects localization accuracy [19]. In this paper, a joint estimation algorithm of time
synchronization and localization based on multi-Gaussian distribution VMP is proposed, that the
belief b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
), and the belief of ζi j,n is b̂(ζi j,n) ∝ N(ζi j,n|ρ̃i j,n − cTai j,n − ‖ xi,n − x j,n ‖, σ2

d).
The factor graph between nodes i and j at the time n is shown in Figure 2.

Figure 2. FG of a node pair (i, j) at time n. xi,n, yi,n, ai,n represent the localization and time
synchronization parameter of the node to be estimated, fi,n represents the message that transmits
between different times, fi j,n represents the distance information that the nodes transmit, bi j,n represents
the non-sight distance parameter that affects the information between nodes and ζi j,n represents the
non-sight distance error probability function that affects the non-sight distance parameter.

In order to approximate b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) to a Gaussian function, Formula (23) is rewritten as follows:

b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) ∝

 fi,n(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n|
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1) +
∑

j∈Si,n

f j(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) +
∑

k∈Ci,n

fk(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n)


, (26)

where:

fi,n(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n|
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1) ,
∑

M

−ηM,i
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𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 
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in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 
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2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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(𝑖, 𝑗) with NLOS error 

at time 𝑛 
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Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
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𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
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𝔃𝑖,𝑛 
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Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) ,
∑

M

−ηM,ik

∫
b
(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 
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time 𝑛 
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(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

ik,n

d
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𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
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Gaussian distribution 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n, (29)

Because the existence of two non-linear terms, ‖ xi,n − x j ‖ in f j(
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Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) and ‖ xi,n − Exk,n−1,M ‖ in fk(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n),
results in non-Gaussian of b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n), the two non-linear terms are expanded by a second-order Taylor

229
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expansion to obtain the mean and covariance of b(
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𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
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Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 
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Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n). For discussion purposes, define g j(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) ,

‖ xi,n − x j ‖ − cTEai j,n−1,M and gk
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n,
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n
)
, ‖ xi,n − xk,n ‖ − cTEaik,n−1,M .

a. Second-order Taylor series expansion for nonlinear term g j(
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at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 
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offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1

)
,

(30)
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1
.

b. Second-order Taylor series expansion for nonlinear term gk
(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n,
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n
)
: gk

(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n−1
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1
, E

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1

)

+
∂T gk

(
E

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1
, E

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n−1

)

∂

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

k,n

(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n−1

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 
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The anchor nodes are always deployed at the same height, and high vertical dilution of precision 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 
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𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 
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, and Z is the normalization constant. Compared with the

approximation method based on KL divergence minimization, the proposed method based on
multi-Gaussian approximation with second-order Taylor series expansion greatly reduces the
complexity of approximate calculation. When b(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) is approximated to a Gaussian function b̂(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n),
each node only needs to send its own position vector and covariance matrix to its neighbor nodes,
and the communication overhead is much lower than that of the particle message-based method.
In addition, since each node has three parameters to be estimated, the network is required to include at
least three anchor nodes. The flow of the M-VMP localization algorithm (Algorithm 1) is as follows:

Algorithm 1: M-VMP joint estimation algorithm

Initialization:
Initialize node location distribution
fi,0p

(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 
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i,0
)

Location estimation:
for n = 1 to N (time index) do

Nodes i ∈ C
1) Compute covariance V
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
of belief b̂

(
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of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
)

according to (32)

2) Compute mean Êzi,n of belief b̂
(
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𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
𝐸𝔃𝑖,𝑛 Mean of belief 𝑏(𝔃𝑖,𝑛) 

𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
Weight of the 𝑀-th 

Gaussian distribution 

𝑭(𝔃𝑖,𝑛) 
Fisher Information Matrix 

(FIM) of 𝔃𝑖,𝑛 
CRLB(𝔃𝑖,𝑛) 

Cramer-Rao Lower 

Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
)

according to (33)
3) Broadcast means and variances of belief b̂

(

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

Table 1. List of symbols. 

Symbol Meaning Symbol Meaning 

𝑆𝑖,𝑛 Set of neighbor anchor nodes 

of node 𝑖 at time 𝑛 
𝐶𝑖,𝑛 

Set of neighbor nodes 

to be located of node 

𝑖 at time 𝑛 

𝒙𝑖,𝑛 
Position vector of node 𝑖 at 

time 𝑛  
𝑡̃𝑖,𝑛 

Measurement value of 

local clock of node 𝑖 

at time 𝑛 

𝑇𝑛 Real time value at time 𝑛 𝑎𝑖,𝑛 
Slope of local clock of 

node 𝑖 at time 𝑛 

𝑎𝑖𝑗,𝑛 Relative slope of local clock 
offset between nodes 𝑖, 𝑗 𝑁𝑖,𝑛 

Set of neighbor nodes 

of node 𝑖 at time 𝑛 

𝜌̃𝑖𝑗,𝑛 Range measurement between 

node 𝑖,𝑗 at time 𝑛 
𝜔𝑖𝑗,𝑛 Measurement noise of 

𝜌̃𝑖𝑗,𝑛 

σ𝑑
2  Variance of 𝜔𝑖𝑗,𝑛 𝜁𝑖𝑗,𝑛 NLOS error of 𝜌̃𝑖𝑗,𝑛 

𝛹𝑛 Set of all communicable node 

pairs (𝑖, 𝑗) at time 𝑛 
𝛩𝑛 

Set of all node pairs 

(𝑖, 𝑗) with NLOS error 

at time 𝑛 

𝒙𝑛 
Position vector of all nodes at 

time 𝑛 
𝒂𝑛 

Clock offset slope of 

all nodes at time 𝑛 

𝒗𝑖,𝑛 Average velocity of node 𝑖 

from time 𝑛 − 1 to time 𝑛 
𝜔𝑖,𝑛 Measurement noise of 

𝒗𝑖,𝑛 

σ𝑖,𝑛
2  Variance of 𝜔𝑖,𝑛 𝔃𝑖,𝑛 Vector to be estimated 

of node 𝑖 at time 𝑛 

𝔃̂𝑖,𝑛 Estimation result of node 𝑖 at 

time 𝑛 
𝝆̃𝑛 

Range measurement 

in all node pairs 

(𝑖, 𝑗) ∈ 𝑉𝑛 at time 𝑛 

𝜻𝑛 NLOS error in all node pairs 

(𝑖, 𝑗) ∈ 𝛩𝑛 at time 𝑛 
𝓧1:𝑛,𝓐1:𝑛, 𝓟1:𝑛, 𝓑1:𝑛 

Vector sets of 

𝒙𝑛, 𝒂𝑛, 𝝆̃𝑛, 𝜻𝑛 from 

time 1 to time 𝑛 

𝜇𝑓𝑖𝑗,𝑛→𝔃𝑖,𝑛(𝔃𝑖,𝑛) 
Message send from 𝑓𝑖𝑗,𝑛 to 

𝔃𝑖,𝑛 
𝑏(𝔃𝑖,𝑛) Belief of variable 𝔃𝑖,𝑛 

𝐹(∙) Confluent Hypergeometric 

Function of the First Type 
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𝑉𝔃𝑖,𝑛 Covariance of belief 𝑏(𝔃𝑖,𝑛) 𝜂𝑀,𝑖𝑗 
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Bound of 𝔃𝑖,𝑛 

2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n
)
, and receive the mean

and covariance matrix of location variables of neighbor nodes
4) Estimate location information of node i according to MMSE principle
5) Update location information and form messages µ
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n→ fi,n+1

end parallel
end for

4. Simulation Analysis and Test Results

In this section, Cramer-Rao Lower Bound (CRLB) of
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n is derived first, then the performance of
the proposed joint algorithms is analyzed through simulation.

4.1. CRLB Lower Bound of
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for n=1 to N (time index) do 

 Nodes 𝑖 ∈ 𝐶 in parallel: 

  1) Compute covariance 𝑉𝔃𝑖,𝑛 of belief 𝑏̂(𝔃𝑖,𝑛) according to (32) 

2) Compute mean 𝐸̂𝔃𝑖,𝑛 of belief 𝑏̂(𝔃𝑖,𝑛) according to (33) 

  3) Broadcast means and variances of belief 𝑏̂(𝔃𝑖,𝑛), and receive the mean 

and covariance matrix of location variables of neighbor nodes 

4) Estimate location information of node 𝑖 according to MMSE principle 

  5) Update location information and form messages 𝜇𝔃𝑖,𝑛→𝑓𝑖,𝑛+1 

 end parallel 

end for 

 

4. Simulation Analysis and Test Results 

In this section, Cramer-Rao Lower Bound (CRLB) of 𝔃𝑖,𝑛 is derived first, then the performance 

of the proposed joint algorithms is analyzed through simulation. 

4.1. CRLB Lower Bound of 𝓏𝑖,𝑛 

For node 𝑖, the Fisher Information Matrix 𝑭(𝔃𝑖,𝑛) can be derived as: 

𝑭(𝔃𝑖,𝑛) = 𝐀𝑖𝑑𝑖𝑎𝑔(… , σ𝑑
2 , … )𝐀𝑖

T, (34) 

with 

𝐀𝑖,𝑛 = [… , 𝒖𝑖𝑗,𝑛, … ], 𝑗 ∈ 𝑵𝑖,𝑛 (35) 

𝒖𝑖𝑗,𝑛 =
1

𝜌𝑖𝑗,𝑛
[

𝑥𝑖,𝑛 − 𝑥𝑗,𝑛
𝑦𝑖,𝑛 − 𝑦𝑗,𝑛
𝑐𝑇𝑎𝑖𝑗,𝑛

], (36) 

and CRLB of 𝔃𝑖,𝑛 is CRLB(𝔃𝑖,𝑛) = 𝑭
−1(𝔃𝑖,𝑛). 

4.2. Simulation Scenario and Result Analysis 

To analyze the performance of the proposed method, we have built a simulation scenario 

according to the real scene of the zone 1, underground parking lot, Beijing University of Posts and 

Telecommunications. The real scene is shown in Figure 3a and the top view is shown in Figure 3b. 

According to the actual size of zone 1, the simulation scene is a rectangular area of 20 × 24 m. By 

default, the number of anchor nodes is 4, the number of nodes to be located is 20 and the initial 

position distribution of nodes in the site conforms to the uniform distribution. In order to limit the 

communication area of nodes to less than 1/2 of the whole simulation area, the maximum 

communication distance is set to 10 m. The performance of the proposed method is obtained in the 

line of sight (LOS) environment, except the last simulation, which shows localization accuracy with 

different NLOS probability. All simulation results are the average of 1000 independent runs. 

i,n

For node i, the Fisher Information Matrix F(
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2. System Model 

The anchor nodes are always deployed at the same height, and high vertical dilution of precision 

means the system cannot provide reliable vertical positioning results [20], which is usually obtained 

by other sensors [21]. So, in this paper, a 2D dynamic wireless network is considered, which includes 

the anchor node with known location and synchronized local time, and the node with inaccurate 

location information and local time out of sync. The position vector of node 𝑖 at time 𝑛 is 𝒙𝑖,𝑛 =

[𝑥𝑖,𝑛, 𝑦𝑖,𝑛]
𝑇

, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 

between node 𝑖 and the external standard clock is 𝑎𝑖,𝑛 = (𝑡̃𝑖,𝑛 − 𝑡̃𝑖,𝑛−1)/(𝑇𝑛 − 𝑇𝑛−1). The local clock 

of all anchor nodes is synchronized with the external reference clock, i.e., 𝑎𝑖,𝑛 = 1∀𝑖 ∈ 𝑆. At time 𝑛, 

node 𝑖 has neighbor nodes set as 𝑁𝑖,𝑛, where neighbor anchor node set is 𝑆𝑖,𝑛 , node set to be located 

is 𝐶𝑖,𝑛, and all communicable node pairs (𝑖, 𝑗) constitute communicable node set 𝛹𝑛. 

i,n) can be derived as:
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, and the measured value of local clock 𝑡̃𝑖,𝑛 = 𝑡𝑖(𝑇𝑛). The slope of local clock at time 𝑛 
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i,n) = Aidiag
(
. . . , σ2

d, . . .
)
AT

i , (34)

with
Ai,n =

[
. . . , ui j,n, . . .

]
, j ∈ Ni,n (35)

ui j,n =
1
ρi j,n




xi,n − x j,n
yi,n − y j,n

cTai j,n



, (36)

and CRLB of
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i,n).

4.2. Simulation Scenario and Result Analysis

To analyze the performance of the proposed method, we have built a simulation scenario
according to the real scene of the zone 1, underground parking lot, Beijing University of Posts and
Telecommunications. The real scene is shown in Figure 3a and the top view is shown in Figure 3b.

According to the actual size of zone 1, the simulation scene is a rectangular area of 20 × 24 m.
By default, the number of anchor nodes is 4, the number of nodes to be located is 20 and the
initial position distribution of nodes in the site conforms to the uniform distribution. In order to
limit the communication area of nodes to less than 1/2 of the whole simulation area, the maximum
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communication distance is set to 10 m. The performance of the proposed method is obtained in the
line of sight (LOS) environment, except the last simulation, which shows localization accuracy with
different NLOS probability. All simulation results are the average of 1000 independent runs.

Figure 3. (a) The real scene of the underground parking lot. (b) Simulation scenario. Zone 1 is the
simulation area.

The initial position measurement error of the anchor node conforms to the Gaussian distribution
with the standard deviation of 0.1 m. The initial position measurement error distribution of the node
to be located is composed of Gaussian distributions with the standard deviation of 10 m. According to
the performance of the crystal oscillator used in the hardware (TG5032CFN), the clock drift of the node
to be located conforms to uniform distribution from [−1 ppm, 1 ppm], that is, the maximum distance
measurement error caused by the clock drift between adjacent time (1 s) is 300 m. In the process of
simulation, anchor nodes remain stationary, and the velocity of the node to be located is consistent
with the uniform distribution of the maximum value of 3 m/s, and the direction is random every
time step. The position movement measurement of the node conforms to the Gaussian distribution
with the standard deviation of 1 m. The default process is 15 s, 10 iterations per second. Root mean
square error (RMSE) and cumulative distribution functions (CDF) are used to measure the performance
of algorithms.

In Figure 4a, the relationship between localization RMSE and initial location error is shown.
The CLOC method [16] treats the uncertainties of nodes’ positions and clock offsets as measurement
noise and thus suffers performance degradation. The SPAWN [26] method is implemented by using
4000 particles to represent the messages on FG. The localization accuracy of the VMP method [17]
and the proposed M-VMP method are better than the CLOC method, but slightly worse than the
SPAWN method.

Figure 4. (a) Root mean square error (RMSE) of position error with different initial location error.
(b) Cumulative distribution function (CDF) of position error with different initial location error.
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The position error of VMP and the proposed M-VMP method are compared in Figure 4b.
The cumulative distribution function of the VMP method and the proposed method under different
initial position errors is given in Figure 4b. It is found that the probability of position error less than
1.6 m of the two methods under different initial position errors is basically the same, while the proposed
method has a better effect of restraining position error. The result is consistent with the conclusion in
Figure 4a.

Figure 5 shows the relationship among the clock drift slope, RMSE of localization accuracy and
the number of iterations, respectively. It is seen that three methods converge in the finite iterations,
which proves that the algorithms are feasible. Compared with the VMP method [17], the proposed
method improves the convergence speed of localization and time synchronization by adding time
synchronization parameters into the localization process.

Figure 5. (a) RMSE of the clock drift slope versus iterations and (b) RMSE of position error
versus iterations.

In Figure 6, the CDF of the proposed method under different values of the number of Gaussian
distribution M are compared. It is seen that the localization accuracy (3σ) of the proposed method is
better than that of the VMP method when M is greater than 2. With the increase of M, the localization
accuracy is also improved.

Figure 6. CDF of position error with different values of the number of Gaussian distribution M in line
of sight (LOS) environment.
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Figure 7 reflects the influence of communication distance on the localization accuracy of the
proposed method under the same node density. Obviously, localization accuracy increases with the
increase of communication distance, which increases the connectivity of nodes and the redundancy
of information. At the same time, it can be seen that the improvement of localization accuracy is
not obvious when the communication distance is 20 and 30 m. The difference of node connectivity
between those two conditions is little, so the localization accuracy cannot be greatly improved.
Because the communication distance is proportional to the transmission power of the node, it is
necessary to determine the appropriate communication distance in practical application by considering
the localization accuracy, node power consumption and other indicators.

Figure 7. CDF of position error with different communication distance.

In the simulation of Figure 8, in order to amplify the influence of node density on positioning
accuracy, we reset some of the simulation parameters, and set the communication distance to 15 m
and the variance of the distance observation and the initial position error of the node to be located
to 20 m2. It can be seen from Figure 8 that as the density of nodes increases, the overall positioning
accuracy is decreasing. However, when the density of nodes to be located is too large, the positioning
error will increase. At the same time, when there are more nodes to be located, the speed at which the
positioning error decreases with more anchor nodes also decreases. This is due to the increase in the
density of nodes to be located, and the overall weight of the information contained in neighboring
nodes to be located in the proposed method becomes larger. When the number of anchor nodes is
insufficient, the increase of neighboring nodes to be located helps to improve the positioning accuracy,
but the effect is limited.

Figure 8. Relationship between position error and nodes’ density.

234



Sensors 2020, 20, 6315

In Figure 9, the relationship between the RMSE of localization accuracy and NLOS occurrence
probability of the VMP method and the proposed method is compared. Furthermore, it compares
with the method that only deals with LOS. It is seen that both the VMP and the proposed method
effectively suppress NLOS error. Because the two-way NLOS parameters between nodes are added in
the proposed method, the NLOS error is better suppressed.

Figure 9. (a) RMSE of position accuracy with different NLOS probability. (b) CDF of position error
with different NLOS probability.

4.3. Computational Complexity and Communication Overhead Analysis

Because the proposed method in this paper and the comparison methods are distributed algorithms,
the computation and communication are done by the nodes independently, so only one node’s time
complexity and communication overhead need to be considered in the analysis.

The time complexity is evaluated by the number of operations in local computing, and the
communication cost is evaluated by the number of information parameters broadcast by nodes.
The time complexity of the CLOC method is related to its neighbor nodes number Ninb, and its
communication cost is 3·O(1). The SPAWN method is based on particles. When the number of
particles in each message is Np, its time complexity is O

(
Np + N2

p·Ninb
)
, and its communication cost is

O
(
Np

)
+ 2·O(1). Compared with the VMP method, the number of Gaussian messages in the proposed

method is M times, and every message from neighbor nodes needs to be processed once. The time
complexity of dimension reduction depends on Ninb, so its time complexity is O(M·Ninb) + O(Ninb).
In the proposed method, nodes transmit a localization vector including xi,n, yi,n, ai,n and a covariance
matrix, so the communication cost is 3O(M) + O(1). The computational complexity, run-time and
communication Overhead of the three algorithms is shown in Table 2.

Table 2. Comparisons of different methods for each node at each iteration.

Method Computational
Complexity Run-Time Communication

Overhead

M-VMP (proposed method) O(M·Ninb) + O(Ninb) 84.449 ms 3·O(M) + O(1)
CLOC O(N2

inb) 288.500 ms 3·O(1)
SPAWN O(Np + N2

p ·Ninb) 5469.089 ms O(Np) + 2·O(1)

4.4. Future Research Directions

In the next stage of research, we will mainly focus on the following aspects: First, analyze the
performance of the positioning and simultaneous joint estimation problem and its influencing factors
in principle. Secondly, expand the positioning scene from 2 dimensions to 3 dimensions, and reduce
the problem of positioning accuracy degradation in dense scenes with nodes to be located through
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methods such as signal quality screening. Finally, the proposed algorithm will be implemented based
on the hardware platform, and the measured results will be compared with the simulation results to
further improve the performance of the proposed method.

5. Conclusions

This paper presented a M-VMP-based TOA localization and time synchronization joint estimation
algorithm for mixed LOS and NLOS environments. Firstly, according to the VMP method, a message
propagation model based on a factor graph was constructed for localization and time synchronization.
Owing to the existence of nonlinear terms, it is difficult to represent the message in a closed form,
so Taylor expansion was used for the linearization of nonlinear terms. Moreover, to reduce the
communication cost, all messages were expressed in the form of multi-Gaussian distribution, and only
the mean value, covariance and weight of each Gaussian distribution need to be transferred in the
message transmission. The simulation results showed that the accuracy and convergence speed of the
proposed method were close to that of SPAWN method, and the time complexity and communication
cost were greatly reduced: the run-time was only 1.5% that of SPAWN.
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Abstract: Wayfinding and navigation can present substantial challenges to visually impaired (VI)
people. Some of the significant aspects of these challenges arise from the difficulty of knowing
the location of a moving person with enough accuracy. Positioning and localization in indoor
environments require unique solutions. Furthermore, positioning is one of the critical aspects of
any navigation system that can assist a VI person with their independent movement. The other
essential features of a typical indoor navigation system include pathfinding, obstacle avoidance,
and capabilities for user interaction. This work focuses on the positioning of a VI person with enough
precision for their use in indoor navigation. We aim to achieve this by utilizing only the capabilities of a
typical smartphone. More specifically, our proposed approach is based on the use of the accelerometer,
gyroscope, and magnetometer of a smartphone. We consider the indoor environment to be divided
into microcells, with the vertex of each microcell being assigned two-dimensional local coordinates.
A regression-based analysis is used to train a multilayer perceptron neural network to map the inertial
sensor measurements to the coordinates of the vertex of the microcell corresponding to the position
of the smartphone. In order to test our proposed solution, we used IPIN2016, a publicly-available
multivariate dataset that divides the indoor environment into cells tagged with the inertial sensor
data of a smartphone, in order to generate the training and validating sets. Our experiments show
that our proposed approach can achieve a remarkable prediction accuracy of more than 94%, with a
0.65 m positioning error.

Keywords: indoor; positioning; visually impaired; deep learning; multi-layered perceptron;
inertial sensor; smartphone

1. Introduction

Accessible location-based information for navigating in a complex indoor environment is a need
of every individual [1]. Navigation in complex infrastructures, such as shopping malls, airports,
and hospitals, is aided by the proliferation of visual maps, digital maps, and kiosks. However,
visually impaired (VI people) can find it hard to use such aids effectively. Globally, 285 million people
are estimated to be visually impaired. Amongst them, 39 million are legally blind. Mobility and being
able to move around independently can pose significant challenges for a VI person [2].

When travelling in a new environment or public buildings, VI people may require directional
assistance or some form of navigation aid. A robust outdoor navigation solution is provided
by the Global Positioning System (GPS). However, the use of GPS in an indoor environment is
not always possible, as the satellite signals that they rely on cannot penetrate most walls [3].
Special technologies—such as raised line maps, i.e., tactile maps and signage information in Braille—can
be of assistance to a VI person in a complex environment [4]. However, not all VI individuals can read
and understand the tactile maps [5]. Apart from that, the tactile maps have limitations, including
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static information about the changing surroundings, and the difficulty of a VI person to position
themselves [6]. A white cane is a luminous physical aid that allows a VI person to scan their
surrounding for obstacles. However, it fails to identify the location of the individual. The development
of innovative modern technologies, such as the Internet of Things and artificial intelligence, has opened
up possibilities for providing an interactive system to assist a VI person to independently navigate in
an indoor environment.

The lack of a robust technology hinders the navigation of a VI person due to several issues
regarding the layout complexity, accessibility, connectivity, and temporal changes of the environment [7].
Technologies need to ease the processes of VI people’s navigation by solving challenging issues like
the provision of suitable indoor positioning, the tracking of the moving users, obstacle avoidance,
and pathfinding [8]. Currently, a variety of wireless technologies are available for indoor positioning
and navigation, relying on ZigBee, Radio Frequency Identification (RFID), Beacon, Bluetooth,
ultra-wideband (UWB) radio, magnetic fields, and pedestrian dead reckoning (PDR) [8,9].

In our previous works, we have reported on the provision of solutions for the movements of
VI people in a smart environment using interconnected IoT devices [10]. A robust framework is the
utilization of Bluetooth low energy beacon sensors in the building in order to help a VI person navigate
indoors. A developed algorithm, DynaPATH, generates VI-friendly safe routes to a destination,
considering significant vision constraints, such as walking along the walls, and the creation of a straight
path with minimal turns. Unlike solutions that choose the shorter path [11], DynaPATH proposes a
safe path considering the limitations of the VI people [12]. However, a VI person may find difficulty
in positioning him/herself in an open space—such as a big hallway—due to the unavailability of
external physical devices. Due to the possible loss of external signals, the system needs to maintain
the position of the VI people when other external devices are out of range. This paper addresses this
positioning issue and investigates the use of inertial sensors to provide a complementary solution that
can be integrated into our work. The contribution of this article is to provide a self-directed, accurate,
and audio-aided standalone positioning system considering the constraints of a VI person. The main
idea behind the work is to demonstrate the minimum infrastructure usage that can help VI people to
overcome the challenge of positioning themselves independently between the landmarks.

This paper proposes a deep learning approach to the positioning of a VI user in an indoor
environment with a smartphone as inertial guidance. Each room is given a room identifier. The indoor
area is divided into microcells, each of which is assigned with a unique region/place identifier that acts
as a recognition layer. The vertex of each microcell has 2D (x, y) local coordinates. Figure 1 shows
the representation of a sample floor plan that has undivided and divided areas. The solid black lines
represent the walls of the indoor environment, and the obstacles in the rooms are represented as solid
filled rectangles. The indoor space is divided into grids of cells, as depicted in the lower part of the
Figure. The shaded grey rectangle is a unique microcell with 4 vertices. The local coordinates are
allocated manually and are stored for each vertex in the building, resembling the latitude and longitude
used in a GPS.

In this paper, we propose to map the inertial sensor measurements of a smartphone into position
coordinates using the regression-based training of a deep neural network (DNN). We report the results
of various experiments in order to check the suitability of our proposed approach. Our experiments
used a publicly available dataset that contains records that resemble the walking and movement data
of a VI person, e.g., walking straight along the walls. The novelty of our reported approach stems from
the use of regression-based multilayer perceptron (MLP) neural network training to accurately find the
position of the VI person in a building.

After the validating experiments, we developed an application for the indoor positioning of a VI
person. Figure 2 shows the interactions between the application residing in a smartphone and the
pre-trained model established by a deep neural network. The inertial sensors of a smartphone provide
the inputs to the deep neural network. The MLP will then use these measurements to estimate the
corresponding position. The app informs the user of their relative position through an audio interface.
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Our contributions in the article, summarized below, aim to provide a robust independent inertial
guidance tool to position a VI person in an indoor environment:

• The work proposes an audio assistant app, to be developed and deployed on a smartphone,
that helps VI people move independently in a complex building.

• To the best of the author’s knowledge, this work is the first to propose and recommend
regression-based neural network training for the estimation of the position of a VI person
moving in an indoor environment with a smartphone.

• We experimented with a deep neural network model to predict the position of an indoor user as a
complementary system to our existing navigation framework using external sensors [10,12].

The remainder of this paper is organized as follows. Section 2 discusses the related research
work that sought to solve the indoor positioning problem. The multivariate IPIN2016 dataset, with its
usability to evaluate the 2D position of an indoor user, is introduced in Section 3. Furthermore,
in Section 4, different versions of the regression-based deep neural network trainings are presented
for experimentation. It discusses the deep network structure with the hyperparameters used in the
experiments. Section 5 discusses the experimental platform and selection of deep network architecture
with suitable hyperparameters, considering the prediction accuracy and the localization error. Finally,
conclusions are drawn in Section 6, which also presents the limitations.
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2. Background and Motivations for This Work

For a VI person, the localization error needs to be within a few centimetres in order to locate a
user in the right room within a building. The system should also be able to estimate and update the
location of the moving user quickly. The literature review of this work focuses on prediction accuracy,
positioning error, and the usage of technologies that can use minimal resources.

The existing indoor navigation and positioning technologies for VI people can be categorized
as being vison based, non-vision based, and based on IoT devices [8]. However, their popularity
differs for inaccuracies due to indoor disturbances, availability, energy consumption, the cost of
installation, and being high maintenance [13]. Considering these challenges, the performance of
indoor location-based services highly depends on the appropriate choice of technology and approaches.
Vison-based positioning technologies require the receivers and the moving object or person to be in the
line of sight (LOS) to estimate the position measurements [14]. This category involves a vision-based
camera and infrared ultrasonic systems [15]. Guerrero [16] suggested a micro navigation system
using an infrared camera, Wiimotes, and an augmented white cane to detect the user’s position and
movement. This system requires massive resources, and the computation operation needed to map
and position the user is too great.

Non-vision-based positioning technology includes narrow and wideband wireless radio frequency
and magnetic field-based technologies [14]. Indoor positioning has been attempted using WiFi (Wireless
Fidelity), infrared, RFID, ultrasound, Bluetooth, and a combination of the technologies [17,18]. A Radial
based network including Infrared and RFID has acceptable localization errors. However, it suffers
from high costs, as it requires additional hardware and needs offensive calibration processes [15].
Ultrasound waves are used to estimate and track the position of a user in ultrasound-based systems.
However, the blockage of the line of sight might result in incorrect measurements [19]. SUGAR [20]
uses multiple UWB tags that achieve suitable localization errors for VI people; up to 38 cm. However,
installing the UWB system is expensive, and the positioning is purely based on a UWB tag. Nakajima has
proposed the use of visible light communication (VLC) and geomagnetic sensor to position and localize
the user in an indoor environment [21]. The system provides localization errors up to 1 to 2 m, which are
not sufficient for VI people.

Several attempts have been made to develop indoor navigation systems; however, not many of
them are successfully deployed. NavCog is a smartphone-based turn-by-turn navigation system for
blind users using a network of Bluetooth low energy (BLE) beacons, which uses a K-nearest neighbour
(KNN) algorithm approach [22]. The system achieves precise localization information. However,
the solution demands a rerouted path to the destination due to missed turns. LowViz [23] is the latest
mobile application to assist the visually impaired in indoor navigation. The system uses a wide range
of technologies—including sensors, WiFi and Bluetooth low-energy beacons—to guarantee a low
localization error. However, context-aware real-time pathfinding is yet to be included in the system.
The app may fail when the signals from external devices fail. A variety of newly-developed technologies
are being generated and tested. Still, the designs suffer from limitations in their localization error,
hardware cost, availability, and lack of additivity.

Recently, there has been considerable new interest in indoor localization techniques, driven by the
proliferation of smartphones and other mobile devices. Traditional approaches, such as WiFi-based
fingerprinting or distance-based methods, have low prediction accuracy due to shallow learning [24].
In order to handle the shallow learning problem, the deep neural network (DNN) is implemented for the
self-extraction of appropriate low and high-level features of given raw data [25–27]. DNN approaches
have shown good performance against signal fluctuations, noise effects, and time-consuming manual
tuning [28]. The deep networks dynamically learn from the environment by mapping noisy and
complex input data to the corresponding output [29]. To the best of the authors’ knowledge, not enough
work has been done to provide deep learning-based positioning for VI people. Due to limitations in
the positioning system for VI people, we have reviewed indirectly applicable positioning using WiFi,
inertial sensors, and Channel State Information (CSI).
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A novel indoor classification approach [24] was proposed with WiFi fingerprints to predict the
correct floor and locations using a deep neural network. The work in [30] used heterogeneous network
data, including WiFi and cellular networks with recurrent neural network algorithms, with a high
average error of 9.19 m. The positioning error is approximately 9 m, which is not suitable for a VI
person. A recurrent neural network (RNN) based indoor positioning solution [31] was applied to RSS
data, exploiting the sequential correlation of RSS data. The work achieved an average localization
error of 0.75 m, with 80% of the errors being below 1 m. The integration of Linear discriminate analysis
(LDA) and MLP based on RSS was proposed in [28]. The approach has a 99.15% prediction accuracy,
with a 0.98 m positioning error. RSS-based approaches have high variability at a fixed position in each
time. Furthermore, RSS-based localization systems have coarse information due to multipath channels
from different antennas. RSS-based approaches usually have 1–3 m of localization error, which it is
difficult to further improve [32].

A localization technique based on CSI fingerprints collected using a single access point was
proposed in [33]. It used a principal component analysis (PCA) feature extraction technique with
different positioning errors in different rooms, varying between 0.6 m and 1.08 m. In [26], the authors
compared the results of positioning using MLP and a convolutional network with RSS and CSI data.
The RSS data could achieve an average of a 0.92 m localization error, with the highest error as 9 m.
The results with the CSI data achieved a 0.92 m positioning error, with a maximal localization of 1.92 m.
Besides WiFi network information, the magnetic field signals captured from the magnetometer are
similar to the earth’s non-constant magnetic field [34]. Each building has its unique magnetic field,
with some local anomalies. Thus, the static magnetic field can be utilized in indoor localization and
navigation systems [34–36]. An RNN deep neural network [36] approach applied to magnetic signals
indoors achieved a positioning localization error of 1.062 m, compared to an average error of 3.14 m
with BLE fingerprinting results.

Despite extensive research, the algorithms and technologies mentioned above are still facing issues
related to accuracies, infrastructure, and computational complexity. Most of the indoor solutions focus
on the use of additional high-computing devices, including beacons and RFIDs. The decrease of the cost
and size of the sensors and spurring technologies have resulted in smartphones as a useful and popular
IoT device. Modern smartphones have several such sensors, including accelerometers, gyroscopes,
magnetometers, GPS, gravity sensors, barometers, and ambient light sensors [37]. Considering the
need of a VI person for indoor navigation, we have experimented with the use of the smartphone as
navigation assistance in an indoor space.

From the related works studied, most of the positioning systems have focused on solving the
underlying issue as a classification problem using WiFi signals by providing room-specific information.
We aim to mitigate the infrastructure dependency to position a VI person by proposing the use of a
commonly-carried device: a smartphone.

3. Characteristics of the Used Dataset

The use of an appropriate dataset for the training and testing of the model is an essential step in a
deep neural network. Despite many works trying to solve the indoor localization issue, there is a lack
of public datasets with inertial sensor data for a controlled environment. With the limited number of
datasets, we have used a multivariate IPIN2016 dataset [38] in our work to test the proposed approach.
Though the pedestrian collecting the inertial sensor data is not visually impaired, the movement of the
user has similar steps, including walking along the wall and walking at the same pace.

Like our design, the dataset splits the indoor environment into cells mapped with the inertial
sensor data of a smartphone. This Section discusses the dataset and its usability for a controlled
indoor environment for VI people. The dataset has different types of movement fingerprints,
including magnetic readings from smartphone/smartwatches in the divided spaces. Magnetic readings
are data captured by the magnetometer, accelerometer, and gyroscope of a smartphone/smartwatch.
The multivariate IPIN2016 dataset has captured the records of the moving user in 325 different
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places [38]. This dataset includes 36,795 continuous samples over two scenarios of one hour at 10 Hz,
which resulted in 6500 discrete samples in 325 places.

The dataset was created on the first floor of the Institute of Information Science and Technologies
(ISTL), inside the Italian National Council (CNR) building. The dataset covered movements on a
surface measuring 185.12 m2. Figure 3 depicts the overall map of the building with the top view and
trajectory path [38]. The top left corner of the Figure is the top view of the floorplan. The middle
portion of the Figure is the highlighted corridor of the given floor.
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Figure 3. Indoor Floorplan with the top view and trajectory path from iPIN2016 [38].

Furthermore, the trajectory path followed by the users is shown in the bottom part with dots.
Each dot in the map corresponds to a detection point, and each dot is 0.6 m from another. The dots
represent the different locations at which two users acquired inertial sensor data on their smart devices.
As such, the combination of each four dots occupies an area of 0.6 m × 0.6 m. Due to the fixed size of
the microcell in the given dataset, our experiments use the same grid size. However, there is a further
scope to observe the effects of different grid sizes on the results.

The dataset consists of two scenarios with a combination of zigzag and straight path trajectories
performed by two different users holding a smartphone, in order to cover the entire target area.
The walking speed of each user was 0.6 m/s on average. Each sample was collected roughly every
100 ms, and the collection time was short. The dataset is a unique combination of both WiFi signals and
the inertial sensor data of both a smartphone and smartwatch. This study does not consider data from
the WiFi access points and the smartwatch data. During the acquisition, the smartphone was kept at
the chest level, with the screen facing up. Every time the user was at a specific location, the device
recorded the following data at each dot location.

The recorded data includes the following readings at each dot, represented as a PlaceID with their
local coordinates (x, y) at a given timestamp:

• X, Y, and Z-axis values of the accelerometer sensor;
• X, Y, and Z-axis values of the magnetometer;
• X, Y, and Z-axis values of the gyroscope;
• Roll, pitch, and azimuth values of the inertial sensor.
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Our work focuses on the magnetic field signals of the accelerometer and gyroscope of the
smartphone. Figure 4 represents the graphical representation of values from the x, y and z-axis of a
magnetometer. The normalized magnitude Mmag of the magnetometer is calculated by Equation (1).

Mmag =
√

Mx2 + My2 + Mz2 (1)

where Mmag is the normalized magnitude of the magnetometer. Mi is the value of the ith axis of the
3-axis accelerometer.
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Figure 4. Graphical representation of the x, y, and z coordinates and magnitude of the magnetometer
readings.

Figure 5 shows the magnetic field heatmap in each location on the trajectory of the corridor,
followed by user 1. The number represented in each cell of the grid on the heatmap is the normalized
magnitude, as evaluated in Equation (1). The value of the magnitude varies from 21 to 68 for the given
dataset. The indoor magnetic field may be distorted over time locally because of the steel-reinforced
concrete in the structures. However, the study in [39] reveals that the magnetic field’s distortion pattern
remains static.
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4. Deep Learning-Based Positioning

This Section discusses the detailed deep neural network model proposed to predict and evaluate
the position of a moving user in a controlled environment. The MLP is characterized as fully
connected layers, where each perceptron relates to every other perceptron. The MLP model is a class
of feedforward artificial network that defines a mapping function, as shown in Equation (2) [29]:

y = ψ




n∑

i=1

ωixi + b


 = ψ

(
wTx + b

)
(2)

where y is the target, w denotes the vector of the weights, x is the vector of the inputs, b is the bias,
and ψ is a non-linear activation function.

In this work, we propose to use a regression-based training algorithm to generate the MLP weights,
mapping the inertial sensor data of a smartphone into the coordinates of the phone.

In this case, the inputs of the MLP correspond to the 3-axis inertial sensor measurements.
The output layer delivers the coordinates of a point in two-dimensional space: x and y. Figure 6
represents the MLP-based DNN with three hidden layers consisting of 128, 64 and 128, neurons used
in this work.
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In order to mitigate the effect of unstable gradients with the given neural network, an additional
batch normalization layer was introduced to perform an optimization on the input layers. The batch
normalization layer works by performing a series of operations on the incoming input data [29].
For equal distribution amongst the input of the hidden layers and faster convergence, we adopted the
batch normalization layer between the hidden layers. The weights of the hidden layer are updated by
a reduction in the loss function L, as expressed in Equation (3) using the back-propagation algorithm.

L =
1
m

m∑

i=1

(yi− f (xi))2 (3)

where m represents the number of samples of input features, and yi represents the actual coordinates
of the ith sample. f (xi) is a function to predict the position from the ith sample of the input features.

The data is split into two subsets to train the MLP and to validate the learning. The testing of the
performance involves the use of an independent dataset that was not used for the training of the model.
The size of the dataset in our simulation is comparatively small and intricate. Therefore, we used the
K-Fold Cross-validation technique. The K-fold method is a resampling procedure used to evaluate a
deep learning model based on a limited number of data samples [40]. It is popular because it is a less
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biased or a less optimistic estimate of the model than a simple train/test split. This technique involves
the random division of a dataset into K groups, or folds, of approximately equal size. The first blue fold
is treated as validation data, and the model is trained on the remaining K-1 training data, as depicted
in the first of the K iterations in Figure 7. A validation fold is used to monitor the performance during
training and is not used in training the model. In the second iteration, the second fold is used as
validation data, while the rest are used in the training process, and so on.
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The distribution of the training and validation data in the experiments is with k = 5 in the
K-fold cross-validation technique. The dataset is equally distributed in five parts, including the first
7359 records as the validation data, and the remaining 29,436 as training data in the first iteration.
Five iterations are performed over the total samples each time, in which 7359 data samples are treated
as validation, and the remaining are treated as training data.

The training data is used in each iteration with fixed hyperparameters. Hyperparameters are the
higher-level properties of the data model that improves the performance of the model and conveys the
capacity of the model to learn the complexity of the data [41]. In order to improve the performance of the
model, we involved hyperparameters, including several layers, epochs, a mini-batch size, an activation
function, a dropout, regularization, and optimizers [42]. The experimental model was implemented in
python, with Keras and TensorFlow libraries with different settings and hyperparameters, as listed in
Table 1.

Table 1. The experimental model with the hyperparameter values.

Parameter Hyperparameter Values in Proposed Deep
MLP

Software Python, Keras, TensorFlow
Training data 29,436

Validation data 7359
Epochs 60 to 140

Batch size 20, 40, 60, 80

Layers with Hidden neurons
(with batch normalization)

3 layers—128, 64 and 128 neurons
5 layers—256, 128, 64 and 128 and 256 neurons

7 layers—512, 256, 64, 128, 256 neurons
Drop out rate 0.2 to 0.8

Activation Selu, elu, softplus, relu
Optimizer Adam, adamax, rmsprop, adagrad

Loss function MAE, MSE, RMSE
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The experiments were performed with different hyperparameters settings making a different
version of the MLP model. Furthermore, the training data and labels are tuned to select the final model.
The training data is tuned with the best hyperparameters and learning algorithms. The next Section
discusses the experimental results of the different settings with the best-suited hyperparameters.

5. Setup of the Experiments and Analysis of the Results

The experimental platform used to the test the performance of the proposed neural network is
presented in Section 5.1, and the performance metrics and evaluation results are discussed in Section 5.2.

5.1. Experimental Platform

Figure 8 represents the experimental platform in the context of the estimation of the position of
the user using a deep MLP algorithm.
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The experimental platform expects the sequence of inertial sensor values, including the
accelerometer, gyroscope, and magnetometer from the dataset. The collected values are archived and
passed as the training set to build the model. The model expects live stream data from a smartphone.
Furthermore, the features are extracted and passed to the model for the prediction of the position.

In this work, a sequence of inertial sensor sample values from a dataset—including those from
accelerometer, gyroscope, and magnetometer for a moving user—are collected and fed as an input to
the neural network as training data. We train the neural network as a regression problem in order to
learn the 2-dimensional location of the user based on the input information. After the training, a model
is established, and it can be used to estimate a user’s location based on real-time sensor data. In order
to test the performance of the model, a test set based on the K-fold technique is used to evaluate the
prediction accuracy of the proposed model.

5.2. Performance Metrics and Evaluation

The deep learning model is implemented using python, with libraries such as TensorFlow and
Scikit-learn. The performance is measured using the mean squared distance (MAE), root mean squared
error (RMSE), and mean squared error (MSE) between the ground truth and the predicted location.
The model’s evaluation process is the assessment of the localization error and the prediction accuracy
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of a model on the multivariate IPIN2016 dataset, as described in Section 3. The MAE is the mean of the
absolute value of the errors, as shown in Equation (4).

MAE =
1
n

n∑

i=1

|PSi − SAi| (4)

The mean squared error (MSE) measures the average of the squares of the errors. It is the average
squared difference between the actual value and the estimated value, as shown in Equation (5).

MSE =
1
n

Π∑

i=1

(PSi − SAi)
2 (5)

The RMSE is a measure of the average deviation of the predicted values from the actual values.
It is used to measure the difference between the values predicted by a model and the values observed
from the modelled environment. The average localization error of the calculated distance travelled of
the proposed approach can be evaluated by calculating the root mean squared error (RMSE) as the
square root of the residuals with Equation (6):

RMSE =

√∑n
i=1(PSi − SAi)

2

n
(6)

where n represents the walking experiments conducted by each user along the given path. PSi denotes
the final location predicted by the proposed algorithm, and SAi denotes the actual final location in the
ith experiment.

We implemented three batch normalized versions of the MLP algorithm MLPv1, MLPv2,
and MLPv3 with 3, 5, and 7 layers. All three versions were implemented in order to evaluate the
performance of the best fit model, and to investigate the effects of a different number of hidden layers.
The performance metrics, including MAE, MSE and RMSE, are shown in Figure 9a. The prediction
accuracy of the model was evaluated by calculating the ratio of the number of correct prediction
occurrences to the total number of predictions. The prediction accuracy is shown in Figure 9b.
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Figure 9. Comparison of: (a) the positioning error (MAE, MSE and RMSE) and (b) the accuracy for the
number of the layers of the model.

The MAE positioning error for MLPv1 with three layers is 1.99 m, with a prediction accuracy of
88.57%. When the number of layers is increased to seven, the positioning error is reduced to 1.64 m,
with a prediction accuracy of 87.71%. The performance of the MLPv2 with five hidden layers has a
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positioning error of 0.66 m, with a prediction accuracy of 95.54%. The results show that the average
positioning error and prediction accuracy of the five layered network is better than the other two
networks. As such, we use the network with five hidden layers in the rest of this work.

A different permutation of the hyperparameter was further implemented with a 5-layered
network. As the input data is continuous and differentiating, we tested the model with non-linear
(tanh, selu, relu and softmax and elu) activation functions. In the tuning process, we applied
optimizers, including adam, adamax, rmsprop and adagrad. Table 2 shows the positioning errors for
the variously-implemented optimizers and activation functions. For each optimizer, an appropriate
learning rate was proposed. As shown in Table 1 and Figure 10a, the implementation of the adam
optimizer provides the best performance, with an average of 0.71 m MAE error and 95.5% prediction
accuracy. As such, we continued to keep the adaptive moment estimation (adam) with β1 = 0.9,
for β2 = 0.999, and ε = (10 × exp (−8)).

Table 2. Positioning error (in meters (m)) with different optimizers and activation functions.

Optimizer MAE (m) RMSE (m) MSE (m)

Adam 0.71 1.30 1.70
Adamax 0.84 1.35 1.81
Rmsprop 1.04 1.84 3.39
Adagrad 5.59 3.25 3.62

Activation MAE (m) RMSE (m) MSE (m)

relu 1.24 2.61 6.84
softplus 1.35 2.45 6.01

elu 0.92 1.85 3.45
selu 0.65 1.29 1.67
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Figure 10. Prediction error with: (a) different optimizers and (b) different activation functions.

The positioning accuracies using activation functions such as relu, softplus, elu and selu are shown
in Table 2. All of the activation functions were performed with adam optimizer. It is evident from the
results that the selu activation function outperforms the other activation functions, with a positioning
error of 0.65 m and a 94.51% prediction accuracy. Table 2 shows that the minimum positioning error is
found with the selu activation function, with 0.65 m as the MAE, 1.67 m as MSE and 1.29 m as RMSE.

From Figure 10b and Table 2, we can conclude that the selu activation function outperforms the
relu, softplus and elu activation functions.

The loss function declining curve with different epochs on the training and validation dataset is
plotted in Figure 11a,b. It clearly shows that the curve becomes stable after 60 epochs, but we continued
the observation to the 140th epoch.
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Figure 11. Training and validation (a) loss and (b) accuracy for the deep MLP model.

Figure 12 represents the best-suited regression-based deep neural network model used for the
predictions. Figure 13 represents traces of the actual position (x, y) from the IPIN2016 dataset for user 1.
Figure 14 shows the calculated predicted positions (x′, y′) using the best-suited regression MLP model.
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Figure 14. Predicted (x′, y′) position based on the deep MLP model.

The results demonstrate that the proposed model achieves a considerable prediction accuracy
of 94.51%, with a 0.65 m positioning error. The highest positioning error is not higher than 0.89 m.
The training time for the given model is approximately 16 s, and the prediction time for a given
sample, once trained, is 5 ms. Our previous work based on an improved positioning algorithm [43],
when applied on the dataset, provides an almost equal prediction accuracy of 95%. However,
the positioning error was evaluated as 1.5 to 2 m. The method proposed in [10] needs an absolute
position from additional devices, such as a those that are capable of generating beacon signals.
The variation of the error is too high compared to the proposed model. Moreover, the computation
time is almost doubled, to 10 to 12 ms.

6. Conclusions

This paper proposed a novel approach to achieve the positioning of a moving VI person as part of
an indoor navigation system. The approach is based on feeding the data from the inertial sensors of a
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typical smartphone to a trained MLP that will map them into the 2D local coordinates of the microcell
corresponding to the position of the person holding the phone. The proposed approach was tested
with the data from a publicly available multivariant dataset, IPIN2016. The dataset contains data
from movements that resemble the walking of a VI person. The performed experiments show that
the proposed approach is capable of achieving a positioning accuracy that is close to the step size of a
typical user: around 0.65 m. We performed our experiments on a grid size of 0.6 by 0.6 m. Our future
work will investigate the impact of different grid sizes on the positioning error and prediction accuracy.
We also intend to test our approach using a much larger, temporal dataset to observe the impact of
magnetic intensity variations on the prediction error. It is noted that the proposed approach requires
Internet connectivity, as it relies on the receipt of the position estimates from the trained model
residing in the cloud. In our future works, we intend to explore whether this shortcoming can be
addressed by using pre-trained models in a smartphone app. We also aim to complement our proposed
positioning approach with other navigation components in order to facilitate easy indoor movements
by a VI person.
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Draft, P.M.; Project Administration, Supervision, Fund Acquisition, Validation, Visualization, Writing—Review
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agreed to the published version of the manuscript.
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Abstract: Due to the popularity of indoor positioning technology, indoor navigation applications
have been deployed in large buildings, such as hospitals, airports, and train stations, to guide visitors
to their destinations. A commonly-used user interface, shown on smartphones, is a 2D floor map
with a route to the destination. The navigation instructions, such as turn left, turn right, and go
straight, pop up on the screen when users come to an intersection. However, owing to the restrictions
of a 2D navigation map, users may face mental pressure and get confused while they are making a
connection between the real environment and the 2D navigation map before moving forward. For this
reason, we developed ARBIN, an augmented reality-based navigation system, which posts navigation
instructions on the screen of real-world environments for ease of use. Thus, there is no need for users
to make a connection between the navigation instructions and the real-world environment. In order to
evaluate the applicability of ARBIN, a series of experiments were conducted in the outpatient area of
the National Taiwan University Hospital YunLin Branch, which is nearly 1800 m2, with 35 destinations
and points of interests, such as a cardiovascular clinic, x-ray examination room, pharmacy, and so on.
Four different types of smartphone were adopted for evaluation. Our results show that ARBIN can
achieve 3 to 5 m accuracy, and provide users with correct instructions on their way to the destinations.
ARBIN proved to be a practical solution for indoor navigation, especially for large buildings.

Keywords: augmented reality; Bluetooth; indoor positioning system; indoor navigation system;
smart hospital

1. Introduction

Due to the advance of the internet of things and business opportunities, indoor navigation systems
have been deployed in many large buildings, such as big train stations, shopping malls, hospitals,
and government buildings. After installing a navigation mobile app, users can select a point of interest
on a menu list. Then, the app will determine a route to the destination, which is usually the shortest
path. Nowadays, the most commonly used user interface (UI) of navigation applications is a 2D map
with a route. Users are provided with navigation instructions, such as turn left, turn right, and go
straight, when they are close to an intersection. However, due to the limitations of a 2D navigation
map, it could add an additional cognitive load for users to construct the relationship between the 2D
navigation map and the real environment. Extra mental pressure may also be induced and make users
confused [1]. Therefore, eliminating possible user confusion is important for navigator UI design.

In order to create a good user experience, several research efforts have been devoted to developing
an indoor navigation system by utilizing augmented reality (AR) technology. A. Mulloni et al. [2,3]
and L. C. Huey et al. [4] deployed markers as location anchors in the environment. A user can know
their location by matching the markers with the associated location information stored at a remote
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server or on a user’s phone. However, the angle of the camera must be in proper alignment with
markers before the matching process can start. In addition, the markers could get dirty easily and
become unrecognizable, therefore increasing maintenance costs. S. Kasprzak et al. [5], J. Kim et al. [6]
first performed an image search for pre-tagged objects, such as billboards and trademarks, in the
environment, and then determined the user’s location based on the obtained objects. However, the more
complicated the environment is, the more difficult it will be to identify pre-tagged objects. The image
matching processing becomes even challenging when the layout and decoration of different parts of
the space are similar. Feature matching is another method to determine user’s location [1]. However,
constructing point clouds of a real indoor environment is time consuming and costly, especially for a
large building.

In this paper, we designed ARBIN, an augmented reality-based navigation system, by extending
our previous work, WPIN [7]. WPIN utilized Bluetooth low energy (BLE) beacons, named Lbeacons
version 1 (BiDaE Technology, Taipei, Taiwan), deployed at each intersection and point of interest
(POIs), to get the coordinates of the current position. 2D images, such as turn left, turn right, and go
straight, were provided to users as direction indicators along the route to the destination. Unlike WPIN,
ARBIN uses AR technology that combines virtual objects and the real world. Navigation instructions,
as well as AR 3D models, are posted on the screen on the surrounding environment through the
smartphone camera. Therefore, there is no need for users to make a connection between the navigation
instructions and the real-world environment. In our implementation, Google ARCore (Google Inc.,
Mountain View, California, United States) [8] is adopted to create AR 3D models, obtain gyroscope
sensor readings, and determine where to put the models. Accuracy is the key factor for the success of
an AR-based indoor navigator. The difficulties in achieving accuracy of indoor positioning, and that of
AR 3D model placement are described as follows.

In WPIN [7], Lbeacons were adopted at waypoints to periodically broadcast their own coordinates
to smartphones nearby. A waypoint can be an intersection, a point of interest (POI), or the middle
of a corridor. After receiving a broadcast message sent from a Lbeacon, the positioning module,
running on the user’s smartphone, starts to estimate the distance between itself and the Lbeacon
according to a RSSI (received signal strength indicator) distance model. The stronger the received signal
is, the closer the user is to the Lbeacon. When the user and the Lbeacon are close enough, for example
less than 5 m, a new direction indicator will pop up to guide the user to the next waypoint. The above
process continues until the user arrives the destination. However, because of the machine cutting error,
the size of the antenna board of each Lbeacon may not be identical, which could affect its capability for
transmitting and receiving signals. Furthermore, the characteristics of the RF (Radiofrequency) circuit
of each Lbeacon may also be different due to the nature of an analogy circuit. Therefore, the RSSI
distance model of each Lbeacon is not exactly identical according to our experience. In our previous
work, to achieve the required positioning accuracy, we constructed a RSSI model for each Lbeacon,
which was time consuming and unscalable. To overcome this unavoidable and challenging hardware
problem, a novel RSSI modeling method was developed to overcome the problem of the heterogeneous
issues of Lbeacons, which is given in Section 3.2.

The AR 3D models, such as a left arrow or a right arrow, should be placed properly in a real-world
environment to avoid possible user confusion. An inaccurate placement of the 3D model may make
users confused, and avoid using it. For example, displaying a 3D model in the wrong orientation,
an incorrect elevation angle, or an incorrect depression angle. Many parameters should be carefully
considered before having the correct placement of a 3D model, such as the face orientation of a user,
the location, and orientation of the smartphone. Constructing a relationship between these parameters
and the coordinates of a 3D model is challenging. The detailed method is presented in Section 3.4 to
Section 3.5.

In order to investigate the applicability of ARBIN, we first evaluated the responsiveness of the
positioning module of ARBIN. We then set up a field trial in a hospital. For the former, we conducted a
series of experiments in the engineering building No. 5 of the National Yunlin University of Science
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and Technology, crossing three floors with a total area of around 250 m2. The experiment results
showed that the adopted RSSI (received signal strength indicator) model could accurately determine
the distance between a Lbeacon and a smartphone. Thus, the AR models could be displayed correctly
on the smartphone screen. Furthermore, a field trial was conducted at the outpatient area of the
National Taiwan University Hospital YunLin Branch, which is nearly 1800 m2, with 35 destinations
and point of interests, such as a cardiovascular clinic, x-ray examination room, pharmacy, and so on.
Four different types of smartphone were adopted for evaluation. Our results show that ARBIN can
achieve 3 to 5 m accuracy and give users correct instructions on their ways to the destinations. ARBIN
proved to be a practical solution for indoor navigation, especially for large buildings.

2. Related Work

Due to the promise of providing a user-friendly interface to users, several researchers have utilized
AR technologies to develop indoor navigation applications. Based on the positioning technologies
they used, the existing AR-based navigations can be classified into three types: marker-based method,
2D image recognition-based method, and 3D space recognition-based method. Each of them is
described as follows.

2.1. Marker-Based Methods

For marker-based methods, markers are first deployed in an indoor environment, and function
as location anchors. A marker can be a QR-Code or a specially-designed pattern. The universally
unique identifier (UUID) and coordinate of each marker are pre-stored in either the local storage of
a smartphone or a remote database for future queries. When finding a marker, the user points the
smartphone camera at the marker and scans it. The scanned image is then used for determining
the user’s location and the place to put a 3D AR model. A. Mulloni et al. [2,3], L. C. Huey et al. [4],
G. Reitmayr et al. [9], F. Sato [10], and C. Feng et al. [11] used highly recognizable pictures as markers.
Each marker is regarded as a node of the navigation route. When a user comes to a marker and aims the
camera at it, a 3D arrow model will be shown on the screen of smartphone to guide the user to the next
node. Although markers are easy to deploy, extra user training may be needed to make a marker-based
navigation system successful. For example, users should be able to identify markers in the surrounding
environment before getting location information and moving forward. It is particularly difficult for a
user who has no idea of what a marker looks like. In addition, the camera should be aligned with the
marker to ensure the correctness of marker recognition, which makes it user-unfriendly. Maintenance
could also be a critical issue when markers get dirty and become unrecognizable. Owing to the above
limitations, marker-based navigation is not considered in our work.

2.2. 2D Image Recognition-Based Methods

Unlike marker-based methods, 2D image recognition-based methods search for pre-annotated
objects, such as billboards, trademarks, and signs in the environment, and then determine the user’s
location based on the obtained objects [5,6,12–15]. With the development of image recognition
technology, there is a trend for replacing marker-based navigation with image recognition-based
navigation. Although the image recognition-based methods may not have the problem of maintenance,
they could fail when two objects are similar and undifferentiable. For example, in a large shopping
mall, chairs, signboards, and decorations are usually designed in a similar way, which makes it difficult
for image recognition. Many other factors can also affect the accuracy of image recognition, such as the
view angle of the camera, the distance between the objects and the user, the number of moving objects
in the surrounding environment, and so on. Since all these issues should be well addressed before an
indoor navigation system can well function in a large and crowded building, we decided not to use
an image recognition-based method. Both G. H. Nam et al. [16] and J. Wu et al. [17] adopted image
recognition technology for indoor navigation. However, many factors can also affect the accuracy of
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image recognition, such as the view angle of camera, the distance between the objects and the user,
the number of moving objects in the surrounding environment, and so on.

2.3. 3D Space Recognition-Based Methods

Compared to 2D image recognition-based methods, 3D space recognition-based methods collect
features of the entire space rather than the features of 2D objects. During runtime, a feature matching
mechanism is first used to determine a user’s location, and then an AR engine is adopted to draw a 3D
model for direction indication. For the implementation, G. Gerstweiler et al. [18], U. Rehman et al. [1]
used Metaio SDK (Metaio, Munich, Germany) [19] to create a 3D point cloud for indoor positioning.
T. Rustagi et al. [20] used the MapBox API (Mapbox, San Francisco, California, United States) [21]
to collect vector data of the indoor environment, and create a corresponding 3D model. The Unity
(Unity Technologies, San Francisco, California, United States) [22] game engine was adopted in their
system to show AR models. Although 3D could deliver better indoor positioning accuracy, construing
3D models is costly and time consuming, especially for large buildings. In addition, re-modeling is
required when indoor layout is changed, which usually happens to shopping malls and exhibition
halls. Furthermore, moving objects inside the space could significantly reduce positioning accuracy.
The more crowded the environment is, the lower positional accuracy will be. A. Koc et al. [23]
adopted ARKit (Apple Inc., Cupertino, California, United States) [24] to build an AR-based indoor
navigation. Similar to ARCore, ARKit constructs an AR world with associated 3D information.
However, the proposed method requires the user to create coordinate information of all corners in the
indoor environment, which makes it time consuming and error prone. In addition, their experimental
results showed that the accumulated error becomes significant when the place is large. H. Choi et al. [25]
proposed a virtual anchor (VA) point selection method for AR-assisted sensor positioning. According to
their definition, a VA is a positioning reference point used by a UWB (Ultra-Wideband) positioning
mechanism. The more VAs are selected, the more time is required to determine the user’s location.
Since UWB devices are required, the issues of hardware cost and energy consumption should also be
addressed before a deployment.

Unlike existing feature-matching methods, ARBIN utilized Lbeacons deployed at each intersection
and POIs to get the coordinates of the current position. ARBIN performs well in crowded spaces due
to the advantage of direction antenna built into Lbeacons, which can adjust transmission power and
beam width to properly cover navigation areas. Finally, ARBIN is easy to configure and maintain.

3. Methodology

3.1. System Overview

As Figure 1 shows, ARBIN consists of four modules: indoor positioning, route planning, motion
tracking, and AR 3D model placement. At the beginning, the destination selected by the user is sent to
the route planning module for determining of a route to the destination (Step 1). The underneath indoor
positioning module continuously updates the user’s location based on the received BLE advertisement
messages and the associated RSSI (Step 2). When the user comes to a waypoint, the route planning
module sends a message including the expected face orientation and directional indicator to the AR
placement module (Step 3). The AR placement relies on the motion tracking module to obtain the
direction (azimuth) and the pitch of the smartphone from the IMU (Inertial Measurement Unit) (Step 4).
Based on the collected information, the placement module overlays a 3D arrow model, such as turn
left or turn right, on the real-world image (Step 5).

Figure 2 lists the user interface of the ARBIN App. Frequently asked destinations are shown on
the main page (Figure 2a). After a user selects a destination on the list (Figure 2b), ARBIN determines
the user’s current location and a route with the shortest distance to the destination. At the beginning,
the user is asked to face a specific direction before the navigation service starts (Figure 2c). In other
words, the navigation service will not start until the user faces the expected orientation. On the way to
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the destination, a 3D indicator will be placed in the real-world environment when the use approaches
an intersection or a point of interest, such as stairs or elevators (Figure 2d–g). The navigation service
stops when the user arrives at the destination. Finally, a message pops up to reminder the user that the
navigation service is finished (Figure 2h).

Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 

 

approaches an intersection or a point of interest, such as stairs or elevators (Figure 2d–g). The 
navigation service stops when the user arrives at the destination. Finally, a message pops up to 
reminder the user that the navigation service is finished (Figure 2h). 

 
Figure 1. System architecture of ARBIN. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2. The user interface of ARBIN. (a) Main page of ARBIN; (b) Destination list; (c) Start 
navigation service; (d–g) 3D indicator of navigation instruction; (h) Arrival message. 

Figure 1. System architecture of ARBIN.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 

 

approaches an intersection or a point of interest, such as stairs or elevators (Figure 2d–g). The 
navigation service stops when the user arrives at the destination. Finally, a message pops up to 
reminder the user that the navigation service is finished (Figure 2h). 

 
Figure 1. System architecture of ARBIN. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2. The user interface of ARBIN. (a) Main page of ARBIN; (b) Destination list; (c) Start 
navigation service; (d–g) 3D indicator of navigation instruction; (h) Arrival message. 

Figure 2. The user interface of ARBIN. (a) Main page of ARBIN; (b) Destination list; (c) Start navigation
service; (d–g) 3D indicator of navigation instruction; (h) Arrival message.

261



Sensors 2020, 20, 5890

3.2. Indoor Positioning Module

The purpose of the positioning module is to determine the user’s location. As Figure 3a shows,
Lbeacons are deployed at waypoints. In this work, a waypoint is defined as an intersection, a point of
interest, or the middle of a corridor. Each Lbeacon periodically broadcasts its coordinate information
to smartphones nearby. From the view point of the user, his or her smartphone continuously receives
the coordinate information sent by Lbeacons nearby, while determining how far the smartphone is
from the closest Lbeacon. If the distance between the smartphone and a Lbeacon is close enough,
for example 3 m, the navigation app provides the user with a directional indicator to guide him or her
to the next waypoint. An illustrated example is shown in Figure 3b, the route starts from waypoint A
and ends at waypoint C. The user first receives a “go straight” command when entering the area of
waypoint A, and then a “turn left” command at waypoint B. The coverage size of a waypoint depends
on the size of the intersection or the point of interest. The larger the coverage area is, the larger the
range of a waypoint is. In our implementation, the coverage size of a waypoint is a 3-m, 5-m, or 7-m
radius circle. The key factor for waypoint-based navigation success is accurately determining the
distance between the user and the Lbeacons. For this, in our previous work [7], RSSI distance models
stored on the smartphone were adopted to estimate the distance. However, because of the machine
cutting error and the characteristics of the RF circuit, the RSSI distance model of each Lbeacon is not
identical. To achieve the required positioning accuracy, we constructed a RSSI model for each Lbeacon,
but it was time consuming and unscalable.
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To overcome this problem, in this work we first analyzed the characteristics of RSSI models of
about 24 randomly selected Lbeacons, from 70 Lbeacons. We then classified them into four types.
For each type of Lbeacon, only one RSSI model was used. Because the navigator must give a user a
directional indicator when he/she enters the coverage of a waypoint, we mainly focused on the behavior
of the RSSI curve in the range of 0 to 3 m, 3 to 5 m, and 5 to 7 m. As Figure 4 shows, we measured
the RSSI values at the locations 1 m to 7 m away from a Lbeacon. For each location, we collected
one-minute of RSSI samples (i.e., 240 samples) and took the average as the result. The measurement
stops when the seven locations have been measured.
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As shown in Figure 5a, four Lbeacons, numbered A1, A2, A3, and A4, were classified as type 1,
in which the RSSI values drops inversely to the distance, in the range of 0–3 m and 5–7 m. Therefore,
Type 1 Lbeacons are suitable to cover a waypoint with a radius of 3 m and 7 m. Similarly, Type 2
Lbeacon are only suitable to cover a waypoint with a radius of 3 m. Meanwhile, Type 3 Lbeacons
are suitable for a waypoint with radius of 3, 5, or 7 m since the RSSI values drops inversely to all the
distances we measured. Type 4 Lbeacons are suitable for a waypoint with a radius of 5 m. Based on
the measurement, for each type of Lbeacon, we adopted a polynomial function as a regression model
to represent the relationship between the distance and the RSSI values. Results are shown in Figure 6.
Given a new and unknown type of Lbeacon, we first classified it into one of the four types based on
the characteristic of its RSSI curve. A RSSI model was then picked from the RSSI models shown in
Figure 6. In Section 5, the correctness of the proposed models shown in Figure 6 is evaluated.
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To tolerate the variability of RSSI values, we considered the RSSI values of Lbeacons nearby. Let Si
and S j represent the highest and the second-highest RSSI detected by the smartphone. The Si is the
RSSI of waypoint i and the S j is that of waypoint, j. Since S j is the highest, the user is regarded as being
at waypoint i. Based on the RSSI models, we can obtain the theoretical value of Si and S j at waypoint i;
that is, Śi and Ś j. If Si – S j >= Śi – Ś j, the user’s location is updated to waypoint i. On the other hand,
if Si – S j < Śi – Ś j, the Si is considered as a signal surge and will be filtered out.

All Lbeacons were classified into four types. As Figure 6a,d show, each type has its own RSSI
model. The RSSI model used to determine the distance between a user’s smartphone and a Lbeacon
depended on the type of the Lbeacon. When getting close to a Lbeacon, the smartphone uses received
UUID to look up the type of Lbeacon and its associated RSSI model, pre-stored in the smartphone.

3.3. Route Planning Module

After receiving the information of user’s location and destination, shown in Figure 1, the route
planning (RP) module determines a route to the destination by the well-known Dijkstra’s shortest
path algorithm. Based on the route, the RP module updates the AR model placement module with a
direction indicator and an expected face orientation when the user comes to a waypoint. The two pieces
of information are then used for placing a 3D model on the real-world environment. For example,
as Figure 3b shows, the user starts at waypoint A and moves to waypoint B. When the user enters
the coverage of waypoint B, the expected face orientation is east. After the user turns left and moves
forward, his/her expected face orientation at waypoint C is north. For ARBIN, at each waypoint,
if the user’s orientation is not the same as the expected face orientation, the associated directional
indicator will not show in the real-world environment. A warning message will pop up to remind
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the user, when needed. If this happens, possible reasons are that the user is going the wrong way,
or that the user does not face to the expected orientation. The route will be recalculated if the user
is found at an unexpected waypoint. In our implementation, the orientation is obtained by IMU
(inertial measurement unit) sensors of the smartphone. ARBIN uses the getOrientation() of Android
Sensor Manager [26] to obtain the orientation. In the above-mentioned example, if B and C are
not detected when the user arrives at D, ARBIN will recalculate the route. Then D will be a new
starting point.

Let R denote the expected orientation at a waypoint. The R is an integer between 0 to 7, each of
which represents a type of orientation, shown in Figure 7a. For example, R = 1 is northeast while R = 2
is east. After the user passes through a waypoint, the R is updated by how many degrees the user
turns to the new orientation. For example, for a turn right instruction, the R is updated by adding
90◦. Additionally, for a turn left instruction, the R is updated by adding 270◦. Since there are only 8
types of directional indicator in our implementation, we use L, an integer between 0 to 7, to represent
the turning angle of a directional indicator. The definition of each value of L is given in Figure 7b.
When the user enters a waypoint, R is updated by (R + L) mod 8. For example, in Figure 3b, at the
beginning, the user faces to the east and R is 2. When the user comes to waypoint B, the expected face
orientation is east. After the user turns left and moves forward, the expected face orientation R at the
waypoint C is updated to 0 (= (2 + 6) mod 8), which is north.
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3.4. Motion Tracking Module

The motion tracking module aims to determine the direction (azimuth) and the pitch of the
smartphone based on the magnetic sensor and the acceleration sensor of a smartphone. Since the
coordinate system of the smartphone and earth are different, transformation is needed before the
sensor readings can be used. As shown in Figure 8a, in our usage scenario, the smartphone should be
kept upright so that a 3D model can be properly put onto a real environment. If the smartphone is laid
flat, shown in Figure 8b, a warning message will be provided to remind the user. Let vector V be the
heading direction of the smartphone. As Figure 8a shows, V is a vector on the X-Z plane. ARBIN uses
the orientation of V as the expected face orientation. Moreover, the pitch of the smartphone should be
greater than 80◦ before a 3D model can be displayed. The definition of pitch is shown in Figure 8c.
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Let X, Y, and Z represent the three axes of the smartphone coordinate system S. In addition, X́,
Ý, and Ź represent those of the earth coordinate system G. The θi j is the angle between the i axis of
S and the j axis of G, in which i = X, Y, or Z, and j = X́, Ý, or Ź. The angles can be obtained by the
IMU sensor built into a smartphone. Let (x, y, z) be a point on S and its associated coordinate in G be
(x́, ý, ź). Therefore, we have

x́ = x cosθxx́ + y cosθxý + z cosθxź,

ý = x cosθyx́ + y cosθyý + z cosθyź,

ź = x cosθzx́ + y cosθzý + z cosθzź.

The (x́, ý, ź) can be represented by (x́, ý, ź)T = R(x, y, z). The R the rotation matrix which is:

R =




cosθxx́ cosθxý cosθxź

cosθyx́ cosθyý cosθyź

cosθzx́ cosθzý cosθzź



.

Therefore, when the smartphone has a rotation around different axis, we can have a different
rotation matrix [27]. They are:

RP =




1 0 0
0 cosθyý cosθyź

0 cosθzý cosθzź



=




1 0 0
0 cos P sin P
0 − sin P cos P



,

RA =




cosθxx́ 0 cosθxź

0 1 0
cosθzx́ 0 cosθzź



=




cos A 0 − sin A
0 1 0

sin A 0 cos A



,

RO =




cosθxx́ cosθxý 0
cosθyx́ cosθyý 0

0 0 1



=




cos 0 sin 0 0
− sin 0 cos 0 0

0 0 1



,

in which RP is the rotation matrix when the smartphone has a rotation around X axis, and P is the
pitch angular. In addition, RA is the rotation matrix when the smartphone has a rotation around Y
xis, and A is the azimuth angular. Furthermore, RO is the rotation matrix when the smartphone has a
rotation around the Z axis and O is the roll angular. By using the rotation matrix and rotation angles,
we can transform a coordinate between S and G.
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In our implementation, the Android sensor manager (Google Inc., Mountain View, California,
United States) [26] is adopted to transfer the V vector from the smartphone coordinate system, S,
to the earth coordinate system, G, and obtain the pitch of the smartphone. ARBIN invokes the
getRotationMatrix() function to get a rotation matrix, by feeding the sensor readings of the magnetic
sensor and the acceleration sensor. The rotation matrix transformation is used to transform the vectors
and coordinates from the smartphone coordinate system to the earth coordinate system. Based on
the rotation matrix, ARBIN then uses getOrientation() to obtain the orientation, azimuth, and pitch
of the smartphone. Environment noises could affect the correctness of the IMU of the smartphones.
For this reason, ARBIN can be integrated with advanced noise filters or probability models to reduce
the interference. Since sensor calibration and compensation is not the major focus of this work, for the
readers who are interested in this topic, please refer to [28–30].

3.5. AR 3D Model Placement Module

The purpose of the AR 3D model placement module (APM) is to overlay a 3D model on a
real-world image. The process includes three steps: pitch check, face orientation check, and placement.
Each of the steps is descried as follows. First, APM checks if the smartphone is kept upright. The larger
the pitch angle is, the better the camera view is. In our implementation, the pitch angle is set in the
range of 80 to 90◦. If the pitch angle does not meet the requirement, a warning message is displayed
to remind the user to adjust the pitch angle of the smartphone. Second, APM examines whether the
orientation of the smartphone is the same as the expected face orientation. If both the pitch angle
and the orientation of the smartphone meet the required conditions, a 3D model is placed onto a
real environment.

The 3D model placement relies on visual-inertial odometry (VIO), which first uses a camera
to extract special feature points of the surrounding environment, such as the corners, boundaries,
and blocks. It then continuously matches the features in the contiguous frames to estimate the
movement of the camera. Based on the movement of the camera, the 3D model can then be kept at the
place we expected until the 3D model is not in the field of view of a camera. In our implementation,
we used ViroCore SDK (Viro Media, Inc., Seattle, Washington, United States) [31] to implement the
model placement module. ViroCore is a tool package built on top of AndroidARCore (Google Inc.,
Mountain View, California, United States) [8]. We used getLastCameraPositionRealtime () to get
the camera coordinates, and getLastCameraForwardRealtime () to get the camera shooting direction.
The calibration of camera depth is done by the smartphone itself. In our configuration, the 3D model
is placed at 1 m away from the camera along the camera shooting direction. To have a better view,
the 3D model is further put 30 cm below the camera shooting direction. For example, as Figure 9
shows, the camera coordinate is (0, 0, 0) and the camera shooting direction vector is (0, 0, –1). Taking
the above-mentioned coordinates, ARBIN determines the coordinated 3D model by (0, 0, 0) + (0, 0, –1)
+ (0, –0.3, 0) = (0, –0.3, –1), in which the unit is meter. The ARCore then takes (0, –0.3, –1) as input and
adopts VIO technology to places the 3D model in the place we expect.
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4. Experiment

Our experiment included two parts: in-house experiments and a field trial. The in-house
experiments were undertaken in the Engineering Building (EB) No. 5 of Yunlin University of Science
and Technology (Yuntech). The purpose was to evaluate the orientation determination of a smartphone,
and the correctness of the RSSI model proposed in Section 4.2. After the in-house experiments were
completed, we then conducted a field trial at the National Taiwan University Hospital YunLin Branch
(NTUH-Yunlin) where 35 Lbeacons were deployed in the outpatient area, over 1800 m2, covering two
floors. Volunteers were invited to evaluate the responsiveness of ARBIN.

4.1. In-House Experiments

4.1.1. Evaluation of Azimuth of Smartphones

ARBIN relies on information of face orientation to correctly place a 3D model in the real-world
environment. Therefore, it is important to ensure that the azimuth value provided by a smartphone is
correct. According to the Android sensor manager [26], azimuth is the angle between the smartphone’s
current compass direction and magnetic north. If the smartphone faces magnetic north, the azimuth is
0◦; if it faces south, the azimuth is 180◦. additionally, if it faces west, the azimuth is 270◦, and if it faces
east, the azimuth is 90◦.

In our experiment, we investigated two selected smartphones, shown in Table 1, and checked
if they could determine the azimuth correctly. We tested all possible orientations used by ARBIN.
They are north, northeast, east, southeast, south, southwest, west, and northwest. For each direction,
we kept the smartphones upright and recorded the readings of azimuth provided by the smartphone
for 10 s. The average value was taken for evaluation. As Table 2 shows, both the Samsung S10e
(Samsung, Seoul, South Korea) and SONY Xperia XZ premium (Sony, Tokyo, Japan) could achieve
a percentage error less than 5◦ in determining the azimuth. The ground truth of each measurement
was obtained by a real compass. For example, the azimuth error of Samsung S10e when it faces north
ranged from +2.66 to –3.32◦. The maximum error was 4.67◦ when it faced Northeast. The larger the
azimuth error is, the higher is possibility it will make the user confused. According to our experience,
a user’s maximum tolerance level is 20◦. The azimuth errors of the two smartphones were small
enough to be tolerated, and will not affect the placement of a 3D model in a real-world environment.
No further calibration on the azimuth angle was required.
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Table 1. The smartphones used for the experiment.

Model CPU Memory OS Bluetooth

Samsung Galaxy S10e Exynos 9820 6 GB Android 9.0 5.0
Sony Xperia XZ Premium Snapdragon 835 4 GB Android 9.0 5.0

Table 2. The accuracy of azimuth.

Azimuth (Degree)
Samsung S10e SONY Xperia XZ Premium

Max
(Degree)

Min
(Degree)

Max
(Degree)

Min
(Degree)

North
(0) +2.66 –3.32 +2.35 –1.46

Northeast
(45) +4.67 –1.35 +0.98 –2.18

East
(90) +3.26 –2.54 +1.23 –3.35

Southeast
(135) +2.09 –2.52 +2.33 –3.04

South
(180/–180) –0.03 +0.01 –0.01 +0.01

Southwest
(–135) +1.94 –3.48 +1.74 –3.05

West
(–90) +2.28 –3.77 +3.44 –4.31

Northwest
(–45) +2.49 –3.64 +1.28 –1.65

4.1.2. Responsiveness of ARBIN

This experiment investigated the ability of ARBIN to have a proper reaction when a user comes
close to a Lbeacon. In order to provide a good user experience, we defined 3 m as the responsiveness
distance. The ARBIN needs to provide the user with a directional indicator when he or she enters the
area of a circle with radius of 3 m, where the Lbeacon is at the center of circle. In other words, it is
meaningless to notify the user when he or she is not in the area, because the distance between the user
and the Lbeacon is too far away. Similarly, notifying the user after he or she has already passed through
the Lbeacon is also useless. The better the responsiveness of ARBIN, the better the user experience
we create. The results of responsiveness can also represent the correctness of the four RSSI models
presented in Section 4.2, because ARBIN relies on the four models to estimate the distance between the
user and a Lbeacon.

The in-house experiment was conducted in EB-No.5 of Yuntech, where 10 Lbeacons were deployed
in three floors, with around 250 m2. Figure 10 shows the deployment maps. The height of the ceiling
was about 3 m. When a user holds a smartphone for indoor navigation, the distance between the
smartphone and the ground (i.e., 1.5 m) is almost the same as the distance between the smartphone
and the ceiling. Hence, there is no significant difference in RSSI by putting Lbeacons on the ground
or mounting them on the ceiling according to our experiment. To have a quick deployment without
affecting the interior decoration, Lbeacons were put on the ground for the in-house experiment.
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Figure 11 shows the experiment setup for measuring responsiveness. The tester walked around in
the building with a normal speed of about one meter per second. As Figure 12 shows, for each Lbeacon,
the tester walked back and forth five times. When receiving the directional indicator indicated by
ARBIN, he stopped and measured the responsiveness distance, L, between the smartphone and the
Lbeacon. As Figure 11 shows, the L is measured by an infrared rangefinder. In other words, for each
Lbeacon, the tester first walked forward to the Lbeacon, then recorded the L after he was notified by
ARBIN’s directional instruction. Then, the tester kept walking. After leaving the range of the Lbeacon
(i.e., a circle with radius of 3 m), he turned around and walked forward to the Lbeacon again from
the opposite direction. The same measurement was conducted again when the tester was close to
the Lbeacon. For each Lbeacon, the tester repeated the above-mentioned experiment for five rounds.
The average values of L in both the forward direction and backward direction are shown in Table 3.
For the Lbeacons placed on a north-south corridor, the forward direction pointed to north, and the
backward direction pointed to south. In addition, for the Lbeacons deployed on an east-west corridor,
the forward direction pointed to east, and the backward direction pointed to west.

In our in-house experiment, the responsiveness distance should have been less than 3 m in order
to create a good user experience. As Table 3 shows, in 92.5% (=37/40) of the test cases, ARBIN could
properly notify the tester when the tester was close to a Lbeacon. However, there was an exception at
Lbeacon A3. When the tester held a Samsung Galaxy smartphone and moved forward to Lbeacon A3,
the smartphone notified the tester earlier than was expected. In other words, the smartphone received
a relatively strong signal when it was 5 m away from Lbeacon A3. A possible solution was to slightly
raise the software threshold of RSSI for Lbeacon A3 to defer the notification. We also found that the
responsiveness distance, L, of the same Lbeacon differed the in forward and backward directions.
The possible reason is that the directional antennas of the Lbeacons may have different abilities to
send out signals in different directions. Although the responsiveness distance may depend on the
user’s arrival direction, it does not affect the ability of ARBIN, in providing users a proper directional
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indicator. Furthermore, the results showed that there were no cases of notifying the tester after he had
already passed the Lbeacon, which met our requirements.
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Table 3. The results of responsiveness distance.

Lbeacon

Samsung Galaxy S10e Sony Xperia XZ Premium

L L

Forward Direction Backward Direction Forward Direction Backward Direction

A1 2.0 m 0.8 m 0.2 m 0.4 m
A2 2.0 m 1.1 m 0.3 m 0.4 m
A3 3.0 m 5.3 m 1.4 m 0.4 m
B1 2.1 m 1.4 m 1.1 m 0.4 m
B2 1.0 m 3.1 m 2.2 m 0.6 m
B3 0.1 m 1.8 m 0.2 m 0.2 m
B4 2.2 m 2.0 m 1.2 m 0.2 m
C1 1.5 m 1.6 m 0.5 m 1.2 m
C2 1.3 m 3.1 m 1.1 m 1.2 m
C3 2.7 m 3.0 m 1.5 m 1.9 m

Average 1.7 m 2.3 m 1.0 m 0.7 m

The Lbeacon is equipped with a directional antenna with conical beams [32]. It can generate a
3 m range and 60◦ radiation pattern to provide a 3 m horizontal accuracy. However, according to our
experience, the shape of the conical beams is not as perfect as is claimed. Therefore, the responsiveness
distance, L, of the same Lbeacon may differ in forward and backward directions.

271



Sensors 2020, 20, 5890

4.2. Field Trial

The purpose of the field trial was to evaluate the responsiveness of ARBIN in NTUH-Yunlin by
collecting user’s feedback. The deployment maps are shown in Figure 13, in which 35 Lbeacons were
deployed in the outpatient area (i.e., B1 and 1F) of the new medical building. Figure 14 shows the
installation of Lbeacons mounted on the ceiling. Each Lbeacon periodically broadcasted its UUID at
4 Hz to the smartphones nearby. The starting point was unknow to ARBIN. Based on the UUID the
smartphone received, ARBIN automatically determined the starting point. We invited four volunteers,
with an average age of 25, who had never either used ARBIN or been to the hospital. They were
asked to judge the responsiveness of ARBIN whenever they arrived at a waypoint. The acceptable
responsiveness distance was set at 5 m because the coverage area of a Lbeacon deployed in the hospital
was a circle with radius of around 5 m. If the ARBIN notified a volunteer after he or she entered the
coverage range of a Lbeacon, the responsiveness was moderate. Other hand, if the ARBIN notified
a user before he or she entered the coverage range (i.e., the responsiveness distance was larger than
5 m), the responsiveness was fast. In addition, the responsiveness was slow when the responsiveness
distance approached zero. The above standards were told to the volunteers before they started the
testing. A calibration was required for a new smartphone. Users were required to stand at a specific
location, for example the entrance of the building, for 5 to 10 sec. ARBIN will automatically adjust
thresholds based on the received RSSI values. Since the purpose of field trial was to evaluate the
user experience, volunteers judged the responsiveness visually rather than using an infrared range
finder. To simulate an outpatient flow, the volunteers were asked to go to the following destinations
accordingly: registration counter (A11), X-ray examination room (B3), pharmacy (A25), and exit (C1).
Detailed information of each route and the Lbeacons on that route are listed in Table 4.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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Table 4. The volunteers’ feedback on responsiveness.

Task 1: Go to The Register Counter and Then the Clinic.

Route Information Volunteer A
(Samsung)

Volunteer B
(Asus)

Volunteer C
(Oppo)

Volunteer D
(SONY)Actions Lbeacons

Go to the registration counter A6–A11 Moderate Moderate Moderate Moderate

Go to the clinic
A11–A20 Moderate Moderate Moderate Moderate
A20–A22 Arrive successfully Arrive successfully Arrive successfully Arrive successfully

Task 2: Go to the X-ray examination room.

Go to the stairs
A22–A20 Moderate Moderate Moderate Moderate
A20–A19 Moderate Moderate Moderate Moderate
A19–A18 Moderate Moderate Moderate Moderate

Down the stairs A18–B1 Moderate Moderate Moderate Moderate
Go to the examination room B1–B3 Arrive successfully Arrive successfully Arrive successfully Arrive successfully

Task 3: Go to the pharmacy.

Go to the stairs B3–B1 Moderate Moderate Moderate Moderate
Go up the stairs B1–A18 Moderate Slow Moderate Moderate

Go to the pharmacy A18–A25 Arrive successfully Arrive successfully Arrive successfully Arrive successfully

Task 4: Go to the exit.

Go to the exit
A25–A31 Moderate Moderate Moderate Moderate
A31–C1 Arrive successfully Arrive successfully Arrive successfully Arrive successfully

As Table 4 shows, each volunteer passed through nine Lbeacons on their way to the destinations.
They judge the responsiveness whenever they reach a waypoint. The results show that 97% (35/36) of
the user feedbacks were “moderate”, which indicates that ARBIN can properly notify users when they
approach a waypoint. Volunteer C marked A18 as slow because he experienced a deferred notification
when he approached A18. A possible solution could be slightly decreasing the threshold of A18 to make
ARBIN react properly. In our implementation, there was no 3D AR model placed at the destination.
Therefore, we asked volunteers to check if ARBIN could guide them to the destinations successfully.
The results show that ARBIN could successfully guide the volunteers to their destinations.

In addition to the user experience evaluation, we also measured the responsiveness of ARBIN
in the hospital. Samsung Galaxy S10e and Sony Xperia XZ Premium were used for the evaluation.
We evaluated the responsiveness of the ARBIN along the route: Entrance Hall(A6) -> Registration
counter(A11) -> Outpatient clinic(A22)-> X-ray examination room (B3) -> Pharmacy(A25) -> Exit (C1).
There were in total 14 waypoints on the route. As shown in Figure 15, five different walking patterns of
pedestrians were evaluated. The walking speed was around one meter per second. In our experiment,
the area of a waypoint was set at a radius of 5 m. We used (Slow, Moderate, Fast) to represent
responsiveness distance (~0 m, 0 m~5 m, >5 m). For example, if the responsiveness distance was larger
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than 5 m, we marked it as fast. No signal indicates that ARBIN had no response when the user entered
the waypoint. We repeated the experiment five time, and summarize the results in Table 5. In the
single mode and side-by-side mode, the responsiveness distance of both smartphones was always in
the range of 0 m to 5 m at every waypoint we measured. In the triangle mode, the response distance of
the Sony Xperia XZ Premium became slow at waypoint B3. Additionally, in the line-up mode and
stagger mode, Sony Xperia XZ Premium had no response in waypoint B3 and A10. The possible reason
may have been the poor design of antenna of the Sony Xperia XZ Premium. The situation could be
improved by deploying one more Lbeacon at these waypoints to reduce the possibility of no reaction
or slow reaction.Sensors 2020, 20, x FOR PEER REVIEW 18 of 20 
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Table 5. The volunteers’ feedback on responsiveness.

Model/Working Pattern No Signal Slow Moderate Fast

Samsung Galaxy S10e

Single 0 0 14 0
Line up 0 0 14 0
Triangle 0 0 14 0
Side by

side 0 0 14 0

Stagger 0 0 14 0

Sony Xperia XZ Premium

Single 0 0 14 0
Line up 1 (B3) 0 13 0
Triangle 0 1 (B3) 13 0
Side by

side 0 0 14 0

Stagger 1(A10) 0 13 0

5. Conclusions

In this paper, we presented ARBIN, an augmented reality-based indoor navigation system, to
guide users to their destinations in an indoor environment. When users enter the range of a waypoint,
ARBIN posts a 3D directional indicator into the real-world surrounding environment. With the
support of augmented reality, it is easier for users to determine their locations when walking inside a
building. To address the heterogeneous problems of Lbeacons, four types of RSSI model are proposed.
Experiences in correctly placing a 3D model in a real-world were also explained. Further, we conducted
both in-house experiments and a field trial to verify the responsiveness and practicality of ARBIN.
The in-house experiments showed that in 92.5% of the test cases, ARBIN could provide users with a
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proper directional indicator when they came close to a Lbeacon. For the field trial, four volunteers were
invited. Of the of the user feedbacks, 97% (35/36) were moderate. Our results show that ARBIN can
achieve a 3 to 5 m accuracy, and provide users with correct instructions on their way to the destinations.
ARBIN proved to be a practical solution for indoor navigation, especially for large buildings. To further
enhance user experience, in the future we plan to extend the capability of ARBIN by adding landmark
objects into real-world environments, and showing advertisement messages provided by a surrounding
information system.
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Abstract: Radiating cables are mostly used to provide radio communication in tunnels or corridors,
but they can also be used to estimate the position of a mobile terminal along the cable. In this paper,
a measuring receiver’s position was estimated by measuring the difference in the direct signal’s
reception time, which was generated by a transmitter connected to one end of the radiating cable,
and the delayed signal retransmitted from another end. During tests, a relatively narrowband (23 MHz)
signal was used in the unlicensed band (2.4 GHz) and 50 m long coupled mode radiating cable.
The cable was installed along a corridor in the office building. Measurement results used different
equipment configurations (i.e., return signal only amplified or amplified and frequency-shifted),
which presented possible sources of errors.

Keywords: indoor positioning; indoor navigation; radiating cable; leaky feeder

1. Introduction

One of the most dynamic developing applications of radio communication is the position
estimation of people and objects using radio. In outdoor positioning and navigation, a general trend of
building versatile solutions has been observed, which may fulfill expectations of different user groups.
In such situations, it is not a surprise that global navigation satellite systems (GNSS) become the
worldwide standard for commercial and personal positioning. However, as the availability of GNSS
services is usually limited to outdoor environments, position estimation inside buildings requires
different technologies. Many indoor positioning methods and systems that use different principles
of radio wave propagation have already been developed [1] and there is no global agreement on the
indoor position estimation technology. Thus, new solutions are still being explored [2].

Position estimation that uses radio techniques in indoor environments often suffers from insufficient
accuracy caused by local anomalies in radio wave propagation [3,4]. In many indoor positioning
systems that are based on signal level and/or time measurement, a multipath propagation or shadowing
via walls, furniture, and humans causes variation in radio frequency (RF) fields. This introduces errors
in radio-based position estimations [5–7]. Generally speaking, a longer propagation path in the indoor
environment results in higher positioning errors [8–10], so in many applications it is crucial to deploy
the reference nodes close to the positioning system’s area of operation [11]. Unfortunately, this results
in either a reduction of the network operation area or an increase in the number of reference nodes
required to ensure the correct operation of the positioning system. Instead of using many reference
nodes with separate antennas, a radiating cable may be used to provide a better quality positioning
signal due to a reduction in propagation path length within a variable environment.

This paper is organized as follows: Section 2 reviews the state-of-the-art research on radiating
cable-based positioning. Section 3 describes the principles of radiating cable positioning when
measuring differences in reception time of signals travelling in a cable in opposite directions. Sections 4
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and 5 present a measuring stand and the results of position estimation in an indoor building environment,
respectively. Section 6 discusses position estimation errors in the proposed solution, while the last
section concludes the paper.

2. Related Works

As a concept, using radiating cables for positioning is not new. For example, Nishikawa et al. [12]
presented a two-dimensional (2D) position of a mobile antenna near a radiating cable and calculated it
using a vector network analyzer (VNA), which measured the arrival time for two signal components
received via a mobile antenna: a direct signal emitted from a radiating cable and a signal reflected from
the open end of the cable. Moschevikin et al. [13] proposed a different approach—i.e., a two-dimensional
position estimation of an experimental active terminal—equipped with a transmitter and receiver
that simultaneously used round-trip time (RTT) and signal power measurements (e.g., RSS, received
signal strength). Although this paper does not summarize position accuracy evaluation, it provide
useful information regarding observed propagation of chirp sounding signals emitted by radiating
cables. There have been other studies that investigated radio communication quality and RTT distance
measurements in both indoor and outdoor environments using a narrowband radiated mode leaky
feeder [14].

The RSS measurements were also presented by Engelbrecht et al. in [15]. This publication focused
on the construction of a coaxial radiating cable optimized for a system where a cellular phone’s position
on the radiating cable (one dimension only) was estimated using two receivers connected to both
ends of the cable. Signal’s transmitted via the mobile phone were then coupled to nearby radiating
cables and were received by receivers with different power levels. Coupling a signal from a cellular
phone to a radiating cable influences both measured signal levels in similar way. However, different
power measurement results are caused by longitudinal signal attenuation in the radiating cable which
corresponds to terminal position. The same authors described [16,17] a solution based on signal
transmission in opposite directions, i.e., two ends of the radiating cable connected to two wireless local
area network (WLAN) access points. Signal levels were measured by the terminal located in a long
hallway near the radiating cable and compared with a previously prepared radio map. It is considered
a variation on the fingerprinting method. Weber et al. [18] presents results and a detailed discussion
on how to improve the quality of RSS-based position estimations using a radiating cable. Further, they
comment on data smoothing and Kalman filtering.

F. Pereira [19,20] described the simultaneous emission of two signals generated by two transmitters
connected to both ends of a radiating cable. He further described how to map signal levels recorded
along the cable installed in the tunnels. In addition, Pereira [20] considered the possibility of using a
phase-difference measurement in a very high frequency (VHF) band to estimate signal propagation
time in a positioning system with a leaky feeder. However, no details, results, nor estimated accuracy
were discussed.

Nakamura et al. [21] presents another principal used in this system. The mobile terminal was
equipped with a transceiver that amplified and filtered the test signal received from the radiating
cable, performed frequency conversion, and retransmission. One end of the radiating cable was
connected to the transmitter, which triggered measurements by unmodulated carrier emission.
Moreover, the measuring receiver estimated the distance to the mobile device via the round-trip
time measurements.

Shirai et al. [22] proposed another method of position estimation using two radiating cables.
Both cable ends were connected to four-port receiver. A MUSIC algorithm was used to estimate
the impulse response of a MIMO channel. The mobile transmitter was placed near cables and was
estimated from delay of the MIMO components in the received signal.

Inomata et al. [23] presented interesting details on passive detection of persons using a pair of
radiating cables. In this solution, a sounding signal was radiated from one leaky feeder and received by
the second cable, which was parallel to the first one. Target detection was performed when extracting
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the signal scattered around the moving object. Propagation delay time of the scattered wave was
utilized to determine location. Further, they implemented a leaky feeder perimeter intruder detection
system. In contrast, the solution presented by Shah et al. [24] detected the presence of an intruder
using a radiating cable-based channel state information evaluation without positioning.

Many of the positioning examples mentioned above estimated only one coordinate along the
radiating cable, which may be enough for corridors and tunnels. The positioning accuracy reached
0.25 m for a two-dimensional (2D) case using time-based measurements [12], however, was not
confirmed in any other publication, even those limited to one-dimensional (1D) position estimation.
This may be partially explained by the inclusion of a very wide bandwidth in the sounding signal [12]
that reached 1 GHz and used VNA. These factors made one-way propagation delay measurements.
A drawback of this method is the necessity to connect the mobile antenna to the VNA via cable; it is
not strictly a wireless system. Moreover, a measurement scenario [12] was limited to a cable length of
only 5 m, while such short radiating cables were not used in indoor or tunnel radio communications.
This paper presents the test results for radiating cables in time-based positioning systems with more
realistic signal parameters and configurations. In our research, a general-purpose wideband radiating
cable was used for communication systems. But it is worth to mention that special design of radiating
cable with non-uniform deployment of slots, proposed by Hassan et al [25] may have improved
position estimation quality due to side lobe reduction in cable radiation patterns modelled as linear
antenna arrays.

3. Principle of Radiating Cable Positioning

A radiating cable is a transmission line (e.g., coaxial, symmetrical) designed to radiate to an
external environment a controlled part of the energy of a transmitted signal. In coaxial radiating cables,
the emission is caused by an imperfect shielding, i.e., a loosely woven braid or a perforated solid screen.
Regarding the different geometry of slots (e.g., shape, spacing), different energy conversion principles
are used to model the feeder coupling with the environment [26,27]. The first model assumes that every
slot in the cable acts as an elementary magnetic dipole [28]. A resultant electromagnetic (EM) field
is a superposition of radiation from every slot. This model is suitable for cables with a non-uniform
slot pattern, thus optimizing them for good performance in a narrow frequency band. Such cables are
often considered as the “radiating mode”. The cables with closely spaced slots—i.e., the distances
between them much shorter than a wavelength—are modeled as a controlled conversion of the energy
between the coaxial mode inside the coaxial cable and the one-wire mode between the shielding and
environment [29]. These kinds of cables are called the “coupled mode”; their performance depends on
the scattering of local fields by nearby objects [30,31]. However, they are frequently used because of
their wide bandwidth.

When comparing the indoor radio communication systems with antennas mounted in selected
points in buildings, the radiating cable allows for us to achieve more uniform signal power distribution,
as the main part of the propagation path is in the cable with predictable longitudinal attenuation.
This advantage was used in the positioning method [15,16]. However, a relatively short distance
between the measuring device and the nearest part of the radiating cable should also give high
repeatability of propagation delay determined by constant signal velocity in the cable and device
position along the cable. Assuming that both radiating cable sides are connected to transmitters Tx1
and Tx2 (Figure 1), which transmit the positioning signals at time t1 and t2, respectively (t2 − t1 = T is
known), the measuring receiver Rx receives both signals with a time difference as follows:

∆t = T + (d2 − d1) · vprop, (1)

where vprop is a velocity of the signal in the radiating cable. Therefore, it should be possible to estimate
the position of the mobile receiver along the cable by measuring only the difference in positioning
signal time of arrival (TDOA). Compared to method presented by Nishikawa et al. [12], this restricts
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positioning as one dimensional and assumes that signal detection time is caused mostly by emission
from the nearest cable section.
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Figure 1. Principle of position estimation along the radiating cable using the time difference of arrival
(TDOA) method.

The received signal is a superposition of components radiated by a long section of the cable
around the nearest point. Due to signal propagation velocity differences in the cable and air, EM wave
emission direction is not perpendicular to the cable axis. Thus, position estimation accuracy should
depend on the distance of the receiver from the cable. However, the results of our measurements
showed that, when using band limited signals, positioning errors caused by these effects may be
comparable or even smaller than other error components, such as random errors caused by multipath
propagation in corridors when propagation time differences for different paths are lower than signal
bandwidth, or errors caused by limited time measurement resolution.

4. Measuring Stand

The possibility to estimate the measuring receiver position along the radiating cable was tested
in the industrial, scientific, and medical (ISM) band at 2.45 GHz. The signal was generated by
a Rohde&Schwarz SMU200 vector signal generator and was modulated using binary phase shift
keying (BPSK) modulation with a pseudo random binary sequence (PRBS20) (20 MHz chip rate).
The root-raised cosine filter limited bandwidth of transmitted signal to 23.3 MHz (99% of power).
The signal level at the generator output was +10 dBm. Therefore, taking into account the coupling loss
of the radiating cable, the emission level was far below legal limits. A relatively long PRBS sequence
(220 − 1 chips) was necessary to achieve a high processing gain during receiver correlation. This was
crucial to extract the test signal from interferences from the IEEE 802.11 networks, which were present
in a building where tests were performed.

Test signals were transmitted using a 50 m long RCT4-WBC-1X-RNA coupled mode coaxial
radiating cable, which was on the floor of a straight corridor in a faculty building. This eight-story
building had reinforced concrete ceilings and columns with brick walls. The dimension of the building
was 115 × 12 m and there was a straight corridor along the entire length of the building on every floor.
The cross-section of the corridor and the general view are presented in Section 4.3.

The test signals were received with a universal software radio peripheral (USRP) that had a
sampling rate equal to 25 MHz and 12-bit conversion. After upsampling 10-times, a time measurement
resolution, based on searching for local maxima in the cross-correlation discrete-time function of
received signal and PRBS template signal, was equal to 4 ns. During the tests described below,
the receiving part was placed on selected points in the corridor (stationary measurements) with an
antenna 0.3 m above the floor (0.5 m from the radiating cable). The description of measurement
conditions and geometry during the final campaign is presented in Section 4.3.

4.1. One Feeder

The first test verified the possibility of position estimation based on a signal transmitted from
one end of the radiating cable and reflected from the open (not terminated) end. Nishikawa et al. [12]
successfully presented such a scenario when conducting a test that used VNA. Unfortunately, a limited
bandwidth of the pseudo random signal used in our research, made it almost impossible to distinguish
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between the direct and reflected signal from the radiating cable (Figure 2). Through the direct signal
we understand the pseudo random signal from a vector signal generator, transmitted (and delayed)
through a radiating cable and radiated into the air in the proximity of the receiver. The reflected signal
is the same signal from the vector signal generator, which is transmitted through the radiating cable.
It travels length-wise to its unterminated end, reflects from the open end, transmits in a backward
direction, and radiates into the air in the proximity of the receiver.
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Figure 2. Measuring stand for estimation of position based on the reflection of the test signal from the
open end of radiating cable.

Near the open end of the cable, the reflected signal was not visible in the correlation function
(Figure 3) due to a high level of correlation side lobes. Moreover, in the area closest to the cable end
with signal generator, the reflected signal power was attenuated by a long propagation path at the far
end of the cable and back. Therefore, automatic detection of the reflected component was not possible.
All correlation charts presented in this paper were computed separately using 52.4 ms long fragments
of the recorded signals, which was the repetition time of the PRBS20 sequence clocked at a 20 MHz
chip rate. No signal filtering or averaging was used, and the recorded signals contained interferences
from ISM devices.
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Figure 3. Example of a cross-correlation function of a signal recorded at d1 = 13.3 m using an
unterminated radiating cable.

As there is only one source of the test signal, the receiver position, d1, related to the end of the
cable connected to signal generator can be expressed by:

d1 ≈ D− ∆t
2
· vprop, (2)
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where ∆t is the measured time difference between the direct and reflected signal in the receiver, D is
the total length of radiating cable, and vprop is the velocity of the signal propagation in the radiating
cable. According to the datasheet, vprop for cable type RCT4-WBC-1X-RNA is 0.88 c. Although vprop

measurements used the vector network analyzer returned value 0.89 c, we decided to use 0.88 c
declared by the producer, because this observed difference in vprop may cause maximal position
error estimation of 0.56 m at d1 = 0, which was far below the proposed method’s expected accuracy.
Equation (2) was accurate only when both signal components received by a measuring device were
radiated perpendicular from the section of cable closest to the receiver. Therefore, the time of signal
propagation in the air was equal for both components. If the receiver was located close to the cable,
the real signal emission at an angle other than perpendicular ([12]) was neglected. The proposed
solution was only used for 1D position estimation and in areas close to radiating cable, so possible
applications are limited to corridors or tunnels. However, in the real environment, the receiver signal
is a superposition of components radiated from some certain part of the leaky feeder. As long as there
was sufficient fragment of the radiating cable available in both directions, resulting errors should
at least partially cancel each other out. Yet when a mobile receiver was placed near the cable end,
the uneven condition of reception of direct and reflected components may cause systematic position
estimation errors.

4.2. Two Feeders with Amplifier

To improve quality of reception of signal reflected from the end of a cable, an amplifier was used
to amplify the signal before sending it back toward the generator.

Two-directional connection of the amplifier to the same cable requires a directional coupler with
separation higher than the amplifier gain. This was not available, so we used two parallel radiating
cables (Figure 4). Measured coupling loss between two parallel cables, terminated with matched load,
placed 20 cm apart, was below -45 dB. To ensure that no oscillations occurred, the amplifier gain was
set to 30 dB and the radiating cables were spaced 30–40 cm apart. The second radiating cable was
terminated by a matched load. As there was no reflection of the signal from the open end of the
radiating cable, the second component of the signal recorded by the measuring receiver was called the
return signal. The return signal in this scenario was the pseudo random signal from the vector signal
generator connected to the first radiating cable. Then, it was transmitted (and delayed) through the
whole length of the first cable, amplified by a wideband amplifier, and delayed in additional coaxial
cables. Finally, it is transmitted through the second radiating cable and radiated into the air in the
proximity of the receiver.
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Figure 4. Measuring stand with two radiating cables for a case with return signal amplification.

In this scenario, measuring the receiver position may be estimated as:

d1 ≈ D− ∆t− τc − τa

2
· vprop, (3)

where τc represents the sum of all additional signal delay in connecting cables and τa is a signal delay
in an amplifier. All assumptions listed under Equation (2) are still valid.

The amplification and additional delay of the return signal made the detection of the main lobes
of the correlation for both components (direct and return) easier. However, in some results the two
highest peaks in the correlation function did not correspond to the main lobes of measurement signals.
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To automatically detect both signals, it is important that near the end of the cables the return signal
level may be higher than the level of the direct one (Figure 5).Sensors 2020, 20, x FOR PEER REVIEW 7 of 19 
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Figure 5. Example of cross-correlation function of signals recorded at d1 = 39.3 m using two radiating
cables with the amplifier.

4.3. Two Feeders with Signal Frequency Conversion

Full separation of the correlation charts for the direct and return signal may be reached with an
additional signal delay before amplification using delay times longer than the duration of the unwanted
components (side lobes) in the correlation function. It is also possible by modifying the return signal
shape or frequency. The simplest method was a frequency conversion that used a balanced mixer
and a second signal generator as a heterodyne in the measuring stand (Figure 6). The return signal in
this scenario was a frequency-shifted version of the previously defined return signal. It is a pseudo
random signal from generator number 1. It was transmitted and delayed in the first radiating cable.
Then, it was delayed in an additional coaxial connecting cable and multiplied by a sinusoidal signal
from generator number 2. Finally, the return signal was amplified and delayed, then transmitted
through the second radiating cable and radiated into the air in the proximity of the measuring receiver.
Therefore, both components of the test signal (direct and return) were generated by the first signal
generator, but the return signal was additionally mixed with a low-frequency carrier from the second
generator. The measuring receiver position was estimated using (3) and by taking into account that τc

was the sum of the signal delay in cables connecting the first radiating cable with the mixer, the mixer
with the amplifier, and the amplifier with the second radiating cable.
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Figure 6. Measuring stand with the frequency conversion of the return signal.

To fully examine the position estimation accuracy in this scenario, measurements were taken
in 12 different configurations of the radiating cables (black dots) and the receiving antenna position
(squares), presented on a cross-section of the corridor in Figure 7. Firstly, the radiating cables were
placed along one wall with cable no. 1 close to the wall. This cable radiated the direct signal. Next,
the cables were moved nearer the opposite wall of the corridor so that cable no. 1, radiating the direct
signal, was closer to the center of the corridor. The measuring receiver was mounted on a hand cart
equipped with a wheel encoder for reference position measurements. Accuracy of this reference data
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varied from less than 5 cm at the beginning of the measurement trajectory (beginning of radiating cable)
up to approximately 20 cm near the end of the cable, due to the measuring wheel slip. The receiving
antenna was placed at a height of 0.3 m and 1 m above the floor. The cart speed was from 0.2 to 0.4 m/s
along three parallel tracks spaced 0.5 m apart. Additional attenuation of the unconverted signal in the
mixer allowed us to reduce the distance between radiating cables to 0.2 m only. In Figure 7, numbers
near square marks indicate a measurement series.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 19 

 

unconverted signal in the mixer allowed us to reduce the distance between radiating cables to 0.2 m 
only. In Figure 7, numbers near square marks indicate a measurement series. 

 
Figure 7. Position of radiating cables and receiving antenna in a corridor in the scenario with two 
feeders and frequency conversion. 

Figure 8 shows a view of the corridor with radiating cables on the floor and the hand cart with 
the receiver and the wheel encoder. 

 
Figure 8. Measurement setup in the scenario with two feeders and frequency conversion. 

The frequency of the signal from the second generator was set to 100 kHz, which was low 
compared to the transmitted signal’s carrier frequency (2.45 GHz) and the occupied bandwidth (23.3 
MHz). Yet when the pseudo random test signal was received by the correlation receiver with an 
integration time equal to 52.4 ms (220 − 1 times the chip rate), even such a low frequency shift was 
enough to avoid spectrum despreading of unwanted recorded signal components. Relatively high 
signal attenuation without conversion in the balanced mixer (over 40 dB) ensured that the signal 
transmitted by the return cable was composed of only two components at frequencies 2.4499 GHz 
and 2.4501 GHz, which together occupied a bandwidth of 23.5 MHz. Therefore, the direct and return 
signals shared approximately the same spectrum. This method does not require wider channel 
bandwidth in comparison to the previous examples. For such a low-frequency shift, there is no 
possibility of using a diplexer to separate direct and return signals. In case of using only one 
radiating cable, the directional coupler is still needed. 

Figure 7. Position of radiating cables and receiving antenna in a corridor in the scenario with two
feeders and frequency conversion.

Figure 8 shows a view of the corridor with radiating cables on the floor and the hand cart with the
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Figure 8. Measurement setup in the scenario with two feeders and frequency conversion.

The frequency of the signal from the second generator was set to 100 kHz, which was low
compared to the transmitted signal’s carrier frequency (2.45 GHz) and the occupied bandwidth
(23.3 MHz). Yet when the pseudo random test signal was received by the correlation receiver with an
integration time equal to 52.4 ms (220 − 1 times the chip rate), even such a low frequency shift was
enough to avoid spectrum despreading of unwanted recorded signal components. Relatively high
signal attenuation without conversion in the balanced mixer (over 40 dB) ensured that the signal
transmitted by the return cable was composed of only two components at frequencies 2.4499 GHz and
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2.4501 GHz, which together occupied a bandwidth of 23.5 MHz. Therefore, the direct and return signals
shared approximately the same spectrum. This method does not require wider channel bandwidth in
comparison to the previous examples. For such a low-frequency shift, there is no possibility of using a
diplexer to separate direct and return signals. In case of using only one radiating cable, the directional
coupler is still needed.

The conversion of the return signal frequency ensured that the reception time of the direct signal
was always related to the global maximum in the signal correlation function at a nominal frequency of
2.45 GHz. The reception time of the return signal was obtained from the global maximum of the signal
correlation at frequencies 2.45 ± 0.0001 GHz (Figure 9). Therefore, fully automatic detection of both
received signal components was trivial. However, examples of the correlation function obtained near
the beginning (d1 = 4.3 m), center (d1 = 29.5 m), and end of the radiating cable (d1 = 48.7 m) (Figure 9),
shows that only in the center section of the cable shape of the correlation for the direct and return
signals is almost the same. Distortion of the correlation function at both ends of the cable, caused by
unequal conditions of emission of signals traveling in the opposite direction, may have a significant
impact on position estimation accuracy.
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Figure 9. Examples of cross-correlation functions of direct and return signals recorded at d1 = 4.3 m (a),
29.5 m (b) and 48.7 m (c) using two radiating cables with frequency conversion.

5. Results of Position Estimation

Due to the low quality of the reflected signal reception in the scenario with an unterminated
radiating cable, we could not estimate the mobile receiver’s position. It was caused by overlapping of
the reflected signal main lobe with the higher-level side lobes from the direct signal. In this scenario,
a wider bandwidth of the test signal would probably improve the discrimination of both components
in the received signals. Results obtained from the two other configurations of the transmitting section
are more promising.
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5.1. Two Feeders with Amplifier

The results of position estimation along two radiating cables with return signal amplification
(Figure 10) are median values calculated from 18 repetitions of PRBS signals received during
one-second-long signal recordings by the stationary receiver. Error bars in Figure 10 represent
the standard deviation of the results. Averaging the results was used to reduce random errors but also
caused a reduced update rate to one result per second. If a higher update rate is needed, other methods
of data filtering may be used, including the running average and Kalman filtering. Reducing random
errors caused by ISM device interference may be achieved after choosing another frequency band.
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Figure 10. Results of position estimation in the scenario with return signal amplification.

In general, we saw a high level of repeatability for the obtained results. The standard deviation of
position estimation at subsequent measuring points varied from 0.29 m to 1.23 m, but the average error
of mean position was several times higher (from −5.41 m to +2.9 m). In addition to the random errors
present during measurements, which were characterized by a standard deviation of obtained results,
systematic errors were also present in many measurement points and had a higher impact on position
estimation accuracy. The best accuracy was found near the center of the radiating cable. High values
of mean errors occurred in certain sections of the measured area, which may suggest that it was caused
by overlapping of the correlation lobes of the direct and return signals. The systematic shift, observed
near both ends of the radiating cable, may be caused by uneven conditions of reception of direct and
return signals travelling in opposite directions.

5.2. Two Feeders with Signal Frequency Conversion

Converting the return signal frequency should theoretically reduce the mutual impact of the
overlapping lobes in the correlation function (i.e., after independent correlation of the direct and return
signals). Therefore, the results of the position estimation presented in Figures 11–14 reflect the effects
caused by the environment and limitations of the proposed positioning method. These measurements
were taken on a different day than those presented in Figure 10 (and probably with a slightly different
location of the radiating cable in the corridor). Thus, a direct comparison of both charts is not possible.
However, there are similarities between results on the charts in Figures 10–12, such as systematic errors
of position estimation at distances near 31–32 m.
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Figure 11. Results of position estimation in the case of return signal frequency conversion; the height
of receiving antenna: 0.3 m, series 1–3.
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Figure 12. Results of position estimation in the case of return signal frequency conversion; the height
of receiving antenna: 1 m, series 4–6.
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Figure 13. Results of position estimation in the case of return signal frequency conversion; the height
of receiving antenna: 0.3 m, series 7–9.
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Figure 14. Results of position estimation in the case of return signal frequency conversion; the height
of receiving antenna: 1 m, series 10–12.

An important difference in the method of measurements presented in this subsection was the
receiver’s movement. The estimated position of the receiver was a median value from 18 repetitions of
correlation of PRBS signals recorded for one second by a receiver mounted on a moving hand cart.
Measurements in motion allowed us to obtain more results in a limited time with an accuracy comparable
to those presented in Section 5.1. However, we observed increased dispersion of 18 subsequent results
for 1 s long measurements. This was not surprising, as the duration of one correlation of a PRBS20
sequence was comparable and even longer than coherence time for radiating cable communication [32].
Table 1 shows the obtained position estimation accuracy, where ε is the mean value of position error,
defined as the difference between estimated and real coordinate d1, while σε is the standard deviation of
errors in the final position estimate. The next two variables, included in Table 1, specify short-term data
dispersion in a 1-s long measurement. σs is a mean value of the observed short-term standard deviation
in the whole series. max(σs) is the maximal value of this parameter in the series. Both the mean value
and standard deviation of the position estimation errors were comparable to results presented by other
authors for systems with narrowband signals [17].

Table 1. Evaluation of position estimation accuracy.

Series ε [m] σε [m] σs [m] max(σs) [m]

1 −0.02 1.95 1.46 3.74
2 0.05 2.17 2.3 8.25
3 −0.7 3.18 1.96 4.72
4 0.64 2.09 2.07 15.7
5 0.17 2.06 1.69 7.82
6 −1.32 2.61 2.27 5.98
7 −0.62 1.71 2.79 9.95
8 −1.02 2.93 3.47 10.7
9 −3.77 7.76 3.63 11.4

10 −0.17 1.71 2.57 7.57
11 −0.92 1.89 2.47 7.6
12 −0.39 3.23 1.73 3.48

Figure 15 presents the cumulative distribution function (CDF) of position estimation error, which is
defined as the difference between the estimated and real value of coordinate d1. In Figure 15, positive
quantities indicate position estimates shifted toward the end of the cable with an amplifier, while
negative results correspond to position estimates closer to the end of the cable with a signal generator.
These charts show almost no difference between results obtained for the receiver antenna at height 0.3 m

288



Sensors 2020, 20, 5064

(series 1–3) and 1 m (series 4–6), as well as no systematic error (CDF equal 0.5 for error value close to
zero) when the cable radiating direct signal was closer to the corridor wall. In the second configuration,
with the cable radiating direct signal was placed closer to the center of the corridor, the mean error
(0.6 m) can be observed for measurements with the receiver antenna at height 1 m (series 10–12).
However, when the receiver antenna is 0.3 m above the corridor floor, several measurements returned
to the incorrect position of −3.5 m, which is visible in Figure 13 for series no. 9 and in the cumulative
distribution function for series 7–9. The almost equal value of position estimation in these incorrect
results corresponded to the correct reception of the direct signal and incorrect reception of the return
signal traveling through whole length of radiating cable number 2 and then reflected from the end of
the cable which was correctly terminated with a 50-ohm load. Therefore, some impedance mismatch
or “end effects” [27] probably occurred.

Figure 15. Cumulative distribution of position estimation errors.

Although position estimation errors in Figures 11–14 were apparently uncorrelated, they were
probably caused by inhomogeneous distribution of EM fields inside the corridor. Moreover, they
could be caused by a limited measurement setup (e.g., signal bandwidth, measurement resolution).
Measurement repetition was performed in exactly the same conditions and showed a high level of error
repeatability, which is clearly visible on exemplary charts in Figure 16. Presented results were obtained
during three measurement repetitions in series number 12, with the receiver antenna placed 1 m above
the corridor floor. Meanwhile, a hand cart moved along the same path with, at most, 5 cm accuracy.
In all measurement repetitions, two kinds of errors were distinguished. The first was a systematic shift
of position estimates near both ends of the radiating cable. Results obtained in this corridor section
indicated that the receiver was closer to the center of the radiating cable; thus, it seemed that these
systematic errors may be reduced after evaluating the nonlinear correction function. The second type
of error was the repetitive local deviation from the general trend, which at many points exceeded 3 m.
This was probably caused by an inhomogeneous building structure and a radiating cable coupling to
the building structure. Compensation of these errors may be more difficult and require some kind of
fingerprinting method.

We observed high values in position estimation errors for some measurement points, which cannot
be explained by corresponding anomalies in the direct and return signals power levels. In general,
signal levels along the radiating cables were not stable with random differences exceeding 15 dB.
However, no significant changes in power level distribution were found in regions with higher position
estimation errors.
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Figure 16. Results of position estimation in three measurement repetitions in series 12; the height of
receiving antenna: 1 m.

In our experiment, the mobile receiver position estimation accuracy was comparable to results
presented in the literature. For example, Weber et al. in [16] found position estimation using differences
in signal power levels, showing an accuracy of 2.5 m in 50% of all cases and approximately 4.5 m at
an 80% threshold level. Pereira et al. [19] had slightly worse results, with 20 m position estimation
accuracy at 88% confidence level. They were obtained using GSM and WLAN signals, and they
were not dedicated positioning signals. Nakamura et al. [21] showed variable accuracy of distance
measurements, from 0.2 m to 8.1 m, with an average error value of 2.4 m. Therefore, it may be concluded
that different methods of positioning with radiating cables are comparable for achieving accuracy.

6. Discussion on Position Estimation Errors

When evaluating the obtained position estimation accuracy, one should refer to sounding signal
parameters, especially in terms of signal bandwidth, which is inversely related to time measurement
resolution. For example, ultra-wideband (UWB) indoor positioning systems, based on IEEE 802.15.4
UWB modems using a 499.2 MHz bandwidth, allow for a ranging accuracy of several centimeters [33].
The positioning system based on Nanotron modules, which uses a chirp signal in 2.4 GHz ISM band
with a bandwidth of 80 MHz, allows for 1.5 m distance measurement accuracy [34]. However, switching
to a 22 MHz bandwidth results in three times worse accuracy. Therefore, the chirp-based solution with
a 22 MHz bandwidth may be used as a reference to compare against the proposed solution. In case
of the code-division multiple access (CDMA) signal reception in the presence of the Gaussian noise
(e.g., AWGN channel, no multipath propagation), theoretical accuracy of tracking the peak of the
cross-correlation function may be calculated from Equation (4) [35]:

σ =
Tc√

2 · SNR
, (4)

where σ is the standard deviation of peak time measurement, Tc is chip time (50 ns), and SNR is
signal-to-noise ratio after spectrum despreading [35]. Exemplary charts, as presented in Section 4, show
that during measurement, SNR exceeded 40 dB. Therefore, time measurement accuracy limit in the
AWGN case reached 0.35 ns, which corresponded to a 0.09 m distance measurement error for radiating
cable with vprop = 0.88 c. However, such good accuracy was not reachable due to multipath propagation,
which caused shape degradation of the correlation function’s main peak, which is clearly visible on the
first and third charts in Figure 9. Another reference for positioning accuracy evaluation may be the
width of the main peak in the cross-correlation function of received signals. Laboratory measurements
that used a cable connection between the signal generator and USRP receiver (no multipath or external
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interferences) gave a main peak width equal to 48 ns at −3 dB, which corresponded to a distance
of 12.7 m. However, the time measurement resolution 4 ns, defined by the receiver’s sampling
frequency (25 MHz) and a 10-times up-sampling rate, corresponded to 1.06 m of a one-way distance
measurement resolution. Therefore, we achieved position estimation accuracy close to the receiver’s
measurement resolution.

We mitigated time measurement uncertainty during tests by using the following tools: the accuracy
of frequency standard in signal generators (at most 10−7), the accuracy of a reference oscillator in the
USRP receiver (at most 2 × 10−6), the accuracy of the signal delay in the amplifier and connecting
cables (±0.2 ns), and propagation speed vprop. The impact of all other sources of uncertainty were
several orders of magnitude smaller than the observed errors caused by inhomogeneous emissions of
radio signals and cables that effect the environment.

The wide width of the main peak in the correlation function equaled 48 ns and was strictly
connected to the limited possibility of separating the multipath components in the receiver. There was
no possibility of investigating multipath phenomena using signals recorded by the setup presented
in this paper. Signals received in the shorter period overlap, thus distorting the shape of correlation
function and causing errors when detecting signals’ timing based on peak tracking. However,
in typical indoor or outdoor radio positioning systems, based on radio signal propagation in the air,
time measurement quality may be improved with a leading-edge detector because the multipath
components reach the receiving antenna after the signal travels in a straight (and short) path. However,
in a positioning system based on a radiating cable, unwanted multipath components may be received
before a signal radiated perpendicular to the cable, i.e., signal emissions with high power from a
section of cable not close to a point near the receiver. This signal can reach the receiver after time
of propagation in the air (with speed c), even if earlier than wanted component which has to travel
through the radiating cable (with speed vprop lower than c). Therefore, the advantage of slope detection
over peak detection in positioning systems using radiating cables is questionable.

Results from all measurements clearly shows regularity. The best accuracy was available near
the center of radiating cables, while position estimates obtained near both ends of the cable were
systematically shifted toward the center. This effect was not caused by the wrong value of signal
propagation speed in cable vprop, because incorrect vprop in the setup (Figures 4 and 6) would cause the
best match near the end of the radiating cable and increase error in the region closer to the beginning of
the cable. These systematic errors are likely caused by unequal radiation conditions when signals travel
in the opposite direction in finite-length radiating cables. The direction of radiation of the EM field is
skewed to the direction of signal propagation in the cable [12,29]. Additionally, the received signal is
always superposition of components radiated from some section of the cable. Thus, the measurements
taken near the end of the cable may correspond to different EM field distribution comparing to
center section of the cable. In general, electromagnetic field emissions from radiating cables was
not uniform [36–38], causing time measurements errors and a large variations of instantaneous
received signal power values that exceeded 12 dB. This is visible on the power chart presented in
Figure 17, as a random deviation from linear trend of power drop which was caused by leaky feeder
longitudinal attenuation.
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Figure 17. Exemplary values of the power level of direct and return signal, series 12.

A general trend of power level changes in Figure 17 is similar to the systematic character of the
obtained position estimation error. The correction of position had a linear approximation of difference
in the power of direct (Pdir) and return (Pret) signals (in decibels) when using Equation (5):

d′1 = d1 − 0.298 · (Pdir − Pret) + 0.95 (5)

Only partially improved position estimation accuracy came from reducing the mean error ε to
zero and standard deviation σε from series 12 to 2.37 m (from 3.23 m without correction). It may be
expected that a large dispersion of instantaneous power from the received signals was caused by a
multipath fading phenomena and standing waves, which may have increased local dispersion of the
position estimation results even when the systematic position shifted near both ends of the cable was
reduced. It was not possible to remove the fading effect from the measured power levels without
spatial data averaging over a long path, exceeding tens of wavelengths. Thus, data correction by using
signal power levels is of limited use. Another method of data correction was evaluated using the least
squares linear model of the position errors, which may be summarized as follows:

d′1 = d1 + 0.233 · d1 − 5.28 (6)

Such a simple correction allowed us to reduce a standard deviation to 1.46 m, giving better results
than corrections based on differences in the received signal power. Both data correction methods are
presented in Figure 18 using blue (correction based on the signal power levels) and green (correction
based on a linear error model) lines, respectively. In general, both methods reduced systematic position
shifts near the ends of the radiating cable. Both gave the mean value of the position error close to zero.
Differences between them were visible not only for standard deviation value but also on local result
variation (Figure 18). Maximal values of uncorrected errors in series 12 were −6.04 m and +7.29 m.
Corrections based on signal power levels reduced maximal error values to −5.24 m and +6.71 m,
while corrections based on the simple linear model gave maximal errors of −4.13 m and +3.75 m.
Therefore, both data correction methods are able to reduce systematic position shift, which is visible in
the raw data near both ends of the radiating cable. Unfortunately, reducing local anomalies in position
estimates using received signal power levels was unsuccessful, as this method results in higher errors.

It is difficult to explain high values of errors visible on some charts in the 17–20 m and 30–32 m
regions. The whole corridor was free from obstacles during measurements. The first region was
situated near a staircase. The second region was not connected with any changes in the geometry
of the corridor, but it turned out that, in this region, there was a boundary between two structural
sections of the building with thick reinforced walls on both sides of the corridor instead of brick walls.
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Taking into account that the radiating cable’s signal emissions were connected with scattered EM fields,
anomalies in position estimation may be caused by inhomogeneous geometry and building structure.
Unfortunately, we could not find any area with a strictly homogeneous structure, because even in the
outdoor environment, some underground infrastructure was always present (e.g., pipes, cables).Sensors 2020, 20, x FOR PEER REVIEW 17 of 19 
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and return signal power levels and corrections based on the linear model’s position errors.

7. Conclusions

Estimating the receiver position along the radiating cable using time-difference measurements
of a relatively narrowband (23 MHz) signal is possible and very promising. The obtained results
can form a basis for developing radiolocation systems in corridors or tunnels where radiating cables
are already installed, without the need to deploy a dense network of reference nodes required in
UWB-based solutions. For a full scope of the possibilities presented by the proposed solution, extended
measurements should be performed in different parts of the corridor or with different deployments of
the radiating cable, such as under the ceiling and separated from any conductive elements. However,
the proposed solution only allows for one dimensional position estimation in a limited area near the
radiating cable, which may be assessed as the biggest disadvantage of radiating cable-based positioning.
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Abstract: Internet of Things is advancing, and the augmented role of smart navigation in automating
processes is at its vanguard. Smart navigation and location tracking systems are finding increasing
use in the area of the mission-critical indoor scenario, logistics, medicine, and security. A demanding
emerging area is an Indoor Localization due to the increased fascination towards location-based
services. Numerous inertial assessments unit-based indoor localization mechanisms have been
suggested in this regard. However, these methods have many shortcomings pertaining to accuracy
and consistency. In this study, we propose a novel position estimation system based on learning
to the prediction model to address the above challenges. The designed system consists of two
modules; learning to prediction module and position estimation using sensor fusion in an indoor
environment. The prediction algorithm is attached to the learning module. Moreover, the learning
module continuously controls, observes, and enhances the efficiency of the prediction algorithm by
evaluating the output and taking into account the exogenous factors that may have an impact on
its outcome. On top of that, we reckon a situation where the prediction algorithm can be applied to
anticipate the accurate gyroscope and accelerometer reading from the noisy sensor readings. In the
designed system, we consider a scenario where the learning module, based on Artificial Neural
Network, and Kalman filter are used as a prediction algorithm to predict the actual accelerometer
and gyroscope reading from the noisy sensor reading. Moreover, to acquire data, we use the
next-generation inertial measurement unit, which contains a 3-axis accelerometer and gyroscope
data. Finally, for the performance and accuracy of the proposed system, we carried out numbers
of experiments, and we observed that the proposed Kalman filter with learning module performed
better than the traditional Kalman filter algorithm in terms of root mean square error metric.

Keywords: inertial navigation system; artificial neural network; motion tracking; sensor fusion;
indoor navigation system

1. Introduction

Today, when most of the world is well explored, navigation resides an essential part of our society.
Today’s technologies enable us to use the navigation in an entirely new way than our predecessors
could. After the invention of smartphones, a vast number of location-based services have been
introduced. These location-based services help users to find a way to a certain point of interest.
During the last two decades, after the Global Positioning System (GPS) reached it fully operational
capacity, the significant of different kinds of location-based services depend on positioning and
navigation capabilities have increased tremendously [1,2]. Currently, GPS is recognized as famous
for calculating the user’s current location using the satellite. The popular examples of navigation that
using GPS are aviation, timing, agriculture, car navigation system and so forth [3]. Even though GPS
is considered to be well-known technology for locating the target in an outdoor environment, but it is
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not feasible for an indoor navigation system as it requires a continuous connection to communicate
with satellite [4]. There are many other reasons why GPS will not work in an indoor environment,
for example, signal attenuation in an indoor environment because of weak GPS signal, and signal
disturbs due to hurdles like steel and concrete walls. The disturbance and hurdles continuously
penetrate and block the signal coming from the satellite [5]. Therefore using GPS, it is not reliable to
calculate the precise user location in an indoor environment. Hence in consideration of these problems,
the GPS is not reliable for indoor positioning systems (IPS) [6,7].

The IPS is a system that used certain information in order to locate the target in an indoor
environment. This information includes radio waves, sensors data, WLAN nodes, magnetic field,
acoustic signal and so forth [8]. Currently, significant research is being done in the area of indoor
localization. However, still, there exist many problems faced by the users due to no standard solution
or service for indoor positioning [1]. Nevertheless, many technologies exist that can be used to calculate
the position in an indoor environment. The problem with these services is that they were created for
other purposes rather than to locate persons or objects, which sometimes make them very unreliable.
These issues lead to the development of many miniaturized chips specifically for determining the object
or a person in an indoor environment. These chips are called inertial measurement unit (IMU) [9,10].

IMU is an electronic device that is used to measures and detects the body orientation, angular
rate, and body-specific force using a combination of accelerometers, gyroscopes, and sometimes
magnetometers. During the past several years many IMU has been designed in order to get the precise
position estimation in indoor environment [9]. IMU provides a 3-axis sensor, that is, accelerometer,
gyroscope, and magnetometer. These sensor data is used to calculate the position of the target in an
indoor environment. Double integration is the popular method to calculate the position of the object
using accelerometer with respect to time. Similarly, for orientation estimation, Euler angle is used,
which includes the information of roll, pitch and yaw using gyroscope data. However, these sensors
readings have dynamic noise and bias in their measurements; therefore, we used a different type of
filter, for example, Kalman filter, and alpha-beta filter and so forth that are responsible for removing
these noise from sensors readings [11,12].

Many solutions have been suggested to predict the position using machine learning (ML).
These model uses historical data that reflect the behaviour of the process being modelled. Machine
learning techniques for predicting accurate position estimation includes ANNs, adaptive neuro-fuzzy
inference systems (ANFIS), support vector machine (SVM), and extreme learning mechanism (ELM).
The ANNs method has several advantages over conventional NN as it is easy to use, fast to learn,
provide good generalization results, has minimum inaccuracies in training and achieves minimum
standard weights. Nowadays, deep learning methods are used in many areas for predictive purposes,
such as deep neural networks, deep networks of faith, and recurring neural networks [13,14].

The main contribution of the proposed position estimation based on learning to prediction
approaches are followed as:

• The main objective of the proposed system is to get an accurate position estimation by minimizing
the error in IMU sensor readings using the prediction algorithm.

• The learning module is based on Artificial Neural Network, and Kalman filter are used as a
prediction algorithm to predict the actual accelerometer and gyroscope reading from the noisy
sensor reading.

• The learning module continuously controls, observes, and enhances the efficiency of the prediction
algorithm by evaluating the output and taking into account the exogenous factors that may have
an impact on its outcome.

• In position estimation module, the Kalman filter is used to fuse the IMU data to get noise and
drift-free position in an indoor environment.

• Finally, for evaluating system performance, we analyzed the results using the well-known
statistical measures such as RMSE, MAD, and MSE. Our proposed system experiments indicate
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that learning to prediction algorithm improves the system accuracy as compared to tradition
prediction algorithm.

Permitting prediction algorithms to encounter ever-changing data or varying surrounding
conditions is a demanding job. In this study, we introduce a comprehensive architecture to gain
the precision and execution of the prediction module by applying the learning module in indoor
navigation. We have used 3-axis sensor values, that is, accelerometer, and gyroscope, which is acquired
from the IMU sensor in order to calculate the orientation and position estimation. The design system
is comprised of two modules, that is, learning to prediction module and position estimation using
sensor fusion in indoor navigation. The learning module is based on ANN and is continuous monitors
the prediction algorithm performance by analyzing the output as feedback. The learning module
is also responsible for considering the external parameters, (i.e., bias and drifting error) that may
affect the outcome of the prediction algorithm. Once, the learning module updates the adjustable
settings or commutes the trained model of the prediction algorithm to raise its efficiency regarding
prediction accuracy. Similarly, for the learning model, we have used the back-propagation neural
network for predicting the accurate parameter to tune the prediction algorithm. The hidden layer
comprises of ten neurons, a total of three inputs are assigned to three input layers, and the output
layer contains one neuron. The linear and sigmoid functions are employed as activation functions.
The structure of the rest of the paper is organized as follows: Section 3 delineates a brief overview of
contemporary state-of-the-art approaches; Section 4 encompasses details about the proposed heuristic
model. The empirical analysis of the experiments carried out in this study is explained in Section 4,
and Section 5 concludes the paper with directions for future work.

2. Related Work

In navigation, indoor navigation and tracking is a crucial process due to the limited available
resources, that is, less GPS signal and satellite availability and so forth. Over the last few years,
several location estimation algorithms have been proposed to calculate the distance travelled in
indoor and outdoor environments [15,16]. These algorithms are segregated into six categories, that is,
fingerprinting, connectivity/neighbourhood, triangulation, inertial and motion sensor, proximity,
and dead reckoning [17]. However, in this study, our primary focus is to discuss the IMU-based inertial
and motion sensor applications with pros and cons in an indoor navigation system. The overviews of
the approaches mentioned above are summarised in Figure 1.

Indoor Positioning 
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Triangulation Proximity

Lateration Angulation
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Figure 1. Taxonomy of indoor positioning system.

2.1. Inertial and Motion Sensor

Inertial and motion sensors are the types of sensors that use information, for example, acceleration,
gyroscope, and magnetometer and so forth to calculate the position of the object in an indoor
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environment. This sensor information like accelerometer is used to calculate the position estimation
using double integration method. Thus, the gyroscope tends to determine the orientation using the
roll, pitch and yaw. Likewise, the magnetic field direction pertinent to the earth is calculated using
the magnetometer. There are many systems proposed during the last few years that uses inertial
and motion sensor. The contemporary inertial and motion sensor-based application discussed in the
literature below [17].

In Reference [18], the author proposed an algorithm for calculating the orientation of the body
using the MEME gyroscope. Moreover, this study also keeps track of sports activity using the IMU
and improve the orientation using an extended Kalman filter by removing the uncertainty from the
measurement. The performance of the system is measured using the VICON OPTICAL, and it shows
that the system is accurate with less root mean square error.

The author of Reference [19] presented a model technique to improve the orientation using the
reading output from the inertial measurement unit. A new sensor fusion algorithm MUSE has been
implemented for orientation tracking. MUSE is a magnetometer-centric sensor fusion algorithm used
orientation tracking. Moreover, this paper also proposed a new sensor fusion method to fully leverage
the restriction of human arm movement by shoulder joints and elbow movement.

In Reference [20], the author presented an approach based on artificial neural network.
The proposed system is adequate for combining the artificial neural network with the inertial
measurement unit in order to get the accurate pedestrian positioning system. The developed system
comprised of two possible states, that is, stationary state while the object is not moving regardless of its
orientation, and the second is the object is moving equipped with IMU on his body. The further state
can also be added to the classification results for the ANN, for example, shaking, jogging, spinning,
falling, driving, and flying.

The author of Reference [21] presented an integrated navigation system using a fuzzy logic
adaptive Kalman filter (FLAKF). The system is used to overcome the dynamic noise of the accelerometer
output and also detect the bias in the sensor reading and resolve the error from the conventional
Kalman filter. The main goal of this study is to adjust the weight of the traditional Kalman filter

In Reference [22], the author presented a distance measuring technique using two methods.
The first method for measuring distance is integrating twice the acceleration to get the position
estimation. However, in this method, the results are not satisfactory due to exponentially increase in
error. Therefore to prevent error, the second method has been implemented, which count the number
of steps and angles between legs during movement. The second method uses the accelerometer and
gyroscope data to calculate the numbers of steps and angle. The main advantage of the second method
is low cost and probability sensor circuit.

2.2. Connectivity/Neighborhood

Connectivity/Neighborhood is a method that can be used to analysis of connectivity, that is,
numbers of attainable neighbours. In this approach, the numbers of reference points are defined,
and they have spatially disseminated the object through which the reference point establishes a
connection with the neighbour. In case of signal coverage overlap between the reference point in a
suitable way, then the location of the object can be measured using the intersection of all its neighbour’s
coverage areas. The accuracy of the presented approach depends on the number of reference points,
their distribution and coverage in terms of signal range [17,23].

2.3. Proximity

A proximity-based indoor positioning system aims to provide the specific point relative location
information to the user whose corresponding point is close proximity. The receiver is used to
determines the position of the user when the user is close to the product or an object which is directly
connected to the corresponding receiver. The connection to the receiver is based on the signal strength.
In case the user is beyond a single receiver then it can be linked with the receiver with the highest
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signal strength. The proximity-based system can be developed using cell ID (CID), radio frequency
identification (RFID), Bluetooth, and infrared radiation (IR) and so forth. These technologies can
be used to estimate the location of the users. In the case of CID, a unique number code is used to
determine the base transceiver station (BTS). Since the CID of the BTS is received by the mobile users
to which they are connected through which the location of the mobile user can be approximated to the
proximity of the BTS with the CID information [17,24,25].

2.4. Triangulation

The triangulation based indoor position estimation system is based on the geometric properties,
which is similar to GPS uses for an outdoor environment. The target location can be identified by several
reference points using the angles. The calculation of position estimation using the above-discussed
triangulation is called angulation. The common algorithm to measure the angulation is the angle
of arrival (AOA). Similarly, to calculate the position using triangulation, we can also use lateration.
In the case of lateration the distance of the target location is measured using several reference points.
The common algorithms to calculate the lateration are interferometry, hop-based, signal attenuation,
received signal strength (RSS), time difference of arrival (TDoA), time of arrival (ToA), and return time
of flight (RToF) [17,26,27].

2.5. Dead Reckoning

Dead reckoning is the process of calculating the user’s current position using the previously
calculated position based on estimated speeds over elapsed time and course. The common example
using the dead reckoning are animal navigation, marine navigation, localization of mobile sensor nodes,
air navigation, automotive navigation, pedestrian dead reckoning, and directional dead reckoning and
so forth [17,27].

2.6. Fingerprinting

The fingerprinting algorithm comprises of two steps the training of data and its positioning.
The step in training is responsible for constructing a database which contains fingerprints, and in
case of step positioning, location estimation is measured using database comparison with existing
computing signal strength. In the training process, the database is constructed using the chosen
reference point through which the access point signal strength is computed. Finally, each reference
point is stored in the database. Similarly, in the positioning step, the signal strength of all the access
points is used to measured the target and then compared it with data stored in the database by
a deterministic or probabilistic approach. The output of the positioning step is the approximated
position of the target. The performance of fingerprinting improves with an expansion in the number of
reference points measurements and reference points. The increased number of datum points increases
the accuracy as well. Though the training step for fingerprinting is a very burdensome work, and it is
demanding in an active indoor condition such as an airport [17,27].

2.7. Navigation using Machine Learning Approaches

Nowadays, many machine learning algorithms are used to measure and predict body motion
for wearable devices based on IMU Data. Several machine learning systems are working in diverse
domain from marketing to medical services [28–34]. In Reference [35], a fingerprinting based indoor
positioning uses a deep neural network to reduce the error in positioning. Similarly, in Reference [36],
the author introduced a location-based car park system based on the conventional neural network.
This system is used to localize and identify the car in the parking area. In another study, the two
indoor localization techniques using machine learning algorithms are used to improve the indoor
localization, that is, dead reckoning (DR) and data fusion [37]. In the first method, the DR technique
uses an inertial sensor to improve the robustness and continuity of the indoor localization. Similarly,
in the second approach, the data fusion approach integrated with machine learning model is used to
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predict the uncertainty in the wireless-based localization. From the last several decades, ’ many indoor
studies have been introduced, which uses the machine learning approaches to predict and track the
location of the object in an indoor environment [38]. The contemporary indoor localization integrated
with machine learning algorithms uses a different kind of input data such as, inertial sensor data [39],
camera data [40], sound data [41] and LiDAR (light detection and ranging) [42]. These input data
can be used for several intents, for instance, pass data as an input to the machine learning and get
output. Most of the studies output three dimensional location data (x, y, z) axis, angle information [43],
angle of arrival [44], distance [45], and object movement status [46].

Table 1 shows the critical analysis of indoor localization based on machine learning algorithms.
We concise the comparative analysis into four categories, such as inertial measurement unit data [39,46],
radio signal strength [45,47–50], channel state information [51], and angle of arrival [52].

Table 1. Comparative analysis of Indoor localization using machine learning approaches.

Approach Reference Input Data Machine Learning
Algorithm Hidden Layer Output

Inertial
Measurement

Unit Data

[39] Inertial Sensor Data
(acclerometer, gyroscope,

magnetometer)

Artificial Neural
Network 2–4 Step Length

[46]
Recurrent Neural

Network 4 Static Detection

Radio Signal
Strength

[47]

WiFi Data (Access point,
nodes)

Feed-Forward
Neural Network 1–3 Location

[48]
Generative
Adversarial

Neural Network
3 Distance

[49]
Artificial Neural

Network 1 Location

[50]
Radial basis

Function
Neural Network

1 Location

[45]
Adaptive Neural

Fuzzy
Inference System

3 Distance

Channel State
Information [51]

WiFi Data (Access point,
nodes)

Generalized
Cross-correlation 1–2 Location

Angle of Arrival [52] Radio, Optical or Acoustic
Convolution Neural

Network 8 Location

Learning to
Prediction

Proposed
Solution

Inertial Sensor Data
(acclerometer, gyroscope,

magnetometer)

Artificial Neural
Network 10 Position

As below mentioned, Table 1 related to indoor navigation system based on machine learning
techniques have many drawbacks in terms of system accuracy and performance. These approaches
directly use sensor data as an input to the machine learning algorithm in order to predict and identify
the object or location. These sensor reading contains the bias and drifting error which affect the
accuracy of the position estimation. However, in the proposed system, we use a prediction algorithm,
which is used to minimize the noise in the sensor reading. Moreover, the prediction algorithm is
to monitor and control using the artificial neural network to enhance the prediction accuracy of the
design system.

As stated above, these systems are not adequately designed for indoor navigation and also have
some overcoming in terms of accuracy. To the best understanding of the author, there has been no
working tracking scheme for indoor navigation systems appertaining to learning prediction model
created as yet.
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3. Proposed Methodology

The three-axis sensor like accelerometer and gyroscope scope is acquired from next-generation
IMU in order to compute the angular velocity (Lw) and linear acceleration (La) in the proposed position
estimation system. The designed system consists of learning to prediction module and the position
estimation using sensor fusion in an indoor navigation system. The first module briefly explains the
step-by-step working of position estimation using sensor fusion in indoor navigation, and the second
module describes the detailed learning to prediction module using ANN and Kalman filter algorithm.
Next, we briefly explain the step-by-step working of these models.

3.1. Scenario of Position Estimation in Indoor Navigation

The proposed position estimation system is divided into two modules, that is, the position
estimation using sensor fusion and learning to prediction module. The position estimation further
divided into four sub-modules (i.e., sensor fusion based on Kalman filter algorithm, IMU acceleration,
Integrator, and position estimation) as shown in Figure 2.

3 axis 
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3 axis 
accelerometer

Inertial Measurement Unit

3 axis 
magnetometer

Sensor Fusion

Prediction Correction

KF

IMU Acceleration

Linear 
Acceleration

Gravitational 
Acceleration

Centripetal
Acceleration

Integrator

Linear 
Velocity

Velocity 
Reference Frame

Linear 
Acceleration

Acceleration 
Reference Frame

Velocity
Integration

Acceleration 
Integration

Position

Orientation Matrix

Stochastic Model

Figure 2. Position Estimation for proposed Indoor Navigation System.

The 3-axis output produced by the IMU in the form of a magnetic field vector, angular velocity,
and linear acceleration is passed to the sensor fusion module. In the sensor fusion module, the output
from the IMU is fuse together using the Kalman filter to get the drift-free and noise-free orientation
of the object in an indoor environment. The Kalman filter in the sensor fusion module works as
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a prediction algorithm, which comprised of two parts, that is, prediction and correction [53,54].
The prediction is calculated by taking the integral of gyroscope measurement and then correct the
prediction using the accelerometer and magnetometer readings. The fusion that happens inside
the Kalman filter is a probabilistic fusion that combines and correct the inputs based on maximum
likelihood. After calculation the drift and noise-free orientation from IMU, the orientation matrix is
passed to the IMU acceleration module to remove the gravity and centripetal force. The processed data
is further passed to the integrator module in which the velocity is calculated by taking the integral
acceleration. Once getting velocity, then take the second integral of velocity to get the position of an
object. The integrator is used to performs the mathematical operation of integration concerning time
and calculate the velocity and position.

In an indoor environment, the position and orientation of the object are determined by the
non-linear matrix. In past researches, accelerometer, magnetometer, and gyroscope’s output gives
the orientation estimation, which helps in finding the object orientation. In the case of gyroscope,
the complete adjustment could not be calculated at once considering the tendency related to gyroscope
readings, as shown in Equation (1). Integrate the angular velocity to get the orientation (roll, pitch,
yaw). However, in this case, we have a drifting error.

Lω = Lωtrue + bg + vg. (1)

Here, Lω is angular velocity vector in the local sensor frame. vg is a frequency noise, bg is a sensor
bias a low-frequency noise we also considered bias as a constant in a small window of time and Lωtrue

is a true angular velocity that we get from the sensor.
In case of acceleration, assuming there is no motion of the body, the only acceleration measure of

gravity is divided by three-component and then uses some trigonometry and gets the roll and pitch
with respect to the vertical axis. However, in this case, the accelerometer has a very high-frequency
noise, as shown in Equation (2).

La = Labody + Lg + ba + va, (2)

where La is the acceleration vector in the local frame, Lmtrue represents the true acceleration due to the
motion of the person or object or in other words linear acceleration, Lg is the gravitational acceleration,
va is a frequency noise, ba is a sensor bias a low frequency noise we also considered bias as a constant
in a small window of time.

In the case of the magnetometer, it is used to calculate the yaw. Therefore, we combine both
accelerometer and magnetometer to calculate orientation estimation. However, in this case, we still
have noise estimation as represented in Equation (3).

Lm = Lmtrue + Lmint + bm + vm, (3)

where bm and vm represent the bias and noise. Lmtrue represents the true magnetic field which is the
earth magnetic field that is used for heading. Lmint is the magnetic disturbances. In order to solve the
issue of bias and noise, the idea would be to get the best out of two kinds of estimation. The estimation,
which does not have a lot of noise and at the same time does not have the drift. Therefore the best way
to get the drift-free and noise-free orientation is to fuse together all the sensors, as shown in Figure 3.
In the proposed system, we used the Kalman filter algorithm as a prediction algorithm in order to
apply the sensor fusion. In this case, the first step is the prediction step in which we get the data
from the IMU sensor and calculate the estimate through the mathematical model and then correct
the estimation with measurement (i.e., correction). The Kalman filter comprised of two steps, that is,
prediction and correction, in case of orientation estimation of IMU, the prediction is calculated by
the integration of gyroscope reading and then correct the measurement through accelerometer and
magnetometer reading. The fusion that happens inside the Kalman filter is a probabilistic fusion that
combines and corrects the input based on maximum likelihood. In Figure 3, the σω is the uncertainty
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in the gyroscope measurement, and angular velocity is symbolized as ω. Similarly, a is represented
as acceleration and σa is the uncertainty in acceleration measurement. Finally, the magnetic field is
denoted as m and σm is the uncertainty in magnetometer measurement.

3 axis 
gyroscope

3 axis 
accelerometer

Inertial Measurement Unit

3 axis 
magnetometer

Sensor Fusion

Prediction Correction

a, σa m, σmω, σω

KF

Orientation

Figure 3. Orientation estimation using sensor fusion based on the Kalman filter algorithm.

3.1.1. Sensor Fusion Using Kalman Filter

In the study, we used the nonlinear version of the Kalman filter algorithm. The Kalman filter
linearized the mean based on the state-space and compute the covariance-based on current state
estimation. The Kalman filter is based on a discrete dynamic equation, which can be represented
based on two phases; the first phase is the prediction phase, and the second one is the updated
measurement phase. In the sensor fusion module of the proposed model, we have used the Kalman
filter. The Kalman filter takes the linear acceleration, angular velocity, and magnetic field vector as
an input from the sensor and provides the corrected predicted parameter as output. The working
flow of the Kalman filter is shown in Figure 4. First, the initial estimation error covariance and initial
state are to be determined and calculated using Equations (4) and (5). Besides input, measurement
values, process and measurement noise covariance are also considered as an input. Equation (5) helps
in finding the gain of Kalman. Both the estimation error covariance and the state estimation based on
Equations (7) and (8) for their correctness.

The time update equation of the Kalman filter is:

x̂k̄ = x̂k−1 + Bk (4)

Pk̄ = APk−1 AT + Q. (5)

Prediction Phase Correction Phase

Predicted State Vector

Error Covariance Matrix

Compute The kalman Gain

Update the Estimate zk

Update the Error Covariance
K+1

IMU 
sensor

ω a m

Figure 4. Configuration diagram of Kalman Filter in indoor navigation.
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The state update equation of the Kalman filter is:

Kk = Pk̄ HT(HPk̄ HT + R)−1 (6)

x̂k = x̂k̄ + kk(zk − hk) (7)

Pk = (I − Kk H)Pk̄, (8)

where the predicted state-vector is represented as x̂k̄, which includes 3-axis coordinates along with the
heading using the proposed sensor fusion technique. Bk is the state space model matrix. Furthermore,
Pk̄ is the error covariance matrix which is comprised of two parts—(i) predicted error noise symbolized
as (Q); (ii) State matrix which is denoted as A. The Pk value is modified at every iteration using three
parameters. The parameters are predicted error covariance matrix (Pk̄), obtained Kalman-Gain (Kk),
and updates the measurements (H).

3.1.2. IMU Acceleration

The output from the IMU accelerometer is divided into three component, that is, IMU acceleration,
gravity correction, centripetal force correction, as shown in Figure 5.

Linear 
Acceleration

Gravitational 
Acceleration

Centripetal 
Acceleration

IMU 
Acceleration

Figure 5. Inertial measurement unit (IMU) accelerometer output.

In the proposed position estimation system, we use linear acceleration in order to obtain the
position in an indoor environment; therefore, it is essential to remove both centripetal and gravitational
force from the sensor data. The IMU fixed frame contains gravity acceleration, which can be formulated
in Equation (9) 


accxgravity

accygravity

acczgravity


 (t) = Orientation−1(t)




0
0
g


 , (9)

where gravitational acceleration magnitude is symbolized as g and acceleration vector with respect to

earth fixed frame is denoted by




0
0
g


. Similarly gravity acceleration vector with respect to IMU fixed

frame symbolized as




accxgravity

accygravity

acczgravity


.

The rotation of the object can take place in two ways—(i) the object rotation around a point in the
space and (ii) the object rotation around itself. Therefore, in the proposed system the rotation of the
object is calculated using the Equation (10):




accxcentripetal

accycentripetal

acczcentripetal


 =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 .




Vx

Vy

Vz


 . (10)
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The centripetal force is defined as the cross product of the linear velocity and angular velocity.

3.1.3. Integrator Module

Integrator is used to performs the mathematical operation of integration with respect to time and
calculate the velocity and position from the linear acceleration [55]. The integrator module is based
on the following steps. In the first step, we take the integral of acceleration measurement to get the
velocity of the object in an indoor environment, as shown in Equation (12). In Equation (11), a denotes
the acceleration measurement taken from the IMU sensor.

a = constant (11)

v =
∫

adt = vo + at. (12)

In the second step, we take the integral of the computed velocity to get the position of the object
in indoor environment. The Equations (12),(13) and (14) demonstrate the second integration, where y
donates position, velocity is denoted as v0, t represents time and a is the acceleration.

y =
∫

vdt (13)

y =
∫
(vo + at)dt (14)

y = yo + vot +
1
2

at2. (15)

3.2. Learning to Prediction Model

The proposed learning to prediction model is classified with a couple of modules, that is,
the prediction algorithm and learning module. Traditionally, the historical data are used to train
the prediction algorithm so that the relationship and hidden pattern can be learned among the output
parameters and the input parameters. Afterwards, the output of any given input data is predicted
using the trained model. The performance of the prediction algorithm depends upon a couple of
things. The training data conditions are as same as the application scenario data and the input data.
Nevertheless, none of the current prognostication algorithms adopts model well enough to train
dynamic input states. Therefore, to vanquish the existing studies’ limitations, we design a novel
learning to a prediction model for the proposed indoor navigation system, as illustrated in Figure 6.

In the proposed learning to prediction model, the prediction algorithm is tuned using the learning
module in order to improve the accuracy and performance of the prediction algorithm. Furthermore,
the learning module continuously evaluates the performance of the prediction algorithm by receiving
the output as feedback. The external parameter is also considered by the learning module that may
create an impact on prediction algorithms in terms of performance. After monitoring the current output
and external factors, the learning module updates the tunable parameters of the prediction algorithm
or upgrade the complete trained model in the prediction algorithm to improve the prediction accuracy.

The design learning to prediction model comprised of two-part, that is, learning model and the
prediction model. The learning model is based on ANN, and the prediction model uses a Kalman filter
algorithm as a prediction algorithm, as demonstrated in Figures 7 and 8. In Figure 7, the Kalman filter
algorithm is used to predict the actual accelerometer readings from the noisy accelerometer sensor
readings, which are heavily influenced by the gyro bias. Traditionally the Kalman filter algorithm
does not require historical data for prediction, but it only requires the previous state to predict the
actual state of the system. Similarly, in the case of the learning module, we have used the feed-forward
back propagation neural network (FFBPNN) to tune the prediction algorithm. The learning module
takes three inputs, that is, accelerometer reading, gyroscope reading, and the Kalman filter predicted
reading as feedback. The accelerometer sensor reading At is passed to Kalman filter as input at time t,
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and the output from the Kalman filter is the predicted accelerometer sensor reading Pa without noise.
Noise in accelerometer sensor readings is due to the gyro bias, which is Gt.

Other Data Input Input

feedback Output

Learning Module

Triggers 
Detection

Historical
Data

Parameter 
Selection

Parameter1

Parameter2

Parametern

Training

Tunable 
Parameters

Prediction 
Model

Prediction Algorithm

Input DataOther Data

Output Data

tuning

Figure 6. Conceptual view of the proposed learning to prediction model in indoor navigation system.
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sensor 

Gt

Figure 7. Block diagram of Accelerometer prediction using learning to prediction model.

Similarly, in Figure 8, the gyroscope reading Gt is predicted using the Kalman filter algorithm,
and the output is predicted gyroscope sensor reading Pg without noise. Noise in the gyroscope is due
to the impact of accelerometer value.

Kalman Filter
Algorithm

Artificial Neural 
Network

Gt

Gt

R

Pg Predicted Gyroscope

Pg

Gyroscope 
sensor 

Accelerometer 
sensor 

At

Figure 8. Block diagram of Gyroscope prediction using learning to prediction model.

In the intended learning to prediction model, the tunable parameter can control the prediction
algorithm performance. , which is Kalman, gain K. To intelligently update the gain K after every
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iteration, the estimated error in sensors’ reading R and the covariance matrix P are used. The next
subsection describes the Kalman filter in detailed.

3.3. Kalman Filter Algorithm

The requirement of historical data in the Kalman filter is not necessary because of its lightweight
prediction. For intelligent prediction, the Kalman filter only required previous state information in
order to predict the actual state of the system. K, which is also known as Kalman gain, is the necessary
parameter that is updated based on the situation to control weights given to the system’s own predicted
state or sensor readings. The detailed working of the Kalman filter is illustrated in Figure 9.

Sensor

Get Sensor 

Reading

Estimated Real 

State

Compute Predicted 

State

Output State
Compute Kalman 

Gain

Error in Sensor

Reading

Update Error in 

Process

Previous State

Initialize the State 

and error in 

process X, P

Initialize 

approximated error 

in Sensor

Figure 9. Working of the Kalman filter algorithm.
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In every environment, there is a noise factor which creates a serious impact on sensor readings
in that environment. In the proposed methodology, we considered an accelerometer and gyroscope
sensor reading having noise, and let us considered Pa and Pg is the accelerometer and gyroscope at
time t. The internal prediction regarding system state is based on Kalman filter, that is, estimated
accelerometer Pa+1 at time t + 1. Afterwards, we describe the step by step process of the Kalman filter
algorithm, that is how it removes the noise from sensor data.

The first step is to compute the predicted sensor reading, that is, accelerometer and gyroscope
from the previously estimated value using Equation (16).

Sp = A.AGt−1 + B.ut, (16)

where Sp is the internally predicted sensor reading, that is, accelerometer and gyroscope, the state
transition and control matrix is denoted as A and B receptively. AGt−1 is the predicted accelerometer
and gyroscope at time t− 1 that is previously computed and control vector denotes as ut.

The uncertainty in the internally predicted sensor reading, that is, accelerometer and gyroscope is
calculated using the covariance factor which is computed using Equation (17)

Ppred = A.Pt−1.AT + Q, (17)

where the estimated error in the process is symbolized as Q, and the old value of covariance is denoted
as Pt−1. A is the state transition matrix, and AT represents the transpose of the state transition matrix.

Equation (18) compute the internal system estimate of the next state and updating covariance
based on Kalman gain.

K =
Ppred.HT

H.Ppre.HT + R
, (18)

where an estimated error in the readings is denoted as R, H and HT are the observation matrix and its
transpose.

We consider a scenario in which current reading obtained form the accelerometer sensor at time t
is denoted as At. Similarly, in case of gyroscope, current reading, which is symbolized as Gt is passed
to the Kalman filter. Afterwards, the predicted accelerometer Pa and predicted gyroscope Pg given by
the Kalman filter is computed using the Equation (19).

Pa = Papred + K(Gt − H.Papred) (19)

Pg = Pgpred + K(At − H.Pgpred). (20)

From Figure 10, we calculated the predicted sensor reading using Equation (21)

AGt = AGpred + K(St − H.AGpred). (21)

In Equation (22), the covariance for the next iteration is finally updated as below

Pt = (I − K.H)Ppred. (22)

3.4. ANN-Based Learning to Prediction for Kalman Filter

The traditional Kalman filter works fine when there is no changing in the estimated error in the
sensor. However, if the change in the estimated error occurred due to some external factor, then we
need to update the value of R, which is the estimated error in the measurement as shown in Figure 9.
In the designed system, we considered a scenario where accelerometer data is affected due to gyro bias,
and similarly, accelerometer value causes the noise in the gyroscope. The traditional Kalman filter fails
to predict the actual accelerometer and gyroscope under these dynamic conditions when the value of
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sensor reading changed due to external factors. Figure 10 shows the complete functioning layout of
the intended learning to prediction model. The three inputs of the learning module are the previously
predicted sensor value by Kalman filter algorithm, acceleration and gyroscope. The expected error is
the output in the sensor reading, which is moreover divided by the fixed constituent denoted as F to
calculate the estimated error in the sensor reading that is R. Afterwards, the Kalman filter takes the
updated value of R as input and adjusting the Kalman gain K by appropriately tuning its prediction
accuracy. The intended model predicts the actual accelerometer and dynamic error rate reading from
the noisy sensor reading of gyroscope.
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AGt
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Figure 10. Position Estimation based on learning to prediction.

4. Experimental Results and Discussion

4.1. Development Environment

The development environment of the proposed work is categorized into two models, i.e.,
learning to prediction model and position estimation using the sensor fusion algorithm. In the
case of the stochastic model, we have used the next-generation inertial measurement unit(NGIMU),
the next generation inertial measurement unit designed for data acquisition with the onboard sensor
and data processing algorithm. The on-board sensor includes 3-axis accelerometer, gyroscope,
and magnetometer sensor, which is further used to calculate the position in an indoor environment.
The characteristic of NGIMU is mentioned in Table 2.
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Table 2. Characteristic of NGIMU.

Sensor Description

Gyroscope
Range ±2000◦/s
Resolution 0.06◦/s
Sample Rate 400 Hz

Accelerometer
Range ±16 g
Resolution 490 µg
Sample Rate 400 Hz

Magnetometer
Range ±1300 µT
Resolution ∼ 0.3 µT
Sample Rate ∼ 20 Hz

The next generation inertial measurement unit sensor was used to acquired data for inertial
navigation in an indoor environment. The data were taken while the object walked from corridor
to room number D242 in building 4 of Jeju National University, Republic of Korea. The sample
data were acquired for a time duration of approximately 1 minute in which the first starting 10 sec
remained inactive so that the algorithm could congregate in a stable state. The tool and technologies
for developing the proposed stochastic model are summarized in Table 3. Similarly, for the learning
to prediction model, we used an ANN for tuning the prediction algorithm in order to enhance the
accuracy of the prediction algorithm. The detailed summary of the development environment for
learning to prediction model is mentioned in Table 4.

Table 3. Development environment for stochastic model.

Component Description

IDE MATLAB R2018a
Operating System Window 10
CPU Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz
Memory 8GB
Data smoothing and
prediction algorithm Kalman Filter
API NGIMU

Table 4. Development environment for learning to prediction model.

Component Description

IDE MATLAB R2018a
Operating System Window 10
CPU Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz
Memory 8GB
Artificial Neural Network Feed Forward Backpropagation
Hidden Layer 10
output Layer 1
Input 3
Prediction algorithm Kalman Filter

All the implementation and experiments of the proposed system were carried out on Window 10
64 bit with 8GB memory and Intel(R) Core i5-8500 @ 3.00GHz processor. Furthermore, for development,
we used MATLAB R2018a and the NGIMU application programming interface (API) to acquire the
sensor data.
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4.2. Implementation

The proposed system is developed in order to evaluate the performance of the prediction
algorithm, that is, the Kalman filter with the learning module. The experiment was performed on the
real dataset taken in the engineering building of Jeju national university. At the start, the data were
loaded into the application through NGIMU API. The data has ten inputs, that is, 3-axis accelerometer,
3-axis gyroscope, 3-axis magnetometer and time at which the data is taken. Afterwards, we calculated
the orientation using sensor fusion based on the Kalman filter. The orientation matrix was further
processed by removing the gravitational and centripetal forces and finally applied double integration
to compute the position of an object in an indoor environment. Furthermore, the RMSE value of
IMU sensor reading was computed by comparing its values with the actual IMU data such as the
accelerometer and gyroscope sensor values. The RMSE for the IMU sensor reading was recorded as
5.25, which is considered very high.

Moreover, we used a Kalman filter algorithm to forecast the actual sensor reading (i.e.,
accelerometer and gyroscope) form the noisy sensor reading. The develop interface provides manual
training of the internal parameter of the Kalman filter, that is, the estimated error in measurement (R).
Multiple experiments were carried out with different values of R in order to evaluate the performance
of the proposed system. The RMSE of the predicted accelerometer and gyroscope was 2.30 at R = 20.
The predicted RMSE was better than the RMSE of sensor readings, that is, a 55% reduction of error.

In the learning to prediction module, we had to use the ANN algorithm, which is used to enhance
the accuracy of the prediction algorithm. The ANN algorithm was comprised of three neurons as
an input layer and one neuron as a layer (i.e., accelerometer, gyroscope and Kalman filter predicted
reading) and predicting the error in the sensor reading, respectively. Furthermore, we used n-fold
cross-validation in order to avoid bias in the training process. For this purpose, we split the dataset
into four equal subsets (i.e., 2490 samples in each subset) as shown in Figure 11. According to 4-fold
validation, 75% of the dataset was used for training, and other 25% was used for testing the ANN
algorithm. Furthermore, in the proposed system, we used 100 epochs which were used for training
the ANN algorithm. In the ANN-based learning module, the data normalization was done using
Equation (23).

d̃i =
di − dmin

dmax − dmin
, (23)

where d̂i is the normalized value for the ith position of the input and output parameters, that is,
accelerometer, gyroscope and predicted sensor data. The maximum and minimum value for each
parameter in the dataset is denoted by dmin and dmax. Traditionally, in ANN training is done using
normalized data, therefore in order to compute the predicted error we de-normalized the output data
of the neural network using Equation (24).

eri = ẽrix(ermax − ermin) + ermin (24)

Model 1 Model 2 Model 3 Model 4
Record #1

Record #7470

Record #9960

Record #1

Record #4980

Record #9960

Record #7470

Record #1

Record #4980

Record #2490
Record #1

Record #2490

Record #9960 Record #9960

Training dataset Testing dataset

Figure 11. n-fold cross validation.
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Furthermore, the proposed model accuracy was evaluated using three different matrices such as
mean absolute deviation (MAD), root mean squared error (RMSE), and mean square error (MSE) as
shown in Equations (25)–(27).

MAD =
i+1

∑
n
|Ti − P̂i| (25)

MAE =
i+1

∑
n
(Ti − P̂i)

2 (26)

RMSE =

√
∑n

i+1(Ti − P̂i)2

n
, (27)

where total observation is denoted as n, the target value is represented as T, and P̂ indicates the
estimated value.

4.3. Results and Discussion

The open-source NGIMU was used to acquired data in order to calculate the object position in an
indoor environment. Moreover, for analyzing the proposed system performance, we compared the
result predicted by the conventional Kalman filter algorithm with the learning to prediction model.
In Figure 12, the raw accelerometer data is shown, which was acquired from the next-generation
inertial measurement unit along with the time at which the data were taken. The 3-axis representation
of the accelerometer data is denoted by x, y, and z. The dotted line represents the filtered data using a
Butterworth filter based on the defined cut-off frequency, and the solid black line shows the stationary
data, which is the magnitude of 3-axis acceleration. The stationary data represent the state of the object
if the magnitude is less than 0.05; the object state is stationary; otherwise, the object is moving.

Figure 12. Acceleration.

Figure 13 shows the value of the gyroscope, through which we calculated the value of the angular
velocity of the moving object. The 3-axis gyroscope is represented by x,y, and z. The first integration of
the angular velocity with respect to time leads to Euler angle, which is required to define the orientation
of the object. The Euler angle is usually used to calculate the Roll, Pitch, and Yaw. The angular velocity
is the rate of change in prescription of the object moving over time. The formula of angular velocity is
mentioned in Equation (28).

Figure 13. Gyroscope.

314



Sensors 2020, 20, 4410

ω =
θ f − θi

t
, (28)

where θ f and θi denotes the final angle and the initial angle of the object. The change of angle is
denoted by ∆θ, and finally t represents the time.

Figure 14 illustrated the acceleration m/s2 of the object in an indoor environment. The acceleration
m/s2 of the object is measured as the rate of velocity over time and is calculated using the formula
mentioned in Equation (29)

Figure 14. Acceleration m/s2.

a =
∆v
t

, (29)

where ∆v denotes the change in velocity, a represent the acceleration in m/s2 and time is denoted by t.
The velocity of the object was measured as to how fast the object is moving in an indoor

environment. Figure 15 illustrated the 3-axis velocity of the object, which is calculated using the
formula mentioned in Equation (30).

Figure 15. Velocity.

v =
∆x
t

, (30)

where ∆x represents the change in position of the object within an indoor environment, v denotes
velocity and t represents the time at which the object changes its position.

In Figure 16, the 3-axis position of the object is represented using a 2-dimensional graph where x,
y, and z represent the axis.
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Figure 16. Position.

In Figure 17, we present the predicted result of the accelerometer sensor using the traditional
Kalman filter without the learning model. We compared the original sensing data with different values
of R. The optimal value of R is based on the dataset, and it is not fixed. Hence it is difficult to find the
optimal value of R manually, so we considered different values of R. Also from the graph, it can be
seen that the Kalman filter prediction accuracy changed with changing the values of R

Figure 17. Position.

Similarly, Figure 18 shows the result of predicted angular velocity using a conventional Kalman
filter without the learning model. The graph represents the variation in prediction results by varying
the value of R in the Kalman filter configuration. The gyroscope sensor reading is predicted using
three different configurations as summarized in Table 5.
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Table 5. Kalman filter prediction results with and with learning module.

Metric

Kalman Filter
without ANN-Based Learning Module Learning to Prediction Model

R = 10 R = 15 R = 20 F = 0.01 F = 0.02 F = 0.1

RMSE 2.527 2.495 2.494 2.404 2.388 2.481
MAD 0.166 0.163 0.163 0.156 0.156 0.156
MSE 6.388 6.224 6.222 5.770 5.701 6.157

Figure 18. Position.

Next, we present the results of the proposed learning to prediction for both accelerometer and
gyroscope sensors readings, as illustrated in Figures 19 and 20. We used the ANN trained model in
order to improve the performance by tuning its R parameter. The predicted error rate update the R for
the Kalman filter algorithm based on R; we choose the suitable value for F, also called the error factor
using Equation (31).

R =
eri
F

, (31)

where proportionality constant also called as error factor denoted as F.

Figure 19. Prediction of acceleration using learning to prediction model with selected F values.
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Figure 20. Prediction of gyroscope using learning to prediction model with selected F values.

The graph shows the position data for 60 s in which the first 10 s represents the stationary state.
If we investigated the position plot, then we came to know that the proposed system significantly
reduced the drift and error from the sensing data. Figures 21 and 22 illustrated the trajectory of a
person walking in room no D242 toward the main corridor. In both scenarios, the person starts walking
from the starting point where the first 10 s remained stationary so that the algorithm could converge on
a stable state and stop walking at the endpoint in the main corridor. The black line shows the trajectory
of the person calculated using a stochastic model, that is, position estimation using sensor fusion,
whereas the red line is the predicted trajectory using the learning to prediction model. As we see in
the results that the amount of drift in the sensor reading is greatly reduced after tuning prediction
algorithms using artificial neural networks. In scenario 1, illustrated in Figure 21, the starting point is
(12, 2) and the endpoint is (1, 24) computed using traditional Kalman filter with respect to defined
reference point (0, 0). Similarly, in the case of learning to Kalman filter model, the accuracy of the
indoor system is improved in which the starting point and the ending point are (13, 5.5) and (−2, 24)
receptively. All the computed coordinates are mapped according to the defined reference point (0, 0).

Similarly in scenario 2, presented in Figure 22, we compute the result of the conventional Kalman
filter with (3, 6) as a starting point, and the ending point is mapped as −3 as x-coordinate and 24 as
y-coordinate with (0, 0) reference point. For the learning to prediction model, the accuracy is improved
with respect to reference point (0, 0), where the start point is mapped as (3, 6) and the endpoint is
(−3, 24).

Table 6 presents the RMSE in position with the prediction model and the learning to prediction
model. The results indicate that the error in position estimation is improved by 19% in the case of the
learning to prediction model. Furthermore, the proposed model precise the sensor reading based on
bias error correction, which results in improving the system accuracy.

As it was challenging to differentiate the result presented in Figures 19–22 . Thus, there is a
need for several statistical methods to evaluate the above-presented results in a single quantifiable
comparative analysis as mentioned in Equations (25)–(27). We have conducted multiple results for
evaluating the performance of a traditional Kalman filter with different R values. Likewise, in the case
of the learning to prediction module, the performance is assessed with the selected value of error factor
(f). Experimental results show that Kalman filter with learning to prediction module with F = 0.02
performed well as compared to other statistical measures. The best outcome for the Kalman filter
with no learning module where R = 20, as a result of 2.49 prediction accuracy in terms of RMSE.
Similarly, the best case for the learning to prediction module is recorded with F = 0.02, with a result of
2.38 prediction accuracy in terms of RMSE. Significant enhancement in the prediction accuracy of the
learning to prediction module as compared to the Kalman filter with the learning module is 0.041% for
the best case and 0.11% for the worst case in terms of RMSE. The statistical summary of Kalman filter
for both learning and without learning module is summarized in Table 5.
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Figure 21. Scenario 1: Person tracking in indoor environment.
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Figure 22. Scenario 2: Person tracking in indoor environment.
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Table 6. Position error with the prediction model and the learning to prediction model.

Experiment
ID

Position Error with
Prediction Model (mm)

Position Error with
Learning to Prediction Model(mm)

1 0.132 0.105
2 0.115 0.099

5. Conclusions and Future Work

In this paper, we designed a learning to prediction approach, which was used to enhance the
accuracy of the prediction algorithm in an indoor environment. The proposed system is a combination
of learning to prediction and position estimation using a sensor fusion algorithm. In the proposed
position estimation module, we used a sensor fusion technique based on Kalman filter to fuse all three
sensors’ measurements in order to get the noise and drift-free orientation estimation for calculating
the accurate position in indoor navigation. Likewise, we have used an ANN-based learning model in
the learning to prediction module, which enhanced the accuracy of the prediction algorithm. In the
designed system, we considered a scenario where the accelerometer and gyroscope sensor is affected
by the external conditions, where a conventional Kalman filter failed to extract the noise-free sensor
reading from the actual readings. The proposed system improved the performance of the prediction
algorithm by tuning the R parameter. For comparative analysis, we analyzed the results using the
well know statistical measures such as RMSE, MAD, and MSE. The comparative analysis suggested
that the learning to prediction model in the indoor navigation system performed better with the
error factor of 0.02, which resulted in a 2.38 RMSE prediction accuracy. The results indicated that
the proposed learning to prediction model significantly improves the prediction accuracy and gives
us the confidence to further explore the application to improve the performance of other prediction
algorithms in indoor navigation systems
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Abstract: Received signal strength indicator (RSSI)-based positioning is suitable for large-scale
applications due to its advantages of low cost and high accuracy. However, it suffers from low
stability because RSSI is easily blocked and easily interfered with by objects and environmental
effects. Therefore, this paper proposed a tri-partition RSSI classification and its tracing algorithm
as an RSSI filter. The proposed filter shows an available feature, where small test RSSI samples
gain a low deviation of less than 1 dBm from a large RSSI sample collected about 10 min, and the
sub-classification RSSIs conform to normal distribution when the minimum sample count is greater
than 20. The proposed filter also offers several advantages compared to the mean filter, including
lower variance range with an overall range of around 1 dBm, 25.9% decreased sample variance, and
65% probability of mitigating RSSI left-skewness. We experimentally confirmed the proposed filter
worked in the path-loss exponent fitting and location computing, and a 4.45-fold improvement in
positioning stability based on the sample standard variance, and positioning accuracy improved by
20.5% with an overall error of less than 1.46 m.

Keywords: trilateral indoor positioning; RSSI filter; RSSI classification; stability; accuracy

1. Introduction

With widespread Wi-Fi, Bluetooth (iBeacon), and smart mobile terminal deployment, received
signal strength indicator (RSSI)-based indoor positioning technology has attracted research attention
due to its advantages of low complexity, low cost and high accuracy [1,2]. However, the received
signal strength (RSS) is easily blocked and easily interfered with by objects and environmental effects.
These influences usually increase RSSI variance; thus, RSSIs vary sharply over time even when the
actual signal strength remains constant. The variation reduces accuracy and stability for an RSSI-based
indoor positioning system (IPS) [3–5]. Many assisted and combined technologies were proposed
to achieve higher accuracy, e.g., pedestrian dead reckoning (PDR), computer vision, space-scenario,
and artificial intelligence techniques [1,4]. However, fundamentally, dealing with RSSI is a crucial step
during the whole IPS process.

RSSI is environment-dependent. Therefore, it is significant to filter the raw RSSIs before substituting
them into the positioning process. Many RSSI purification technologies such as the Gaussian filter [6],
Kalman filter [7], and particle filter [8,9] are typically designed to mitigate either the linear or non-linear
noise through smoothing. Still, they may not effectively deal with the ever-changing dynamics of
the indoor environment [10] and have left-skewed distributions [11]. The mean filter [12] is widely
accepted because it has similar accuracy and anti-interference performance, but has less burden in
filtering computation [13,14]. Besides smoothing, RSSI screening is another effective filtering method,
e.g., by selecting the max N RSSIs (N = 13 is optimal) [13], and the least variance RSSIs over time [15].
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Importantly, RSSI classification is also an effective filtering method, especially in combination with
clustering algorithms for RSSI filtering and singular RSSI tracing [16,17].

RSSI-based IPS is generally divided into two categories: trilateration-based IPS and fingerprint-
based IPS [10,18,19]. The fingerprint-based IPS [20–22] gets more concern in terms of the number
of references retrieved, where the number is 1,910,000 vs. 30,000 from Google Scholar. It also gains
positive effect by using unsupervised machine-learning algorithms to reduce the data dimensionality,
and fingerprint matching calculations required [23]. Meanwhile, the trilateration-based positioning
system is widely applied in outdoor environments [24,25]. However, it faces challenges in indoor
environments, achieving 3–5 m accuracy without assistive technology and device, and lower stability [3].
The trilateration-based IPS positioning is easy to understand and easy to construct. Usually, RSSI-based
trilateration IPS is undertaken in two main steps: distance mapping and position computation [10].
The distance between the unknown position sensor and the known position sensor anchor is obtained
by some RSSI propagation model [26]; its accuracy depends on signal transmission anchor, path-loss
exponent in the RSSI propagation model, and RSSI sampling, etc. [10,13]. Based on this, the unknown
location is obtained by trilateration methods such as least square and maximum likelihood [4,10].

This paper will propose a new filtering technique to play a role in the propagation parameter fitting
and the RSSI sampling purification, to improve RSSI-based IPS accuracy and stability, particularly
for trilateration-based positioning, considering that accuracy and stability are equally important. The
overall accuracy may diminish due to energy consumption [27,28], and stability may significantly
influence the user experience and application promotion.

The main contributions of this study are as follows:

(1) We propose a tri-partition classification of RSSIs, considering that the interference effects are
finite and unambiguous, increasing and decreasing while the interference sources are multiple
and fuzzy. And we also propose a clustering algorithm to trace the tri-partition classification
quantitatively and seek the partition distribution centers, helping to reveal the interference and
judge whether the sun-classification conforms to normal distribution.

(2) We take the proposed algorithm as an RSSI filter and discuss its work mechanism. And we infer
that it is feasible by analyzing the features in terms of sample count and deviation and advantages
compared to the mean filter.

(3) We verify that the proposed filter works in path-loss exponent fitting and location computing,
and analyze the improvement of IPS it yields.

The remainder of this paper is arranged as follows. In Section 2, we review RSSI-based trilateration
positioning technologies and RSSI filters. We detail the proposed RSSI filter based on an RSSI
classification and tracing algorithm in Section 3. In Section 4, we analyze the filtering performance,
including features adapted to real-time IPS and advantages over the mean filter. Section 5 introduces a
test to examine the positioning performance using the proposed filter and compares its performance
with the mean filter. Finally, in Section 6, we summarize and conclude the paper.

2. Literature Review

2.1. Received Signal Strength Indicator (RSSI)-Based Trilateration Indoor Positioning System (IPS)

Trilateration-based positioning technology is easily understood and widely used in the positioning
of pedestrians and robots and things [1–3]. In the method we should know the position of the anchors
(reference nodes) as (x1, y1), (x2, y2), . . . , (xn, yn), and their distances from the target node, which is
calculated by the RSSI-distance mapping, d1, d2, . . . , d3. If we assume the target node’s coordinates as
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(x, y), then the essential geometric functions as follows. When the anchors are more than 4, the least
square and maximum likelihood [4,10] are used to calculate the target node’s optimal coordinates.



(x1 − x)2 + (y1 − y)2 = d1
2

(x2 − x)2 + (y2 − y)2 = d2
2

. . .

(xn − x)2 + (yn − y)2 = dn
2

(1)

The positioning complexity is partly to know the anchor points’ location in advance, especially
when anchors change and a lot of update work required. The difficulty is that RSSI-based trilateration
techniques depend on an accurate estimation of distance by RSSI-distance mapping. RSSI is a function
of distance and is generally affected by the environment and any changes therein. Usually, researchers
use the following simplified propagation model to measure RSSI (Formula 1) and map RSSI to distance
(Formula 2) [26,29,30]:

ρ = α− 10β log(d) (2)

d = 10((ρ−α)/(10∗β)) (3)

where d is the distance from the current position to some beacon, ρ is the RSSI at the current position,
α is the RSSI at some referenced distance (usually 1 m), β is the path-loss exponent, and the parameters
α and β are obtained to adapt to different sensors and environments; the path-loss exponent β generally
has a value in the range of 1.6–1.8 in an indoor environment [26,31,32]. More importantly, it is necessary
to fit the path-loss exponent according to the actual environment in which RSSIs are collected [33,34].
These parameters should be calculated again when a target node moves across the boundary of two
different environments [34], even be constantly updated if necessary [35]. Furthermore, the piecewise
fitting and min–max method are proposed for local adaption to the real environment, 4 m and 8 m are
the breakpoints, and the curvatures of different sections are noticeably different [15,34,36].

Accuracy is the most crucial performance metric of the positioning system. It is related to
devices and its effective coverage. Wi-Fi and iBeacon belong to high-frequency signals, but the RSSI
performance received is also different due to the difference in transmitting power and antenna angle.
For example, iBeacon, particularly the loss of packets, is serious for the interval beyond 10 m [10,15,36].
The deployment density is also computing- and maintenance-cost related. When the anchors’ density
is 0.27 nodes/m2, localization estimation error can be decreased to 1.5–2 m [37]. However, increasing
the number of anchor nodes does not result in higher average accuracy, and with more than 50 anchors,
the average accuracy declines [26]. Meanwhile, paper [38] proposes a sensor deployment method
based on wireless sensor network topology optimization, and [39] suggests a novel technique related
to pedestrian density, gaining an accuracy of 1.8–3.9 m.

Considering the overall accuracy may diminish due to energy consumption [27,28], that accuracy
and stability are equally important, and stability may significantly influence the user experience and
application promotion. This paper’s core contribution is to adopt the same positioning method without
increasing the calculation amount of positioning, which reflects the function advantages of proposed
classification and filtering in this paper.

2.2. RSSI Filtering Technologies

Raw RSSIs measurement is related to the parameter fitting and distance mapping process, and play
a decisive role for IPS performance [33]. Compared with the mean filter [11], Kalman filter [7], particle
filter [8,9], least-squares estimator [40,41], and maximum-likelihood estimator [42] have advantages in
terms of accuracy but are computationally expensive. They use a moment before estimation and the
current observations to update the state variables’ estimate, while the mean filter just takes the average.
Thus, the mean filter is widely recommended because it has similar accuracy and anti-interference
performance [11]. Considering their relatively small computational overheads and the fact they can
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be used in a real-time context, the rolling mean filter, exponential moving mean filer, and moving
median filter have been discussed [12]. However, these filters are typically intended to mitigate these
influences by smoothing and could suffer from left-skewed distributions caused by RSSI multipath
propagation [15].

RSSI screening is another effective filtering method based on analyzing the spatial resolution of
the signal strength and RSSI signal characteristics under different scenarios. Gaussian filter [6] selects
the high RSSI probability RSSIs and takes the average value as filter results, lowers the influence
of the small probability and interference over the measurement. An algorithm using the maximum
RSSI average has been proposed and suggests that N = 13 is optimal [13]. Relative to selecting the
maximum, [15] selected the least variance RSSIs over time, arguing that the normal variances are
not dramatic. Based on dichotomy, Study [16] and [17] propose an RSSI classification to distinguish
singular RSSIs from normal path-loss RSSIs. Paper [17] proposes a k-means clustering algorithm
tracing the rating.

Applying artificial intelligence (including statistical inference methods) for RSSI processing is
a new trend, e.g., using a k-means clustering algorithm for singular RSS tracing [22] and filtering,
and RSSI fingerprint matching [23,24]. Moreover, support vector machine (SVM) [43], artificial neural
network (ANN) [44,45] and deep learning [46] have been proposed to aid RSSI purification and high
positioning accuracy. However, in indoor environments, all of the above algorithms still face challenges
of spatial ambiguity, RSSI instability, and RSSI’s short collecting time per location [47,48].

This paper will propose a three-classification and tracking method to explore its distribution
center instead of the mean center based on the classification idea and unsupervised learning algorithm.
More importantly, we will discuss the filtering performance under the conditions of small samples and
small sampling time.

3. RSSI Classification and Tracing

3.1. Tri-Partition RSSI Classification

Environmental conditions, scenario changes, anchor deployment, transmission power,
and interferences between anchor nodes can affect the RSSI values. Furthermore, it is challenging
to determine antenna gains [10]. However, the actual effects can be summarized as increasing and
decreasing, so unlike the dichotomy, we propose a tri-partition of RSSIs, as shown in Figure 1.
We classify RSSI samples into three collections:

1. The decreased collection (DC) represents singular weakened RSSIs such as blocked and
reflected signals.

2. The normal collection (NC) represents normal path-loss and fading RSSIs.
3. The increased collection (IC) represents singular enhanced RSSIs caused by transmitting equipment

such as antenna gained power or transmitting power mutation.

The tri-partition can help with the quantitative analysis of the RSSI. Tracing the item count of
sub-classification can reveal that the subsequent positioning is dependable or not, where NC RSSIs
do not conform to normal distribution means more significant errors. Thus, it helps select different
path-loss parameters to adapt to the environment.
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3.2. RSSI Tracing Algorithm

We propose an RSSI tracing algorithm based on k-means clustering to determine the partition and
its distribution center. The proposed algorithm considers the RSSI sample (R) to be a one-dimensional
collection. It uses the absolute value of RSSI and sub-classification center subtraction as the clustering
factor, takes the maximum RSSI as the initial center of the IC, the minimum RSSI as the initial center of
the DC, the mean RSSI as the initial center of the NC, and then defines the assistant function MIN(R)
to obtain the minimum RSSI from R, the function MAX(R) to obtain the maximum RSSI from R,
and the function AVERAGE(R) to obtain the mean value from R. The algorithm steps are as follows
Algorithm 1:

Algorithm 1. Sub-Classification Tracing.

Input: R = {RSSI1, RSSI2, . . . , RSSIn}//the collected RSSI samples
Output: NC, IC, DC

Define://initial the center of IC, NC, and DC
IV = MAX(R), NV = AVERAGE(R), and DV = MIN(R)
ICT = φ, NCT = φ, and DCT = φ //temporal collections
TD = ID = ND = DD = 0.0 //temporal values.

Classify:
For each (RSSIi ∈ R){
//calculate its distance to IV, NV, and DV
ID = abs (IV- RSSIi)

ND = abs (NV- RSSIi)
DD = abs (DV- RSSIi)
//select the minimum distance
TD = MIN ({ID, ND, DD})
//add RSSIi to sub-classification
If (TD= =ID)
IC = IC + { RSSIi }
Else if (TD= =ND)
NC = NC+{ RSSIi }
Else
DC = DC + { RSSIi }
}
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Judge:
//judge the change of sub-classification
If (ICT = = NCT = = DCT = = φ){

ICT = IC
NCT = NC
DCT = DC
}

GOTO (Reset)
//if convergence, exit

If (ICT = = IC and NCT = = NC and DCT = = DC
GOTO (Exit)
Else {

ICT = IC
NCT = NC
DCT = DC
}

Reset: //reset the sub-classification center
IV = AVERAGE (IC)

NV = AVERAGE (NC)
DV = AVERAGE (DC)
GOTO (Classify)

Exit: //deal with φ

If (NC = = φ) {
TD = (ID + DD)/2
NC+ = {TD}
}

EXIT(-)

where NC equals φ in the Algorithm (1) means that sample R has a polarization distribution,
and partition NC is affected by substantial RSSI deviation from reality. When we set the mean value as
a new RSSI, the whole count will increase by one each time.

3.3. Apply to Trilateration-Based Positioning

Trilateration-based IPS includes many steps [10,13], here we divide these steps into two stages:
offline and online. The offline stage aims to adapt the path-loss exponent, including anchor deployment,
RSSI collecting, raw RSSI measurement, and path-loss exponent fitting (may fit as needed during the
online stage [15,34]). The online stage aims to optimize positioning, including real-time RSSI collecting,
raw RSSI measurement, distance mapping, coordinate calculation, and positioning optimization and
correction. This paper adopts the proposed tracing algorithm as an RSSI filter to re-establish the raw
RSSI measurement for the path-loss exponent fitting (offline) and distance calculating (online) steps,
as shown in Figure 2.

Figure 2 shows the application mechanism that focuses on the sample count and the partition item
count. The minimum sample count is related to real-time positioning, as RSSI’s shortest collecting time
per location usually less than 1 s. The partition item size is related to influences when the tri-partition
counts conform to a normal distribution, indicating that the filtering result is reliable. For the filtering
process, the partition center is the filtering result. Next, we will discuss the minimum sample and
performance to reveal the availability of the proposed filter.
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4. Feasibility and Performance as an RSSI Filter

To examine the proposed filter’s feasibility and performance advantages, we collected a large RSSI
sample (named Sample ALL) over approximately 10 min using iBeacon as the signal sender. And we
defined six type sample groups, named Sample X (X = 10, 20, 30, 40, 50, 60). Each sample group had 10
sample arrays, and each array had the same count RSSIs. The sample array data structure is as follows:

Test Sample = {Arrayi,j, I = 10, 20, . . . , 60, j = 1, 2, . . . , 10} (4)

where i represents different groups, and j represents different arrays in the current group. For example,
Array30,1 represents that the collection is in group 30, and the collection’s item count is 30.

In preparation, we cut the sample ALL into each test sample sequentially and continuously
according to the sample type, and then filter each test sample and the sample ALL. Figure 3 shows the
filtering results, where each node represents a filtering result of some Test Sample. For each type of
sample, ten filtering tests are conducted in sequence, with a total of 60 filtering times. Figure 3 also
shows Sample 10 has the max deviation from the Sample ALL, and with the sample count is larger
than 20, the gap range gradually stabilized.
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4.1. Features of the Proposed Filter

4.1.1. Low Deviation

RSSI fluctuation is an inherent issue for wireless signals, hence reducing the variance range for
each sample count is essential to improve the accuracy and stability [49,50]. Using the sample ALL as
the comparative standard, we measured the deviation and variance of each test sample, which is as
shown in Table 1. It summarizes the deviations from all samples, and together with Figure 3 shows that
the proposed filter achieves lower variance. Sample 10 and Sample 20 have the highest variation with
a maximum deviation range of less than 2.5 dBm and the mean deviation range of less than 1.44 dBm.
When the test sample count was greater than 20, the maximum deviation range was less than 1.64 dBm,
and the mean variation was below 0.92 dBm. As experiments have confirmed that a change of 1 dBm
represents 0.08 m at some distance [13], therefore, the filter obtained a significantly lower fluctuation,
and the test sample gains a similar performance to the sample. ALL, especially when the sample size is
more significant than 20.

Table 1. Low deviation feature of each sample group compared to sample ALL.

Sample Type Max Positive
Deviation (dBm)

Max Negative
Deviation (dBm)

Mean Absolute
Deviation (dBm)

Sample 10 1.99 2.51 1.44
Sample 20 2.22 1.572 0.89
Sample 30 1.36 1.17 0.83
Sample 40 1.64 0.87 0.70
Sample 50 1.53 1.56 0.92
Sample 60 1.36 1.17 0.83

4.1.2. Minimum Sample Count

While RSSIs are Gaussian distribution and random, the time of sampling can affect the collected
RSSI count and positioning quality [10,51]. Most current IPSs and RSSI analyses take a long-time interval
for sample collecting, such as 1–3 or 3–6 min, but it is a gap from second-level real-time requirements.

By counting the items of each sample, as shown in Table 2, the Sample 10 had an item count of
103 when the expected count was 100, and sample 20 s item count was 201 when the expected count
was 200, indicating that the NC in Sample 10 and Sample 20 generated φ during filtering. Further
calculating the sub-classification distribution rate, as shown in Figure 4, the tri-partition collection
items conform to the normal distribution when the sample count is over 20. Therefore, the proposed
filter obtained a minimum sample count of 20 suitable for the positioning process.

In summary, the proposed filter has such features; the small test sample gains a similar performance
to the larger sample ALL, and the sun-classification conforms to normal distribution when the sample
count is larger than 20. Therefore, the proposed filter adapts to real-time positioning, for it has a lower
deviation, and the minimum sample count is 20.

Table 2. Items count and rate statistics for sample groups. DC, NC, IC represnts the RSSI count of the
decreased, normal, and increased collection.

Sample Type Items Count DC Rate NC Rate IC Rate

Sample 10 103 28% 32% 38%
Sample 20 201 21% 60% 19%
Sample 30 300 26% 51% 23%
Sample 40 400 25% 55% 20%
Sample 50 500 25% 50% 25%
Sample 60 600 19% 57% 23%
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4.2. Advantages over the Mean Filter

Using the same RSSI test sample from the upper section, Figure 5 shows the filtering results
comparison by the proposed filter and the mean filter, respectively, where each node represents a
filtering result of some test sample. For each type of sample, 10 filtering tests are conducted in
sequence, with a total of 120 filtering computations. Based on the filtering performance, we discuss the
advantages associated with reductions in variance below.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 17 

Sensors 2020, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors 

 
Figure 5. Filtering performance comparisons of each type sample by the proposed filter and the mean 
filter, respectively. 

4.2.1. Reducing Variance over Time 

The comparisons use variance range and sample variance (SV, calculated using the sample 
standard deviation function in EXCEL) to measure the proposed and mean filters’ performance. As 
Figure 5 shows the filtering result, Table 3 shows the variance comparisons in detail. The proposed 
filter achieves a smaller maximum variance range than the mean filter, and a lower SV when the 
sample count is greater than 10. 

Overall, the average maximum variance for the proposed filter was 2.31 dBm, while for the mean 
filter, this was 2.97 dBm. The average minimum deviation for the proposed filter was 0.37 dBm, while 
the mean filter was 0.39 dBm. The average variance for the proposed filter was 1.08 dBm, while the 
mean filter was 1.34 dBm, and the average SV for the proposed filter was 1.38 dBm, while the mean 
filter was 1.73 dBm. Thus, the proposed filter resulted in a lower and more stable variance. 
  

Figure 5. Filtering performance comparisons of each type sample by the proposed filter and the mean
filter, respectively.

333



Sensors 2020, 20, 4244

4.2.1. Reducing Variance over Time

The comparisons use variance range and sample variance (SV, calculated using the sample
standard deviation function in EXCEL) to measure the proposed and mean filters’ performance.
As Figure 5 shows the filtering result, Table 3 shows the variance comparisons in detail. The proposed
filter achieves a smaller maximum variance range than the mean filter, and a lower SV when the sample
count is greater than 10.

Table 3. Comparison between the mean and proposed filters in terms of variance range and sample
variance over time. SV = sample variance.

Sample
Type

Mean Filter Proposed Filter

Max
Range

Min
Range

Average
Range SV Max

Range
Min

Range
Average
Range SV

Sample 10 3.2 1.0 1.96 2.28 3.9 1.96 2.25 2.68
Sample 20 3.46 0.15 1.69 2.28 3.08 0.03 1.11 1.54
Sample 30 2.23 0.06 0.66 1.03 1.77 0.01 0.69 0.95
Sample 40 1.62 0.1 0.76 0.96 1.32 0.07 0.67 0.82
Sample 50 1.96 0.3 0.82 1.03 1.25 0.01 0.65 0.83
Sample 60 5.35 0.71 2.12 2.77 2.53 0.13 1.12 1.44

Overall, the average maximum variance for the proposed filter was 2.31 dBm, while for the mean
filter, this was 2.97 dBm. The average minimum deviation for the proposed filter was 0.37 dBm,
while the mean filter was 0.39 dBm. The average variance for the proposed filter was 1.08 dBm,
while the mean filter was 1.34 dBm, and the average SV for the proposed filter was 1.38 dBm, while the
mean filter was 1.73 dBm. Thus, the proposed filter resulted in a lower and more stable variance.

4.2.2. Reducing Left-Skewness

Traditional RSSI filtering commonly produces left-skewed distributions [11,26,50], i.e., the returned
value is lower than the actual value. Table 4 shows that the proposed filter mitigates this problem,
achieving a 65% superior performance in terms of skewness reduction. The left 35% which did not
mitigate skewness; they had an average of 96.7% deviation at less than one dBm and an average of
78.9% deviation at less than 0.5 dBm, so the proposed filter successfully reduced skewness.

Table 4. Skewness reductions by comparisons among filters.

Sample Type Mitigating Others Less 1 dbm Others Less0.5 dbm

Sample 10 70% 100% 66.7%
Sample 20 50% 100% 80%
Sample 30 70% 100% 100%
Sample 40 70% 100% 66.7%
Sample 50 80% 100% 100%
Sample 60 50% 80% 60%

In summary, the proposed filter shows feasibility because it has significant low variance and a
minimum sample of 20 properties and mitigating advantages over the mean filter which is vastly used.

5. Positioning Improvement

5.1. Experiment Design

Figure 6 shows the 4× 4 m testbed used to investigate the proposed filter’s positioning performance.
The experiment selects (1,1), (1,3), and (3,3) as test points, deploys four iBeacon (SEEKCY s1u) sensors
as RSS senders at the grid corners and selects an android mobile phone (MI max2) as the RSS receiver.
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To seek reliable positioning performance under real-time, we set the minimum sample count of 30 each
time. The experimental steps are as follows.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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1. Fit RSSI propagation model factors,

a. collect RSSI samples at each fixed distance (1 m, 2 m, . . . , 10 m),
b. filter each sample using the proposed and mean filters, and
c. fit the propagation model according to Formula (2).

2. For each positioning process,

a. filter RSSI samples using the proposed and mean filters,
b. perform traditional trilateral positioning, and
c. compare the positioning results.

3. Repeat step (2) for the next test process.

5.2. Experiment Results

5.2.1. Propagation Factors

Using MATLAB Fitting Tools and a similar fitting process in paper [14,15], Table 5 shows the that
α and β are distinctly different. It is foreseeable that the distance mapping process will still make a
difference using the factors.

Table 5. The simplified RSSI propagation model fitting.

Filter Filtered RSSI at 1 m (α) Fitted Path-Loss Parameter (β)

The proposed filter –80.14 dBm 4.613
The mean filter –83.82 dBm 2.326

The α is as RSSI sample filtering result at 1 m, and the b is as the fitting result of collected
RSSI samples at each fixed distance from 1 m to 10 m, by the proposed filter and the mean filter.
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Considering studies have confirmed that many packets may mass lose when the measured distance
exceeds 10 m [36,52].

5.2.2. Positioning Results

Table 6 shows a total of 24 positioning coordinates. Figure 7 shows the positioning results and the
relative positions of these test points. The proposed filter achieves a significantly compact location
distribution at each test point, whereas the mean filter has a relatively loose distribution, with point
(3,1) exhibiting the highest accuracy.

Table 6. Positioning results coordinates at point (1,1), point (1,3) and point (3,1).

Test Point
Positioning Results Using

the Mean Filter
Positioning Results Using

the Proposed Filter

Coordinate x Coordinate y Coordinate x Coordinate y

(1,1)

2.82 1.02 2.69 1.79
2.56 0.77 2.56 1.63
4.38 2.83 2.51 1.66
2.63 0.87 2.74 1.82

(1,3)

2.84 2.25 2.87 2.25
4.19 2.46 2.97 2.25
2.80 2.21 2.89 2.27
4.38 2.10 3.06 2.09

(3,1)

2.48 0.80 2.56 1.18
2.54 0.51 2.55 1.15
2.54 0.56 2.54 1.14
2.42 1.01 2.49 1.22

Sensors 2020, 20, x FOR PEER REVIEW 13 of 17 

Sensors 2020, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors 

4.19  2.46  2.97  2.25  
2.80  2.21  2.89  2.27  
4.38  2.10  3.06  2.09  

(3,1) 

2.48  0.80  2.56  1.18  
2.54  0.51  2.55  1.15  
2.54  0.56  2.54  1.14  
2.42  1.01  2.49  1.22  

 
Figure 7. Positioning results distributions at point (1,1), point (1,3) and point (3,1). 

5.3. Improvement Analysis 

5.3.1. Accuracy 

Figure 8 shows the calculated positioning errors in sequence. Based on the accuracy changes at 
each test point, errors by the proposed filter change little, while the errors by the mean filter change 
significantly. Unfortunately, despite the proposed filter gains in the overall improvement, it does not 
improve every positioning, and about 58% have higher accuracy compared to the mean filter. 

In detail, Table 7 shows the comparison of the proposed filter and the mean filter in accuracy 
promotion. For each test point, the proposed filter achieves smaller maximum and average errors 
than the mean filter, and the positioning accuracy is improved by approximately 20% for each test 
point. The overall average error is 1.46 and 1.84 m for the proposed and mean filters, respectively, 
and the overall average accuracy improvement is 20.5%. Still, it can be concluded that even if the 
error by the proposed filter is larger, the difference between the errors by the mean filter is still small, 
this phenomenon is consistent with the mitigation performance analysis in chapter 4. 

 

Figure 8. Positioning error comparison with the proposed filter and the mean filter at point (1,1), point 
(1,3) and point (3,1). 

  

Figure 7. Positioning results distributions at point (1,1), point (1,3) and point (3,1).

5.3. Improvement Analysis

5.3.1. Accuracy

Figure 8 shows the calculated positioning errors in sequence. Based on the accuracy changes at
each test point, errors by the proposed filter change little, while the errors by the mean filter change
significantly. Unfortunately, despite the proposed filter gains in the overall improvement, it does not
improve every positioning, and about 58% have higher accuracy compared to the mean filter.

In detail, Table 7 shows the comparison of the proposed filter and the mean filter in accuracy
promotion. For each test point, the proposed filter achieves smaller maximum and average errors
than the mean filter, and the positioning accuracy is improved by approximately 20% for each test
point. The overall average error is 1.46 and 1.84 m for the proposed and mean filters, respectively,
and the overall average accuracy improvement is 20.5%. Still, it can be concluded that even if the
error by the proposed filter is larger, the difference between the errors by the mean filter is still small,
this phenomenon is consistent with the mitigation performance analysis in chapter 4.
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Table 7. Positioning errors and average accuracy promotion.

Test Point
Positioning Errors Using

the Mean Filter
Positioning Errors Using

the Proposed Filter
Average
Accuracy

PromotionMaximum Minimum Average Maximum Minimum Average

(1,1) 3.84 1.57 2.22 1.92 1.64 1.78 19.8%
(1,3) 3.5 1.97 2.68 2.25 2.01 2.1 21.6%
(3,1) 0.67 0.56 0.61 0.55 0.48 0.51 16.0%

5.3.2. Stability

Using sample standard deviation (SSD) to measure positioning stability, the SSD will be calculated
by the following formula:

SSD = STDEV(R)/AVERAGE(R) (5)

where STDEV (–) is the sample standard deviation function in EXCEL, and AVERAGE (–) is the mean
function in EXCEL; R is the positioning error of each test point.

Table 8 shows that the proposed filter achieves smaller SV and closer average positions for each
test point than the mean filter. The positioning stability is 6.45, 5.82, and 1.08-fold better for test points
(1,1), (1,3), and (3,3), respectively, for the proposed filter compared with the mean filter. The overall
average stability is improved 4.45-fold.

Table 8. Positioning stability and increase for the proposed filter vs. the mean filter. SSD represents the
sample stand deviation and calculated by the Formula (5).

Test Point
Positioning Stability Using

the Mean Filter
Positioning Stability Using

the Proposed Filter
SSD

Promote

STDEV(R) AVERAGE(R) SSD STDEV(R) AVERAGE(R) SSD (–fold)

(1,1) 1.089 2.215 0.491 0.136 1.775 0.077 6.45
(1,3) 0.81 2.675 0.303 0.109 2.1 0.052 5.82
(3,1) 0.05 0.61 0.081 0.037 0.5 0.05 1.08

In summary, the proposed filter achieved a 20.5% improvement in positioning accuracy, with an
overall error of less than 1.46 m and a 65% probability of higher accuracy. Significantly, the proposed
filter gained a 4.45-fold improvement in positioning stability.

6. Conclusions

Considering RSSI is easily blocked and affected by things and the environment, RSSI-based
IPS faces the challenge of an unfortunate application effect. To improve the accuracy and stability,
particularly for trilateration-based positioning, we propose a tri-partition RSSI classification as the
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decreased RSSIs, normal RSSIs, and increased RSSIs, and proposed a novel RSSI tracing algorithm
based on k-means clustering as an RSSI filter.

The proposed filter adapts to the real-time IPS, for it shows a characteristic achieving a lower
variance (<1 dBm) when the minimum sample size is greater than 20. In contrast, traditional RSSI
variation can exceed 10 dBm [26]. The proposed filter offers several advantages compared to the
mean filter, including lower variance range and sample variance, and 65% probability to mitigate RSSI
left-skewness. Thus, the proposed filter is feasible in real-time positioning.

We design a trilateration-based positioning test within a room. The RSSI propagation model
fitting achieves a difference path-loss exponent where 4.613 by the proposed filter while 2.326 by the
mean filter. Based on this, the positioning results confirm a 20.5% improvement in positioning accuracy
and 4.45-fold improvement in stability for the proposed filter compared to the mean filter. Thus, the
proposed filter significantly outperforms traditional mean filtering, providing an excellent option for
large-scale IPS improvement.
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Abstract: In an indoor environment, object identification and localization are paramount for
human-object interaction. Visual or laser-based sensors can achieve the identification and localization
of the object based on its appearance, but these approaches are computationally expensive and not
robust against the environment with obstacles. Radio Frequency Identification (RFID) has a unique
tag ID to identify the object, but it cannot accurately locate it. Therefore, in this paper, the data of RFID
and laser range finder are fused for the better identification and localization of multiple dynamic
objects in an indoor environment. The main method is to use the laser range finder to estimate the
radial velocities of objects in a certain environment, and match them with the object’s radial velocities
estimated by the RFID phase. The method also uses a fixed time series as “sliding time window” to
find the cluster with the highest similarity of each RFID tag in each window. Moreover, the Pearson
correlation coefficient (PCC) is used in the update stage of the particle filter (PF) to estimate the
moving path of each cluster in order to improve the accuracy in a complex environment with
obstacles. The experiments were verified by a SCITOS G5 robot. The results show that this method
can achieve an matching rate of 90.18% and a localization accuracy of 0.33m in an environment
with the presence of obstacles. This method effectively improves the matching rate and localization
accuracy of multiple objects in indoor scenes when compared to the Bray-Curtis (BC) similarity
matching-based approach as well as the particle filter-based approach.

Keywords: dynamic objects identification and localization; laser cluster; radial velocity similarity;
Pearson correlation coefficient; particle filter

1. Introduction

In recent years, with the development of wireless communication technology, location-based
services have been widely used in search and rescue, medical services, intelligent transportation,
logistics management, and other fields [1], and many positioning technologies have been investigated
in the research community. Among them, it is very important to identify and localize the dynamic
object in the indoor environment. This field has a wide range of applications, such as monitoring teams
with different identities, and tracking designated objects, library book management, real-time control
of equipment and participants in the venue, etc. [2].

Identification and localization are usually regarded as two separate tasks, which are solved by
different methods. In this field, it is common to deploy cameras in the environment in order to identify
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and locate objects. Xu et al. [3] realized the positioning of indoor mobile robots by installing the camera
above the robot head and extracting the ceiling features. Wang et al. [4] constructed a three-diensional
(3D) human tracking system by fusing the information of visual and ultrasonic sensors. Liu et al. [5]
analyzed target tracking under different illumination conditions in intelligent monitoring of public
places. Although the vision-based method can obtain better positioning accuracy and recognition rate,
however, it usually requires clear images to identify and localize, this kind of method has great limitations
in practical application, because it must overcome occlusion, motion uncertainty, and environmental
appearance changes, and, in some cases, this method may lead to privacy violations. Mostly, the laser
range finder is used in the field of object localization due to its high precision, wide range, and fast
transmission speed. However, it can only obtain sparse environmental information, and it is difficult
to distinguish objects with similar appearance. It is necessary to extract effective features from the
sparse information for identification, which makes the algorithm very complicated. Radio Frequency
Identification (RFID) technology has a unique tag ID, which can quickly identify the object by relying
on the radio frequency signal, so it can save a lot of computing resources, and can solve the problems of
occlusion and other environmental factors. However, due to its hardware limitation, accurate localization
cannot be achieved.

It is difficult to accurately identify and locate the object by only relying on a certain kind of
sensor in the indoor environments, for the proper identification and localization it requires the fusion
of multiple sensors information. Many researchers have conducted extensive research in this field.
Xing et al. [6] designed a multi-sensor information fusion method based on a visual marker called
ArUco. This method uses Kalman filter to fuse the information of visual marker, ultrasonic, and inertial
sensors to localize micro air vehicles in indoor environments with an accuracy up to 4 cm. You et al. [7]
used Unscented Kalman filter to fuse UWB and IMU data for the localization of quadrotor UAV in
indoor environments. Li et al. [8] employed sliding window filter (SWF) to fuse camera and IMU data
for accurate 3D motion tracking and reconstruction. Peng et al. [9] proposed a multi-sliding window
classification adaptive unscented Kalman filter (MWCAUKF) method with timestamp sort updating,
which could fuse multiple kinds of sensors data. Shi et al. [10] realized the positioning and navigation
of the mobile robot by integrating laser and geomagnetic sensors. Zhao et al. [11] proposed a method
that fuses the information obtained by 3D LiDAR and camera. The average identification accuracies
of their method for cars and pedestrians are 89.04% and 78.18%, respectively. Digiampaolo et al. [12]
proposed a localization system based on the passive signal phase, and used extended Kalman filter
(EKF) to fuse RFID and odometer information to achieve the object localization, with an accuracy of
up to 4 cm. Tian et al. [13] proposed a low-cost INS and UWB integrated pedestrian tracking system,
which only uses single UWB anchor node at an unknown location, minimizing infrastructure cost
and setup.

Each frame of data measured by a laser range finder can be used to represent a static environment.
Therefore, if each frame of data is correlated based on time series, the localization of dynamic objects
in the environment can be achieved [14,15]. Tang et al. [16] designed a real-time indoor positioning
system based on laser scan matching for unmanned ground vehicles in a large area. Zhang et al. [17]
designed an object localization algorithm based on laser range finder, which realized the object
localization under the airborne reconnaissance platform. However, when we use the laser range
finder to identify the object, as mentioned above, it is difficult to distinguish objects with similar
appearance, so there is a certain degree of singularity [18]. Researchers have done a lot of research in
using laser measurement for object identification. Wang et al. [19] used 3D laser sensors and sliding
windows to achieve object detection and identification. Huang et al. [20] proposed using feature fusion
and establishing spatio-temporal feature vectors to realize the detection and recognition of dynamic
obstacles, with a recognition rate of up to 87.7%. Tong et al. [21] proposed an object recognition method
by combining laser and infrared information. This method can achieve more than 90% recognition
accuracy for objects with large shape differences, but the recognition accuracy for objects with similar
shapes is low.
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RFID is widely used in the field of object identification due to its characteristics of fast recognition
speed, high recognition accuracy, and wide coverage. Liu et al. [22] proposed a method for quickly
tracking dynamic targets based on the RSS measurements from a pair of RFID antennas. Fan et al. [23]
proposed a method, called “M2 AI”, which uses convolutional neural networks for deep learning to
achieve multiple objects identification. The identification rate of this method can reach 97%, but, as the
number of dynamic objects (for example three objects) increases, the recognition rate will drop to
about 80%.

The unique ID of the RFID tag can be used to solve the singularity problem of laser sensor in
object identification. The advantages of high measurement accuracy of laser range finder can be used
to make up for the low positioning accuracy of RFID. Therefore, we fuse information from RFID and
laser range finder to achieve dynamic multiple objects identification and localization. More specifically,
we use the phase difference of RFID in the adjacent time to calculate the radial velocities of moving tags.
Meanwhile, after clustering the laser points, we use the Pearson correlation coefficient in the update
stage of particle filter to estimate the moving path and radial velocity of each cluster. Through the
similarity matching algorithm based on the sliding time window, we can match the laser cluster-based
radial velocities and the phase-based radial velocities in each window, and find the cluster with the
highest similarity for each dynamic RFID tag, and the center coordinate of the cluster is considered as
the position of the object.

We summarize the contributions of this article, as follows.

(1) We present a solution that incorporates RFID phase information and laser range measurements
for multiple dynamic objects identification and localization in indoor environments.

(2) We propose incorporating the Pearson correlation coefficient into the update stage of particle
filtering. This method can effectively estimate the historical trajectories of moving objects in an
environment with obstacles.

(3) We set up different paths in different environments on campus, and thoroughly evaluated our
method. Our method can effectively identify and locate the passing pedestrians in indoor scenes
when compared to the Bray–Curtis (BC) similarity matching-based approach as well as the particle
filter-based approach.

We organize the subsequent sections of this paper, as follows. The related work is discussed in
Section 2. An overview of the system is described in Section 3. In Section 4, we present the details of
the dynamic multi-object identification and localization method. We show the experimental results in
Section 5 and conclude the paper with possible extensions in Section 6.

2. Related Work

This section gives a thorough overview of the work related to the identification and localization
of dynamic objects using RFID techniques.

Dynamic objects localization approach is widely used in intelligent monitoring, human-robot
interaction, virtual reality, and robot navigation. Typical methods for localizing dynamic objects using
RFID systems are the LANDMARK-based approach [24], the SpotON-based approach [25], and the
VIRE(VIrtual Reference Elimination)-based approach [26]. When the LANDMARC system is used
for localization, there is uncertainty in the selection of the number K of neighbor labels. Besides, it is
necessary to add additional reference tags in order to obtain a more accurate localization result, but too
many tags will cause signal interference between tags, which will affect the positioning accuracy of
the system. The SpotON method measures the RSS of a series of tags, and establishes the regression
equation of the distance between RSS and the tag to the reader antenna, and then estimates the
distance from the target to the antenna through RSS, and finally determines the location of the target
by trigonometry using the ranging information of multiple antennas. However, RSS distance model
needs to be built in advance, which is a heavy workload. The VIRE algorithm uses linear interpolation
to replace the virtual position with the real position to improve the system accuracy. However, the real
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RSS value changes non-linearly. There is an error between the virtual position and the real position
while using linear mathematical interpolation. In addition, the VIRE algorithm does not have a good
localization effect on the border area. The calculation cost will be increased if additional real labels are
added to the border area.

Many researchers combine RFID with other sensors to realize the identification and localization
of dynamic objects, as it is difficult to meet the requirements of high positioning accuracy and low cost
by only using RFID system. Alvarado et al. [27] combined a RFID system, an omnidirectional Mobotix
C25 camera, and a laser range finder to realize the localization of tour-guide robot. Choi et al. [28]
combined RFID system and ultrasonic sensors to overcome uncertainties in previous RFID systems for
mobile robot localization. Suparyanto et al. [29] presented a system to localize container truck while
using indoor Global Positioning System (iGPS), RFID, and Inertial Measurement Unit (IMU) consisting
of accelerometer, gyroscope, and magnetometer. Wang et al. [30] and Li et al. [31] combined the RFID
and Kinect camera to realize the identification and localization of multiple dynamic objects, but its
accuracy is low. Parr et al. [32] realized tag tracking by combining the information of RFID and IMU.
Faramondi et al. [33] combined the information of IMU, RFID, and triad-magnetometer in order to
realize the identification and localization of rescuers, but the accuracy is low. In this paper, we show
that we can achieve the identification and localization of multiple dynamic objects with high accuracy
by fusing the information from RFID and laser range finder.

3. System Overview

If an object is attached with an RFID tag, the identification of this object is known to us.
However, we cannot know the exact location of the object in an environment due to the physical
limitations of the RFID system. In other words, we only know that there are several objects in the
environment, but we can’t distinguish them. Therefore, this paper proposes a method for localizing
multiple dynamic objects with known identities in an indoor environment by matching laser clusters
with RFID tag IDs. The entire system uses RFID and two-dimensinal (2D) laser range finder to measure
obstacles and moving objects in the environment, as shown in Figure 1. Subsequently, the algorithm
uses the phases collected from the RFID to calculate the phase-based radial velocity of each RFID
tag, and uses laser range finder data to calculate the laser cluster-based radial velocity of each cluster.
In addition, we use Pearson correlation coefficient combined with particle filter to realize the tracking
of a cluster in each sliding time window. Finally, the radial velocity similarity matching is used to
locate the dynamic targets with known identities.

Figure 1. System overview.

More specifically, we collect the measurements through RFID reader and 2D laser range finder.
The RFID reader controls the antenna to scan the tagged dynamic objects in the environment, and the
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2D laser range finder is used to measure the distance and angle from the surrounding obstacles in
an environment. Afterwards, the information that is detected by the two sensors is stored the database.
We calculate the moving object’s radial velocity based on the phase information reported from the
RFID reader; meanwhile, we use the DBSCAN algorithm to cluster the laser ranging information.
After obtaining the cluster information, we use the Pearson correlation coefficient and particle filter
to estimate the moving path of each cluster, and estimate the radial velocities of clusters based on
the distance between the two clusters at adjacent moments. Then, we define a fixed-size sliding time
window w with the current time T as the end, and use the Bray–Curtis similarity algorithm to constantly
matching the radial velocity estimated by two sensors in each window. According to the matching
results, we select the cluster with highest similarity to realize the identification and localization of
multiple dynamic objects. The specific implementation method will be described in detail in the next
part of this paper.

4. Indoor Multiple Dynamic Objects Identification and Localization

4.1. Object Identification and Localization Based on Radial Velocity Matching

Restricted by the RFID physical system, when we estimate the information between the object
and RFID antenna, we can only obtain the phase information, and it is difficult to estimate the exact
coordinates of the object based on phase. However, we can infer the radial velocity of an object based
on the phase difference. Radial velocity refers to the velocity component of the object’s movement
velocity in the direction of the observer’s line of sight, which is, the projection of the velocity vector in
the direction of the line of sight, which is often used to represent the rate of change of the distance from
the object to the observation point. For the same observation point, assuming that there are multiple
objects in the environment, the objects cannot be in the same position at the same time, which means
that their distance and angle to the observation point are different, resulting in their radial velocity
being different from each other. Therefore, we use laser sensor to estimate the radial velocity of each
cluster in the environment in order to better match the object’s radial velocity estimated by the RFID
system. The similarity of two velocities are compared to realize the identification and localization of
the moving objects. Different applications often need to use different similarity measurement methods.

Different similarity measures are often used in different applications. In this paper, it is necessary
to find a reliable similarity measurement function to match the speed estimated by RFID due to the
large number of clusters obtained by laser sensors. Vorst et al. [34,35] compared different similarity
algorithms in order to achieve self-localization with passive RFID fingerprints. They showed that
the Bray–Curtis (BC) measure gives the best performance among all of the evaluated methods.
The Bray–Curtis similarity algorithm [36] is often used to calculate the similarity between different
samples. Samantaray et al. [37] used BC similarity to effectively realize medical image recognition and
retrieval. Therefore, we use BC similarity to match the radial velocity. Besides, in order to achieve better
results, this article refers to the sliding window method commonly used in image object identification.
By using sliding time windows to limit the number of laser frames, we ensure that all of the objects
can be identified in each window. This paper defines a fixed-size sliding time window w with the
current time T as the end, constantly matching the radial velocity estimated by two sensors in each
window. The window range is denoted as [T-w+1:T]. The similarity of laser cluster-based radial velocity
and RFID phase-based radial velocity can be computed as:

Sim = (1 +
1
w

T−w+1

∑
t=T

|VR
t −VL,i

t |
|VR

t |+ |VL,i
t |

), (1)

where i represents the i-th cluster at the current time, and VL,i
t represents its radial velocity at time t. VR

t
represents the phase-based radial velocity at time t. In addition, if the radial velocities that are estimated
by laser and RFID belong to the same object, the similarity should be high. Therefore, we choose the
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cluster which has the highest similarity and assigns the tag ID to it. The central coordinate of this
cluster is considered as the estimated position of the moving object, thereby realizing the identification
and localization of objects.

Estimating the radial velocities of moving tags based on RFID phase, and radial velocities
estimation method based on laser clusters will be given in Sections 4.2 and 4.3, respectively. Table 1
lists the symbols in this paper and their meanings.

Table 1. Symbols and their meanings.

Mathematical Symbol Meaning

Sim The Bray− Curtis similarity between phase-based radial velocity
and laser cluster-based radial velocity

w The size of each time window
VR

t RFID phase-based radial velocity at time t
VL,i

t Radial velocity of the i-th cluster at time t
θt The phase of RFID signal at time t
dt The radial distance from the moving tag to the antenna at time t
∆θ Phase difference
∆θ

′
The phase differences after normalized to the main value interval of [−π : π]

Cnt
t Clusters in total at time t

(x̄(j)
t , ȳ(j)

t ) Center coordinates of the j-th cluster at time t
v(i)t The radial velocity of cluster i at time t
N Number of particles

(x[n]i,t , y[n]i,t ) The position of particle n to track i-th cluster at time t

ω
[n]
i,t The weight of particle n to track i-th cluster at time t

N(0, σ) The Gaussian noise with zero mean and standed deviation of σ
µ The normalization coefficient

4.2. Estimating the Radial Velocities of Moving Tags Based on RFID Phase Difference

This paper uses the RFID phase information to estimate the radial velocities of the moving
tags. The RFID phase information is a periodic function of the distance between the tag and the
antenna (the period is 2π) and is given by:

θt = 2π · 2 · dt

λ
·mod(2π), (2)

where θt is the signal phase at time t, λ is the wavelength of the receiving signal, and dt is the
radial distance from the moving tag to the antenna at time t. In this paper, the phase differences at
adjacent times are first processed and normalized to the main value interval of [−π,π]. The specific
implementation is given by:

∆θ
′
=





∆θ, −π < ∆θ < π

∆θ − 2π, ∆θ ≥ π

∆θ + 2π, ∆θ ≤ −π,
(3)

We may get two different values with a phase difference of π when a tag is not moving [38] due to
the limitation of the RFID signal processing algorithm. Therefore, it is necessary to set an appropriate
threshold to eliminate the effect of the π phase jump. This paper assumes that the phase difference of
the same object should not exceed the threshold ϕ in the adjacent time. When the phase difference
is between −ϕ to ϕ, we use this phase difference to estimate the radial velocity, otherwise we set the
radial velocity to an invalid value. The radial velocity of each tag estimated by the RFID at the current
moment can be computed as:
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VR
t =

∆θ
′

4π∆t
· λ, (4)

4.3. Estimiating the Radial Velocities of Laser Clusters

4.3.1. Laser Clustering Based on DBSCAN

The DBSCAN algorithm is a spatial clustering algorithm based on density [39]. The remarkable
advantage of this algorithm is that the algorithm is fast, and it can divide the regions with enough high
density into a group, which effectively deals with noise points and quickly finds spatial clustering of
arbitrary shape. The experiment divides the laser points into core points, boundary points, and noise
points. For a given point, if the number of adjacent points in the neighborhood with radius ρ is greater
than ξ, then this point is regarded as the core point. If it is within the ρ neighborhood of the core point,
we treat it as a boundary point; otherwise, we treat it as a noise point. After clarifying the categories
of the respective laser points, the core points and the boundary points are merged into one cluster.
Finally, we will get nt clusters, where Ct = C1

t , C2
t , . . . , C(nt)

t , and we can estimate the central coordinate

of each cluster as: P̄(j)
t = (x̄(j)

t , ȳ(j)
t ), j ∈ [1 : nt]. Figure 2 shows one example of the clustering result.

(a) (b)

Figure 2. Clustering results. (a) raw laser points; (b) DBSCAN results.

The two most important parameters in DBSCAN algorithm are the radius ρ and number of laser
spots ξ in each cluster. Our previously published paper [40] showed a comparison of the clustering
performance under different ρ and ξ. The parameters of DBSCAN are not discussed in the article in
order to save the space of the paper. According to past experience, we set the parameters of DBSCAN
as ρ = 0.1, ξ = 2.

4.3.2. Cluster Trajectory Estimation Based on Particle Filter

We need to calculate the radial velocity of each cluster in order to match the radial velocity
estimated by RFID. Therefore, it is necessary to find the historical trajectory of each cluster at the
previous moment. The particle filter is widely used in the field of navigation and positioning due
to its advantages of high robustness, high accuracy, and excellent performance in non-linear and
non-Gaussian systems. In this paper, we set up an independent particle filter to track the trajectory
of each cluster. In each particle filter, the position of a moving object can be represented by a set of
weighted particles: Xi,t = {X[n]

i,t , w[n]
i,t }N

n=1 , where N represents the number of particles, i represents the

particle filter of the i-th object, and i ∈ [1 : nt]. Besides, X[n]
i,t = x[n]i,t , y[n]i,t represents the two-dimensional
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(2D) coordinates of each particle, and w[n]
i,t represents its weight. The particle filter will predict and

update iteratively based on measurements arrival.

• Prediction

In this paper, we use the position X[n]
i,t of the particles at time t and the motion model to estimate the

position X[n]
i,t−1 in the previous time. The Gaussian function is chosen as the model of motion prediction

and the corresponding parameters of the Gaussian function are used to adjust the particle distribution
density because of the uncertainty of the direction and velocity of the moving object. The prediction is
performed with the following:

{
x[n]i,t−1 = x[n]i,t + N(0, σ)

y[n]i,t−1 = y[n]i,t + N(0, σ),
(5)

where N(0, σ) is the Gaussian noise with zero mean and standard deviation of σ. Because the sampling
time interval of the laser range finder is 0.1 s, we assume that the maximum moving distance of an
object in each sampling time will not exceed 0.1 m, so we let σ = 0.1. After the prediction, we use the
Pearson correlation coefficient in the update stage to match the motion model in Equation (5), to adjust
the weight of the particles, thereby correcting the prediction information.

• Update

The update stage of particle filter is to use the measurement value of every moment in
historical time to update the particle’s weight. In the prediction stage, we generate particles with
Gaussian distribution, so, in the update stage, we use the probability density function of Gaussian
distribution to update the particle’s weight. We calculated the distance between the cluster and the n-th
particle. Therefore, the weight w[n]

i,t−1 of each particle in ordinary particle filter is updated according to
the following:

w[n]
i,t−1 = µ · w[n]

i,t ·
1

nt−1

nt−1

∑
i=1

1√
2πσ

· exp(−∆d2

2τ2 ), (6)

where

∆d =

√
(x[n]i,t − x̄(j)

t−1)
2 + (y[n]i,t − ȳ(j)

t−1)
2, (7)

where nt indicates that there are nt clusters in the time t, ∆d represents the distance between the
cluster and the particle, τ is the translational coefficient of the distance from particle to cluster, and µ

is the normalization coefficient. In this paper, we assume that the radius of a human cluster is 0.1 m,
therefore, we set τ = 0.1. The estimated position of each object at time t can be obtained by the weighted
average of all particles.

Traditional particle filter generally uses a single feature to construct object’s model, but such
a model often has different disadvantages due to different features selected: for example, using color
features, when the color of the object is similar to the background, the tracking process will become
unstable; using the contour or texture features, if the object rotates, deforms or occludes in the process
of moving, the tracking effect will become poor or even the tracking fails. This is because, in all of
the above cases, when the traditional particle filter algorithm processes the weight of particles in the
update stage, it cannot correctly reflect the degree of matching between the particles and the objects.
In the resampling stage, after many iterations, there are too few effective particles to approximate
the real state of the object, which makes the particles easily drift to the obstacles, leading to tracking
failure. To solve this problem, we introduce the Pearson correlation coefficient [41]. It is usually
used for the indoor localization by comparing the similarity between the location fingerprint and
a known fingerprint database [42]. In addition, it is often used in the template matching stage of image
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processing in order to compare the similarity between the two images [43]. In this paper, we compare
the i-th cluster at time t with the clusters in each historical time to obtain the Pearson correlation
coefficient. Afterwards, we substitute the results into the probability density function. The updated
weight of the particle is computed as:

w[n]
i,t−1 = µ · w[n]

i,t ·
1

nt−1

nt−1

∑
i=1

(1− p) · exp(−∆d2

2τ2 ), (8)

where

p =
∑N

n=1(x[n]i,t − x̄(j)
t−1) · (y

[n]
i,t − ȳ(j)

t−1)√
∑N

n=1(x[n]i,t − x̄(j)
t−1)

2 ·
√

∑N
n=1(y

[n]
i,t − ȳ(j)

t−1)
2

, (9)

where {x̄(j)
t−1, ȳ(j)

t−1} represents the center coordinate of the j-th cluster at the historical time, and j ∈ [i : nt].
Lastly, the resampling tackles the issue of particle degradation that occurs after many iterations.

We replicate a series of particle sets by eliminating particles with small weights and replicating particles
with large weights.

4.3.3. Calculating Each Cluster’s Radial Velocity

Now we have each cluster’s historical position, then we need to calculate the clusters of the same
cluster moving in the adjacent time, the radial velocity of cluster at each time can be expressed as:

V(i)
t =

√
(x̄(i)t )2 + (ȳ(i)t )2 −

√
(x̄(i

′ )
t−1)

2 + (ȳ(i
′ )

t−1)
2

∆t
, (10)

where ∆t represents the time difference between adjacent times.
In addition, the experimental results obtained by the other two methods (namely BC-based

method and PF-based method) are compared. In the first method, we only use the BC similarity
algorithm to match the radial velocity estimated by two sensors in each sliding time window.
Different from the algorithm proposed in this paper, the BC-based method does not use particle

filter to estimate the historical information of cluster, but it finds the nearest cluster C(i
′
)

t−1 in the previous

time t− 1 for each cluster C(i)
t of current time t. In the BC-based method, we assume that the moving

distance of the same object should be very small at the adjacent time. Therefore, the previous cluster of
a moving object (denoted as i

′
) can be determined by:

i
′
= arg min

j

√
(x̄(i)t − x̄(j)

t−1)
2 + (ȳ(i)t − ȳ(j)

t−1)
2, (11)

After finding the historical information of each cluster, the radial velocity of each cluster can
be calculated by Equation (10), and matched with the object’s phased-based radial velocity by
Equation (1).

As for the second method, we use the traditional particle filter described above, and use the
traditional method to update the weight of particles (Equation (6)). Similarly, after obtaining the
historical information of each cluster, we also calculate the radial velocity of the cluster by Equation (10),
and it performs similarity matching by Equation (1).

5. Experimental Results Analysis

5.1. Experimental Setups

The feasibility of the proposed method in this paper is verified by using the SCITOS G5 robot.
We conducted experiments in an indoor environment that is shown in Figure 3. This robot integrates
a UHF RFID reader, named Impinj Speedway Revolution R420, two circularly polarized antennas
of the type Laird Technologies S9028, and a laser range finder, named SICK S300. The RFID reader
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provides a maximum measuring distance up to 10 m. The laser range finder provides a maximum
measuring distance up to 29 m and a horizontal scanning angle of 270◦ with a scanning resolution
of 0.5◦.

Figure 3. Experimental setup.

The experiments have been tested in a space that is a rectangular area of 4 m × 2 m, as shown in
Figure 3. The robot had been placed one-meter perpendicular to the rectangle’s long side. During the
experiment, the position of the robot remained unchanged. The RFID tags worn by the three persons
moved along the edge of the rectangle. Each of them walked three circles, and each person’s speed
was different (but each person’s speed was kept constant while walking). We set a marker every
one meter on the ground shown by the red line in the Figure 3 in order to calculate the positioning
error. Each time the experimenter went across to a mark, the software records the time when he
arrives and stores it in the database. We calculate the average velocity of the experimenter between
the two adjacent markers, calculate the coordinates of their position at each moment, and treat this
coordinate as the true position of the experimenter. Because the distance between adjacent marks is
short, the ground truth error can be ignored. Subsequently, the position estimated by the algorithm is
compared with the ground truth to measure the localization error, which is defined as the Euclidean
distance between the estimated position and the true position. We think that, if the error is less than
0.8m, the cluster and tag ID are successfully matched. The matching rate is obtained by comparing the
number of clusters successfully matched with the total number of clusters.

5.2. Impact of Different Methods on Experimental Results

In this section, we used three different methods to compare the final localization accuracy and
matching rate. In the first method (BC), we only use Bray–Curtis similarity to match the radial velocities
estimated by two sensors, respectively. For the second method (PF + BC), we only use particle filter to
estimate the historical coordinates of each cluster. As for the third method (PCC + PF + BC), we added
the Pearson correlation coefficient in the update stage of particle filter to further constrain the particles.
We set ρ = 0.1, ξ = 2, w = 25, N = 200, ϕ = 90◦, and the results of the three methods are compared in
Table 2, and the estimated trajectories of moving objects are shown in Figure 4.
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Table 2. Comparison of experimental results based on different approaches.

Methods Localization Error (m) Matching Rate (%)

BC 0.76 79.2
PF + BC 0.65 83.1

PCC + PF + BC 0.33 90.2

(a) (b)

(c) (d)

Figure 4. Comparision of the estimated trajectories based on different approaches. (a) BC; (b) PF + BC;
(c) PCC + PF + BC; (d) CDFs.

If the obstacles are present in the certain environment, the BC-based approach cannot locate the
moving objects very well, as shown in Table 2 and Figure 4. The localization error is 0.76 m, and the
identification rate is 79.2%. From Figure 4a, it can be seen that the object’s trajectory jumps greatly.
That is because we assume that the moving distance of the same object at adjacent times should be the

smallest, so we find the cluster C(i
′
)

t−1 with minimal distance at the previous time t− 1 for each cluster

C(i)
t at time t through Equation (11). When the distance between the object and the obstacle is very close,

the algorithm may incorrectly obtain the historical information of the moving object, which causes the
radial velocity matching to fail. Only after the object is far away from the obstacle by a certain distance,
the algorithm can recover, trajectory jump of BC-based approach as shown in Figure 4a. Although the
particle filter-based approach improves the accuracy and matching rate compared with the BC-based
approach, the result is still not good enough: the localization error is 0.65 m and the matching rate is
only 83.1%. We use the traditional particle filter method to update the particle’s weight (Equation (6)),
and then obtain the historical information of each object. Because particle filter mainly uses laser data
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to estimate the historical trajectory of the object, if human moves close to or away from the obstacles
during the movement, the performance of the system will become very poor. This is because, in this
case, the traditional particle filter algorithm cannot correctly reflect the matching degree between the
particle and the object when processing the weight of the particle in the update stage. In the resampling
stage, after many iterations, there are too few effective particles to approximate the true state of the
object, which makes the historical position estimation of the object deviate, which further leads to the
failure of radial velocity matching and trajectory jump. From Figure 4b, we can also clearly see the
trajectory jump. The method of combining PCC and particle filter can better constrain the particles,
the localization error is reduced from 0.65 m to 0.33 m, and the matching rate is increased from 83.1%
to 90.2%. When compared with Figure 4a,b, the objects trajectories that are estimated by this method
(Figure 4c) are smoother. Besides, if an object moves along the circular arc equidistance from the RFID
antenna, there will be no difference in distance, and thus the radial velocity tends to zero, which is also
one of the sources of error in this research.

5.3. Impact of Different Parameters on Experimental Results

5.3.1. The Influence of Antenna Settings on Experimental Results

We evaluated the localization error under various antenna combinations, as the detection range of
RFID is directly confined by antennas on robot. We set ρ = 0.1, ξ = 2, w = 25, N = 200, ϕ = 90◦,
and the result is shown in Table 3. Due to the limitation of the coverage of the RFID antenna,
the localization accuracy based only one antenna is low (for example, when only the right antenna is
used, the localization error is 0.82 m). However, when we use two antennas, the measurement range of
the antenna can completely cover the entire experimental environment, and the localization error is
reduced from 0.82 m to 0.33 m. Therefore, two antennas are used in this paper for the localization and
identification of the dynamic multi-objects.

Table 3. Comparison of localization accuracy under different antenna settings.

Antenna Combination Methods Localization Error (m)

BC 0.88
Only Right Antenna PF + BC 0.96

PCC + PF + BC 0.82

BC 0.68
Only Left Antenna PF + BC 0.89

PCC + PF + BC 0.61

BC 0.76
Both PF + BC 0.65

PCC + PF + BC 0.33

5.3.2. The Influence of Phase Shift Threshold ϕ on Experimental Results

An appropriate setting of the RFID phase threshold is the key to the algorithm for eliminating π

phase jump and accurately estimating the object’s moving radial velocity. In this paper, it is assumed
that the phase difference of the same object in the adjacent time should not exceed the threshold. In this
section, we set ρ = 0.1, ξ = 2, w = 25, N = 200. Table 4 shows the localization accuracy under different
phase shift thresholds.

It can be seen from Table 4 that when ϕ is set too small (e.g., ϕ = 10◦), the algorithm will
erroneously remove the originally correct phase information, resulting in the matching rate of only
81.6% and a localization error of 0.72 m. When ϕ is set too large (e.g., ϕ = 180◦), the algorithm cannot
correctly handle the phase where the jump occurs, resulting in the localization error up to 0.83 m and
matching rate is only 66.8%. Therefore, only by setting an appropriate phase shift threshold can we
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better eliminate the effect of phase jumps while retaining normal phase information. We set ϕ = 90◦,
the matching rate can reach 90.2%, and the localization error is only 0.33 m, in order to obtain better
experimental results.

Table 4. The influence of phase shift threshold ϕ on experimental results.

ϕ Methods Localization Error (m) Matching Rate (%)

10◦
BC 2.41 54.9

PF + BC 1.98 64.0
PCC + PF + BC 0.72 81.6

30◦
BC 0.88 66.4

PF + BC 0.72 82.1
PCC + PF + BC 0.34 88.2

60◦
BC 0.79 68.1

PF + BC 0.63 85.2
PCC + PF + BC 0.36 87.6

90◦
BC 0.76 79.2

PF + BC 0.65 83.1
PCC + PF + BC 0.33 90.2

120◦
BC 0.76 78.8

PF + BC 0.68 81.4
PCC + PF + BC 0.37 84.2

150◦
BC 0.77 78.9

PF + BC 0.67 81.8
PCC + PF + BC 0.38 83.8

180◦
BC 0.86 66.7

PF + BC 0.81 67.1
PCC + PF + BC 0.83 66.8

5.3.3. The Influence of The Number of Particles N on The Experimental Results

In the traditional particle filter algorithm, the number of particles will have an effect on the results.
In this paper, Pearson correlation coefficient is added to constrain the particles in the update stage
of particle filter, so we carry out experiments to analyze the impact of the number of particles on
the localization error and matching rate in this case. We used CPU with core i5-7300 HQ, 2.50 GHz,
and 8 GB ram in the experiment, and set other parameters exactly the same as before. Table 5 lists
the results.

Table 5. The influence of the number of particles N on the experimental results.

Number of Particles N Localization Error (m) Time Consumption (ms)

5 1.41 2.96
20 0.44 3.99
50 0.37 5.16

100 0.35 5.82
200 0.33 6.44
400 0.32 8.30

1000 0.33 12.17

It can be seen in the above Table 5, a small N (such as N = 5) gives an increase in the
localization error, since the small number of particles cannot effectively represent the probability
density. The positioning accuracy gets improved when increasing the number of particles, similarly,
performing filtering with the large number of particles also consumes more time. With a large N
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(such as N = 1000), we almost get the same localization results. For considering the accuracy and the
time-consuming of the algorithm, we choose N = 200 in our experiment.

5.3.4. The Influence of The Time Window Size w

The size of time window directly affects whether all moving objects can be found in each window.
In the experiment, we set ρ = 0.1, ξ = 2, ϕ = 90◦, N = 200, and the experimental results under different
w sizes are compared in Table 6.

Table 6. The influence of the time window size w on the experimental results.

Window Size
w (s) Method

The Average
Distance Traveled

in Each Window (m)

Localization
Error (m)

Matching
Rate (%)

Time
Consumption (ms)

5
BC 0.93 1.14 66.9 28.16

PF + BC 0.93 0.88 72.5 34.42
PCC + PF + BC 0.93 0.71 81.8 42.56

15
BC 2.79 0.86 67.2 30.3

PF + BC 2.79 0.67 82.8 38.36
PCC + PF + BC 2.79 0.37 87.0 46.42

25
BC 4.65 0.76 79.2 33.28

PF + BC 4.65 0.65 83.1 43.1
PCC + PF + BC 4.65 0.33 90.2 51.07

35
BC 6.51 0.81 68.3 34.69

PF + BC 6.51 0.70 82.3 46.97
PCC + PF + BC 6.51 0.33 87.7 54.81

50
BC 9.18 0.83 67.6 38.41

PF + BC 9.18 0.64 83.8 54.69
PCC + PF + BC 9.18 0.35 87.6 62.24

It can be seen from Table 6 that, as compared with the other two methods (BC and PF + BC),
our proposed method (PCC + PF + BC) integrates Pearson correlation coefficient into the update stage of
particle filter, and matches the laser cluster-based radial velocity and the phase-based radial velocity in
each window has the least localization error and the highest matching rate. In addition, if the window is
too small (e.g., w = 5), when the object is occluded during the experiment, the algorithm cannot find all
objects in a period time, which will cause the failure of radial velocity matching. Consequently, we obtain
the error up to 0.71 m, and the matching rate reduces to 81.8%. A suitable window size (e.g., w = 25)
can ensure that all moving objects can be found in each time window, the matching rate can be 90.2%,
and the localization error is only 0.33 m. If the window is too large (e.g., w = 50), the algorithm can
always filter out the appropriate cluster to match with RFID tag in each window, which has little impact
on the experimental results, but redundant information may occupy the computing resources of the
system, and affect the real-time performance of localization and identification. Besides, as compared with
w = 25, the average time-consuming is increased to 62.24 ms. Therefore, it is very important to choose an
appropriate window size. This paper uses the window size w = 25 in order to ensure that the experiment
has small positioning error and high matching rate. Figure 5a–c shows the localization error at different
locations with w = 25.
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(a) (b) (c)

Figure 5. The positioning error at different locations with w=25. (a) The first object; (b) The second
object; (c) The third object.

5.4. Evaluation of the Approach with a Complex Path and a Different Environment

We expand the original experimental scene to an area of 8 m × 4 m and move it to the area
closer to the wall in order to verify the robustness of the whole system. The specific experimental
scenario is shown in Figure 6. The experimental parameters are set to be the same as the original
experimental parameters, and the result is shown in Figure 7. As can be seen from Figure 7c,
as compared with Figure 7a,b, the object’s estimated paths are basically consistent to the ground
truth, and the average localization error of all humans is 0.52 m, which is only 0.19 m worse than
the original experiment. The BC-based approach (BC) cannot locate the moving objects very well,
the localization error is 0.90 m. Although the particle filter-based approach (PF + BC) improves the
accuracy when compared to the BC-based approach, the result is still not good enough: the localization
error is 0.76 m. The experimental results show that our approach is able to achieve identification and
localization of multiple objects with good positioning accuracy.

Figure 6. Complex paths experimental setup.

We conducted experiments in the lobby of our campus building in order to verify the actual use
of our system in an indoor environment. In this experiment scene, the ceiling is about 2.3 m above
the ground, and there are several walls in the environment. The experimental scenario is shown in
Figure 8, the results are shown in Figure 9 and Table 7. As can be seen from Figure 9, the object’s
paths estimated by our method (PCC + PF + BC) are basically consistent to the ground truth, and the
average localization error is 0.44 m, which is similar to our previous experiments. Similarly, we also
compare the localization error of the other two methods (the BC-based approach (BC), and the particle
filter-based approach (PF + BC)), as shown in Table 7.

The experimental results show that our approach is able to achieve identification and localization
of multiple objects with a similar localization accuracy when compared to our previous experiments.
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In practical applications, we can deploy this system in such an environment to identify and locate the
passing pedestrians.

(a) (b)

(c) (d)

Figure 7. Complex paths results. (a) BC; (b) PF + BC; (c) PCC + PF + BC; (d) CDFs.

Figure 8. Experimental setup of complex path in indoor environment.
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Figure 9. Experimental results of complex path in indoor environment.

Table 7. Comparison of experimental results of complex path in indoor environment based on
different methods.

Methods Localization Error (m)

BC 0.82
PF + BC 0.68

PCC + PF + BC 0.44

6. Conclusions

This paper proposed an approach for fusing the RFID and laser data in order to achieve dynamic
multi-objects identification and localization by combining Pearson correlation coefficients and particle
filter. The Pearson correlation coefficient and particle filter are combined to find out the historical path
of each cluster, and then the radial velocity is estimated based on the cluster’s position at adjacent
times. At the same time, the radial velocity of the moving object is estimated using the phase difference
between the adjacent moments of RFID, and those two are matched by the similarity algorithm
based on the sliding time window to realize the identification and localization of multiple dynamic
objects. The experiments show that the method that is proposed in this paper can achieve a matching
rate of 90.2% in an environment with obstacles and a localization error of 0.33 m. In the future, we will
overcome the problem of phase ambiguity, and further improve the matching rate and localization
accuracy. Another research direction is visual sensors to overcome the problem of positioning failure
of moving objects after long-term occlusion.
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Abbreviations

The following abbreviations are used in this manuscript:

UHF Ultra High Frequency
BC Bray-Curtis
RFID Radio Frequency Identification
PF Particle Filter
PCC Pearson Correlation coefficent
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Abstract: Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer
is widely used in range-based and fingerprint location systems due to its low cost and low complexity.
However, RSS is affected by noise signals and multi-path, and its positioning performance is not
stable. In recent years, many commercial WiFi devices support the acquisition of physical layer
channel state information (CSI). CSI is an index that can characterize the signal characteristics with
more fine granularity than RSS. Compared with RSS, CSI can avoid the effects of multi-path and
noise by analyzing the characteristics of multi-channel sub-carriers. To improve the indoor location
accuracy and algorithm efficiency, this paper proposes a hybrid fingerprint location technology
based on RSS and CSI. In the off-line phase, to overcome the problems of low positioning accuracy
and fingerprint drift caused by signal instability, a methodology based on the Kalman filter and
a Gaussian function is proposed to preprocess the RSSI value and CSI amplitude value, and the
improved CSI phase is incorporated after the linear transformation. The mutation and noisy data
are then effectively eliminated, and the accurate and smoother outputs of the RSSI and CSI values
can be achieved. Then, the accurate hybrid fingerprint database is established after dimensionality
reduction of the obtained high-dimensional data values. The weighted k-nearest neighbor (WKNN)
algorithm is applied to reduce the complexity of the algorithm during the online positioning stage,
and the accurate indoor positioning algorithm is accomplished. Experimental results show that the
proposed algorithm exhibits good performance on anti-noise ability, fusion positioning accuracy, and
real-time filtering. Compared with CSI-MIMO, FIFS, and RSSI-based methods, the proposed fusion
correction method has higher positioning accuracy and smaller positioning error.

Keywords: indoor fingerprinting localization; Gaussian filter; Kalman filter; received signal strength
indicator; channel state information

1. Introduction

With the development of wireless communication technology, the demand for location-
based services (LBS) has increased greatly. The complex indoor environment makes
GPS [1–4] signals that belong to the outdoor positioning system vulnerable to multi-path
effects, which makes it impossible to apply in indoor positioning. The GPS [1–4] signal
is blocked or reflected by the wall, so the satellite signal cannot be received in the indoor
environment. Therefore, GPS cannot be used for positioning in an indoor environment.
Common indoor positioning technologies include ultra-wideband (UWB), infrared, radio
frequency identification (RFID), ultrasonic, LED visible light, ZigBee, Bluetooth, WiFi,
geomagnetic, etc. There are many localization methods for wireless sensor networks.
At present, these methods can be categorized into the followings: distance/angle-based
positioning algorithm (Range-Based) and distance-independent positioning algorithm

Sensors 2021, 21, 2769. https://doi.org/10.3390/s21082769 https://www.mdpi.com/journal/sensors
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(Range-Free). The representative range-based positioning algorithms are time of arrival
(TOA) [5], time difference of arrival (TDOA) [6], angle of arrival (AOA) [7], and received
signal strength indication (RSS) [8,9]. On the other hand, representatives of range-Free
positioning algorithms are centroid algorithm, DV-Hop algorithm, Amorphous algorithm,
APIT algorithm, etc. The performance evaluation criteria for a positioning algorithm
mainly include positioning accuracy, node density, fault tolerance and adaptability, power
consumption, cost, etc. Among them, the widespread deployment of indoor WiFi wireless
access point (AP) has rendered the WiFi positioning technology feasible, and the location
method based on location fingerprint is becoming the mainstream of indoor positioning
due to its low cost and simple method. The traditional fingerprint location method usually
includes two phases: offline training phase (offline phase) and online prediction phase
(online phase). In the offline phase, the wireless signal characteristics of each reference
point Reference Point (RP) are collected as fingerprints, and a database is established. In
the online stage, by matching the wireless signal fingerprint characteristics of the user’s
location with the database information, the location corresponding to the fingerprint with
the highest matching degree is obtained as the user’s final location. Most of the existing
fingerprint location systems use RSSI as coarse-grained fingerprint information, which is
simple and does not need additional equipment configuration.

IEEE 802.11 protocol does not give specific processes or algorithms to generate RSSI.
RSS refers to the MAC layer signal strength received by the client. Because RSS is coarse-
grained information, it is often affected by multi-path effect and noise signal, and the
location performance is not stable, so it can not meet the requirements of indoor precise
location. In recent years, CSI [10,11] can be obtained through commercial Wi Fi devices.
CSI is the channel state information that measures the channel condition. It belongs to
PHY layer and comes from the sub-carriers decoded in Orthogonal Frequency Division
Multiplexing (OFDM) [12] system. CSI is fine-grained physical information, which is more
sensitive to the environment, so it is applied in the fields of action recognition, gesture
recognition, tracking, and so on. The CSI based on the physical layer makes up for the
shortcomings of the average superimposed amplitude processing method in the traditional
RSSI. The phase information of each sub-carrier is added to provide more precise and stable
signal characteristic information for indoor WiFi fingerprint positioning technology. CSI
can minimize the effects of multi-path and noise by analyzing the transmission of different
sub-channel signals. CSI has opened up a new space for the WiFi-based indoor positioning
technology and the research effort has been directed to this field.

In Reference [13], CSI amplitude information is used for positioning and important
fingerprint features. The phase information is not used. A positioning system Pinloc is
proposed in Reference [14]. Pinloc estimates the distribution of a single sub-carrier in the
complex plane through the probability density function, and then realizes the position
estimation. However, the Pinloc system only uses the frequency diversity of CSI and
does not consider the effect of spatial diversity. Reference [15] proposed a data processing
method to reduce the phase deviation, but this paper did not consider the combined effect
of random phase deviation and random delay deviation. Reference [16] also designed a
fine-grained indoor fingerprint location system FIFS using CSI. Although FIFS utilizes both
frequency diversity and spatial diversity, this method only aggregates the power of all sub-
channels. The CSI-MIMO positioning system [17] only considers the amplitude and phase
information of each sub-carrier. However, CSI-MIMO only considers spatial diversity and
frequency diversity when generating location fingerprints, neglecting the characteristics
of multiple receiving antennas, and the uniqueness of the location can not be reflected
further. In recent years, the industry has proposed many fingerprint-based positioning
methods, using different features (such as RSSI and CSI) as fingerprints to distinguish
different locations. Although CSI-based methods generally have higher accuracy than
RSSI-based methods, it is found that the positioning results of different methods usually
compensate each other. By fusing different features, a more accurate positioning result
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can be obtained than a single feature. Following these backgrounds, this paper proposes a
high-precision fingerprint positioning method based on RSSI and CSI.

Currently, most methods based on CSI fingerprints do not incorporate RSS information,
thereby reducing the computing resources required for positioning. Therefore, this paper
uses RSS and CSI, which are two kinds of information with different granularity, to realize
regional location and precise location, respectively, and to make full use of the advantages
of different granularity information. Compared with the distance estimation method,
the complex indoor environment has less influence on fingerprint method. Based on
the above reasons, this paper studies the indoor location method based on the hybrid
fingerprint of RSS and CSI. Combining the respective characteristics of RSS information
and CSI information, this paper proposes an improved fingerprint precise positioning
algorithm based on RSSI and CSI. In the offline phase, the mobile terminal collects the
RSSI signal and CSI signal from each AP in the known reference position. After denoising
the original RSSI signal and CSI amplitude value by using the Kalman filter, the phase
of CSI is preprocessed to build a more robust position fingerprint database. At the same
time, to reduce the complexity of the fingerprint data and positioning error, we use the
weighted k-nearest neighbor (WKNN) algorithm [18] to perform fingerprint matching and
find the position coordinates in the online stage. Analyzing the experimental results shows
that the improved fingerprint positioning algorithm has higher positioning accuracy in
indoor environments.

The main contributions of this paper can be divided into the following:

1. This paper proposes a novel cross-layer approach including MAC layer information
and physical layer information that enables fine-grained indoor fingerprint location
algorithm in OFDM-MIMO WLANs.

2. The obtained RSSI value and CSI amplitude value are denoised, and CSI phase value
is linearly transformed. The processed measurements information can express the
difference of fingerprints between different locations.

3. The proposed algorithm reduces the dimension of the amplitude and phase values of
CSI, and constructs a fingerprint database that can map the location feature data.

4. In this paper, an indoor fingerprint location method based on RSSI and CSI in high
load AP environment is proposed. It improves the difficulty of getting RSS and CSI
information of AP in high load WiFi channel due to beacon delay. The proposed
method can be used in a high-load AP environment.

5. The positioning accuracy of the proposed method in two typical indoor environments
is high. This method is higher than several traditional localization algorithms, and it
is a more accurate WLAN Indoor fingerprint location algorithm.

This article includes the following chapters: Section 2 introduces RSSI, CSI, and WKNN.
In Section 3, the proposed fingerprint location method is described. We process the original
RSSI and CSI information, respectively, and obtain the effective fingerprint database in the
offline stage. We use the WKNN algorithm to estimate the location through the fingerprint
database established by the effective RSSI and CSI. Section 4 analyzes the experimental
results and discusses the performance of the algorithm. Finally, Section 5 is conclusions
and future work.

2. Related Work
2.1. Characteristics of RSSI

RSSI refers to the received signal strength received by the client, which belongs to
the MAC layer and comes from each packet. The multi-path propagation of wireless
signal refers to the reflection, diffraction, and scattering of electromagnetic waves on the
propagation path. The signal received by the node does not come from a single path
but from multiple paths. Due to the different path distances of electromagnetic waves,
the arrival time of nodes is different, and there is phase difference. The positive and negative
superposition of different phase differences will enhance or reduce the original signal,
resulting in multi-path attenuation, which makes the indoor electromagnetic environment
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present regional and special. Therefore, the channel multi-path structure is unique for each
location, which is called the RSSI position “fingerprint” [19,20].

WLAN vendors can privately define RSSI values. Through the description in the
802.11-2007 standard [21], we know that RSSI is measured by the receiving network card,
and there is path attenuation in the middle, so the sender can not determine the specific
receiving power of the receiver. The process or algorithm of RSSI generation is not given in
the 802.11 protocol. According to the protocol, the RSSI value ranges from 0 to 255, and the
RSSI value increases monotonically with the energy of PHY preamble. Therefore, only the
PHY preamble measurement can be selected as the RSSI value. The instantaneous value of
RSSI is obtained by integrating baseband IQ power. The theoretical calculation formula of
RSSI is as follows:

RSSIInstan =
√

I2 + Q2 (1)

The average value of RSSI within 1 s is obtained by averaging the instantaneous values
of 8192 RSSIs. The average value of RSSI is calculated as follows:

RSSIAve =
∑8192

i=1 RSSIInstan

8192
(2)

Power is sampled directly in time domain. Since most wireless signals are MW level,
they are polarized and converted into dBm, which does not mean that the signal is negative.

2.2. Channel State Information Amplitude and Phase

CSI data belongs to the physical layer information of wireless communication protocol.
The physical layer (PHY) of 802.11 protocol [17] is the interface between MAC and wireless
media. CSI can be represented by the value of each element in the channel gain matrix
H [22,23]. Channel impulse response (CIR) can describe the multi-path effect of wireless
channel. It can be expressed in the following formula.

Hk = ‖Hk‖ej∠Hk (3)

where Hk is the CSI of the kth sub-carrier. ‖Hk‖ and ∠Hk represent amplitude and phase
of kth sub-carriers, respectively. H appears in a complex form a + bi. CSI represents
the coefficient of a wireless channel. We can get the modulus

√
(a2 + b2) and argument

θ = argtan b
a of the complex number, that is, the corresponding amplitude and phase.

Channel frequency response (CFR) [24] can be used to describe transmission by am-
plitude frequency and phase frequency. And because CFR and CIR are Fourier transforms
for each other in the case of infinite bandwidth, CFR can be expressed as follows.

h(τ) =
N

∑
i=1

aie−jθi δ(τ − τi) (4)

where ai is the amplitude attenuation of the ith path. θi is the phase offset of the ith path. τi
is the time delay of the ith path. N is the total number of paths propagated. δ(τ) is a Dirac
impulse function.

Since CSI is the frequency response of multiple sub-carriers, it can accurately describe
frequency selective channels. According to the Fourier transform of CIR and CFR, multiple
propagation paths can be distinguished in time domain.

2.3. Comparison of CSI and RSSI

RSSI is the superposition of multiple path signals, which is very unstable. In a certain
range, the probability of RSSI coincidence in different locations is relatively large, which
makes it difficult for RSSI to complete high-precision indoor positioning, and it is only
suitable for rough estimation of positioning range. CSI is not the superposition of all the
sub-carrier information, it describes the signal of multiple paths, has more characteristics,
and contains the channel state information of multiple sub-carriers. The amplitude and
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phase of CSI sub-carriers in different positions are crossed, so single sub-carrier cannot be
distinguished. But if we use the diversity of CSI frequency and all the sub-carrier data,
through a certain algorithm, we can distinguish different locations. Table 1 shows the
differences between RSSI and CSI.

Table 1. Compare the difference between received signal strength indication (RSSI) and channel state
information (CSI).

Category RSSI CSI

Layer MAC layer Physical layer
Granularity Coarse-grained Fine-grained

Time resolution Packet Multipath signal cluster
Frequency resolution None Subcarrier

Stability Low High
Dimension One dimension High dimension

Power consumption Low High
Mathematical value Real number Complex number

Universality All Wi-Fi devices Some Wi-Fi devices

2.4. Weighted K-Nearest Neighbor (WKNN) Algorithm

The K-nearest neighbor (KNN) is a deterministic algorithm. It obtains the fingerprint
of the first K reference points which are closest to the location point in space and calculates
the location estimation value of the K reference points according to the coordinates of the
K reference points. The basic distance space can be calculated as Equation (5).

dq =

(
n

∑
i=1
|si − Si|q

) 1
q

, (5)

where si is the RSSI from the positioning phase. Si is the RSSI from the fingerprint database.
The variable q depends on the distance preferred by the algorithm. When q = 2, it rep-
resents Euclidean distance. Although it is not accurate compared with the probabilistic
algorithm, the KNN is one of the most popular algorithms because of its low computa-
tional complexity.

(x̂, ŷ) =
1
k

k

∑
i=1

pi pi ∈ D1:k. (6)

The weighted k-nearest neighbor (WKNN) [25] algorithm was proposed to improve
the KNN algorithm. KNN algorithm is to calculate the mean value of the coordinates of K
reference points, while WKNN multiplies each reference point by a weighted coefficient,
and then G weights and averages K reference points to obtain the location coordinates of
the point to be located, as shown in Equation (7).

(x̂, ŷ) =
k

∑
i=1

1
di+ε

∑k
j=1

1
dj+ε

· (xi, yi), (7)

where di represents the spatial distance between the fingerprint data of the ith reference
point and the data measured in the online stage, ε is a positive number tending to 0, and the
denominator in the formula is 0. (xi, yi) is the position coordinate of the ith reference point,
and (x̂, ŷ) is the position coordinate of the point to be located.

3. Proposed Indoor Fingerprint Localization Architecture and Methodology

To ensure location accuracy, this paper proposes an indoor hybrid fingerprint location
algorithm based on RSSI and CSI. Because of the influence of multi-path effect, AP loss,
heterogeneous network interference, and other factors, the collected fingerprint data can
not be directly used, and this paper will carry out the relevant data processing work.
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This part first introduces the structure of the indoor fingerprint positioning model. Sec-
ondly, it describes the process of RSSI and CSI data fusion after the establishment of the
fingerprint database.

3.1. Indoor Fingerprint Localization Architecture

The indoor fingerprint location method proposed in this paper includes two parts:
offline phase and online phase. In the offline phase, a modified device supporting OFDM-
MIMO is used to collect RSSI and CSI measurement data at the reference point. Then,
according to the proposed method, the abnormal packets which significantly deviate from
the whole in the continuous RSSI and CSI packets are removed. According to the location
fingerprint generation method designed in this paper, the position fingerprint containing
RSSI, CSI amplitude, and CSI phase information is generated. The fingerprint uses the
characteristics of frequency diversity and space diversity of the Orthogonal Frequency
Division Multiplexing (MIMO) system to obtain CSI and RSSI values on different antennas.
In each sub-carrier, RSSI and CSI are aggregated in the unit of receiving antenna. At the
same time, the anti-jamming ability and stability of the location fingerprint are further
enhanced and the uniqueness of the location is better reflected, which helps to improve the
accuracy of the location. Next, the location fingerprints generated in each reference location
are collected to construct the location fingerprint map and database. In the offline phase,
the coordinates of the target location are obtained by matching the fingerprint database.
Figure 1 shows the flow chart of the positioning system structure.

Figure 1. Indoor fingerprint localization architecture.

3.2. Proposed Indoor Fingerprint Localization Methodology

This section describes the fingerprint generation process of the fusion location method
proposed in this paper. The features of the RSSI are its low characteristic dimension
and easy obtainability, however, it also suffers from poor signal stability and low spatial
resolution. On the other hand, the CSI retains the characteristics of fine signal granularity,
high stability, high characteristic dimension, and high computational complexity. Based
on the above characteristics, a fingerprint fusion localization method based on RSSI and
CSI is proposed. Table 2 shows the available information about CSI [26]. It can be seen
from Table 1 that the CSI obtained contains RSSI values on different antennas. To obtain
more accurate positioning, we use MATLAB to obtain the RSSI value on the receiver
antenna. According to the mathematical expressions of RSSI and CSI in time domain and
frequency domain and their corresponding characteristics, RSSI and CSI are compared
and preprocessed.
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Table 2. Channel state information (CSI).

Data Information Properties

Bfee-count Number of Bfee count beamforming
Nrx Number of receiver antennas
Ntx Number of transmitter antennas

rssi-a,rssi-b,rssi-c RSS of each receiving antenna
rate Transmission rate of each data packet

noise noise
CSI CSI is a 3-dimensions array of Nrx × Ntx ×30

3.2.1. Processing of Raw RSSI Based on Gaussian-Kalman Filter

For indoor environment, the multi-path effect is obvious and RSS is more unstable.
There may be some abnormal values in the measurement results of RSSI packets. If these
abnormal values are used as the received signal strength, the positioning results will greatly
deviate. The indoor location algorithm based on fingerprint similarity comparison needs
to take the whole RSS vector as a whole. The fluctuation and noise of an RSS signal will
have a great impact on the overall comparison results. We first process the RSSI value
using Gaussian filtering [27]. The basic principle of Gaussian filtering is to establish a
Gaussian distribution model for numerical values. Gaussian function is introduced in
this method, and Gaussian function is discretized. The Gaussian function value at the
discrete point is the weight value, that is, the RSSI values at the high probability occurrence
regions are selected. The Gaussian filter can effectively filter the data significantly deviated
from the true values and suppress the positioning error caused by signal mutation, but it
is not effective in dealing with shadow effect, energy reflection, and other interference
problems. Next, to smooth the output of RSSI data, this paper also uses the Kalman filter
algorithm [28,29]. Kalman filtering can effectively filter indoor interference noise that obeys
a normal distribution. After the Kalman filtering, the smoothed RSSI value of the reserved
part is taken as the mean value and the final effective RSSI value is obtained. The above
analysis shows that the proposed Gaussian-Kalman linear filter can obtain a more effective
measurement value RSSI.

In this paper, the Dell notebook modified the wireless network card was used for data
collection at Kyungpook National University (KNU), and the RSSI on different antennas
was obtained. The detailed process of the experimental environment and data collection is
described in detail in Section 4.1. Figures 2 and 3 show the raw RSSI values of AP1 obtained
at the reference point (0,1) in the corridor of the IT1 building and at the reference point (0,1)
in the lobby of the IT2 building, respectively. It can be seen from Figures 2 and 3 that the
RSSI value obtained on antenna c is abnormal and cannot be used for positioning, so it
needs to be filtered out. At the same time, we perform Gaussian filtering on the RSSI values
obtained at antenna a and antenna b. Figures 4 and 5 show the Gaussian filtered RSSI value
of AP1 on the effective antenna obtained at the reference point (0,1) in the corridor of the
IT1 building and at the reference point (0,1) in the lobby of the IT2 building, respectively.
To filter out the residuals of the Gaussian filtering, we further perform the Kalman filtering
on the obtained smooth values. Figures 4 and 5 also show the Gaussian-Kalman filtered
RSSI values obtained in the two environments.

The algorithm can effectively eliminate the mutation data and noise fluctuation in
RSSI fingerprint data. We use the aforementioned data processing method to uniformly
process the RSSI values obtained in other indoor environments. The algorithm realizes the
accurate and smooth output of RSSI values and is used to establish an accurate fingerprint
database, which makes the subsequent positioning more accurate.
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Figure 2. The raw RSSI value of access point AP1 obtained at the reference point (0,1) in the corridor
of IT1 building.

Figure 3. The raw RSSI value of AP1 obtained at the reference point (0,1) in the lobby of IT2 building.
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Figure 4. The Gaussian filtered RSSI value and the Gaussian-Kalman filtered RSSI value of AP1 on
the effective antenna obtained at the reference point (0,1) in the corridor of IT1 building.

Figure 5. The Gaussian filtered RSSI value and the Gaussian-Kalman filtered RSSI value of AP1 on
the effective antenna obtained at the reference point (0,1) in the lobby of IT2 building.
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3.2.2. Kalman Filtering and Dimension Reduction Processing Based on CSI
Amplitude Value

The Wi-Fi signal using the 802.11n transmission protocol can use the OFDM modula-
tion method to modulate the signal to each sub-channel for transmission and to extract CSI
on each channel. The CSI data of physical layer is mainly used for wireless network opti-
mization and it is generally difficult to access these data. In recent years, Inter and Atheros
network card suppliers have processed some of their network card firmware programs and
some relevant organizations have opened corresponding software development packages.
We can modify the open-source driver of network card in Linux and WIN system and
use debugging mode to obtain CSI data of some wireless network cards. The Intel5300
network card provides sub-carrier level channel measurement for OFDM system, convert
the measured value into more abundant multi-path information, and provide more stable
measurement value and higher positioning accuracy.

As mentioned above, all software and scripts to read and parse channel measurements
are performed by the MATLAB. Finally, a channel matrix with 30 sub-carrier groups is
obtained, that is, the 802.11n channel state information is acquired. By giving full play to
the advantages of the frequency diversity and space diversity of the MIMO system, while
using the characteristics of multiple receiving antennas, the location fingerprint can better
reflect the uniqueness of the location. We aggregate CSI in units of receiving antennas
under each sub-carrier:

Hcsi−1 =
p

∑
m=1

hm1

Hcsi−2 =
p

∑
m=1

hm2

· · ·

Hcsi−q =
p

∑
m=1

hmq

, (8)

where p is the number of antennas at the transmitter; hm1, hm2, · · · , hmq are sub-carriers
received by receiving antennas 1, 2, · · · q, respectively. Figures 6 and 7 show the acquired
unprocessed CSI on different receiving antennas in the two environments. It can be seen
from Figures 6 and 7 that the CSI value obtained on antenna 3 cannot be used. Here, q = 2.
Then, the amplitudes are calculated as

Ham−i = |Hcsi−i|, i = 1, 2. (9)

For each sub-carrier, the mean value of the two amplitudes obtained by the receiving
antenna is calculated, so that the dimension of the amplitude becomes 30 dimensions.
Figures 8 and 9 show the amplitude of the sub-carriers for 160 measurements in two
different indoor environments. The Kalman filtering was performed on the amplitudes of
the 30 CSI sub-carriers obtained from different antennas. The obtained CSI value of the
Kalman filter is represented by Ĥam. The ordinate is the magnitude of the amplitude and
the abscissa is the time scale. The Kalman filter smooths the waveform further and the CSI
amplitude value positioning using the filtering results is feasible. The amplitude of the two
sub-carriers at both ends of the obtained sub-carrier are subtracted and dimension-reduced,
the effective amplitude fingerprint from an antenna is reduced to 15 dimensions:

CSIAMn =
1
2

[
Ĥam30 + Ĥam1 , Ĥam29 + Ĥam2 , · · · , Ĥamk/2+1 + Ĥamk/2

]
, (10)

where k = 30, n = 1, 2, · · · , 15. Figures 10 and 11 show the amplitude of the effective CSI
sub-carriers on antenna a at reference point (0,1) of AP1 in two different indoor environments.
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Figure 6. Raw CSI obtained on different receiving antennas at reference point (0,1) of AP1 in the
corridor of IT1 building.

Figure 7. Raw CSI obtained on different receiving antennas at reference point (0,1) of AP1 in the
lobby of IT2 building.
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Figure 8. The amplitude of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
corridor of IT1 building.

Figure 9. The amplitude of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
lobby of IT2 building.
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Figure 10. The amplitude of the effective CSI sub-carriers on antenna a at reference point (0,1) of AP1
in the corridor of IT1 building.

Figure 11. The amplitude of the effective CSI sub-carriers on antenna a at reference point (0,1) of AP1
in the lobby of IT2 building.

3.2.3. Linear Transformation and Dimension Reduction of CSI Phase Values

Figures 12 and 13 show the phase of each sub-carrier of the acquired CSI. If the center
frequencies of the receiver and transmitter cannot be accurately synchronized (frequency
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offset), the carrier frequency offset (CFO) will occur. In addition, ADC also produces
sampling frequency offset (SFO) [30]. The i-th sub-carrier phase can be expressed as:

ϕ̂i = ϕi − 2π
ki
N

δ + β + wZ. (11)

Among them, ϕi is real phase information, δ is timing offset of receiver, β is unknown
phase offset, and wZ is phase measurement noise. k denotes the index of the i-th sub-carrier.
N is the FFT size.

The existence of the error offset causes the original phase information to not be directly
used. Assuming that the value of measurement noise wZ is small, to eliminate the error of
δ and β, linear transformation can be used as follows:

a =
ϕ̂i − ϕ1

kn − k1
=

ϕi − ϕ1

kn − k1
− 2π

N
δ, (12)

b =
1
n ∑

1≤j≤n
ϕ̂j =

1
n ∑

1≤j≤n
ϕj −

2πδ

nN ∑
1≤j≤n

k j + β, (13)

where a is the slope of the received response phase. b is the offset. If the sub-carrier
frequency is symmetric, then ∑n

j=1 k j = 0, ϕi − aki − b can eliminate the error introduced
by δ and β. Because the real phase can not be obtained, only the relationship between the
calibrated phase ϕ̃i and the real phase can be obtained, and the difference is a constant
multiple Ci related to frequency.

σ2
ϕ̃i
= ciσ

2
ϕi

, (14)

ci = 1 + 2
k2

i

(kn − k1)
2 +

1
n

. (15)

Figure 12. The phases of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
corridor of IT1 building.
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Figure 13. The phases of the 30 CSI sub-carriers on antenna a at reference point (0,1) of AP1 in the
lobby of IT2 building.

Figures 14 and 15 give the phase information processed linearly, which is much more
stable than the original phase in Figures 12 and 13. The phase received by the receiving
end has random errors due to time delay and multi-path effects, which are the main factors
affecting the accuracy of phase estimation, and they need to be eliminated to improve the
accuracy. The CSI is processed by a linear transformation, which effectively eliminates
the phase error and obtains a higher-precision estimated phase. It is possible to establish
more accurate indoor fingerprints, and, for each sub-carrier, the three calibration phases
are subtracted to make the fingerprint of phase information 30 dimensions:

Hph = Hph−1 − Hph−2, (16)

where Hph−i = ϕ̃i, i = 1, 2.
After analyzing the trend of CSI phase, this paper proposes a data dimension reduction

method.This method is easy to operate and reduces the calculation at the same time. Since
the information contained in the adjacent sub-carriers is nearly similar, we remove the
amplitude of the even-numbered adjacent sub-carriers according to this feature, and only
preserve the phase information of the odd-numbered sub-carriers. Finally, the effective CSI
obtained by dimension reduction can be used to establish offline CSI fingerprint database.
Dimensionality reduction processing is carried out for the phase information of the two
sub-carriers symmetric about the center sub-carrier, and the phase information from an
antenna is reduced to 15 dimension:

CSIPHn =
[

Ĥph1 , Ĥph3 , · · · , Ĥphk/2
, · · · , Ĥphk−3

, Ĥphk−1

]
, k = 30, n = 1, 2, · · · , 15. (17)
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Figure 14. The phases after linear transformation of the 30 CSI sub-carriers on antenna a at reference
point (0,1) of AP1 in the corridor of IT1 building.

Figure 15. The phases after linear transformation of the 30 CSI sub-carriers on antenna a at reference
point (0,1) of AP1 in the lobby of IT2 building.

Figures 16 and 17 show the variation trend of CSI phases in different dimensions
under different indoor environments. It can be seen that, even though the phase dimension
of the sub-carrier is 15, the phase change trend can be clearly presented.
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Figure 16. Compare the phases change trends with different dimensions on antenna a at reference
point (0,1) of AP1 in the corridor of IT1 building.

Figure 17. Compare the phases change trends with different dimensions on antenna a at reference
point (0,1) of AP1 in the lobby of IT2 building.

3.2.4. Location Fingerprint Generation Based on Data Fusion

By the aforementioned processing of RSSI, CSI amplitude, and CSI phase information,
we obtain the fingerprints containing 2 × 1 dimensional RSSIs, 2 ×15 dimensional CSI
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amplitude, and 2 × 15 dimensional CSI phase information, respectively. (xm, ym) can give
the uniqueness of the position coordinates.

(xm, ym) = [RSSIi CSIi AMn CSIiPHn], (18)

where m represents the number of packets collected. i represents the number of antennas
and i = 1, 2. n = 1, 2, · · · , 15. In addition, when there are multiple access points (APs) in
the positioning system, they can be aggregated for the participate of location fingerprints.

(xRP, yRP) =




RSSIi1, CSIi AMn1, CSIiPHn1
RSSIi2, CSIi AMn2, CSIiPHn2

· · ·
RSSIis, CSIi AMns, CSIiPHns


, (19)

where s represents the number of APs, and, in this paper, s = 3. (xRP, yRP)is the position
coordinates of the reference point stored in the fingerprint database during the offline
phase. Online phase, the user’s fingerprint information is compared with the fingerprint
database to obtain several different areas. In this paper, we select t test points for fingerprint
matching, and the coordinate value of the test point is (xTest, yTest). The WKNN algorithm
is used to aggregate the above regions and to select the optimal estimation location.

(xTest, yTest) =




RSSIi1, CSIi AMn1, CSIiPHn1
RSSIi2, CSIi AMn2, CSIiPHn2

· · ·
RSSIi t, CSIi AMnt, CSIiPHnt


. (20)

4. Experimental Environment and Performance Evaluation
4.1. Experimental Environment

Figures 18 and 19 verify the performance of the proposed algorithm in the corridor on
the 3rd floor of IT1 building and the hall on the 1st floor of IT2 building in KNU. The floor
plan is shown in Figures 20 and 21.

Figure 18. Real corridor environment on the 3rd floor of Kyungpook National University (KNU)
IT-1 building.
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Figure 19. Real lobby environment on the 1st floor of KNU IT-2 building.

Figure 20. Floor plan of the corridor on the 3rd floor of KNU IT-1 building.

Figure 21. Floor plan of the lobby on the 1st floor of KNU IT-2 building.
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The receiver of this paper is a laptop with ubuntu14.04.4 operating system and in-
tel5300 wireless network card. The network card is attached with three dual-frequency
external antennas of 2.4 G/5 GHz. The green dots in the figure indicate the positions of
reference points. The accuracy of RSSI signal and CSI signal is the highest at a height
of 1 m from the ground, so the distance between the AP antenna and the ground is 1 m.
When collecting RSSI signal and CSI signal data, the tester holds a portable notebook
device and stands at the reference point for data collection. The reference point receives
signals from three APs. Each reference point collects RSSI data and CSI data for 30 min
and saves them to the PC. The RSSI data and CSI data are extracted by MATLAB, and the
original RSSI data and CSI data are filtered at the same time. Take the effective RSSI value
and the effective CSI value to establish the database as the feature vector of the point.
The experimental starts from the lower-left corner, and its coordinates are (0,0). The grid
size of the fingerprint database is 1 m. In the corridor environment, fingerprint information
of 24 locations are collected, and 27 locations are collected in the lobby environment. The
performance of the algorithm is evaluated by the distance error between the estimated
position of the reference point and the real position.

4.2. Performance Evaluation

In the indoor environment, there are many factors that affect the positioning results,
such as the number of people in the positioning area and their status, static or moving,
receiver location and antenna orientation, and the influence of other indoor equipment
movements, etc. We consider these conditions that are difficult to control and evaluate the
generality of the proposed algorithm. To weaken these external factors, the same set of
location data is processed to compare the performance of the location algorithm.

4.2.1. Impact of the Number of Packets

During the construction of fingerprint database, the number of samples makes a
great impact on the positioning performance. For the similarity comparison method of
fingerprint database, the location accuracy largely depends on whether the fingerprint
samples in the fingerprint database can accurately describe the distribution of the overall
fingerprint or not. For this experiment, each unit area is sampled for 5 min, and nearly
1000–3000 CSI samples can be sampled for each AP. In the case of the same environment
parameters, we selected different numbers of sample sets for training to verify the existing
indoor location method. We also investigated the influence of the different sample set
number in the proposed fingerprint location method on the positioning performance. The
sampling frequency of sampled data is equal to 1500 packets/s.

Figures 22 and 23 show the impact on positioning performance when the number of
samples in the process of establishing a fingerprint database is 100, 500, 1000, and 2000,
respectively. In the two experimental scenarios, we select three APs to establish fingerprints
and set k = 3 in the WKNN algorithm. The number of samples in the on-line phase is about
50, 250, 500, and 1000, respectively. When the sampling rate is increased from 100 to 500
packets, as shown in the figure. When it increased from 500 to 1000, the positioning accuracy
showed a trend of improvement. When it is between 1000 and 2000, the positioning
accuracy has not improved. Based on the above experimental results, the positioning
accuracy of 1000 packets achieved the highest score under certain conditions. We also
compared the average distance errors at reference point (1.1) and reference point (4,2),
as shown in Figures 22 and 23. It can be seen from Figures 22 and 23 that selecting 1000 data
packets at different reference points to build a database obtained more accurate positioning.
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Figure 22. Distance estimation errors at reference points (1,1) in two different experimental environ-
ments.

Figure 23. Distance estimation errors at reference points (4,2) in two different experimental environ-
ments.

4.2.2. Comparison with Existing Fingerprint Location Methods

In the positioning error analysis, cumulative distribution function (CDF), standard
deviation, and average error were used to analyze the performance of the positioning
method. In two indoor environments, the proposed method is compared with the RSSI-
based fingerprint positioning system and two CSI-based fingerprint positioning systems
(FIFS and CSI-MIMO). In the test process, WKNN is used as fingerprint matching algorithm
and three APs are used to generate fingerprint. We use Euclidean distance to estimate the
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similarity measure between the reference point (RP) coordinates (XRP, YRP) and the test
point (TP) coordinates (XTP, YTP). The formula is as follows:

d̂ =
√
(XRP − XTP)2 − (YRP −YTP)2. (21)

The CDFs of location distance error in the two scenarios are shown in Figures 24 and 25.
Figure 24 is the CDF figure obtained from the experiment in the corridor of IT-1 building.
It can be seen from the figure that RSSI-based approach is vulnerable to environmental
interference and is very unstable, and the error is the largest among the four positioning
methods. FIFS and CSI-MIMO use channel state information as fingerprint eigenvalues.
Due to the finer granularity of channel state information, the multi-path interference can
be suppressed to some extent and the positioning accuracy of these two methods is higher
than that of the RSSI-based approach. The proposed location method, based on FIFS
and CSI-MIMO, and according to the characteristics of multiple antennas, improves the
positioning accuracy by improving the fingerprint feature dimension. The red curve in
Figure 24 shows that the probability of positioning error within 1.5 m reaches 60%, which is
33.33% higher than that of CSI-MIMO and 51.24% higher than that of FIFS. Figure 25 is the
CDF diagram of the experiment in the lobby of IT-2 building. Compared with Figure 24,
the accuracy rate is improved, which indicates that the environment affected the accuracy
of the experiment. However, it can be seen from Figure 25 that the positioning accuracy
of the proposed method is still higher than those of the FIFS and CSI-MIMO methods.
The probability of positioning error within 1.5 m is 81.4%, which is 4.7% higher than that of
CSI-MIMO and 41.4% higher than that of FIFS. Finally, the proposed method, FIFS method,
and CSI-MIMO method are compared in two experimental environments by using the
average positioning error, standard deviation. The results are shown in Tables 3 and 4.

Figure 24. Comparing the cumulative distribution function (CDF) value of localization error of four
algorithm in IT-1 building.
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Figure 25. Comparing the CDF value of localization error of four algorithm in IT-2 building.

Table 3. Comparison of four indoor fingerprint location algorithms (corridor of IT-1 building).

Fingerprint Algorithm Average Distance Error (m) Standard Deviation (m)

RSSI-based algorithm 2.122 m 1.097 m
CSI-based algorithm (FIFS) 1.802 m 0.853 m

CSI-MIMO algorithm 1.319 m 0.605 m
Proposed algorithm 1.171 m 0.587 m

Table 4. Comparison of indoor fingerprint location algorithms (lobby of IT-2 building).

Fingerprint Algorithm Average Distance Error (m) Standard Deviation (m)

RSSI-based algorithm 2.078 m 1.007 m
CSI-based algorithm (FIFS) 1.767 m 0.781 m

CSI-MIMO algorithm 1.269 m 0.559 m
Proposed algorithm 1.094 m 0.488 m

It can be seen from the table, in terms of the average positioning error, the performance
of the proposed method is about 1.171 m in the corridor environment, which is about 12.6%
higher than CSI-MIMO and 36.9% higher than that of FIFS. The average positioning error
of the RSSI-based method is about 2.122 m, it is lower than the positioning accuracy
of the proposed method; In the lobby experimental scenario, the proposed method is
about 1.094 m, which is 15.9% and 61.5% higher than CSI-MIMO and FIFS, respectively.
The average positioning error of the RSSI-based method is about 2.078 m. Through the
series of experiments, we confirmed that the method proposed in this paper was effective
in improving the accuracy of positioning. The positioning method proposed in this paper
can effectively improve the positioning accuracy by the following reasons. The reasons for
the proposed algorithm to improve accuracy are as follows. Firstly, the fingerprints in the
fingerprint database are integrated with RSS and CSI, which are not based on CSI or RSS
alone; secondly, the fingerprint features are preprocessed effectively in the offline phase,
and the integrity of the data is preserved; thirdly, WKNN is used to reduce the positioning
error. In addition, since the proposed method performs the dimensional reduction for the
fingerprint, its computational complexity is also improved over the CSI-MIMO and FIFS.
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5. Conclusions and Future Work

In this paper, a hybrid fingerprint algorithm is proposed to improve the positioning
accuracy of RSSI-based and CSI-based fingerprint location methods. In the offline phase,
the amplitude values of RSSI and CSI are eliminated and filtered, and the phase value
of CSI is introduced by linear transformation. This paper also proposes a method to
reduce the fingerprint feature dimension of high-dimensional data CSI obtained in OFDM-
MIMO system. Finally, combined with the effective RSSI, effective CSI amplitude value,
and CSI phase value, a novel fingerprint database containing more abundant indoor
location information was established. In the online phase, the fingerprint data is matched
according to the WKNN algorithm, which effectively improves the positioning accuracy.
This paper uses MATLAB to verify the effectiveness and superiority of the algorithm in
two indoor environments. Compared with existing algorithms, the algorithm based on
RSS and CSI hybrid fingerprints can improve positioning accuracy. At the same time,
because additional hardware is not necessary for the proposed algorithm to perform
positioning, its applicability is also high. Future research directions include the evaluation
of the performance of the proposed algorithm in a three-dimensional indoor environment,
an indoor laboratory environment with more obstacles and personnel flows.
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