
Static Analysis of Programs using Semirings

Louise North

Bachelor of Science in Computer Science with Honours
The University of Bath

May 2017

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

Static Analysis of Programs using Semirings

Submitted by: Louise North

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
author unless otherwise specified below, in accordance with the University of Bath’s policy on
intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).
This copy of the dissertation has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from the
dissertation and no information derived from it may be published without the prior written
consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Bachelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or qualification of this or any other university or institution of learning. Except where
specifically acknowledged, it is the work of the author.

Signed:

Abstract

This project aims to make use of a mathematical structure, a semiring, in order to provide a
system that performs multiple data-flow analyses using the same core theory. Firstly, there
is an investigation into the current work in the domain. Current literature and existing soft-
ware tools are evaluated, with possible opportunities for development identified; including the
potential to analyse energy costs in code. Following the literature review, the requirements,
design and implementation of an adaptable, command-line tool that solves Reachability, Live
Variables and Reaching Definitions Analysis are presented.

The experimental stage of the project looks at possible analyses that can be created in or-
der to statically analyse energy costs within programs. The beginning of a theoretical approach
to analysing energy costs, using the adaptable framework provided by the core implementation
of the system, is proposed. The solutions to all analyses are described and the project is finally
concluded with a reflection on the work produced as well as identification of potential future
work within the domain.

Contents

1 Introduction 1

2 Literature Survey 3

2.1 Introduction . 3

2.2 Parsing Languages . 4

2.2.1 Parsing Tools . 6

2.3 Graphs . 6

2.3.1 Graph Definitions . 6

2.3.2 Representing a Program as a Graph . 7

2.4 Data-Flow Analysis: A Specific Methodology . 9

2.4.1 Limitations . 10

2.4.2 Approaches and Algorithms . 10

2.5 Semirings: A Useful Mathematical Structure . 14

2.5.1 Mathematical Background of Semirings 14

2.5.2 Closure over Matrices . 15

2.5.3 Closure of a Matrix for Program Analysis 16

2.5.4 Using Data-Flow Equations for Program Analysis 17

2.6 Assigning Real-Life Costs . 20

2.6.1 Background to Existing Work . 20

2.6.2 Energy Usage . 20

2.6.3 Evaluation of the Two Approaches . 22

2.7 Existing Software Tools . 22

2.8 Summary and Conclusions . 23

3 Requirements 25

ii

CONTENTS iii

3.1 Requirement Sources . 25

3.1.1 Identifying Stakeholders . 25

3.1.2 Introspection . 26

3.1.3 Domain Expertise . 26

3.2 Requirements Analysis . 27

3.2.1 Classification . 27

3.2.2 Prioritisation . 27

3.3 Requirements Specification . 27

3.3.1 Functional Requirements . 27

3.3.2 Non-Functional Requirements . 29

4 Design 30

4.1 Programming Language Choice . 30

4.2 High-Level Overview . 31

4.3 System Architecture . 31

4.3.1 Input . 33

4.3.2 System Components . 33

4.3.3 Program Data . 39

5 Implementation 44

5.1 Code Files and Structure . 44

5.2 Parser . 45

5.3 Organiser . 45

5.3.1 General Organiser . 46

5.3.2 Reachability Organiser . 48

5.3.3 Live Variables Organiser . 52

5.3.4 Reaching Definitions Organiser . 56

5.4 Semirings . 57

5.5 Runner . 58

6 Testing and Evaluation 60

6.1 Unit Level Testing . 60

6.1.1 Parser Testing . 60

CONTENTS iv

6.1.2 General Organiser Testing . 62

6.1.3 Reachability Organiser Testing . 63

6.1.4 Live Variables Organiser Testing . 63

6.1.5 Reaching Definitions Organiser Testing 66

6.1.6 Semiring Testing . 69

6.2 Program Level Testing . 70

6.2.1 Reachability . 71

6.2.2 Live Variables . 71

6.2.3 Reaching Definitions . 73

6.3 Testing Challenges . 74

6.3.1 Example Bug Identified . 75

6.4 Requirement Fulfilment . 77

6.4.1 Functional Requirements . 77

6.4.2 Non-Functional Requirements . 78

6.4.3 Summary . 79

7 Energy Experimentation 80

7.1 Basic Worst Case Energy Analysis . 80

7.1.1 Analysis Results . 82

7.1.2 Limitation . 83

7.2 Cached vs. Non-Cached Variables . 84

7.2.1 Analysis Results . 85

7.3 Combined Worst Case Energy Cost Analysis with Cached vs. Non-Cached Vari-
ables . 87

7.3.1 Analysis Results . 88

8 Conclusions 90

8.1 Project Overview . 90

8.2 System Evaluation . 91

8.2.1 Successes . 91

8.2.2 Areas for Improvement . 92

8.2.3 Future Work . 93

8.2.4 Conclusion . 93

CONTENTS v

8.3 Personal Evaluation . 93

8.3.1 Program analysis is complex . 94

8.3.2 Reusing existing code is beneficial . 94

8.3.3 Thinking time is valuable time . 94

8.3.4 It is difficult to decide when to stop . 94

8.4 Final Comments . 95

List of Figures

2.1 An example of a parse tree . 5

2.2 An example of a directed graph . 6

2.3 Pseudocode for a factorial program . 8

2.4 Control-flow graph for a factorial program . 9

4.1 Overview of System Architecture . 32

4.2 Pseudocode for a factorial program . 33

4.3 Control-flow graph for a factorial program . 34

4.4 Parse Tree for the Factorial Program . 35

4.5 Internal representation of parsed factorial program 40

4.6 Internal representation of factorial program organised for Reachability Analysis . 40

4.7 Internal representation of factorial program organised for Live Variables Analysis
- matrix M . 41

4.8 Internal representation of factorial program organised for Live Variables Analysis
- vector A . 41

4.9 Internal representation of factorial program organised for Reaching Definitions
Analysis - matrix M . 42

4.10 Internal representation of factorial program organised for Reaching Definitions
Analysis - vector A . 42

4.11 Internal representation of factorial program Reachability Analysis solution 42

4.12 Internal representation of factorial program Live Variables Analysis solution . . . 43

4.13 Internal representation of factorial program Reaching Definitions Analysis solution 43

5.1 Control-flow graph for a Nested ‘While’ Structure 49

5.2 Control-flow graph for a Nested ‘If’ Structure . 50

6.1 Parsed representation of the Factorial Program 61

vi

LIST OF FIGURES vii

6.2 Invalid program error . 62

6.3 Nested Factorial Program . 62

6.4 GEN sets for factorial program - test result . 64

6.5 KILL sets for factorial program - test result . 65

6.6 Matrix M for the factorial program . 65

6.7 Vector A for the factorial program . 66

6.8 Vector A for the factorial program . 66

6.9 GEN sets for factorial program - test result . 67

6.10 KILL sets for factorial program - test result . 68

6.11 Matrix M for the factorial program . 69

6.12 Vector A for the factorial program . 69

6.13 Adjacency matrix for the factorial program . 70

6.14 Closure of the adjacency matrix for the factorial program 70

6.15 Solution to factorial Reachability Analysis - test result 71

6.16 Solution to factorial Live Variables Analysis - test result 72

6.17 Solution to ’Principles of Programming’ Live Variables Analysis - test result . . . 72

6.18 Solution to factorial Reaching Definitions Analysis - test result 73

6.19 Solution to ’Principles of Programming’ Reaching Definitions Analysis - test result 74

6.20 Control-flow graph for the Example Bug . 76

6.21 Example bug - fail result . 77

6.22 Example bug - pass result . 77

7.1 Energy cost per node in factorial program . 83

7.2 Worst case energy cost in factorial program . 83

7.3 Worst case energy cost in factorial program . 83

7.4 Cached vs. Non-Cached per variable in factorial program 85

7.5 Cached vs. Non-Cached all in factorial program 85

7.6 Cached vs. Non-Cached per variable in cached factorial program 86

7.7 Cached vs. Non-Cached all in cached factorial program 86

7.8 Cached vs. Non-Cached per variable in combined factorial program 87

7.9 Cached vs. Non-Cached all in combined factorial program 87

7.10 Factorial program with all variables cached . 88

LIST OF FIGURES viii

7.11 Factorial program with one variable cached not used in the loop 89

List of Tables

6.1 GEN sets for the factorial program . 64

6.2 KILL sets for the factorial program . 64

6.3 GEN sets for the factorial program . 67

6.4 KILL sets for the factorial program . 68

6.5 Factorial Live Variables Analysis Solution . 71

6.6 ’Principles of Programming’ Live Variables Analysis Solution 72

6.7 Factorial Reaching Definitions Analysis Solution 73

6.8 ’Principles of Programming’ Reaching Definitions Analysis Solution 74

ix

Acknowledgements

I would first like to thank my dissertation supervisor Prof. Guy McCusker for all of the guid-
ance, expertise and confidence he provided throughout the project. It was a genuine pleasure
to be able to complete my final year project under the supervision of someone with such com-
petence and enthusiasm for work within the subject area. Prof. McCusker allowed the project
to develop based on my own interests, but was always there to steer me in the right direction
when I needed it. Thank you for all of your time and help; my final year project has been far
more enjoyable than I could have anticipated.

I would also like to thank my friends and family who have provided unconditional support
throughout the project. My course mates, in particular, were always there experiencing the
highs and lows of the rollercoaster ride with me. I’d especially like to mention my housemate
and dear friend Lucy who has provided encouragement and helped maintain sanity throughout
the year in the form of Kinder Bueno chocolate bars, coffee and hysterical laughing fits.

Finally, I’d like to thank the entire Computer Science department at the University of Bath for
such an enjoyable and academically rewarding few years. Without the knowledge and experi-
ence I’d been given in the earlier years of my time at university, this project would not have
developed into what it is.

x

Chapter 1

Introduction

Static program analysis has been around for many years, with a mature theoretical history as
well as implementations in systems such as compilers and integrated development environments
(IDEs). Static program analysis means that the analysis is performed without execution of
the code and is generally used to improve and validate the code quality by focusing on code
structure. When we statically analyse programs there are two properties with which we are
often concerned:

• Correctness: ensuring that the program does what it is supposed to do

• Optimisation: focusing on program efficiency and performance

This project focuses on the latter, looking at optimisation of programs, in particular by focusing
on data-flow within programs. So why do we care about optimising code?

By optimising code there are many enhancements that we can benefit from, including quicker
execution time and improved energy efficiency. For example, we can use an analysis called Live
Variables Analysis, an analysis we shall look at as part of this project, to identify, at each line
within some code, which variables could be read before their next write. This sort of informa-
tion is used by compilers to provide optimised performance and is not a trivial or quick analysis
to perform.

At the foundation of program analysis, there is a large amount of mathematics and theory to
understand. This project focuses on a formal method of analysis, data-flow analysis, through
the use of a mathematical structure called a semiring. In the 1970s, Lehmann (1977) studied
how semirings are useful within this domain, by holding certain properties that are extremely
beneficial as we shall explore throughout this project. The main point is that semirings can be
used to solve the data-flow equations that are used to represent the optimisation problems we
consider.

By automating these fairly complex existing analyses, we provide a tool that could be inte-
grated into a larger system for use on a larger scale. Furthermore, by using the same core
theory as the foundation to each of the analyses implemented, we provide a system that is

1

CHAPTER 1. INTRODUCTION 2

flexible enough to adapt to different problems as well as extend to new ones.

The project begins as a relatively normal software development project, aside from the fact
that it is not focused on usability but more so the theoretical background. At this stage, we
focus on existing work within the domain in order to build an adaptable, automated tool to
perform several mathematical analyses by following the traditional software lifecycle. The out-
come of this is then used as a framework for some experimental research.

In the experimental section of the project we progress from the purely structural view of control-
flow in programs and intertwine ideas from the real world, looking at how we can use the already
implemented adaptable analysis framework to provide new information. We are now interested
in more than just theoretical analyses, but consider how real-life issues, including energy costs
and cached vs. non-cached variables, can be analysed within code to provide, at least the be-
ginning of, a new theoretical approach to analysing and quantifying real-world costs of program
execution.

When looking at energy costs we are interested in the amount of physical energy that is required
to execute code. This is especially interesting nowadays since hardware is reaching its peak and
is becoming much cheaper to purchase, meaning that the focus is shifting toward optimisation
of software to improve efficiency and reduce cost. Some attempts have been made to analyse
energy within code, as is examined in the literature, however this is all relatively new and fairly
unsuccessful. By adapting the existing analyses, we look at how it may be possible to consider
some new analysis examining these real-life concerns.

As part of this experimental analysis, we take the novelty a step further by considering cached
versus non-cached variables. By introducing the concept of cached variables we can imagine
different associated energy costs leading to a more useful analysis. This idea becomes more
prominent as the development of technologies leads to smaller devices reliant on cloud comput-
ing services. A smaller amount of onboard memory means that data often needs to be accessed
from remote destinations, such as the cloud. We can now consider onboard memory relatively
free in comparison to the cost of having to retrieve data remotely.

Overall, there are several significant contributions of this project. Firstly we build a flexi-
ble control-flow analysis framework based on semirings. We then use this core framework to
implement several previously investigated analyses including Reachability, Live Variables and
Reaching Definitions Analysis, all of which are explained in detail in the literature review. Fi-
nally, we propose a novel analysis which provides new information, via a theoretical approach,
about energy costs within programs.

Throughout the core of the project, and the experimental section, the main aim of the project
remains consistent: to use semirings as a foundation to implement analyses for optimisations
within program code.

Chapter 2

Literature Survey

2.1 Introduction

Program analysis has been an area of research and evolution for many years, with a great deal
of development in the 1970s onwards. There is a mature history within this domain, with a
large number of academic papers Landi (1992), Tarjan (1981b), Allen & Cocke (1976), Kildall
(1973), Bergeretti & Carré (1985), Kam & Ullman (1976), Farrow et al. (1976), Fosdick &
Osterweil (1976), Tarjan (1981a), Dolan (2013), Lehmann (1977), Abdali & Saunders (1985),
Mohri (2002), and comprehensive text books Nielson et al. (1999), Golan (2013), outlining the
fundamental topics that will be necessary to understand for the progression of this project.
Much of the research that has been carried out focuses on different analysis methodologies with
the supporting mathematics that underlies these techniques. More recently, many static anal-
ysis tools have been implemented and released for common use in compilers; identifying bugs
in code and to aid with optimisation of code.

We shall identify and discuss the elements that are fundamental within this project, to show
understanding of the existing work within the domain and so not to reinvent the wheel. In
order to provide clarity and a strong foundation of understanding, we shall thoroughly evaluate
literature covering a range of relevant topics including:

• Defining programming languages and program structure

• Graphs and how they can be used to represent a program

• Data-flow analysis as a specific methodology

• Existing algorithms for evaluating programs

• Semirings and their applications

• Existing software tools

Furthermore, by attempting to add something novel within a domain with such a mature
history, we shall look at assigning real-life costs within the analysis. By ‘real-life’ costs we mean

3

CHAPTER 2. LITERATURE SURVEY 4

costs that are external to the code itself but that are dependent on the code and that must be
considered outside of the syntactical elements of the program. For example, we shall consider
energy usage when running a program. This is not directly part of the code but we can attempt
to associate energy consumption to blocks of code in order to evaluate total energy usage when
running certain programs. This has limited literature, with more recent investigation as seen in
Liqat et al. (2013) and Schubert et al. (2012). We will identify existing approaches and consider
the reasons why real-life costs have not been researched and implemented overly successfully so
far.

2.2 Parsing Languages

Before analysis can be performed on any program, the code needs to be parsed. In order to
parse a language we must understand how it is defined; we must understand the clear set of
rules that are used to generate the given language. In order to keep things simple when ex-
plaining the fundamentals, we often define a simple imperative language, and associate data
flow information with individual statements.

A program is made up of different elements including variables and expressions. These may
include empty statements, assignment statements, sequences of statements, conditional state-
ments and repetitive statements. It is necessary to understand these different types of state-
ments in order to be able to evaluate a program, its behaviour and the effect of the statements.

We shall look at an example of a definition for an abstract syntax describing a simple im-
perative ‘while’ language, as provided in Nielson et al. (1999). It is common to consider a
defined set of statements based on the syntactic categories:

a ∈ AExp arithmetic expressions

b ∈ BExp boolean expressions

S ∈ Stmt statements

As well as a set of values based on their categories:

x, y ∈ Var variables

n ∈ Num numerals

l ∈ Lab labels

And a set of operators based on similar categories:

opa ∈ Opa arithmetic operators

opb ∈ Opb boolean operators

opr ∈ Opr relational operators

CHAPTER 2. LITERATURE SURVEY 5

Once we have categories of the sets of expressions, values and operators, it is possible to define
the syntax of a language. For example, in this case, and as provided in Nielson et al. (1999):

a ::= x | n | a1 opa a2
b ::= true | false | not b | b1 opb b2 | a1 opr a2
S ::= [x := a]l | [skip]l | S1;S2 | if [b]l then S1 else S2 | while [b]l do S

Using these defined categories with defined behaviours, it is possible to parse a language. These
rules can be applied recursively allowing for an infinite number of possible statements within
the language. To further define this language, we would need to formally define what each item
is, for example we would need to formally define the set of arithmetic operators.

A syntax such as the one described above may be considered as a parse tree for the language,
as seen in Nielson et al. (1999). A parse tree is simply a graphical representation of a derivation
of a sequence, such as a statement in a language. We can now understand the behaviour of a
program, using the syntax to decompose the code into atomic elements that interoperate based
on these syntactical rules.

It is necessary to notice that there may be different orders in which a statement may be parsed.
In some cases this is important and in others it is not. Consider the expression 2+3*4 as an
example. If we are applying standard rules of mathematics then the 3*4 should be calculated
and then the result added to the 2. In the case of 2+2+2 it does not make a difference, however,
there would be two different parse trees representing it. For these reasons, we need to ensure
grammars are unambiguous resulting in unique parse trees for every statement.

Provided is an example of how an expression may be represented as a parse tree, using the
standard rules of mathematics. The expression we shall consider is: z = x + (2 * y) and the
corresponding parse tree is show in Figure 2.1.

=

identifier 1

z

+

identifier 2

x

*

literal

2

identifier 3

y

Figure 2.1: An example of a parse tree

Parsing can be carried out using a top-down or a bottom-up approach. Top-down parsing is
carried out by starting at the root node and expanding and can be described as finding the
leftmost derivation of an input string. Bottom-up parsing considers the leaf nodes first, and

CHAPTER 2. LITERATURE SURVEY 6

‘reduces’ a sequence to the start symbol of the grammar. The approach to parsing that is
most appropriate, top-down or bottom-up, often depends on the type of grammar that is being
parsed.

2.2.1 Parsing Tools

There are many existing parsing tools that have been implemented in order to allow program-
mers to easily parse code, often using a top-down approach. Many programming languages
have associated parsing libraries that allow programmers to generate parsers easily. Some com-
mon examples include YACC for C, JavaCC for Java and Parsec for Haskell. These tools use
some chosen parsing algorithm, require a formal definition of an input language and produce
an output, the parser, within the specified language.

2.3 Graphs

2.3.1 Graph Definitions

Since graph theory has some non-standard terminology, we shall detail some of the common
definitions. The following definitions have been composed from the work in Fosdick & Osterweil
(1976), Farrow et al. (1976) and Allen & Cocke (1976).

A graph is a finite set of nodes joined by edges and a directed graph has the extra condi-
tion that the edges between nodes are directed. Formally, we say a graph G is represented by
G(N, E) where N is the set of nodes in the graph and E is the set of pairs of nodes that are
joined by the edges in the graph.

n0

n1

n2

n3

n4

n5 n6

Figure 2.2: An example of a directed graph

Using the definitions as reviewed from the papers Fosdick & Osterweil (1976) and Farrow et al.
(1976), we can define the graph displayed in Figure 2.2.

CHAPTER 2. LITERATURE SURVEY 7

• The set N, of nodes, is {n0, n1, n2, n3, n4, n5, n6}

• The set E, of edges, is {(n0, n1), (n0, n2), (n1, n3), (n1, n5), (n2, n2), (n2, n4), (n3, n1),
(n3, n5), (n5, n4), (n5, n6)}

A node has an in-degree, the number of predecessors of a node, and an out-degree, the number
of successors of a node. For an edge (n0, n1): n0 is a predecessor of n1 and n1 is a successor of
n0. A node may be a predecessor and successor of itself, if an edge loops. An entry node to a
graph is a node with no predecessors and an exit node of a graph is a node with no successors.
In Figure 2.2, the entry node is n0 and the exit nodes are n4 and n6.

A path is a sequence of nodes with the condition that every edge is a pair in the set of nodes
and each pair is adjacent. An example of a path in the directed graph in Figure 2.2 could be
P = ((n0, n1), (n1, n3), (n3, n1), (n1, n5), (n5, n6)). We define the length of a path as the
number of edges in the sequence, otherwise defined as the number of nodes visited in the path
minus 1. For the given example of the path P in Figure 2.2, the length of the path is 5. A cycle
is when there are a set of edges in a graph that return to a node already in the path. In Figure
2.2 there are two cycles: the cycle between n1 and n3 and the cycle where n2 loops back to itself.

A graph may also be weighted which means that there is some value associated with each
edge. This value could represent a range of things. In the context of this project, a weight may
be used to assign a real-life cost of a transition between nodes.

A tree is defined T (N, E), like the general definition of a graph. A tree is a specific type
of graph where every node has an in-degree of one (a unique predecessor), except for the entry
node which has an in-degree of 0. The entry node of a tree is defined as the root, and any node
in a tree with no successors is called a leaf. In a tree, there is only ever one path to each node
in the tree from the root (entry node) and because of this we can discuss the idea of ancestors
and descendants. An ancestor of a node, n, is any node that appears in a path before the node
in question, while a descendant is a node that appears after.

Trees become particularly useful when it comes to parsing a language. A syntax can be rep-
resented as a tree as shown in the previous section. Using the parse tree in Figure 2.1 as an
example, we can define the ‘=’ as the root node and the z, x, 2 and y nodes as leaves of the
tree. The leaves are the most atomic elements within the tree structure.

2.3.2 Representing a Program as a Graph

For program analysis, it is useful to represent a program as a graph; allowing us to visualise
code as a flow of control. Work in this domain originates as far back as 1947, when work was
carried out by Goldstine and Von Neumann as identified in Fosdick & Osterweil (1976), inves-
tigating the idea of flowcharts representing the flow of control in a program. Following this, in
the 1960s, the idea of applying graph theory to programming arose and this work was carried
out by Karl; as identified in Fosdick & Osterweil (1976). More recently, the concept of using
graphs to represent programs has been developed further - with many people using this as the
basis of research and investigation into program analysis. The following discussion is based on

CHAPTER 2. LITERATURE SURVEY 8

the work in Fosdick & Osterweil (1976) and Farrow et al. (1976), describing and illustrating
how we can represent a program as a graph.

If we consider a program to have only one entry point, which may be true or an abstrac-
tion of the truth, a flow graph must have only one entry node. Of course, since there are often
many paths that a program can take, giving us a range of results, there may be more than
one exit node. Due to the nature of programs, there must always be at least one path from
the entry node to every exit node in the graph, since it is impossible to reach an exit node
without having begun at the input of the program. Using the previous definition of a graph,
we can define a control flow graph as a triple F (N, E, n0), where the extra element n0 is the
unique entry node which must present be in the set N of all nodes in the graph and which is
the successor of all other nodes in the graph.

There are different ways in which a program can be represented as a graph, however, the
most common way is to use nodes to represent statements, or a basic block, within a program,
and edges to represent the transitions from one block to another. In Tarjan (1981b), a basic
block of a program is defined as a block of ‘consecutive statements’ having a single entry and
a single exit.

To provide an example, we shall consider the factorial program example as provided in ‘Prin-
ciples of Program Analysis’ Nielson et al. (1999), with the pseudocode as shown in Figure
2.3.

y ← x
z ← 1
while y > 1 do

z ← z ∗ y
y ← y − 1

end while
y ← 0

Figure 2.3: Pseudocode for a factorial program

This program has the equivalent control-flow graph as displayed in Figure 2.4.

CHAPTER 2. LITERATURE SURVEY 9

y ← x

1

z ← 1

2

y > 1

3

z ← z ∗ y

4

y ← y − 1

5

y ← 0

6

yes

no

Figure 2.4: Control-flow graph for a factorial program

Using the control-flow graph of a program, it is easy to visualise properties of the program.
For example, we can see the start node and any end nodes, as well as cycles and conditionals.
Representing a program as a graph provides a useful and standard structure for performing
analysis over.

2.4 Data-Flow Analysis: A Specific Methodology

There are many different approaches to static program analysis and data-flow analysis is one of
the most traditional ones which has a mature history and features heavily within the domain
of compilers Nielson et al. (1999). Data-flow analysis is based on the previously discussed idea
of representing a program as a graph, namely a control flow graph, where the nodes are the
elementary blocks and the edges represent the flow of control between the blocks Nielson et al.
(1999). Nielson’s book Nielson et al. (1999) gives an overview of a variety of methods, dedicating
an entire chapter to data-flow analysis. There are a range of papers, dating from the 1970s
onwards, that provide approaches to data flow analysis too. Some of the papers discuss the
general approach to data-flow analysis, while some extend the idea and explain how semirings
can be used to perform data-flow analysis. The latter shall be discussed in the following section,
while a general idea of data-flow analysis as a technique will be outlined here.

CHAPTER 2. LITERATURE SURVEY 10

2.4.1 Limitations

There are certain limitations with control-flow graphs for the analysis of programs and we will
identify and discuss these issues before explaining approaches, as they must be taken into con-
sideration as part of these approaches. Kildall explains in Kildall (1973) that loops cause issues
when using a constant propagation method for data-flow analysis. Constant propagation is
concerned with evaluating the values of each variable in a program at each node in the graph,
by looking at each path to a certain node. It is clear that this can become infinitely long when
loops are involved and therefore Kildall (1973) defines a global analysis algorithm that can be
used to compute analysis in a finite number of steps by using approximations.

In Landi (1992), the difficulties with carrying out program analysis are explained, identify-
ing that the analysis framework used is not the problem but rather the structure of programs
themselves. Conditionals mean that even in a simple procedural program, there are several
possible paths but not all of which correspond to an execution. Since static analysis is not
recursive, we must make safe, but not always valid, assumptions such as assuming that all
paths through a program are executable. This simplifies the analysis and allows for general
application providing useful but not always precise information.

With even more popular complex languages, with more complicated structures such as re-
cursion, static analysis becomes even more difficult. Landi (1992) identifies a common issue
called alias, which occurs when multiple variables exist in the execution of a program pointing
to the same location in memory. Two types of aliasing are defined in Landi (1992):

• may alias: find the aliases that occur during some execution of the program

• must alias: find the aliases that occur on all executions of the program

Finding all of the aliases could result in a set of infinite size. In order to get around this issue,
an analysis has to make assumptions such as assuming that pointers to values are distinct when,
in fact, they are actually equal.

Perhaps the most fundamental point to acknowledge is that most analyses that we interested
in are, themselves, computationally undecidable. In order to provide useful information about
properties in which we are interested, it is necessary to accept approximations, so not to pre-
vent ourselves from being able to carry out the analysis at all. In Ramalingam (1994), it is
established that ‘alias analysis is a prerequisite for performing most of the common analyses’
and that, in itself, is enough to suggest that even the most common analyses will require some
assumptions to be made.

2.4.2 Approaches and Algorithms

The literature that has been selected focuses on data-flow analysis for optimisation of programs.
Different algorithms can be used to determine different results, based on what property we may
be interested in. Most resources, in particular Fosdick & Osterweil (1976), focus on the idea of
viewing a program as a sequence of events, which can be represented as a graph, and evaluating

CHAPTER 2. LITERATURE SURVEY 11

the effect of these events, how they affect values throughout the program and how values affect
the flow of the program. Tarjan (1981b) states that we are interested in determining for each
basic block (represented as a node in the control flow graph) facts which must be true on entry
and exit of the block, regardless of the actual path of execution.

The Equational Approach for Reaching Definitions

Reaching Definitions Analysis is concerned with determining ‘for each program point, which
assignments may have been made and not overwritten, when program execution reaches this
point along some path’ Nielson et al. (1999). In Nielson et al. (1999) an overview of the
equational approach to data-flow analysis is provided. This is achieved by ‘extracting a number
of equations from a program’. Nielson explains two classes of equations:

• equations relating the exit information of a node to entry information for the same node

• equations relating the entry information of a node to exit information of nodes from which
there is an edge to a node of interest

Using the factorial program given in Figure 2.3, and the example given in Nielson’s book Nielson
et al. (1999), we can compose the set of equations used for evaluating reaching definitions. We
get the following equations relating to exit information:

RDexit(1) = (RDentry(1) \ {y, l|l ∈ Lab}) ∪ {(y, 1)}
RDexit(2) = (RDentry(2) \ {z, l|l ∈ Lab}) ∪ {(z, 2)}
RDexit(3) = RDentry(3)

RDexit(4) = (RDentry(4) \ {z, l|l ∈ Lab}) ∪ {(z, 4)}
RDexit(5) = (RDentry(5) \ {y, l|l ∈ Lab}) ∪ {(y, 5)}
RDexit(6) = (RDentry(6) \ {y, l|l ∈ Lab}) ∪ {(y, 6)}

This set of exit equations say that on exit from a basic block in the control flow graph, the
reaching definitions are all of those that were reaching definitions on entry to the basic block
minus any that have been re-assigned plus any newly assigned values. The following equations
related to entry information:

RDentry(1) = {(x, ?), (y, ?), (z, ?)}
RDentry(2) = RDexit(1)

RDentry(3) = RDexit(2) ∪RDexit(5)

RDentry(4) = RDexit(3)

RDentry(5) = RDexit(4)

RDentry(6) = RDexit(3)

This set of entry equations says that on entry to a basic block, the reaching definitions are
those that were reaching definitions on exit from the successor node. This provides us with a
system of 12 equations; the set of equations that define some sets in terms of each other, which
can be considered as a function.

CHAPTER 2. LITERATURE SURVEY 12

The Constraint Based Approach for Reaching Definitions

Nielson et al. (1999) also outlines the constraint based approach as an alternative to the above.
This approach extracts a number of inclusions (constraints) out of the program. Nielson states
that naturally, and in a similar manner to the equational approach, the constraints are divided
into two classes: one set of constraints for expressing the effect of elementary blocks and the
other for expressing how control may flow through the program. Using the factorial program
given in Figure 2.3, and the example given in Nielson’s book Nielson et al. (1999), we get the
following constraints related to exit information:

RDexit(1) ⊇ RDentry(1) \ {(y, l)|l ∈ Lab}
RDexit(1) ⊇ {(y, 1)}
RDexit(2) ⊇ RDentry(2) \ {(z, l)|l ∈ Lab}
RDexit(2) ⊇ {(z, 2)}
RDexit(3) ⊇ RDentry(3)

RDexit(4) ⊇ RDentry(4) \ {(z, l)|l ∈ Lab}
RDexit(4) ⊇ {(z, 4)}
RDexit(5) ⊇ RDentry(5) \ {(y, l)|l ∈ Lab}
RDexit(5) ⊇ {(y, 5)}
RDexit(6) ⊇ RDentry(6) \ {(y, l)|l ∈ Lab}
RDexit(6) ⊇ {(y, 6)}

This set of exit constraints says that for an assignment in a basic block there is one constraint
that excludes the variable from the entry of the block from reaching the exit and one constraint
that includes the new assignment for the entry to following blocks. The following constraints
related to entry information:

RDentry(1) ⊇ {(x, ?), (y, ?), (z, ?)}
RDentry(2) ⊇ RDexit(1)

RDentry(3) ⊇ RDexit(2)

RDentry(3) ⊇ RDexit(5)

RDentry(5) ⊇ RDexit(4)

RDentry(6) ⊇ RDexit(3)

This set of entry constraints says that we have a constraint of the form RDentry(l) ⊇ RDexit(l
′)

if it is possible for control to pass from l’ to l. These equations can be rearranged to group all
exit constraints for one basic block into one equation. For example:

RDexit(1) ⊇ RDentry(1) \ {(y, l)|l ∈ Lab}
RDexit(1) ⊇ {(y, 1)}

can be replaced with:

RDexit(1) ⊇ RDentry(1) \ {(y, l)|l ∈ Lab} ∪ {(y, 1)}

CHAPTER 2. LITERATURE SURVEY 13

which is the same as the exit equations in the equations approach, except equality has been
replaced with inclusion. Nielson et al. (1999) identifies that this means that any solution to the
equational system is also a solution to the constraint system, but the opposite is not necessarily
true. One of the issues with the constraint-based approach is that it can require a significant
amount of work to collect all of the constraints since constraints with the same left hand side
can be generated in many places throughout a program.

Reaching Definitions Analysis

Using the equations described above, we can create general data-flow equations for Reaching
Definitions Analysis. The data-flow equations for a basic block S in a control-flow diagram are:

RDentry(S) =
⋃

p∈pred(S)

RDexit(p)

RDexit(S) = RDgen(S) ∪ (RDentry(S)−RDkill(S))

This says that the set of reaching definitions going in to basic block S are all of the reaching
definitions from the predecessors of S. It also says that the reaching definitions coming out of S
are all reaching definitions of its predecessors minus those reaching definitions whose variable
is killed by S, plus any new definitions generated within S. RDgen and RDkill are both sets
of variables. RDgen describes the set of variables that are generated, for example RDgen(S)
describes the set of variables that are generated by the basic block S. RDkill describes the set
of variables that are re-assigned.

These general equations can be applied to a program and rearranged to form a system of
linear equations. Once we have a system of linear equations then they can be solved in order
to determine the solution to the analysis. This will be described in detail in the next section.

Live Variables Analysis

Live Variables (or Liveness) Analysis calculates for each program point the variables that could
potentially be read before their next write. That is, those variables that are live at exit from
the basic block. In a similar manner to Reaching Definitions Analysis, we are able to create
general data-flow equations for a given basic block S as follows:

Lentry(S) = Lgen(S) ∪ (Lexit(S)− Lkill(S))

Lexit(S) =
⋃

s′∈succ(S)

Lentry(s′)

where Lgen(S) is the set of variables that are used in S before any assignment and Lkill(S) are
the set of variables that are assigned a value in S. If we also consider a program to terminate
with no live variables, we also have the equation:

Lexit(final) = ∅

It is possible to notice some symmetry between Reaching Definitions Analysis and Live Variables
Analysis in that the entry and exit equations are just swapped.

CHAPTER 2. LITERATURE SURVEY 14

Other Analyses

Other analyses, that are outlined or mentioned as part of the literature, include:

• Reachability Analysis which is different to, and simpler than, Reaching Definitions
Analysis. It determines whether a node can be reached from some other node in the
graph. That is, that there is a sequence of adjacent edges from one node to the other.

• Shortest-Path Analysis which calculates the length of the shortest path between two
nodes in a graph. This can be extended to determine the actual route of the shortest
path between two nodes.

• Available Expression Analysis which calculates, for each program point, which ex-
pressions that must have already been computed, not later modified, and therefore that
need not be recomputed, on all paths to that program point.

• Definite Assignment Analysis which is used to ensure that a variable has been assigned
before it is used.

• Constant Propagation which is also known as constant folding, recognises constant
expressions which can be computed once and used later.

• Faint Variables Analysis which takes Live Variables Analysis further by determining
whether assignments are useless even if they are considered live.

For each of these analyses it is possible, like Reaching Definitions and Live Variables Analysis,
to create a set of equations. The set of equations can be generalised and then rearranged to
form the general data-flow equations for solving the analyses.

2.5 Semirings: A Useful Mathematical Structure

Semirings are a useful mathematical structure that can be used to evaluate programs. A
helpful paper that brings together a variety of ideas is Dolan (2013). This paper provides an
overview of essential mathematical definitions along with examples of semiring applications.
There also exist some older papers which provide a more detailed view into the foundations
of semirings, including a paper written by Lehmann, Lehmann (1977). This paper is one of
the most foundational papers within this area as Lehmann studies how closed semirings and
the closure of matrices provide a useful approach for solving analysis problems. This paper is
referenced by many of the others due to its importance.

2.5.1 Mathematical Background of Semirings

Using the formal definition from Dolan (2013), a semiring is a mathematical structure consisting
of a set R and two binary operations called:

• addition +

CHAPTER 2. LITERATURE SURVEY 15

• multiplication ·

with the additional requirements that (R,+) is commutative and that · distributes over +.
Using the equations defined in Lehmann (1977) and Dolan (2013), we say that an algebra is a
semiring if, and only if, the following conditions hold:

a + (b + c) = (a + b) + c (addition is associative)

a + b = b + a (addition is commutative)

a + 0 = a (is a unit for addition)

a · (b · c) = (a · b) · c (multiplication is associative)

a · 1 = 1 · a (is a unit for multiplication)

a · (b + c) = a · b + a · c
(b + c) · a = b · a + c · a (multiplication distributes over addition)

Within the domain of program analysis, we are often concerned with closed semirings. For this
reason, we must introduce an additional unary operation called closure which is represented by
∗. Lehmann (1977) states that an algebra is a closed semiring if, and only if, the conditions for
a semiring hold, plus the following condition:

a∗ = 1 + a · a∗

= 1 + a∗ · a

We shall now look at a few examples of specific semirings. Perhaps the simplest example
is the Boolean semiring which is a commutative semiring, meaning that its multiplication is
commutative. It consists of a set of two elements {0, 1} and is defined as follows:

0 + 0 = 0

0 + 1 = 1 + 1 = 1 + 0 = 1

1 · 1 = 1

1 · 0 = 0 · 0 = 0 · 1 = 1

Another useful semiring, which is used within the program analysis domain, is the tropical
semiring, which is also well-known as the min-plus semiring. It consists of a set of the non-
negative integers with an extra element, identity∞. The binary operations + and · are defined
as min and addition respectively. One more example of a closed semiring is the regular lan-
guages. This satisfies all the necessary conditions when · is concatenation, + is union, and * is
the Kleene star, as identified in Dolan (2013).

2.5.2 Closure over Matrices

Lehmann (1977) carried out investigation into how it is possible to define closure on matrices
over a closed semiring. This work links further and becomes more useful in data-flow analysis.
We will look at the application in the next section, but first will look at defining closure over
matrices.

CHAPTER 2. LITERATURE SURVEY 16

We need to show than an n × n matrix forms a closed semiring, so that we can use the closure
operation to calculate useful information about a graph such as reachability Dolan (2013). We
shall define a closed semiring for matrices as follows:

Addition and multiplication of an n × n matrices are defined in the usual way Dolan (2013):

(A + B)ij = Aij + Bij

(A ·B)ij =
n∑

k=1

Aik ·Bkj

This means that we have the binary operations + and · necessary for the definition of a semir-
ing. To define a closed semiring we need to take the further step of defining closure for matrices.
Lehmann (1977) defines the closure operation inductively based on the size of the matrix, by
splitting the matrix into four sub-matrices. This idea is identified and explained in other lit-
erature such as Dolan (2013) and Abdali & Saunders (1985), following the work produced by
Lehmann who was at the foundation of this discovery. The definition of closure of an n × n
matrix is defined as follows:

If n = 1 then [a]* = [a*].

If n >1 and M =

[
A B
C D

]
then Lehmann defines, as identified in Dolan (2013), that its

closure will satisfy:

M∗ =

[
A∗ + B′∆∗C ′ B′∆∗

∆∗C ′ ∆∗

]
where B′ = A∗B, C ′ = CA∗ and ∆ = D + CA∗B

It does not matter about the size of the matrix, this rule will apply recursively when split-
ting n × n matrices. Perhaps the most useful result, as Dolan (2013) notices, is how ‘for any
closed semiring R, the n × n matrices of elements of R form a closed semiring’. This is an
extremely useful consequence since, using closure and a suitable choice of the semiring, we are
able to use the same approach for many different analysis problems.

2.5.3 Closure of a Matrix for Program Analysis

Representing a Graph as a Matrix

In Dolan (2013) it is recognised that a directed graph can be represented as a matrix. If the
graph has n nodes then its adjacency matrix M is constructed as an n × n matrix where Mij is
true if there is an edge from i to j and false otherwise. This can be further extended to represent
weighted graphs, by using numerical values representing the costs of the transition between each
node rather than Boolean values. For each position Mij , the value in that position represents
the length of the edge between i and j. An issue to consider here is what value to use if there is
no edge between nodes; Dolan (2013) suggests using a value representing ‘unreachable’, perhaps
by using ∞ as seen in the tropical semiring.

CHAPTER 2. LITERATURE SURVEY 17

Reachability

Reachability is formulated by composing a Boolean matrix that represents the control flow
graph of a program. This will result in an n × n matrix of Booleans, where 1 represents
an edge between nodes and 0 represents the absence of an edge between nodes. This forms a
closed semiring and by forming a closed semiring, we are able to use closure in order to calculate
reachability. Lehmann (1977) states that ‘the closure of a Boolean matrix is its transitive and
reflexive closure.’ He outlines how closure can be obtained by induction, or by using two different
methods: using the Warshall-Floyd-Kleene algorithm (the Gaus-Jordan method) or by using
Gaussian elimination (the Gauss method). Dolan (2013) recognises that computing closure by
induction has the same complexity as calculating transitive closure using the Floyd-Warshall
algorithm.

Path Problems

Like the Reachability Analysis formulated as the closure of a matrix, in order to analyse paths
it is as ‘simple’ as defining the correct semiring and applying it in the same way. For exam-
ple if, instead of the Boolean semiring, we use the tropical semiring then we can analyse the
shortest path in a graph. That is, if we consider a path ab within a graph, then we can use the
tropical semiring to identify the shortest path that goes through a and then b. This is similar
to Reachability Analysis in that a matrix of 0 and 1 values are used to represent the graph,
however, we now introduce a new element∞ to represent ‘unreachable’. By calculating closure,
in the same way as for Reachability Analysis, we can determine this length.

Further to the discovery of the length of the shortest path, we may be interested in identi-
fying the specific route that is the shortest. Dolan explains how we can define another semiring
that can be used to keep track of information, in order to preserve the data as a list of edges
representing the paths. We must remember that there could be multiple paths of the same
length within a graph, resulting in the potential for more than one shortest path. The decision
must then be made whether to return multiple results or to come up with some solution as
to which single path to return. Dolan suggests an approach assuming that nodes are ordered,
therefore allowing for a single choice when presented with multiple ‘shortest’ paths.

Furthermore, in Dolan (2013) the idea of identifying the longest path in a graph is approached.
This introduces one of the limitations described previously, that graphs with cycles may have
infinitely or arbitrarily long paths. Now some new values have to be introduced into the matrix
in order to allow for the consideration of no paths between nodes as well as infinitely long paths
due to cycles. Dolan outlines an example of the resulting semiring in Haskell, proving another
useful application of semirings within the domain.

2.5.4 Using Data-Flow Equations for Program Analysis

Using matrices to solve linear equations is one of the most fundamental mathematical applica-
tions and having the flexibility to define a semiring means we are provided with the powerful
tool of being able to define ‘linear’ Dolan (2013). Expanding on this, it is useful to realise that

CHAPTER 2. LITERATURE SURVEY 18

linear equations, finite state machines and regular languages can be considered equivalent; when
we acknowledge this new idea of what linear is. Dolan notices how, for every transition in a
finite state machine, we have a grammar production and that we can group these productions to
give a system of equations. We can then produce a matrix representing the transitions and per-
form closure to solve said equations, resulting in the language accepted by a given state machine.

We can re-arrange data-flow equations for an analysis in order to provide linear equations
in the correct format. By using matrices to represent these equations we get a set of linear
equations in the format

L = M · L + A

Dolan (2013) claims that the above equation has a solution given by

L = M∗ ·A

This is true because if
M∗ = 1 + M ·M∗

then

L = (1 + M ·M∗)A
= A + MM∗A

= MM∗A + A

= ML + A

which means that it is possible to calculate the solution to the linear equations using the
previously described closure of a matrix. This is similar to the previous examples whereby
programs are analysed by solving the closure of a matrix, however, in this case there is an extra
application in that the solution is found by M∗ ·A.

Analysis of Live Variables

Dolan (2013) gives an example of how a semiring can be applied to Live Variables Analysis.
When we consider live variables we are computing ‘which assignments in an imperative program
assign values which will never be read and which ones may be used again’. This can be used
to identify redundant code. To perform the Live Variables Analysis we consider the program’s
control flow graph, as described in the previous section. Dolan sets out a set of expressions,
which are those that are described in the data-flow analysis section, if INs = Lentry(s), OUTs

= Lexit(s), GENs = Lgen(s) and KILLs = Lkill(s):

INs = GENs ∪ (OUTs −KILLs)

OUTs =
⋃

s′∈succ[S]

INs′

which can also be written as:

INs = (OUTs ∩KILLs) ∪GENs

OUTs =
⋃

s′∈succ[S]

INs′

CHAPTER 2. LITERATURE SURVEY 19

Dolan illustrates how a semiring can be defined consisting of a set of variables in the program,
where 0 is the empty set and 1 is the set of all variables, x∗ = 1 for all sets x, + is union and ·
is intersection. The system of equations can be rearranged and represented as follows:

OUTs =
∑

s′∈succ[S]

INs′

=
∑

s′∈succ[S]

KILLs′ ·OUTs′ + GENs′

= (
∑

s′∈succ[S]

KILLs′ ·OUTs′) + (
∑

s′∈succ[S]

GENs′)

This is a system of affine equations of the form L = M · L + A where A is a vector containing
the constant terms and matrix M contains the coefficients. This can be solved using closure
where L = M∗ ·A, as described previously.

Analysis of Reaching Definitions

Similarly for Reaching Definitions Analysis the data-flow equations as outlined previously, if
INs = RDentry(s), OUTs = RDexit(s), GENs = RDgen(s) and KILLs = RDkill(s):

INs =
⋃

s′∈pred[S]

OUTs′

OUTs = GENs ∪ (INs −KILLs)

can also be written as:

INs =
⋃

s′∈pred[S]

OUTs′

OUTs = (INs ∩KILLs) ∪GENs

Similar to liveness analysis, a semiring can be defined, represented by:

INs =
∑

s′∈pred[S]

OUTs′

=
∑

s′∈pred[S]

KILLs′ · INs′ + GENs′

= (
∑

s′∈pred[S]

KILLs′ · INs′) + (
∑

s′∈pred[S]

GENs′)

which, again, can be solved as a system using L = M∗ ·A.

Other Analyses

We have discussed how matrices can be used for solving systems of linear equations and that by
defining our semiring we have the flexibility to decide on what ‘linear’ means for our application

CHAPTER 2. LITERATURE SURVEY 20

Dolan (2013). Since many problems can be represented as a system of linear equations we are
provided with a powerful tool for performing many different analyses using semirings over
matrices. By applying the same approach as explained already, for example Live Variables
Analysis, we can solve the linear equations for any of the analyses described in the data-flow
analysis section. The main idea to take away is that by using the appropriate semiring we can
analyse different properties and, as long the equations are of the correct form, it is as simple as
just swapping the semiring that is used.

2.6 Assigning Real-Life Costs

2.6.1 Background to Existing Work

It is clear that static analysis techniques have been around for a long time but we must also
consider the efforts of cost analysis as part of this. In Liqat et al. (2013) the authors identify
existing work within the domain. It is identified that early attempts at cost analysis date back
to 1975 when Wegbreit (1975) uses a metric to analyse Lisp programs to produce data such as
execution time based on input. Since then it is identified that cost analysis has been developed
further, with the first approach applied to energy consumption being in 2008 Navas et al. (2008)
in which ‘upper-bounds on the energy consumption of Java programs are statically inferred as
functions of input data sizes’. The approach more recently taken in Liqat et al. (2013), outlined
in Section 6.2.1, claims to analyse at a lower level.

2.6.2 Energy Usage

The research into calculating energy usage from static code is minimal. Some attempts have
been made, such as Liqat et al. (2013). It appears that limited effort has been made due to
the difficulty of the problem, however, it is interesting to look at the approaches taken in these
attempts and to evaluate how successful their attempts have been.

The reason why people are concerned with energy consumption that there is an environmental
and financial cost of computing Liqat et al. (2013). We are reaching limits now where hardware
is not developing as fast as it used to resulting in a slowdown in advancements of power-efficient
hardware. People are concerned with keeping costs down and making the most of the battery
lives of portable machines Schubert et al. (2012). A way in which we could focus our efforts
is now within software, by considering how software can efficiently make use of such hardware
to save energy. To do this, we need to evaluate optimisation techniques that can be used to
determine software energy consumption and consider optimal ways of executing them Liqat
et al. (2013). This may also help software engineers understand program design better, leading
to better design decisions and therefore more energy efficient code.

Static Analysis of Energy Consumption within Embedded Programs

In Liqat et al. (2013) the authors make an attempt at analysing energy consumption within
embedded programs, using static analysis and low level energy modelling. The authors develop

CHAPTER 2. LITERATURE SURVEY 21

a tool which makes use of existing tools and that is able to estimate the energy consumption
of an embedded program considering the hardware platform on which it is executed. This is
an important factor to take account of when thinking about statically analysing energy - it is
dependent on the hardware on which the code is run. In Liqat et al. (2013), the analysis relies
on this information, giving the result of executing software on the specified hardware, limiting
its uses to those provided. This system is also limited by a specific programming language.
They use XC which is a C-based imperative language designed for real-time embedded parallel
architectures. The system developed in Liqat et al. (2013) is outlined in the following way:

• The source code is input (an XC program)

• An XC compiler tool (XCC) produces the corresponding ISA (Instruction Set Architec-
ture) program

• A translator generates the associated Horn clauses

• Resource analysis is performed using ISA-level energy models

• Energy consumption is output

The energy models are provided during the static analysis phase by making assertions in order
to ‘infer information for higher-level entities such as functions’. Creating these energy models
at a low-level allows for more precise information corresponding to the effect of the execution
of the program on the hardware Liqat et al. (2013). The authors claim to have ‘bridged the
gap between researchers closer to the hardware area, needed to produce the low level energy
models, and others from software, with expertise in static analysis techniques and tools’.

These steps are explained in more depth within the paper and the results of an experimen-
tal assessment of the approach are given. The results show a ‘reasonably accurate’ estimation
by the system, however this approach is limited to the XS1 architecture.

Dynamic Energy Profiling for Code Optimisation

In Schubert et al. (2012), the aim is to identify ‘energy-hungry’ sections of code providing pro-
grammers with useful information when attempting to optimise their code and make energy-
aware software development decisions. This is not a static analysis tool, however, it includes
relevant considerations when approaching energy cost analysis of programs. The authors de-
velop a profiler that links energy consumption and code location taking into consideration:

• synchronous energy: consumed in the CPU

• asynchronous energy: consumed by peripheral devices

It is identified that ‘few tools and methods exist’ which is the motivation behind the produc-
tion of this tool which they name ‘eprof’. This tool allows a user to analyse how different
approaches to some solution may affect energy consumption based on how the hardware will be
used by given code. The authors explain how classic performance profiling takes a CPU-centric

CHAPTER 2. LITERATURE SURVEY 22

approach but their approach aims to take into consideration peripheral devices too, stating that
these are ‘significant energy consumers’.

One factor to consider is idle energy. This is energy that is used by the machine being on;
independent of any other processes running. On top of this is dynamic energy which is the
power necessary for running activities on the system - the type of energy that can have a great
effect on overall software energy. The authors of Schubert et al. (2012) observe that energy
profiling requires two types of information:

• the amount of energy spent

• the code location causing the energy consumption

which results in their energy profiler, eprof, implementing two components: ‘the observation of
energy-relevant activity and the estimation of the amount of energy consumed by this activity’.
The tool runs, observing activity, recording stack traces to capture code location and estimating
energy consumed.

2.6.3 Evaluation of the Two Approaches

Approach 1, the static analysis of energy consumption within embedded programs, looks at
low-level static cost analysis based on a fixed architecture whereas approach 2, dynamic energy
profiling for code optimisation, runs code to identify code locations of high-energy activities.
Approach 1 shows us what has been achieved so far in the static analysis domain and high-
lights the main limitations. So far, it seems, static analysis is limited largely by specifying the
hardware on which code is run. While approach 2 is not a static analysis, it provides us with
important considerations and illustrates how dynamic analysis may contribute to more useful
information when examining code for optimisation, such as identifying the ‘energy hungry’ code
locations.

By using these two methods, we can consider ideas for new approaches that could be more
useful. Energy analysis could be extended beyond these existing methods by looking at being
able to statically assign energy costs to certain code locations, resulting in the ability to identify
‘energy hungry’ code locations without having to use a dynamic tool. Alternatively, since static
analysis is limited by the specification of a fixed hardware, we could imagine a tool which can
provide information about energy usage independent of the hardware on which a program is
run.

2.7 Existing Software Tools

There are many existing static program analysis tools. Most compilers will contain some sort of
analysis, certainly for code correctness, and generally for code optimisation too. The main aim
is to minimise the amount of time a program takes to execute but the compiler may also look
at optimising the use of resources, in particular shared ones. In addition, IDEs (Integrated De-
velopment Environments) and IDE PlugIns may contain some sort of static program analysis.

CHAPTER 2. LITERATURE SURVEY 23

Some examples of functionality that IDE tools may provide include highlighting unreachable
code as well as highlighting logically incorrect code.

Outside of the use in IDEs and compilers, there are a large selection of tools entirely dedi-
cated to the static analysis of programs. Some of these are designed for a specific programming
language and some are more general. Since there are so many, we shall look at just one as
an example called ‘Maplas’ Atkins Maplas (n.d.) which claims to be ‘one of the world’s most
rigorous and advanced software analysis and verification toolsets’.

The Maplas software works by taking a user program, translating the source code, analysing it
using a MAPLAS Analyser and then providing the user with a report of the analysis. Source
code is translated into an intermediate language which programs written in any sequential lan-
guage can be translated into, meaning that the software is not limited to a specific language.
The analysers then only need to be concerned with the intermediate language, providing a nice
abstraction from the actual source code, but allowing for results specific to the source code. The
user is provided with the choice of different types of analysis including: control flow analysis,
data use analysis, information flow analysis, semantic analysis and compliance analysis. Using
the control flow analysis, which is most relevant to this project, a user can identify concerns
such as unreachable code, infinite loops and multiple entry and exit points.

As sophisticated and comprehensive as current existing tools are, they still lack the addition of
real-life costs. They tend to either be general tools which means the amount of optimisation
they can provide is limited, or tools, such as compilers, that are effective because of how specific
they are. In particular, existing tools lack accurate and useful information and optimisations
regarding real-life issues such as energy usage.

2.8 Summary and Conclusions

With a broad and mature selection of literature relevant to this project, there is a large amount
of background to understand and investigate. We have been able to identify how languages
are parsed and have mentioned some of the currently available tools that can aid with parser
generation, which will be relevant to the understanding and implementation of this project.
Foundational definitions of graphs and graph theory have been introduced, providing a sound
understanding of the underlying structure for analyses to be carried out. Furthermore, the
important idea of representing a program as a graph, namely a control-flow graph, has been
described. This allows us to perform the necessary transition from parsed program code to an
appropriate structure for analysis.

Primarily through the work provided in Nielson’s book Nielson et al. (1999) we have been able
to identify and illustrate the main concepts with relation to data-flow analysis. In particular,
we have understood data-flow equations and how they are formed. Through the foundational
work of Lehmann (1977), and the more recent work of Dolan (2013) bringing several ideas to-
gether, we have been able to define semirings, closure and apply them specifically to data-flow
analysis. We have seen how data-flow equations can be used to form a closed semiring for
solutions to data analysis problems. These concepts are consolidated with a large selection of

CHAPTER 2. LITERATURE SURVEY 24

papers investigating and approaching these ideas with slightly different angles and focuses.

Studying some more recent literature, we have been able to investigate existing approaches
to performing cost analysis, in particular with an application for energy consumption. These
approaches Liqat et al. (2013), Schubert et al. (2012) give us an idea of considerations when
tackling this task as well as current successes and limitations of the approaches.

Overall, the literature review provides a solid understanding and identification of ideas that
are fundamental to this project. This project will be able to build on the existing knowledge
and mathematics behind data-flow analysis using semirings and will aim to implement a system
which can assign and analyse real-life energy costs as part of this, by taking into consideration
the existing work within the domain.

Chapter 3

Requirements

This chapter addresses the requirements analysis and then provides a formal requirement specifi-
cation describing the proposed system, an automated static analysis tool to be used for multiple
program analyses. The requirement specification covers both functional and non-functional re-
quirements and provides enough information to progress to system design and development.
Being thorough, the requirements specification also provides a strong framework for testing the
functionality of the developed system later in the software lifecycle.

The aim now is to analyse the needs of the project itself, to scope what the system should
and should not do and to produce a comprehensive and measurable set of requirements for the
intended system. After development, we shall refer back to this specification in order to assess
the success of the project.

3.1 Requirement Sources

Since the nature of this project is not heavily focused on end-users, but primarily mathematical
concepts and analysis, the requirements gathering stage is unconventional and somewhat differ-
ent to traditional methods. Common approaches to requirement elicitation involve discussions
and interviews with stakeholders and perhaps even initial user studies. This project is not
focused on usability but aims to provide an adaptable tool able to perform complex mathemat-
ical analyses and provide a correct output to the user. For this reason, the main concern is
providing a system that is mathematically sophisticated and correct, and therefore we rely on
slightly different sources for the requirement elicitation stage.

3.1.1 Identifying Stakeholders

Traditionally, a requirements specification is used as part of the agreement between the devel-
opers and the stakeholders in order to decide upon and scope what the system is expected to
do. These are any individuals or groups who will be directly or indirectly concerned with or
affected by the system. We begin by identifying stakeholders for this project.

25

CHAPTER 3. REQUIREMENTS 26

We can consider stakeholders anyone who is concerned with or could benefit from perform-
ing analyses on program code, particularly focusing on optimisation. This could include a wide
range of users, for example writers of compilers or individuals concerned with optimising their
code, and does not focus on one specific group. If we consider the idea of assigning real-life costs
within the analysis, for example quantifying energy costs within code, then this may expand
the group even further. Hypothetically, there are a wide range of end-users for this system, but
we focus mainly on the technical ability and correctness of the program.

Other stakeholders may include mathematicians and computer scientists contributing to and
investigating similar work within the static analysis domain. Since there is a mature theoretical
and mathematical background within the domain as well as progress and new approaches being
taken, current researchers may be interested in used methodologies, especially when we get to
investigating and experimenting with new ideas around analysing real-life energy costs within
code.

3.1.2 Introspection

Due to the fact that there is not a specific group of end users and along with the fact that this
project is largely experimental, we can consider introspection as an appropriate requirements
elicitation technique. In Zowghi & Coulin (2005), it is described that introspection involves the
requirements analyst, the author in this case, to elicit requirements based on what he or she
believes stakeholders want and need from the system. This technique is often used as a starting
point for requirement elicitation and is often consolidated with other traditional techniques.

For this project, the author considers functionality that the system is anticipated to provide
within the domain, in order to be adaptable and flexible as well as mathematically correct. The
introspection is aided by and backed up by research within the domain.

3.1.3 Domain Expertise

The main source for requirements elicitation is the background within the domain, by exam-
ining existing literature and systems. We must heavily rely on the theoretical foundation and
existing knowledge so to produce a system that works correctly, relying on existing develop-
ments. This was done in the literature survey, which is an extremely valuable source during
the requirements elicitation stage of this project. It is necessary to extract and understand the
underlying mathematics to allow for correct proofs using the methodologies intended and to be
able to consider how this can be implemented as an automated tool.

Within the literature review we highlighted the mathematical requirements for the proposed
analyses to be carried out. This includes the data-flow equations that are necessary to be solved
as well as the background of semirings which can be used to solve them. Since this is theoretical,
the system will rely on this to perform correctly. We must also consider the idea of creating a
system that effectively implements this theory so that it is suitably adaptable and automated.
These types of analyses are often carried out by compilers, so we could consider the system to
be integrated for use within parts of other systems.

CHAPTER 3. REQUIREMENTS 27

3.2 Requirements Analysis

Before formulating the final set of requirements, it is important to analyse the requirements. It
is not sensible to have a list of requirements for the system with no classification or prioritisation
of them so here we consider how to organise and appropriately define the requirements in a
structured and prioritised manner.

3.2.1 Classification

Requirements may be classified into a range of types. For this project we consider two large
classes of requirements: functional and non-functional. The functional requirements describe
what the system should accomplish technically while non-functional requirements describe how
the system should perform. We shall define high-level requirements first by considering the
order of flow within the system from input to output, using a similar structure to the literature
review, and then provide more detailed requirements and sub-requirements of the higher level
ones.

3.2.2 Prioritisation

Requirements should be prioritised in order to determine what is most important to the success
of the project and what is less important. There are certain requirements that must be met
for the system to operate as well as requirements that are less crucial. By prioritising require-
ments we can also reduce risk during development stages, by focusing first on the fundamental
requirements of the system and then by considering the nice-to-have requirements. We shall
first define the different priority groups, using the MoScoW Technique MoSCoW : Requirements
Prioritization Technique (n.d.):

• Must : mandatory

• Should : of high priority

• Could : preferred but not necessary

• Would : can be postponed and suggested for future execution

Using these priorities, we then consider what priority each requirement should be assigned. The
approach used to do this was by considering certain criteria such as stakeholder value, risk, im-
plementation cost and effort, likelihood of success and the relationship with other requirements.
By weighing up these different factors, it is possible to determine the pros and cons of fulfilling
it and therefore allowing for reasonable analysis for prioritisation.

3.3 Requirements Specification

3.3.1 Functional Requirements

1. Must provide a way to input source code to the program.

CHAPTER 3. REQUIREMENTS 28

(a) Must accept source code for the imperative ‘while’ language (included nested struc-
tures) described by the abstract syntax:

Expressions:

a ∈ AExp arithmetic expressions

b ∈ BExp boolean expressions

S ∈ Stmt statements

Values:

x, y ∈ Var variables

n ∈ Num numerals

Operators:

opa ∈ Opa {*, /, +, -}
opb ∈ Opb {and, or}
opr ∈ Opr {<, >, ≥, ≤, ==}

Syntax:

a ::= x | n | a1 opa a2
b ::= true | false | b1 opb b2 | a1 opr a2
S ::= x := a | skip | S1;S2 | if b then S1 else S2 | while b do S end

(b) Should accept source code via a .txt file rather than command line input.

2. Must provide a way for the user to specify the analysis to be performed.

3. Must be able to produce correct analysis solutions for a valid input program.

(a) Must be able to compute Reachability Analysis, by computing closure of an adjacency
matrix.

(b) Should be able to compute Live Variables Analysis, by generating and solving the
following equations:

OUTs =
∑

s′∈succ[S]

INs′

=
∑

s′∈succ[S]

KILLs′ ·OUTs′ + GENs′

= (
∑

s′∈succ[S]

KILLs′ ·OUTs′) + (
∑

s′∈succ[S]

GENs′)

CHAPTER 3. REQUIREMENTS 29

(c) Should be able to compute Reaching Definitions Analysis, by generating and solving
the following equations:

INs =
∑

s′∈pred[S]

OUTs′

=
∑

s′∈pred[S]

KILLs′ · INs′ + GENs′

= (
∑

s′∈pred[S]

KILLs′ · INs′) + (
∑

s′∈pred[S]

GENs′)

(d) Could be able to compute some analysis considering real-life costs.

4. Should be adaptable for different analyses to be performed.

(a) Each analysis should use the same core theory in order to execute.

5. Must output the result in the form of a matrix clearly representing the analysis solution.

(a) Must output the result of the analysis to the command line.

(b) Could output the result of the analysis to a .txt file

3.3.2 Non-Functional Requirements

1. Must run on a standard Windows machine.

2. Must run via command line.

3. Must output correct analyses (this means the same results that would be computed if the
analysis was solved manually).

4. Must handle small programs, that is programs with up to 20 nodes.

5. Should be able to handle programs of reasonable size, that is programs with up to 100
nodes.

6. Should compute the solution to small programs within a reasonable amount of time. By
reasonable, we consider within 1 second.

7. Should be intuitive to use - a new user with no experience of the system but with a
provided user guide should be able to perform analyses.

8. Should be implemented in a programming language suitable for the project described.

9. Should be adaptable for different analyses.

10. Could be adaptable for possible integrations with other systems.

Chapter 4

Design

Following the requirements of the system, we can consider how the actual system can be designed
so to fulfil these requirements as effectively as possible. We will consider a high-level overview
of the system design and then detail some of the design decisions within each of the different
modules of the system. We often consider separate modules for a system so to separate sections
which could in theory be replaced by a new implementation of this module and which can
function independently of the other functionality in the system.

4.1 Programming Language Choice

The choice of programming language should reflect the problem at hand. While there is a
large selection of programming languages that could be chosen to implement a solution, it is
important to consider certain features of programming languages that are suitable for a specific
problem.

The programming language that has been chosen for this project is Haskell Haskell (n.d.).
While the author does not have much experience in functional programming, in particular
Haskell, it provides beneficial features that suit the style of this project. By choosing a pro-
gramming style that is relatively new to the author, it provides the opportunity to learn and
understand more than simply just a solution to the problem. It also provides a new way of
thinking about programming as well as experience with the functional style.

A large benefit of choosing Haskell when considering the parser module of the system is Par-
sec Parsec (n.d.). Parsec is a parser combinator library which can be used to parse a defined
grammar and produce a representation of the parse tree for the provided code. This makes
generating the parser a lot simpler which is especially useful since parsing the language is not
the main focus of this project, just an important stage within the implementation of it.

Haskell is an appropriate choice for the system for several other reasons. An important reason for
choosing Haskell is that it is a high-level language and provides good support for manipulation
of nested data structures. When we consider the nature of the problem at hand, and the data

30

CHAPTER 4. DESIGN 31

structures necessary to represent program data, this is a valuable feature. Furthermore, it does
not take a lot of code to implement solutions that might take a lot more code in other languages.

For many reasons, including the main reasons outlined above, Haskell seems like an appro-
priate choice for this project. The most difficult consideration is the learning curve necessary
for the author to benefit from the main features of the functional style; however, the suitability
of the language outweighs the possible overhead, at least during the design stage of the project.

4.2 High-Level Overview

By using the requirements of the system it is possible to imagine a flow through the system and
begin to identify the different modules that are necessary within the system. The basic flow
through the program is as follows:

• Input source code and analysis choice into the program

• Parse the source code

• Organise the parsed code into the appropriate representation

• Perform analysis on the organised representation

• Output the result of the analysis

The flow through the program is very linear, with one module passing its computed output as
input to the next until the output is displayed to the user. The only interaction that a user
has with the system is inputting the program code and choice of analysis and then viewing the
displayed result.

4.3 System Architecture

We shall now consider a more detailed description of the system as a whole, considering the
different analyses that will be computed. Figure 4.1 illustrates an overview of the system,
including: input, system components, program data and output, and the flow of control and
data between them.

CHAPTER 4. DESIGN 32

Figure 4.1: Overview of System Architecture

CHAPTER 4. DESIGN 33

4.3.1 Input

There is only one input interaction that the user needs to provide the system. This is one
simple command, via keyboard input, containing two pieces of information:

• the analysis to be performed

• the file, containing source code, that the analysis should be performed upon

The information will then be used appropriately with the name of the file for analysis being
passed to the parser and the analysis to be performed being used to apply the appropriate
organisation of the data.

4.3.2 System Components

There are three main system components within the system. These are the main modules of
the system that perform a high-level task as identified in the high-level overview above. We
shall now describe them in more detail.

Throughout this section, explicit examples will be provided so to clarify understanding of the
design. For each example, we shall consider a factorial program with the code and control flow
diagram as shown in Figure 4.2 and Figure 4.3 respectively.

y ← x
z ← 1
while y > 1 do

z ← z ∗ y
y ← y − 1

end while
y ← 0

Figure 4.2: Pseudocode for a factorial program

Parser

The parser needs to be designed so to correctly parse the defined imperative ‘while’ language.
It should accept a .txt file containing the source code to be analysed, and provide some appro-
priate representation of the parse tree for the code provided, such that the rest of the system
can understand and appropriately organise the input. The parser must define the syntax of the
language as defined in Requirement 1.

As the chosen language for the project is Haskell, the parser will be generated by using the
Parsec parser combinator library The Parsec Package (n.d.). Parsec can be used to parse ex-
pressions and statements in a given language such as the simple imperative ‘while’ language
defined in Requirement 1. This is done by defining data types, each type of expression and

CHAPTER 4. DESIGN 34

y ← x

1

z ← 1

2

y > 1

3

z ← z ∗ y

4

y ← y − 1

5

y ← 0

6

yes

no

Figure 4.3: Control-flow graph for a factorial program

operators. We then create the language definition including reserved names and reserved oper-
ators that are part of the grammar and this is used to create the lexer which does the lexing of
the code. We then write the code to actually parse sequences of statements, the program. The
Haskell Wiki provides an explained example of creating a parser using the Parsec library Pars-
ing a simple imperative language (n.d.). By understanding how the Parsec library works and
by defining the grammar of the language being parsed, it is simple to create the necessary parser.

Using our factorial program, we expect the parser to produce some internal representation
of the parse tree illustrated in Figure 4.4. The description of how this will be internally repre-
sented is described in the section 4.3.3 ’Program Data’.

Organiser

The organiser is, perhaps, the most complex module to consider. Since there are several anal-
yses that the system will be able to perform, it is important to consider how the program
information should be organised. There are three main analyses to consider: Reachability, Live
Variables and Reaching Definitions Analysis, with the aim to extend a new analysis considering
real-life costs. For this reason, it is important to design a system that takes advantage of simi-
larities between the analyses. The main thing that each of the analyses relies on is the control
flow diagram representing the program and the adjacency matrix derived from this. We shall
now consider each analysis, the information that needs to be organised for it and an outline of
an algorithm for doing so.

CHAPTER 4. DESIGN 35

Figure 4.4: Parse Tree for the Factorial Program

The Adjacency Matrix
All analyses rely on the control-flow graph as they are all based on data-flow in the program.
The adjacency matrix is another way of representing the flow of control in the program and for
this reason all analyses rely on the adjacency matrix. The program should be able to take the
parsed representation of the code and create the adjacency matrix. It is necessary to consider
the number of nodes in the control flow graph as this will be the dimension of the n×n matrix,
as well as identifying any successors of each node.

If we consider the factorial program that we are using as an example, the resulting adjacency
matrix is as follows: 

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0


In this adjacency matrix a 0 in position Mij represents no flow of control between node i and
node j, whereas a 1 in position Mij represents a flow of control between node i and node j.
For example, the 1 in row 1 column 2 means that there is flow of control from node 1 to node
2, which describes the arrow from node 1 to node 2 in the control-flow graph.

In order to produce the adjacency matrix, for each node in the control flow graph we need
to be able to determine any successor nodes. This gets complicated when considering ‘while’
and ‘if’ statements as they involve jumps, rather than a linear flow to the next node. For
example, in a ‘while’ loop, if the Boolean test passes the flow continues to the next node but
if it fails it jumps to the first statement following the ‘while’ loop. Similarly, at the end of a

CHAPTER 4. DESIGN 36

‘while’ loop it is necessary to jump back to the Boolean test. In order to do this, the system
needs to be able to calculate the ’size’ of jumps using a representation of the parsed program -
see section Chapter 5 for the actual implementation of this.

Reachability
The solution to Reachability Analysis is found by performing closure on the adjacency matrix
of the control flow graph. Once we have computed the adjacency matrix for the program, this
is a simple computation of the closure using the appropriate semiring definition - the Boolean
semiring.

Live Variables
Live Variables Analysis is more complicated than Reachability Analysis as it involves the solving
of the data-flow equations. These equations were studied in the literature review but are
repeated here:

OUTs =
∑

s′∈succ[S]

INs′

=
∑

s′∈succ[S]

KILLs′ ·OUTs′ + GENs′

= (
∑

s′∈succ[S]

KILLs′ ·OUTs′) + (
∑

s′∈succ[S]

GENs′)

Since these equations are of the form L = M · L + A, we can find the solution to the analysis
by L = M∗ · A where * represents the closure of the matrix. For this reason, we do not need
just the matrix M , but also the vector A.

First we need to consider the KILL and GEN sets for each node in the control flow graph. The
KILL set for a node is the set of variables assigned and the GEN set is the set of variables that
are used in the node before any assignment. Once these sets have been calculated, we can form
the matrix M . The matrix M is formed in a similar manner to the adjacency matrix in Reacha-
bility Analysis. However, wherever there is a 0 (i.e. no successor) in the adjacency matrix, this
is represented by the empty set (i.e. no variables in the program) and wherever there is a 1 (i.e.
a successor) in the adjacency matrix, this is represented by the KILL set of the successor node.

Similarly, we create the vector A. Vector A is formed by considering successors to each node
and by using the GEN set, or the union of sets if multiple successors, for each successor node.

Considering the factorial program, we result in L = ML + A as follows:

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

 =



∅ KILL2 ∅ ∅ ∅ ∅
∅ ∅ KILL3 ∅ ∅ ∅
∅ ∅ ∅ KILL4 ∅ KILL6

∅ ∅ ∅ ∅ KILL5 ∅
∅ ∅ KILL3 ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

 ·


OUT1

OUT2

OUT3

OUT4

OUT5

OUT6



CHAPTER 4. DESIGN 37

+



GEN2

GEN3

GEN4 ∪GEN6

GEN5

GEN3

∅


Which rearranges into the form L = M∗ ·A as follows:

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

 =



∅ KILL2 ∅ ∅ ∅ ∅
∅ ∅ KILL3 ∅ ∅ ∅
∅ ∅ ∅ KILL4 ∅ KILL6

∅ ∅ ∅ ∅ KILL5 ∅
∅ ∅ KILL3 ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅



∗

·



GEN2

GEN3

GEN4 ∪GEN6

GEN5

GEN3

∅


which is what is actually computed for the solution.

In order to organise the matrix M and vector A for Live Variables Analysis, we use the adja-
cency matrix considered in Reachability Analysis, but adapt it as necessary in order to produce
the matrix and vector containing the necessary information.

Reaching Definitions
Reaching Definitions Analysis is similar to Live Variables Analysis as it involves the solving of
similar data-flow equations:

INs =
∑

s′∈pred[S]

OUTs′

=
∑

s′∈pred[S]

KILLs′ · INs′ + GENs′

= (
∑

s′∈pred[S]

KILLs′ · INs′) + (
∑

s′∈pred[S]

GENs′)

Again we need to consider the KILL and GEN sets for each node in the control flow graph.
This time it is not simply a set of variables, but a set of variable and node number pairs, rep-
resenting a variable definition at a certain point in the program. The GEN set represents the
sets of variables that are generated in the node and the KILL set describes the set of variables
re-assigned.

We create matrix M and vector A in a similar manner to Live Variables Analysis, however,
we are now considering predecessors rather than successors. This can be achieved simply by
considering the transpose of the adjacency matrix.

Considering the factorial program, we result in L = M∗ ·A as follows:

CHAPTER 4. DESIGN 38



IN1

IN2

IN3

IN4

IN5

IN6

 =



∅ ∅ ∅ ∅ ∅ ∅
KILL1 ∅ ∅ ∅ ∅ ∅
∅ KILL2 ∅ ∅ KILL5 ∅
∅ ∅ KILL3 ∅ ∅ ∅
∅ ∅ ∅ KILL4 ∅ ∅
∅ ∅ KILL3 ∅ ∅ ∅

 ·


INIT
GEN1

GEN2 ∪GEN5

GEN3

GEN4

GEN3


Where INIT is the set of all definitions at the start of the program, i.e. before any variables
have been defined.

Organiser Summary

It is possible to see how each of these analyses relies heavily on the adjacency matrix of the
control flow graph, and how Live Variables and Reaching Definitions Analysis are symmetric
to one another, allowing for the design of each algorithm to be an extension of the previous.
This means there is one central part of the design that is central to all analyses; the creation
of the adjacency matrix.

Semirings

The semiring module requires complex mathematical understanding and appropriate design of
semirings. Once the appropriate semiring is defined, the implementation is trivial. For the
different analyses, we need to define different closed semirings.

Firstly, we need to design the semiring class of which each semiring definition will be an in-
stance. To do this, we consider the necessary features of a semiring as well as their types. A
closed semiring of type a consists of:

• the zero element of type a

• the one element of type a

• the binary operation plus of type a → a → a

• the binary operation multiplication of type a → a → a

• closure of type a → a

For all analyses, we need to consider the closure of a matrix, along with the matrix operations.
For this reason, we must design a semiring instance for an n × n matrix. This is covered in
‘Fun with Semirings’ Dolan (2013) so we can re-use this in the design of this system. Matrix
closure, for an n× n matrix, has been evaluated in the literature review and the implemented
algorithm should follow this.

Reachability
For Reachability Analysis, the matrix is populated with Boolean values; the value ‘true’ if there

CHAPTER 4. DESIGN 39

is a successor to the node and ‘false’ if there is not. For this reason, we need to consider an
instance of the semiring class - the Boolean semiring, which is defined as follows:

• zero: false

• one: true

• plus: disjunction

• multiplication: conjunction

• closure: true

Live Variables
For Live Variables Analysis, the matrix M and vector A are populated with sets (using the
Haskell Data.Set package) of variables. For this reason, we need to consider an instance of the
semiring class - the sets of variables semiring, which is defined as follows:

• zero: the empty set

• one: set of all variables in the program

• plus: union

• multiplication: intersection

• closure: one

Reaching Definitions
Reaching Definitions Analysis is similar to Live Variables Analysis but, instead of the matrix
M and vector A being populated with sets (using the Haskell Data.Set package) of variables,
they are populated with sets of pairs containing variables and node labels. For this reason, we
need to consider an instance of the semiring class - the sets of pairs semiring, which is defined
as follows:

• zero: the empty set

• one: set of all possible pairs of variables and labels in the program

• plus: union

• multiplication: intersection

• closure: one

4.3.3 Program Data

Program data is information that the program itself has generated and which is now internally
represented within the system. This is important since the system cannot simply interpret and
organise source code without some understanding of it.

CHAPTER 4. DESIGN 40

Parsed Code

The parsed code is the internal representation of the parse tree for the given input code. Using
this information we are able to consider the control flow diagram for the program and therefore
interpret the program as necessary for analyses. A program is either a statement or a sequence
of statements in the language. Using Parsec, we can easily generate said structure. On the
Haskell Wiki there is an example of parsing an imperative ‘while’ language Parsing a simple
imperative language (n.d.), very similar to the on described in Requirement 1 (a).

If we use this example as the base for our design and consider the factorial program, we get the
internal representation of the parsed code as shown in Figure 4.5.

Seq [Assign ‘‘y’’ (Var ‘‘x’’), Assign ‘‘z’’ (Num 1), While (RBinary

Greater (Var ‘‘y’’) (Num 1)) (Seq [Assign ‘‘z’’ (ABinary Multiply (Var

‘‘z’’) (Var ‘‘y’’)), Assign ‘‘y’’ (ABinary Subtract (Var ‘‘y’’) (Num

1))]), Assign ‘‘y’’ (Num 0)]

Figure 4.5: Internal representation of parsed factorial program

Organised Program Data

This is the representation of the program necessary for the analysis being performed. For this
reason, there are three main representations, one for each analysis being considered, as follows:
Reachability, Live Variables and Reaching Definitions Analysis.

Reachability
For Reachability Analysis the organised code will be an n× n matrix of Boolean values, where
n is the number of nodes in the control flow graph of the program. This matrix will be the
adjacency matrix where the value is True if there is a successor to the node and False if there
is not a successor to the node. The representation of the matrix will be a list of lists, i.e. [[Bool]].

For the factorial program, this will result in the representation of the adjacency matrix as
shown in Figure 4.6.

[[False, True, False, False, False, False], [False, False, True, False,

False, False], [False, False, False, True, False, True], [False, False,

False, False, True, False], [False, False, True, False, False, False],

[False, False, False, False, False, False]]

Figure 4.6: Internal representation of factorial program organised for Reachability Analysis

CHAPTER 4. DESIGN 41

Live Variables
For Live Variables Analysis the organised code will be the matrix M and the vector A. Matrix
M is an n× n matrix of sets where a value is the empty set if there is no successor to the node
and is the complement of the KILL set if there is a successor.

For the factorial program, this will result in the representation of the adjacency matrix popu-
lated with the appropriate sets as shown in Figure 4.7.

[[[],[‘‘x’’,‘‘y’’],[],[],[],[]], [[],[],[‘‘x’’,‘‘y’’,‘‘z’’],[],[],[]],

[[],[],[],[‘‘x’’,‘‘y’’],[],[‘‘x’’,‘‘z’’]], [[],[],[],[],[‘‘x’’,‘‘z’’],[]],

[[],[],[‘‘x’’,‘‘y’’,‘‘z’’],[],[],[]], [[],[],[],[],[],[]]]

Figure 4.7: Internal representation of factorial program organised for Live Variables Anal-
ysis - matrix M

Vector A will be a vector, a 1× n matrix, of sets where a value is the empty set if there is no
successor to the node and is the union of GEN sets of all successors if there is one or more
successors to the node.

For the factorial program, this will result in the representation of the vector populated with
the appropriate sets as shown in Figure 4.8.

[[[]], [[‘‘y’’]], [[‘‘y’’,‘‘z’’]], [[‘‘y’’]], [[‘‘y’’]], [[]]]

Figure 4.8: Internal representation of factorial program organised for Live Variables Anal-
ysis - vector A

Reaching Definitions
Like Live Variables Analysis, the organised code will be the matrix M and the vector A. Matrix
M is an n × n matrix of sets where a value is the empty set if there is no predecessor to the
node and is the complement of the KILL set if there is a predecessor.

For the factorial program, this will result in the representation of the adjacency matrix popu-
lated with the appropriate sets as shown in Figure 4.9.

Vector A will be a vector, a 1 × n matrix, of sets where a value is the empty set if there
is no predecessor to the node and is the union of GEN sets of all predecessor if there is one or
more predecessor to the node.

For the factorial program, this will result in the representation of the vector populated with
the appropriate sets as shown in Figure 4.10.

CHAPTER 4. DESIGN 42

[[[],[],[],[],[],[]], [[(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],[],[],[],[],[]],

[[],[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)],[],

[],[(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],[]],

[[],[],[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),

(‘‘z’’,2),(‘‘z’’,4)],[],[],[]],

[[],[],[],[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)],[],[]],

[[],[],[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),

(‘‘z’’,2),(‘‘z’’,4)],[],[],[]]]

Figure 4.9: Internal representation of factorial program organised for Reaching Definitions
Analysis - matrix M

[[[(‘‘y’’,0),(‘‘z’’,0)]], [[(‘‘y’’,1)]], [[(‘‘y’’,5),(‘‘z’’,2)]], [[]],

[[(‘‘z’’,4)]], [[]]]

Figure 4.10: Internal representation of factorial program organised for Reaching Definitions
Analysis - vector A

Analysis Solution
The solutions to the analyses will be matrices with a form dependent on the analysis being
performed.

Reachability
For Reachability Analysis, the output will be a n×n matrix, where n is the number of nodes in
the control flow graph, representing the reachability in the program. For the factorial example,
the analysis solution will be as shown in Figure 4.11.

[[True,True,True,True,True,True], [False,True,True,True,True,True],

[False,False,True,True,True,True], [False,False,True,True,True,True],

[False,False,True,True,True,True], [False,False,False,False,False,True]]

Figure 4.11: Internal representation of factorial program Reachability Analysis solution

Live Variables
For Live Variables Analysis, the output will be a vector where each value represents the vari-
ables that are live on exit from the node in the position. For the factorial example, the analysis
solution will be as shown in Figure 4.12.

CHAPTER 4. DESIGN 43

[[[‘‘y’’]], [[‘‘y’’,‘‘z’’]], [[‘‘y’’,‘‘z’’]], [[‘‘y’’,‘‘z’’]],

[[‘‘y’’,‘‘z’’]], [[]]]

Figure 4.12: Internal representation of factorial program Live Variables Analysis solution

Reaching Definitions
For Reaching Definitions Analysis, the output will be a vector where each value represents the
definitions that reach entry to the node in the position. For the factorial example, the analysis
solution will be as shown in Figure 4.13.

[[[(‘‘y’’,0),(‘‘z’’,0)]], [[(‘‘y’’,1),(‘‘z’’,0)]],

[[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]],

[[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]],

[[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,4)]],

[[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]]]

Figure 4.13: Internal representation of factorial program Reaching Definitions Analysis
solution

Output

The output of the program is the analysis solution. This will be displayed to the user via
the GHCi terminal. This is a raw and possibly inelegant way of displaying the result and is
discussed in the final chapter as part of future work.

Chapter 5

Implementation

Now that the design of the system has been considered, we can progress to the implementation
stage of the process. This is where the requirements and design are realised and an actual
system developed. The entire anticipated system has been implemented as per the design,
with some experimental implementation around the idea of real-life cost analysis. Since the
implementation followed the design, the structure of this section will similarly reflect that.

5.1 Code Files and Structure

When implementing the system there were several files that have been created reflecting the
design. This means that relevant code is sectioned into files making the system more manage-
able and maintainable. The files created are as described below:

Runner.hs : This is where the input/output of the system takes place. It contains the
high-level functions that are input by the user in order to perform analyses and output the
result.

ParseLanguage.hs : This contains the definition of the imperative ‘while’ language and
parser code for producing the internal representation of the parse tree for a given program.

GeneralOrganiser.hs : This contains code that organises the parsed code, that is general
to all three analyses.

ReachabilityOrganiser.hs : This contains the code that organises the parsed code into the
adjacency matrix for Reachability Analysis. This relies on GeneralOrganiser.hs.

LiveVariablesOrganiser.hs : This contains the code that organises the parsed code into
the matrix M and vector A for Live Variables Analysis.

ReachingDefsOrganiser.hs : This contains the code that organises the parsed code into
the matrix M and vector A for Reaching Definitions Analysis.

44

CHAPTER 5. IMPLEMENTATION 45

Semirings.hs : This contains the code that defines the semirings necessary for the imple-
mented analyses.

5.2 Parser

The core implementation of the parser is taken from Parsing a simple imperative language (n.d.)
where an almost identical parser to the one necessary for the defined language is provided. This
resource presents a parser for the ‘while’ language that is introduced in Nielson et al. (1999)
so links nicely with the literature already examined. Since the parser is not the main focus of
this project, but is an extremely important step of the solution, it was decided that this would
be the best approach for implementation. By re-using existing code it meant time could be
saved on this stage of implementation and used more wisely within other stages. In particular,
this time was valuable when experimenting with the idea of analysing real-life costs within a
program.

Of course, due to slight subtleties between the languages, and the possible need to extend
the language definition, time had to be spent understanding the parser and how the Parsec
library works. First we consider the arithmetic and Boolean expressions, defining the data for
each, and ensuring that each type of expression is accounted for in the correct format. Some
expressions rely on arithmetic, Boolean or relational operators so we ensure these are all present
too. Once we have all types of operators and expressions defined, we can implement a new data
structure for statements according to the grammar of the language.

With the data structures defined, the actual parser code needed to be implemented. This
began with the language definition which included defining reserved names and reserved op-
eration names used in the syntax of the language. These are names that cannot be used by
identifiers. Using the definition, Parsec creates the lexer.

The parser then needed to perform the main parsing of the code. Since a program in the
language is either a statement or a sequence of statements, we consider a function that parses
at least one statement, or a list of statements separated by a semicolon. We define parsers
for each different type of statement in the language using parsers created as part of the lexer.
Similarly, we define a parser for each type of expression using operator tables in order to define
each operator and how it is used (i.e. whether it is an infix or prefix operator).

Using the example on the Haskell website Parsing a simple imperative language (n.d.) it
was simple to understand each stage and implement it, adapting the slight subtleties where
necessary.

5.3 Organiser

The organiser section of the implementation was the most thought provoking part of implemen-
tation. It required the most thinking about the best approach to implementation and relied on

CHAPTER 5. IMPLEMENTATION 46

no existing examples of code. There are four sections to the implementation of the organiser
and we shall look at each in detail in the order of implementation due to dependencies.

5.3.1 General Organiser

The general organiser contains code that is important for all three analyses. It contains a data
structure for a ‘flattened’ nested structure; an intermediate step used to ease the creation of the
adjacency matrix from the parsed representation of the code. This is implemented as follows:

data NestedLis t a = Statement a | List [NestedLis t a] deriving (Show,
Eq)

Calculating the Number of Nodes

−− c a l c u l a t e the number o f nodes in the c o n t r o l f l o w graph
ca l cu la teNodes : : Stmt −> Int −> Int
ca l cu la teNodes (Seq []) n = n + 0
ca l cu la teNodes (Seq (x : xs)) n = ca l cu la teNodes x n + ca lcu lateMore xs n
ca l cu la teNodes (Assign) n = n + 1
ca l cu la teNodes (While a) n = 1 + ca l cu la teNodes a n
ca l cu la teNodes (I f a b) n = 1 + ca l cu la teNodes a n + ca l cu la teNodes

b n
ca l cu la teNodes Skip n = n + 1

ca lcu lateMore : : [Stmt] −> Int −> Int
ca lcu lateMore xs n = foldr (\ x −> (+) (ca l cu la teNodes x n)) n xs

The function calculateNodes is used to calculate the number of nodes in the control-flow graph
of the program. This is done by taking the parsed representation of the program and iterating
over it in such a way that it counts the number of nodes, using pattern matching to identify dif-
ferent types of statements. For a sequence of statements the implementation calls calculateNodes

for the first statement in the sequence and then calculateMore on the rest. The calculateMore

function takes a list of statements and calls calculateNodes on each item in the list.

For ‘assign’ and ‘skip’ statements the value is simply n plus 1, where n is the current count of
nodes. For ‘while’ statements the value is n plus 1 (the Boolean test) plus the number of nodes
inside the ‘while’ block. For this reason, we call calculateNodes on the sequence of statements
following the Boolean test. Similarly, for an ‘if’ statement the value is n plus 1 (the Boolean
test) plus the number of nodes inside the true branch of the ‘if’ block plus the number inside
the false branch of the ‘if block’.

CHAPTER 5. IMPLEMENTATION 47

Creating the Control-Flow Graph

c a l c u l a t e C f g : : Stmt −> NestedLis t String −> NestedLis t String
c a l c u l a t e C f g (Seq []) = List []
c a l c u l a t e C f g (Seq (x : xs)) (List n) = List (c a l c u l a t e C f g x (List n) :

ca lcu lateMoreCfg xs (List n))
c a l c u l a t e C f g (Seq (x : xs)) (Item n) = List (c a l c u l a t e C f g x (Item n) :

ca lcu lateMoreCfg xs (Item n))
c a l c u l a t e C f g (Assign) = Item ” Assign ”
c a l c u l a t e C f g (While a) (List n) = List (Item ”While” : [c a l c u l a t e C f g

a (List n)])
c a l c u l a t e C f g (While a) (Item n) = List (Item ”While” : [c a l c u l a t e C f g

a (Item n)])
c a l c u l a t e C f g (I f a b) (List n) = List ([Item ” I f ”] ++ [c a l c u l a t e C f g

a (List n)] ++ [c a l c u l a t e C f g b (List n)])
c a l c u l a t e C f g (I f a b) (Item n) = List ([Item ” I f ”] ++ [c a l c u l a t e C f g

a (Item n)] ++ [c a l c u l a t e C f g b (Item n)])
c a l c u l a t e C f g Skip = Item ” Skip ”

ca lcu lateMoreCfg : : [Stmt] −> NestedLis t String −> [NestedLis t String]
ca lcu lateMoreCfg xs (List n) = foldr (\ x −> (++) [c a l c u l a t e C f g x

(List n)]) [] xs
ca lcu lateMoreCfg xs (Item n) = foldr (\ x −> (++) [c a l c u l a t e C f g x

(Item n)]) [] xs

This is used to aid with the creation of the adjacency matrix by first creating an intermediate,
flattened, nested structure representing the parsed code. This structure makes implementation
of the adjacency matrix simpler due to the way that the nested structure is composed. The
function calculateCfg is used to do this. It takes the parsed representation of the program, like
calculateNodes and iterates over it in such a way that results in a NestedList - the nested structure.

Each node in the control-flow graph is represented by a String, either: “Assign”, “While”,
“If” or “Skip”. Within a while block, after the Boolean test, all statements are within a nested
list. Similarly in an if block, after the Boolean test, all statements in the true branch are within
a nested list and all statements in the false branch are within a second nested list. This results
in the nested list structure that makes creating the adjacency matrix much simpler, by just
considering lengths of lists and nested lists.

Counting the Number of Nodes in part of a Control-Flow Graph

countCfg : : NestedLi s t a −> Int
countCfg (Item) = 1
countCfg (List xs) = sum $ map countCfg xs

The function countCfg is used to calculate the number of nodes in a section of the control-flow
graph. It takes a NestedList, which could be the entire control-flow graph or just a part of it,
and calculates the number of nodes. The function needs to iterate over the NestedList structure
and reach the deepest nested list or lists in order to calculate the total number. This is done
by mapping over the structure and adding 1 every time a Statement is identified.

CHAPTER 5. IMPLEMENTATION 48

5.3.2 Reachability Organiser

Within the Reachability organiser, the adjacency matrix is created. This is a matrix of Boolean
values, represented by [[Bool]]. The function createMatrix takes the nested list structure of the
control-flow graph, created by the function calculateCfg in the general organiser, the number of
nodes in the control-flow graph and keeps count of the current node while iterating to create
the matrix. The number of the current node is necessary for calculating when to jump, for
example at the end of the ‘while’ block.

The function createMatrix iterates over the nested structure, representing the control-flow graph,
identifying different statements. There are several options, the main ones being the different
types of statements in the language:

• Assign statement: get this row of the matrix using the number of nodes in the control
flow graph and the number of the current node, then call createMatrix on the rest of the
structure

• While statement: create a nested list containing the matrix row for the Boolean test node
using the number of nodes in the control flow graph, the current node number and the
length of the rest of the ‘while’ block, then call nestedWhile on the rest of the ‘while’ block
and then createMatrix on the rest of the structure

• If statement: create a nested list containing the matrix row for the Boolean test node
using the number of nodes in the control flow graph, the current node number and the
length of the rest of the ‘if’ true branch, then call nestedIf on the rest of the ‘if’ block and
createMatrix on the rest of the structure

• Skip statement: get this row of the matrix using the number of nodes in the control
flow graph and the number of the current node, then call createMatrix on the rest of the
structure

Different functions are needed for ‘while’ and ‘if’ statements as they require extra information.
The function nestedWhile has two extra arguments to keep track of the node numbers of the
Boolean test for the ‘while’ statement as well as the last node in the ‘while’ block. This means
it is possible to determine when to jump back to the Boolean test when the end of the ‘while’
block is reached, as well as where to jump to if the Boolean test fails. Similarly for the nestedIf

function which has the two extra arguments end and jump. The end is used to determine the
end of the true branch and the jump is to keep track of the node number of the last node in the
false branch, i.e. where to jump to at the end of the true branch. These two functions iterate
like the createMatrix function but include the extra information to handle the different cases
appropriately.

There are several different functions to get matrix rows depending on different cases. These
functions are described below. We shall use two main example control-flow graphs of programs,
see Figure 5.1 and Figure 5.2, to illustrate where each different case is necessary.

CHAPTER 5. IMPLEMENTATION 49

y ← x

1

z ← 1

2

y > 1

3

z ← z ∗ y

4

y ← y − 1

5

y > 1

6

z ← z ∗ y

7

y ← y − 1

8

y ← 0

9

Figure 5.1: Control-flow graph for a Nested ‘While’ Structure

CHAPTER 5. IMPLEMENTATION 50

x ← 2

1

y ← 4

2

x ← 1

3

y > x

4

z ← y

5

y > x

6

z ← y

7

z ← y ∗ y

8

z ← y ∗ y

9

x ← 2

10

Figure 5.2: Control-flow graph for a Nested ‘If’ Structure

CHAPTER 5. IMPLEMENTATION 51

getMatrixRow

The simplest and most commonly used function is getMatrixRow which takes the number of
nodes in the control-flow graph as well as the current node number. If the node number is
the final node in the graph then the row is simply a list of False values since there is never a
successor to the final node. Otherwise, the matrix row is a list of False values but with True in
the position of the current node number + 1, identifying that there is a flow of control between
the current node and the next node. For example, in Figure 5.1 this case would be used for
nodes 1, 2 and 9.

getWhileMatrixRow

The function getWhileMatrixRow is the function used to get the matrix row for the Boolean test
node in an un-nested ‘while’ statement. The function takes as arguments: the number of nodes
in the control flow graph, the current node number and the number of the node following the
entire ‘while’ block, a value to keep count of the position in the row as it is composed and the
list representing matrix row so far. The function keeps count of the position in the row as it
composes it, entering False as the value for all positions other than the number of the current
node + 1, identifying a flow of control between the current node and the following node, and
the first node after the ‘while’ block, identifying a flow of control between the current node and
that one. For example, in Figure 5.1 this case would be used for node 3.

getIfMatrixRow

The function getIfMatrixRow is the function used to get the matrix row for the Boolean test
node in an ‘if’ statement. This function takes as arguments: the number of nodes in the control
flow graph, the current node number, the number of the node at the end of the true branch of
the ‘if’ statement, a value to keep count of the position in the row as it is composed and the
list representing matrix row so far. The function keeps count of the position in the row as it
composes it, entering False as the value for all positions other than the number of the current
node + 1, identifying a flow of control between the current node and the first node in the true
branch, and the node at the end of the true branch + 1, identifying a flow of control between
the current node and the first node in the false branch. For example, in Figure 5.2 this case
would be used for nodes 4 and 6.

getNestedMatrixRow

The function getNestedMatrixRow is similar to the getMatrixRow function, except it is used inside
the nestedWhile function. This function requires extra arguments so that it can calculate the
correct matrix row considering the extra necessity for a jump back to the Boolean test at the
end of a ‘while’ block. The function takes as arguments: the number of nodes in the control
flow diagram, the current node number, the node number for the Boolean test of the ‘while’
statement, the node number for the final node in the ‘while’ block, the current position for the
composition of the matrix row and a list representing the matrix row so far. If the current
node is not the final node in the ‘while’ block, the function calls getMatrixRow and composes
the matrix row as it does when it is not a statement within a nested ‘while’. Otherwise, the
function composes the matrix row by putting False in all positions except the position repre-
senting flow of control between the current node and the Boolean test for the ‘while’ statement.
For example, in Figure 5.1 this case would be used for nodes 4, 5, 7 and 8.

CHAPTER 5. IMPLEMENTATION 52

getIfThenMatrixRow

The function getIfThenMatrixRow is similar to the getMatrixRow and getNestedMatrixRow func-
tions, but works slightly differently due to the structure of an ‘if/else’ statement. It is used
to get the matrix row for assign and ‘skip’ statements within an ‘if/else’ statement. It takes
as arguments: the number of nodes in the control flow diagram, the current node number,
the node number for the node at the end of the true branch of the ‘if’ statement, the node
number for the first node after the ‘if’ statement, the current position for the composition of
the matrix row and a list representing the matrix row so far. If the current node is not last
node in the true branch of the ‘if’ statement then the function calls getMatrixRow and com-
poses the matrix row as it does when it is not a statement within a nested ‘if’. Otherwise,
the function composes the matrix row by putting False in all positions except the position
representing flow of control between the final node in the true branch and the first node af-
ter the ‘if’ statement. For example, in Figure 5.2 this case would be used for nodes 5, 7, 8 and 9.

getNestedWhileMatrixRow

The function getNestedWhileMatrixRow is similar to getWhileMatrixRow but is used for nested
‘while’ statements due to the fact that the flow of control is slightly different. The function
takes as arguments: the number of nodes in the control flow diagram, the current node number,
the node number for the start of the outer ‘while’ Boolean test, the node number for the end
node of the nested ‘while’ block, the current position for the composition of the matrix row and
a list representing the matrix row so far. It works in a similar way to getWhileMatrixRow, but it
must determine whether to put a True value representing flow of control between the current
node and the first node after the ‘while’ block, if there are statements following the nested
‘while’ but still enclosed in the outer ‘while’ loop, otherwise it puts a True value representing
flow of control between the current node and the Boolean test of the outer ‘while’ statement.
For example, in Figure 5.1 this case would be used for node 6.

5.3.3 Live Variables Organiser

Live Variables Analysis relies on the adjacency matrix, so the adjacency matrix created for
Reachability Analysis is used to aid with implementation of the necessary structures for Live
Variables. Within this section of the code, the matrix M and vector A, as described in the
equations solving Live Variables Analysis, are created. In order to do this, the KILL and GEN
sets for each node are needed.

Creating the GEN sets
The GEN sets are calculated by calling the calculateGens function which takes 2 arguments:
the parsed representation of the program as produced by the parser and a list of all the GEN
sets calculated so far. The result is a list of sets, [Set String], where the ith element in the
list represents the GEN set for the ith node in the control flow graph. This list is created
like the control-flow graph representation, created using the calculateCfg function in the general
organiser, and the function iterates over the parsed structure in the same way.

The difference to the function calculateCfg is that, instead of using a String to represent each
type of statement, a set of variables is entered into that node position. For Live Variables, the

CHAPTER 5. IMPLEMENTATION 53

GEN set is the set of variables that are used in the node before any assignment. This set is
composed slightly differently for each different type of statement, as follows:

• Assignment statement: We do not consider the variable on the left hand side of the
assignment as this is not a variable used before any assignment in the node. We need a
set of variables that are used on the right hand side of the assignment which could be
either a variable, a number or an arithmetic expression. If the right hand side is simply a
variable, the set is a singleton set containing just that variable. If the right hand side is
a single number, the set is the empty set since no variable is used. If the right hand side
is an arithmetic expression, the function getAGenSet, see Listing 5.1, is called. This takes
the arithmetic expression and composes a set of all variables used within it.

• While statement: A ‘while’ statement is a Boolean test followed by a sequence of state-
ments. For this reason, we compose the set of variables used in the Boolean test and then
continue by appending to the list the GEN sets for the nodes within the ‘while’ block,
by calling calculateGens on the rest of the ‘while’ statement. For the Boolean test we
are concerned with a Boolean expression, BExpr as defined in the parser, so the function
getRGenSet, see Listing 5.2, is called. This takes a Boolean expression and composes a set
of all variables used within it.

• If statement: An ‘if’ statement is a Boolean test followed by a sequence of statements for
the true branch and another sequence of statements for the false branch. For this reason,
we compose the set of variables used in the Boolean test and then continue by appending
to the list the GEN sets for the nodes within the true branch and then the GEN sets for
the nodes within the false branch. The GEN set for the Boolean test is composed as for
in a ‘while’ statement.

• Skip statement: A ‘skip’ statement never uses any variables, so this is always just the
empty set.

Listing 5.1: Calculate Variables used in Arithmetic Expression

getAGenSet : : AExpr −> Set String
getAGenSet (ABinary (Var x) (Var y)) = (Set . union (Set . s i n g l e t o n x)

(Set . s i n g l e t o n y))
getAGenSet (ABinary (Var x) (Num)) = (Set . s i n g l e t o n x) {}
getAGenSet (ABinary (Num) (Var y)) = (Set . s i n g l e t o n y)
getAGenSet (ABinary (Var x) y) = (Set . union (Set . s i n g l e t o n x)

(getAGenSet y))
getAGenSet (ABinary x (Var y)) = (Set . union (getAGenSet x)

(Set . s i n g l e t o n y))
getAGenSet (ABinary x y) = (Set . union (getAGenSet x) (getAGenSet y))

Listing 5.2: Calculate Variables used in Boolean Expression

getRGenSet : : BExpr −> Set String
getRGenSet (RBinary (Var x) (Var y)) = (Set . union (Set . s i n g l e t o n x)

(Set . s i n g l e t o n y))

CHAPTER 5. IMPLEMENTATION 54

getRGenSet (RBinary (Var x) (Num)) = (Set . s i n g l e t o n x)
getRGenSet (RBinary (Num) (Var y)) = (Set . s i n g l e t o n y)
getRGenSet (RBinary (Var x) y) = (Set . union (Set . s i n g l e t o n x)

(getAGenSet y))
getRGenSet (RBinary x (Var y)) = (Set . union (getAGenSet x)

(Set . s i n g l e t o n y))
getRGenSet (RBinary x y) = (Set . union (getAGenSet x) (getAGenSet y))

Once the entire structure has been iterated over, the result is a list of sets of variables (repre-
sented by strings) and the set for a given node i can be accessed by taking the ith element of
the list.

Creating the KILL sets
The KILL set for a node is the set of variables assigned a value in the node. For Live Variables
we need the KILL set, the complement of the KILL set, which means we need to know all of
the variables in the program. In order to do this, the function getAllVarsInProgram, see Listing
5.3, is called. This takes the parsed representation of the program as well as a set representing
the variables ‘found’ so far. It iterates over the structure in a similar way to calculateGens and
composes one set by taking the union (Set.union), of all of the variables in the program.

Listing 5.3: Calculate All Variables in the Program

getAllVarsInProgram : : Stmt −> Set String −> Set String
getAllVarsInProgram (Seq []) = Set . empty
getAllVarsInProgram (Seq (x : xs)) n = Set . union (getAllVarsInProgram x

n) (getMoreVarsInProgram xs n)
getAllVarsInProgram (Assign x (Var y)) = (Set . union (Set . s i n g l e t o n

x) (Set . s i n g l e t o n y))
getAllVarsInProgram (Assign x (Num)) = Set . s i n g l e t o n x
getAllVarsInProgram (Assign x y) = Set . union (Set . s i n g l e t o n x)

(getAGenSet y)
getAllVarsInProgram (While x a) n = Set . union (getRGenSet x)

(getAllVarsInProgram a n)
getAllVarsInProgram (I f x a b) n = Set . union (Set . union (getRGenSet x)

(getAllVarsInProgram a n)) (getAllVarsInProgram b n)
getAllVarsInProgram Skip = Set . empty

getMoreVarsInProgram : : [Stmt] −> Set String −> Set String
getMoreVarsInProgram xs n = foldr (\ x −> Set . union

(getAllVarsInProgram x n)) Set . empty xs

In order to calculate the KILL set, the function calculateKills is called. This is similar to
calculateGens except it takes one extra argument, the set of all variables in the program, so that
it can create the complement set. Since we are only concerned with the set of variables assigned
a value in the node, for Boolean tests and ‘skip’ statements the set will always be the entire set
of variables in the program. For an assign statement, the KILL set is the set of all variables in
the program minus the variable being assigned in that node. This is calculated by taking the

CHAPTER 5. IMPLEMENTATION 55

difference, using the function Set. difference .

Once the entire structure has been iterated over, the result is a list of sets of variables (repre-
sented by strings) and the set for a given node i can be accessed by taking the ith element of
the list.

Creating matrix M
Since matrix M is the adjacency matrix, but with False values replaced with the empty set and
True values replaced with a KILL set, we can use the adjacency matrix already created in the
Reachability organiser.

The function createLVMatrixM takes the adjacency matrix, an Int to keep count of the col-
umn (node) and the list of all KILL sets. It iterates over the adjacency matrix, a [[Bool]]

structure, replacing each value as necessary, using the integer count to access the correct KILL
set in each position. The final result is a matrix represented as a list of lists, [[Set String]].

Listing 5.4: Live Variables Analysis - Creating Matrix M

createLVMatrixM : : [[Bool]] −> Int −> [Set String] −> [[Set String]]
createLVMatrixM [] = []
createLVMatrixM (x : xs) count k i l l s = iterateMatrixRow x count k i l l s ++

createLVMatrixM xs count k i l l s

i terateMatrixRow : : [Bool] −> Int −> [Set String] −> [[Set String]]
i terateMatrixRow [] = []
i terateMatrixRow (x : xs) count k i l l s = i f x == True then

[[k i l l s ! ! count] ++ iterateMatrixRow2 xs (count+1) k i l l s]
else [[(Set . empty)] ++ iterateMatrixRow2 xs (count+1) k i l l s]

i terateMatrixRow2 : : [Bool] −> Int −> [Set String] −> [Set String]
i terateMatrixRow2 [] = []
i terateMatrixRow2 (x : xs) count k i l l s = i f x == True then

[k i l l s ! ! count] ++ iterateMatrixRow2 xs (count+1) k i l l s
else [Set . empty] ++ iterateMatrixRow2 xs (count+1) k i l l s

Creating vector A
Vector A is composed in a similar way to matrix M by again considering the adjacency matrix,
however, it is a 1 × n matrix (a vector) rather than an n × n matrix. It is also composed by
considering the GEN sets rather than the KILL sets. In order to create the vector, rather
than composing lists for each row, a single set is generated by taking the union of the necessary
values.

Listing 5.5: Live Variables Analysis - Creating Vector A

createLVVector : : [[Bool]] −> Int −> [Set String] −> [[Set String]]
createLVVector [] = []
createLVVector (x : xs) count gens = iterateVectorRow x count gens ++

createLVVector xs count gens

CHAPTER 5. IMPLEMENTATION 56

i terateVectorRow : : [Bool] −> Int −> [Set String] −> [[Set String]]
i terateVectorRow [] = []
i terateVectorRow (x : xs) count gens = i f x == True then [[Set . union

(gens ! ! count) (i terateVectorRow2 xs (count+1) gens)]]
else [[Set . union Set . empty (iterateVectorRow2 xs (count+1) gens)]]

i terateVectorRow2 : : [Bool] −> Int −> [Set String] −> Set String
i terateVectorRow2 [] = Set . empty
iterateVectorRow2 (x : xs) count gens = i f x == True then Set . union

(gens ! ! count) (i terateVectorRow2 xs (count+1) gens)
else Set . union Set . empty (iterateVectorRow2 xs (count+1) gens)

5.3.4 Reaching Definitions Organiser

Reaching Definitions Analysis is almost identical to Live Variables Analysis in terms of com-
posing the matrix M and vector A, the main difference being that the [[Bool]] passed to the
functions is the transpose of the adjacency matrix rather than the original adjacency matrix.
The only other difference is that instead of considering sets of variables, we are now considering
sets of variable and label pairs. This means that the generation of the GEN and KILL sets is
slightly different.

Calculating a different CFG representation for Reaching Definitions Analysis
For Reaching Definitions Analysis, a different control-flow graph is created as different infor-
mation is more useful for creating the GEN and KILL sets. In this analysis it is necessary to
know the variables that are assigned and re-assigned in each node. The function calculateRDCfg

is almost identical to calculateCfg in the general organiser and iterates over the parsed rep-
resentation of the program in the same way. The Reaching Definitions control-flow graph is
almost the same, except instead of having the String “Assign” for assign statements, we have
the variable that is assigned instead.

Creating the GEN sets
To calculate the GEN sets the function calculateRDGens is used. The NestedList structure is
iterated over in a similar way to the way a NestedList is iterated over when calculating the
general control-flow graph representation. A count of the node number is kept while iterating
over the structure so to be able to create pairs of variables and node labels that are necessary
for Reaching Definitions Analysis. For the GEN sets it is fairly simple, we are concerned with
the variables that are written/assigned by each node and therefore for ‘while’, ‘if’ and ‘skip’
statements this is just the empty set. For assign statements we create a set containing one
pair with the variable being assigned, the Statement element in this new representation, and the
current node number.

Once the entire structure has been iterated over, and like creating the GEN sets for Live
Variables Analysis, the result is a list of sets of pairs and the set for a given node i can be
accessed by taking the ith element of the list.

CHAPTER 5. IMPLEMENTATION 57

Creating the KILL sets
Calculating the KILL sets is done by the function calculateRDKills and is very similar to the
way the GEN sets is calculated, except this time we are concerned with the complement
of all variables that are re-assigned in the node. For this reason, we need to know all of
the pairs of variables and nodes assigned in the program. This is calculated by the function
getAllDefsInProgram, see Listing 5.6, which iterates over the GEN set and generates all possible
pairs of assigns in the program. This includes, for each variable, a pair of the form (var, 0)

where the 0 represents an unassigned variable at the beginning of the program.

Listing 5.6: Calculate All Definitions in the Program

getAl lDefsInProgram : : [Set (String , Int)] −> Set (String , Int)
getAl lDefsInProgram (x : []) = x
getAl lDefsInProgram (x : xs) = i f (x == Set . empty) then (Set . union

Set . empty (getAllDefsInProgram xs)) else (Set . union (Set . union x
(getAl lDefsInProgram xs)) (Set . s i n g l e t o n (f s t (Set . elemAt 0 x) , 0)))

In order to generate the KILL sets by the calculateRDKills, the NestedList structure is iterated
over in the same way as the calculateRDGens function. This time though the function composes
the KILL sets and uses the GEN sets to do this (to generate all the definitions in the program).
We are concerned with variables that are re-assigned by each node and therefore for ‘while’,
‘if’ and ‘skip’ statements the complement is the entire set of variables and label pairs in the
program, generated by getAllDefsInProgram. For assign statements it is the set containing all of
the definitions in the program other than the assigned variable and label pair for the current
node.

Once the entire structure has been iterated over the result is a list of sets of pairs and the
set for a given node i can be accessed by taking the ith element of the list, similar to creating
the KILL sets for Live Variables Analysis.

5.4 Semirings

Following the design of the semirings, the implementation was fairly trivial. First the semiring
class, of which the necessary semirings are instances of, was defined as follows:

class Semir ing a where
zero : : a
one : : a
sAdd : : a −> a −> a
sMult : : a −> a −> a
c l o s u r e : : a −> a

Then, for each semiring necessary, the instance was implemented. For example, for the Boolean
semiring the following instance was implemented:

CHAPTER 5. IMPLEMENTATION 58

instance Semir ing Bool where
zero = False
one = True
sAdd = (| |)
sMult = (&&)
c l o s u r e = True

The slightly more difficult instance to implement was the Matrix Semiring. This implementation
was taken from Dolan (2013) where an appropriate matrix data structure had been implemented
as well as the necessary matrix operations. Since the work had already been done, and the
understanding of it and working of the mathematics examined in the literature survey, the
decision was made to re-use this implementation. This meant that time was saved and could
be used elsewhere; in areas more interesting to the development and experimental section of
this project.

5.5 Runner

The runner file is the main file of the program. This file imports all of the others and applies
the functions in the necessary order to perform the different analyses. It is also the only file
that deals with IO. Each of the three main functions simply take one argument - the name of
the file containing the program to be analysed - and outputs the solution to the analysis.

Reachability

r e a c h a b i l i t y : : String −> IO()
r e a c h a b i l i t y f i l e = do

x <− p a r s e F i l e f i l e
l et nodes = (ca l cu la teNodes x 0)
l et c f g = (c a l c u l a t e C f g x (List []))
print (c l o s u r e (Matrix (createMatr ix c f g nodes 0)))

The reachability function is the one used to perform Reachability Analysis. It takes the name of
the program file and parses it. Once it has the parsed representation it calculates the control-
flow graph as well as the number of nodes in it. These can then be used to create the adjacency
matrix and perform closure on it.

Live Variables

l i v e V a r i a b l e s : : String −> IO()
l i v e V a r i a b l e s f i l e = do

x <− p a r s e F i l e f i l e
l et nodes = (ca l cu la teNodes x 0)
l et c f g = (c a l c u l a t e C f g x (List []))
l et gens = (c a l c u l a t e K i l l s x (getAllVarsInProgram x Set . empty)

[Set . empty])

CHAPTER 5. IMPLEMENTATION 59

l et k i l l s = (c a l c u l a t e K i l l s x (getAllVarsInProgram x Set . empty)
[Set . empty])

print (changeLast 0 (nodes−1) (sMult (c l o s u r e
(Matrix (createLVMatrixM (createMatr ix c f g nodes 0) 0 k i l l s)))
(Matrix (createLVVector (createMatr ix c f g nodes 0) 0 gens))))

The liveVariables function is the one used to perform Live Variables Analysis. For Live Vari-
ables, more information needs to be generated. The function takes the name of the program
file and parses it. Once it has the parsed representation it calculates the control-flow graph as
well as the number of nodes in it. This is the same as for Reachability Analysis. It then gener-
ates the GEN and KILL sets which are necessary for generating the matrix M and vector A.
The matrix M is generated using the KILL sets and the vector A is generated using the GEN
sets. Closure is performed on the matrix M and then the result of this is multiplied by vector A.

Finally, the final row of the matrix must always have in every position the empty set. This is
because in Live Variables Analysis it is true that on exit from the final node there are no live
variables as it is the end of the program. The function changeLast ensures that the final row of
the matrix is all empty sets.

Reaching Definitions

r e a c h i n g D e f i n i t i o n s : : String −> IO()
r e a c h i n g D e f i n i t i o n s f i l e = do

x <− p a r s e F i l e f i l e
l et nodes = (ca l cu la teNodes x 0)
l et c f g = (c a l c u l a t e C f g x (List []))
l et rdCfg = (calculateRDCfg x (List []))
l et gens = (calculateRDGens rdCfg 1 [])
l et k i l l s = (ca l cu la t eRDKi l l s rdCfg 1 [] gens)
print (sMult (c l o s u r e

(Matrix (createRDMatrixM (transpose (c reateMatr ix c f g nodes
0)) 0 k i l l s)))

(Matrix (createRDVector (transpose (c reateMatr ix c f g nodes 0))
0 0 gens)))

The reachingDefinitions function is the one used to perform Reaching Definitions Analysis.
Reaching Definitions is performed in almost exactly the same way as Live Variables Analy-
sis, except we now consider the transpose of the adjacency matrix when composing matrix M
and vector A.

Chapter 6

Testing and Evaluation

Once the system has been implemented, it is important to test it in order to validate and verify
what has been produced. In order to do this we reflect back to the requirements set out at the
beginning which will determine the success of the project. We also need to test on a lower level
for correctness. We will first look at unit level testing followed by whole program level testing.
Finally, we will re-examine the requirements and conclude the success of the project based on
the testing and results.

Note: a test suite of files (example programs) used for testing accompany this document. When
we refer to more tests than the examples provided being carried out then we are referring to this
test suite.

6.1 Unit Level Testing

Unit level testing is low-level testing which was carried out during development of each compo-
nent of the system in order to ensure correctness. In this section we examine the implementation
of low-level functions within the code, ensuring that they produce the expected output. It is
important to consider not only common cases, but also boundary and unusual cases, so to
ensure robustness and reliability of the program.

6.1.1 Parser Testing

In order to test the parser component of the system we run the parseFile function with a range
of different programs of different structures. By doing this, we ensure that the parser can handle
different program structures correctly, producing the expected output.

Valid Inputs

The simple program used for the majority of testing was the factorial program. We provide the
function parseFile with a .txt file containing the factorial program in the given concrete syntax

60

CHAPTER 6. TESTING AND EVALUATION 61

for the language.

Listing 6.1: Valid Factorial Input

y := x ;
z := 1 ;
whi l e (y>1) do

(z := z∗y ;
y := y−1)

end ;
y:=0

Given the implentation of the parser, the output for this program was expected, as shown in
Figure 6.1.

Seq [Assign ‘‘y’’ (Var ‘‘x’’),Assign ‘‘z’’ (Num 1),While (RBinary Greater

(Var ‘‘y’’) (Num 1)) (Seq [Assign ‘‘z’’ (ABinary Multiply (Var ‘‘z’’) (Var

‘‘y’’)),Assign ‘‘y’’ (ABinary Subtract (Var ‘‘y’’) (Num 1))]),Assign ‘‘y’’

(Num 0)]

Figure 6.1: Parsed representation of the Factorial Program

Following this simple example with one ‘while’ statement further valid inputs were tested. This
included a range of statements, sequences of statements and nested structures for the program
including nested ‘while’ and ‘if’ statements and combinations of the two. Similarly, it was
important to test all of the different operators (arithmetic, Boolean and relational) in order to
ensure the correct implementation of the parser.

Invalid Inputs

As well as valid inputs, invalid inputs were tested. This focused on programs with subtle syntax
errors that should not be parsed. As an example, the factorial program with a missing semicolon
between a sequence of statements was tested. The program was:

Listing 6.2: Invalid Factorial Input

y := x ;
z := 1 ;
whi l e (y>1) do

(z := z∗y
y := y−1)

end ;
y:=0

The result was as shown in Figure 6.2.

CHAPTER 6. TESTING AND EVALUATION 62

(line 5, column 9):

unexpected ‘‘y’’

expecting ‘‘*’’, ‘‘/’’, operator, ‘‘;’’ or ‘‘)’’

*** Exception: user error (parse error)

Figure 6.2: Invalid program error

This was the expected result, since the program does not follow the rules for the concrete syntax
of the ‘while’ language defined. For similar invalid inputs, the expected error messages were
provided as anticipated.

An important thing to comment on is that these errors are basic. They provide useful in-
formation about where the syntax issue is and what the problem is, however they are displayed
in a very raw way. Since the aim of this project was to implement an experimental and adaptable
system for possible integration with other systems, or for a potential graphical user interface
to be implemented over the top in the future, this sort of error message is acceptable.

6.1.2 General Organiser Testing

In the general organiser section of the system, we look at testing the correct implementation
for calculating the number of nodes in a program and composing the correct nested structure
representing the control-flow graph. Again, it is important to test programs with a range of
structures in order to ensure robustness. To calculate the expected result, the control-flow
graph of a program was created manually allowing for the number of nodes to be counted as
well as the representation of the control-flow graph as a nested structure to be calculated.

The function calculateNodes takes a Stmt as an argument so we use the parsed representa-
tion of the factorial program as produced by the parser in the first test. The control-flow graph
for this program is shown in Figure 4.3 therefore we can see that this function should result in
a count of 6 nodes. This was the correct result. In addition to this test, nested structures with
different combinations of statements were tested in order to ensure that iteration and counting
over the parsed representation is correct for all valid inputs.

The function calculateCfg computes the nested structure representing the control-flow graph.
For the factorial program we expect the nested structure to be as shown in Figure 6.3.

List [Statement ‘‘Assign’’,Statement ‘‘Assign’’,List [Statement

‘‘While’’,List [Statement ‘‘Assign’’,Statement ‘‘Assign’’]],Statement

‘‘Assign’’]

Figure 6.3: Nested Factorial Program

CHAPTER 6. TESTING AND EVALUATION 63

Since these functions will only ever be used on a Stmt (recall the data type of a parsed program)
once a program has been parsed, we can assume that valid Stmts will only ever be used as input.
For this reason, we only considered valid inputs but ensured that a wide range of the different
structures were considered.

6.1.3 Reachability Organiser Testing

Within the Reachability organiser, we are testing whether the creation of the adjacency matrix
is correct by testing the createMatrix function. This takes a NestedList String, which is the out-
put of the calculateCfg function in the general organiser, so we can use this output from previous
tests. Furthermore, since this function will only ever be used with the output of calculateCfg,
we can assume only valid inputs.

As part of this, we are ensuring that the other functions within this file are correct. In order
to test all of the functions, we need to test all cases making sure that all functions are called.
This means we need to consider, again, a wide range of sequences of statements and program
structures so to cover all possiblilities. This tests the correct iteration over the NestedList String

structure as well as the correct composition of the matrix and each matrix row.

For the factorial program, we expect the resulting matrix to be as shown in the Design chapter
in Figure 4.6. When tested, the output was the expected result. This simple test only covered
a single ‘while’ statement, so further tests were carried out as necessary to cover all cases.

6.1.4 Live Variables Organiser Testing

Within the Live Variables section of the code there were several things to test:

• the calculation of the GEN sets

• the calculation of the KILL sets

• the creation of matrix M

• the creation of vector A

For the calculation of the GEN sets by the function calculateGens we take a Stmt as created by
the function parseFile so we are concerned with the output of the parser. Since this function
will only ever be used following the parser, we can assume only valid inputs, as the parser will
identify any invalid programs. Anything that is validly parsed by the parser can be a valid
input for this function.

For the factorial example, we expect the GEN sets to be as shown in Table 6.1. Within
the program, this is represented as a [Set String] where the ith element of the list is the GEN
set for node number i. The result, as expected, of the test is as shown in Figure 6.4 and there-
fore the test passed.

CHAPTER 6. TESTING AND EVALUATION 64

Table 6.1: GEN sets for the factorial program
Node GEN
1 x
2 ∅
3 y
4 y, z
5 y
6 ∅

[fromList [‘‘x’’],fromList [],fromList [‘‘y’’],fromList

[‘‘y’’,‘‘z’’],fromList [‘‘y’’],fromList []]

Figure 6.4: GEN sets for factorial program - test result

In order to ensure that all of the different cases are tested, a variety of tests were carried out
with all different types of arithmetic and Boolean expressions.

In order to calculate the KILL sets a set of all the variables in the program is needed. We
test getAllVarsInProgram in order to ensure that this set is correct and complete. The function
takes a Stmt as the argument therefore we can assume any valid parsed program is an input.
For the factorial program the set of all variables in the program is {x, y, z} therefore the result
fromList [‘‘x’’,‘‘y’’,‘‘z’’] means the test passes. Again, we run more tests on a variety
of programs ensuring that the function computes the correct set for a wide range of structures
of programs.

The function calculateKills is similar to calculateGens but takes an extra argument; the set
of all variables in the program. Therefore we test the function calculateKills in the same way
as calculateGens. For the factorial program, we expect the KILL sets to be as shown in Table
6.2. Within the program, this is represented as a [Set String] where the ith element of the list
is the KILL set for node number i. The result, as expected, of the test is as shown in Figure
6.5 and therefore the test passed.

Table 6.2: KILL sets for the factorial program
Node KILL
1 x, z
2 x, y
3 x, y, z
4 x, y
5 x, z
6 x, z

CHAPTER 6. TESTING AND EVALUATION 65

[fromList [‘‘x’’,‘‘z’’],fromList [‘‘x’’,‘‘y’’],fromList

[‘‘x’’,‘‘y’’,‘‘z’’],fromList [‘‘x’’,‘‘y’’],fromList [‘‘x’’,‘‘z’’],fromList

[‘‘x’’,‘‘z’’]]

Figure 6.5: KILL sets for factorial program - test result

Using the generation of the GEN and KILL sets we create the matrix M and vector A. For
this reason, we must test the functions used to do this, ensuring that the creation is correct.
Since the functions rely on the creation of the adjacency matrix and the created GEN and
KILL sets that have already been tested, we are simply checking that the values in the adja-
cency matrix are replaced with the correct sets.

The function createLVMatrixM was tested to ensure that the matrix M is populated with the
correct values. For the factorial program, we expect the matrix M to be as shown below:

∅ {x, y} ∅ ∅ ∅ ∅
∅ ∅ {x, y, z} ∅ ∅ ∅
∅ ∅ ∅ {x, y} ∅ {x, z}
∅ ∅ ∅ ∅ {x, z} ∅
∅ ∅ {x, y, z} ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅


The result of the test was as shown in Figure 6.6. This is the internal representation of the
matrix shown above and therefore the test passed.

[[fromList [],fromList [‘‘x’’,‘‘y’’],fromList [],fromList [],fromList

[],fromList []], [fromList [],fromList [],fromList

[‘‘x’’,‘‘y’’,‘‘z’’],fromList [],fromList [],fromList []], [fromList

[],fromList [],fromList [],fromList [‘‘x’’,‘‘y’’],fromList [],fromList

[‘‘x’’,‘‘z’’]],[fromList [],fromList [],fromList [],fromList [],fromList

[‘‘x’’,‘‘z’’],fromList []],[fromList [],fromList [],fromList

[‘‘x’’,‘‘y’’,‘‘z’’],fromList [],fromList [],fromList []],[fromList

[],fromList [],fromList [],fromList [],fromList [],fromList []]]

Figure 6.6: Matrix M for the factorial program

Similarly, the function createLVVector was tested to ensure that the vector A is populated with
the correct values. For the factorial program, we expect the vector A to be shown as below:

{x, y}
{x, y, z}
{x, y, z}
{x, z}
{x, y, z}
∅



CHAPTER 6. TESTING AND EVALUATION 66

The result of the test was as shown in Figure 6.7. This is the internal representation of the
vector and therefore the test passed.

[[fromList [‘‘x’’,‘‘y’’]],[fromList [‘‘x’’,‘‘y’’,‘‘z’’]],[fromList

[‘‘x’’,‘‘y’’,‘‘z’’]],[fromList [‘‘x’’,‘‘z’’]],[fromList

[‘‘x’’,‘‘y’’,‘‘z’’]],[fromList []]]

Figure 6.7: Vector A for the factorial program

Of course, like all other functions, it was not just the factorial program that was tested in this
way. Many programs were considered during testing to cover a variety of cases covering all
different code paths.

6.1.5 Reaching Definitions Organiser Testing

In a similar manner to testing Live Variables Analysis, there were several things to test includ-
ing:

• the calculation of the GEN sets

• the calculation of the KILL sets

• the creation of matrix M

• the creation of vector A

For Reaching Definitions Analysis, we also needed to test the calculation of the slightly differ-
ent nested structure used. Testing of the function calculateRDCfg was extremely similar to how
calculateCfg was tested in the general organiser, since the structure should be the same but with
“Assign” statements replaced with the variable being assigned. For the factorial example, we
expect the output to be the nested structure as shown in Figure 6.8.

List [Statement ‘‘y’’,Statement ‘‘z’’,List [Statement ‘‘While’’,List

[Statement ‘‘z’’,Statement ‘‘y’’]],Statement ‘‘y’’]

Figure 6.8: Vector A for the factorial program

Since this is just a simple example, more complicated and longer programs were tested success-
fully.

Next, we are concerned with testing the function calculateRDGens which uses the result of
calculateRDCfg. Since this function will only ever be used following the function calculateRDCfg,

CHAPTER 6. TESTING AND EVALUATION 67

we can assume only valid inputs, as stages before will identify any invalid programs. For the
factorial example, we expect the GEN sets to be as shown in Table 6.3. Within the program,
this is represented as a [Set (String, Int)] where the ith element of the list is the GEN set for
node number i. The result, as expected, of the test is as shown in Figure 6.9 and therefore the
test passed.

Table 6.3: GEN sets for the factorial program
Node GEN
1 (y, 1)
2 (z, 2)
3 ∅
4 (z, 4)
5 (y, 5)
6 (y, 6)

[fromList [(‘‘y’’,1)],fromList [(‘‘z’’,2)],fromList [],fromList

[(‘‘z’’,4)],fromList [(‘‘y’’,5)],fromList [(‘‘y’’,6)]]

Figure 6.9: GEN sets for factorial program - test result

In order to ensure that all of the different cases are tested, a variety of tests were carried out
with all different types of arithmetic and Boolean expressions as part of them.

In order to calculate the KILL sets a set of all the definitions in the program is needed.
We test getAllDefsInProgram in order to ensure that this set is correct and complete. The
function takes the GEN sets as the argument. For the factorial program the set of all vari-
ables in the program is {(y, 0), (y, 1), (y, 5)(y, 6)(z, 0), (z, 2), (z, 4)} therefore the result fromList
[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)] means the
test passes. Again, we run more tests on a variety of programs ensuring that the function com-
putes the correct set for a wide range of structures of programs.

The function calculateRDKills is similar to calculateRDGens. Therefore we test the function
calculateKills in the same way as calculateGens. For the factorial program, we expect the KILL
sets to be as shown in Table 6.4. Within the program, this is represented as a [Set String]

where the ith element of the list is the KILL set for node number i. The result, as expected,
of the test is as shown in Figure 6.10 and therefore the test passed.

CHAPTER 6. TESTING AND EVALUATION 68

Table 6.4: KILL sets for the factorial program
Node KILL
1 (z, 0), (z, 2), (z, 4)
2 (y, 0), (y, 1), (y, 5), (y, 6)
3 (y, 0), (y, 1), (y, 5), (y, 6), (z, 0), (z, 2), (z, 4)
4 (y, 0), (y, 1), (y, 5), (y, 6)
5 (z, 0), (z, 2), (z, 4)
6 (z, 0), (z, 2), (z, 4)

[fromList [(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)], fromList

[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)], fromList

[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],

fromList [(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)], fromList

[(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)], fromList [(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)]]

Figure 6.10: KILL sets for factorial program - test result

Using the generation of the GEN and KILL sets we create the matrix M and vector A. For
this reason, we must test the functions used to do this, ensuring that the creation is correct.
Since the functions rely on the creation of the adjacency matrix and the created GEN and
KILL sets that have already been tested, we are simply checking that the values in the trans-
pose adjacency matrix are replaced with the correct sets.

The function createRDMatrixM was tested to ensure that the matrix M is populated with the
correct values. For the factorial program, we expect the matrix M to be as shown below:

∅ ∅ ∅ ∅ ∅ ∅
SetA ∅ ∅ ∅ ∅ ∅
∅ SetB ∅ ∅ SetA ∅
∅ ∅ SetC ∅ ∅ ∅
∅ ∅ ∅ SetB ∅ ∅
∅ ∅ SetC ∅ ∅ ∅


where SetA = {(z, 0), (z, 2), (z, 4)}, SetB = {(y, 0), (y, 1), (y, 5), (y, 6)} and SetC = {(y, 0),
(y, 1), (y, 5), (y, 6), (z, 0), (z, 2), (z, 4)}.

The result of the test was as shown in Figure 6.11. This is the internal representation of
the expected matrix and therefore the test passed.

CHAPTER 6. TESTING AND EVALUATION 69

[[fromList [],fromList [],fromList [],fromList [],fromList [],fromList

[]], [fromList [(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],fromList [],fromList

[],fromList [],fromList [],fromList []], [fromList [],fromList

[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)],fromList [],fromList [],fromList

[(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],fromList []], [fromList [],fromList

[],fromList

[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],

fromList [],fromList [],fromList []], [fromList [],fromList [],fromList

[],fromList [(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6)],fromList [],fromList

[]], [fromList [],fromList [],fromList

[(‘‘y’’,0),(‘‘y’’,1),(‘‘y’’,5),(‘‘y’’,6),(‘‘z’’,0),(‘‘z’’,2),(‘‘z’’,4)],

fromList [],fromList [],fromList []]]

Figure 6.11: Matrix M for the factorial program

Similarly, the function createLVVector was tested to ensure that the vector A is populated with
the correct values. For the factorial program, we expect the vector A to be shown as below:

{(y, 0), (z, 0)}
{(y, 1)}

{(y, 5), (z, 2)}
∅

{(z, 4)}
∅


The result of the test was as shown in Figure 6.12. This is the internal representation of the
vector and therefore the test passed.

[[fromList [(‘‘y’’,0),(‘‘z’’,0)]],[fromList [(‘‘y’’,1)]],[fromList

[(‘‘y’’,5),(‘‘z’’,2)]],[fromList []],[fromList [(‘‘z’’,4)]],[fromList []]]

Figure 6.12: Vector A for the factorial program

Of course, like all other functions, it was not just the factorial program that was tested in this
way. Many programs were considered during testing to cover a variety of cases covering all
different code paths.

6.1.6 Semiring Testing

In order to test the semiring code, closure was performed on different types of matrices for each
analysis. By doing this, we tested the Semiring (Matrix a) instance as well as the Semiring Bool

instance for Reachability, the Semiring (Set String) instance for Live Variables and the Semiring

(Set (String, Int)) instance for Reaching Definitions.

CHAPTER 6. TESTING AND EVALUATION 70

As a simple example of a test we performed closure on the adjacency matrix of the factorial
program; thereby computing the solution to reachability. This test ensures that the Boolean
semiring as well as the matrix semiring are implemented correctly and result in expected out-
put. We provide the function closure the adjacency matrix, of type Matrix, as show in Figure
6.13.

Matrix [[False,True,False,False,False,False],

[False,False,True,False,False,False], [False,False,False,True,False,True],

[False,False,False,False,True,False],

[False,False,True,False,False,False],

[False,False,False,False,False,False]]

Figure 6.13: Adjacency matrix for the factorial program

The result of performing closure is shown in Figure 6.14. It is possible to see that this test
passes. It is the matrix we expect as the correct solution as described in the Design chapter.

Matrix [[True,True,True,True,True,True], [False,True,True,True,True,True],

[False,False,True,True,True,True], [False,False,True,True,True,True],

[False,False,True,True,True,True], [False,False,False,False,False,True]]

Figure 6.14: Closure of the adjacency matrix for the factorial program

Further tests of a similar nature were performed in order to test that the other semiring instances
were implemented correctly.

6.2 Program Level Testing

At a higher level, we test the whole program. This involves providing the system with a .txt
file containing a program and ensuring that the output result is correct. In order to ensure
correctness, we can rely on examples of analyses from literature that has been examined as well
as carrying out some analyses on paper and comparing the manually calculated solution with
the system solution.

Since the unit level testing has ensured that each individual function operates as expected,
at the program level we test that composition of these functions results in the correct output.
At this level we are testing the three main functions, one for each analysis provided by the sys-
tem. These are the reachability , liveVariables and reachingDefinitions functions which each take
as an argument a .txt file containing the program code and then return the analysis solution.

CHAPTER 6. TESTING AND EVALUATION 71

6.2.1 Reachability

The reachability function composes certain functions so to compute the closure of the adjacency
matrix. For the factorial program, the expected output is the matrix:

True True True True True True
False True True True True True
False False True True True True
False False True True True True
False False True True True True
False False False False False False


The result of the test was as shown in Figure 6.15. This is the program representation of the
matrix solution and therefore the test passed.

Matrix [[True,True,True,True,True,True], [False,True,True,True,True,True],

[False,False,True,True,True,True], [False,False,True,True,True,True],

[False,False,True,True,True,True], [False,False,False,False,False,True]]

Figure 6.15: Solution to factorial Reachability Analysis - test result

6.2.2 Live Variables

The liveVariables function composes certain functions so to compute the closure of matrix M
multiplied by vector A. For the factorial program, the expected output is as shown in Table
6.5.

Table 6.5: Factorial Live Variables Analysis Solution
Node Live Variables
1 {y}
2 {y, z}
3 {y, z}
4 {y, z}
5 {y, z}
6 ∅

The result of the test was as shown in Figure 6.16. This is the program representation of the
matrix solution and therefore the test passed.

CHAPTER 6. TESTING AND EVALUATION 72

Matrix [[fromList [‘‘y’’]],[fromList [‘‘y’’,‘‘z’’]],[fromList

[‘‘y’’,‘‘z’’]],[fromList [‘‘y’’,‘‘z’’]],[fromList [‘‘y’’,‘‘z’’]],[fromList

[]]]

Figure 6.16: Solution to factorial Live Variables Analysis - test result

We can also rely on the Live Variables Analysis example provided in the literature. In ’Principles
of Programming’ Nielson et al. (1999) there is an example given by the program below.

Listing 6.3: Example Live Variables Analysis Code

x :=2;
y :=4;
x :=1;
i f (y>x) then

(z :=y)
else

(z :=y∗y) ;
x:=z

For the ’Principles of Programming’ Nielson et al. (1999) program, the expected output is as
shown in Table 6.6.

Table 6.6: ’Principles of Programming’ Live Variables Analysis Solution
Node Live Variables
1 ∅
2 {y}
3 {x, y}
4 {y}
5 {z}
6 {z}
7 ∅

The result of the test was as shown in Figure 6.17. This is the program representation of the
matrix solution and therefore the test passed.

Matrix [[fromList []],[fromList [‘‘y’’]],[fromList

[‘‘x’’,‘‘y’’]],[fromList [‘‘y’’]],[fromList [‘‘z’’]],[fromList

[‘‘z’’]],[fromList []]]

Figure 6.17: Solution to ’Principles of Programming’ Live Variables Analysis - test result

CHAPTER 6. TESTING AND EVALUATION 73

6.2.3 Reaching Definitions

The reachingDefinitions function composes certain functions so to compute the closure of matrix
M multiplied by vector A. For the factorial program, the expected output is as shown in Table
6.7.

Table 6.7: Factorial Reaching Definitions Analysis Solution
Node Reaching Definitions
1 {(y, 0), (z, 0)}
2 {(y, 1), (z, 0)}
3 {(y,1), (y, 5), (z, 2), (z, 4)}
4 {(y,1), (y, 5), (z, 2), (z, 4)}
5 {(y,1), (y, 5), (z, 4)}
6 {(y,1), (y, 5), (z, 2), (z, 4)}

The result of the test was as shown in Figure 6.18. This is the program representation of the
matrix solution and therefore the test passed.

Matrix [[fromList [(‘‘y’’,0),(‘‘z’’,0)]],[fromList

[(‘‘y’’,1),(‘‘z’’,0)]],[fromList

[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]],[fromList

[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]],[fromList

[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,4)]],[fromList

[(‘‘y’’,1),(‘‘y’’,5),(‘‘z’’,2),(‘‘z’’,4)]]]

Figure 6.18: Solution to factorial Reaching Definitions Analysis - test result

We can also rely on the Reaching Definitions Analysis example provided in the literature. In
’Principles of Programming’ Nielson et al. (1999) there is an example given by the program
below.

Listing 6.4: Example Live Variables Analysis Code

x :=5;
y :=1;
whi l e (x>1) do

(y:=x∗y ;
x:=x−1)

end

For the ’Principles of Programming’ Nielson et al. (1999) program, the expected output is as
shown in Table 6.8.

CHAPTER 6. TESTING AND EVALUATION 74

Table 6.8: ’Principles of Programming’ Reaching Definitions Analysis Solution
Node Reaching Definitions
1 {(x, 0), (y, 0)}
2 {(x, 1), (y, 0)}
3 {(x, 1), (x, 5), (y, 2), (y, 4)}
4 {(x, 1), (x, 5), (y, 2), (y, 4)}
5 {(x, 1), (x, 5), (y, 4)}

The result of the test was as shown in Figure 6.19. This is the program representation of the
matrix solution and therefore the test passed.

Matrix [[fromList [(‘‘x’’,0),(‘‘y’’,0)]],[fromList

[(‘‘x’’,1),(‘‘y’’,0)]],[fromList

[(‘‘x’’,1),(‘‘x’’,5),(‘‘y’’,2),(‘‘y’’,4)]],[fromList

[(‘‘x’’,1),(‘‘x’’,5),(‘‘y’’,2),(‘‘y’’,4)]],[fromList

[(‘‘x’’,1),(‘‘x’’,5),(‘‘y’’,4)]]]

Figure 6.19: Solution to ’Principles of Programming’ Reaching Definitions Analysis - test
result

Like all other tests, these are just a small selection examples of the tests that were carried out.
In addition to these tests we tested with more complicated program structures.

If we provide an invalid program as input, since the first function used is parseFile, we get
an error message such as the one displayed when testing the function.

6.3 Testing Challenges

Of course, not all of these tests passed first time round. The idea of the testing process is to
identify bugs in the code, to fix the bugs and to re-test resulting in a final set of tests that
all pass, as shown above. During this testing process, we encountered cases that we may not
have considered initially, logical errors as well as simple mistakes. By testing we identified these
issues so that we could ensure they were all removed for the final product.

One of the most complex parts to test was the composition of the adjacency matrix for a
program. Since the adjacency matrix is core to all of the analyses it is the most relied on part
of the implementation and there are an infinite number of programs that could be input to the
program meaning that all sorts of combinations needed to be tested. For this reason, we tested
with many combinations of nested structures in order to ensure all cases were accounted for.
Many of the adjacency matrices for programs with nested structures were not correct on the
first test. This meant the code for each individual case had to be identified and changed. Usu-
ally, this was something simple, such as adjusting a numerical value passed as an argument, and

CHAPTER 6. TESTING AND EVALUATION 75

in some cases it meant an extra function, for example a new function representing a case that
had not been considered initially. Once the fix for a certain test had been made, all previously
passed tests were re-tested in order to ensure that they still passed.

6.3.1 Example Bug Identified

We shall now look at an actual bug that was identified during the testing of the program. In
this situation, it was due to a case that had not been considered during the implementation of
the system and, since the case had not been accounted for, the implementation did not provide
the adjacency matrix as expected. The program in question has the source code below and the
corresponding control-flow graph as shown in Figure 6.20.

Listing 6.5: Example Program Causing Bug in Code

y:=x ;
z :=1;
whi l e (y>1) do

(z := z∗y ;
y:=y−1;
whi l e (y>1) do
(z := z∗y ;
y:=y−1)

end ;
z := z∗y)
end ;
y:=0

The structure of this program is an enclosing ‘while’ loop, containing some assign statements
followed by a nested ‘while’ loop followed by another assign statement. A test similar to this,
considering a structure with a ‘while’ loop containing some assign statements followed by a
nested ‘while’ loop but without extra assign statements after the nested ‘while’ loop passed.
The situation that had not been considered was a nested ‘while’ loop which was not at the end
of the enclosing ‘while’ loop. The expected result was as shown in Figure 6.22 - but the actual
result on the first run of the test was as shown in Figure 6.21. The problem is in row 6 of the
matrix, where the fail result says there is flow of control from the nested Boolean test to the
enclosing Boolean test. As can be seen in Figure 6.20 this is not where the flow of control is, it
should be to the statement following the nested ‘while’ loop.

Ultimately, the test passed following some fixes in the code. The fix that was required was,
when creating the matrix row for a ‘while’ Boolean test, to determine whether there are any
extra statements after the end of the nested ‘while’ loop. With this consideration in place, the
code produced the expected output, as shown in Figure 6.22.

CHAPTER 6. TESTING AND EVALUATION 76

y ← x

1

z ← 1

2

y > 1

3

z ← z ∗ y

4

y ← y − 1

5

y > 1

6

z ← z ∗ y

7

y ← y − 1

8

z ← z ∗ y

9

y ← 0

10

Figure 6.20: Control-flow graph for the Example Bug

CHAPTER 6. TESTING AND EVALUATION 77

[[False,True,False,False,False,False,False,False,False,False],

[False,False,True,False,False,False,False,False,False,False],

[False,False,False,True,False,False,False,False,False,True],

[False,False,False,False,True,False,False,False,False,False],

[False,False,False,False,False,True,False,False,False,False],

[False,False,True,False,False,False,True,False,False,False],

[False,False,False,False,False,False,False,True,False,False],

[False,False,False,False,False,True,False,False,False,False],

[False,False,True,False,False,False,False,False,False,False],

[False,False,False,False,False,False,False,False,False,False]]

Figure 6.21: Example bug - fail result

[[False,True,False,False,False,False,False,False,False,False],

[False,False,True,False,False,False,False,False,False,False],

[False,False,False,True,False,False,False,False,False,True],

[False,False,False,False,True,False,False,False,False,False],

[False,False,False,False,False,True,False,False,False,False],

[False,False,False,False,False,False,True,False,True,False],

[False,False,False,False,False,False,False,True,False,False],

[False,False,False,False,False,True,False,False,False,False],

[False,False,True,False,False,False,False,False,False,False],

[False,False,False,False,False,False,False,False,False,False]]

Figure 6.22: Example bug - pass result

6.4 Requirement Fulfilment

With testing and bug fixing complete, we shall now examine each requirement as set out at the
start of the project in order to evaluate success of the system. Using the tests carried out we can
verify the system. We mainly focus on program level testing, since requirements specify what
a system should do and not how it should be done. At the program level we tested the output
of the system given a certain input and this is the high-level that the requirements specify.

6.4.1 Functional Requirements

Requirement (1) is fulfilled as demonstrated by the program level testing. At program level,
we provide the system with a .txt file containing source code. This source code is accepted by
the program (assuming that it is a valid program in the syntax) and the solution is computed.
Part (a) and part (b) of the requirement are fulfilled since the programs accepted are described
by the abstract syntax in part (a) as well as the program accepting input from a .txt file rather

CHAPTER 6. TESTING AND EVALUATION 78

than via command-line input.

Requirement (2) is fulfilled as demonstrated by the program level testing. At program level,
we use one of three high-level functions. Each of these functions specifies a different analysis,
therefore the is a simple way for the user to specify the analysis to be performed.

Requirement (3) is fulfilled as demonstrated by the program level testing. Part (a), (b) and (c)
of this requirement are fulfilled since the user can specify one of the three functions reachability ,
liveVariables and reachingDefinitions and the system produces the correct output as shown in the
tests for each of these functions. For part (d) of this requirement, please see the next chapter
(Energy Experimentation) where further work has been carried out.

Requirement (4) is fulfilled as it is possible to see that different analyses can be performed
with slight adaptations or extensions on the first analysis implemented, Reachability Analysis.
Part (a) of the requirement is met because each analysis relies on the adjacency matrix com-
puted which is the same core theory and which could be used for further analyses. Please see
the next chapter (Energy Experimentation) where further work has been carried out, extending
on this core implementation too.

Requirement (5) is mostly met. As can be seen by the program level testing, the result of
the solution is represented in the form of a matrix. Part (a) of the requirement is met since the
output is displayed via the command line, however, part (b) has not been met since the output
is not sent to a .txt file. This is something that could perhaps be implemented in the future, but
was not a high priority requirement and other work was prioritised as more important and/or
interesting than this.

6.4.2 Non-Functional Requirements

All testing was performed on a standard Windows machine by running the program via GHCi
command line. For this reason, requirements (1) and (2) are successfully met. In theory, the
system should run via GHCi command line on any machine.

Requirement (3) is fulfilled because the analysis results for each program level test carried
out are the same as those computed manually. For some of the examples provided we relied
on given examples as set out in the literature and for other tests the solutions were computed
manually using the same methods.

The majority of programs tested were small programs. These include programs with a small
number of nodes in the control-flow diagram - for example programs with fewer than 20 nodes.
The system easily handled these small programs and therefore requirement (4) was met. Fur-
thermore, each of these tests computed within one second, meaning that requirement (6) also
passed.

Requirement (5) specified that “the system should be able to handle programs of reasonable
size, that is programs with up to 100 nodes”. A large program was tested as part of the test

CHAPTER 6. TESTING AND EVALUATION 79

suite and the program was able to handle it, it just meant that computation time (especially for
Reachability) was noticeably longer. For Reachability, this was on average one minute longer
while for the other analyses it was on average 6 seconds longer, most likely due to closure being
performed on different data types.

There was no usability testing so assessing requirement (7) is more difficult, however, given
the simplicity of user interaction, i.e. only needing to input an analysis and file name, the
author concludes that the system is intuitive to use. Given a user guide explaining the different
analysis options, and how to input them, it would be simple for a new user to be able to use
the system. In addition, since the system was produced mainly for experimental reasons rather
than usability, this requirement is less important than others.

The system was implemented using Haskell as the chosen language. The reason for choos-
ing this language was explained in the design chapter of this report. Given the success of the
requirements as a whole and the implementation being in Haskell, we can conclude that re-
quirement (8) passes.

The system is adaptable for different analyses since three analyses have been implemented.
There is a core implementation used for all three analyses, the implementation of the adjacency
matrix. This implementation is used again during experimentation in the next chapter (refer
to Energy Experimentation). For this reason, we can determine that requirement (9) is met.

Finally, we evaluate the success of requirement (10). The system is adaptable for possible
integrations with other systems since it has been developed at such a raw, low level. Since the
system is just a command line tool as this stage, a graphic user interface could be built on top
or some scripting could be used to pipeline it into another system such as a compiler.

6.4.3 Summary

All of the high priority requirements (“must” and “should”) requirements have been met suc-
cessfully. Some of the lower priority requirements (“could”) have been met but not all. The
only requirement that has not been implemented at all is the functional requirement (5) part
(b) which says that the output could be provided via a .txt file. Since the idea of experimenting
with real-life cost analysis was far more interesting, this requirement was left out. There is
not a huge loss because of this as the project is not heavily focused on user experience but is
more concerned with the adaptability and experimentation possible with this type of analysis
system.

Chapter 7

Energy Experimentation

Following the implementation and testing of the core capabilities of the system, the idea of
analysing energy within a program was briefly experimented with. This chapter looks at the
adaptation of the existing work in order to provide some groundwork for an idea, work produced
as part of this as well as potential developments to take this idea further.

7.1 Basic Worst Case Energy Analysis

The initial step was to create some way of analysing worst case energy within a program. In
order to do this, it was necessary to come up with some way of quantifying energy as well as
producing suitable equations for solving the analysis.

By using the existing analyses techniques the idea of worst case energy used, on entry to
and exit from nodes, in the program was considered. The worst case energy on exit from a
node is the worst case energy consumed on entry to the node plus the energy used (or gener-
ated) within that node. The semiring necessary for this analysis is almost identical to the one
for longest path analysis, examined in Dolan (2013), by using the max-plus semiring. There
are three possible types of values: unreachable, non-negative integer costs, and infinity. In the
max-plus semiring the zero value is unreachable, the unit element is the energy cost 0 (since 0
is the identity of the semiring multiplication), addition is max and multiplication is addition.
The binary operations addition (max) and multiplication (addition) both extended to include
the unreachable and infinity elements as follows:

+ unreachable n infinity

unreachable unreachable n infinity
n′ n′ max(n, n′) infinity

infinity infinity infinity infinity

· unreachable n infinity

unreachable unreachable unreachable unreachable
n′ unreachable n + n′ infinity

infinity unreachable infinity infinity

80

CHAPTER 7. ENERGY EXPERIMENTATION 81

Composing the equation was a complex task. In order to rely on the core framework, the
equation needed to be in the same format as the others used; we needed an equation of the
form L = ML + A. Using the max-plus semiring, the equation produced is as follows:

OUTS =

 ∑
S′∈pred[S]

OUTS′ · COSTS

+ COSTS

Where COST is the quantified energy used in a node and OUT is the worst case amount of
energy used on exit from a node. The equation is of the form L = ML + A and therefore, like
the other analyses, can be solved by computing L = M∗ · A. The matrix M is the transpose
of the adjacency matrix, as S′ is the predecessor, where a ‘False’ value is replaced with the
‘Unreachable’ value from the Energy Semiring and a ‘True’ value in row i is replaced with the
energy cost of the node i. The vector A is just the energy cost of each node. We compute
closure of matrix M using the max-plus semiring and then multiply the result by vector A.
Since addition in the max-plus semiring is max, we always take the worst case value for a node
and then, since multiplication is addition, we add the cost of the current node giving us the
worst case energy on exit from a node.

In order to quantify energy in the program we must be able to assign energy costs. There
are several different operations we can consider including:

• memory reads

• memory writes

• arithmetic operations

• boolean operations

In order to make the analysis as representative as possible, we should assign each operation
some suitable cost. In Leite et al. (2014) the cost of different operations is calculated, so we
can use this to come up with some relative cost for each operation. Since this is hard coded in
the program, if we do not care about some operation or operations then we can simply assign
those a 0 cost. Using these relative costs, we are able to compare different implementations to
problems and so on.

In order to implement this analysis it was just a case of adapting the previously implemented
analyses, again displaying the adaptability and using the core theory of the adjacency matrix.
In the general organiser, in addition to the creation of the nested structure representing the
control-flow diagram, another nested structure was also implemented containing a pair for each
node instead of a simple string representing the type of statement. The pair contains two values,
the type of statement as well as the amount of energy used in that node. This is computed by
considering the number of memory reads, memory writes, arithmetic operations and boolean
operations. When creating the COST vector, for each node we just take the second element in
this pair. The adjacency matrix (transposed) and the COST vector are all that is necessary
to create the matrix M and vector A for the analysis and this is done in a similar way to the

CHAPTER 7. ENERGY EXPERIMENTATION 82

previous analyses.

The energy value meant that a new data structure and semiring needed to be implemented.
For this reason, we define the Energy data structure as:

data Energy = Energy Int | Unreachable | I n f i n i t e deriving (Show, Eq)

where the Energy value represents the cost. The value Unreachable, the zero element, is used in
the creation of matrix M when there is no flow of control between nodes and Infinite is used
in the Energy semiring instance when there is worst case infinite energy. The Energy semiring
instance is defined as follows:

instance Semir ing Energy where
zero = Unreachable
one = Energy 0
sAdd x Unreachable = x
sAdd Unreachable x = x
sAdd I n f i n i t e = I n f i n i t e
sAdd I n f i n i t e = I n f i n i t e
sAdd (Energy x) (Energy y) = Energy (max x y)
sMult Unreachable = Unreachable
sMult Unreachable = Unreachable
sMult I n f i n i t e = I n f i n i t e
sMult I n f i n i t e = I n f i n i t e
sMult (Energy x) (Energy y) = Energy (x + y)
c l o s u r e Unreachable = Energy 0
c l o s u r e (Energy 0) = Energy 0
c l o s u r e = I n f i n i t e

which is almost identical to the longest path semiring defined in Dolan (2013), since the analysis
is similar.

7.1.1 Analysis Results

In order to test the implementation, we provided hard coded test values for memory reads,
memory writes, arithmetic operations and boolean operations. In real-life, these should be
representative of the relative costs of each operation as can be identified as described in Leite
et al. (2014). For testing we used the following values:

−− Test v a l u e s
memWrite = 4 ;
memRead = 3 ;
bOp = 1 ;
aOp = 2 ;

If we consider the factorial example, the values for generating costs per node is as shown in
Figure 7.1.

CHAPTER 7. ENERGY EXPERIMENTATION 83

[Energy 3,Energy 4,Energy 4,Energy 12,Energy 9,Energy 4]

Figure 7.1: Energy cost per node in factorial program

If we run the analysis we get the result as shown in Figure 7.2. This is the expected result, with
infinite energy as soon as the ‘while’ statement is reached, but identifies the main limitation of
the analysis.

Matrix [[Energy 3],[Energy 7],[Infinite],[Infinite],[Infinite],[Infinite]]

Figure 7.2: Worst case energy cost in factorial program

As another example, we consider the following program, which does not contain a ‘while’
statement:

x :=2;
y :=4;
x :=1;
i f (y>x) then

(z :=y)
else

(z :=y∗y) ;
x:=z

If we run the worst case energy analysis on this program we get the result as shown in Figure
7.3. This is the expected result and, as there is no ‘while’ statement, does not result in infinite
energy as a worst case. This example displays when the analysis is more useful.

Matrix [[Energy 4],[Energy 8],[Energy 12],[Energy 19],[Energy 26],[Energy

31],[Energy 38]]

Figure 7.3: Worst case energy cost in factorial program

7.1.2 Limitation

The one fundamental limitation of this analysis is that as soon as you reach a ‘while’ loop the
worst case energy is always infinity. This is a major limitation since as soon as there is a ‘while’
loop in the source code the analysis becomes almost useless. For this reason, it was necessary to
consider ways in which the analysis could be improved so to provide actual useful information.
With the worst case energy implementation as a working foundation we progressed to consider
further ideas.

CHAPTER 7. ENERGY EXPERIMENTATION 84

7.2 Cached vs. Non-Cached Variables

The next idea considered was cached vs. non-cached variables. There exists work in this do-
main, for example Li et al. (1995) and Stappert & Altenbernd (2000), but these resources focus
on worst case execution time (WCET), rather than energy costs, and are less concerned with
a general theoretical approach based on the framework we have already provided as the core
of this project. Furthermore, Stappert & Altenbernd (2000) only considers ‘straight-line’ pro-
grams, that is programs without loops, and therefore does not address the limitation that we
are attempting to face here.

If we are able to identify when variables are cached or not, and we consider cached variables as
‘free’ to read or write since their cost may be significantly smaller than non-cached variables,
then some ‘while’ loops could be considered ‘free’ (or close to) if all the variables read/written
are in the cache. This could be particularly useful when we consider systems that, for example,
have to access remote destinations in order to access data. Devices are becoming smaller, such
as wearable technology, which results in less onboard memory. This means we rely on remote
data access more and more which not only takes more time but also a lot more energy. There
is even a difference when we compare the energy necessary for a cached access rather than an
access from main memory, but the necessity for remote access makes the need for this sort of
analysis even more apparent.

The analysis implemented is similar to Reaching Definitions Analysis and the solution tells
us whether, in each node, all the variables that could be used are cached or not. There are
actually two functions for this analysis:

• cachedOrNotPerVar is effectively the same as Reaching Definitions Analysis except this
time we append extra information to each pair, resulting in a triple of the form (Variable,
Node Number Defined, Cached or Not)

• cachedOrNotAll which results in one value per node, summarizing the results of
cachedOrNotPerVar, specifying whether all the variables are cached or not

In order to implement this, a new type of assignment statement was added to the language
meaning that there were two types: the standard assignment statement as in the original lan-
guage and a cached assignment statement meaning that the variable being assigned is cached.
This meant that everywhere that an “Assign” is identified in the code, we also needed to add
cases for the “CachedAssign” too. The concrete syntax for a cached assign is similar to the
standard assign, but with the new reserved word “cache” before it. For example, if we are
assigning x to y the standard assign statement would be x:=y; but the cached assign statement
would be cache x:=y;.

With this in place, we could use the solution to Reaching Definitions Analysis as well as the
nested structure representing the control-flow graph to perform the analysis. First we get the
result of Reaching Definitions and then, for each variable, we use the control-flow graph to
identify whether at the label it was defined it was cached or not.

CHAPTER 7. ENERGY EXPERIMENTATION 85

7.2.1 Analysis Results

In order to test the implementation we initially consider the factorial program as it has been
throughout the entire testing so far, with no cached assign statements. Of course, for this
program we expect the resulting output to be of all variables not cached. The result of the
function cachedOrNotPerVar is as shown in Figure 7.4 and the result of function cachedOrNotAll

is as shown in Figure 7.5. These tests resulted in the expected results and therefore passed.

[[fromList [(‘‘y’’,0,‘‘Undefined’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘Assign’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘Assign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘Assign’’),(‘‘z’’,4,‘‘Assign’’)]], [fromList

[(‘‘y’’,1,‘‘Assign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘Assign’’),(‘‘z’’,4,‘‘Assign’’)]], [fromList

[(‘‘y’’,1,‘‘Assign’’),(‘‘y’’,5,‘‘Assign’’), (‘‘z’’,4,‘‘Assign’’)]],

[fromList [(‘‘y’’,1,‘‘Assign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘Assign’’),(‘‘z’’,4,‘‘Assign’’)]]]

Figure 7.4: Cached vs. Non-Cached per variable in factorial program

[[‘‘ll Undefined/Cached’’],[‘‘Not All Cached’’],[‘‘Not All

Cached’’],[‘‘Not All Cached’’],[‘‘Not All Cached’’],[‘‘Not All Cached’’]]

Figure 7.5: Cached vs. Non-Cached all in factorial program

Following the testing of the factorial program with no cached variables, we could consider the
program where every variable is cached. For this reason, we changed all of the assign statements
in the program to cached assign statements, as follows:

cache y:=x ;
cache z :=1;
whi l e (y>1) do

(cache z := z∗y ;
cache y:=y−1)

end ;
cache y:=0

In this case, we expect the results output to be for all variables cached. The result of the
function cachedOrNotPerVar is as shown in Figure 7.6 and the result of function cachedOrNotAll

is as shown in Figure 7.7. These tests resulted in the expected results and therefore passed.

CHAPTER 7. ENERGY EXPERIMENTATION 86

[[fromList [(‘‘y’’,0,‘‘Undefined’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘CachedAssign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘CachedAssign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘CachedAssign’’),

(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘CachedAssign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]]]

Figure 7.6: Cached vs. Non-Cached per variable in cached factorial program

[[‘‘All Undefined/Cached’’],[‘‘All Undefined/Cached’’],[‘‘All

Cached’’],[‘‘All Cached’’],[‘‘All Cached’’],[‘‘All Cached’’]]

Figure 7.7: Cached vs. Non-Cached all in cached factorial program

Following the testing of the factorial program with all cached variables, we could consider the
program where there is a combination of cached and non-cached variables. We test the following
program:

cache y:=x ;
cache z :=1;
whi l e (y>1) do

(cache z := z∗y ;
y:=y−1)

end ;
cache y:=0

In this example the y inside the loop is not cached so we expect the results to differ. The
result of the function cachedOrNotPerVar is as shown in Figure 7.8 and the result of function
cachedOrNotAll is as shown in Figure 7.9. These tests resulted in the expected results and
therefore passed.

CHAPTER 7. ENERGY EXPERIMENTATION 87

[[fromList [(‘‘y’’,0,‘‘Undefined’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘z’’,0,‘‘Undefined’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,4,‘‘CachedAssign’’)]], [fromList

[(‘‘y’’,1,‘‘CachedAssign’’),(‘‘y’’,5,‘‘Assign’’),

(‘‘z’’,2,‘‘CachedAssign’’),(‘‘z’’,4,‘‘CachedAssign’’)]]]

Figure 7.8: Cached vs. Non-Cached per variable in combined factorial program

[[‘‘All Undefined/Cached’’],[‘‘All Undefined/Cached’’],[‘‘Not All

Cached’’],[‘‘Not All Cached’’],[‘‘Not All Cached’’],[‘‘Not All Cached’’]]

Figure 7.9: Cached vs. Non-Cached all in combined factorial program

Following these tests, many more were carried out in order to ensure that the expected output
was produced when different combinations of assign and cached assign statements were used
within programs.

7.3 Combined Worst Case Energy Cost Analysis with Cached
vs. Non-Cached Variables

At the next stage of the experimental analysis we consider combining the two analyses produced
so to provide more useful information. This is similar to the basic worst case energy analysis
but now we use the result of the ‘cached vs. non-cached variables’ analysis in order to compose
the COST values for each node in the control-flow graph.

In order to implement this, we need the nested control-flow graph structure to contain ex-
tra information. For each node we have a triple of the form (String, Set String, Set String)

where the first element represents the type of statement (i.e. “Assign” or “CachedAssign” and
so on), the second element represents the variables that are written in the node and the third
element represent the variables that are read in the node. We can then iterate over this struc-
ture to create the COST values by considering the exact variables that are read and written in
each node.

When computing the COST values we can determine whether writes are cached or not by
the type of statement (“Assign” or “CachedAssign”) so it is simple to determine the energy
cost of writes, however, it is more complex for the calculation of read costs. In order to compute

CHAPTER 7. ENERGY EXPERIMENTATION 88

the read costs we use the extended Reaching Definitions Analysis for cached vs. non-cached
variables and use the node number to determine whether the variables being read must be
cached or not. Since we are considering worst case energy consumption, if a variable may or
may not be cached we must assume the worst case. That is, if at least one of the reaching
definitions of the variable in question is not cached then we assume a non-cached access.

With the COST vector computed, we solve the worst case energy cost analysis equation as
before.

7.3.1 Analysis Results

In order to test the implementation we consider the factorial program again. Now we are only
concerned with memory reads and writes; we consider arithmetic and Boolean operations free.
With no cached assign statements, we expect the result to be the same as the basic worst case
energy analysis, with ‘free’ operations other than memory reads and writes. This was the case.
With all cached assign statements we expect the result at every node to be Energy 0 since we
are considering all cached reads/writes as ‘free’. The result is displayed in Figure 7.10 and
therefore the test passed.

Matrix [[Energy 0],[Energy 0],[Energy 0],[Energy 0],[Energy 0],[Energy 0]]

Figure 7.10: Factorial program with all variables cached

A more interesting case is when we have some non-cached assign before the ‘while’ statement,
where the non-cached variable is not used in the loop and therefore the loop is still considered
‘free’. For this test we use the following adapted factorial program:

a:=x ;
cache y:=x ;
cache z :=1;
whi l e (y>1) do

(cache z := z∗y ;
cache y:=y−1)

end ;
cache y:=0

For the result of this, we expect all of the nodes to have Energy 4 values since this is the cost
of a non-cached memory write. Since at this node, the variable x is undefined we consider this
the same as a cached variable, i.e. ‘free’. The result, as expected, of this test is displayed in
Figure 7.11 and therefore the test passed.

CHAPTER 7. ENERGY EXPERIMENTATION 89

Matrix [[Energy 4],[Energy 4],[Energy 4],[Energy 4],[Energy 4],[Energy

4],[Energy 4]]

Figure 7.11: Factorial program with one variable cached not used in the loop

Again, similar to all other testing throughout the project, many more tests were carried out in
order to ensure that the expected output was produced when different combinations of assign
and cached assign statements were used within programs. By combining two already tested
analyses there was only a small amount to test this time.

Chapter 8

Conclusions

In this chapter we take time to reflect on the entire project and the processes taken as a whole.
At the beginning of the project we proposed the idea of a static program analysis tool that
could be used to perform optimisation analyses. We evaluated appropriate literature within
the domain so to justify such a system as well as identify open areas for development and future
work. Following this we composed a set of requirements for the proposed system, followed by
design and an appropriate implementation guided by this. With real-life costs identified as an
area of potential research, we spent some time experimenting with the idea of analysing energy
consumption within code.

With testing complete and a reflection on the success of the system provided based on the
requirements set out at the start, it is important to conclude the project in its entirety.

8.1 Project Overview

Before we reflect upon the system, we remind ourselves of the inital aims of the project as well
as the system that has been produced.

The inital aims of the project were to be able to understand and implement multiple opti-
misation analyses as part of a static analysis tool that is adaptable for many analyses. As part
of this, it would be necessary to understand some core complex mathematics including, as a
foundation to the theory of the system, the use of semirings to solve data-flow equations.

The system produced is a command line static analysis tool that takes, as input, the name
of the analysis to be performed as well as a .txt file containing the source code to be analysed.
The source code is accepted by the abstract syntax described in functional requirement (1).
Upon execution, the system computes the solution to the analysis specified and displays the
solution to the user via command line. The only interaction that the user needs with the system
is the input at the beginning and the rest of the process is totally automated.

In summary, the system can perform Reachability, Live Variables and Reaching Definitions

90

CHAPTER 8. CONCLUSIONS 91

Analysis. In addition, the system can perform some basic and experimental energy consump-
tion analysis which could be used as a basis for future developments.

8.2 System Evaluation

We now evaluate the actual system that has been implemented. The testing that was performed
verified that the system meets the specification so here we focus on validation which focuses on
whether, by following the specification, the system actually serves a purpose. Since there is no
direct user of the system, we do not focus on the system meeting user needs. Insead, we look
at the contribution the work holds within the domain and how the experimental developments
may be useful.

Like any project, nothing is perfect or smooth sailing all the time. Implementation can of-
ten take longer than anticipated and time constraints or deadlines can limit the scope of the
project. This did occur in this case, so there was some impact on the project outcome, however
the issues did not affect the project in a hugely significant way. We must also acknowledge the
complexity and non-triviality of this project. Building a system, in a relatively new language
to the author, with a huge amount of mathematical understanding to grasp is a huge success
in itself. It is important to critique both the successes in the project and reflect on areas for
improvement.

8.2.1 Successes

First we focus on the successes of the project; the ways in which the system serves its purpose.
In order to do this we acknowledge the main contributions of the project. In summary, there
are three main significant contributions:

• an adaptable and flexible control-flow analysis framework based on semirings

• the implementation of several previously developed analyses

• the proposal of a novel analysis of energy consumption in programs

Firstly, the system developed is a simple, adaptable and flexible framework. This means that
existing analyses can be implemented using it but it can also be used to extend existing analyses
and even develop new ones. Being a low-level standalone component, the system can be used
on its own as is but also has the potential to be integrated into a larger system. The tool uses
existing knowledge about semirings and their applications and provides a strong core for many
analyses we are interested in.

Secondly, the implemented system provides three common optimisation analyses: Reachability,
Live Variables and Reaching Definitions Analysis. These are analyses that are extremely use-
ful in important and commonly used systems such as compilers and, although perhaps people
don’t realise it, these analyses result in optimised performance for many programs. Each of
these analyses are easily accessible to any user as all they need is the function name for each

CHAPTER 8. CONCLUSIONS 92

analysis and the name of the .txt file containing the source code to be analysed.

Finally, an adapted version of the tool proposed a new, novel analysis which takes into con-
sideration real-life costs for optimisation. This is something that was difficult to comprehend
initially and was a low priority requirement due to the fact that it was difficult to determine
whether there would be time to experiment with such ideas in the time frame given. The fact
that this has been investigated and implemented, at least as the beginning of an idea for a the-
oretical way of analysing real-life costs, is a huge success of the project and provides something
new within the subject area.

Overall the project has been a success. It fits a purpose within the domain and its usabil-
ity is perfectly adaquate in terms of its intended use. The functionality of the core analyses
is complete and the adaptable framework has proved its success through implementation of a
new, experimental analysis.

8.2.2 Areas for Improvement

Although the project overall has been a success, that does not mean that the system is without
flaws. For this reason, we must discuss areas that could be improved, and perhaps that would
have been given more time.

Hardcoded Sets for Live Variables and Reaching Definitions Semirings

For the Live Variables and Reaching Definitions semirings, the ‘one’ element, the unit, is the
set of all variables and the set of all possible definitions within the program respectively. This
means that the analyses are explicitly limited to the sets that are defined in the semirings code.
This is not something that was anticipated as to be difficult to implement during the design
stage but became apparent during implementation.

Since the set of all variables or definitions is reliant on the program being analysed and it
is not simple to implement this in the semiring code, the easy solution taken was to hardcode
values. Having excess variables or definitions in the sets does not impact the analysis so we
define a set large enough to allow for reasonable sized programs. In an ideal world, this is
something that should be improved upon so not to limit the programs that can be analysed by
the system.

Infinite Energy Costs due to ‘While’ Loops

In the experiment analyses considering worst case energy costs, if we encounter a ‘while’ loop
which uses uncached variables the worst case becomes infinite. By implementing the cached
variables we are able to provide more useful information by highlighting loops that could be more
problematic than others, but providing more useful information does not remove the limitation.

In addition to considering cached vs. non-cached variables, another way to make the worst case

CHAPTER 8. CONCLUSIONS 93

energy cost analysis more useful would be to compute any possible upper bounds for ‘while’
loops. If an upper bound can be computed then a ‘while’ loop would not result in infinite energy
cost but the cost of one iteration multiplied by the upper bound, making the analysis far more
useful. This was not implemented as part of this project because the mathematics behind it
would make it substantially more complex and time consuming, but is something that could be
considered in order to improve this analysis.

8.2.3 Future Work

Having reached the end of the project, we can consider what future work may be considered.
Of course the end of the project does not mean the end of research in this subject area or
the development of systems similar to this tool. The areas for improvement that have been
identified are obviously things that could be worked on in the future, but are more limitations
of the system rather than things that may be considered beyond the scope of this project.

The potential future work is outlined here:

• Extension of the simple imperative ‘while’ language so to deal with more complex cases
and program structures.

• The development of a graphical user interface over the system to improve usability and
interactivity of the system if used alone.

• The integration of the system into some larger system than can benefit from these analyses.

• The use of the framework to implement more, similar analyses.

• The use of the experimental energy consumption analysis to develop more or more useful
theoretical analyses incorporating real-life costs.

8.2.4 Conclusion

Although there are identifed areas for improvement as well as future work, the system has met
most of the requirements and therefore has been a success. The scope of the project was limited
at the beginning so that the amount of work that was expected to be achieved was realistic. The
experimental focus of the project was prioritised over the usability of the system since what is
interesting about this system is the way in which is can be adapted and extended. The fact that
we were able to experiment with the idea of analysing real-life costs, on top of a system that
had been verified as robust and adaptable, was the major success of this project and therefore
the compromise of having small limitations of the system are considered acceptable.

8.3 Personal Evaluation

Having evaluated the system itself, we now turn to how project went and lessons that were
learnt along the way.

CHAPTER 8. CONCLUSIONS 94

8.3.1 Program analysis is complex

The most difficult part of the project was the very first part. Once all of the relevant literature
had been gathered, taking the time to read, and more importantly understand, all of the
concepts and theory was the most challenging task. For an undergraduate in a final year, the
complexity of the mathematics was a huge step up. With a system that relied on implementing
this theory, it was vital to understand it before implementing. Of course, concepts became
more apparent during the actual implementation stages, but there would have been no way
of starting without a solid grasp of the subject area initially. The literature review was of
significant importance in understanding the topics and consolidating the knowledge aquired
from multiple sources.

8.3.2 Reusing existing code is beneficial

The code for the parser was the major part of the code that was reused from an existing source
Parsing a simple imperative language (n.d.). Time was taken to understand the workings of
the code so it could be adapted, especially when adding in the new statement for cached as-
sign statements, but having some readily available and explained code was hugely beneficial
to the project. Even being able to use Parsec parser combinator library in itself was a huge help.

Had this existing work not been available, a much more significant amount of time would
have had to have been spent implementing the parser section of the code and would have most
likely significantly reduced the amount of time being left to the experimental section of the
project. Having carried out the experimental section of the project and seeing the results it
definitely would have been a shame if this work had not been carried out.

8.3.3 Thinking time is valuable time

Before jumping into implementation it is worth spending time thinking. Spending time thinking
is not time wasted on implementation, in fact it often reduces the amount of time spent overall.
Particularly with a theoretically complex project, it is important to think about what actually
needs to be done. Drawing diagrams, making notes and sketching out ideas may delay the start
of the actual coding but makes the job a lot easier. Thinking allows for possible problems to
be identified before they arise.

8.3.4 It is difficult to decide when to stop

When carrying out a project the scope is defined at the beginning but, even with the scope
defined, it is still difficult to decide when to stop. Is anything ever perfect? How much time
should be spent making something as close to perfect as possible? Of course deadlines have
a huge influence over when to finally stop working on a project but during each stage it is
difficult to decide when to move on. At times it was decided that progression to the next stage
was more important than perfection of the previous, but making this decision is difficult. The
benefits of an implemented complete system outweigh the benefits of one perfectly implemented

CHAPTER 8. CONCLUSIONS 95

component.

8.4 Final Comments

In order to conclude the project, we revisit the introduction where we set out the project and
identified the main aims.

The first statement to consider is:

“This project focuses on the latter, looking at optimisation of programs, in particular by
focusing on data-flow within programs”

In particular:

“This project focuses on a formal method of analysis, data-flow analysis, through the use of a
mathematical structure called a semiring”

Thus, it would be fair to conclude that the project has remained focused on the area in which
is was meant to.

A futher statement identified in the introduction highlights the idea of an adaptable system,
recall:

“ ..by using the same core theory as the foundation to each of the analyses implemented, we
provide a system that is flexible enough to adapt to different problems as well as extend to new

ones.”

This has been proved through the implementation of three core analyses reliant on the ad-
jacency matrix and semirings, as well as the experimental analyses which are also reliant on
the adjacency matrix and semirings. Therefore, we can conclude that this aim has also been
successfully met.

Finally, at the end of the introduction, we recall the main aim of the project:

“to use semirings as a foundation to implement analyses for optimisations within program
code”

The project has been centred around semirings and how, with the correct definition of a semir-
ing with associated data-flow equations, different analyses can be implemented using the same
core framework.

We can finally conclude that the project has been an overall success.

Bibliography

Abdali, S. K. & Saunders, B. D. (1985), ‘Transitive closure and related semiring properties via
eliminants’, Theoretical Computer Science 40, 257–274.

Allen, F. E. & Cocke, J. (1976), ‘A program data flow analysis procedure’, Commun. ACM
19(3), 137–.
URL: http://doi.acm.org/10.1145/360018.360025

Atkins Maplas (n.d.), http://malpas-global.com/. Accessed: 2016-11-12.

Bergeretti, J.-F. & Carré, B. A. (1985), ‘Information-flow and data-flow analysis of while-
programs’, ACM Trans. Program. Lang. Syst. 7(1), 37–61.
URL: http://doi.acm.org/10.1145/2363.2366

Dolan, S. (2013), ‘Fun with semirings: A functional pearl on the abuse of linear algebra’,
SIGPLAN Not. 48(9), 101–110.
URL: http://doi.acm.org/10.1145/2544174.2500613

Farrow, R., Kennedy, K. & Zucconi, L. (1976), Graph grammars and global program data flow
analysis, in ‘Foundations of Computer Science, 1976., 17th Annual Symposium on’, IEEE,
pp. 42–56.

Fosdick, L. D. & Osterweil, L. J. (1976), ‘Data flow analysis in software reliability’, ACM
Comput. Surv. 8(3), 305–330.
URL: http://doi.acm.org/10.1145/356674.356676

Golan, J. S. (2013), Semirings and their Applications, Springer Science & Business Media.

Haskell (n.d.), https://www.haskell.org. Accessed: 2016-11-24.

Kam, J. B. & Ullman, J. D. (1976), ‘Global data flow analysis and iterative algorithms’, J.
ACM 23(1), 158–171.
URL: http://doi.acm.org/10.1145/321921.321938

Kildall, G. A. (1973), A unified approach to global program optimization, in ‘Proceedings of the
1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages’,
POPL ’73, ACM, New York, NY, USA, pp. 194–206.
URL: http://doi.acm.org/10.1145/512927.512945

Landi, W. (1992), ‘Undecidability of static analysis’, ACM Lett. Program. Lang. Syst. 1(4), 323–
337.
URL: http://doi.acm.org/10.1145/161494.161501

96

http://malpas-global.com/
https://www.haskell.org

BIBLIOGRAPHY 97

Lehmann, D. J. (1977), ‘Algebraic structures for transitive closure’, Theoretical Computer Sci-
ence 4(1), 59–76.

Leite, A., Tadonki, C., Eisenbeis, C. & De Melo, A. (2014), ‘A fine-grained approach for power
consumption analysis and prediction’, Procedia Computer Science 29, 2260–2271.

Li, Y.-T., Malik, S. & Wolfe, A. (1995), Efficient microarchitecture modeling and path analysis
for real-time software, in ‘Real-Time Systems Symposium, 1995. Proceedings., 16th IEEE’,
IEEE, pp. 298–307.

Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N., Hermenegildo,
M. V. & Eder, K. (2013), Energy consumption analysis of programs based on xmos isa-level
models, in ‘International Symposium on Logic-Based Program Synthesis and Transforma-
tion’, Springer, pp. 72–90.

Mohri, M. (2002), ‘Semiring frameworks and algorithms for shortest-distance problems’, Journal
of Automata, Languages and Combinatorics 7(3), 321–350.

MoSCoW : Requirements Prioritization Technique (n.d.), https:

//businessanalystlearnings.com/ba-techniques/2013/3/5/

moscow-technique-requirements-prioritization. Accessed: 2017-03-10.

Navas, J., Mendez-Lojo, M. & Hermenegildo, M. V. (2008), ‘Safe upper-bounds inference of
energy consumption for java bytecode applications’.

Nielson, F., Nielson, H. R. & Hankin, C. (1999), Principles of Program Analysis, Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

Parsec (n.d.), https://wiki.haskell.org/Parsec. Accessed: 2016-11-24.

Parsing a simple imperative language (n.d.), https://wiki.haskell.org/Parsing_a_simple_
imperative_language. Accessed: 2016-11-24.

Ramalingam, G. (1994), ‘The undecidability of aliasing’, ACM Transactions on Programming
Languages and Systems (TOPLAS) 16(5), 1467–1471.

Schubert, S., Kostic, D., Zwaenepoel, W. & Shin, K. G. (2012), Profiling software for energy
consumption, in ‘Green Computing and Communications (GreenCom), 2012 IEEE Interna-
tional Conference on’, IEEE, pp. 515–522.

Stappert, F. & Altenbernd, P. (2000), ‘Complete worst-case execution time analysis of straight-
line hard real-time programs’, Journal of Systems Architecture 46(4), 339–355.

Tarjan, R. E. (1981a), ‘Fast algorithms for solving path problems’, J. ACM 28(3), 594–614.
URL: http://doi.acm.org/10.1145/322261.322273

Tarjan, R. E. (1981b), ‘A unified approach to path problems’, J. ACM 28(3), 577–593.
URL: http://doi.acm.org/10.1145/322261.322272

The Parsec Package (n.d.), https://hackage.haskell.org/package/parsec. Accessed:
2016-11-24.

https://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
https://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
https://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
https://wiki.haskell.org/Parsec
https://wiki.haskell.org/Parsing_a_simple_imperative_language
https://wiki.haskell.org/Parsing_a_simple_imperative_language
https://hackage.haskell.org/package/parsec

BIBLIOGRAPHY 98

Wegbreit, B. (1975), ‘Mechanical program analysis’, Commun. ACM 18(9), 528–539.
URL: http://doi.acm.org/10.1145/361002.361016

Zowghi, D. & Coulin, C. (2005), Requirements elicitation: A survey of techniques, approaches,
and tools, in ‘Engineering and managing software requirements’, Springer, pp. 19–46.

	Introduction
	Literature Survey
	Introduction
	Parsing Languages
	Parsing Tools

	Graphs
	Graph Definitions
	Representing a Program as a Graph

	Data-Flow Analysis: A Specific Methodology
	Limitations
	Approaches and Algorithms

	Semirings: A Useful Mathematical Structure
	Mathematical Background of Semirings
	Closure over Matrices
	Closure of a Matrix for Program Analysis
	Using Data-Flow Equations for Program Analysis

	Assigning Real-Life Costs
	Background to Existing Work
	Energy Usage
	Evaluation of the Two Approaches

	Existing Software Tools
	Summary and Conclusions

	Requirements
	Requirement Sources
	Identifying Stakeholders
	Introspection
	Domain Expertise

	Requirements Analysis
	Classification
	Prioritisation

	Requirements Specification
	Functional Requirements
	Non-Functional Requirements

	Design
	Programming Language Choice
	High-Level Overview
	System Architecture
	Input
	System Components
	Program Data

	Implementation
	Code Files and Structure
	Parser
	Organiser
	General Organiser
	Reachability Organiser
	Live Variables Organiser
	Reaching Definitions Organiser

	Semirings
	Runner

	Testing and Evaluation
	Unit Level Testing
	Parser Testing
	General Organiser Testing
	Reachability Organiser Testing
	Live Variables Organiser Testing
	Reaching Definitions Organiser Testing
	Semiring Testing

	Program Level Testing
	Reachability
	Live Variables
	Reaching Definitions

	Testing Challenges
	Example Bug Identified

	Requirement Fulfilment
	Functional Requirements
	Non-Functional Requirements
	Summary

	Energy Experimentation
	Basic Worst Case Energy Analysis
	Analysis Results
	Limitation

	Cached vs. Non-Cached Variables
	Analysis Results

	Combined Worst Case Energy Cost Analysis with Cached vs. Non-Cached Variables
	Analysis Results

	Conclusions
	Project Overview
	System Evaluation
	Successes
	Areas for Improvement
	Future Work
	Conclusion

	Personal Evaluation
	Program analysis is complex
	Reusing existing code is beneficial
	Thinking time is valuable time
	It is difficult to decide when to stop

	Final Comments

