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ABSTRACT: Conversion of CO» into chemical fuels represents an attractive route for green house
gas (GHG) emissions reductions and renewable energy storage. Iron nanoparticles supported on

graphitic carbon materials (e.g. carbon nanotubes) have proven themselves to be effective catalysts
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for this process. This is due to their stability and ability to support simultaneous reverse water gas
shift and Fischer-Tropsch catalysis. Typically, these catalytic iron particles are post-doped onto an
existing carbon support via wet impregnation. Nitrogen doping of the catalyst support enhances
particle-support interactions by providing electron-rich anchoring sites for nanoparticles during
wet impregnation. This is typically credited for improving CO; conversion and product selectivity
in subsequent catalysis. However, the mechanism for RWGS/FT catalysis remains underexplored.
Current research places significant emphasis on the importance of enhanced particle-support
interactions due to N-doping, which may mask further mechanistic effects arising from the
presence or absence of nitrogen during CO> hydrogenation. Here we report a clear relationship
between the presence of nitrogen in the CNT support of a RWGS/FT iron catalyst, and significant
shifts in the activity and product distribution of the reaction. Particle-support interactions are
maximized (and discrepancies between N-doped and pristine support materials minimized) by
incorporating iron and nitrogen directly into the support during synthesis. Reactivity is thus
rationalized in terms of the influence of C—N dipoles in the support upon the adsorption properties
of CO2 and CO on the surface, rather than improved particle-support interactions. These results
show that the direct hydrogenation of CO» to hydrocarbons is a potentially viable route to reduce

carbon emissions from human activities.
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INTRODUCTION:
The water gas shift (WGS) [1] and Fischer-Tropsch (FT) [2] processes have long been used in

industry for hydrogen and hydrocarbon formation.!®



CO+ H,0 = (C0O, +H, [1]

(2n+ 1)H, + nCO - C,Hyp4o + nH,0 [2]

However, to mitigate CO; emissions and cope with the intermittent supply patterns of renewable
energy sources, research has been increasingly focused on converting CO» into hydrocarbon fuels.
This could allow for energy storage directly from COz and excess renewable energy.’'* Coupling
the reverse water gas shift (RWGS) and FT reactions together into a single process is considered
to be especially desirable.'> Simultaneous consumption of CO produced by RWGS via subsequent
FT catalysis shifts the equilibrium of the RWGS reaction towards products, enhancing the overall
efficiency of the process.'®!’

Iron-based catalysts are particularly amenable to this process, as the high temperature RWGS

L. 1820 and the Higg carbide is active in FT

reaction is catalyzed by promoted iron oxides,
catalysis.!!>2!?> Iron nanoparticles supported on carbon nanotubes (often referred to as Fe-CNT or
Fe/CNT type catalysts) have proven themselves to be active catalysts for this coupled process due
to their stability, adsorption capacity, and ability to support the active species of both reactions.?®-
271t has also been shown that increasing interactions between the catalytic nanoparticles and the
CNT support is critical to achieve high activity in Fe/CNT catalysts. Catalysts where the iron
particles have been integrated into the CNT support directly during synthesis (Fe@CNT) are
significantly more active than catalysts where particles have been doped onto the CNT support in
a separate step.!> 26:28-35

Functionalisation of the CNT support has been explored in recent years as a means of enhancing
these particle-support interactions.!!: 3-*7 Nitrogen incorporation leads to improved conversion,

reducibility and particle dispersion, which has been attributed to increased overlap between the

metal 3d orbitals and excess m-electron density in the graphitic plane.'! 36384 However, studies



until this point have focused exclusively on the effect of nitrogen doping in pure FT synthesis, or
have only investigated catalysts where the nitrogen and iron nanoparticles have been post-doped
onto an existing CNT support separately.!’> 3 This limits interactions between the three key
components of the catalyst, and makes it difficult to draw conclusions regarding the isolated
mechanistic effects arising from the presence or absence of nitrogen in the support during CO»
hydrogenation. In these instances, nitrogen doping is certain to affect the intrinsic activity of the
catalyst significantly by influencing particle dispersion on the support, and the magnitude of
support-particle interactions once the particles are deposited.!'! 3¢ 3% 41

In this work we aim to elucidate the influence of nitrogen doping of graphitic carbon nanotube
supports for CO> conversion catalysis by enhancing the magnitude of (and reducing the
discrepancy between) particle-support interactions in Fe/CNT- and Fe/NCNT-type catalysts. Here
we report the clearest comparison yet between the reactivity of cohesive Fe@CNT and Fe@NCNT
in combined RWGS/FT catalysis for CO> hydrogenation, where iron and nitrogen have both been
incorporated into the catalyst directly during CVD synthesis. This provides the most thorough
possible integration between all elements of the catalyst and offers insights into the effect of
nitrogen doping on the overall CO> hydrogenation process through combined characterization,
catalytic testing and molecular dynamics simulations.

EXPERIMENTAL:

Catalyst synthesis was achieved as follows: To produce Fe@CNT, 1.0 g ferrocene (FcH) was
dissolved in 50 mL toluene to produce a CVD precursor solution of concentration 20 mg mL-1
FcH in toluene. 40 mL of the precursor solution was then injected at a rate of 10 mL h! into a
quartz tube (25 mm ID x 28 mm OD x 122 cm L), loaded in a tubular furnace at 790 °C under a

flow of 50 sccm H> and 400 sccm Ar. After 4 hours of CVD injection, the raw catalyst was readily



retrieved from within the quartz tube by scratching the interior cavity of the quartz tube with an
elongated spatula. A 40 mL injection synthesis typically yielded ca. 1.5 g of catalyst. To produce
Fe@NCNT, the same procedure was employed while replacing toluene in the precursor solution
with acetonitrile (ACN) to act as a source of both carbon and nitrogen during the CNT growth
process. To minimize error due to variance between catalyst batches, a stock of ca. 10 g was
produced before beginning catalytic trials, and topped up every 3 reactions. 0.5 wt. % Na doping
was achieved in Na-Fe@NCNT via wet impregnation. 9 mg NaHCO3 (Sigma-Aldrich, 99.7%)
was dissolved in 15 mL deionized water with 0.5 g Fe@NCNT. The slurry was stirred for 24 hours
and subsequently heated at 115 °C for 2 hours before collecting the dried powder.

Catalysts activation was achieved by loading 0.47 g of the into a stainless steel calcination tube
(0.5 inch OD x 0.451 ID x 6 inch L). This tube was plugged at one end with quartz wool (9-30
micron, H. Baumbach & Co Ltd) to prevent the catalyst from escaping while still allowing for air
flow. For Fe@ NCNT-based materials, the tube was then heated in a muffle oven at 400 °C for 1
hour under a static air atmosphere, with a heating ramp rate of 10 °C min'. For any Fe@CNT-
based materials, the same process was repeated, though the catalysts were instead heated to 570
°C for 40 min. Further information on the origin of these different activation temperatures can be
found in the ESIL.

CO:2 conversion testing was conducted by loading 0.4 g of the desired catalyst into a stainless
steel reaction tube (0.5 inch OD x 0.451 inch ID x 6 inch L), which was plugged with quartz wool
(9-30 micron, H. Baumbach & Co Ltd) at both ends to ensure that the catalyst powder rested
securely in the middle of the tube. The sample was then placed in a tubular furnace and heated to
400 °C for 3 hours under a flow of 50 sccm H: to reduce the catalyst. To begin the combined

RWGS/FT process, the temperature was lowered to 370 °C and the was pressure gradually raised



to 15 bar while maintaining the desired reaction gas ratio (3:1 H2:COz). A high overall flow rate
(180 sccm) was employed during this step to facilitate pressurization of the reactor. When the
desired pressure had been achieved, the flow rate was lowered to the reaction flow rate of 8 sccm.
The reactor was left for 2 hours to equilibrate following pressurization, after which samples were
taken hourly for 3 hours via a 50 mL SGE gas tight syringe with leur-lock fittings and analyzed
via GC-MS. An Agilent Technologies 7890A GC System with Agilent Technologies 5975C insert
MSD with Triple-Axis Detector (MS, TCD, FID) was used as the GC-MS instrument. The
installed column was an HP-Plot Q column. The TCD was used to quantify CO> and CO, while
the FID was used to quantify hydrocarbon species. 1% Ar in H> was used as the source in CO»
conversion experiments so that Ar could be used as an internal standard during GC-MS
measurements.

It should be noted that the chosen reaction conditions have been previously identified as
producing noteworthy CO, and CO conversion over Fe@CNT-type materials.!> However, the
stated flow rate of 8 sccm should be considered low for the tested catalyst powder mass of 0.4 g.
Diffusion limitations may play a role in masking the intrinsic activity of the catalyst and conditions
at the catalyst surface. Further work must be conducted to optimize the reaction process.

Catalyst characterization was achieved with Raman, TEM, XPS, XRD, and TPD. Raman
analysis was conducted using a Renishaw InVia system with a 532 nm laser. For CNT-based
materials, a laser power of 5% was employed with the standard exposure time to facilitate quick
analysis without burning or damaging the sample during analysis. For NCNT-based materials, the
laser power was reduced to 0.1% due to the decrease in the stability of the CNT lattice caused by
nitrogen doping leading to significant decomposition under even 1% laser power. Consequently,

the exposure time for NCNT-based samples was also increased substantially to 400 seconds to



collect a clear Raman spectrum. TEM analysis was conducted using a JEOL JSM-2100PLUS at
an accelerating voltage of ca. 200 kV. Particle and tube diameters were measured using the open
source image processing package Fiji. XPS analysis was conducted using a Kratos Axis Ultra-
DLD system. Samples were analyzed using a micro-focused monochromatic Al X-ray source (72
W) over an area of approximately 400 microns. Data was recorded at pass energies of 150 eV for
survey scans and 40 eV for high resolution scan with 1 eV and 0.1 eV step sizes respectively.
Charge neutralization of the sample was achieved using a combination of both low energy
electrons and argon ions. XRD analysis was conducted using a Bruker D8 Advance with Vantec
Detector using Cu K-a1 radiation was used to analyze all samples, which were scanned in flat plate
mode from 20-80° at a scan rate of 0.27° min-1 (4 hours per sample). H2, CO and CO, TPD analysis
were conducted using a Micrometrics AutoChem II 2920 V4.03 Automated Catalyst
Characterization System with Thermal Conductivity Detector (TCD). Samples were subjected to
temperature programmed reduction up to 1000 °C at 10 °C min-1 (50 sccm 5% Ho> in Ar), pulse
chemisorption of the desired analysis gas (50 sccm, 5% in He) and subsequent TPD. A detailed
simulation methodology for the molecular dynamics simulations can be found in the ESI.

RESULTS AND DISCUSSION:

The Fe@CNT and Fe@NCNT catalysts were synthesized via a single-step CVD decomposition
of ferrocene dissolved in toluene (for Fe@CNT) or acetonitrile (for Fe@NCNT), as previously
reported.*> Comparison of these materials using Raman, TEM, XPS and XRD reveals clear
nitrogen doping in the CNT support while maintaining a similar overall morphology. Raman
spectra of both samples display sharp peaks at 1354 cm™ and 1597 cm™ (Fig. 1), which are
assigned to the D and G bands, respectively. These are typically observed in the Raman spectra of

CNT-based materials.** The D band becomes more intense as the number of defects in the sample



increases, and so the ratio of these peaks (Ip/Ig) is often used as a measure of the overall order in
a sample. Fe@CNT display a low Ip/Ig value of 0.2, while Ip/Ig for Fe@NCNT is much larger at
0.9. This increase in Ip/Ig is an indication of nitrogen incorporation in the CNT lattice, as the
number of defects in the lattice increases due to poor assimilation of nitrogen atoms into the sp?
hybridized network.* *-*8 The final feature at ca. 2666 cm™ is the G’ band, which is caused by
two-phonon scattering processes that are free from the defect structures.**>! It is therefore

suppressed in Fe@NCNT where defects are more prominent.
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Figure 1. Raman spectra of Fe@CNTs and Fe@NCNTs after activation in air for 1 hour at 570

°C and 400 °C.

TEM analysis shows a similar morphology between the two materials, with a change in the
internal bore structure attributed to the presence of nitrogen in Fe@NCNT (Fig. 2). In both cases,
samples are composed of highly aligned bundles of nanotubes, with iron particles embedded into

the CNT or NCNT support. In Fe@NCNT the average particle and tube diameters are 25 (£8) nm



and 35 (£21) nm, respectively, while Fe@CNT exhibit values of 34 (£11) nm and 35 (£14) nm.
While these values are not identical, literature suggests that their activity and selectivity should be
comparable, as particle size does not become a significant factor in FT catalysis until particle size
decreases below 7 nm.>? Fe@NCNT also display clear bamboo segmentation along the interior
bore of the tubes. This is further evidence of nitrogen incorporation into the CNT lattice, as the
previously discussed sp? defects cause the lattice to deviate from the typical hollow CNT
morphology observed in Fe@CNT.*#>+7

It is currently difficult to identify the origin of this difference in particle sizes despite largely
identical synthesis conditions. In conventional supported iron nanoparticle catalysts, where the
iron has been doped onto the catalyst surface via wet impregnation, nitrogen doping has been
observed to improve dispersion and affect particle size by providing electron-rich anchoring sites
for the nucleation and stabilization of metallic nanoparticles.!" 3 3 However, in Fe@CNT and
Fe@NCNT the addition of iron nanoparticles is governed by the CNT growth mechanism during
CVD synthesis rather than the mechanism of nanoparticle nucleation during wet impregnation.
Because these residual particles are typically removed as impurities during commercial CNT
production processes, the mechanisms and variables governing their formation remain unexplored
and explanations for their different particle sizes remains a matter of debate. It is worth noting that
the observed particle sizes are within the margin of error from each other. We therefore consider

them as effectively similar for the purpose of this investigation.
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Figure 2. TEM micrographs, particle and tube size distributions of (1))Fe@CNT and (ii)

Fe@NCNT after activation in air for 1 hour at 570 °C and 400 °C.

XPS spectra further confirm the presence of ca. 3 at. % nitrogen in the Fe@NCNT sample, with
ca. 1 at. % iron exposed for catalysis in both Fe@CNT and Fe@NCNT after activation (SI, Table
1). Fe 2p spectra for Fe@NCNT (Fig 3.i1) suggests the formation of FesN and FeigN»> after
synthesis, as evidenced by peaks at 707.2, 708.0, and 710.5 eV.>? These peaks shift to 707.5, 709.9,
and 711.3 eV after oxidation in air to expose the iron particles for catalysis, suggesting the
formation of Fe(0), Fe(Il) and Fe(Ill) as a mix of FeoO3 and Fe3Os4 and metallic iron,
respectively.’*>> A similar shift is observed for the iron carbides in Fe@CNT.** N 1s spectra for
Fe@NCNT (Fig. 3.1) display peaks at ca. 398.8, 401.3, and 404.4 eV, corresponding to the

presence of pyridinic, graphitic and physisorbed N2 or chemisorbed N-O species, respectively.>*-
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40.43.48 These peaks initially appear at a ratio of 1:2:1 after synthesis, though this shifts to a ratio
of 1:3:0 as the pyridinic, chemisorbed and physisorbed peaks are suppressed during the thermal
activation process. This suggests that the nitrogen species in the CNT lattice consist primarily of
graphitic nitrogen prior to catalytic testing. This may be significant, as different nitrogen
environments have been noted to encourage different reactivity due to discrepancies in electron

availability (e.g. graphitic nitrogen forms a shallow donor state, while the valence electrons in

) 36, 39, 56

pyridinic and pyrrolic nitrogen sites remain confined to the m, orbital

i.a Ny/N-O Pyridinic  Graphitic ii.a

Fe in FegN, Fe(4d) in Fe,¢N,
- - - - Fe(4e) in FegN,

............ Fe(8h) in Fe,.N,

392.0 397.0 402.0 407.0 700.0 710.0 720.0 730.0 740.0

Binding energy [eV] Binding energy [eV]

Figure 3. XPS spectra of (i) FE@NCNT N 1s region (ii)) Fe@NCNT Fe 2p region, (a) freshly

synthesized, (b) activated at 400 °C in air for 1 hour, and (c) after a typical CO; reduction reaction.
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pXRD further confirms similarities in the morphology and iron species of the two samples (Fig.
4). Both samples exhibit reflections at 26.4° corresponding to the CNT support structure.
Reflections at 30.5°, 35.8°, 43.4°, 54.1°, 57.6°, and 62.5° confirm the presence of Fe3O4 in both
samples,”’ while reflections at 24.2°, 30.4°, 33.3°, 35.8°, 41.0°, 49.6°, 54.1°, 57.6°, 62.5°, and
63.9° confirm the presence of Fe>03.%® Iron carbides are also visible as a characteristic grouping
of overlapping peaks between 40° and 50°.%° Fe@CNT appear to have more intense reflections
from Fe»Os, which is likely an effect of the higher activation temperature (Tac) required to expose
the iron particles for catalysis due to the greater thermal stability of the Fe@CNT (Tact= 570 °C)
compared to Fe@NCNT (Taet = 400 °C).>* Further justification of this difference in activation
conditions can be found in the ESI. Beyond this difference, which is itself mitigated during catalyst
reduction prior to catalysis,”® pXRD suggests similar iron species between the iron particles of
Fe@CNT and Fe@NCNT, with limited effect on the particles due to nitrogen doping. Reducing
the Fe@NCNT sample results in suppression of the iron oxides and clear evolution of metallic
iron characterized by reflections at 44.9° and 64.9°.° This is in good agreement with previous

XRD studies of the Fe@CNT material >
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Figure 4. pXRD spectra of Fe@CNT and Fe@NCNT after activation at 400 °C (or 570 °C for

Fe@CNT) in air for 1 hour. Fe@NCNT after reduction in 50 sccm Hz at 400 °C and atmospheric
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pressure are also included. Spectra indicate the presence of the CNT support (+), Fe2O3 (x), Fe3O4

(A), iron carbides (0), metallic iron ().

Despite similarities in morphology and iron species, Fe@CNT and Fe@NCNT perform notably
differently when applied in catalytic CO> hydrogenation (Fig. 5). Fe@CNT result in lower overall
conversion while favoring the production of CO, olefins and Cn>1 hydrocarbons. Nitrogen doping
in Fe@NCNT appears to increase conversion of CO; and CO significantly, simultaneously shifting
selectivity towards paraffins and methane. Nitrogen doping therefore appears to play a significant
role in modulating the activity and selectivity of the catalyst. The reductive character of the iron
catalyst may be enhanced through electron donation from the doped nitrogen, though this would
be expected to increase activity without shifting product selectivity, or even enhance FT activity
with additional Cy>1 formation rather than the significant increase in methane selectivity that is
observed.’**% 3¢ Catalyst-support interactions have been maximized in both materials by
integrating the catalytic iron particles directly into the CNT (or NCNT) support structure, and the
catalyst compositions and morphologies appear to be largely identical aside from the nitrogen
content of the support material itself. This suggests that additional mechanistic influences from
nitrogen doping in the catalyst support (beyond just catalyst-support interactions) are affecting the
outcome of the combined RWGS/FT process.

More specifically, the increased conversion, methane selectivity, and decreased CO selectivity
in Fe@NCNT suggests that nitrogen doping serves to enhance RWGS activity and initial FT
conversion into methane. At the same time, further reduction of C; FT intermediates into longer
hydrocarbons via subsequent FT polymerization is disfavored. Interestingly, this trend appears to
reflect an increased affinity for dipole-containing reactants (e.g. CO, CO2), while favoring the

desorption of nonpolar products (e.g. short hydrocarbons). It is therefore possible that increased
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attraction between the reactants and the catalyst increases their local concentration and serves to
improve catalyst activity at the expense of long chain hydrocarbon formation. Similar effects have
been reported for the enhanced adsorption of Oz in the oxygen reduction reaction due to the
39,61-

presence of C—N dipoles and nitrogen environments in N-doped CNT and graphene catalysts.

62 However, this effect has not been previously considered as a significant factor in RWGS or FT

reactivity.
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Fe@CNT 48.0 52.0 48.0 34.0 62.5 35 1.0
Fe@NCNT 60.3 8.6 91.4 53.0 46.6 0.3 0.1
Na-Fe@NCNT 48.0 248 75.2 27.5 52.5 20.0 0.5

Figure 5. Effect of nitrogen doping on combined RWGS/FT reactivity at 370 °C, 15 bar, 8 sccm

and an H2:COz ratio of 3:1 using 0.4 g catalyst reduced in 50 sccm H> at 400 °C for 3 hours.

H> TPR, CO; and CO TPD spectra (Fig. 6.1-ii1) indicate that Fe@NCNT are more easily reduced
than Fe@CNT, as expected,!! but also indicate that CO, and CO adsorb more strongly to the

catalyst surface in Fe@NCNT. CO chemisorption has been observed to occur at ca. 400 °C over
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Fe/CNT in literature.*® Thus, peak { has been attributed to chemisorbed CO and peak ¢ has been
attributed to physisorbed CO (Fig. 6.i1). While the desorption of chemisorbed CO appears largely
unchanged between samples (ca. 395 °C), physisorbed CO desorbs at a notably higher temperature
in Fe@NCNT. Stronger chemisorption by CO> at nitrogen sites is also observed in Fe@NCNT,
where only physisorption is observed in Fe@CNT.*® This increased attraction is mirrored in
molecular dynamics simulations of the 3:1 H2:CO; feed gas adsorption process (Fig. 6iv).
Interactions between CO; and the catalyst surface are notably stronger in Fe@NCNT, and a slight
catalytic smoothing effect can be observed in the equlibration of reactants on the catalyst (Fig.
6.v). As CO; and CO are dipole-containing molecules, the C—N dipoles generated in the CNT
lattice through nitrogen doping are likely sources of this enhanced attraction. Furthermore, it must
be noted that the hydrocarbon products of this hydrogenation do not possess such dipoles, and are
therefore at a relative disadvantage in terms of attraction to the catalyst compared to new CO> and
CO reactant molecules. This can further influence their potential for chain lengthening by
encouraging termination of the FT hydrogenation process via desorption after methane formation

to facilitate coordination of new CO; and CO reactants.
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Figure 6. (i) H> TPR, where a = Fe;03>Fe304, B = Fe3042>Fe(0), vy = Fes04>Fe(0) via FeO,
and 6 = gasification of the CNTs. (ii)) CO TPD, where ¢ = physisorbed CO and { = chemisorbed
CO. (iii)) CO2 TPD, where n = physisorbed CO> and 6 = chemisorbed COs». (iv, v) simulated 3:1
H>:CO> feed gas adsorption energies on Fe@CNT and Fe@NCNT. Detailed simulation

methodology can be found in the ESL.

Sodium was doped onto Fe@NCNT via wet impregnation in an attempt to mask this effect by

obscuring the nitrogen sites during catalysis via Na* coordination (Na-Fe@NCNT, Fig. 5). When
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Na-Fe@NCNTs were tested in RWGS/FT catalysis, their behavior was observed to shift
significantly back towards that of standard Fe@CNT, leading to reduced CO> and CO conversion,
and increased olefin and Cp>1 hydrocarbon production. The slight increase in production of Cs+
hydrocarbons is likely an effect of the increased basicity caused by sodium doping, as has been
previously observed.!> Additional characterization of Na-Fe@NCNT is discussed in the ESI.

This further supports the hypothesis that nitrogen doping in CNT or graphitic supports for
RWGS/FT hydrogenation does not only influence the process through increased interactions
between the support and its catalytic nanoparticles. Moreover, the resulting C—N dipoles in the
catalyst surface also play a significant role in determining the attraction of reagants to the catalyst
surface. This increased attraction appears to enhance catalyst activity by increasing the local
concentration of dipole-contaning RWGS and FT reactants at the expense the formation of long-
chain hydrocarbon formation. It is unclear whether the presence of different nitrogen species in
the catalyst might result in a notably different outcome, though it should be noted that this effect
may hold more strongly for materials in which graphitic nitrogen is most present. These findings
suggest that while nitrogen doping can be a powerful tool in improving the performance of CO>
and CO hydrogenation catalysts, it may be more preferably employed in materials intended for
methanation rather than long-chain hydrocarbon production.
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C—N dipoles in a CO; hydrogenation catalyst result in increased reactant attraction, conversion,

and a significant shift in products.
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