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Preface

Without a doubt, modern science is not meaningful without quantum mechanics. When
combined with mathematical physics, the basic laws of microscopic physics produce quan‐
tum mechanics. Despite it being about one century after the discovery of quantum mechan‐
ics, its history and foundations are of great interest to researchers, scientists and students of
different branches of science and technology. The philosophy of quantum mechanics, which
grows on the foundations, history and basic laws of quantum mechanics, such as uncertain‐
ty and the correspondence principal of quantum mechanics, is a great branch of philosophy.
It forms the foundations of quantum mechanics as an open topic for researchers who are
studying the history and philosophy of science. Therefore, most authors of quantum me‐
chanics and its applications introduce it via a historical survey of its early success.

The book consists of two sections. The first section is "Selected Topics in Foundations of
Quantum Mechanics", which consists of seven chapters. These chapters provide a clear in‐
sight into the foundations of quantum mechanics, through the basic laws.

The title of the first chapter is "Classical or Quantum, What is Reality?" Therefore, as it is
clear from the title, the author of this chapter compares classical physics with quantum me‐
chanics. In chapter two, as a basic object of quantum mechanics, photon is compared with
the role that is played by signalling information transfer. In chapter three, generalized un‐
certainty is discussed by combining quantum mechanical uncertainty and the path integral
method of Feynman. The subject of chapter four is the unification of quantum mechanics
with relativistic theory. In chapter 5 and 6, measurement and its validation in experimental
computation are studied as a major problem in quantum mechanics. In the last chapter, the
lie algebra of QED and its fermionic- Fock space are presented.

The second section, “Selected Topics in Applications of Quantum Mechanics", consists of
seven chapters. These are published with the cooperation of international community au‐
thors from different research institutes and universities. The first chapter is dedicated to the
application of quantum mechanics, through the mean field method. Thermodynamic entro‐
py and its role in atoms, molecules and matter are presented in chapter two. Chapter three
deals with the computation of material properties via atomic structures using quantum me‐
chanics. Quantum information is studied in chapter four. In chapter five, physical vacuum,
as a special super fluid, is presented. Husimi distribution and the fisher information are
studied in chapter six. The last chapter is dedicated to the application of quantum mechanics
in medical cardiography.

The selected topics of the foundations of quantum mechanics are published with the cooper‐
ation of international community authors from different research institutes and universities.
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1. Introduction

Discussion of those questions and the struggle with the well-known paradoxes of quantum
mechanics like decoherence and measurement problems is as old as the quantum mechanics
itself. This was just the reason for the search of formulations of any of both theories in terms
of concepts characteristic for the other one. It would be injustice to condemn or disqualify
those attempts. They were fruitful, enabled one to solve many concrete problems and did
shed some light onto the mutual relationship of both theories. Nevertheless all mysterious
features of quantum theory remained mysterious as they were. There is a whole spectrum
of views; let us quote the dominant ones in a very simplified form:

1. In principle everything is “quantum”. The “classical” is an approximation of large
quantum numbers in large, macroscopic subsystems of the Universe. In a sense it is a
kind of “illusion” well working in a restricted range of physical phenomena.

2. Finally everything should be “classical” and the “quantum” model is phenomenological
and temporary, in any case incomplete. Very often one formulates the conjecture that it
is the linearity of quantum theory that is guilty. In any case: what other physical factor
might be responsible for the discrepancy between unitary evolution of the unobserved
microsystem and the measurement reduction phenomena?

3. Physical reality is dualistically built of two incompatible elements: quantum and classical.
They are joined into a single whole via statistical interpretation of the wave function.
This unification is rather mysterious from the purely classical point of view, nevertheless
rigorously described mathematically by the standard probabilistic interpretation. This
view is relatively popular, although it is not free of the solliptic or even divine ideas. Let
us mention that both those ideas are physically justified.

There are many papers concerning the first and third possibility. But the second item, i.e.,
nonlinearity, is not very popular, although it seems to be a good candidate for explaining
quantum paradoxes and exorcising the solliptic or any dualistic ideas. Incidentally, from
the point of view of the development of physics and other natural sciences this reluctance

©2012 Sławianowski and Kovalchuk, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

of physicists to nonlinearity in quantum mechanics is rather strange. It contradicts the
whole history of physics. Usually one begins, when it is only possible, from linear
models, but later on one introduces nonlinear terms to equations. And now we witness the
unbelievable development of nonlinear methods, also essentially nonlinear ones, when there
is no well-defined linear background term perturbed by a nonlinear correction. It is simply
fashionable to formulate and discuss models based on the non-perturbative nonlinearity of
geometric origin. Why really to stick to linearity in so fundamental science as quantum
physics? Let us also mention that there are objects in the nano-scale like graphenes,
fullerenes, and very large molecules the behaviour of which is placed somewhere in the
convolution region of the quantum and classical theory. Let us also remind that there
are nonlinear computational methods like the Fermi-Dirac procedure in the usual quantum
mechanics. It is not excluded that some more fundamental nonlinearity may be formulated
and efficiently used.

One of reasons of the reluctance of physicists to nonlinearity in quanta is some non-physical
arbitrariness of the nonlinear dynamical models. And really, there were various models
introduced “by hand”. But recently some essentially nonlinear, non-perturbative models
based on deep geometric ideas were suggested. For example, we mean here papers by
Doebner and Goldin with co-workers [4, 5], works by Svetlichny [17], and some of our
publications [13].

Below we consider two methods of quasi-classical analysis: one based on the limit transition
with the Planck constant tending to zero and one based on the analysis of quickly varying
wave functions with many modes. They are both connected with the mechanical-optical
analogy and both are useful. Namely, the theoretical approach to physics is one based on
differential equations, usually partial ones in appropriate variables. But they also contain
plenty of so-called physical constants usually experimentally fixed. Let us mention, e.g., h̄,
c, G, e, k, etc. (respectively, the Planck constant, velocity of light in vacuum, gravitational
constant, elementary electric charge, Boltzmann constant, etc.). The system of natural units
like h̄ = 1, c = 1 is not appropriate. First of all because it is incomparable with the
limit transition to zero or infinity. The only solution of the problem is to introduce h̄, c,
etc. as “controlling” parameters and to follow quietly (as possible) the consequence of the
mentioned manipulations. Let us mention that there are two aspects of the controlling status
of those constants. First, one can think about the anthropic principle and perhaps the divine
origin of them. The second aspect may be more material. One can, e.g., think on them as
fields and even to formulate the corresponding field or motion equations. Let us mention,
incidentally, that putting h̄ = 0 we get rid of all paradoxes of quantum mechanics, but obtain
the non-realistic world with infinities in electromagnetic radiation theory.

In a sense it might seem strange that quantum mechanics was not formulated or at least
suggested some hundred years earlier. Though both geometric and physical optics seemed
to be known in the deep of XIX century. And one was also aware that the geometric optics
is a short-wave asymptotics of the wave theory. And the analogy between mechanics and
geometric optics was also known. Mathematically it was based on the similarity of the
Hamilton-Jacobi and eikonal equations. But one interpreted it as a formal similarity between
description of single particle trajectories and the geometric theory of optical waves moving
along the eikonal rays. The mechanical “waves” were not interpreted as the dynamics
of a real wave process even in the sense of the Schrödinger wave picture (as a matter
of fact also incorrect, as it turned out later on). It seems that the deciding circumstance
here was the absence of the Planck constant, the physical quantity of the dimension of
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action. It is necessary to replace the Hamilton-Jacobi action S
(

t, qi
)

by the wave containing

factor exp (i/h̄) S(q) with the dimensionless argument. It is strange that the h̄-divisor
was discovered by Planck in phenomena of electromagnetic radiation, where it is deeply
hidden from the direct observation. And only when it was discovered by Planck, the
further procedure was open by Planck himself, Bohr, Sommerfeld, de Broglie, Heisenberg,
Schrödinger, and many others.

2. Weyl-Wigner-Moyal-Ville description

It is neither very easy nor automatic to perform the limit transition h̄ → 0 in
quantum-mechanical equations. In any case passing to zero with h̄ in quantum-mechanical
wave functions leads to meaningless results. Rather, one should separately use the explicit
h̄-dependence of the modulus and phase of the wave function

Ψ =

√

D exp

(

i

h̄
S

)

= f exp

(

i

h̄
S

)

(1)

and substitute this to the Schrödinger equation (or any other wave equation). And then one
should write the system of equations resulting from the comparison of coefficients at the
same (but theoretically all possible) powers of h̄. It is important to remember that D, S are
power series of h̄, but the divisor h̄ under the exp sign is universally present in equations.
The simplest, heuristic way is to use the Weyl-Wigner-Moyal-Ville (WWMV) star product of
operators when the phase space is R

2n (or any 2n-dimensional linear space).

Let
(

q1, . . . , qn; p1, . . . , pn
)

be affine phase space coordinates,
(

q1, . . . , qn
)

— the underlying
configuration space variables, and (p1, . . . , pn) — the induced momentum variables. The
operators acting (in principle) in L2

(

q1, . . . , qn
)

are represented by their kernels-functions or

rather distributions when we do not insist on remaining within L2
(Q):

(AΨ) (q) =
∫

A
[

q, q′
]

Ψ
(

q′
)

dnq′. (2)

What concerns the adjective “distribution-like” let us stress that such important operators as
identity, position, and linear momentum are just represented by distributions:

1
[

q, q′
]

= δ
(

q − q′
)

, Qa
[

q, q′
]

= qa
δ
(

q − q′
)

, Pa
[

q, q′
]

=

h̄

i

∂

∂qa
δ
(

q − q′
)

. (3)

According to the Weyl-Wigner-Moyal-Ville prescription one can represent any function
A
(

q1, . . . , qn; p1, . . . , pn
)

by the kernel

A
[

q, q′
]

=

∫

A

(

1

2

(

q + q′
)

, p

)

exp

(

i

h̄
p ·

(

q − q′
)

)

dn p

(2πh̄)n (4)

Classical or Quantum? What is Reality?
http://dx.doi.org/10.5772/59115
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4 Quantum Mechanics

and conversely, inverting the Fourier transform:

A (q, p) =
∫

exp

(

−

i

h̄
p · α

)

A

[

q +
α

2
, q −

α

2

]

dnα. (5)

Let us remind that this is a consequence of the Weyl-Wigner-Moyal-Ville star product of the
pair of phase-space functions on the affine phase space:

(A ∗ B) (z) = 22n
∫

exp

(

2i

h̄
Γ (z − z1, z − z2)

)

A(z1)B(z2)dµ(z1)dµ(z2), (6)

dµ(z) = dµ (q, p) =
1

(2πh̄)n
dq1 . . . dqndp1 . . . dpn, (7)

where in the (q, p)-basis Γ =

[

O −I
I O

]

, I is the n× n identity matrix, and O is the n × n matrix

composed of zeros. Obviously, the product A ∗ B is isomorphic to the product of operators
represented by the “matrix” rule:

[AB]
(

q, q′
)

=

∫

A
[

q, q′′
]

B
[

q′′, q′
]

dnq′′. (8)

And Hermitian conjugate of operators is represented by the complex conjugate of
phase-space functions. The above composition of phase-space functions is non-local and in
general the positively definite operators (like, e.g., density operators ρ) are not represented
by non-negative phase-space functions.

It is clear from the above formulae that the action of the operator A on the configuration
space function Ψ is given by

(AΨ) (q) =
1

(2πh̄)n

∫

exp

(

i

h̄
p ·

(

q − q′
)

)

A

(

1

2

(

q + q′
)

, p

)

Ψ
(

q′
)

dnq′dn p. (9)

Let us remind a few properties of the Weyl-Wigner-Moyal-Ville product of the phase-space
functions. So, it is bilinear and associative and preserves the complex conjugation:

(λA + µB) ∗ C = λA ∗ C + µB ∗ C, (A ∗ B) ∗ C = A ∗ (B ∗ C), (10)

C ∗ (λA + µB) = λC ∗ A + µC ∗ B, A ∗ B = B ∗ A, (11)

where A
+ is represented by A. Besides 1 ∗ A = A ∗ 1, A ∗ A �= 0, if A �= 0 a.e.,

∫

A ∗ Bdµ =
∫

ABdµ, but in general
∫

A ∗ B ∗ Cdµ �=

∫

ABCdµ. Let us notice that

TrA =

∫

A(z)dµ(z), �A, B� = Tr
(

A
+

B
)

=

∫

A(z)B(z)dµ(z), (12)

Selected Topics in Applications of Quantum Mechanics6
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functions. So, it is bilinear and associative and preserves the complex conjugation:

(λA + µB) ∗ C = λA ∗ C + µB ∗ C, (A ∗ B) ∗ C = A ∗ (B ∗ C), (10)

C ∗ (λA + µB) = λC ∗ A + µC ∗ B, A ∗ B = B ∗ A, (11)

where A
+ is represented by A. Besides 1 ∗ A = A ∗ 1, A ∗ A �= 0, if A �= 0 a.e.,

∫

A ∗ Bdµ =
∫

ABdµ, but in general
∫

A ∗ B ∗ Cdµ �=

∫

ABCdµ. Let us notice that

TrA =

∫

A(z)dµ(z), �A, B� = Tr
(

A
+

B
)

=

∫

A(z)B(z)dµ(z), (12)
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qa
∗ pb = qa pb +

ih̄

2
δ

a
b, pb ∗ qa

= pbqa
−

ih̄

2
δ

a
b, (13)

qa
∗ A(q, p) = qa A(q, p) +

ih̄

2

∂A

∂pa
, A(q, p) ∗ qa

= A(q, p)qa
−

ih̄

2

∂A

∂pa
, (14)

pa ∗ A(q, p) = pa A(q, p)−
ih̄

2

∂A

∂qa
, A(q, p) ∗ pa = A(q, p)pa +

ih̄

2

∂A

∂qa
, (15)

and obviously for functions depending only on one kind of variables

(A ∗ B)(q) = A(q) ∗ B(q) = A(q)B(q) = (AB)(q), (16)

(A ∗ B)(p) = A(p) ∗ B(p) = A(p)B(p) = (AB)(p). (17)

The star-product is evidently invariant under the action of affine symplectic group,
(U(A, t) f ) ∗ (U(A, t)g) = U(A, t)( f ∗ g), where t is a translation vector in R

2n and A is
a linear symplectic transformation, Γkl Ak

a Al
b = Γab, (U(A, t) f ) (z) = f (Az + t).

Quantum states are described by density operators ρ which are Hermitian, normalized to
unity and positive: �ρ|A

+
A� = Tr

(

ρA
+

A
)

≥ 0, Trρ = 1. To be honest, one can also live

without the last normalization condition. When the condition is satisfied, we have Tr ρ
2
≤

Tr ρ = 1. Particularly important are pure states described by projectors, ρ̂2
= ρ̂, ρ̂ = |Ψ��Ψ|,

ρ
[

q, q′
]

= Ψ (q)Ψ
(

q′
)

. They are related to the corresponding wave function Ψ as follows:

ρ
(

q, q′
)

=

1

(2π)
n

∫

Ψ

(

q −
h̄

2
τ

)

exp (−iτ · p)Ψ

(

q +
h̄

2
τ

)

dnτ. (18)

In general it takes on negative values, nevertheless it is positive in the quantum-mechanical
sense:

�ρ|B ∗ B� =
∫

ρ(z)
(

B ∗ B
)

(z)dµ(z) > 0 (19)

for all functions B. The exceptional Wigner functions are positive in the literal sense and are
exponential:

E
(ξ,π)

(q, p) =
1

(πh̄)n
exp

(

−

1

h̄

(

(

q − ξ
)2

+ (p − π)

2
)

)

. (20)

It is clear that they represent pure states,

E
(ξ,π)

∗ E
(ξ,π)

= E
(ξ,π)

,
∫

E
(ξ,π)

(q, p) dnq
dn p

(2πh̄)n
= 1. (21)
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6 Quantum Mechanics

They are coherent states strongly concentrated in the phase space about the point
(

ξ, π
)

.
Therefore, the coarse-grained quantity, so-called Husimi distribution,

ρ̃ (q, p) =
∫

E
(q,p)

(

ξ, π
)

ρ
(

ξ, π
)

dnξ
dnπ

(2πh̄)n
(22)

admits an approximate interpretation of the literally positively-definite probability
distribution obtained from the Wigner function ρ. Indeed, E

(q,p) is in a sense a pure state

Wigner function concentrated at (q, p) and therefore the above integral is a probability
density for the system to be found in the phase-space cell at (q, p) when it is known to be
in a Wigner state ρ. This interpretation is not bad and certainly ρ̃ is something that in a
sense gives an account of the probability distribution to be found in an h̄n-volume cell about
every (q, p). There is only one drawback of this interpretation. Namely, unlike the true
Weyl-Wigner-Moyal-Ville distributions, literally non-positive, the Husimi distributions (22)
have non-satisfactory, bad marginal properties, because

∫

ρ̃ (q, p) dnq �= ̂Ψ (p) ̂Ψ (p) ,
∫

ρ̃ (q, p)
dn p

(2πh̄)n
�= Ψ (q)Ψ (q) . (23)

Here, obviously, Ψ, ̂Ψ are the wave functions underlying ρ, respectively in the coordinate and
momentum representations. For the ρ itself the above inequalities become exact equalities.

Let us now discuss the problem of the WKB approximation from the point of view of
the above remarks. It is clear that from the point of view of the above statements, in the
lowest-order approximation of D, S in h̄, we have the following h̄-independent interpretation
of the D, S-functions in terms of the expectation values:

�Ψ|Q
i
|Ψ� =

∫

D
(

q1, . . . , qn
)

qidq1 . . . dqn, (24)

�Ψ|Pi|Ψ� =

∫

D
(

q1, . . . , qn
)

∂iS
(

q1, . . . , qn
)

dq1 . . . dqn. (25)

It is clear that the Planck constant h̄ is absent in those expressions, so really the functions D, S
are h̄-independent up to higher orders. In any case it is so at places distant from the turning
points. Let us consider the n-dimensional submanifold given by equations pi = ∂S/∂qi,

i = 1, . . . , n, i.e., Fi = pi −

(

∂S/∂qi
)

= 0. This submanifold, mS, is a special case of what

is called Lagrangian manifold, because the Poisson brackets of the left-hand sides of its
equations vanish; moreover, they vanish after the restriction to mS,

{

Fi, Fj

}

=

∂Fi

∂qa

∂Fj

∂pa
−

∂Fi

∂pa

∂Fj

∂qa
=

(

∂
2
ij − ∂

2
ji

)

S = 0. (26)

Let us take the singular probability distribution concentrated on mS:
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ρcl[D, S] = lim
h̄→0

ρ[D, S] = D
(

q1, . . . , qn
)

δ

(

p1 −
∂S

∂q1

)

. . . δ

(

pn −

∂S

∂qn

)

=

∣

∣

∣
Ψ

(

q1, . . . , qn
)∣

∣

∣

2
δ

(

p1 −
∂S

∂q1

)

. . . δ

(

pn −

∂S

∂qn

)

. (27)

Obviously, it is different from ρ(q, p), nevertheless the expectation values of qi, pj and their
linear combinations on ρcl are just the same as those on ρ,

�Ψ|αiq
i
+ β

ipi|Ψ� =

∫

(

αiq
i
+ β

i pi

)

ρ[D, S]dnq
dn p

(2πh̄)n

=

∫

(

αiq
i
+ β

i pi

)

ρcl[D, S]dnq
dn p

(2πh̄)n
. (28)

Let us mention that all limit transitions here, in particular the one between ρ[D, S] and
ρcl[D, S] are meant in the distribution theory sense.

It is important that the Weyl-Wigner-Moyal-Ville product may be expanded as a power series
in h̄ and that the functional coefficients are interpretable in terms of the symplectic geometry
of the classical phase space. The first two terms of the expansion are given by

A ∗ B ≃ AB +

ih̄

2
{A, B}+ . . . , (29)

the next terms are given by the multiple Poisson brackets. In any case, the
Weyl-Wigner-Moyal-Ville product and the corresponding quantum Poisson bracket are given
in the limit h̄ → 0 by the following h̄-independent expressions:

lim
h̄→0

A ∗ B = AB, (30)

lim
h̄→0

{A, B}QPB = lim
h̄→0

1

ih̄
(A ∗ B − B ∗ A) = {A, B}. (31)

Let us mention that these formulae have interesting features and interpretation. Namely,
the eigenequation for the wave function implies the following eigenequation for the
corresponding density operator: Aρ = aρ, i.e., in terms of the Weyl-Wigner-Moyal-Ville
approach A ∗ ρ = aρ. But this implies ρ ∗ A = aρ if A is real, i.e., A is hermitian, and therefore

[A,ρ]QPB =

1

ih̄
[A,ρ] = 0, thus,

1

ih̄
(A ∗ ρ − ρ ∗ A) = 0. (32)
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8 Quantum Mechanics

On the quantum level this equation is a direct consequence of the eigenequation
A ∗ ρ = aρ. But these equations have quite different qualitative interpretation in physical
terms. Namely, Aρ = aρ has a purely informational content. It tells us that on the
state ρ, or ρ in the Weyl-Wigner-Moyal-Ville language, the physical quantity A (A in
the Weyl-Wigner-Moyal-Ville terms) takes spread-freely the value a. This is the purely
informational property. But the Poisson bracket property, mathematically following from
it, has a qualitatively different interpretation, namely, such a ρ is invariant under the
one-parameter group of unitary transformations generated by A (A),

exp

(

i

h̄
Aτ

)

ρ exp

(

−

i

h̄
Aτ

)

= ρ. (33)

This is a symmetry property. Therefore, on the quantum level information implies
symmetry. But in classical physics Poisson bracket and the pointwise product of functions
are algebraically independent. Therefore, information and symmetry of statistical states
become logically independent. This implies that in the classical limit Schrödinger equation
or the corresponding eigenequation for the density operator must be in the lowest order of
approximation replaced by the pair of equations for the phase and modulus of the wave
function. Therefore, substituting (1) to (9) and taking the limit h̄ → 0 we obtain:

(AΨ)(q) ≈ A

(

qi,
∂S

∂qi

)

Ψ(q) +
h̄

i
(£v f ) exp

(

i

h̄
S(q)

)

; (34)

higher order terms in h̄ are omitted. The symbol £v denotes the Lie derivative of f with
respect to the vector field v[A, S] which equals

vi
=

∂A

∂pi

(

qj,
∂S

∂qj

)

. (35)

In spite of the use of analytical symbols, vi is a well-defined vector field tangent to the
manifold mS given by equations pj = ∂S/∂qj, j = 1, . . . , n. It is obtained from the
Hamiltonian vector field generated by the function A,

X[A] =

∂A

∂pi

∂

∂qi
−

∂A

∂qi

∂

∂pi
. (36)

This vector field is tangent to mS, so we restrict it to some vector field on this manifold and
project it to the configuration space Q, i.e., to the manifold of qa-variables. It is clear that f
geometrically is not a scalar field, but the scalar W-density of weight 1/2. Therefore,

£v f = va ∂ f

∂qa
+

1

2

∂va

∂qa
f . (37)
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D is a scalar density of weight one, thus,

£vD = va ∂D

∂qa
+

∂va

∂qa
D =

∂

∂qa (Dva
) . (38)

If we consider the Schrödinger equation

ih̄
∂Ψ

∂t
= HΨ, (39)

then in the quasiclassical limit we obtain the following system of equations:

∂S

∂t
+ H

(

q,
∂S

∂q
, t

)

= 0,
∂D

∂t
+

∂

∂qa

(

D
∂H

∂pa

(

q,
∂S

∂q

))

= 0. (40)

This is the system composed of the Hamilton-Jacobi equation for S and the continuity
equation for D. The second equation is dependent on the solution of the first one.
Geometrically it may be written in the form

∂D

∂t
+ £v[H,S]D = 0. (41)

Let us take a system of n functions Ai on the phase space with pairwise vanishing
Weyl-Wigner-Moyal-Ville commutators,

Ai ∗ Aj − Aj ∗ Ai = 0. (42)

Consider the family of eigenequations for the Weyl-Wigner-Moyal-Ville density function ρ:

Ai ∗ ρ = aiρ. (43)

Obviously, they imply that (1/ih̄) (Ai ∗ ρ − ρ ∗ Ai) = 0. In the classical limit this system
becomes

Aiρ = aiρ, {Ai, ρ} = 0. (44)

The quantum compatibility condition (42) for (43) implies that in the classical limit the
corresponding condition for (44), i.e., {Ai, Aj} = 0, also holds. The corresponding solution
for (44) may be given as:

ρ(q, p) = δ (A1(q, p)− a1) . . . δ (An(q, p)− an) . (45)

To be more precise, this holds when A1, . . . , An is a system of functionally independent
analytic functions. This distribution is concentrated on the Lagrangian manifold m

(A,a) given
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10 Quantum Mechanics

by equations: Ai(q, p) = ai, i = 1, . . . , n. Solving them with respect to pi we obtain the
transformed equations in the potential form: pj = ∂S(q, a)/∂qj. Short calculation shows that
ρ may be written as follows:

ρ(q, p) =

∣

∣

∣

∣

det

[

∂2S

∂qi∂aj

]∣

∣

∣

∣

δ

(

p1 −
∂S(q, a)

∂q1

)

. . . δ

(

pn −

∂S(q, a)

∂qn

)

. (46)

The quantity det
[

∂2S/∂qi∂aj
]

is known as the Van Vleck determinant [20]. The

corresponding quasiclassical wave function is given by:

Ψ(q, a) =

√

det

[

∂2S

∂qi∂aj

]

exp

(

i

h̄
S(q, a)

)

. (47)

This expression is convenient when one of the functions A1, . . . , An is physically interpretable
as a Hamiltonian H. Or when Hamiltonian is a simple function of other quantities Ai —
constants of motion, H = E (A1(q, p), . . . , An(q, p)). Then the function

Ψ(q, t; a) =

√

det

[

∂2S

∂qi∂aj

]

exp

(

i

h̄
S(q, a)− E (a1, . . . , an, t)

)

. (48)

is an approximate quasiclassical solution of the Schrödinger equation (39) with the
continuous spectrum of A1, . . . , An. And here some additional remarks are necessary. The
first one is that (47), (48) are valid only far from the turning points. So, they are valid only
in the non-compact spaces R

n, R
2n, when there is no quantization of Aj at all, or one must

modify them so as to admit compact configuration spaces. But then the above version of the
Weyl-Wigner-Moyal-Ville formalism does not work and must be replaced by something else.
Some way to remain within the framework is to unify the solutions (48) with the quantization
of A1, . . . , An by the Bohr-Sommerfeld quantum conditions. Roughly speaking, the idea
is then that only such submanifolds m

(a1,...,an
)

are admitted that the periods of ω = pidqi

on m
(a1,...,an

)
are integer multiples of the Planck constant. This condition gives rise to the

“quantization” of A1, . . . , An. And this is what one really does in the Old Quantum Theory.
But in general some difficulties appear on the level of wave functions (47), (48), namely one
has to use some Maslov modifications and use the Airy special functions.

Nevertheless, the very heart of idea survives: quasiclassical pure quantum states are
represented by probability distributions concentrated on n-dimensional submanifolds of the
phase space; let us repeat that n is the number of degrees of freedom. At least locally the
expressions (47), (48) are qualitatively correct. This is very interesting from the geometrical
point of view. Namely, in spite of using analytic expressions, the Van Vleck determinant is a
well-defined, coordinate-independent scalar density of weight two both in the configuration

space Q (qa-variables) and in the R
n-space of the values a1, . . . , an of constants of motion

A1, . . . , An. And its square root is a well-defined scalar W-density of weight one. By its very
geometric interpretation, this quantity is a priori the best candidate for the quasiclassical
probability distribution of the wave functions (47), (48). Obviously, the care must be taken
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concerning the mentioned problems, in particular the behaviour at the classical turning
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analysis. Nevertheless, it is convenient to comment our results in general symplectic terms.

Let (P, γ) be a symplectic manifold, i.e., a differential manifold P endowed with the
differential two-form γ satisfying the following conditions: it is closed and non-degenerate.
In coordinates ξa this means that

γ =

1

2
γabdξ

a
∧ dξ

b, (49)

where γab,c + γbc,a + γca,b = 0, det [γab] �= 0 all over P. The comma symbol denotes the
partial derivative. Therefore, dim P = 2n, n being natural. As dγ = 0, then locally γ = dω.
Not always, but in majority of applications P is a cotangent bundle over some n-dimensional
configuration space,

P = T∗Q =

⋃

q∈Q

T∗

q Q, (50)

where TqQ, T∗

q Q denote as usual the tangent space at q ∈ Q and its dual — the cotangent

space. If qi, i = 1, . . . , n, are coordinates in an open domain of Q, then the induced

coordinates in T∗Q are denoted by
(

qi, pi

)

, where pi are components of the canonical
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momentum attached of q ∈ Q. This structure gives rise to the Cartan one-form ω given
locally by ω = pidqi; the coordinate-free definition is easily possible but we do not quote
it here. In any case the symplectic form in T∗Q is given by γ = dω = dpi ∧ dqi.
Being non-degenerate, γ does possess the inverse form γ̃ with coordinates γab such that
γacγcb = δa

b. This gives rise to the Poisson bracket construction

{F, G} = γ
ab ∂F

∂ξa

∂G

∂ξb
, (51)

in the induced coordinates
(

qi, pi

)

:

{F, G} =

∂F

∂qa

∂G

∂pa
−

∂F

∂pa

∂G

∂qa
. (52)

Canonical transformations preserve the two-form γ, ϕ∗γ = γ, and infinitesimal ones, i.e.,
canonical vector fields X satisfy £Xγ = 0. Of course, the identity £Xγ = (X⌋dγ) + d(X⌋γ)

implies that because of dγ = 0,

(d (X⌋γ))ab = (Xc
γca),b − (Xc

γcb),a = 0, (53)

therefore, at least locally the vector field X is Hamiltonian (X⌋γ)a = Xcγca = −∂F/∂ξa.

It is denoted by XF = −
˜dF and called the Hamiltonian vector field generated by the local

Hamiltonian F. If F is globally one-valued, we say that XF is a Hamiltonian field generated
by F. Therefore, unlike the symmetry group of the symmetric metric tensor on a manifold
M, which is a finite-dimensional Lie group of dimension at most n(n + 1)/2, the group of
symplectomorphisms, i.e., one of canonical transformations is always infinite-dimensional,
labelled by arbitrary sufficiently smooth functions on P.

An important problem is a classification of submanifolds in a symplectic manifold. This is
completely new in comparison to submanifolds in positively definite Riemann spaces. So,
let M ⊂ P be a (2n − m)-dimensional submanifold (“constraints”) in a symplectic manifold
(P, γ), e.g., given by equations

Fa(ξ) = Fa(q, p) = 0, a = 1, . . . , m. (54)

The system of those functions is functionally independent, at least in some neighbourhood
of M. Sometimes it is also convenient to take the foliation by submanifolds Ma

Fa(q, p) = ca, (55)

where ca are constants. At every p ∈ M there is a tangent space Tp M and its symplectic
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orthogonal (dual) space Tp M⊥ which consists of vectors γp-“orthogonal” to Tp M:

Tp M⊥
=

{

v ∈ TpP : γ(p)abvbXa if X ∈ Tp M
}

, (56)

or in more sophisticated terms: �v⌋γp, ·�|Tp M = 0. It is a peculiarity of symplectic geometry

that Tp M⊥ need not be complementary to Tp M. The following class index was introduced
to describe this.

If dim Kp(M) = dim
(

Tp M ∩ Tp M⊥

)

= k, then we put Clp M = (k, m − k). We are interested

mainly in situation when this does not depend on p, that is, incidentally, a typical situation.
Then we write simply Cl M = (k, m − k). If k = m, then we write simply Cl M = I and
say that M is co-isotropic. This means that the subspaces γ-orthogonal to M are tangent
to M. If k = 0, then Cl M = II, and the subspace γ-orthogonal to M are at the same
time transversal (complementary) to M. Cl M = I implies that the functions Fa in (54) or
(55) satisfy respectively {Fa, Fb} |M = 0 or {Fa, Fb} = 0. Similarly, Cl M = II implies that
det [{Fa, Fb}] �= 0, at least in a neighbourhood of M. If Tp M ⊂ Tp M⊥, then we say that M

is isotropic. Then for any pair of tangent vectors at any p ∈ M we have: γ(p)abuavb
= 0,

when u, v ∈ Tp M. If M is isotropic, then dim M ≤ n. If dim M = n, i.e., if Tp M = Tp M⊥,
we say that M is Lagrangian. It is described by the system of equations Fa = 0, a = 1, . . . , n,
{Fa, Fb} |M = 0, or, if we deal with a foliation by Lagrangian manifolds, i.e., with a
polarization, then Fa = ca, {Fa, Fb} = 0. Equations for the Lagrangian submanifold may be
solved in the following way with respect to canonical momenta:

pi =
∂S

∂qi
, i = 1, . . . , n, (57)

when it is transversal to the fibres of constant qa, a = 1, . . . , n. Let us denote the
corresponding manifold by mS. The Hamilton-Jacobi equation

Ω

(

. . . , qµ, . . . ; . . . ,
∂S

∂qµ
, . . .

)

= 0 (58)

means that mS belongs to the zero-valued surface of Ω. We have used here the Greek
symbols µ to indicate that the time variable may be included into coordinates. For example,
in non-relativistic mechanics:

∂S

∂t
+ H

(

t, . . . , qi, . . . ; . . . ,
∂S

∂qi
, . . .

)

= 0. (59)

The integrability condition for the system of Hamilton-Jacobi equations with functions Ων,
ν = 0, 1, . . . , n, is given by the equation

{

Ωµ, Ων

}

= 0, i.e., the manifold Ωµ = 0, µ =

0, 1, . . . , n, has the class I, i.e., is co-isotropic.
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One can show that on every regular submanifold M the assignment M ∋ p �→ Kp(M) =

Tp M⊥
∩ Tp M is an integrable distribution, therefore, the quotient manifold P′

(M) =

M/K(M) carries the canonical symplectic structure γ′ such that γ�M = π∗γ′, where
π : M → P′

(M) is the natural projection. Obviously, K(M) denotes the system of leaves
of the distribution. It is clear that dim P′

(M) = 2 (n − (m + k)/2).

Lagrange manifolds, i.e., isotropic ones of dimension n, are placed, as seen from the
formula, only on co-isotropic, i.e., first class submanifolds. And if they are transversal to the
configuration Q-fibres (X-fibres), then using the formula (57) we obtain the Hamilton-Jacobi
equations (58), (59) or simply

A

(

. . . , qi, . . . ; . . . ,
∂S

∂qi
, . . .

)

= a (60)

for the potential S. Every mS ⊂ M is composed of the foliation of singular fibres K(M).
Singular fibres, first of all one-dimensional ones, i.e., integral curves of the Hamiltonian
vector fields XF, XΩ are classical trajectories. Those of which mS are composed were
called by Synge coherent families with the potential S [18, 19]. As seen, they correspond
to quasiclassical wave functions. And classically, being dependent on n parameters, they
correspond to the complete integrals of Hamilton-Jacobi equation (59). Let us summarize
our symplectic interpretation of them.

In quantum mechanics the eigenstates of the physical quantity represented by the Hermitian
operator A are given by density operators ρ̂ satisfying the operator eigenequation ρ. Let us
stress that in general this is the equation both on ρ and a. Taking its Hermitian conjugate
we obtain ρA = aρ. One can write these equations as (A − aId)ρ = 0, ρ (A − aId) =

0. This is the afore-mentioned informative aspect of the eigenequation. But just as it
was within the Weyl-Wigner-Moyal-Ville framework, this information context implies the
formal consequence, but qualitatively a completely different symmetry property, namely the
invariance of ρ under the unitary group generated by A: (1/ih̄)[A,ρ] = (1/ih̄) (Aρ− ρA) =

0. Therefore, in the classical limit one must assume that the quasiclassical ρ satisfies a pair of
mathematically independent, but physically interpretable just as above, conditions: Aρ = aρ

— information, {A, ρ} = 0 — symmetry.

Let us introduce the set of operators: Eρ := {F ∈ B(H) : Fρ = 0}. In principle B(H) denotes
the set of bounded operators acting in the Hilbert space H. Although, to be honest, one can
weaken this assumption. It is also clear that similarly as in classical statistics, the following
holds in quanta:

− S (ρ1) = Tr (ρ1 lnρ1) ≤ Tr (ρ2 lnρ2) = −S (ρ2) , (61)

when Eρ1 ⊂ Eρ2 . In other words, the larger Eρ, the greater informational content of ρ. Of
course, we mean here the quantum concept of the Shannon entropy and the mathematical
sense of Tr (ρ lnρ). Quantum pure states are defined in such a way that Eρ is a maximal
ideal. It answers uniquely the maximal number of experimental questions. There exists then
the one-dimensional linear subspace V ⊂ H such that Eρ consists of operators which vanish
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on V,

Eρ = {F ∈ B(H) : F|V = 0} . (62)

This means that the subspace V ⊂ H given by V =

⋂

F∈Eρ
KerF satisfies conditions: ρ(H) =

V, ρ|V = IdV , ρρ = ρ, therefore, ρ is a projector of H onto V. The entropy (information)
takes on ρ the minimal (maximal) value, Tr (ρ lnρ) = 0. When P = T∗Q, then the formulae
(47), (48) may be literally applied together with the Bohr-Sommerfeld quantum rules:

∮

ω =

∮

pidqi
= nh on any closed curve on mS. This defines the quantized values of ai in terms of

integers and Planck constant.

Expression for the Van Vleck determinant is correct independently on the additional phase
space structures like the affine one. Just because of the structure of this determinant. This is
seen from the density formula:

V = det

[

∂S

∂qi∂aj

]

dq1
∧ . . . ∧ dqn

⊗ da1
∧ . . . ∧ dan. (63)

Moreover, it turns out that this determinant is much more general and even the cotangent
bundle structure is not necessary for it. Namely, let us assume a pair of polarizations, i.e., a
pair of complementary foliations of a general phase space (P, γ) by Lagrangian manifolds.
Let us observe that P need not be identical with T∗Q and everything we assume is just a
pair of foliations. Lagrangian submanifolds of any foliation have a local affine structure.
Introducing coordinates qi, ai, we can formally describe them in terms of equations: pi =

∂S(q, a)/∂qi, but S is non-unique up to the gauging: S �→ S + ϕ ◦ pr1 + Ψ ◦ pr2, where pr1,
pr2 are projections from P to the Q, R

n-manifolds. But this gauging does not influence the
value of the Van Vleck determinant.

It is interesting to see what follows when we consider Hamiltonian and quantum dynamics
in a homogeneous formulation of Hamiltonian/quantum dynamics. So, let us consider the
motion of a particle in an (n + 1)-dimensional space-time manifold X and take a complete

integral S
(

xµ, ai
)

depending on n arbitrary constants. Then instead of the above quantities

we obtain the following vector-density object:

V = Dµdx0
∧ dx1

∧ . . . ∧ µ ∧ . . . ∧ dxn
⊗ da1

∧ . . . ∧ dan, (64)

where Dµ is a minor of the matrix
[

∂2S/
(

∂xµ∂ai
)]

obtained by removing the µ-th column.

The symbol µ in the exterior product means that dxµ is omitted. It is clear that the above
expressions imply that

∂jµ

∂xµ
= 0, (65)

where jµ = (−1)µDµ. This formula is geometrically correct, because jµ is a contravariant
vector density of weight one. Therefore, the left-hand side of (65) is well defined in
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spite of using the usual partial differentiation. One can easily check that it follows from

(58). In particular, if Ω in (58) equals the non-relativistic Ω = p0 + H
(

x0, xi; pi

)

=

−E + H
(

t, qi, pi

)

(E denotes the energy variable), then jµ in (64), (65) equals the formerly

written non-relativistic four-current

(jµ) =

(

det

[

∂2S

∂qi∂aj

]

, det

[

∂2S

∂qi∂aj

]

∂H

∂pi

(

q,
∂S

∂q

))

. (66)

This jµ satisfies the continuity equation (65) in virtue of (40). For the general relativistically
written Ω

(

xµ, pµ

)

, one obtains the four-current density, e.g., for the quasiclassical
Klein-Gordon equation. The current (66) corresponds to some choice of the complete integral
of Hamilton-Jacobi equations.

Let us mention that for the system of Hamilton-Jacobi equations

Ω∧

(

xµ,
∂S

∂xµ

)

= 0 (67)

we obtain generalized continuity equations. However, there is no place to stop at this topic
here. In any case jµ is also built of the complete integral of (67).

It is difficult not to be astonished by the fact that the above structures were not discovered
some hundred years earlier. They are based on the purely classical and deeply geometric
concepts. As mentioned, this may be explained only by the fact that the Planck constant was
not known then. To be more precise, it was hidden deeply in the thickest of radiation theory
and its thermodynamics.

Let us mention some additional facts. We said that the Van Vleck symbol may be assigned
to any complementary pair of polarizations Q × R

n
∋ (q, a) → V(q, a). It may be interpreted

in a statistical way due to its structure of the double scalar density. Indeed, the quantity

V(q, a) = det
[

∂2S/∂qi∂aj
]

may be dualistically interpreted as the density of probability both

in Q and in R
n. If A ⊂ Q, B ⊂ R

n, then

P(A, B) =
∫

A×B
V(q, a)dq1 . . . dqnda1 . . . dan (68)

may be interpreted as the quasiclassical probability that the system with values of integrals
of motion in B ⊂ R

n will be found in the region A ⊂ Q of the configuration space. And
conversely, it is equal to the probability that the system placed in A ⊂ Q will show the values
of integration constants in B ⊂ R

n. To be honest, in general they are non-normalized to unity
relative probabilities.

When performing pull-backs of probability densities on Q to mS, we obtain some probability
distributions on the Lagrangian manifold. Therefore, quasiclassical pure quantum states
may be interpreted as probability distributions concentrated on submanifolds mS. So, their
supports are n-dimensional and distinguished by the fact that γ�mS = 0. Quasiclassical
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mixed states are usually smeared out as 2n-dimensional probability distributions on P =

T∗Q.

Let us quote yet some another quasiclassical structures. To do this we begin with the linear
symplectic spaces. Let D(P) denote the set of all linear Lagrangian subspaces of P. Let M ⊂

P be some co-isotropic linear subspace of P and D(M) ⊂ D(P) denote the set Lagrangian
subspaces contained in M. One can show that any m ⊂ D(P) intersects M along some at
least (n − m)-dimensional isotropic subspace. But the singular fibre of M, i.e., M⊥

⊂ M is
m-dimensional. Therefore, the subspace

EM(m) := m∩ M + M⊥ (69)

is also Lagrangian and contained in M. Therefore, without any additional structure M gives
rise to the mapping EM : D(P) → D(M) with the following properties:

1. EM is a retraction onto the subset D(M), moreover, it is a projection:

EM|D(M) = idD(M)
, EM ◦ EM = EM. (70)

2. M, N are co-isotropic and compatible, i.e., M ∩ N is also co-isotropic, then EM, EN

commute and

EM ◦ EN = EN ◦ EM = EM∩N . (71)

3. If EM ◦ EN = EN ◦ EM, then M, N are compatible and (71) holds.

4. If f : P → P is a symplectic (γ-preserving) mapping, then

Ef (M)
= F ◦ EM ◦ F−1, (72)

where F : D(P) → D(P) is induced by f .

This is interesting and easily interpretable in terms of quasiclassical wave functions. The
relationship with the corresponding quantum relations is also readable. Let us illustrate this
with the following simple example.

We consider an affine (or linear) phase space with affine coordinates
(

qi, pi

)

. Then we

have ω = pidqi, γ = dω = dpi ∧ dqi. Let us take as M the manifold of states on which the
momentum variable p1 takes on a fixed values b,

M = {p ∈ P : p1(p) = b} , D(P) ∋ m =

{

p ∈ P : qi
(p) = ai

}

, (73)

where i = 1, . . . , n, therefore, M is a manifold with fixed values of p1 equal to b, and m is the
Lagrangian space (the carrier of a quasiclassical state) with fixed positions ai. One can easily

Classical or Quantum? What is Reality?
http://dx.doi.org/10.5772/59115

19



18 Quantum Mechanics

show that

EM(m) =

{

p ∈ P : p1(p) = b, q2
(p) = a2, . . . , qn

(p) = an
}

. (74)

Therefore, if we fix the value of p1 with the help of EM, we result in a complete indeterminacy
of q1. But this is just the classical uncertainty principle. Simply on the classical, or rather
semi-classical level, it is not a point in the phase space, but rather Legendre submanifold, or
to be more precise, a probability distribution on it, that is a counterpart of the quantum wave
state.

P was assumed here to be a linear space endowed with a symplectic structure. But it turns out
that the above prescription may be globalized to the general symplectic manifold. Roughly
speaking, this follows from its “flatness” which makes it similar to a linear symplectic space
in finite domains due to the existence of Darboux coordinates which enable one to write
γ = dpi ∧ dqi. This holds in every symplectic manifold, not necessarily cotangent bundle,
locally, but in finite domains. Indeed, let M ⊂ P be a co-isotropic submanifold, K(M) —
its singular foliation, and m ⊂ P — Lagrangian submanifold. The manifolds M and m need
not to intersect; in such situation we say that EM(m) = ∅. In this way the empty set ∅

is joined to D(P). It corresponds to the vanishing wave function. We put also EM(∅) =

∅. Similarly we do when m, M intersect in a non-clean way, i.e., otherwise than linear
subspaces. Let us assume the generic case, when m, M intersect in a regular way, i.e., when
Tpm ∩ Tp M = Tp(m ∩ M) for any p ∈ m ∩ M. To be more precise, we assume that the
subset of points p at which this is satisfied is a Lagrangian submanifold. Obviously, m ∩

M is an isotropic submanifold. If the intersection m ∩ M is regular at its every point p,
then EM(m) is defined as the maximal extension of m ∩ M by the singular foliation K(M),
EM(m) = π−1

(m∩ M). It is evidently Lagrangian and EM : D(P) → D(M) satisfies the
above properties (70)–(72). One should mention only that (72) is satisfied by every canonical
mapping, i.e., every diffeomorphism preserving the two-form γ. The finite-dimensional
symplectic group is replaced by the infinite-dimensional group “parameterized” by arbitrary
functions.

It is also interesting to know that there are classical counterparts of superpositions and scalar
products. We have seen that pure states are represented in a sense by probability distributions
concentrated on Lagrange manifolds mS. But the function S itself, i.e., the phase of wave
functions, is not contained in the corresponding analogy. One should adjoint an additional
dimension, action, and consider locally the manifolds Q × R, P × R, or rather Q × SU(1),
P × SU(1). To be mathematically more honest, one should use the principal fibre bundles
with the bases Q, P and the structure group Radditive or SU(1)multiplicative. The corresponding
geometry of the contact fibre bundle C over P is locally given by

Ω = pidqi
− dz. (75)

Take the set of Legendre submanifolds corresponding to the complete integral {Sa : a ∈ A}

of the Hamilton-Jacobi equation (40), (58), (59). These solutions may be represented by their
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diagrams (locally) in Q × R or Q × SU(1):

Graph Sa = {(q, Sa(q)) : q ∈ Q} . (76)

The independence of the Hamilton-Jacobi equation on the algebraic presence of the variable
S implies that for any value of a the function Sa + t(a) with t(a) ∈ R is a solution too.
The Hamilton-Jacobi equation imposes only conditions on the tangent elements of functions,
therefore, the envelope of diagrams {(q, Sa + t(a)) : q ∈ Q} denoted by

Enva∈A {(q, Sa(q) + t(a)) : q ∈ Q} (77)

also represents some solution of (40), (58), (59). The arbitrariness of these solutions
corresponds exactly to the arbitrariness of functions t : A → R. Let us repeat that (77)
is a diagram of the set of values {(q, S(q)) : q ∈ Q}, where the function S is obtained from
the family of Sa-s and t in the following way:

i We start from equations:

∂

∂ai (Sa(q) + t(a)) = 0 (78)

and solve them, at least in principle, with respect to a. One obtains (also in principle)
some q-dependent solution, a(q).

ii This solution is substituted to Sa(q) + t(a) and one obtains the expression denoted by the
Stat-symbol,

S(q) = Sa(q)(q) + t(a(q)) = Stata∈A (Sa(q) + t(a)) . (79)

This follows from the theory of the Hamilton-Jacobi equation. But the same may be shown
from “deriving” the continuous superpositions of wave functions satisfying the Schrödinger
equation, by performing the WKB-limit transition h̄ → 0 in the following expression:

∫ √

w(a) exp
(

i
h̄

t(a)
)

√

D(a) exp
(

i
h̄

S(q, a)
)

dna. (80)

In the WKB-limit h̄ → 0 one obtains just (79) as the limit condition. Let us mention that for
any function S on a differentiable manifold A the symbol Stat f denotes the value of S at the
stationary point a ∈ A, where dSa = 0. If there are many stationary points, then S in (79)
is multivalued. This means that the quasiclassical superposition consists of several waves
with various values of phases. We omit the relatively complicated quasiclassical behaviour
of moduli, just for simplicity. Similarly, for the pair of wave functions Ψ1 =

√
D1 exp (i/h̄) S1,

Ψ2 =
√

D2 exp (i/h̄) S2 we can investigate the quasiclassical behaviour of the scalar product:

〈Ψ1|Ψ2〉 =
∫

Ψ1(q)Ψ2(q)dnq =
∫

√

D1D2 exp
(

i
h̄
(S1 − S2)

)

dnq. (81)
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Denoting �Ψ1|Ψ2� =
√

D exp (i/h̄) S and applying the method of stationary phase we again
obtain S = Stat (S2 − S1) = Statq∈Q (S2(q)− S1(q)), where just as previously, Statq∈Q ϕ(q)
denotes the value of ϕ at the point q ∈ Q, where the differential of ϕ vanishes:

dϕq = 0. (82)

The situation is simple when (82) has exactly one solution. If there are a few q1, . . . , qk, then
the scalar product is a superposition of ones with the corresponding phases

λ1 exp

(

i

h̄
ϕ1

)

+ . . . + λk exp

(

i

h̄
ϕk

)

, (83)

where λ-s are obtained from the quasiclassical limits of D. In any case there is a multivalued
phase ϕ1, . . . , ϕk. If (82) has no solutions, then we say that Ψ1, Ψ2 are quasiclassically
orthogonal.

It would be nice to express those concepts in terms of the contact geometry (75). Let us
remind that the Lagrange submanifolds mS ⊂ P represent rather the density operators
of quasiclassical pure states than their wave functions. The latter ones are represented
by horizontal lifts of Lagrange submanifolds, i.e., by the maximal, thus n-dimensional
horizontal submanifolds in C, i.e., such ones M that Ω�M = 0. In particular, they are given
as MS = hor mS, where

MS :=
{(

dSq, S(q)
)

: q ∈ Q
}

. (84)

But they need not be so; another extreme example is the horizontal lift of T∗

q Q,

Mq :=
(

T∗

q Q, 0
)

=

{

(p, 0) : p ∈ T∗

q Q
}

. (85)

Intermediate examples between (84), (85) are labelled by pairs (M, S) where M ⊂ Q is
a submanifold of Q and S : M → R is a real-valued function on M. The corresponding
Legendre submanifold in T∗Q is given by

M
(M,S) :=

{

(p, S(π(p))) : π(p) ∈ M, p|Tπ(p)M = dSπ(p)

}

, (86)

π : T∗Q → Q is the natural projection of the co-tangent bundle onto its base.

Let us now translate the above formulae into the language of contact geometry. Some
similarities to the rigorous quantum expressions will be obvious. The vertical fibre bundle
action of the structural group R or SU(1) when operating on the elements M of the set of
Legendre manifolds H(C) will be denoted as follows: [t]M := {gt(z) : z ∈ M}, where gt is
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the action of the group element in C. If T is a countable subset of the group elements, then
we put:

TM :=
⋃

t∈G

[t]M =

⋃

t∈G

{gt(z) : z ∈ M} . (87)

In the case of empty sets (which correspond formally to zero), we have ∅M = ∅, T∅ = ∅.

Now let us express the quasiclassical “superposition” and phases of the “scalar products” in
terms of the contact geometry. Let M ⊂ C be a submanifold. Its characteristic subset Σ(M)

is defined as the set of all points z ∈ M at which Ωz|Tz M = 0. In practical applications
we often deal with the situation that Σ(M), which is always horizontal, is at the same
time n-dimensional, therefore, it is a Legendre submanifold, i.e., an element of H(C). Let
us assume that {Ma : a ∈ A} is a family of elements of H(C), i.e., a family of Legendre
submanifolds. We say that its superposition is the maximal element of H(C) which is
contained in the determinant set of

⋃

a∈A Ma. We denote it by M = Ea∈AMa. Without
going into details we show with the help of examples below that this superposition is in fact,
from the point of view of Q × R, the envelope or “generalized envelope” of the family of
surfaces:

i Let us again consider the contact manifold C = T∗Q × R with the natural contact
form pidqi

− dz. We take a manifold A parameterizing functions Sa(q) = S(q, a) and
the coefficients function f : A → R. S gives rise to the following family of Legendre
manifolds:

Ma := MS(·,a) =

{(

dS (·, a)q , S(q, a)
)

: q ∈ Q
}

. (88)

If it happens (it need not be so) that

Ea∈A[ f (a)]Ma = MS =

{(

dSq, S(q)
)

: q ∈ Q
}

, (89)

then we obtain S(q) = Stata∈A (S(q, a) + f (a)). And this means that the manifold ξS :=
{(q, S(q)) : q ∈ Q} ⊂ Q × R is really the literal envelope of the family of submanifolds
ξa := ξS(·,a) = {(q, S(q, a)) : q ∈ Q} ⊂ Q × R.

ii Again we consider C = T∗Q × R with the following natural contact form: Ω = pidqi
−

dz. And we take again the q-localized Legendre manifold Mq =

(

T∗

q Q, 0
)

, and MS =

{(

dSq, S(q)
)

: q ∈ Q
}

. One can show that MS = Eq∈Q[S(q)]Mq; this is a kind of irregular
envelope from the point of view of the geometry of Q.

iii We take a linear space V as a manifold Q. Then we have T∗Q ≃ V ×V∗ and C ≃ V ×V∗
×

R. And then we take as Legendre submanifolds the following ones with well-defined
positions, M[x] = {(x, p, 0) : p ∈ V∗

}, and with the fixed canonical momenta, M[p] =
{(x, p, �p, x�) : x ∈ V}. One can easily check the next rules of the quasi-classical Fourier
analysis: M[p] = Ex∈V [�p, x�]M[x], M[x] = Ep∈V∗ [−�p, x�]M[p]. And then for any

“phase” function S : V → R we have MS = Ex∈V [S(x)]M[x] = Ep∈V∗

[

̂S(p)
]

M[p] with

the following translation rules between S and ̂S:
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̂S(p) = Statx∈V (S(x)− �p, x�) , S(x) = Statp∈V∗

(

̂S(p) + �p, x�
)

. (90)

When we take into account that the analogy between phases of Ψ(x) and ̂Ψ(p) is seriously
accepted, we see immediately the obvious quasiclassical relationship between Ψ(x) and
̂Ψ(p). It is based on the concept of generalized envelope.

Let us also notice that all those concepts are invariant with respect to the special contact
transformations in C. First of all, let us remind that u : C → C is a special contact
transformation when it preserves Ω, u∗

Ω = Ω. If u is such and U : H(C) → H(C) is
the corresponding transformation of H(C), then UEa∈A[ta]Ma = Ea∈A[ta]UMa.

Now let us begin with the concept of the vertical distance, i.e., scalar product of Legendre
submanifolds. Let us take a pair of Legendre manifolds M1,M2 ∈ H(C) with the property
that their Lagrange projections m1, m2 and also m1 ∩m2 are connected and simply-connected.
Then there exists exactly one number t ∈ R (or exp(it) ∈ SU(1)) of the property that
(gtM1) ∩M2 �= ∅. This number t or better its unitary exponent exp(it) is the scalar product
of M1 and M2. To be more precise, the classical scalar product is exp(it), where t is its phase.
More generally, we say that the vertical distance, or the Huygens scalar product [M1|M2] of
the pair of Legendre submanifolds M1, M2 is a subset of R (or exponentially of SU(1)) such
that if t ∈ [M1|M2], then M2 ∩ gt (M1) �= ∅. If [M1|M2] is empty, then we say that M1, M2

are orthogonal. Their Lagrange projections m1, m2 onto P = T∗Q are then disjoint. It is clear
that any mapping U : H(C) → H(C) generated by a special contact transformation u : C → C
is then “unitary” in the sense of the scalar product [·, ·], i.e., [UM1|UM2] = [M1|M2] for any
pair of Legendre submanifolds M1, M2.

Let M ⊂ P = T∗Q be any co-isotropic submanifold and HM(C) ⊂ H(C) denote the set of
Legendre submanifolds with Lagrange projections to P = T∗Q placed within M. Then the
operations EM on Lagrangian submanifolds introduced above may be canonically lifted to
the operations ΠM acting on the horizontal lifts of m ⊂ D(P) = D (T∗Q). Namely, for any
co-isotropic M there exists the canonical mapping ΠM : H(C) → HM(C) with the property:
Π ◦ ΠM = ΛM ◦ Π, (ΠMM) ∩M =

(

π−1
(M)

)

∩M, where Π : H(C) → D(P) = D (T∗Q) is
the natural projection induced by the fibre bundle projection π : C → P. In fact, ΠMM is the
horizontal lift of ΛMm which contains M ∩

(

π−1
(M)

)

. If m intersects M in a regular way,

then ΠMM is a maximal extension of the intersection M ∩

(

π−1
(M)

)

along the fibres of the

Ω-horizontal lift KΩ
(M) = lift K(M). If m ∩ M = ∅ or if it is not regular, then it is assumed

that ΠMM = ∅.

Let us repeat again that ΠM satisfy the properties (69)–(72) modified by the admitted
empty-set values: ΠM|HM(C) = Id

HM
(C), ΠM ◦ΠM = ΠM, ΠM ◦ΠN = ΠN ◦ΠM = ΠM∩N

if Cl M ∩ N = I. If ΠM ◦ ΠN = ΠN ◦ ΠM, then M ∩ N-compatible and the both sides
equal ΠM∩N . For any special contact transformation Π f M = F ◦ ΠM ◦ F−1, where F is a
transformation of H(C) induced by f .

It is clear that every special contact transformation u, i.e., diffeomorphisms of C preserving Ω,
projects to P onto canonical transformation u preserving γ, π ◦ u = u ◦ π. Let

{

Mq : q ∈ Q
}

be a system of Legendre submanifolds of C such that
⋃

q∈Q Mq is an image of a cross-section
of C over P, such that the projections to P, mq form a polarization, i.e., a family of mutually
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Let us repeat again that ΠM satisfy the properties (69)–(72) modified by the admitted
empty-set values: ΠM|HM(C) = Id

HM
(C), ΠM ◦ΠM = ΠM, ΠM ◦ΠN = ΠN ◦ΠM = ΠM∩N

if Cl M ∩ N = I. If ΠM ◦ ΠN = ΠN ◦ ΠM, then M ∩ N-compatible and the both sides
equal ΠM∩N . For any special contact transformation Π f M = F ◦ ΠM ◦ F−1, where F is a
transformation of H(C) induced by f .

It is clear that every special contact transformation u, i.e., diffeomorphisms of C preserving Ω,
projects to P onto canonical transformation u preserving γ, π ◦ u = u ◦ π. Let

{

Mq : q ∈ Q
}

be a system of Legendre submanifolds of C such that
⋃

q∈Q Mq is an image of a cross-section
of C over P, such that the projections to P, mq form a polarization, i.e., a family of mutually
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disjoint Lagrange submanifolds of P. Then u acts on Mq in such a way that

UMq = Eq′∈QU
(

q′, q
)

Mq′ , U
(

q′, q
)

=

[

Mq′ |UMq

]

. (91)

Then for any superposition-envelope M = Eq∈Q [S(q)]Mq the following holds:

UM = Eq∈Q

[

S′
(q)

]

Mq = Eq∈Q [S(q)]UMq, (92)

where S′
(q) = Statq′∈Q (U (q, q′) + S (q′)). This is an obvious analogue and the phase

classical limit of the linear rule for superposition of wave functions with the phase factors
exp (i/h̄) S (q′). And U (q, q′) is just the generating function of the type W(q, Q) = U (q, q′).
And a similar construction may be built for other types of generating functions.

Let us also mention that a similar “quasilinear” representation may be achieved for other
operations on Legendre submanifolds, not necessarily ones induced by diffeomorphisms
acting in C. For example, let us consider ΠM, i.e., M = Eq∈Q [S(q)]Mq, ΠMM =

Eq∈Q [S′
(q)]Mq. Then we have S′

(q) = Statq′∈Q (S (q′) + ΠM (q′, q)), where ΠM : Q × Q →

R is the Legendre propagator ΠM (q′, q) =

[

Mq′ |ΠMMq

]

. This is again the envelope-like

Huygens-quasilinear rule. Using the Stat-symbol one can also write a nice-looking analogue
of the Feynman-Stückelberg “sum over paths” rule.

Incidentally, let us remind that by the W-type generating function W (q, q′) we mean
such one that the corresponding canonical transformation (q, p) �→ (q′, p′) is given by
pi = ∂W (q, q′) /∂qi, p′i = −∂W (q, q′) /∂q′i. Not every canonical transformation does possess
such a function in the usual sense, but it may be replaced by a more general generating
function. There is no place here to get deeper into details, cf. e.g. [11].

Let us also stress a few other facts connected with the notion of (generalized)
envelope. Consider the compatible system of Hamilton-Jacobi equations:
Fa (. . . , xµ, . . . ; . . . , ∂S/∂xµ, . . .) = 0. Any fibre of the cotangent bundle may be ΛM-projected
onto D(M) — the set of Lagrange submanifolds of M, mx := ΛM (T∗

x X). Then, every
(n + 1)-dimensional π−1

(mX) (where n = dim X) is foliated by the family of Legendre lifts
of mX . When C = T∗X × R or C = T∗X × U(1) those lifts are M

(x,c) := ΠM (T∗

x X, c). Then
locally

mx ∩ T∗

y X =

{

dσ(x, ·)y
}

, Mx ∩

(

T∗

y X × R

)

=

{

dσ(x, ·)y, σ(x, y)
}

. (93)

For every pair of points x, y ∈ X we define the quantity σM(x, y), namely

σM(x, y) =
∫

l(x,y)
ω =

∫

ℓ(x,y)
pµdxµ, (94)

where ℓ(x, y) is any curve placed on a singular fibre containing x, y ∈ X. This σM is a
fundamental solution, ΠMMS = MS′ , ΛMmS = mS′ , where S′

(x) = Staty (S(y) + σM(y, x)).
When Σ ⊂ X is a Cauchy surface for our Hamilton-Jacobi system, then S(x) =
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Statq∈Σ ( f (q) + σM(q, x)), where f : Σ → R are initial data. Therefore, the two-point
characteristic function is a Hamilton-Jacobi propagator. The idempotence property of ΛM,
ΠM implies that σM(x, y) = Statz (σM(x, z) + σM(z, y)). Let us quote an interesting example
of the free material point in Galilean space-time. Then

1

h̄
σM(x, y) =

1

h̄
S(a, z; q, t) =

m

2h̄(t − z)
gij

(

qi
− ai

) (

qj
− aj

)

. (95)

When the Van Vleck determinant det
[

∂2S/∂qi∂aj
]

is multiplied by some normalization

constant, then the Van Vleck solution

√

det

[

∂2S

∂qi∂aj

]

exp

(

im

2h̄(t − z)
gkl

(

qk
− ak

) (

ql
− al

)

)

(96)

becomes

K

(

ξ, τ
)

=

( m

2πih̄τ

)n/2
exp

(

im

2h̄τ
ξ

2
)

, (97)

where τ = t − z, ξk
= qk

− ak, and ξ
2
= gklξ

kξ l . The normalization we have accepted is
given by limτ→0 K

(

ξ, τ
)

= δ
(

ξ
)

, where K is the usual rigorous quantum propagator for the
Schrödinger equations:

ih̄
∂Ψ

∂t
= −

h̄2

2m
∆Ψ = −

h̄2

2m
gij

∂i∂jΨ, (98)

in spite of the fact that it was obtained in a purely classical way.

Summary of Section 3: In this section we have reminded some classical problems concerning
classification of submanifolds in the classical phase space. Their classical interpretation in
terms of symplectic and contact structures was discussed. Again it turns out that the classical
limits are Huygens constructions based on the envelope concepts. The quantum and classical
relationships between information and symmetry were discussed. This analysis shows again,
without any use of the Weyl-Wigner-Moyal-Ville product that it is probability distributions
concentrated on n-dimensional Lagrange manifolds that corresponds to the quantum pure
states on the classical level. The homogeneous Van Vleck objects corresponding to the
evolution problems were discussed. In particular, this may be used to the analysis of the
Klein-Gordon equation. Discussed is the WKB-limit of certain quantum expressions like
superpositions of wave functions and their scalar products. Again one obtains expressions
based on the envelope concepts and the Huygens-like operations on the set of Lagrangian
manifolds. Classical counterparts of the projection operators were found. The envelopes
of diagrams of phases of wave functions are geometrically interpreted in terms of contact
geometry. This is a geometric picture valid for all types of the eikonal equations. It
enables one to interpret also the purely classical concepts like generating functions of
canonical transformations in quantum-like form based on the envelopes of diagrams of
phases. Roughly speaking, the envelope represents the phase of the classical superposition.
It is shown that the quantum propagation for the free evolution Schrödinger equation may
be smoothly guessed on the purely classical level, in terms of the Van Vleck determinant.
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4. Nonlinearity program in quantum mechanics

Let us consider a finite-level quantum mechanical system. We try to interpret the Schrödinger
equation as a usual self-adjoint equation of mathematical physics, just as if it was to be a
classical one. If both the first- and second-order time derivatives of the state vector Ψ are to
be admitted, the Lagrange function may be postulated as

L(1, 2) = iαΓab

(

Ψ
a
Ψ̇

b
− Ψ̇

a

Ψ
b

)

+ βΓabΨ̇
a

Ψ̇
b
− γΓ HabΨ

a
Ψ

b, (99)

where α, β, γ are constants and Γab are components of the scalar product. Γ Hab are
components of the Hamiltonian matrix in the covariant form,

Γ Hab = Γac H
c

b, (100)

whereas Hc
b are usual mixed tensor components. To be honest, in physics it is this mixed

Hamilton operator that is considered as a primary quantity. From the Lagrangian point of
view it is a twice covariant form that is primary. Because of this we decided to assume Hc

b

as a primary quantity, but the Hermitian matrix Hab is assumed as the constitutive element
in (99). When we are going to introduce a direct nonlinearity to the treatment, we introduce
in addition a real-valued potential V

(

Ψ, Ψ
)

, e.g.,

V
(

Ψ, Ψ
)

= f

(

ΓabΨ
a
Ψ

b
)

, (101)

where f is a real-valued function of the one real variable.

For the Lagrangian L = L(1, 2) − V we obtain the following “Schrödinger”, or rather
“Schrödinger-Klein-Gordon”, equation:

2iα
dΨ

a

dt
− β

d2
Ψ

a

dt2
= γH

a
bΨ

b
+ f

′
Ψ

a. (102)

The comparison with the usual Schrödinger equation tells us that α = h̄/2, γ = 1. The energy

function for L = L(1, 2)− V is given by E = βΓabΨ̇
a

Ψ̇
b
+ γΓ HabΨ

a
Ψ

b
+ V

(

Ψ, Ψ
)

. Legendre
transformation tells us that the corresponding Hamiltonian in the sense of analytical
mechanics is:

H =

1

β

[

Γ
ab

πaπ
b
+ iα

(

πaΨ
a
− πaΨ

a
)]

+

[

α2

β
Γab + γΓ Hab

]

Ψ
a
Ψ

b
+ V

(

Ψ, Ψ
)

, (103)

where πa, πa are canonical momenta conjugate to Ψ
a, Ψ

a
. It is clear that E is always defined

all over the state space. Unlike this, H is defined all over the phase space only when β �= 0.
If β = 0, it is defined only on the constraints submanifold.
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The possible nonlinearity of quantum mechanics is due to the term V
(

Ψ, Ψ
)

. As mentioned,
this is a rather artificial, perturbative nonlinearity. It is definitely better to use the essential
nonlinearity of the geometric, group-theoretic origin. To achieve this, one should follow the
idea of transition from special to general relativity. The simplest way is to “de-absolutize”
the scalar product. Namely, instead of being fixed once for all, the scalar product will be
reinterpreted as a dynamical variable. It is to be self-interacting and free of any fixed absolute
background. Therefore, in the finite-level theory, its dynamics will be GL(n, C)-invariant.
The only natural Lagrangian will follow the structure of affinely-invariant kinetic energy of
affinely-rigid body. So, for the metric Γab we postulate the following Lagrangian:

T = L[Γ] =
A

2
Γ

bc
Γ

da
Γ̇abΓ̇cd +

B

2
Γ

ba
Γ

dc
Γ̇abΓ̇cd. (104)

This is the only possibility which is not based on anything absolutely fixed. Obviously, the
main term is the first one, controlled by A. The B-term is a correction, not very essential, but
acceptable from the point of view of the assumed GL(n, C)-symmetry.

In the Lagrangian (100), (101) for the wave function the scalar product is also replaced by this
new, dynamical version. Due to the resulting very essential nonlinearity following from (104)
the quantum-classical gap in a sense becomes diffused. One can hope that in the resulting
theory the decoherence phenomena may be explained. For example, if for simplicity we fix
Ψ

a as constant (non-excited), then we can show that differential equations for Γ obtained from
(104) have the following solutions: Γrs = Grs exp (Et)

z
s = exp (Ft)

r
zGzs, where G = Γ(0) is

Hermitian and the forms GErs = GrzEz
s, (FG)rs

= Fr
zGzs are also Hermitian. Let us observe

that depending on the initial data G, E, F the scenarios of the evolution of t �→ Γ(t) may
be quite different: oscillatory, exponentially increasing, exponentially decaying. This may
suggest that in the rigorous total solutions for t �→ (Ψ(t), Γ(t)) also various phenomena may
be predicted, e.g., oscillations, but perhaps also decoherence.

The maximal class of GL(n, C)-invariant Lagrangians L[Ψ, Γ] is relatively wide. It seems
however that the simplest and at the same time most realistic subclass is given by the
following expression:

L = iα1Γab

(

Ψ
a
Ψ̇

b
− Ψ̇

a

Ψ
b

)

+ α2ΓabΨ̇
a

Ψ̇
b
+ (α3Γab + α4Hab)Ψ

a
Ψ

b

+ α5Γ
da

Γ
bc

Γ̇abΓ̇cd + α6Γ
ba

Γ
dc

Γ̇abΓ̇cd − V

(

Ψ, Ψ; Γ
)

. (105)

The quantities α1, . . . , α6 are real constants. They control all the effects mentioned above.
The separation of the α3- and α4-terms may look artificial. In fact, their superposition is as a
matter of fact one term. Nevertheless, it seems reasonable to separate the true Hamiltonian
effect from that following from the identity operator type. As mentioned formerly, to obtain
the correct Schrödinger behaviour in the Ψ-sector we must put α1 = h̄/2, α4 = −1. But of
course if α2 �= 0, then in addition to the Schrödinger behaviour we have also as usual in
analytical mechanics, the acceleration term in Ψ. The scheme is a bit obscured because of
our dealing with a finite-level system. The extension to the usual quantum mechanics, say in
R

3, is possible. Besides, let us remind our papers devoted to the study of the SU(2, 2)-gauge
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gravitation theory [12, 13]. There the problem of nonlinearity and the interplay between first-
and second-order differential equations for the matter fields appear in a much more evident
way.

We do not quote “Schrödinger equation” for the pairs (Ψ, Γ) ruled by Lagrangians (105).
Their structure is very readable, nevertheless, their strong nonlinearity prevented us from
finding their convincing full solutions, when the mutual interaction between Ψ- and
Γ-degrees of freedom is taken into account.

Summary of Section 4: This section was one of the main parts of our study. We are aware
that in spite of all similarities and analogies there is still some really quantum kernel of
the theory which seems to be incompatible with any attempts of formulating the peaceful
coexistence of the unitary “between measurement” and the “reduction-like” phenomena in
quantum physics. As usual, the idea of nonlinearity in quantum physics turns out to be
attractive. It seems to be the only way to coordinate the “between measurements” unitary
evolution and the measurement reduction process. There were various more or less happy
ways to introduce nonlinearity; some of them were rather artificial. Our idea resembles
the transition from the special to general relativity. Namely, we give up the concept of
scalar product fixed once for all and instead consider the scheme in which the wave function
and scalar product are both dynamical objects in the mutual interaction. Lagrangian for
the scalar product is geometric, invariant under the full linear group and so is the total
Lagrangian for the system: wave function and the scalar product. The resulting scheme is
nonlinear in an essential, non-perturbative way. There are some indications that the resulting
nonlinear system of equations may describe both the “between measurements” evolution
and the reduction of state process.

5. Modifications of the WWMV approach

We have seen that the mentioned approach was a very fruitful tool for studying
the quasi-classical problems and the relationship between information and symmetry.
Unfortunately, its literal version applies rigorously only to systems with affine geometry
of the classical phase space. There are various ways to generalize those methods, usually
based on group theory and deformation techniques. Some of those methods are applicable
also to discrete structures.

Let G be a locally compact topological group. Its Haar measure element will be denoted by
dg. To be honest, to avoid problems with the convergence of integrals, we may assume G to
be compact. Let us introduce the following non-local product of functions on G:

(A ⊥ B)(g) =
∫

K (g; g1, g2) A(g1)B(g2)dg1dg2. (106)

To be honest, we think about the multiplication rule for functions not necessarily on G itself,
but rather on its affine space, i.e., on the set on which G acts with trivial isotropy groups.
Therefore, we assume the translational invariance, so that K (g; g1, g2) ≡ K

(

g1g−1, g2g−1
)

.
The simultaneous assumption of associativity, A ⊥ (B ⊥ C) = (A ⊥ B) ⊥ C implies that K
must satisfy the following functional equation:
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∫

K(g1, g)K
(

g2g−1, g3g−1
)

dg =

∫

K

(

g1g−1, g2g−1
)

K(g, g3)dg. (107)

When G is a locally compact Abelian group, one can try to translate (107) into the
language of Fourier transforms. This is suggested by the convolution-like structure of this

condition. Let us remind that the dual group ̂G is the multiplicative group of all continuous
homomorphisms of G into T = SU(1) — the group of complex numbers of modulus 1. The

Fourier transform of a complex function Ψ on G is the function ̂Ψ on ̂G given by:

̂Ψ(χ) =

∫

�χ|g�Ψ(g)dg, (108)

where �χ|g� denotes the value of χ ∈ ̂G at g ∈ G. And conversely,

Ψ(g) =
∫

�χ|g�̂Ψ(χ)dχ. (109)

Performing the two-argument Fourier transformation on the equation (107) we obtain the
following condition:

̂K (χ1, χ2χ3)
̂K (χ2, χ3) =

̂K (χ1, χ2)
̂K (χ1χ2, χ3) . (110)

This is an equation for the factor of ray representations. It is clear that the Fourier
representation of (106) in the Abelian case is given by:

(

̂A⊤̂B
)

(χ) =

∫

̂K

(

χ1, χ
−1
1 χ

)

̂A (χ1)
̂B
(

χ
−1
1 χ

)

dχ1. (111)

This is the ̂K-twisted convolution of functions. It becomes the usual convolution when ̂K ≡ 1.
In analogy to (111) one defines the twisted convolution of measures.

A similar operation, i.e., twisted convolution of functions, or more generally, one of measures,
may be defined in any locally compact topological group,

(A⊤B) (g) =
∫

ω

(

h, h−1g
)

A(h)B
(

h−1g
)

dh, (112)

again in the sense of Haar measure dh. This product is associative for any group G,
not necessarily the Abelian one, if and only if the mentioned functional equation (110)
holds, i.e., if ω behaves like the factor of the ray representation, ω (g1, g2)ω (g1g2, g3) =

ω (g1, g2g3)ω (g2, g3). One can show that there is a relationship between the twisted
convolutions of functions (or measures) over G and the usual ones in some G-extension
of the circle group T = SU(1). The choice of the phase-space group G depends on the
particular model.
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condition. Let us remind that the dual group ̂G is the multiplicative group of all continuous
homomorphisms of G into T = SU(1) — the group of complex numbers of modulus 1. The

Fourier transform of a complex function Ψ on G is the function ̂Ψ on ̂G given by:

̂Ψ(χ) =

∫

�χ|g�Ψ(g)dg, (108)

where �χ|g� denotes the value of χ ∈ ̂G at g ∈ G. And conversely,

Ψ(g) =
∫

�χ|g�̂Ψ(χ)dχ. (109)

Performing the two-argument Fourier transformation on the equation (107) we obtain the
following condition:

̂K (χ1, χ2χ3)
̂K (χ2, χ3) =

̂K (χ1, χ2)
̂K (χ1χ2, χ3) . (110)

This is an equation for the factor of ray representations. It is clear that the Fourier
representation of (106) in the Abelian case is given by:

(

̂A⊤̂B
)

(χ) =

∫

̂K

(

χ1, χ
−1
1 χ

)

̂A (χ1)
̂B
(

χ
−1
1 χ

)

dχ1. (111)

This is the ̂K-twisted convolution of functions. It becomes the usual convolution when ̂K ≡ 1.
In analogy to (111) one defines the twisted convolution of measures.

A similar operation, i.e., twisted convolution of functions, or more generally, one of measures,
may be defined in any locally compact topological group,

(A⊤B) (g) =
∫

ω

(

h, h−1g
)

A(h)B
(

h−1g
)

dh, (112)

again in the sense of Haar measure dh. This product is associative for any group G,
not necessarily the Abelian one, if and only if the mentioned functional equation (110)
holds, i.e., if ω behaves like the factor of the ray representation, ω (g1, g2)ω (g1g2, g3) =

ω (g1, g2g3)ω (g2, g3). One can show that there is a relationship between the twisted
convolutions of functions (or measures) over G and the usual ones in some G-extension
of the circle group T = SU(1). The choice of the phase-space group G depends on the
particular model.
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Let us go back to the situation when G is the group which models the configuration space,
not the phase space. And we assume G to be Abelian. The phase space G will be given

by G = G × ̂G, where the dual group ̂G is to model the “space of momenta”. In analogy
to the natural symplectic two-form on the linear space V × V∗ we introduce the following
two-character on G, ζ : G × G → C (the two-character, because ζ(ξ, ·), ζ(·, ξ) are characters
on G for any ξ ∈ G):

ζ ((x1, π1), (x2, π2)) = �π1|x2��π2|x1� =
�π1|x2�

�π2|x1�
. (113)

It is non-singular in the sense that the mappings ξ �→ ζ(ξ, ·), ξ �→ ζ(·, ξ) are isomorphisms
of G onto G. Wave functions in the position and momentum representations are defined as

amplitudes on G and ̂G respectively. The group actions of G, ̂G on wave functions are given
by the following unitary representations:

(U(x)Ψ) (y) = Ψ

(

x−1y
)

, (V(π)Ψ) (y) = �π|y�Ψ(y). (114)

The second operator is obviously equal to the argument translation when the momentum

representation is used: (V(π)Ψ)

∧

(λ) = ̂Ψ
(

π−1λ
)

. One can check easily that the following
fundamental commutation relation is satisfied:

U(x)V(π)U(x)−1V(π)
−1

= �π|x� = �π|x�−1. (115)

Following the ideas of the Weyl prescription we define the following unitary operators:

Wp(x, π) = �π|x�pU(x)V(π) = �π|x�p−1V(π)U(x). If in G or ̂G there exists a unique

square root like in R
n, then we put p = 1/2 and then W

(

x−1, π−1
)

= W(x, π)
−1. But in

general it does not exist and we retain p as a non-defined label. We take the linear closure:

A =

∫

̂A(x, π)Wp(x, π)dxdπ, (116)

̂A denoting the Fourier transform of A. The corresponding “multiplication” rule for the
functions A, B is based on the kernel:

Kp ((x1, π1), (x2, π2)) =

∫

�π1|ξ��η|x1��π2|ζ��θ|x2��η|ζ�
1−p

�θ|ξ�
−pdξdηdζdθ. (117)

One can ask about the analogue of the “continuous canonical basis” of the usual H+-algebra
over R

2n:
ρq1,q2

(q, p) = δ

(

q −
1

2
(q1 + q2)

)

exp

(

i

h̄
p · (q2 − q1)

)

, (118)

ρp1,p2
(q, p) = δ

(

p −

1

2
(p1 + p2)

)

exp

(

i

h̄
(p1 − p2) · q

)

. (119)
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Those bases satisfied:

qi
∗ ρq1,q2

= q1
i
ρq1,q2

, ρq1,q2
∗ qi

= q2
i
ρq1,q2

, (120)

pi ∗ ρp1,p2
= p1iρp1,p2

, ρp1,p2
∗ pi = p2iρp1,p2

. (121)

It turns out, however, that when there is no square-rooting in G, ̂G, there are some problems.
Namely, in R

2n we could use both ζ and ζ2 as kernels. But in a general Abelian group it
is essential that we use ζ, not ζ2 as a kernel. The analogue of (120), (121) reads: A ∗ ρx,y =

A(x)ρx,y, ρx,y ∗ A = ρx,y A(y). We obtain ρx1,x2 (x, π) = δ
(

x1x2x−1
)

�π|x1x−1
�. If x1x2 fails to

be a square, then gx1x2 = 0. It is not yet clear for us if our procedure was improper or if we
deal with the real superselection rule.

Let us observe that the group commutator does not feel the choice of p:

Wp(x1, π1)Wp(x2, π2)Wp(x1, π1)
−1Wp(x2, π2)

−1
= ζ ((x1, π1), (x2, π2)) Id. (122)

If G = Z
n or T

n
= (SU(1))n, then the mentioned problem with ζ may be connected with

what in solid state physics is known as so-called Umklapp-Prozessen.

Let us observe also that in a sense one can use the following kernel of the non-local product

of functions over the discrete group Z
2n: K(n, m) = exp

(

iBabnamb
)

, where [Bab] is the real

skew-symmetric matrix. Nevertheless, the resulting product will have then some strange
features.

Let us finish with some remarks concerning the asymptotics of “large quantum numbers”
in the quasi-classical limit transition. For simplicity we consider only the wave functions
of the planar rotators, Ψn(ϕ) = exp(inϕ), n ∈ Z, where ϕ is the angular variable. Ψn is
proportional to the eigenfunction of the angular momentum with the eigenvalue nh̄,

h̄

i

∂

∂ϕ
Ψn = h̄nΨn. (123)

Clearly
Ψn ≃ exp

(

i

h̄
(nh̄)ϕ

)

; (124)

it is just ln = nh̄ that is interpreted as the physical value of the angular momentum. But the
analysis h̄ → 0 does not work directly. We must take superpositions of quickly-oscillating
eigenequations,

Ψ(ϕ) = ∑
n

cn exp(inϕ), (125)

where the sequence Z ∋ n �→ cn ∈ C is concentrated in a range

n0 − ∆n ≪ n ≪ n0 + ∆n. (126)
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It is assumed here that n0 ≫ ∆n ≫ 1 and the sequence is assumed to be slowly-varying in
the range (126), so that

|cn+1 − cn|

|cn|
≪ 1. (127)

It follows from the Fourier theory that approximately (125) may be replaced by:

Ψ(ϕ) =

∫

c(k) exp(ikϕ)dk, (128)

where at the discrete values of k = n c(k) equals cn and changes slowly, e.g., linearly between
them. Then Ψ(ϕ) is well concentrated and one can consider it as a quickly-vanishing at
infinity function on R. And then one substitutes k = p/h̄ and further on the previous
asymptotics h̄ → 0 may be used. The same when there are more degrees of freedom. Let us
remind that it was just this limit transition we have used in the theory of angular momentum
[14–16]. By the way, the conditions (126), (127) enabled one to remove artificial picks of the
basic wave functions at k = 2π in SU(2). Namely, the subsequent picks have opposite signs
and mutually cancel when (126), (127) are satisfied.

Summary of Section 5: We have mentioned here about some generalizations of the
Weyl-Wigner-Moyal-Ville procedure. They are based on some group-theoretic models and
may be perhaps helpful in the formally “classical”, although in fact quantum, approach to
dynamics.

6. Conclusions

We have discussed certain problems concerning the relationship between classical and
quantum theories. Analyzed are both differences and formal similarities between them.
What concerns similarities, we show that in contrast to some popular views, it is not points
in the classical phase space but rather n-dimensional Lagrangian submanifolds in the phase
space that corresponds to the quantum pure states. More precisely, the classical “pure state”
is a probability distribution on the Lagrange manifold, or rather on its horizontal Legendre
lift to the contact space. Here n is the number of degrees of freedom and the contact space
is, roughly speaking, the Cartesian product of the phase space by R or U(1) with geometry
given by pidqi

− dz. It was shown that superpositions, scalar products, etc. are defined
in the set of Legendre manifolds and have some formal properties of the corresponding
quantum concepts. They are based on the Huygens notion of envelope of the wave fronts.
This was shown both directly on the basis of limit transition in the Weyl-Wigner-Moyal-Ville
formalism and on the basis of general symplectic language. Nevertheless, it is clear that
quantum mechanics with its reduction and decoherence problems is something completely
different than the classical theory. We try to show that unlike this view, there is a nonlinear
modification of quantum theory which perhaps would be free of the mentioned paradoxes.
It is based on the classical language of variational principles and on the concept of dynamical
scalar product. The system consisting of wave function and scalar product satisfies an
essentially nonlinear, non-perturbative dynamical equation. Its characteristic nonlinearity
seems to be able to describe analytically the decoherence process. Finally, we review some
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generalization of the Weyl-Wigner-Moyal-Ville formalism and discuss the quasi-classical limit
in terms of “large quantum numbers”.

The general conclusion/hypothesis is that perhaps there is no such a gap between classics
and quanta as one commonly believes.
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Chapter 2

Photons and Signals in the Age of Information

Cynthia Kolb Whitney

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59067

1. Introduction

The history of Physics contains some inexplicable mysteries, and one of them is this: back
in the early 20th century, Einstein was working on the idea of the ‘Photon’ and on the idea
of the ‘Signal’ at essentially the same time [1,2], but he did not relate them to each other.
They seem to  have arisen totally  separate  in  his  mind,  and they led to  totally  separate
subsequent developments. The Photon played a central role in the development of Quantum
Mechanics  (QM),  and  the  Signal  played  the  central  role  in  the  development  of  Special
Relativity Theory (SRT).

QM and SRT are now the two great pillars of early 20th century Physics, but they seem to be
in conflict over the issue of communication. In QM, Schrödinger’s Equation is basically the
Fourier transform (just a restatement in terms of different variables) of a statement from
Classical Mechanics: Total energy = kinetic energy + potential energy. This statement has no
signal propagation speed involved in it. So QM appears to allow instantaneous communication
over arbitrary distances. But in SRT, Einstein’s Second Postulate limits all communication to
light speed, c.

Since QM and SRT conflict so dramatically on the issue of communication, at least one of them
must, in some sense, be wrong. So we are left unsure about what to believe, or take as a
foundation for future development.

Can we find out anything decisive from experiments or observations?

The foundation for QM is usually called the Quantum Hypothesis, and not the Quantum
Postulate, because the granularity aspect of QM is experimentally testable in various ways. So
far, the granularity aspect of QM never seems to fail. This fact stands in favor of QM. But many
people still do not believe in the instantaneous communication aspect of QM that is manifest
in Schrödinger’s Equation.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The foundation for SRT can be called the Light-Speed Postulate, but not the Light-Speed
Hypothesis, because light speed really is not experimentally testable, since a test would involve
at least two different spacetime points, and the correlation of data from two different spacetime
points would involve the Light-Speed Postulate itself. Despite numerous claims to the
contrary, SRT has not been tested in a way that actually could have falsified it, and only very
indirect testing appears even feasible for SRT.

Einstein’s General Relativity Theory (GRT) flows from SRT, and GRT is testable, at least
observationally, although not experimentally. But the new hypotheses that it offers for
observational test are few in number, and great in technical difficulty. So even indirect testing
of SRT through GRT does not look very promising.

An altogether different approach therefore seems needed: instead of demanding experiments
or observations, we should be reviewing the founding ideas themselves, in light of new insights
gathered in the intervening century. Evidently, at least one of the founding ideas, and possibly
both of them, need to be updated, or else retired and replaced. This paper aims to identify
possible update(s)/replacement(s) that may help.

Some of the needed insights come from engineering practice, rather than from theoretical
physics. In the mid 20th century there was a flowering of Information Theory (IT), first in
connection with wartime code breaking and code making, and then in connection with the
post-war communication industry. All of that development led in turn to our modern
computation industry, and our current ‘Age of Information’.

IT uses the concept of Entropy, taken from classical Thermodynamics, and with the application
of a minus sign, provides a quantitative mathematical measure for Information. This measure
can be used in support of all sorts of engineering concept analyses and design decisions, etc.
A convenient reference about the IT concepts and their general applications is Leon Brillouin’s
wonderful little book Science and Information Theory [3]. Flores Gallegos [4] discusses some
particular applications in QM.

Viewed from our vantage point here in the early 21st century, IT actually provides a clear
disqualifier for Einstein’s Second Postulate. The problem is this: the Second Postulate is based
on the behavior of a classical infinite plane wave, and an infinite plane wave cannot convey
any information whatsoever!

The reason for this perhaps startling assertion is that an infinite plane wave is to electromag‐
netic communication what a steady hum is to auditory communication: background at best.
There is no music in the monotonous hum, and there is no message in the infinite plane wave.

Information requires structure: amplitude modulation, or frequency modulation, or on-off
switching. An infinite plane wave does not have any such structure. Because of this deficit, we
certainly need a new Signal model as the foundation for an updated SRT.

Possibly we also need a better Photon model at the foundation of QM. We do not actually have
a detailed and universally accepted model for photons in QM. Attention has focused more on
material systems, which are said to change state, and in so doing, emit or absorb photons that
carry packets of energy and angular momentum. As for electric and magnetic fields, what we
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Possibly we also need a better Photon model at the foundation of QM. We do not actually have
a detailed and universally accepted model for photons in QM. Attention has focused more on
material systems, which are said to change state, and in so doing, emit or absorb photons that
carry packets of energy and angular momentum. As for electric and magnetic fields, what we
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have is the notion from Quantum Electrodynamics of a ‘virtual photon’. This terminology
reveals the desirability of having some unified, photon-like, approach for both Coulomb-
Ampère and radiation fields, but it does not actually provide details.

Without detail to argue against, we are apparently free to develop a Photon model de novo, in
a way that serves not only as the Photon model for QM, but also provides the more realistic
Signal model needed for an updated SRT.

The new Photon/Signal model need not involve yet another new Postulate. Remember what
Euclid taught the world through his Geometry: use no more Postulates than absolutely
necessary. The reason is that unnecessary Postulates can conflict with other Postulates already
in place, and so lead to Paradoxes.

In SRT, we do indeed have many Paradoxes, involving rods, clocks, trains, lightening strikes,
snakes, barns, twins, and so on, and on. A prime suspect for their root cause is the unnecessary
Second Postulate. In QM, Schrödinger’s Equation seemingly came full-formed from heaven,
and to that extent was also a Postulate, and indeed one that conflicted with Einstein’s Second
Postulate. The mysterious feel of quantum duality, for example, may suggest a possible QM
Paradox yet to be fully articulated. If so, the new Photon/Signal model can offer a candidate
approach to solve the problem.

The Photon/Signal model is just very familiar, old-fashioned mathematics: 1) partial differen‐
tial equations (Maxwell’s first order coupled field equations), 2) their family of solutions
(starting with Gaussian pulses, and generating by differentiations the higher-and-higher order
Hermite polynomials multiplying the Gaussian pulses), and 3) boundary conditions (no
backflow of energy behind the source, no overflow of energy beyond the receiver). This
formulation is enough to determine the particular solution that fits any particular problem.

One general rule in Science is this: when a venerable and well-tested mathematical approach
exists, try it first, before abandoning it in favor of a new approach. The irony is that Einstein
chose not to apply usual the mathematical approach, and instead to introduce his additional
Postulate. But he did it so long ago that, despite the long list of Paradoxes generated by SRT,
his Second Postulate has itself become ‘venerable’, and therefore nearly impossible to unseat.

But with SRT updated with the new Photon/Signal model, based entirely on the old-fashioned
mathematical approach, QM no longer needs to conflict with SRT. Atoms can have solution
states in which energy loss by radiation is countered by an energy gain mechanism newly
identified with the updated SRT. It is no longer necessary to postulate the Schrödinger equation
just to prevent atomic death by loss of orbit energy to far-field radiation.

With n new starting point for QM, there can be a new development for QM. Some type of
Quantum Gravity has long been sought, but with GRT being founded in SRT, with c-speed-
only communication, and with QM being founded in Classical Physics, with instantaneous
communication, that goal has been hard to reach. But the combination of an updated SRT and
traditional Statistical Mechanics (SM) offers a way forward.

The new protocol for treating gravity is this: 1) First notice that gravitational attraction formally
resembles a statistical residue from magnetic interactions between elements of charge-neutral
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matter that are carrying electrical currents, ‘current elements’ for short. Current elements were
well described by Ampère before Maxwell ever came along. 2) Then apply SM to pairs of
current elements.

QM also connects to modern technology problems. Chemistry is wonderfully rich application
area for QM. But current-day Quantum Chemistry (QC) is not very easy to use, mainly because
of heavy computation loads associated with numerical integrations. The new photon/signal
model leads to a different approach for QC, one that is algebraic, rather than integral, in
character. This paper includes some recent results from the application of Algebraic Chemistry
(AC) to research on the chemistry of water; namely, the form of water known as ‘EZ water’,
because it excludes positive ions.

Finally, QM may connect to Elementary Particle Physics in a manner yet to be fully developed.
Just as the myriad compounds in Chemistry arises from not-very-many chemical elements,
some significant part of the myriad of currently understood ‘elementary’ particles may arise
from just two of them: the electron and the positron.

The suggestion for this idea lies in Chemistry’s Periodic Table (PT). The way that the electron
spin states fill up with increasing nuclear charge suggests the existence of not only electron
pairs that have opposing spins, but also electron rings that have aligned spins. Electron rings
involve up to three, five, even seven, electrons. Basically, electrons within atoms form, not only
opposite-spin couples, but also same-spin teams. Since electron rings apparently do occur in
atoms, they may well also occur separated from atomic nuclei, and therefore looking like exotic
elementary particles. And the same may be said of positrons. Thus we have a rich array of
possibilities yet to explore.

2. The photon / signal model

The first part of the Photon/Signal model consists of the governing partial differential equa‐
tions. These are Maxwell’s four first-order coupled field equations. Jackson [5] gives Maxwell’s
equations in modern notation and Gaussian units as:

1 1 40, 4 , / 0, / .t t
c c c

Ñ = Ñ = Ñ´ + ¶ ¶ = Ñ´ - ¶ ¶ =g g pprB D E B H D J (1)

Here B is magnetic field and E is electric field. The constant 1 / c = ε0μ0, where ε0 is electric
permittivity and μ0 is magnetic permeability. In free space, D=ε0E, H=B/μ0, and charge density
ρ and current density J are zero. Free space will be the case of interest henceforth in this paper.

The second part of the Photon/Signal model is the family of suitable finite-energy solutions.
This is developed as follows. Let the word ‘pulse’ be the short description for a field profile
that is rounded on top and sloping down on the sides, and fading gradually to zero; for
example, a Gaussian function.
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The mechanism for the waveform development is that the spatial derivatives applied in
Maxwell’s equations change the original Gaussian pulse into successively longer wavelets
consisting of successively higher order Hermite polynomials multiplying the original Gaus‐
sian. As a result, the energy in the wavelet gets more and more spread out along the propa‐
gation path.

Observe that waveform development is inexorable, just like ever-growing entropy in Ther‐
modynamics. This is, I believe, where Entropy really enters into Physics. That is, Maxwell’s
first order coupled field equations are what give to Physics its obvious Arrow of Time. In citing
electromagnetism as the cause for irreversibility, this idea follows Bentwich [6]. (It does not,
however, give any hope for reversing anything.)

Let the spatial variable argument for the pulse be x. Let the direction of the initial pulse be y.
Figure 1 illustrates this Gaussian pulse, along with a snapshot showing how it evolves over
one complete cycle through Maxwell’s first-order coupled field equations. Series 1 is the input
pulse, and Series 2 is the waveform developed from it. A more complicated Figure was given
in Whitney [7]. This simplified Figure 1 focuses on just the one issue: waveform development.
The wavelet is shown bold because it has not been given sufficient attention before.
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Figure 1. Illustration of waveform development.
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Now, to solve the stated propagation problem, one can pose a primary pair of pulses in E and
B to guarantee travel, and, for more realism, add a second such pair, offset a quarter cycle in
time and perpendicular in space, to model circular polarization, like a real physical photon
exhibits.

The third part of the Photon/Signal model is the pair of propagation boundary conditions: no
backflow of energy behind the source, and no overflow of energy beyond the receiver. To
guarantee these boundary conditions, one can demand E=0 at these boundaries.

One can fulfill the required zero E fields by matching the signal leaving the source toward the
receiver with 1) another fictitious signal going from the source in the opposite direction, so as
to make the E field zero at the source, and 2) another fictitious signal approaching the receiver
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from the opposite direction, so as to make the E field zero at the receiver. One can even continue
this boundary-fixing process, to clean up each tiny new departure from zero E at a boundary
that each additional fictitious signal creates at the end of the path opposite to the end that it is
meant to correct.

Carried to an infinite sum of corrections upon corrections, this is certainly a very complicated
picture about electromagnetic fields. How then can we extract from it some simple statement
about propagation speed? We have all been trained to just say c. “But relative to what?” we
might ask. If we knew the source and receiver were stationary relative to each other, we could
be sure that c =crelative to receiver, consistent with Einstein’s Second Postulate. Otherwise, we
would have to say more.

If we would focus attention to moments when the bulk of the energy is very near the receiver,
we could be fairly confident that c =  crelative to receiver, again consistent with Einstein’s Second
Postulate. But if we would focus attention to moments when the bulk of the energy is still very
near the source, moments when the receiver is nothing more than a distant phantom, we would
be hard pressed to argue against the proposition that c =  crelative to source. (This would be consis‐
tent with the 1908 Ritz Proposal [8], which was much investigated in the early to mid 20th

century as a candidate alternative to Einstein’s Second Postulate, but was ultimately rejected.)

If we would need to characterize an entire propagation scenario, we would have to go even
further, and consider all moments along the way. We would have neither the Einstein Second
Postulate, nor the Ritz Proposal, but rather something else more complicated. It certainly must
conform to Einstein’s Second Postulate late in the scenario, when the bulk of the energy is near
the receiver. But early in the scenario, when the bulk of the energy is still near the source, it
must conform to Ritz’s Proposal. And in between, it must represent in some mathematically
appropriate way an idea not previously considered: a transition from one reference for c to the
other.

Here is one way to formulate the problem. Let variable x represent distance along the propa‐
gation path, and let variable t  represent time into the propagation process. At any point x, t
there are fields E (x, t) and B (x, t) with magnitudes E (x, t) and B(x, t), and from them a local
energy density:

2 2( , ) ( , ) ( , ) 2.S x t E x t B x té ù= +ë û (2)

One way to characterize the propagation is with path integrals. [9-13] Consider the following
ratio of two path integrals:

( ) ( , ) ( , ) .
path path

r t xS x t dx S x t dx= ò ò (3)

This ratio provides a function that begins at the source, and ends at the receiver, and at the
temporal midpoint of the scenario, gives equal weight to both the source and the receiver. This
behavior captures the proposed transition of the reference to which the light speed c is assumed
relative.
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3. Using the changing reference for c changes the results

The concept of the changing reference for c to be relative to appears relevant for an important
scenario that was considered even before Einstein arrived on the scene. The scenario involves
the potentials and fields created by rapidly moving sources, and it was addressed starting in
the late nineteenth century and very early twentieth centuries. Researchers then made the same
Assumption that Einstein later made his Second Postulate in founding SRT, but they were not
attentive enough to see that there indeed was an Assumption, and to call it out as his Second
Postulate. So Einstein is to be commended for calling attention to this Assumption.

The sources generally cited for this early (1898 to 1901) problem are A. Liénard [14] and E.
Wiechert [15]. Although they worked at about the same time, they worked separately. They
got the same results, as did all contemporary and subsequent investigators, because all persons
working from then up until now have used the same input Assumption; namely, that the speed
of light is always c with respect to the receiver of the light.

The Liénard- Wiechert results are given in [5], and in every other standard EM book. They are
displayed in [7], and that short passage is quoted again here, for review and subsequent further
discussion:

“The standard scalar and vector potentials are:

retarded retarded
( , ) 1 / and ( , ) / ,t e R t e Ré ù é ùF = =ë û ë ûr A rk kb (4)

“where κ =1−  n⋅β, β is source velocity normalized by light speed c, and n=R/R (a unit vector),
and R=rsource (t-R/c)-rreceiver (t) (an implicit definition for the terminology ‘retarded’).

“The LW fields obtained from those potentials are then:

[ ]2
3 2 3

1 1( , ) ( )(1 ) ( ) ( / ) ,

( , ) ( , ).
retarded
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t e d dt
R c R

t t

ì ü= - - + ´ - ´í ý
î þ

= ´

b
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“The 1 / R fields are radiation fields, and they make a Poynting vector (energy flow per unit
area per unit time) that lies along nretarded:

( ) ( )2

4

      .
4 4

radiative radiative

radiative retarded radiative radiative retarded

c

c c E
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p p

P E B
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“The 1 / R 2 fields are Coulomb-Ampère fields, and the Coulomb field
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{ }2 3 2( , ) ( )(1 ) .
retarded

t e R= - - b kE r n b (7)

“does not lie along nretarded as one might initially expect; instead, it lies along (n-β)retarded. Assume
that β does not change much over the total field propagation time, in which case (n-β)retarded is
virtually indistinguishable from npresent.”

Thus the Coulomb attraction/repulsion and the radiation Poynting vector have distinctly
different directions. This result does not look right physically. It looks as though advance
information is being provided on one, but not the other, of two information channels.

Now consider the same problem using the new and more nuanced definition for the light speed
reference. Observe that a line that connects the source position at the temporal midpoint of the
scenario to the receiver position at the temporal midpoint of the scenario defines both the
distance and the direction that the energy must travel in order to achieve the proposed
transmission of the signal from the source to the receiver. This specification implies that we
need potentials and fields to be, not retarded, but half-retarded. Now the potentials become:

[ ] [ ]  
( , ) 1 / ( , ) / .retarded retardedandt e R t e R

- -
F = =k k

half half
r A r b (8)

The fields become:
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The Poynting vector becomes:
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The direction of the Coulomb field becomes:

( ) ( ) .retarded present retarded retarded- - -- » @half half halfn n nb (11)

This direction is the same as the direction of the radiation Poynting vector. That is, the Coulomb
field and the Poynting vector are now reconciled to the same direction, instead of conflicting
with each other.
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4. The corrected force direction means the hydrogen atom can survive
classically

Many authors have expressed the opinion that really explaining the Hydrogen atom requires
some presently-unknown short-range repulsive force between the electron and the proton;
see, for example, Lokajicek, et al [16]. But given the results just presented, no mysterious new
repulsive force is needed. With the direction of the Coulomb field being nhalf-retarded, there is a
tiny tangential component of Coulomb force aligned with the orbit velocity. So there is a torque
on the atom, and the torque pumps energy into the atom, and that process can work to balance
the energy loss due to radiation.

That is to say: having a more nearly correct model for potentials and fields created by rapidly
moving charges makes it possible to explain the immortality of the Hydrogen atom without
first postulating the immortality of the Hydrogen atom; i.e., postulating Schrödinger’s equation.

That is to say: we need not postulate Schrödinger’s equation; w can instead just carry out the
old-fashioned math.

In my 2012 and 2013 Intech papers, I listed just the pertinent results. Here is more detail and
derivation:

Let the masses of the electron and the proton be me and mp. Note that me < <mp, but mp is not
infinite.

Let the orbit radii of the electron and the proton be re and rp. Note that rp < < re, but rp is not zero.

Let the charges on the electron and the proton be − e and +e.

The magnitude of the nominally attractive force within the atom is F = e 2 / (re + rp)2.

Let the orbit frequency be Ω. The orbit speed of the electron is ve = reΩ and that of the proton
is vp = rpΩ.

The magnitude of the tiny tangential force on the electron is Fe = F vp / 2c = F rpΩ / 2c.

The magnitude of the tiny tangential force on the proton is Fp = F ve / 2c = F reΩ / 2c.

The magnitudes of the torques on the electron and on the proton are Te = reFe and Tp = rpFp, both
equal to F rerpΩ / 2c.

The total torque on the electron-proton system is T total =Te + Tp =2T = F rerpΩ
2 / c.

The torque power delivered to the system is Ptorque =TΩ = F rerpΩ
2 / c.

The squared orbit frequency is determined from either F =mereΩ
2 or F =mprpΩ

2.

The more convenient of the two options is Ω 2 = F / mere. With that expression, the approxima‐
tion re ≈ re + rp yields:
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( ) ( ) ( ) ( )2 2 4 4 4 3 .torque e p p e p e e p p e pP Fr r c F r m c e r m c r r e m c r r= W = = + » + (12)

This is a reasonably simple expression. But more important than its simplicity is its very
existence. The existence of any such expression means that there exists an energy gain mecha‐
nism to balance against the known energy loss mechanism, i.e. radiation. This situation
provides a chance for balance, allowing the Hydrogen atom to avoid death by energy loss to
radiation.

The Ptorque is actually quite large, and so it changes the whole emphasis of worry concerning
the Hydrogen atom. The question becomes, not why does the Hydrogen atom not radiate
and collapse to death, but rather why does the Hydrogen atom not torque itself up and ex‐
pand way beyond its known size?

The fact is: there exists much, much more radiation than was previously worried about, and
it is enough to produce the proper balance between radiation and torque.

In [17], I said that the extra radiation arises from finite signal propagation speed, which results
in circular motion of the center of mass of the Hydrogen atom, which in turn produces Thomas
rotation, and thereby scales up by a factor of 2 the overall rotation rate generating the radiation,
which increases the radiation power by a factor of 24.

But what should one say about that center-of-mass circular motion? In Newtonian physics,
where signal propagation speed is infinite, there is no such thing. In Maxwell physics, the
emphasis is on fields, and the responses of individual charges, but not as much on the responses
of whole charge systems, such as atoms. So the issue doesn’t come up there. In Einstein’s
relativity physics, the emphasis is often on the observers of events more than on the events
themselves. System center-of-mass circulation seems not to come up, although Thomas
rotation does.

In [17], I noted that Thomas rotation is generally believed to be a result of the properties of
Lorentz transformations, and hence of SRT. That is the belief because one can think of Lorentz
transformations, not only in the usual, passive sense, as conversion from an observer in one
inertial coordinate frame to another observer in another inertial coordinate frame, but also in
the active sense, as the application of a ‘boost’ in velocity, the result of an acceleration, the
result of a physical force. A series of non-co-linear boosts does indeed produce Thomas
rotation.

But in [17] I also remarked that Thomas rotation does arise, not just from Lorentz transforma‐
tions, but also from Galilean Transformations. That fact can be demonstrated in detail as
follows:

For simplicity, let all motion be in the x, y plane. The scenario begins at time coordinate ct0

with one of the particles, say the electron, at rest at spatial coordinates x0, y0. Let an attraction
from another particle act in the x direction. Let an increment of velocity ΔVx =ΔV  be imposed,
and let an increment of time Δt  elapse. The coordinates of the electron then become:
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Now let an attraction from another particle act in the y direction. Let an increment of velocity
ΔVy =ΔV  be imposed, and let another increment of time Δt  elapse. The coordinates of the
electron then become:
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Observe that, if the Galilean velocity boosts had been applied in the opposite order, then the
ending coordinates of the electron would have been:
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Observe that: the squared incremental length changes have the same magnitude either way:
(2ΔVΔt)2 + (ΔVΔt)2≡  (ΔVΔt)2 + (2ΔVΔt)2 =5(ΔVΔt)2. That fact means the two possible sequences
of Galilean boost applications differ only by a rotation. That means each one individually
contains a rotation equal to half that total angle difference. This is the Thomas rotation.

Let me now go further, and assert that Thomas rotation will arise from any kind of velocity
transformation – Lorentz, or Galilean, or any other new kind that may not have a name yet.
Thomas rotation is a property of actual reality, not of any particular mathematical model for
reality.

With the Thomas rotation included, the total radiation from the atomic system is:
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The value of the separation re + rp for which Ptotal radiated = Ptorque is:

2 2 2 932 3 5.5 10e p p e cm.r r m e m c -+ = = ´ (17)

In the traditional approach to QM, re + rp =h 2 / 4π 2μe 2, where μ is the reduced mass, defined
by μ −1 =me−1 + mp−1, and very nearly equal to me, and h  is Planck’s constant, 6.626176×10−34 Joule-
sec, a fundamental constant given by Nature.
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The present analysis does not require Planck’s constant as an input. Instead, it provides an
estimate of Planck’s constant as an output:
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and, for convenience, also an estimate of the often-seen reduced Planck’s constant:

2 34/ 2 ( / ) 32 / 3 1.08 10p e Joule-sec.h e c m m= » » ´h p (19)

These estimates can be improved by taking due account of the fact that the sines of small angles
are not exactly equal to the angles themselves, and the cosines of small angles are not exactly
equal to unity. The sine corrections are third order in angle, while the cosine corrections are
second order in angle, which is more significant. Including those corrections reduces the
radiation power slightly, and so reduces the solution re + rp slightly, and so reduces the
estimates of h  and ℏ slightly – a step in the right direction.

Observe that, in making h  an output from, rather than an input to, a theory, the present work
follows both Enders [18] and Ralston [19].

5. EM interactions between neutral atoms: A candidate model for gravity?

Our current best understanding of gravity comes from GRT, which is founded in, and
developed from, SRT. The parameter c from SRT appears in GRT, and reveals the lineage. Like
electromagnetic signals, gravitational signals must have the finite propagation speed c. So
might gravitational signals actually be electromagnetic signals? If we choose to update SRT
with a more realistic signal model in place of the number c, does that require a similar update
for GRT? This Section explores such questions.

First let it be noted that the Einstein gravitational field equations, like Maxwell’s coupled field
equations, are a description at the microscopic scale, but the observable phenomena exist at
an extremely macroscopic scale.

Figure 2 illustrates a fairly typical barred spiral galaxy. What this image seems to suggest is:
there are mass concentrations at the two armpits of this galaxy. Maybe they are mega stars, or
black holes. Maybe they orbit another mass concentration at the center of the galaxy, or maybe
they just orbit each other. In any event, the two mass concentrations together create a rather
structured field of gravitational potential, into which millions, or billions, of smaller stars are
entrained, or temporarily detained, as they orbit the galaxy.
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Figure 3 shows the skeleton of a potential field created by two super-massive bodies orbiting
at half the signal propagation speed. The lines mark minima in gravitational potential as a
function of angle around the galaxy. Observe that this skeleton approximately matches this
galaxy image.

Figure 2. A typical barred spiral galaxy: “A Barred Spiral Galaxy ngc 1300 hubble photo”.
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Figure 3.  The skeleton for a barred spiral disc galaxy.  Originally computed for [20]. 
Note 1: To persist over time, the orbit speed of the driving two-body system in Figs. 2 and 3 must be 
such that the rates of energy loss by gravitational radiation and energy gain by torquing balance each 
other.  Like the Hydrogen atom, the galactic-size two-body problem can be solved this way. 
Note 2: Since most of the captive stars in Fig 2 orbit at lesser speed than the driving two bodies, and 
their potential pattern, with its skeleton, Fig. 3, the individual stars in the outer reaches do not keep 
up with the rotating spiral potential pattern.  An individual star sees a recurring ‘density wave’ of 
neighbor stars first approaching, then receding.  Such density waves have long been known, but not 
well explained.
Note 3: Fig. 3 is constructed using brute-force calculation of potential for lots and lots of location 
points, and then using numerical search over angles for local minimum values, and then fitting a 
function to the minima.  Note the slightly sinuous bar between the two driving bodies.  Even this 
detail is suggested in Fig. 2.
Now, in order to model gravity in terms of electromagnetic interactions, we need an expression of 
electromagnetic interaction that is appropriate for neutral atoms.  The best expression appears to be 
one that was known even before Maxwell.  André Marie Ampère already had a well-developed theo-
ry about forces between what he called ‘current elements’.  This term referred to charge-neutral ma-
terial increments in electrical circuits.  In modern times, P. Graneau wrote extensively about Am-
père’s theory and experiments; see for example Graneau [21] 
Ampère’s theory works perfectly well for ordinary closed circuits, as well as for incomplete broken 
circuits, such as may exist momentarily in transient situations, like explosive rupture of circuits.  
Ampère’s theory ought not be forgotten solely on the basis that more modern theory also works per-
fectly well for closed and stable electrical circuits.  Indeed, in some technological applications in-
volving transient situations like ruptures, Ampère’s theory explains more than the modern theory 
does.
One reason why Ampère’s formulation can sometimes be more powerful than a formulation based on 
Maxwell’s equations is that Ampère’s formulation can describe a multi-participant scenario straight 
away, whereas Maxwell’s equations require iteration through successive steps involving both Max-
well’s equations, and the Lorentz force law for the force F  acting on a charge q  moving with ve-
locity v :

Figure 3. The skeleton for a barred spiral disc galaxy. Originally computed for [20].

Note 1: To persist over time, the orbit speed of the driving two-body system in Figs. 2 and 3
must be such that the rates of energy loss by gravitational radiation and energy gain by
torquing balance each other. Like the Hydrogen atom, the galactic-size two-body problem can
be solved this way.

Note 2: Since most of the captive stars in Fig 2 orbit at lesser speed than the driving two bodies,
and their potential pattern, with its skeleton, Fig. 3, the individual stars in the outer reaches
do not keep up with the rotating spiral potential pattern. An individual star sees a recurring
‘density wave’ of neighbor stars first approaching, then receding. Such density waves have
long been known, but not well explained.
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Note 3: Fig. 3 is constructed using brute-force calculation of potential for lots and lots of location
points, and then using numerical search over angles for local minimum values, and then fitting
a function to the minima. Note the slightly sinuous bar between the two driving bodies. Even
this detail is suggested in Fig. 2.

Now, in order to model gravity in terms of electromagnetic interactions, we need an expres‐
sion of electromagnetic interaction that is appropriate for neutral atoms. The best expression
appears to be one that was known even before Maxwell. André Marie Ampère already had a
well-developed theory about forces between what he called ‘current elements’. This term
referred to charge-neutral material increments in electrical circuits. In modern times, P. Graneau
wrote extensively about Ampère’s theory and experiments; see for example Graneau [21]

Ampère’s theory works perfectly well for ordinary closed circuits, as well as for incomplete
broken circuits, such as may exist momentarily in transient situations, like explosive rupture
of circuits. Ampère’s theory ought not be forgotten solely on the basis that more modern theory
also works perfectly well for closed and stable electrical circuits. Indeed, in some technological
applications involving transient situations like ruptures, Ampère’s theory explains more than
the modern theory does.

One reason why Ampère’s formulation can sometimes be more powerful than a formulation
based on Maxwell’s equations is that Ampère’s formulation can describe a multi-participant
scenario straight away, whereas Maxwell’s equations require iteration through successive
steps involving both Maxwell’s equations, and the Lorentz force law for the force F acting on
a charge q moving with velocity v:

[ ].q= + ´F E v B (20)

The iteration goes as follows: first, the input charge positions and motions generate E and B
fields; second, the Lorentz force law tells how each charge q responds to the fields from the
other charges; another step through Maxwell’s equations tells how all the fields change, and
so on.

One particular scenario illustrates the difference between the approaches especially well.
Consider a current-carrying wire. It is tedious to use the Maxwell-Lorentz-Maxwell-Lorentz
iterative approach to arrive at the understanding that the moving electrons favor the surface
of the wire, or even the exterior neighborhood near the wire, leaving the interior of the wire
depleted of electrons, and therefore in a state of internal repulsion between the remaining
positive nuclei. The Ampère’s formulation skips over all this detail, and describes the resulting
consequence: the wire experiences internal longitudinal force, and in fact might even rupture.
If it does rupture, one can easily tell that the event was not due to ordinary resistive heating
and melting, since the fragments are found to be neither hot to touch nor melted in appearance.

The Ampère approach looks promising for gravity problems because any gravity problem is
definitely a multi-participant scenario. And for the same reason, the following analysis also
invokes ideas from modern Statistical Mechanics.
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Ampère’s force formula can be written:

( )2
, ,/ ( ) 3cos cos 2cos .m n m n m nF i i m n ré ùD = + D D -ë û a b g (21)

The indices m and n identify two interacting currents. The im and in are current magnitudes.
The Δm and Δn are magnitudes of tiny directed length increments Δm and Δn through which
the currents flow. The products of currents and directed length increments, im Δm and in Δm,
are the current elements. The rm,n is the length of the vector separation r

m,n
 between the current

elements. The α, β, and γ are angles with respect to the connecting line between the two current
elements, and with respect to each other. Current element im Δm is at angle α from the
connecting line, and current element in Δn is at angle β from the connecting line. The γ is the
angle between the two planes defined by the connecting line and each of the two current
elements, as if the distance rm,n did not separate them. The value ranges are all full circle:
0<α <2π,

One can get a feel for the general behavior of Ampère’s force formula by considering the angle
factor 3cosαcosβ −2cosγ for a few special cases:

1. Current elements side-by-side and parallel, as in parallel wires. Both current elements are
perpendicular to the connecting line, so α and β are π / 2 and cosα and cosβ are zero. But
γ is zero, and cosγ =1, so the angle factor evaluates to −2. The force ΔFm,n is then negative.
The current elements attract each other. If they reside in parallel wires, the wires attract
each other. This you know from experience is true. In a plasma, instead of in a solid wire,
it is called the ‘pinch effect’.

2. Current elements side-by-side, but anti-parallel. This case is just opposite to Case 1 above:
now γ =π and cosγ = −1. The current elements repel each other. If they reside in a circuit,
that circuit likes to straighten out any kinks and enclose more area. This you may know
from experience is true.

3. Current elements end-to-end, as in an electrical circuit. All three angles are zero, all three
cosines are unity, and the angle factor evaluates to +1, so the force ΔFm,n is positive. The
current elements repel each other.

The 1 / (rm,n)2 aspect of the Ampère force law is just like Newton’s law for gravity. Ampère
designed his law that way, because, in his time, the greatest prior achievement in Science was
Newton’s conquest of gravity. Now we wish to return the favor, and exploit the Ampère Force
Law to understand something novel about gravity.

What makes the Ampère current element so potentially appropriate for application to gravity?
First of all, it is charge-neutral, like the masses in a gravity scenario. Secondly, its electrons are
moving, and although its nucleus is moving too, that motion is not anywhere near as fast. So
at all times and all places where matter exists, at the microscopic level a net electron current
flows.
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The concept that current elements generate forces that can attract or repel each other suggest
that pairs of current elements – or pairs of atoms – can be regarded as a system that can have
positive or negative total energy. The kinetic part of the energy may be disregarded, since the
current elements may be essentially static, but the potential part of the energy is worth paying
attention to.

The main novel feature that gravity presents is that we usually have, not two current elements,
but huge numbers of atoms, and each atom must have some relationship with all other atoms.
The complexity of the situation naturally conjures up ideas from Statistical Mechanics. Here,
ideas from Statistical Mechanics are applied to gravity described in terms of Ampère forces
between atoms that are viewed as current elements. Some atom-to-atom relationships are
momentarily attractive, and some relationships are momentarily repulsive, and all relation‐
ships must vary over time. We can look at the population of atom pairs as a whole, and think
of it as a statistical ensemble, in which every condition of attraction/repulsion is represented
somewhere.

Every area of physics that has statistical ensembles has Gaussian probability functions. In
Classical Thermodynamics, a Gaussian probability density function for a random variable,
such as a component of a particle momentum vector, implies maximum entropy, subject to a
prescribed value for the standard deviation of that random variable. In Quantum Mechanics,
a Gaussian probability density function (the squared wave function amplitude) is associated
with minimum uncertainty, meaning minimum product of standard deviations in Fourier
conjugate variables, like position and momentum.

Sometimes it is not immediately obvious that a problem involves the equivalent of a Gaussian
function, because the Gaussian itself involves a squared variable, such as x 2 or p 2. The squared
variable is proportional to some energy E . So one sees probability density functions expressed
in the form exp(− E / < E >) / < E >  where < E >  is the average value of energy E , usually some‐
thing like kT , where k  is Boltzmann’s consistent and T  is absolute temperature.

In the case of gravity, that energy E  of interest is gravitational potential energy. It can have
both positive and negative values. The central concept in Statistical Mechanics is that lower-
energy states are populated more richly than higher-energy states are. This concept means that
any two atoms, viewed as current elements, will be with respect to each other in a state of
negative potential energy more often than in a state of positive potential energy. So they will,
on average, attract each other more than repel each other. Therefore, < E >  is negative. Since
temperature cannot be negative, this is something novel.

To deal with negative < E >  we really need a probability density function with a Gaussian factor
of the form exp − E 2 / 2< E 2 > , where < E 2 >  is another parameter, positive, but also not related
to temperature.

A few examples can illustrate how to find the parameters.

Let the two energies be Emax and Emin = − | Emax | . With the attractive–force, negative-energy
state dominating the scenario, < E >  is negative, < E > = − | < E > | . The two Boltzmann factors
are:
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max min maxexp( / | |)for the state with negative energy,E E E E+ < > = - (22)

and

max maxexp( / | | , ) .for the state with positive energyE E E- < > (23)

The average energy Eavg must satisfy the definition:

max max max max

max max
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- + < > + - < >
=

+ < > + - < > (24)

Simple trial calculations and numerical search of the results works well enough to solve the
problem at hand. The solution is approximately:

5
max max max61.2 0.8333 .avgE E E E» - = - = - (25)

(There is also, of course, a positive, and presently irrelevant, solution of the same magnitude.)

For this case we have we have line integration in place of point evaluation. Eavg becomes:

0 0
sinh( / | |) cosh( / | |) .

max max
avg E E

E E E E dE E E dE
- -

= - < > < >ò ò (26)

Because the denominator is simpler, begin with that. It is:

0

max

max

| | sinh( / | |) | | sinh( / | |)

                                             | | sinh( / | |)   .
max

avg avg avg avg

avg avg

E
E E E E E E

E E E
-

é ù= - -ë û

= +
(27)

This is a positive number.

The numerator is more complicated, but it can be evaluated using integration by parts:

maxmax max

0 00      .EE E
UdV UV VdU

-- -
= -ò ò (28)

where U = E  and dV =sinh(E / | Eavg | )dE , so that V = | Eavg |cosh(E / | Eavg | ). The first term in
the numerator evaluation is:
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= < > < >
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The second term in the numerator evaluation is:

maxmax max

0 0 02

2 2
max max

| |cosh( / | |) | | sinh( / | |)

     | | sinh( / | |) | | sinh( / | |)   .

avg EE E
VdU E E E dE E E E

E E E E E E

-- -
- = - < > < > = - < >

= < > - < > = - < > < >

ò ò (30)

.

The sought numerator divided by denominator for < E >  is then:

2
max max max

max

max

max

| | cosh( / | |) | | sinh( / | |)
| | sinh( / | |)

        | |   .
tanh( / | |)

avg

avg avg

E E E E E E E
E

E E E
E E

E E

< > < > - < >
< >=

= + < >
< >

(31)

Since the sought < E >  is negative, equal to − | < E > | , we have:

max

max

2 2 | | .
tanh( / | |)

EE E
E E
-

< >= - < >=
< > (32)

Again, numerical search is a practical approach for finding a solution. We find:

max0.485 .E E< >» - (33)

Observe that, as should be expected, this solution is significantly smaller in magnitude than
was the solution with only two energy values, ±Emax, to balance between, which came in at
−0.833Emax.

The continuous Gaussian profile,

2 2 2exp( / 2 ) 2 ,E E E- < > < >p (34)

extends to infinity in both directions. This attribute is inappropriate for the problem at hand,
which definitely possesses limits ±Emax beyond which the modeling problem does not extend.
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Therefore, let us turn to discrete approximations for a Gaussian. These are based on the
binomial expansion for an arbitrary (a + b)n. The binomial coefficients are familiar to many
people from Pascal’s famous triangle:

1
1 1

1 2 1
1

.

  
       

             
      3    3    1

etc

(35)

The numbers in Pascal’s triangle are constructed with addition of neighboring numbers above.
This is easy for small n, but small n means crude, and we need refined. So we want large n. So
we need a formula involving multiplication instead of addition. That would be:

( 1) ( 1)( 2) ( )! ( 1)( 2) ( 1)1, , , , , , , ,1.
1 2 3! ( )!( )! 3! 1 2

  ,      ,  n n n n n n n n n n nn n
n n n

- - - - - -
¢ ¢´ - ´

L L (36)

Observe that the binomial coefficients are symmetric around the middle of the list, like a
Gaussian function is symmetric around zero argument. If n is an even number, the number of
binomial coefficients is 2n −1, odd, and the middle one, the maximum one, is n ! / (n / 2) ! 2. If n
is an odd number, the number of binomial coefficients is 2n, an even number, and the middle
two numbers, the maximum two, are both n ! / { (n + 1) / 2 ! (n −1) / 2 !}.

For our modeling problem, let n be an odd number. Let the binomial coefficients be represented
as Bb with b = −n to b =1. Let them be associated with equal energy increments ΔE = Emax / n
starting from − Emax and covering the range to zero. Associate the minimum binomial coeffi‐
cient B−n with the increment starting with − Emax, and the maximal binomial coefficient with
the increment ending with E =0, and associate the other coefficients with the increments
between those limits. The problem to solve is:

1 1sinh( / ) cosh( / ).b b b b bb n b n
E B E E E B E E

=- =-
< >» < > < >å å (37)

Numerical investigations done to date suggest that the solution comes at approximately
< E > = − Emax / 2 n. Here the n for this discrete model is analogous to the standard deviation
σ for the corresponding continuous Gaussian.

The problem of modeling gravity therefore reduces to the problem of determining what value
of n should be used. Here is the most pertinent fact: compared to anything electromagnetic,
gravity is extremely weak. Consider two Hydrogen atoms at a given separation distance. Let
us compare the gravitation force with the maximum Ampère force between them.
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The gravitational attraction is proportional to G(mp)2, where G is the universal gravitation
constant, about 6.6×10−11 Newton×  meter2 per kilogram2, and mp is the mass of the proton, about
1.66×10−27kg, so (mp)2 is about 2.76×10−54 kg2. Overall,

38 4
2 2 32 2

10
0

1 2.56 10 0.45 10( / ) 1.035 10 .
4 1.113 10

Newton metere v c
- -

-
-

´ ´ ´
» » ´ ´

´pe
(38)

Clearly, the maximum Ampère force between atoms viewed as current elements is generously
larger than the gravitational force between atoms viewed as charge-neutral masses – by about
32 orders of magnitude!

But the typical Ampère force is nowhere near as big as the maximum Ampère force, due to
the fact that it depends on three angles, any one of which can spoil it. Occurrence of the
maximum Ampère force is very rare indeed. And occurrence of the minimum (negative)
Ampère force is equally rare. Only the piddling near-zero Ampère forces are common, and
even then, each tiny attractive force is mostly cancelled with the tiny repulsive force of equal
magnitude but less frequent occurrence. All we have is a tiny residue of attractive force, due
to the nature of Boltzmann factors and Statistical Mechanics.

Of course, being tiny does not mean being insignificant. Like the tiny residue that is microwave
background radiation, the tiny residue that is gravity is a possible key to understanding
something about the Universe in which we live. Here is an example problem: at present, we
know the actual particle radius of the electron is something extremely tiny, but we do not know
what its numerical value is. There exist a number of length-dimensioned quantities associated
with the electron, all called ‘radius’, but distinguished by specific names and numerical values.
MacGregor [22] lists seven of them. Most are on the order of 10−13 cm, although one is much
smaller, and is presently only upper-bounded at <10−16 cm.

The radius attributed to the electron can have a role in the gravity problem. The ratio of an
atomic radius to the electron radius can imply a candidate level of discretization for the
binomial approximation to the Gaussian factor involved in the gravity problem. For an atomic
radius, let us consider the first orbit radius of Hydrogen, rH1 =0.529×10−8cm. For the electron
radius, let us consider two of the possibilities from MacGregor [22].

One of the electron radii is called classical. This one captures the Coulomb energy equivalence

2 2

0

1 / ,
4 e classical ee r m c=
pe (39)

which implies

( )2 2 13

0

1 2.82 10
4e classical e cm.r e m c -= = ´
pe (40)
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The ratio ρ = rH1 / re classical is then:

8 13 9 13 40.529 10 2.82 10 5.29 10 2.82 10 1.86 10 ,n - - - -= ´ ´ = ´ ´ » ´ (41)

which implies

8 13 9 13 40.529 10 2.82 10 5.29 10 2.82 10 1.86 10 .n - - - -= ´ ´ = ´ ´ » ´ (42)

The square root of this number would then be the dimensionless n for the discretization:

4 21.86 10 1.37 10 137.n = ´ » ´ = (43)

This is a number already famous in Physics, but in a context other than gravity. It is the inverse
of the so-called ‘fine structure constant’ α, defined as:

22 / .e ch=a p (44)

This number plays a role in spectroscopy, where spectral lines occur in families, closely spaced
but clearly distinguishable. There, the explanation comes from QM; clearly, another manifes‐
tation of natural discretization.

But if the classical radius of the electron were used in the gravity problem, the ratio of the
average Ampère force magnitude to the maximum Ampère force magnitude would be
approximately

32 1 2 3.65 10 .n n n -= » ´ (45)

This ratio is not appropriately small, so this is not the right discretization level for the gravity
problem.

Another one of the electron radii given by MacGregor [22] is called actual. It characterizes
results of scattering experiments, and is the one presently only upper-bounded, at re actual <10−16

cm. No one knows how much smaller it could eventually turn out to be. So how much smaller
would it have to be, in order to account for the extreme weakness of gravity? Gravity requires
2 / n ≈10−32, or.

32 642 10 , 4 10 .orn n+» ´ » ´ (46)
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That in turn requires:

8 64 73
1 0.529 10 4 10 10e actual H cm cm.r r - -= = ´ ´ »r (47)

At present, such a value for re actual certainly looks impossible to test with any kind of meas‐
urement. It is smaller than anything we yet know about any elementary particle. But that
circumstance may be a good thing, because an extremely small electron makes it easier to
understand what data from Chemistry reflects, discussed next. And an extremely small
electron, along with a correspondingly small positron, helps explain aspects Elementary
Particle Physics, discussed after that.

6. Algebraic chemistry and EZ water

Prof. Gerald Pollack of U. Washington wrote the authoritative book [23] about the physical
phenomenon called ‘EZ water’. The EZ is short for Exclusion Zone, with the word ‘exclusion’
referring to a surface phenomenon that expels positive hydronium ions.

Prof. Pollack gave a talk about EZ Water at the 2013 meeting of the Natural Philosophy Alliance
at College Park, MD, USA. All the phenomena he described were surprising; some were truly
puzzling. EZ water apparently makes extended orderly arrays of hexagonal units. How can
that behavior comport with our understanding that Nature maximizes entropy? Explanations
then available were not at all quantitative. That fact suggested a real need for a more quanti‐
tative approach.

I had recently written my book about Algebraic Chemistry (AC). [24] The name reflects the
fact that the technique has no integrals or other complicated math operations that would
demand capabilities beyond those of a hand calculator. The worst operation is square root. So
the AC approach looked promising for quick application to EZ water.

The fundamental idea behind AC is that all atoms share some similarities with Hydrogen
atoms: 1) They have a nucleus that is similar to a proton, but scaled up to nuclear charge Z
and nuclear mass M  ; 2) They have a population of electrons that is not entirely unlike a single
electron; i.e., an interacting community that is somewhat coherent, and somewhat like one big
electron orbiting the nucleus; 3) It is possible for the electron count to be different from the
nuclear charge. This last possibility is what characterizes ions, and thereby creates all of
Chemistry.

We begin with a clue: Eq. (17) indicates that the radius of the Hydrogen atom scales with the
mass of the proton. This fact suggests that the base orbit energy of the Hydrogen atom scales
with the inverse of proton mass. It further suggests that for element with nuclear charge Z  and
mass M , the base orbit energy may scale with Z / M . If so, then when first-order ionization
potentials for all elements are scaled by the inverse factor, M / Z , then the scaled first-order
ionization potentials (called I P1,Z ) might fall into some pattern.
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We proceed with an observation: A pattern indeed emerges: the rise on every period in the
Periodic Table is exactly the same factor, 7 / 2.

We make a Hypothesis: All I P1,Z  contain information valuable for all other elements: population
generic information. Each I P1,Z  contains a universal baseline contribution I P1,1 about interaction
between the nucleus and the population of electrons as a whole. For all elements beyond
Hydrogen, there is also a contribution ΔI P1,Z  about interactions among the electrons.
The ΔI P1,2 can be very significant. For Helium, ΔI P1,2 is huge, meaning that two electrons
bond together very strongly. And for Lithium, ΔI P1,3 is negative, meaning that two electrons
actively work together to try to exclude a third electron.

Over the periods, there is obvious detail about the electron-electron interactions. Within each
period, there are obvious sub-periods keyed to the nominal angular-momentum quantum
number that is being filled. Plotted on a log scale, all sub-period rises are straight lines. The
slopes all appear to be rational fractions. We can display these rational fractions in a Table, as
was done in [24] and [25]:

period N l fraction l fraction l fraction l fraction
1 1 0 1
2 2 0 1 / 2 1 3 / 4
3 2 0 1 / 2 1 3 / 4
4 3 0 1 / 4 2 5 / 18 1 2 / 3
5 3 0 1 / 4 2 5 / 18 1 2 / 3
6 4 0 1 / 4 3 7 / 48 2 5 / 16 1 9 / 16
7 4 0 1 / 4 3 7 / 48 2 5 / 16 1 9 / 16

A non-traditional parameter N  is included in the display because, for l >0, it is possible to write
a simple formula for the fraction:

[ ]2(2 1) ( ) / .fraction l N N l lé ù= + -ë û (48)

Also, all periods in the Periodic Table have length 2N 2.

All this numerical regularity suggests that there really is a reliable pattern here, and we can
reasonably seek to exploit it. Here is the first exploitation that suggests itself: Given first-order
ionization potentials of many elements, we can estimate the additional energy required to
remove a second electron from each, and then a third, and so on. This was first done in [24].
Formulae were given for each individual electron removal or addition, and evaluated for a large
number of elements.

One point that Ref. [24] emphasized was that the energy to remove a second electron, or a
third, and so on, is not the same thing as the so- called ‘second-order ionization potential’,
‘third-order ionization potential’, and so on. Those energies are very large, which implies that
those events are very violent: ripping two, or three, or more, electrons off an atom all at once.
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Those energies do exhibit a lot of numerical regularity, but that isn’t important for under‐
standing typical lab-bench chemistry, which is all about gentle events that occur one-at-a-time.

Ref [25] presented the equivalent summed formulae for removal of, or addition of, one, two,
and three electrons, removed or added one-at-a-time. Basically, use of these formulae save the
user some repetitive arithmetic that would be incurred using the formulae from Ref. [24].

Development of More Formulae:

For the present paper, the formulae from [25] are extended from the illustrative cases of
removing, or adding, one, two, and three electrons, to the general case of removing, or adding,
N  electrons.

Ref. [25] used symbols W  and H  to distinguish between energy increments associated with
electron-nucleus interaction, and energy increments associated with electron-electron inter‐
actions. That distinction is analogous to the distinction between work and heat in thermody‐
namics: the work part is something a human can control, and the heat part is something that
Nature simply does, regardless of what the human does.

We had:

1 1,1( / ).removing e  from the neutral atom ZW IP Z M= (49)

The ion produced has a little less attraction between the nucleus and the now reduced electron
cloud. So removing another electron should take a little less work:

1,1 ( 1) .
1 2removing e  & e ZW IP Z Z Z Mé ù= + -ë û (50)

And then:

1,1 ( 1) ( 2) .
1 2 3removing e , e , & e ZW IP Z Z Z Z Z Mé ù= + - + -ë û (51)

This pattern generalizes to:

1,1 1
( 1 ) .

1 Nremoving e  through e
N

Zi
W IP Z Z i M

=
é ù= + -ë ûå (52)

We also had:

1 1, 1, 1( )( / ).removing e  from the neutral atom Z Z ZH IP IP Z M-= D - D (53)

We inferred in [25] that:
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1 2, & 1, 1, 2 ( 2) .removing e e Z Z ZH IP Z IP Z M-é ù= D - D -ë û (54)

and

1 2 3, , & 1, 1, 3( 3) .removing e e e Z Z ZH IP Z IP Z M-é ù= D - D -ë û (55)

This pattern generalizes to:

1  1, 1, ( ) .
Nremoving e through e Z Z N ZH IP Z IP Z N M-é ù= D - D -ë û (56)

Finally, in [25] we had:

1 2, & 

1,1 1, 1, 2

( )

( 1) ( 2)    ,

removing e e

Z Z Z Z

W H

IP Z Z Z M IP Z IP Z M-

+ =

é ù é ù+ - + D - D -ë ûë û
(57)

and

1 2 3, , & 

1,1 1, 1, 3

( )

( 1) ( 2) ( 3)    ,

removing e e e

Z Z Z Z

W H

IP Z Z Z Z Z M IP Z IP Z M-

+ =

é ù é ù+ - + - + D - D -ë ûë û
(58)

This pattern generalizes to:

1   

1,1 1, 1,1

( )

( 1 ) ( )    ,

removing e through eN

N
Z Z Z N Zi

W H

IP Z Z i M IP Z IP Z N M-=

+ =

é ù é ù+ - + D - D -ë ûë ûå
(59)

Now let us turn to adding electrons. First, use the formula for the energy for removing an
electron from a neutral atom of element Z  to describe instead removing an electron from the
singly charged negative ion of element Z , which has Z + 1 electrons to start with:

1 1,1 1, 1 1,( ) ( 1) ( 1) .removing e  from negative ion Z Z ZW H IP Z Z IP Z IP Z M+
é ù+ = + + D + - Dë û (60)

Reversing the direction of the operation:
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1 1,1 1, 1 1,( ) ( 1) ( 1) .adding e  to neutral atom Z Z ZW H IP Z Z IP Z IP Z M+
é ù+ = - + + D + - Dë û (61)

This means the work for adding one electron into the nuclear field is:

1 1,1 ( 1) .adding e  to neutral atom ZW IP Z Z M= - + (62)

And the heat for re-adjusting the electron population is:

1 1, 1 1,( 1) .adding e  to neutral atom Z Z ZH IP Z IP Z M+é ù= - D + + Dë û (63)

Now let us add a second electron. This will require additional work:

2 1 1,1 ( 2) .adding e  after e ZW IP Z Z M= - + (64)

And it will cause another heat adjustment:

2 1 1, 2 1, 1( 2) / ( 1) / .adding e  after e Z Z Z ZH IP Z M IP Z M+ += -D + + D + (65)

This means total energy involved in adding two electrons is:

1 2&

1,1 1, 1, 2

( )

( 1) ( 2) ( 2)    .

adding e   e

Z Z Z Z

W H

IP Z Z Z Z M IP Z IP Z M+

+ =

é ù é ù- + + + + D - D +ë ûë û
(66)

Likewise, the total energy involved in adding three electrons is:

1 2 3, 

1,1 1, 1, 3

( )

( 1) ( 2) ( 3) ( 3)    .

adding e e  & e

Z Z Z Z

W H

IP Z Z Z Z Z Z M IP Z IP Z M+

+ =

é ù é ù- + + + + + + D - D +ë ûë û
(67)

This patten generalizes to:

1   

1,1 1, 1,1

( )

( ) ( )    ,

adding e through eN

N
Z Z Z N Zi

W H

IP Z Z i M IP Z IP Z N M+=

+ =

é ù é ù+ + D - D +ë ûë ûå
(68)
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Numerical Data to Insert in Formulae:

Numerical data for elements up to number 118 are given in [24]. The numerical analysis of EZ
water requires at most the data for the first ten elements. Expressed in electron volts, eV, these
numerical data are:

Hydrogen: Z =1 , M =1.008 , I P1,1 =14.250eV , ΔI P1,1 =0eV .

Helium: Z =2 , M =4.003 , I P1,2 =49.875eV , ΔI P1,2 =35.625eV .

Lithium: Z =3 , M =6.941 , I P1,3 =12.469eV , ΔI P1,3 = −1.781eV .

Beryllium: Z =4 , M =9.012 , I P1,4 =23.327eV , ΔI P1,4 =9.077eV .

Boron: Z =5 , M =10.811 , I P1,5 =17.055eV , ΔI P1,5 =2.805eV .

Carbon: Z =6 , M =12.011 , I P1,6 =21.570eV , ΔI P1,6 =7.320eV .

Nitrogen: Z =7 , M =14.007 , I P1,7 =27.281eV , ΔI P1,7 =13.031eV .

Oxygen: Z =8 , M =15.999 , I P1,8 =27.281eV , ΔI P1,8 =13.031eV .

Fluorine: Z =9 , M =18.998 , I P1,9 =34.504eV , ΔI P1,9 =20.254eV .

Neon: Z =10 , M =20.180 , I P1,10 =43.641eV , ΔI P1,10 =29.391eV .

Ordinary Water:

Here are some example calculations concerning possible ionic configurations of ordinary,
normal water.

Most people would guess that water is 2 H+ + O2−. But let us evaluate that ionic configuration.
The transition H→ H+ takes:

1,1 1/ 14.250 / 1.008 14.1369   eV.IP M = = (69)

So 2H+ takes 2×14.1369=28.2738  eV.

The transition O→O2− takes:

[ ]
[ ] [ ]

1,1 1, 1, 2

1,8 1,10

( 1) ( 2) ( 2)

14.250 8 9 8 10 15.999 8 10 15.999

14.250 72 80 15.999 13.031 8 29.391 10 15.999

14.250 8.4853 8.9443 15.999 104.248 293.910

Z Z Z ZIP Z Z Z Z M IP Z IP Z M

IP IP

+
é ù é ù- + + + + D - D +ë ûë û

é ù é ù= - ´ + ´ + D ´ - D ´ë ûë û
é ù= - + + ´ - ´ë û

= - + + -

[ ] [ ]
15.999

14.250 17.4296 15.999 189.662 15.999
15.5242 11.8546 27.3788 eV   . 

= - + -

= - - = -

(70)
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So the ionic configuration 2 H+ + O2− requires 28.2738−27.3788=0.8950  eV. This is a positive
energy requirement, which implies that some external assistance is needed to create this ionic
configuration. So normal water may not be 2 H+ + O2− after all!

Another possibility is readily at hand though. The ionic configuration for normal water could
be 2 H− + O2+. The transition H→ H− takes:

1,1 1, 1 1,

1,1 1 1,2 1 1,1 1

( 1) ( 1) / /

1 2 2 / 1 /
14.250 1.4142 1.008 35.625 2 / 1.008 0 1 / 1.008

   19.9924 70.6845 0 90.6769 eV   .

Z Z Z Z ZIP Z Z M IP Z M IP Z M

IP M IP M IP M
+- + - D + + D

= - ´ - D ´ + D ´

= - ´ - ´ + ´
= - - + = -

(71)

So 2 H− takes 2× (−90.6769)= −181.3538  eV. Notice that this is a huge negative energy. It reflects
the fact that electrons really like to make pairs. Indeed, their propensity to do so motivated the
invention of the so-called ‘spin’ quantum number. Without spin, many electrons in atoms
would be violating the ‘Pauli Exclusion Principle’, which says that only one electron can be in
any particular quantum state. Electron pairs are famous in Condensed Matter Physics too,
under the name ‘Cooper pairs’.

Proceeding now to the transition O→O2+, that takes:

[ ]

1,1 1, 1, 2

1,1 8 1,8 1,6 8

( 1) ( 2)

8 8 7 8 6

14.250 8 56 15.999 13.031 8 7.320 6 15.999

 13.7907 3.7707 17.5614  eV   .

Z Z Z ZIP Z Z Z M IP Z IP Z M

IP M IP IP M

-
é ù é ù+ - + D - D -ë ûë û

é ù é ù= + ´ + D ´ - D ´ë ûë û
é ù= + + ´ - ´ë û

= + =

(72)

Thus the creation of the water molecule in the ionic configuration 2 H− + O2+ demands alto‐
gether −181.3538 + 17.5614=  −163.7924  eV. This energy is solidly negative, which means that
ordinary water is overwhelmingly in this ionic configuration, 2 H− + O2+. This is normal water.

However, in situations where more than one version of anything can exist, both generally do
exist, in proportions determined by their so-called Boltzmann factors, exp(− E / kT ). Here E  is
energy, k  is Boltzmann’s constant, and T  is absolute temperature. Boltzmann factors are the
result of entropy maximization at work. Because of non-zero Boltzmann factors, there will exist
a tiny, tiny fraction of the first ionic configuration, 2  H+ + O2−.

This analysis of normal water shows how quantitative approaches can sometimes unseat long-
standing, but never-justified, assumptions in Chemistry.

About EZ Water:

The following transition is generally thought to represent the creation of EZ water:
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energy, k  is Boltzmann’s constant, and T  is absolute temperature. Boltzmann factors are the
result of entropy maximization at work. Because of non-zero Boltzmann factors, there will exist
a tiny, tiny fraction of the first ionic configuration, 2  H+ + O2−.

This analysis of normal water shows how quantitative approaches can sometimes unseat long-
standing, but never-justified, assumptions in Chemistry.
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Here parentheses are used to avoid implying anything about what charge the individual atoms
within any ion or radical may carry. A full numerical analysis should consider all possible, or
at least all plausible, ionic configurations of every molecule or radical involved.

One possible ionic configuration for the EZ water ion (H3O2)− is 3 H+ + 2 O2−. The 3 H+ takes total
energy 3 × I P1,1 / Mz =  3×14.250 / 1.008=42.4107  eV. The 2 O2− takes total energy 2× (−27.3788)=

−54.7576  eV. So the ionic configuration 3 H+ + 2 O2− altogether takes 42.4107−54.7576=
−12.3469  eV. This is a negative energy, so this ionic configuration certainly can occur.

But there is also another possibility for the EZ water ion (H3O2)−. It could have the ionic
configuration 3 H− + 2 O+. An H− takes −90.6769  eV, so 3 H− takes 3× (−90.6769)=  −272.0307  eV.
An O+ takes energy:

1,1 1,8 1,7 8( 8 8 7)
(14.250 8 13.031 8 13.031 7) / 15.999

    (114.000 104.248 91.217) / 15.999 7.9399 eV   .

IP IP IP M´ + D ´ - D ´

= ´ + ´ - ´
= + - =

(73)

So 2 O+ takes 2×7.9399=15.8798  eV. Then the ionic configuration 3 H− + 2 O+ takes
−272.0307 + 15.8798=  −256.1509  eV. This energy is much more negative than that of the first
candidate ionic configuration for EZ water, 3 H+ + 2 O2−. This fact means EZ water is nearly
always in this second candidate ionic configuration, 3 H− + 2 O+.

One possible ionic configuration for the hydronium ion (H3O)+ is 3 H+ + O2−. This, I believe, is
what most people would guess. But from the study of regular water, we know the candidate
3 H+ would take 3×14.250=42.4107  eV, and that the candidate O2− would take −27.3788  eV, so
the candidate ionic configuration 3 H+ + O2− for hydronium would take
42.4107−27.3788=15.0319  eV. This energy is positive, so this ionic configuration for the hydronium
ion is not promising.

However, as was the case with the EZ water ion, there is another possibility for the hydronium
ion. It (H3O)+ could have the ionic configuration 3 H− + O4+. The 3 H− would take 3× (−90.6769)=

−272.0307  eV, and the O4+ would take:

[ ]
1,1 1, 1, 4( 1) ( 2) ( 3) ( 4)

14.250 8 56 48 40 15.999 13.031 8 9.077 4 15.999

14.250 28.7361 / 15.999 67.940 / 15.999
    25.5947 4.2465 29.8411 eV   .

Z Z Z ZIP Z Z Z Z Z Z Z M IP Z IP Z M-
é ù é ù+ - + - + - + D - D -ë ûë û

é ù= ´ + + + + ´ - ´ë û
= ´ +

= + =

(74)
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So for the hydronium ion (H3O)+, the second candidate ionic configuration 3 H− + O4+ would
take −272.0307 + 29.8411=  −242.1895  eV. This very negative energy explains why the reaction
product that accompanies EZ water is a hydronium ion, rather than a naked proton plus a
normal water molecule, which would take 14.1369  −163.7925= −149.6556eV, which is not as
negative.

The EZ water ion and the hydronium ion together take −268.6204−242.1895= −510.8099  eV.
Compare this energy to the energy taken by three normal water molecules:
3× (−163.7925)= −491.3775  eV. The EZ water ion with the hydronium ion has lower energy than
the three normal water molecules. That means that Nature will take any opportunity to make
EZ water ions and hydronium ions.

It appears that what creates the opportunity is a surface, plus a little energy to separate the
ions. Any material body provides some gravity to create a surface, and if there is also some
small energy source, such as sunlight, to help separate ions, and if there is also some normal
water, the situation will automatically create EZ water too. Even an icy comet might be able
to create some EZ water.

7. Microphysics

Just as the myriad compounds in Chemistry arise from not-very-many chemical elements,
some significant part of the m
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Figure 4.  Log energy loss and gain rates vs. log system radius.   

Observe that radiation dominates for radii below the crossing point, whereas torquing dominates for 
radii above the crossing point.  This means the balance between the two effects is unstable: a small 
excursion from balance in either direction causes more excursion in the same direction.  This is in-
teresting.  It means that Hydrogen does not like to exist as an isolated atom.  It wants to engage in 
chemical reactions.  In the Universe at large, you will find Hydrogen in H2  molecules, or other mol-
ecules, or you will find Hydrogen plasma, consisting of naked protons and free electrons, but you 
will not find many isolated Hydrogen atoms. 
2) We can discover even more about the Hydrogen atom if we include the appropriate angle sine and 
cosine factors in the calculations.  These factors are oscillatory.  So negative numbers sometimes 
occur with the torquing curve, and they cannot be plotted on a logarithmic scale.  However, we are 
mainly interested in the points of balance between torquing and radiation, and the radiation curve is 
always non-negative, so the torquing curve is non-negative too at the balance points. 
Figure 5 shows that we have not just one balance point, but many balance points.  The balance points 
occur in close pairs, one stable and one unstable.  The two pairs furthest left on the plot do not show 
as crossings because of the finite resolution of the plot, but they are certainly present. 
More solution pairs are to be found, off the Figure to the left.  Indeed, the solution pairs continue 
indefinitely, into smaller and smaller system radii.  So Hydrogen has an infinite family of ‘sub-
states’.  Mills discusses these in [27]. 
The smaller and smaller radii of the balance points in Fig. 5 correspond to higher and higher orbit 
speeds.  This idea conflicts with a prohibition imposed by SRT: no physical particle possessing mass 
is allowed to move at a speed matching or exceeding light speed c .  What does this conflict mean? I 
believe it means the prohibition should be understood more precisely to say: no physical particle 
possessing mass can be perceived to move at a speed matching or exceeding light speed c , if we
agree to process all received data in accord with Einstein’s Second Postulate.  If we do not agree to 
that, then there is no particle speed limit. 

Figure 4. Log energy loss and gain rates vs. log system radius.

Observe that radiation dominates for radii below the crossing point, whereas torquing
dominates for radii above the crossing point. This means the balance between the two effects
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Observe that radiation dominates for radii below the crossing point, whereas torquing
dominates for radii above the crossing point. This means the balance between the two effects
is unstable: a small excursion from balance in either direction causes more excursion in the same
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direction. This is interesting. It means that Hydrogen does not like to exist as an isolated atom.
It wants to engage in chemical reactions. In the Universe at large, you will find Hydrogen in
H2 molecules, or other molecules, or you will find Hydrogen plasma, consisting of naked
protons and free electrons, but you will not find many isolated Hydrogen atoms.

1. We can discover even more about the Hydrogen atom if we include the appropriate angle
sine and cosine factors in the calculations. These factors are oscillatory. So negative
numbers sometimes occur with the torquing curve, and they cannot be plotted on a
logarithmic scale. However, we are mainly interested in the points of balance between
torquing and radiation, and the radiation curve is always non-negative, so the torquing
curve is non-negative too at the balance points.

Figure 5 shows that we have not just one balance point, but many balance points. The balance
points occur in close pairs, one stable and one unstable. The two pairs furthest left on the plot
do not show as crossings because of the finite resolution of the plot, but they are certainly
present.

More solution pairs are to be found, off the Figure to the left. Indeed, the solution pairs continue
indefinitely, into smaller and smaller system radii. So Hydrogen has an infinite family of ‘sub-
states’. Mills discusses these in [27].

The smaller and smaller radii of the balance points in Fig. 5 correspond to higher and higher
orbit speeds. This idea conflicts with a prohibition imposed by SRT: no physical particle
possessing mass is allowed to move at a speed matching or exceeding light speed c. What does
this conflict mean? I believe it means the prohibition should be understood more precisely to
say: no physical particle possessing mass can be perceived to move at a speed matching or
exceeding light speed c, if we agree to process all received data in accord with Einstein’s Second
Postulate. If we do not agree to that, then there is no particle speed limit.  27 
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Figure 5.  More and more balance points below the Hydrogen ground state. 

3) We can also study positronium (a system consisting of one electron and one positron).  See Fig. 6.  
As with Hydrogen, the oscillatory angle factors create a family of solutions for this system too.  Half 
of them are stable, and half are unstable, and uncountably many of them occur at small radii and high 
speeds well in excess of c .  Due to the finite resolution of the plot, only one pair of solutions is 
clearly visible in Fig. 6.  But two more, at smaller radius and higher speed, are also certainly present.  
We can characterize these, and all high-speed solutions, without even knowing exactly what the 

radiation curve is like - its exact amplitude, or its r 4  dependence.  The one low-speed solution is 
just v0  0.02  c .  The many high-speed solutions have to occur in pairs just above and below 

orbit speeds of the form vn  v0  n  2c , where n  is an arbitrary positive integer. 
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Figure 6.  Positronium solutions. 
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2. We can also study positronium (a system consisting of one electron and one positron). See
Fig. 6. As with Hydrogen, the oscillatory angle factors create a family of solutions for this
system too. Half of them are stable, and half are unstable, and uncountably many of them
occur at small radii and high speeds well in excess of c. Due to the finite resolution of the
plot, only one pair of solutions is clearly visible in Fig. 6. But two more, at smaller radius
and higher speed, are also certainly present. We can characterize these, and all high-speed
solutions, without even knowing exactly what the radiation curve is like - its exact
amplitude, or its r −4 dependence. The one low-speed solution is just v0≈0.02×c. The many
high-speed solutions have to occur in pairs just above and below orbit speeds of the form
vn =v0 + n ×2πc, where n is an arbitrary positive integer.
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A parenthetical note applies for Fig. 6: for same-mass systems, the amplitude of the radiation
curve should be less by a factor of 4 because there is no center-of-mass motion. This sort of
numerical detail does not significantly affect where the solutions fall. That is determined
almost entirely by the cosine factors that produce the deep dips that intersect the peaks in the
curve for rate of energy gain due torquing.

3. The oscillatory nature of the angle factors can turn a situation of seeming repulsion into
a situation of actual attraction. This phenomenon of sign reversal due to signal delay is
well known to engineers, who often deal with oscillating signals in feedback control
systems For the present application, consider two electrons in a circular orbit, and suppose
they move at speed πc. One electron launches its signal radially outward. By the time this
electron has executed half an orbit, this signal has expanded a distance equal to the orbit
diameter. By then, the two electrons have exchanged places. So the expanding signal first
contacts the second electron at exactly the signal launch point. Then the two electrons
complete their orbit. At the end, the second electron finally understands its signal: it is to
move radially. But by now, the two electrons have changed places again, and for the
second electron, the direction commanded is inward. That situation is equivalent to
attraction.
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2. We can also study positronium (a system consisting of one electron and one positron). See
Fig. 6. As with Hydrogen, the oscillatory angle factors create a family of solutions for this
system too. Half of them are stable, and half are unstable, and uncountably many of them
occur at small radii and high speeds well in excess of c. Due to the finite resolution of the
plot, only one pair of solutions is clearly visible in Fig. 6. But two more, at smaller radius
and higher speed, are also certainly present. We can characterize these, and all high-speed
solutions, without even knowing exactly what the radiation curve is like - its exact
amplitude, or its r −4 dependence. The one low-speed solution is just v0≈0.02×c. The many
high-speed solutions have to occur in pairs just above and below orbit speeds of the form
vn =v0 + n ×2πc, where n is an arbitrary positive integer.
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A parenthetical note applies for Fig. 6: for same-mass systems, the amplitude of the radiation
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almost entirely by the cosine factors that produce the deep dips that intersect the peaks in the
curve for rate of energy gain due torquing.

3. The oscillatory nature of the angle factors can turn a situation of seeming repulsion into
a situation of actual attraction. This phenomenon of sign reversal due to signal delay is
well known to engineers, who often deal with oscillating signals in feedback control
systems For the present application, consider two electrons in a circular orbit, and suppose
they move at speed πc. One electron launches its signal radially outward. By the time this
electron has executed half an orbit, this signal has expanded a distance equal to the orbit
diameter. By then, the two electrons have exchanged places. So the expanding signal first
contacts the second electron at exactly the signal launch point. Then the two electrons
complete their orbit. At the end, the second electron finally understands its signal: it is to
move radially. But by now, the two electrons have changed places again, and for the
second electron, the direction commanded is inward. That situation is equivalent to
attraction.
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Given this mechanism for attraction, we can also study homogeneous systems: two electrons,
or two positrons, for example. Again, there exist both stable and unstable solutions, and there
are infinitely many of each, corresponding to orbit speeds of the form vn =πc + n ×2πc for
arbitrary positive integer n. See Fig. 7.
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An additional parenthetical note applies for Fig. 7: for same-charge systems, the angular pattern of 
the radiation is quadrupole, rather than dipole, so the amplitude of the radiation energy loss curve 
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An additional parenthetical note applies for Fig. 7: for same-charge systems, the angular
pattern of the radiation is quadrupole, rather than dipole, so the amplitude of the radiation
energy loss curve should decline as r −6 rather than r −4. Again, this sort of numerical detail does
not significantly affect where the solutions fall, which is determined almost entirely by the
cosine factors that produce the deep dips that intersect the peaks in the curve for rate of energy
gain due torquing.

The stable solutions for two electrons bring to mind the situation that is so well known in
Chemistry: electron pairs. They are everywhere in Chemistry. The most famous case occurs
for Helium. Helium is a noble gas, and it reacts with other elements only under extreme duress.
Helium has two electrons, and pulling one electron away is very costly: Helium has the highest
ionization potential of any element. The message is: two electrons definitely do form a stable
subsystem within an atom. The standard QM explanation for this invokes the concept of
electron spin, with two possible values, ±ℏ / 2, allowing two electrons in the same overall
energy state. Electron pairing also occurs famously in Solid State Physics, under the name of
Cooper Pairs.

8. Conclusion

In the present Chapter, the new concept applied is the more realistic signal model for use in
an improved version of SRT. The realistic signal model is based on Information Theory,
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The new concept is implemented with very standard mathematics: differential equations, their
family of solutions, and the particular problem boundary conditions. These mathematical
ingredients for a proper signal model were all available in 1905, but they were not used in SRT.
Why? I believe the fundamental reason is the history: Information Theory was not yet available,
so no researcher at that time would have been likely to detect the inadequacy of the infinite
plane wave as a signal model.

The present paper has shown that there are rewards for instead using the realistic photon/
signal model. They include more insight into Quantum Mechanics, and into Gravity Theory,
and potentially into Elementary Particle Physics. These are all subjects to be studied much
more fully in the future.

Many textbook treatments of SRT devote a lot of space to Lorentz Transformations (LT’s). The
present work has not mentioned LT’s at all. To this author, LT’s just seem to describe the
wrongly informed opinions of different observers. So I don’t really want to focus on LT’s. But
I have to mention them, because repairing SRT to take proper account of the concepts of IT
casts doubt on Einstein’s SRT, and hence on LT’s. Therefore, I hereby relegate the unavoidable
discussion of coordinate transformations, LT’s and others, to the following Appendix.

9. Appendix

The situation in the late nineteenth century included the following fact: Maxwell’s first order
coupled field equations appeared not to be invariant under Galilean transformation of
coordinates (GT’s). Phipps [28] has written extensively about this apparent conflict between
Maxwell’s Electromagnetic Theory and Newton’s Mechanics. In the early twentieth century,
SRT brought in LT’s, and the conflict seemed to be resolved: Maxwell’s electromagnetic theory
was clearly invariant under LT’s. This fact was taken as evidence in favor of Einstein’s SRT
over Newton’s Mechanics.

But there is a puzzle left to resolve: Maxwell’s first order coupled field equations appear to
qualify as tensor equations. Mathematicians had developed tensors in the first place to enable
the articulation of mathematical statements that would be coordinate-free. So tensor equations
are by definition invariant to all invertible coordinate transformations.

So what had happened here? I believe two circumstances had collided to create a very bad
situation. One circumstance was that Mathematics had such a long history of developing eternal
truths: the focus had been on arithmetic, geometry, and trigonometry – all of them eternal in
character. Even archeo-astronomy was largely about the eternal repetition of events, and not
about temporal evolution of events. Eternal truths really need not have a time dimension. They
can, however, have as many spatial dimensions as may be desired, and that became the focus
for much of tensor analysis. The other circumstance was that time became a really significant
variable with the advent of modern Physics: Kepler, Galileo, Newton, and Maxwell. And time
is a really different kind of variable than space is. Maxwell was very well aware of the
difference, as he developed his electromagnetic theory in terms of Hamilton’s quaternions.
The modern equivalent of the quaternion tool is the set of four 2×2 complex Pauli spin matrices:
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The first one, the time-like one, is the identity matrix. The other three, the space-like ones,
produce the identity matrix when squared. When two of them are cross-multiplied, they
generate a factor of i = −1 times the third one, corresponding to the vector cross product in
three-dimensional space.

The collision between circumstances came in the formulation of differential operators. People
were familiar with the scalar chain rule,d/dt= ∂ / ∂t + v∂ / ∂x , and did not realize that more
information was needed in the context of vector and tensor applications with time as well as
space dimensions.
The 2×2 Pauli matrices are easy to appreciate visually, so I will also discuss transformations
of coordinates in terms of 2×2 matrices also - but only real ones, not complex ones. Let s
stand for any spatial coordinate. A general coordinate transformation involving ct  and s has
the form:

' 11 .
' 11

ct B ct
s A sAB

é ù é ù é ù
=ê ú ê ú ê ú

-ë û ë û ë û
(76)

For the familiar Lorentz transformation, A= B = −v / c, where v is the speed of the new coordi‐
nate frame relative to the old one. The letter v is lower case to remind us that v <c ; i.e. v / c <1.
We have:

2 2

' 11 .
11 /

ct v c ct
s v c sv c

é ù é ù é ù-
=ê ú ê ú ê ú-ë û ë û ë û-

(77)

For the long discarded Galilean transformation, A= −V / c and B =0. The letter V  is upper case
to remind us that V  is not limited, and might exceed c. So we have:

' 1 01 .
11

ct ct
s V c s

é ù é ù é ù
=ê ú ê ú ê ú-ë û ë û ë û

(78)

For all such general coordinate transformations, there also exists a complement transforma‐
tion:

" 11 .
" 11

ct A ct
s B sAB
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(79)

Photons and Signals in the Age of Information
http://dx.doi.org/10.5772/59067

71



Its purpose is to preserve inner products; for example:

2 2( ) .
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(80)

Observe that:

2 2

" 1 11 1' '
" 1 11 1

1 01 ( )    .
0 11

ct A A ct
ct s ct s

s B B sAB AB
AB ct

ct s ct s
BA sAB

é ù é ù é ù é ù-
é ù é ù=ê ú ê ú ê ú ê úë û ë û- - -- -ë û ë û ë û ë û

é ù é ù-
é ù= º -ê ú ê úë û - + -- ë û ë û

(81)

For Lorentz transformation, the complement transformation is the inverse, or equivalently, the
reverse transformation:

2 2

" 11 .
" 11 /
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é ù é ù é ù+
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(82)

But for Galilean transformation, the complement transformation is:
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s s
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(83)

This is the inverse transformation, but not the reverse transformation. It is rather the trans‐
pose of the reverse transformation. It looks so very strange because, for more than a century
now, only Lorentz transformations of velocity have been used in mainstream theoretical
Physics, and transposition does not change them.

The vital role for this strange new thing lies with the differential operators. The story is much
like it was for the coordinates: there are two complementing transformations, and they involve,
not only inversion/reversal, but also transposition. Let ∂ct  represent differentiation with respect
to the time-like coordinate, and ∂s  represent differentiation with respect to the spatial variable.
Let us demand invariance of inner products involving differential operators; for example, like:

2 2 2 2

1 1 0 and 1 1 0

or and .

ct s ct s

ct ct
ct s ct s ct s ct s

s s

ct ct
s s

é ù é ù
é ù é ù¶ ¶ = - = ¶ -¶ = - =ê ú ê úë û ë û-ë û ë û

é ù é ù¶ ¶
é ù é ù¶ ¶ = ¶ - ¶ = ¶ -¶ = ¶ - ¶ê ú ê úë û ë û-¶ ¶ë û ë û

(84)
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i.e., always two statements – not just one statement. This level of detail was missing from the
scalar chain rule, and that omission caused people to believe that Maxwell’s equations could
not be shown to be invariant under GT. And so they welcomed LT instead. This is not to say
we should now revert to using GT again. Indeed, because of the half-retardation issue
discussed in Sect. 3, the best transformation to use may involve, not V / c, but rather V /2c. This
question needs detailed future study.

The use of 2×2 matrices can make the detail needed in such future study very clear. However,
many mathematicians tend to prefer tensor notation. But current-day tensor notation uses only
two index positions, both on the right: down called ‘covariant’, up, called ‘contravariant’. To
represent the transformations needed for Physics, it would be helpful, and maybe necessary,
to add two more index locations, up and down on the left, to acknowledge transposition, and
using words like ‘trans-covariant’ and ‘trans-contravariant’ to emphasize what putting indices
in those positions means.
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1. Introduction

As we known the modern physics is based on the two fundamental pillars of physics. The
first is the general relativity theory, discovered by Albert Einstein, which gave us a detailed
explanation of the macro-dimension world; for example, planets, stars, galaxies and clusters
of galaxies and even the extra-universe, that explains the force exerted by the gravitational
field of a massive object on any body within the vicinity of its surface. It mainly uses
the Riemannian geometry as a mathematical formalism. The second perspective is the
quantum mechanics, that describes the micro-dimensions, such as; molecules, atoms and
even the smallest components of the latter, like the electrons and quarks, which explains
the three principal forces in the micro-world, (like the weak force, electromagnetic force and
strong force). It uses the operator theory acting on a Hilbert space algebra (von Neumann
algebras). After the mid-twentieth century a new theory in physics has been emerged
called the Non-commutative (NC) geometry. It came to unify the four fundamental forces,
And its roots go back to the inability of classical physics to explain certain macroscopic
phenomena. Mathematically described by a Poisson manifold M, and denoted by F(M)

algebra (commutative) regular functions on M, called observable. In this case, it is
important to quantify these Poisson varieties (quantum mechanics) in order to obtain results
more "precise" than classical mechanics. Many studies have focused on the possibility of
quantification of such varieties and the idea of using the theory of algebraic deformations,
called "deformation of quantization" is due to (Bayen et al, 1978). And as has been creativity
in this mathematical aspect, through a group of researchers ( for example, (Bordemann et al.,
(2005); Makhlouf, 2007)). The motivations to the occurrence of this deformation theory are
multiple, in a string theory, (see for example (Veneziano, (1986); Amati et al, (1987); Konishi
et al, (1990); Kato, (1990) and Guida et al, (1991) also Gross et al, 1988) in a quantum gravity,
(Garay, 1995) in a non-commutative geometry, (Capozziello et al, 2000) and in a black hole
physics (Scardigli, (1999); Scardigli & Casadio, (2003)).

©2012 prezimena autora, kod vise prvi et al., licensee InTech. This is an open access chapter distributed under
the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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In the same context, the innovations physicists were prominent by inserting this study
algebra on several applications in physics. The first of these applications is the papers of
(Kempf et al, 1995), which is based on introducing a parameter of deformation β in the
Heisenberg incertitude principle, given by:

∆x∆p � h̄
2

[

1 + β (∆p)2
+ β �p�2

]

, (1)

Where the commutation between the position and the momentum operators in one
dimension, can be written as:

[x̂, p̂] = ih̄
(

1 + βp2
)

, (2)

This example, we have found several applications in the non-relativistic quantum mechanics;
such as, the harmonic oscillator of arbitrary dimensions (cf., e.g., Refs (Chang et al, (2002);
Hinrichsen & Kempf, (1996); Kempf, (1994), Kempf et al, (1995) and Kempf, (1997)), the
problem of the cosmological constant has been studied (Pet & Polchinski, (1999)), the effect
of the minimal length on the 3-D Coulomb potential has also been studied in (Brau, (1999)
and Akhoury, (2003)), the one-dimensional box (Nozari & Azizi, (2006)), the study of the
dynamics of a non-relativistic particle with mass variable m(t) (cf., e.g., Ref Merad & Falek,
(2009)), and also in the relativistic extension of this problem has some limited attempts,
among them we mention: the Dirac equation in the presence of a minimum length in
(Nouicer, (2006)), where the Dirac oscillator in one dimension has been solved exactly, the
generalized Dirac equation was recently studied by Nozari (Nozari & Karami, (2005)), the
bosonic oscillator DKP (spin 0 and 1)-dimensional and three-dimensional that were treated
respectively in (Falek & Merad, (2009); (2010)).

On the other hand, the path integral is an alternative technical of Heisenberg and Schrödinger
methods. This approach is based on the Lagrangian form, which offers an alternative view
of quantum mechanics, that has quickly established itself in theoretical physics, with its
extension on quantum field theory and gauge theories. The extension of this technique
within the framework of deformed algebra was applied to the relativistic and non-relativistic
quantum mechanics. For example, the harmonic oscillator in one dimension (Nouicer, 2006)
and in D dimensions (Chergui et al, 2010) and the (1+1)-dimensional Klein–Gordon equation
with mixed vector-scalar linear potentials (Merad et al, 2010) but recently it is shown that the
problem concerning the choice of point discretization in the path integral is not yet resolved
and this arbitrariness is fixed by comparing the discrete action in its infinitesimal form with
the corresponding wave equation by which judicious choice of the discretization parameter is
indicated by the order of operators ( cf., e.g., Refs Benzair et al, (2012); (2014)). This resembles
the case of curved spaces in which the mid-point (i.e. x̄ =

(

x + x−1

)

/2 ) was privileged
to have correct quantum correction due to the curvature. Similar arguments in the case of
space-time transformations (cf., e.g., Ref (Khandekar et al, 1993)) are presented. In ( Ref
(Kleinert, 1990)), an outcome considers all points of the interval in an equivalent manner but
unfortunately with minimal length deformation. The problem is raised and we will say that
it is more like that of the quantization with constraints (see, e.g., Ref (Lecheheb et al, 2007)).

In this chapter we propose to construct the path integral formalism in the momentum space
representation to adapt this type of deformation, defined in Eqs. (1) and (2). Then, we
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describe in detail the method of calculating the quantum corrections according to Feynman
approach (cf., e.g., Ref (Khandekar et al, 1993)). As it is shown in (Benzair et al, (2012);
(2014)), different methods gave different results, where the quantum correction CT depends
on the α-point discretization interval and there are specific options for the choice of the
discretization α−parameter, which coincides with the equation method, and this leads to the
vanishing of the term CT and this corresponds to α = 0 and α = 1/2 within the method of

(Kleinert, 1990) and to α =
1
2

(

1 ± 1/
√

2
)

within the standard method of (Khandekar et al,

1993).

2. Brief review of a minimal length relation

As it seems that in the Kempf’s work (cf., e.g., Ref (Kempf et al, 1995)), there is a minimal
value of (∆x)min different zero which is given by:

(∆x)min (�p�) = h̄
√

β

√

1 + β �p�2. (3)

= h̄
√

β corresponds to �p� = 0. (4)

The operators (x̂, p̂) that verifies the commutation relation amended (2) may be considered
as the functions of q and p operators, satisfying the relationship of canonical commutation:
[q̂, p̂] = ih̄, as follow

x̂ = ih̄
(

1 + βp2
)

q̂, p̂ = p. (5)

In the momentum space representation, we define the expressions of x̂ and p̂ act on the
functions Ψ (p) defined by:

p̂.Ψ (p) = pΨ (p) , x̂Ψ (p) = ih̄
(

1 + βp2
)

∂

∂p Ψ (p) . (6)

The most important condition to be satisfied by the representation (2), is the preservation
of the operators symmetry x and p, where their values are real. Despite the fact that p is
not modified, then its symmetry is obvious; it is not the case for the x operator. Indeed, the
symmetry condition is written

(�Ψ| x̂) |Φ� = �Ψ| (x̂ |Φ�) . (7)

The scalar product should be defined as

�Ψ | Φ� =

∫

+∞

−∞

dp
1+βp2 Ψ

∗
(p)Φ (p) . (8)
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The modification of this product implies a new closure relation, which is written as

∫

+∞

−∞

dp
1+βp2 |p� �p| = 1. (9)

Inserting the latter relation in the scalar product of two momentum eigenvectors operator,
we get:

〈

p | p′
〉

=

(

1 + βp2
)

δ
(

p − p′
)

, (10)

also is given by

�p| p′� = δ

(

1
√

β
arctan

√

βp −
1
√

β
arctan

√

βp′
)

. (11)

In this case the Schrödinger equation for the particle in the harmonic oscillator of momentum
space representation in one dimension, can be written as

Ĥ =

(

p̂2

2m +
mω2

2 x̂2
)

=

[

p2

2m +
mω2

2

(

ih̄
(

1 + βp2
)

∂

∂p

)2
]

. (12)

Exact solutions of spectrum energy and the normalized eigenfunctions of the bound states
are defined in (Chang et al, (2002):

En = h̄ω

[

(

n +
1
2

)

√

1 +
(

βh̄mω

2

)2
+

(

n2
+ n + 1

) (

βh̄mω

2

)

]

. (13)

and

Ψn (p) =

√

22λ−1
(λ+n)n!

√

β

πΓ(2λ+n)[Γ(λ)]
−2

[

1
√

1+βp2

]λ

Cλ
n

( √

βp
√

1+βp2

)

, (14)

with Cλ
n are Gegenbauer polynomials.

3. Construction propagators with generalized Heisenberg principle

The purpose of this section is to discuss the propagators and the quantum corrections via
the standard Feynman approach, for a non-relativistic quantum mechanics in the context of
the deformed and non-deformed space at α-point discretization. Then we will circulate this
study on the relativistic problems through the two applications chosen below.

3.1. Ordinary quantum mechanics case

In this subsection, we will illustrate the spatio-temporal technique and the method of
calculating the quantum corrections according to the standard Feynman approach in the
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ordinary quantum mechanics. So, in one dimension, we consider the propagator expression
of ordinary non-relativistic quantum mechanics to the discontinuous form path integral

KN = AN

∫

exp

{

i
h̄

N+1

∑
n=1

Sn

}

N

∏
n=1

dzn, (15)

with AN =

(√

m
2πih̄ε

)N+1
and Sn is the discrete action into intervals [n − 1, n] , takes the

form follows:

Sn =
m
2ε
(zn − zn−1)

2
− εV (xn) . (16)

According to the standard method of Feynman (cf., e.g., Ref (Khandekar et al, 1993)), we

will apply the spatio-temporal method of processing z̄(α)

n = f (q̄
(α)

j ) to α-point discretization

defined as:

z̄(α)

n = αzn + (1 − α) zn−1. (17)

Two terms of quantum corrections have appeared (Cact, Cmes). Let’s start by calculating the
correction to the Cact action. Developing ∆zn to α-point discretization, we have:

∆zn = ∆qn f̄
(α)

′

n

(

1 +
(1−2α)

2!
f̄
(α)

′′

n

f̄
(α)

′

n

∆qn +

(1−α)
3
+α3

3!
f̄
(α)

′′′

n

f̄
(α)

′

n

∆q2
n

)

, (18)

where the prime on the function f̄
(α)

j indicates the derivative f̄
(α)

j over q̄
(α)

j . So, the kinetic

energy term in the action is:

∆z2
n

4ε
=

∆q2
n

4ε

(

f̄
(α)

′

n

)2
(

1 + (1 − 2α)
f̄
(α)

′′

n

f̄
(α)

′

n

∆qn +

[

(1−2α)
2

4

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2

+

(1−α3
)+α3

3
f̄
(α)

′′′

n

f̄
(α)

′

n

]

∆q2
n

)

. (19)

The potential energy takes a simple form:

εV(zn) = εV(q̄(α)

n ) + O(ε
2
) = εV(q̄(α)

n ). (20)

In addition, we note that the transformation z = f (q) made the path integral rather

complicated, where the mass parameter is transformed into m f̄
(α)

′

n . At this point, we would
apply the transformation over time parameter in order to overcome this difficulty:

ε = σn f ′ (qn) f ′ (qn−1) , where σn = sn − sn−1. (21)
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Development f ′ (qn) and f ′ (qn−1) at α-point discretization in order two of ∆qn, is written as:

ε = σn

(

f̄
(α)

′

n

)2
(

1 + (1 − 2α)
f̄
(α)

′′

n

f̄
(α)

′

n

∆qn +

(

(1−α)
2
+α2

2
f̄
(α)

′′′

n

f̄
(α)

′

n

− α (1 − α)

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2
)

∆q2
n

)

. (22)

From expressions (19) and (22), we can deduce the quantum correction from the action:

exp
[

i
h̄

m
2ε
(∆zn)

2
]

= exp
[

i
h̄

m
2σn

(∆qn)
2
]

(1 + Cact) , (23)

with

Cact =
i
h̄

m
8σn

∆q4
n

[

(

−16α
2
+ 16α − 3

)

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2

−
2
3

f̄
(α)

′′′

n

f̄
(α)

′

n

]

. (24)

Turning now to calculate the second correction Cmes, we have:

AN

N

∏
n=1

dzn =

(√

m
2πih̄ε

)N+1 N

∏
n=1

dqn f ′ (qn) . (25)

This can be achieved by rewriting:

AN

N

∏
n=1

dzn =

[

f ′ (qb) f ′ (qa)
]

−1/2
N+1

∏
n=1

(
√

m f ′(qn) f ′(qn−1)

2πih̄ε

) N

∏
n=1

dqn.. (26)

Then, we develop f ′ (qn) and f ′ (qn−1) to the second order of ∆qn as follows:

[

f ′ (qn) f ′ (qn−1)
]1/2

= f̄
(α)

′

n

(

1 +
(1−2α)

2
f̄
(α)

′′

n

f̄
(α)

′

n

∆qn +

(

(1−α)
2
+α2

4
f̄
(α)

′′′

n

f̄
(α)

′

n

−
α(1−α)

2

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2
)

∆q2
n

)

.

(27)

From the expressions (26), (27) and (22) we can deduce Cmes,

AN

N

∏
n=1

dzn =

N+1

∏
n=1

(√

m
2πih̄σn

)

(1 + Cmes)

N

∏
n=1

dqn., (28)

to the form

Cmes =
(1−2α)

2

4

(

f̄
(α)

′′

j

f̄
(α)

′

j

)2

∆q2
n. (29)
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n
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′
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(1−α)
2
+α2

2
f̄
(α)

′′′

n

f̄
(α)

′

n
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(
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′′

n

f̄
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′

n

)2
)

∆q2
n

)
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m
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2
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2
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n

f̄
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n

)2
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2
3
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2πih̄ε

) N

∏
n=1

dqn.. (26)

Then, we develop f ′ (qn) and f ′ (qn−1) to the second order of ∆qn as follows:

[

f ′ (qn) f ′ (qn−1)
]1/2

= f̄
(α)

′

n

(

1 +
(1−2α)

2
f̄
(α)

′′

n

f̄
(α)

′

n

∆qn +

(

(1−α)
2
+α2

4
f̄
(α)

′′′

n

f̄
(α)

′

n

−
α(1−α)

2

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2
)

∆q2
n

)

.

(27)

From the expressions (26), (27) and (22) we can deduce Cmes,

AN

N

∏
n=1

dzn =

N+1

∏
n=1

(√

m
2πih̄σn

)

(1 + Cmes)

N

∏
n=1

dqn., (28)

to the form

Cmes =
(1−2α)

2

4

(

f̄
(α)

′′

j

f̄
(α)

′

j

)2

∆q2
n. (29)
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To calculate the total quantum corrections CT , we use the following expression

〈

(∆q)2n
〉

=

(

ih̄σ

m

)n
(2n − 1)!!, (30)

The result is

〈

(∆q)2
〉

=

(

ih̄σ

m

)

,
〈

(∆q)4
〉

=

(

ih̄σ

m

)2
(3)!! = −3

(

h̄σ

m

)2
. (31)

By combining all these results, we arrive at:

CT = Ve f f = −σn
ih̄2

4m

[

(

11
2 − 28α

2
+ 28α

)

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2

−
f̄
(α)

′′′

n

f̄
(α)

′

n

]

. (32)

When we used the standard formalism of Feynman (cf., e.g., Ref (Khandekar et al, 1993)) to
α-point discretization, a single case of α−point gave the same result of the method equation,
this value is α = 1/2., where the effective potential is

Ve f f = σn
ih̄2

4m

[

3

2

(

f̄
(α)

′′

n

f̄
(α)

′

n

)2

−
f̄
(α)

′′′

n

f̄
(α)

′

n

]

. (33)

But in the presence β parameter deformation, the value of α-point discretization is different
according to what has been explained by the Feynman approach.

3.2. The non-relativistic QM with minimal length case

We illustrate the use of the path integral formalism of the transition amplitude in the
momentum space representation for a quantum time-independent quadratic systems with
the presence of nonzero minimum position uncertainty. We start with the propagator
expressed as:

K(β)
(pb, tb, pa, ta) = lim

N→∞

〈

pb

∣

∣

∣

∣

∣

N

∏
=1

exp( iε
h̄ Ĥ)

∣

∣

∣

∣

∣

pa

〉

. (34)

Inserting the closure relation for the momentum states (9) between each pair of infinitesimal

evolution operators (U(j, j − 1) = exp( iε
h̄ Ĥ)), we obtain

K(β)
(pb, tb, pa, ta) = lim

N→∞

N

∏
=1

∫

dp

(1+βp2
 )

N+1

∏
=1

[

1 +
iε

h̄
Ĥ

]

〈

p | p−1

〉

, (35)

where the projection relation (
〈

p | p−1

〉

) is defined in eq.(10). Then we inject the
Hamiltonian operator of a particle with nonzero minimum position uncertainty on the
projection relation for any systems studied. It is clear that there are only few cases where
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it is exactly solvable; namely, the case of a linear potential (V(x) = gx) and the case of a

harmonic potential
�

V(x) = mω2

2 x2
�

. In this chapter, we will study only the form quadratic,

for example, the harmonic oscillator potential in one dimension and the spinorial relativistic
particle.

The construction of momentum space path integral representation of the transition amplitude
for a particle moving in the potential of the harmonic oscillator in one dimension with
nonzero minimum position uncertainty. Following the well-known steps to construct a

quantum propagator K(β), we write:

K(β)
(pb, tb; pa, ta) = lim

N→∞

N

∏
j=1

�

dpj
�

1+βp2
j

�

N+1

∏
j=1

�

dqj

2πh̄

�

1 + βp2
j

�

exp







i
h̄

N+1

∑
j=1

�

qj∆pj − ε
p2

j

2m

−ε
mω2

2

�

�

1 + βp2
j

�2
q2

j − 6ih̄βpjqj

�

1 + βp2
j

�

− 2h̄2
β

�

1 + 3βp2
j

�

���

. (36)

The form of expression (36) shows that the path integral over the variables qj is Gaussian, so
the result is simply written as:

K(β)
(pb, tb, pa, ta) = lim

N→∞

N

∏
=1

�

dp

(1+βp2
 )

N+1

∏
=1

1
√

2πih̄mω2ε

exp

�

i
h̄

N+1

∑
=1

�

(∆p)

2

2mω2ε(1+βp2
 )

2 +
3ih̄βp∆p

(1+βp2
 )

− ε
p2



2m − ε
mω2 h̄2

β

2

�

−2 + 3βp2


�

�

�

. (37)

This latter expression shows that the kinetic term is similar a system of space dependent mass
and can be removed by an α−point coordinate transformation method (see, Ref (Khandekar
et al, 1993)), where the α-point discretization interval defined by

p̄(α)

 = αp + (1 − α) p−1. (38)

So, we will introduce the function f (p), where the first derivative of f ( p̄(α)

 ) is equal to

1/(1 + β p̄
(α)2
 ). Thus, there are three quantum corrections obtained in expression (37) .

- The first related to the action C
(1)
act

- the second correction related to the measure C
(1)
mes

- and the third correction related to the f-factor CT
f

Expanding the exponential (
i

h̄
(∆p)

2

2mω2ε(1+βp2
 )

2 ) of the α−point discretization interval, we find
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 )

N+1

∏
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1
√

2πih̄mω2ε
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�

i
h̄

N+1

∑
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(∆p)

2

2mω2ε(1+βp2
 )

2 +
3ih̄βp∆p

(1+βp2
 )

− ε
p2



2m − ε
mω2 h̄2

β

2

�

−2 + 3βp2


�

�

�

. (37)

This latter expression shows that the kinetic term is similar a system of space dependent mass
and can be removed by an α−point coordinate transformation method (see, Ref (Khandekar
et al, 1993)), where the α-point discretization interval defined by

p̄(α)

 = αp + (1 − α) p−1. (38)

So, we will introduce the function f (p), where the first derivative of f ( p̄(α)

 ) is equal to

1/(1 + β p̄
(α)2
 ). Thus, there are three quantum corrections obtained in expression (37) .

- The first related to the action C
(1)
act

- the second correction related to the measure C
(1)
mes

- and the third correction related to the f-factor CT
f

Expanding the exponential (
i

h̄
(∆p)

2

2mω2ε(1+βp2
 )

2 ) of the α−point discretization interval, we find
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exp

�

i
h̄

N+1

∑
=1

�

(∆p)

2

2mω2ε(1+βp2
 )

2

�

�

= exp





i
h̄

N+1

∑
j=1

�
�

f̄
(α)′



�2

(∆p)

2

2mω2ε

�





�

1 + C
(1)
act

�

, (39)

where

C
(1)
act =

i
2h̄mω2ε

�

2(1−α) f̄
(α)′′



�

f̄
(α)′



�2

f̄
(α)′



�

∆p

�3
+ (1 − α)

2

�

�

f̄
(α)′′



f̄
(α)′



�2

+

f̄
(α)′′′



f̄
(α)′



�

( f̄
(α)′

 )
2
�

∆p

�4

�

−
2(1−α)

2

(2h̄mω2ε)
2

�

f̄
(α)′′



f̄
(α)′



�2 �

f̄
(α)′



�4
�

∆p

�6
, (40)

and the measure term will be developed as.

N

∏
j=1

�

dpj

1+βp2
j

=

�

�

1 + βp2
b

� �

1 + βp2
a

�

N

∏
j=1

�

dpn

N+1

∏
j=1

1
�

�

1+βp2
j

��

1+βp2
j−1

�

=

�

1
f ′b f ′a

� N

∏
n=1

�

dpj

N+1

∏
n=1

f̄
(α)′

j

�

1 + C
(1)
m

�

, (41)

where

C
(1)
m =

(1−2α)

2
f̄
(α)

′′

n

f̄
(α)

′

n

∆pn +

�

(1−α)
2
+α2

4
f̄
(α)

′′′

n

f̄
(α)

′

n

−
α(1−α)

2

�

f̄
(α)

′′

n

f̄
(α)

′

n

�2
�

∆p2
n. (42)

and the f -factor term will be developed as

exp

�

−

3βp

∆p



1+βp2


�

= 1 + CT
f , (43)

where

CT
f =

3
2

�

f̄
(α)′′



f̄
(α)′



�

∆p +
9
8

�

f̄
(α)′′



f̄
(α)′



�2
�

∆p

�2
+

3
2 (1 − α)

�

f̄
(α)′′′



f̄
(α)′



−

�

f̄
(α)′′



f̄
(α)′



�2
�

�

∆p

�2
, (44)

Now, in order to convert this expression to the usual form of Feynman path integral, let
us bring the kinetic term to the conventional one, with a constant mass term by using
the following coordinate transformation p = g(k), this transformation generates two
corrections:

- the first related to the action C
(2)
act
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- and the other correction related to the measure C
(2)
m

The α-point expansion of ∆p reads at each ()

∆p = g(k)− g(k−1) = ∆k ḡ
(α)

′



�

1 +
(1−2α)

2!

ḡ
(α)

′′



ḡ
(α)

′



∆k +
(1−α)

3
+α3

3!

ḡ
(α)

′′′



ḡ
(α)

′



∆k2


�

. (45)

The choice of g is fixed by the following condition ((∂g/∂k) = (∂ f /∂p)−1), that makes

the transformation g(k) =

tan
√

βk
√

β
where the region p ∈ [−∞,+∞] is mapped to k ∈

�

−π/2
�

β, π/2
�

β
�

. Thereafter, we develop the exponential of the kinetic term as

exp

�

i
h̄

N+1

∑
=1

�

(∆p)

2

2mω2ε(1+βp2
 )

2

�

�

= exp

�

i
h̄

N+1

∑
=1

�

∆k2


2mω2ε

�

�

�

1 + C
(1)
act

� �

1 + C
(2)
act

�

, (46)

where C
(2)
act is given by

C
(2)
act =

�

i
2h̄mω2ε

�

(1 − 2α)
ḡ
(α)

′′



ḡ
(α)

′



�

ḡ
(α)

′



�2 �

f̄
(α)

′



�2
∆k3



+

�

(1−2α)
2

4

�

ḡ
(α)

′′



ḡ
(α)

′



�2

+

(1−α)
3
+α3

3

ḡ
(α)

′′′



ḡ
(α)

′



�

�

f̄
(α)

′



�2 �

ḡ
(α)

′



�2
∆k4



�

−
(1−2α)

2

2(2h̄mω2ε)
2

�

ḡ
(α)

′′



ḡ
(α)

′



�2
�

ḡ
(α)

′



�4 �

f̄
(α)

′



�4
∆k6

 + ...

�

. (47)

The measure induce also a correction

N

∏
j=1

�

dpj

1+βp2
j

=

�

1
f ′b f ′a g′b g′a

N

∏
n=1

�

dkj

N+1

∏
j=1

f̄
(α)

′

j ḡ
(α)

′

j

�

1 + C
(2)
m

� �

1 + C
(1)
m

�

=

N

∏
j=1

�

dkj

N+1

∏
j=1

�

1 + C
(1)
m

� �

1 + C
(2)
m

�

, (48)

where C
(2)
m is given by

C
(2)
m =

(1−2α)

2

ḡ
(α)

′′

j

ḡ
(α)

′

j

∆kj +



−α
(1−α)

2

�

ḡ
(α)

′′

j

ḡ
(α)

′

j

�2

+

(1−α)
2
+α2

4

ḡ
(α)

′′′

j

ḡ
(α)

′

j



 ∆k2
j . (49)
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(2)
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(α)
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

�

1 +
(1−2α)

2!

ḡ
(α)
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

ḡ
(α)
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
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3
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ḡ
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

ḡ
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�

. (45)

The choice of g is fixed by the following condition ((∂g/∂k) = (∂ f /∂p)−1), that makes

the transformation g(k) =

tan
√

βk
√

β
where the region p ∈ [−∞,+∞] is mapped to k ∈

�

−π/2
�

β, π/2
�

β
�

. Thereafter, we develop the exponential of the kinetic term as

exp

�

i
h̄

N+1

∑
=1

�

(∆p)

2

2mω2ε(1+βp2
 )

2

�

�

= exp

�

i
h̄

N+1

∑
=1

�

∆k2


2mω2ε

�

�

�

1 + C
(1)
act

� �

1 + C
(2)
act

�

, (46)

where C
(2)
act is given by

C
(2)
act =

�

i
2h̄mω2ε

�

(1 − 2α)
ḡ
(α)

′′



ḡ
(α)

′



�

ḡ
(α)

′



�2 �

f̄
(α)

′



�2
∆k3



+

�

(1−2α)
2

4

�

ḡ
(α)

′′



ḡ
(α)

′



�2

+

(1−α)
3
+α3

3

ḡ
(α)

′′′



ḡ
(α)

′



�

�

f̄
(α)

′



�2 �

ḡ
(α)

′



�2
∆k4



�

−
(1−2α)

2

2(2h̄mω2ε)
2

�

ḡ
(α)

′′



ḡ
(α)

′



�2
�

ḡ
(α)

′



�4 �

f̄
(α)

′



�4
∆k6

 + ...

�

. (47)

The measure induce also a correction

N

∏
j=1

�

dpj

1+βp2
j

=

�

1
f ′b f ′a g′b g′a

N

∏
n=1

�

dkj

N+1

∏
j=1

f̄
(α)

′

j ḡ
(α)

′

j

�

1 + C
(2)
m

� �

1 + C
(1)
m

�

=

N

∏
j=1

�

dkj

N+1

∏
j=1

�

1 + C
(1)
m

� �

1 + C
(2)
m

�

, (48)

where C
(2)
m is given by

C
(2)
m =

(1−2α)

2

ḡ
(α)

′′

j

ḡ
(α)

′

j

∆kj +



−α
(1−α)

2

�

ḡ
(α)

′′

j

ḡ
(α)

′

j

�2

+

(1−α)
2
+α2

4

ḡ
(α)

′′′

j

ḡ
(α)

′

j



 ∆k2
j . (49)
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By combining all these corrections as follows:

1 + CT =

(

1 + C
(1)
act

) (

1 + C
(2)
act

) (

1 + C
(1)
m

) (

1 + C
(2)
m

) (

1 + CT
f

)

. (50)

where the corrections terms are evaluated perturbatively, using the expectation values

〈

(∆k)2ℓ
〉

=

(

ih̄mω
2
ε

)ℓ

(2ℓ− 1)!!. (51)

So through all of these corrections, one can conclude the correction total CT depending on
the α-point discretization can be obtained as

CT =

i

h̄
h̄2mω

2
εβ

[

−1 +

(

8α
2
− 8α +

5

2

)

tan2
√

βk

]

(52)

Furthermore, a judicious choice of the discretization parameter is indicated by the order of
operators present in the wave equation method. The result coincides with the path integral
approach when CT equals

CT = ih̄εmω
2
β

[

−1 +
3

2
tan2

√

βk

]

, (53)

We note that the different α-point discretization value (i.e. α =
1
2

(

1 ± 1/
√

2
)

) are obtained

compared with the ordinary quantum mechanics case (α = 1/2). So the propagator (37)
becomes,

K(β)
(pb, tb; pa, ta) = lim

N→∞

N

∏
n=1

∫

dkn

N+1

∏
n=1

1
√

2πih̄mω2ε
exp

{

i

h̄

N+1

∑
n=1

[

(∆kn)
2

2mω2ε
− ε

tan2
(

√

βkn)

2mβ

]

}

,

(54)

This expression is exactly the path integral representation of the transition amplitude of a
particle, moving in the symmetric Pöschl-Teller potential (cf., e.g., Ref (Grouche & Steiner,
1998)):

K(β)
= lim

N→∞

N

∏
n=1

∫

dkn

N+1

∏
n=1

1
√

2πih̄mω2ε
exp

{

i
h̄

N+1

∑
n=1

[

(∆kn)
2

2mω2ε
− ε

βh̄2mω2

2 λ (λ − 1) tan2
(

√

βkn

)

]

}

,

(55)

with (λ =

(

1 + (1 + (2/βh̄mω)
2
)

1/2
)

/2). The solution of this path integral is given by:
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K(β)
(pb, tb; pa, ta) =

∞

∑
n=0

22λ−1
(λ+n)n!

√

β

πΓ(2λ+n)[Γ(λ)]
−2 exp

[

−
i
h̄

βh̄2mω2
(tb−ta)

2

(

n2
+ 2 (n + 1) λ

)

]

cosλ
(

√

βkb

)

cosλ
(

√

βka

)

Cλ
n

(

sin
(

√

βkb

))

Cλ
n

(

sin
(

√

βkb

))

. (56)

We finally obtain the spectral decomposition of the transition amplitude for the
one-dimensional harmonic oscillator with nonzero minimum position uncertainty

K(β)
(pb, tb; pa, ta) =

∞

∑
n=0

Ψn (pb)Ψ
∗

n (pa) e−
i
h̄ En(tb−ta). (57)

The energy spectrum is obtained from the poles of the Green function (57):

En =

βh̄2mω2

2

(

n2
+ 2 (n + 1) λ

)

. (58)

Using the expression of λ, one finds:

En = h̄ω

[

(

n +
1
2

)

√

1 +
(

βh̄mω

2

)2
+

(

n2
+ n + 1

) (

βh̄mω

2

)

]

. (59)

Also, the normalized eigenfunctions of the bound states can be easily deduced

Ψn (p) =

√

22λ−1
(λ+n)n!

√

β

πΓ(2λ+n)[Γ(λ)]
−2

[

1
√

1+βp2

]λ

Cλ
n

( √

βp
√

1+βp2

)

. (60)

We note that equations (59) and (60) coincide exactly with those obtained in (Chang et al,
2002). Also we can verify these results when β → 0, which transform to these results:

En =

β→0
h̄ω

(

n +
1
2

)

, Ψn (p) =

β→0

[

1
2nn!

√

π

]1/2 (
1

mh̄ω

)1/4
e−

p2

2mh̄ω Hn

(

√

1
mh̄ω

p

)

. (61)

For the one dimensional harmonic oscillator in the framework non-commutative geometry
represented by Eqs. (1) and (2), the quantum corrections from the viewpoint of Feynman
(cf., e.g., Ref (Khandekar et al, 1993)) at the α-point discretization interval, we found only

two points discretization (α =
1
2

(

1 ± 1/
√

2
)

) consistent with differential equation (see, Ref

(Chang, et al, 2002)) which gives different value of ordinary quantum mechanics.

So, in the following subsection we aim to expand this type deformation for relativistic
systems.
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3.3. The relativistic QM with minimal length

Our interest in the following section is to construct the propagator for two applications
relativistic quantum mechanics in the presence of a minimal length, the first is
(1+1)-dimensional Dirac oscillator, where the momentum component is shifting p by
p − imωγ0x (cf., e.g., Ref (Szmytkowski & Gruchowski, 2001), and the second is a spinorial

relativistic particle under the action of a Lorentz potential

(

V(x),
→

A = 0

)

plus a scalar

potential S(x), described by the (1+1)-dimensional Dirac equation:

(

γ
µ

Π̂µ−m + ıǫ
)

Ŝ(β)
= I, (62)

where µ = 0, 1, γµ are the Dirac matrices in the 2-dimentional Minkowski space. So, via
the same procedure in the our previous work (Benzair et al, 2012 and 2014), we can obtain
the standard propagator result for both systems, where there are two types of propagation,

one with positive energy (+E
(β)

n ) propagation and the other with negative energy (−E
(β)

n )

propagation

S(β)
(pb, pa, tb − ta) = −

∞

∑
n=0

[

Θ (tb − ta)Ψ
(β)+

n (pb) Ψ̄
(β)+

n (pa) e−ıE
(β)

n (tb−ta)
+

Θ (− (tb − ta))Ψ
(β)−

n (pb) Ψ̄
(β)−

n (pa) eıE
(β)

n (tb−ta)

]

, (63)

For one-dimensional Dirac oscillator in the momentum space representation with the
presence of minimal length uncertainty, can be expressed the energy spectrum as follows

E
(β)

n,± = ±

√

m2
+ β (mω)

2 n2
+ 2n (mω). (64)

and the corresponding wave functions

Ψ
(β)+

n (p) =

(

f
(β)+

n (p)

g
(β)+

n (p)

)

, and Ψ
(β)−

n (p) =

(

f
(β)−

n (p)

g
(β)−

n (p)

)

, (65)

where the components of the wave functions f
(β)±

n (p) and g
(β)±

n (p) are respectively

f
(β)+

n (p) =

√

Γ (η)
2 22η−1

(n+1)!(n+η)
√

β

(

E
(β)

n +m
)

πΓ(n+2η)2E
(β)

n

(

1
1+βp2

)η

C
η

n

( √

βp

1+βp2

)

. (66)

g
(β)+

n (p) = 2ı
√

β

√

Γ (η)
2 22η−1n!(n+η)

√

β

πΓ(n+2η)2E
(β)

n

(

E
(β)

n +m
)

(

1
1+βp2

)η+1
C

η+1
n−1

( √

βp

1+βp2

)

. (67)

and
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f
(β)−

n (p) =

�

Γ (η)
2 22η−1n!(n+η)

√

β

�

E
(β)

n −m
�

πΓ(n+2η)2E
(β)

n

�

1
1+βp2

�η

C
η

n

� √

βp

1+βp2

�

. (68)

g
(β)−

n (p) = 2ı
√

β

�

Γ (η)
2 22η−1n!(n+η)

√

β

πΓ(n+2η)2E
(β)

n

�

E
(β)

n −m
�

�

1
1+βp2

�η+1
C

η+1
n−1

� √

βp

1+βp2

�

. (69)

and in the second application we can express these results; the energy spectrum are

E
(β)±

n = −
m0V0

S0
± ω

(β)

n ; T = tb − ta. (70)

with

ω
(β)

n =

(S2
0−V2

0 )

S0

�

β(n2
+

2n

β
√

S2
0−V2

0

). (71)

and the wave functions appropriate to the energy spectrum E
(β)±

n :

Ψ
(β)±

(k) = exp

�

i

�

E
(β)±

n V0+m0S0

�

(S2
0−V2

0 )
k

�

×

















�

Nn(S2
0−V2

0 )

4S0

�

E
(β)±

n S0+m0V0

�





�

�

E
(β)±

n S0+m0V0

�

(S0+V0)
υηC

η

n (u) + 2i
√

β

�

(S0−V0)
�

E
(β)±

n S0+m0V0

�υη+1C
η+1
n−1 (u)





�

Nn(S2
0−V2

0 )

4S0

�

E
(β)±

n S0+m0V0

�



−

�

�

E
(β)±

n S0+m0V0

�

(S0−V0)
υηC

η

n (u) + 2i
√

β

�

(S0+V0)
�

E
(β)±

n S0+m0V0

�υη+1C
η+1
n−1 (u)





















.

(72)

To use the old variables, we need the following relations

u =

p
√

β
√

1+βp2
, υ =

1
√

1+βp2
and k =

arctan
√

β

�

�

βp
�

. (73)

In the end, in order to separate the β dependent contribution, let us consider a very small β.
The form of (71) can easily expand to first-order in β, be written as

ω
≪β

n =

√

2n
(S2

0−V2
0 )

3/4

S0
+ β

(S2
0−V2

0 )
5/4
(n2

)

2S0

√

2n
+ O

�

β
2
�

. (74)

Then we get

E
(β)

n = −
m0V0

S0
±

√

2n
(S2

0−V2
0 )

3/4

S0
± β

(S2
0−V2

0 )
5/4
(n2

)

2S0

√

2n
+ O

�

β
2
�

, (75)
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The first term in (75) is the energy spectrum of the ordinary Dirac equation in the presence
of electromagnetic field and the second term represents the correction due to the presence of
the minimal length.

3.4. Resolution of (1+1)-dimensional Dirac equation in position space
representation

In this subsection, we’ll examine the same above second system in the position space
representation, and using the properties of the Hermite polynomial. We can calculate the
corrections in the values of spectrum energy and this will be seen in this regard. This system
is described by the (1+1)-dimensional Dirac equation

{σ2 p̂ + σ3 (m0 + S (x̂))− (i∂t − V (x̂))}Ψ(x, t) = 0, (76)

where σ2 and σ3 are the standard Pauli matrices

σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (77)

We note that in (1+1) dimensions, the Dirac algebra is represented by the Pauli matrices.
These reflect the invariant character of the parity of the Dirac equation. In fact in this
dimension, there are no spin properties. This looks meaningless. However, in second
quantization, we are obliged to use anticommutation relations to take into account the
statistics of particles and to have a stable theory. At this level and even in (1+1) dimensions,
the spin is an intrinsic characteristic of the particles in connection with the Wigner
representation of relativistic particles.

As the potentials are time-independent, we have then to find the stationary states of this
equation. Accordingly, let us choose for Ψ(x, t) the form exp (−iEt) Φ(x); we then get the
following eigenvalue equation

{σ2 p̂ + σ3 (m0 + S (x̂))− (E − V (x̂))}Φ(x) = 0. (78)

In the position space acts as

x̂ = x, p̂ = −i∂x

(

1 −
β

3 ∂
2
x

)

. (79)

Then, a modified Dirac equation can be written as,

[

−iσ2∂x

(

1 −
β

3 ∂
2
x

)

+ σ3 (m0 + S (x))− (E − V (x))
]

Φ(x) = 0. (80)
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By using the following ansatz

Φ =

{

−iσ2∂x

(

1 −
β

3 ∂
2
x

)

+ σ3 (m0 + S (x)) + (E − V (x))

}

χ, (81)

where χ = (
χ1
χ2
) is a two-component function spinor, Eq.(80) becomes a differential equation

of fourth order whose solution is very complicated in the presence of potentials.

Now, by suggesting that the system is subjected to the action of linear vector plus scalar
potentials,

V(x) = V0x, S(x) = S0x, (82)

with S0 and V0 being arbitrary constants, we find that the Dirac spinor satisfies:

{

−
2
3 β∂

4
x + ∂

2
x + (E − V0x)

2
− (m0 + S0x)

2
−

(

1 − β∂
2
x

)

(S0σ1 + iV0σ2)

}

χ = 0, (83)

We note that the linear potential, such a uniform external electromagnetic field plays a
significant role in various domains of physics. For example, in particle physics, it can be
regarded as a model to describe quark confinement (cf., e.g., Ref (Ferreira et al, 1971)).
Further, the linear potential well has potential applications in electronics (in semiconductor
devices), where the electrons are confined in almost linear quantum wells (cf., e.g., Ref
(Singh, 1997)). Quantum Mechanics-Fundamentals and Applications to Technology).

Now in order to decouple the system (83), we introduce the following canonical
transformation

χ (x) = Uξ (x) , (84)

where U is given by

U =

[

(V0 + S0) (V0 + S0)
√

(S2
0 − V2

0 ) −

√

(S2
0 − V2

0 )

]

. (85)

Then the function ξ (x) satisfies the following equation

[

−
2β

3α
∂

4
x +

(1+εβα)

α
∂

2
x − α

[

x
2
+ 2

(m0S0+EV0)

α2 x

]

+

(E2
−m2

0)

α
− ε

]

ξε (x) = 0, (86)

with α =

√

(S2
0 − V2

0 ) and ε = ±1.

As it has been mentioned previously that the solution is complicated, we try to find via
the usual perturbation method of quantum mechanics the first energy correction at order
1 in β and point out how the introduction of the modified Heisenberg algebra affects the
physical results. To do this, let us first suppose in this case that α2

> 0 so as to avoid
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physical results. To do this, let us first suppose in this case that α2

> 0 so as to avoid
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complex eigenvalues and arrange equation (86) as a sum of two terms, one of which being
the perturbative term, as follows,

[

H0
(z, ∂z) + Hpert

(∂z)

]

ξε (z) = 0, (87)

by setting

z =

(

S2
0 − V2

0

)1/4
(

x +

(m0S0+EV0)

(S2
0−V2

0 )

)

. (88)

and

H0
= ∂

2
z − z2

+ z1,

Hpert
= −

2

3
βα∂

4
z + εβα∂

2
z , (89)

where

z1 =

(m0S0+EV0)
2

(S2
0−V2

0 )

3
2

+

(E2
−m2

0)
√

(S2
0−V2

0 )

− ε. (90)

Now, in case where Hpert
(∂z) vanishes, (i.e. when β → 0), equation (87) becomes that of the

harmonic oscillator whose solution is known‚

ξ
β=0
ε (z) = Cn′ exp

(

−

1

2
z2

)

Hn′ (z) , n′
= n +

1

2
+

ε

2
, (91)

with z1 verifying

z1 = 2n + 1. n = 0, 1, 2, ... , (92)

where n′
= (n + 1, n) . Hence from (90) and (92), we obtain the following energy levels for

our Dirac equation:

E
β=0
n,± = −

m0V0
S0

±

√

2n
(S2

0−V2
0 )

3/4

S0
. (93)

We note the existence of the two signs in (93) which is a characteristic property of
energies in relativistic quantum mechanics. Now, to find the first correction in the energy
levels, we take the expectation value of the perturbation operator by using eigenfunctions (91)

∆zn1 =

�ξβ=0
(z)|Hpert

|ξ
β=0

(z)�

�ξβ=0
(z)|ξβ=0

(z)�
. (94)

With the help the properties of Hermite polynomial (Gradshteyn & Ryzhik, 2000), we obtain
this result:
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∆zn1 =

βα
∫

exp(− 1
2 z2

)Hn(z)[−
2
3 ∂4

z+ε∂2
z ] exp(− 1

2 z2
)Hn(z)dz

∫

exp(− 1
2 z2

)Hn(z) exp(− 1
2 z2

)Hn(z)dz
= −

βα

2

(

n
2
)

, (95)

From the relation (90), we derive the expression of ∆En1 as a function of ∆zn1, and we write‚

∆E
1
n =

(S2
0−V2

0 )
3/2

∆zn1

2S0

(

E
β=0
n,± S0+m0V0

) . (96)

Then, by substituting (95) and (93) in (96), we find‚

∆E
1
n = ±β

(S2
0−V2

0 )
2
(n2

)

2S0

√

(2n)(S2
0−V2

0 )
3/4 . (97)

The energy spectrum of this study at order 1 in β can be rewritten as

En (β) = E
β=0
n,± + ∆E

1
n + O

(

β
2
)

, (98)

which is equal to

En (β) = −
m0V0

S0
±

√

(2n)
(S2

0−V2
0 )

3/4

S0
± β

(S2
0−V2

0 )
5/4
(n2

)

2S0

√

(2n)
+ O

(

β
2
)

. (99)

We note that the same correction spectrum energy obtained where using the momentum
space representation defined in eq. (75).

4. Conclusion

We have discussed in this chapter the path integral formalism in the case of the appearance

of the parameter of deformation β in the generalized Heisenberg principle (1), where

we calculated the quantum corrections according to the Feynman approach (cf., e.g., Ref

(Khandekar et al, 1993)) for Harmonic oscillator particle in one dimension. And we have

shown that the different α values obtained for the ordinary quantum mechanics, that make us

wonder about these results. In addition, we have generalized the study of relativistic particles

which have one half (1/2) spin for example Dirac oscillator and relativistic spinning particle

subjected to the action of combined vector and scalar linear potentials, with a deformed

commutation relation for the Heisenberg principle. We have obtained the same α values for

Harmonic oscillator. This has been explained in our previous works (Benzair et al, 2012;

2014). Using the residue theorem, the energy spectrum and corresponding eigenfunctions

expressed in terms of Gegenbauer polynomials are then deduced as a function of the

deformation parameter β. It has been noted above the energy spectrum of the relativistic
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subjected to the action of combined vector and scalar linear potentials, with a deformed

commutation relation for the Heisenberg principle. We have obtained the same α values for

Harmonic oscillator. This has been explained in our previous works (Benzair et al, 2012;
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deformation parameter β. It has been noted above the energy spectrum of the relativistic
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spinorial particle is dependent on term quadratic in n that is similar to the energy levels

of a particle confined in a potential well. In addition, we studied in the second relativistic

application, the energy spectrum of the Dirac equation for a spin 1/2 subjected to the action

of combined vector and scalar linear potentials, with a deformed commutation relation for

the Heisenberg principle, where we have used the old variable p in the position space

representation, we have obtained a differential equation of fourth order whose analytic

solution is complicated. We have calculated the energy correction in first order for β by using

a usual approximation technique of quantum mechanics. We note that the two methods gave

the same results for the first energy correction at order 1 in β. In this study, we did not take

the case S2
0 − V2

0 < 0, so as to avoid the complex eigenvalues. But when S2
0 − V2

0 = 0, the

calculation is very simple and we can obtain physical results.

Finally, let us signal that the problems of choosing α−point discretization in the case of

deformed space are under consideration.
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1. Introduction

The history of physics has two great revolutionary theories, such as relativity and quantum
physics. However, the new discoveries of the particle physics do not fit with the principles of
both theories. One of the main questions is how to explain the break of symmetry in proton-
antiproton collision experiments and formation of more matter particles than that of anti-
matter ingredients. The theory, which can explain this phenomenon, should answer to the
question how matter in the beginning of universe formed and what is the space-time structure
of the universe.

In accordance with the modern physics, the small-scale experiments of particles physics have
to be described by the Standard Model of quantum mechanics. However, the phenomenon of
matter/antimatter symmetry breaking appearing at subatomic scale requires formulation of
the new dynamical laws. Presently it is not clear that the mystery of the small-scale dynamics
is due to the incompleteness of the mathematic formulation of dynamics of physical events at
small scale or to the change of mathematics. The problem is that our present knowledge on
mathematical description of change at small scale of space-time frame and physical theories
do not distinguish what special features should have the initial state (position) of universe.

Quantum mechanics suggests that at sub –atomic scale the features of initial sate, the position
and velocity of a particle cannot be measured. At this scale, the differential equations of
dynamical evolution do not work and the change of the state of a system cannot be found by
its velocity and position where takes place appearance of wave-like performance.

The problem is that the concept of “rest energy” or “rest mass” can not be explained on the
basis of the our present knowledge of static energy conservation law. The static state of “rest

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



mass” requires application of uncertain amount of energy to keep a body at certain constant
position within infinite time duration.

Quantum mechanics relates the problem of “rest” to the uncertainty principle. By quantum
mechanics, a particle cannot be at rest because at the “rest” the position and velocity both have
to be certain, which cannot be possible.

In classic formulation of Neother theorem, the concept of energy conservation is uncertain due
to the continuous feature of the energy conservation. The symmetry principle, revealed from
this theory became also uncertain. Therefore, the scientific basis of symmetry breaking,
observed at small scale, cannot be explained because of classic energy conservation principle.

The energy as an identity may be conserved discretely because continuous energy conservation
in the form “energy can not be destroyed and created” leads to the arbitrary and infinite feature
of the dynamical events: the amount and origin of conserved energy within this formulation
is uncertain.

The non-continuous energy conservation in the non-arbitrary frame requires existence of
boundary of the energy conservation, which has to be localized within space-time framework.
But our present understanding of space-time frame does not describe what the space and time
are.

There are many concepts, related to the nature of space and time variables but the true nature
of time (space as well) is not known. Particularly it is not clear why space has tree dimensions
while time has only one. Due to this reason all the physical theories, describing motion
distinguish difference between the past and future. The second law of thermodynamics,
correlating irreversible time arrow with the increase of randomness does not explain evolution
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By relativity, space and time are not absolute variables.Unfortunately, the theory of relativity
is the theory of geometric space-time and it does not explain why the space-time unit connects
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Based on these problems, the aim of our chapter is to give analysis of the quantum mechanics
and relativity within the principles of classic energy conservation law and to describe main
features of these theories within alternative concept of discrete energy conservation. In the
frame of discrete energy conservation the classic symmetry principles gets entirely new feature
which occupies the special part of the present work.

In the present chapter, we also discuss one of the mysteries of the physics related to the
transformation of the space-time variables. Physics accepts invariance in time, which does not
fit with the CP violation. We will discuss also Paolo Scaruffi analysis [1] on the laws of classic
physics that “why do objects in accordance with the first law of motion have a preference for
travel in a straight line at constant speed is not clear. Where does this property come from? It
is not clear also, why a body in motion tends to remain in motion and a body at rest tends to
say at rest. These questions are open to interpretation”.

In our work, we have suggested a new space-time dynamic boundary mapped discrete energy/
momentum conservation law for unification of quantum mechanics and relativity scales
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interactions, which is based on a new non-Lagrangian mathematical foundation of non-
invariance action principle and commutation of frequency domain differential operators of
conjugated canonical space-time variables. We showed that the phenomenon called space is
the materialization of background “vacuum” energy in the momentum of dark matter, while
time phase destroys everything material, reversing the alignment of dark matter momentum
to the initial state of “vacuum” energy. Therefore gravity is not the geometry of space-time, it
is the dynamic order to hold discrete energy conservation cycles and its power source is the
background coupling of space-time phases.

The mechanism of mass generation has been described in the chapter in detail. It is shown that
generation of correlated mass and its conservation takes origin by consumption of energy of
discrete space-time background frame, moving in direction of space phase expansion. The
“continuous parity” conservation may result only by discrete commutation of SU (2) group of
interactions with the coupling energy of background virtual space-time ingredients, recycling
its discrete uniform energy to the 2:1 confined interactions of nuclear. The uniform exchange
of energy, generated by not-yet observed background [T-B] bi-meson field through interaction
with the uu-quarks, regulates discrete energy conservation within nuclear and background
polarization state.

The new non-Lagrangian time/space dependent function shows that the “resulting weak
response force” gets its origin from the action-advanced response non-invariant parity of three-
component interactions (V-A)/A, providing a new deterministic description of nature and
fundamental dynamic symmetry. With the static, single non-correlated existence of the
identity and physical parameters, the energy and momentum (mass) are not conserved. The
physical reality and its parameters as the resulting (not passive relativistic) quantities, do not
exist independently of the advanced response interactions: in formulations of classic and
quantum physics, the fundamental Lagrangian action is not conserved.

2. The physics of Einstein’s relativity

The question “What is the wrong with the relativity theory?” appears frequently in discussions
related to the relativity theory. Of course, the relativity theory is not a complete theory.
Particularly, the energy –matter equivalence in E=mc2 formulation is not complete from two
reasons: the concept of rest mass and the conditions of energy-mass equivalence of the special
relativity is not clear. What mass is equivalent to the energy and what features has the rest
mass as an equivalent to the energy? What is the performance of this equivalency at dynamical
conditions out of the vacuum? What is the connection of the mass with the dynamics of the
space-time frame? There is no physical meaning of the increase of the inertia (mass) with the
increase of the velocity even with application of Lorentz transformations.

The special statement of relativity that space and time variables are not absolute variables and
they form the non-separable space-time unit is very important statement of this theory. From
this statement follows that description of the change by classic differentiation where change
of the function (space function, such as length) has a relation with the independent time input
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leads to the appearance of the uncertainty. Therefore, change of space has to be correlated with
the response of the time to the change. Unfortunately, this concept, which follows from the
analysis of relativity, was not realized in the mathematic formulation of the special relativity.

General relativity is not a complete theory because it cannot describe space-time structure at
small scale. However, general relativity, as the special relativity, also has an important
statement that space-time structure is determined by the energy and mass in it, which makes
it non-linear. The problem is that general relativity describes this relation by geometry, which
cannot show change of the structure of space-time with the change of energy and matter. Due
to this incompleteness, the general relativity leads to the singularity at small-scale physics
(atomic scale) and at high space scale called black holes.

Another big problem of the relativity is its concept, based on continuous dynamics, which
leads to the relation of the motion to the relative reference frames. Elimination of continuity
and description of the natural events by discrete dynamics do not need application of “refer‐
ence frames” for relation of the motion. In discrete dynamics, the motion is related to the action
force: in the presence of the action, an event changes its state, but when there is no action force
an event returns to its initial state.

Based on the discrete dynamics, the Newton’s laws of motion and gravitation could be unified.
The motion is the result of the action force, therefore the Newton’s first law that’ if a body is
not affected by any force it will keep its initial uniform motion in straight line” eliminates that
the body before “affect of any force” had a motion due to the result of some force.

Einstein showed that space and time are simply different dimensions of the same space-time
continuum. All events and quantities decompose into time and space components, which
depend on the observers. Einstein connected the curvature of space-time of an event with the
energy and momentum of the objects. By Einstein opinion the energy and momentum are the
same quantities of space-time which has four dimensions. That is why space-time is the same
in relation for all reference frames and change of the event is realized through change of the
space and time components of this frame. The relative quantity of energy and momentum
depends on the observer.

The problem of this approach is that the dynamical space-time variables were connected within
continuum framework, which did not allow distinguish personal properties of time and space
identities. Later we will show that the difference in performance of space and time variables
do not involve dimension of these parameters but deeply is connected with the asymmetric
phases, binding the boundary of the space-time phases. The relative quantity of energy and
momentum has to be determined by the asymmetry in the boundary of these variables. The
contraction of the length and time dilation cannot be described without specification of the
boundary of these variables. Therefore, contraction of space and time delay cannot be without
relation of these parameters to their initial boundary. The relative ratio of space-time variables
in the dynamic space-time frame (by relativity-decomposition of space-time continuum to its
ingredients) may be different for the observers, participating differently in the space-time
event and sharing directly or indirect the energy recourses with the event.
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In Newtonian physics, time flows at a constant rate for all observers. This statement of
Newtonian physics appears from the concept of “independent time”. Therefore, in accordance
with the Einstein’s relativity flow of time has different rate for different observers. Therefore,
by relativity time is the personal property of an event: different observers, giving different time
flow for the same event, present their “personal time”. The problem is that relativity equations
do not clarify why different observers could measure the same speed of an event by their own
measurements. It is not known also how to unify the measurements of the different observers.

Einstein determines the dynamics of matter by the geometry of space-time and that geometry
is determined by the distribution of matter. As in the case of special relativity, in general
relativity many questions remain open. Particularly general relativity does not explain the
origin of mass and energy, which curves the structure of space-time. The question related to
the Newton physics, how the moving body responses to the action, in the relativity theory also
remains open. If this energy has an external origin, how this energy is generated and how it
interacts with the space-time remains open. But if this energy has an internal origin within
space-time frame, the mechanism of the energy generation and the energetic features of space
is the subject of interpretation. It is not clear also if the universe is a single system, what energy
makes its expansion.

The main question here is the energy content of the space. What is the property of the vacuum,
is it the empty unit? How the empty space may have energy? Unfortunately, the basic
formulations of special and general relativity do not provide answer to these questions without
which the relativity theory itself became the “observer” between Newton’s physics and
quantum mechanics.

3. Fundamental basis of quantum principles and their problems

Quantum mechanics did not solve problem of classic mechanics by modification of its causal
dynamical laws but applied entirely new concept of probability, which was a new philosophy
for description of nature. Description of the causal nature by mathematical formulation of
classic differentiation had boundary problems, which lead to the uncertainty [2]. Description
of the position and velocity by classic approach through application of boundary of variables
to the mathematical formulation could solve the problems. Dirac’s relativistic quantum
mechanics concept is the realization one of these ways but Dirac’s concept kept the probability
feature of the quantum mechanics.

The fundamental basis of the quantum mechanics was very important due to the application
the uncertainty in the description of the “change phenomenon” instead of mathematic
formulation of classic physics. Unfortunately, the derivative of the function without involving
of the function itself leads to the uncertainty. Therefore, the physical observables, such as
momentum and velocity of the classic formulation were replaced by the possible states of
operators on a wave function. The starting point of quantum mechanics was that it transformed
the physical parameters to the differential operators: the time operator replaced energy while
momentum by spatial operator.
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In accordance with the quantum mechanics, the physical state of a body cannot be described
by classic state and it has to be described by “quantum state”, presented by wave function.
The change of the wave function describes evolving of a system with time. It is clear that during
change of a system with time the evolving wave function cannot be merged with the law of
relativity.

It is necessary to note that Schrödinger equation is not free from the continuous energy
conservation principle due to the involvement of single time derivative as an energy opera‐
tor.The another problem of the Schrödinger equation is that it involves Hamiltonian as the
linear operator of the wave function. The Schrödinger equation is a single particle’s equation
that is why Hamiltonian does not describe the interaction of the particle with its surrounding
medium. Due to this features this equation has a problem of “locality” of a body, described by
the wave function.

Due to the absence of “absolute frame of reference”, description of the state of a particle was
one of the difficult subjects of the relativistic and non-relativistic concepts. Shrodinger equation
contains only first order derivative with respect to the time. Dirac tried to give description,
such as a differential equation first order for space and time, which may lead to the simple
relativistic relation between energy and momentum.

To eliminate the problems of the Schrödinger equation, Dirac suggested the relativistic
quantum mechanical wave function in order to fit the concept of relativity. Dirac equation is
the first attempt for generation of theory consistent with the principles of quantum mechanics
and relativity theory.

Dirac equation was similar to the Schrödinger equation, but his proposal suggested existence
of the anti-matter. The main principle of Dirac equation [3, 4] is that Hamiltonian, correlated
with the input wave function, was described through complex value, involving the sum of
energy-momentum consistent:
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Dirac assumed that presenting Hamiltonian through energy-momentum sum might describe
the atomic spectra and discrete angular momentum of an electron.

It is clear that the form of the wave function and its evolution is determined how the total
energy and energy-momentum has been described. Hamiltonian of Schrödinger wave function
involves the total energy of a system. Making the Schrödinger equation relativistic, Dirac used
some additional transformation expressions and got a equation
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Dirac equation in this form still is not a complete dynamical model because it presents the
dynamic behavior of a free particle and cannot explain why an electron has a spin angular
momentum of half a quantum. The Dirac’s relativistic wave equation [3, 4] was the first try to
communicate relativity with the quantum mechanics.The left side of the equation (1) describes
momentum ingredients:
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It is necessary to note that Dirac proposal, suggesting existence of anti-matter (particularly
positron) does not explain properly physical state of negative energy, introducing it as a “sea”
of negative particles. It could not explain also how matter may degenerate into negative-energy
states.

The relativistic feature of Dirac’s proposal was explained by his suggestion that relativistic
description of a particle should involve multiple wave functions for other potential particles.

But Dirac’s equation does not involve first order space-time derivatives which in the form of
symmetric ingredients have to describe energy and momentum parts of the space-time frame.
Dirac’s equation also does not involve any information about initial values of the wave function
at every discrete time instants; therefore, it could not lead to the definite solutions for com‐
munication of relativity with the quantum mechanics. The initial values of wave function of
Dirac equation are freely chosen.

The special feature of Dirac’s concept is the “Dirac sea” which is related to the negative energy
solutions.The “negative energy” of Dirac’s sea is explained with the principle that every
quantum state can only be occupied with one electron. This concept accepts that the total
energy and total charge are infinite. Therefore, this principle does not explain the source of
infinite energy and infinite charge.The Dirac’s sea is possible only with the infinitely many
particles.

In accordance with the Dirac concept, when one electron is lifted form “Dirac’s sea” via a high
energy of γ-particle, there forms “a hole in the Dirac sea”. By this concept, the “hole” represents
the anti-particle to the electron with the positive charge, namely the positron, which has been
proven experimentally.

Dirac equation can be obtained from the lagranjian action principle, but lagranjian action
cannot give first order derivatives for the event simultaneously in space and time variables.

O.Klein and W.Gordon proposed [5, 6] the concept, which is applied to describe “particle”
behavior in the relativistic mode and an equation, which has to simulate the behavior of a
spineless free particle which has a spinless wave solutions. The Klein-Gordon equation is a
relativistic version of Shrodinger equation, it is the second order in time, and it describes
spinless particles in towards and backwards in time.

The Klein–Gordon equation has the following description:
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The Klein-Gordon equation is the second order for time expression and by separation of
positive and negative parts describes time-independent case. In some versions, Klein-Gordon
equation was introduced with the second order for time and space but in these expressions
have boundary value problems.

Although Klein-Gordon equation claims to be relativistic equation, it does not give complete
relativistic picture of a “particle” dynamics simultaneously in space and time coordinates,
which in relativistic mode needs to be connected with the space-time frame, required by
relativity theory.

4. Discrete conservation of energy as the basis for unification of physics

4.1. Formulation of discrete space-time field theory

The concept, which we are planning to use, has to eliminate the small-scale phenomenon-point
particle concept of classic physics and quantum mechanics probability of location of subatomic
particles. The new concept is the discrete dynamical structure of space-time phases. The
position of an elementary particle, located within space-time phases is not a point; it exists as
a time carrying identity within minimum space frame, called elementary space-time manifold
commuting space and time phases.

The problem of classic physics is the description of the events by displacement of a point in
space (∆x) within certain displacement of time (∆t), presented in the form of relative simple
intervals. Two point particles having the same displacement in space and time could pass the
observer’s reference position differently being in “phase” or in “opposite phase” due to the
having, phase differences starting from different initial conditions.

Feynman [7] showed that elimination of the infinity in dynamical formulations could be done
through substitution of interval of function (Δf) by the value of the function itself (f) but by
his opinion in this case the dynamical event will be static.

It is clear that the effect of scale phenomenon to the behavior of dynamical systems can be
analyzed by Hamilton canonical coordinate transformations. Unfortunately, a genetic Ham‐
ilton’s transformation (g, p, t) → (Q, P, T) has no explicit time dependence and does not
preserve this transformation.

We used a new principle of canonical transformation where the transform is the time –
frequency representation. The new approach involves commutation of frequency with the time
domain through conjugation of the change of function (Δf) with the local function (fn) itself.
In this case, the reciprocal discrete transform within (Δf) and function (fn) itself can be gener‐
alized to the Abelian group due to the generation of dynamic translation within boundary of
canonical variables.
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We did not replace the interval of the function (Δf) with the function itself (fn), as Feynman
suggested, but we conjugated them together to form entirely new mathematical operator,
eliminating arbitrary performance of the coupling constant: the evolution of an event will
follow to the discrete dynamic transformations of local function (Δf)/f1 such as (f2/f1-1). This
operator has important features because the field theories involve the differences of the
parameters, but not input values itself, such as electricity theory involves the difference of
voltages but not voltages themselves.

This formulation does not lead to the confusing approach; it is like frequency of repeating of
some action in relation to the previous ground instant, giving the product of time phase ∆t/t1.
This function is the frequency domain product, which is different from the classic physic’s
frequency.

Now we have to apply this concept for space and time ingredients of the space-time unit. The
mathematical unit “time phase” as a frequency domain describes the displacement from a
specified reference point at the t=t1. The time and space phases have a commutation through
product of certain position in space within some interval of time (S1∆t) and with interval of
space at a moment of time (t1∆S).

It is easy to show that the time domain in the form of time phase is equivalent and commutative
to the space phase of an event and describes the relation of passage of time (∆t) to some local
instant state or an event local boundary, such as ∆t/ti where ti is the local time boundary of an
event. Similarly, we can present the space phase with the same way ∆S/Si, describing the
change of space in relation to some starting local boundary of the event. On this basis, the event
dynamics can be described by the shift in phase within space-time frame giving the event
history equivalently in the form of direction of time or displacement of space phase. Therefore,
the commuted phases may be equivalent through commutation of variables, mapped within
their boundaries.

The new operator in the form (Δf)/f1 describes change (vibration) of function around its origin
with certain rhythm in the form of fluctuation density to repeat its origin. Similarly, the
operator ∆S/S1 describes fluctuation of change of space energy density around space origin
while operator ∆t/t1 describes fluctuation time of change around instant origin in the form of
frequency.

The initial values of space and time in the form of S1 and t1 are the local dynamic boundary
states: if the event within some region has ended, t1 transforms to the end t2, but if the event is
continued, t2 became a new initial state. On this basis, the local boundary is the mixture of past
and future, which may have uniform and non-uniform states. Therefore, without correlation
of initial and end states the action is not conserved. The non-unitary time domain ∆t/t1

describes discrete time integer numbers of the non-continuum event. In the same way the ∆S/
S1 describes the non-continuum discrete changes of space phase with dynamic (i=1, 2, 3)
boundary conditions.

The space phase in the form of integer multiplication ∆S/Si involves the numbers of the
“pieces” (grains) located in the space medium, while ∆t/ti describes the duration in relation to
the instants corresponding to the change of position of these “pieces”. It is easy to see that
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relation of the space and time intervals to the dynamical local state presents the transformation
of continuum intervals to the discrete integers of subintervals at points Si and ti forming
definite canonical variables of the differentiation.

This approach leads to the binding of space and time phases to each other. The relation of space
and time intervals to each other usually forms the classic velocity vector ∆S/∆t. However, this
derivative of uncertain intervals represents the singularity at boundary conditions. The infinity
in this case arises due to the absence of the commutation of the change with the local boundary
of the S(t) function.

Interaction of time [t1, ∆t/t1, ∆t] and space phase [S1, ∆S/S1, ∆S] matrices leads to the formation
of space-time field. Field as the correlation of the end of the phase with the initial boundary
eliminates the infinity due to the conjugated displacements in space t1∆S and time S1∆t. On
this basis an event can be described through change of the action energy applied to the space-
time field instead change of position or coordinates of the system. The ∆S/S1 shows distribution
of energy in space: when S1 is small the space gets the same property within all regions of the
field while at high scale, the space field is non-invariant.

By relativity, the space-time frame is curved due to the presence of energy and mass in it. But
by our concept space-time field is the resulting inner product of action of the energetic field
[Eact, ∆E/ Es, Es], formed from exchange interaction of action and event’s energies:

In accordance with the Lagrangian mechanics, “an object subjected to external influence will
choose a path which makes the action minimum”. By our concept, this phenomenon is due to
the discrete exchange of the action with the response force of the system’s field, which forms
the action – response non-invariance parity of the interaction. The effect of action of the applied
force to the space-time field of a body can be formulated in the form of exchange of energetic
fields-(Eact – Es)/Es :

∆ SS1∆ tt1 =  ( EactEs - EsEs  )= (Eact - Es)Es (5)

∆ S∆ t = S1t1 ∙ (Eact - Es)Es (6)

where, S1 and t1 are the space and time variables corresponding to the dynamic local boun‐
dary, Eact and Es are the energies of action and under action systems of interaction at conditions
corresponding to the local boundaries of S1 and t1. The interval of time ∆t describes the duration
of coupling of the event with the action, while t1 presents the dynamic time instant or time
boundary of correlation with the action. In the same way, the interval of space ∆S describes
the expansion, while S1 presents the local boundary of space of an event at the instant. The
quantity of energy, available for change (scattered energy) and the quantity, determining the
response (consumed energy-momentum) have different signs (5) therefore, leads to the
generation of direction and causality between local past and local future.
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The equation (6), which we generated has based on the space-time consistents of energy. Model
(6) although is very simple description of event dynamics but it allows to give a new look to
the interaction, localized within triangle matrix of space-time-energy boundaries. In accord‐
ance with the model (6), the change is the “tree body action” of the space-time-energy
operators: space derivative of energy produces momentum, time derivative conservation of
identity is the energy and the product of energy derivative in conjugated space-time phases is
an event. The product of energy–time multiplication is the identity of an event, localized in
the observed space.

As can be seen, the change of a system’s state is the result of interaction of two space-time
frames, which presents the change of one field in relation to the action “field”. Model (6) treats
the matter field with space phase and antimatter with time phase. The time phase describes
the change of event instants over time duration, but frequency domain shows how much of
the time instants lie within each given frequency.

Model (6) may be re-written in the form:

∆ S∆ t = S1t1 ∙ ( EactEs - 1) (7)

λ=( EactEs - 1) (8)

In the classic formulation the change of the space-time frame ΔS/Δt cannot be the precise Eigen
state of the dynamical event but in the model (6) it gives the precise Eigen state of identity due
to its conjugation with the Eigenvector of dynamical local position S1/ t1 and with the exchange
energy of the space-time variables (Eact / Es-1). The reflection function (Eact / Es-1) became the
Eigen value of the ΔS/Δt, which covers all the values of correlation of space-time variables.
The Eact /Es describes the density of energy, distributed in time phase as an action of force, while
Es has a relation to the density of energy distributed in space phase in the form of matter.
Therefore, ΔS/Δt, conjugated with the dynamical local position S1/ t1 in the form of speed,
became the function of state holding conservation of energy within space-time phases. On this
basis, the model (6) became the equation of state. The equation of state (6) in its basic form (7)
gives the numbers due to the resulting non-unity of the parameters.

Model (4) shows that particles do not have the fixed position during action and measurement,
but they possess the change of space phase by coupling with the action energy. In this case,
the measurement of the position is the measurement of the velocity and impossibility of the
measurements of these parameters in different order is not the subject of uncertainty in nature.

The minimum portion of energy, which by quantum physics called “quanta”, is the elementary
space-time “field”. The energy in similar way also is “quantized” within space-time field. The
total energy is conserved discretely; it comes in discrete amounts, localized within space-time
phases. The energy is the inner product of coupling of space and time fields and exists in the
form of resulting Eigen value.
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Model (6) shows that the space-time phases in the form of two different inner products of
action –response parity display the frequency of energy consumption/restoration cycles. When
there is no energy (Eact=0) the coupling of virtual space and time phases generates energy, then
the generated energy produces the non-virtual space-time frame of identity which conserves
the produced energy within momentum. On this basis, time is the product and measure of the
consumption of energy. The different frequency of energy consumption for different events
leads to the separation of the non-continuum periodic events by real numbers forming the
“Time phenomenon”. Time takes its origin only from discrete energy conservation cycle and
due to the relation to the initial state, cannot be described only by intervals. Time is the “proper
time” only in connection with the Eigen value (proper value). The notion that” time slows
down by distance” is the correlation of variables and this correlation is the result of discrete
energy conservation.

The interaction of action and response is affected by the initial action in the form of relations
of the action (Eact – Es)/ Eact and response Es/ Eact strengths, but the outcome is determined by
the advanced response given by the mathematical structure of Eigen value, which regulates
energy distribution within space-time frame.

In accordance with the model (6), time appears as the personal product of exchange interaction
of action-response parity and is the quantity, which holds discrete energy conservation within
this parity. Therefore, relation of time to the external system of reference having no energetic
parity with the system does not make sense for description of the event dynamics. On this
basis, if an observer does not apply the force for interaction with an event, it became the local
“photographic plate” of an event. In accordance with the model (6), the instant of time is the
dynamic phenomenon and when energy is applied it produces the response in the form of
inertia to regulate the continuity of the event.

In accordance with our concept, the description of a “change” in magnitude and in direction
is possible only through correlation of space-time canonical variables regulated by Eigen
value (Eact /Es-1).

The classic mathematical tool of differentiation does not describe the boundary of function and
the non-boundary concept of time presently is the common acceptable concept of physics. The
differential operator in the absence of boundary function leads to the approximation of the
action conservation due to the lost of the original function during production of the outcome
of the operation.

In accordance with the model (6), when the velocity ∆S/∆t commutes with the dynamical
boundary of space-time it became the non-relativistic operator. The concept of velocity is to
be tied to the space-time boundary while description of velocity without boundary leads to
the “problem of different observers “. The boundary-mapped space-time eliminates the
uncertainty in the continuity and the singularity of boundary conditions. This is the mathe‐
matical background of our model based on the new commutation concept.

The conditions ΔS /Δt=S1/t1, λ=1 (Eact=2Es) are similar to the mathematical principle of involu‐
tion. The inversion of the action by the same coordinate line does not produce the same action.
That is why action-response parity should involve one more dynamic intermediate state,
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which leads to the three body interactions. The additional intermediate is the “second material
observer” of (S2, 2S1) interaction. On this basis the “color based strong interactions” is due to
the “three sigma” color phases (colors), correlation of which in 1:2 coupling creates formation
of three body interactions: the energy of two merged colors is balanced with the third color
with formation of “color based elementary space-time unit”. The local state with the dynamic
conjugation of two merged colors with the third color leaves Eigen value the same, leading to
the conservation of energy and formation of constant interactions. In accordance with our
concept, virtual particle appears when the duration of change is equal to the instant of
generation.

By prediction of model (6), the action of a force is to change the state of an event, but response
of system (negative sign) is appeared to make the action minimum and maintain the initial
state of the event.

The action of the force gradually became minimum that is why the force to be needed to
maintain the initial state of action. The inversion of an event in non-virtual space-time frame
in spatial and time reversal manner cannot eliminate the asymmetry of the action-effect parity.
The difference of action-effect quantities determines positive time direction and magnitude of
a motion (momentum).

The action-response parity is the interaction of the two fields, which “shakes” each other with
the selection of the direction to move: the Eigen value of the space-time structure determining
momentum of the system became the degree of freedom of the resulting Eigenvector field.

By Feynmann analysis, Dirac showed that in quantum mechanics there is important quantity,
similar to the differential equation, which carries the wave function from one time t to another,
such as t+ε, t+2ε, t+3ε. [7]. Feynman developed Dirac analysis and succeeded in representing
quantum mechanics directly by the Lagrangian action.

Giving characterization of his research Feynman showed “that the important issue in his
development of the space-time views of quantum electrodynamics is that he connected the
Lagrangian with the quantum mechanics. But Lagrangian for strong interactions still needs
renormalization”. The problem of Feynman’s Lagrangian is the non-conservation of the action.
Our concept of gradually advanced response is opposite to the Feynman action and Weyl
concepts where has been used the advanced action wave which violates principles of causality.
The advanced response as the resulting quantity is the “hidden correlation” of space-time
variables to realize discrete energy conservation.

In accordance with the model (6), space-time without coupling with the discrete energy,
conservation law can give only uncertain position. This feature of space-time explains why
string theory suggests additional dimensions to describe a position. The extra dimension in
reality is the correlation of space-time variables with the coupling energy, which through
coupling with the Eigen value rotates the space-time vectors in the form of curled up dimen‐
sions. Particle without coupling is not observable and has negative existence.

Model (6) connects position-momentum and time-energy relation and shows that these
relations within space-time boundary frame cannot be subject of uncertainty because position
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as a spatial variable does not have existence, independent of time. Model (6) involves the
commutation of first order derivatives of space and time variables from each other.

4.2. The action-effect parity of the “Change” phenomenon

By prediction of the model (6), the action of a force is to change the state of an event, but
response of system (negative sign) is appeared to make the action minimum and maintain the
initial state of the event. From model (6) also follows that the system, applying the energy (Eact)
is the origin of the causal effect.

The action of the force gradually became minimum that is why the force to be needed to
maintain the initial state of action. The inversion of an event in non-virtual space-time frame
in spatial and time reversal manner cannot eliminate the asymmetry of the action-effect parity.
The difference of action-effect quantities determines positive time direction and magnitude of
a motion (momentum).

The action-response parity is the interaction of the two fields, which “shakes” each other with
the selection of the direction to move: the Eigen value of the space-time structure determining
momentum of the system became the degree of freedom of the resulting Eigenvector field.

With the discrete energy conservation, the forward action decreases by one while backward
response increases by one (7). The advanced response force regulates conservation of energy,
mapped within space-time frame. If the response (axial vector) does not change it can not limit
the action. This is the non-Lagrangian least action, produced as the resulting exchange
quantity.

In accordance with the model (6), the space-time frame without coupling with the discrete
energy conservation can give only uncertain position. This feature of space-time explains why
string theory suggests additional dimensions to describe position. The extra dimension in
reality is the correlation of space-time variables with the coupling energy, which through
coupling with the Eigen value rotates the space-time vectors in the form of curled up dimen‐
sions. Particle without coupling is not observable and has negative existence (6).

The Heisenberg’s uncertainty and relativistic reference frame will have the same nature, if
relativity’s observer has an energetic interaction with an event. The observers of both theories
during the measurement will have variable action (variation of consumed energy), therefore
Einstein’s and Heisenberg’s observer’s measurements are not invariant and affected by an
“external force of a body under measurement”. On this basis, it is obvious that the Heisenberg’s
and Einstein’s observers cannot measure the fixed static position.

The Heisenberg’s discovery on non-commutation between velocity and position is due to the
problem of classic differentiation, which produces non-conservation of local velocity. Position
is the integral product while the velocity is the differential outcome therefore these parameters
are not commutative and are origin of the non-invariance of the action-response parity (λ).
The action-response parity generates discrete energy distribution, which is only the way to
eliminate infinity from space-time frame.
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In the case of Heisenberg‘s thought experiment the measurement is an application of energy
Eact to change the position for getting the information. In accordance with the model (6), the
action energy portion cannot be less than energy (Es) of the elementary space-time unit of the
light. The space dimension in this case is related to the distance between the wave crests of
space and time phases of the light photon. The difference of the phases cannot be smaller than
wavelength of the light waves. This is the limit of phase difference of classic space-time frame,
which has been called Planck’s scale.

On this basis, we can unify Einstein’s observers and Heisenberg’s measurement. If the
observers do not have energetic correlation with the event, they are distant “photographic
plates” but if correlate with the event with the same Eigen value, they are invariant observers.
Therefore, the Eigen value (the numbers of the scattered energy portions) “is the reference
frame which determines the invariance”: time is relative to an observer if the observer affects
the Eigen value of an event. The Eigen value determines the intrinsic property of a system in
the form of identity.

This principle of simultaneity explains Copenhagen interpretations, which states that the
outcome of an experiment is only revealed when the quantum system interacts with a
macroscopic apparatus of measurement resulting only one outcome.

The measurement changes the energy Eact, applied to the system and correlated with the space-
time framework (6). In accordance with the model (6), you cannot measure the parameters at
their fixed states, which have no independent existence. The entanglement concept of quantum
mechanics may be explained also based on these principles. You cannot measure one param‐
eter determined by space-time, fixing another one because there is no independent existence
of the parameters, correlated within space-time boundary. In the absence of measurement, the
system has its own deterministic space-time frame, regardless how “quantum physic’s and
relativity observers will observe an event on their photographic plate”.

By quantum mechanics, the action is “quantized”, but by our concept, the quantization is the
energetic discreteness of the classic action and existence of reality by action-response parity.
Conservation laws, mapped within Lagrangian framework of classic mechanics results only
approximate conservation due to the non-invariance of the action. The invariance requires
constant energy supply, which is not possible in continuous mode therefore the underlying
mechanism of reality is the non-linearity of the physical events, realized through non-
invariance action-response parity and discrete energy conservation.

5. The Non-Noether’s concept of symmetry and energy conservation law

In accordance with the model (6), the classic principle “the total energy of a dynamical system
involving kinetic and potential energies is conserved” can be the true concept only if the
system’s dynamical coupling with the action is conserved. The statement that “the energy is
not created and not destroyed, but transforms from one form to another in self-sufficient
system” should lead to the non-invariant energy transformation, disappearance of action and
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momentum. By this principle the action, kinetic and potential energies individually are not
conserved and even cannot be conserved.

In our concept, we replaced Hamiltonian static sum of energy by the dynamic scattering energy
where total energy, distributed within two systems, presents interaction term. The interaction
term of Schrödinger equation is linear while the Eigen value of model (6), correlated with the
change of local dynamic space-time boundary, determines the proper states instead of
Schrödinger’s probability.

Model (6) shows that the problem of Hamiltonian in canonical coordinate’s transformation is
directly related to the principles of energy-momentum conservation. Hamiltonian operator of
total energy involves independence existence of kinetic and potential energies but in discrete
energy conservation, concept energy has no independent existence. The expression of resulting
energy of the system through simple gradient of kinetic and potential energies may produce
only continuous displacement therefore leads to the observed problem of Hamiltonian
conservation. Hamiltonian sum of energy describes the state of a system as an independence
existence but in accordance with the discrete energy conservation concept, the identity cannot
be described by its own existence.

The question is why we need discrete energy conservation law is very important which
determines all the features of the new physics. The static continuous energy conservation
described by Noether’s theorem does not limit the boundary of the conserved quantity,
therefore leads to the singularity.

By complementary principle of quantum mechanics, “the classical concepts such as space time
location and energy-momentum can not be combined into a single picture. One classical
concept excludes the simultaneous application of other classic concept. The uncertainty
suggests that this reciprocal limitation is due to the uncertainty and uncontrollable exchange
of momentum of a particle with the space-time frame of the object where a particle is located”.

In accordance with the discrete energy conservation concept, momentum in the form of two
reciprocal parameters appears for generation of the space phase of energy conservation.
Conservation of energy in the space phase generates a “mass of space”, as transformation of
energy to mass, to generate the opposite time phase of energy conservation.

In accordance with the model (6), energy as an identity can be conserved only discretely and
discreteness is realized with the alternation of the two opposite appearance –disappearance
phases: energy disappears in space phase and appears in time phase. When energy is con‐
served in space phase, it leads to the appearance of mass. Therefore, the “mass” phenomenon
is the property of the energy conservation but not the property of a body “affected by a force”.

In accordance with the quantum mechanics, forces are manifestations of exchange of discrete
amounts of energy. Without locality in space, exchange of energy quanta is not possible. That
is why quantum physics concept that “any field of force manifests itself in the form of discrete
particles” may be realized only in the presence of space medium, which display discrete
existence.
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From model (6), we can get Newton’s first principle: Eact=0 describes the body, which is not
affected by any force and localized in the inertial frame. This is the initial state where events
move with the uniform motion. Therefore, Eact is the generator of space-time frame, which
appears discretely. The state of appearance of Eact is the Planck scale where difference between
space and time disappears. Energy is the generator of space-time and energy quanta itself is
the space-time cell.

Space-time unit cannot exist alone and has to be interacted with the event where s1/t1 is the
elementary cell of the space-time frame, (Eact – Es)/Es) is the event. If there is no action energy
Eact=0, everything is going to the initial cell s1/t1. In this case, the initial state and change have
different sign and initial state became resources of inertia. In the absence of the action energy,
the structure of the space-time changes: correlation of space and time variables t1 ΔS=S1Δt
disappears which lead to the separation of t1 from Δs. Change of space-time frame is associated
with the change of energy-matter structure of an event. This leads to the separation of electron-
positron and neutrino-antineutrino pairs and formation of e-/e+and v-/v pairs. The e-/e+and
v-/v pairs form the pre-existing form of matter. The matter is composed from a fundamental
cell of space-time frame, presented in the form of minimum S1/t1 cell.

6. Analysis of quantum mechanics based on discrete conservation of energy

By quantum mechanics, the vacuum energy is to be the virtual particles, which as vacuum
fluctuations are created out of the vacuum. This concept does not explain what the nature of
lowest vacuum energy is. The important question is why during removal of matter from the
vacuum it does not reverses the energy back to the background state.

Quantum mechanics describes energy of empty vacuum in the form of virtual particles giving
little push to the start of the universe, which can continue acceleration. The problem is that the
calculations of quantum field theories predict 10 120 times more quantum vacuum energy than
that of any possible value.

By quantum mechanics, vacuum cannot have zero energy because of uncertainty principle,
which can be violated: the zero energy value is certain. Uncertainty does not describe how the
lower energy state may have high zero point energy state.

In accordance with our concept, the zero point energy means that the total energy of space-
time is zero (Eact=0) but this energy is accumulated within asymmetric space-time boundaries.
The total energy is distributed within different phases, which are in asymmetric state of
opposite boundaries.Vacuum and black hole are two asymmetric boundaries of space-time
variables. The theories of quantum physics suggest that due to the uncertainty principle,
quantum field cannot have zero value, therefore became the origin of vacuum fluctuations. In
accordance with our concept the vacuum and “quantum fluctuations” is due to the discrete
conservation of energy within asymmetric space-time phases. At small scale of space, the
frequency of fluctuations is generated by time phase and is high while at high space scale the
giant size of fluctuations is created by the energy consumed in space phase.
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In accordance with our model (6), creation of a particle is the result of discrete conservation of
energy, which appears within space and time “fields”. Conservation of energy is not static,
therefore mass also is not static and changes with the expansion of space. This feature of mass
is the necessary factor for conservation of energy; with the constant mass, energy cannot be
conserved. On this basis, vacuum is the asymmetry of space-time boundaries, therefore light
cannot exist in vacuum with the constant static speed. Vacuum appears when the energy of
the background state is removed for expansion of space. When energy is completely consumed
in space, time returns it back to the initial state by negative gravitational force. That is why we
replaced the spatial and time coordinates by space and time phases having performance of the
energetic fields.

By quantum field theory, vacuum has properties as a particle and these properties cancel out
on average, leaving the vacuum empty. By our concept vacuum is the asymmetric boundary
of space-time where space identity is very small which is connected with the high amount of
time particles –antiparticles.

The classic physics relates local symmetry to the Lorentz invariant quantity, which is connected
with the helicity phenomenon, describing the projection of a spin of a particle in the direction
of momentum. In the case of discrete energy concept, local invariant inversions are not allowed.

Discrete conservation of energy in space –time phases cannot be realized without boundary
of theses phases which constrains the expansion of space through left handed neutrino
(involved in Es) and right handed anti-neutrinos (involved to Eact). That is why the right handed
neutrino and left handed antineutrino never was observed.

In accordance with the Newton’s physics, mass is the inertial rest energy of a particle and the
measure of the resistant to the applied force (a=F/m). By special relativity, a massless particle
cannot exist at rest it must always move at speed of light. Quantum mechanics suggests that
a “massive fermions should have both right and left hand states because field operators that
yield a non zero mass for fermions are bilinear products of fields that flip the particles
handedness”.

In accordance with the discrete energy conservation, the quantum mechanic’s mass operator,
which annihilates left handed neutrino and creates right handed antineutrino can not be
described by the sum of doublet due to the continuous nature of this interaction. Therefore,
the mass term that changes a particle into antiparticle, which in quantum mechanics called as
Majorana mass term, has to be described by discrete term, such as (Eact/Es-1). The sign in this
formula changes (such as quantum mechanic’s fermions’ number, which changes from n=-1
to n=+1) right-handed particles to the left handed.

The uncertainty of a position and the future motion of a particle can be accepted classically
obvious, because position is not a static quantity. It is known that measurement of the particle
position involves the scattering of light, which can give only probabilistic exchange of energy
and cannot be described by known classic physics. Quantum mechanics explains, “If scattering
energy is not uniform the measurement devices has no possibility to measure the position and
momentum”.
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The problem is we cannot measure position with instant of time only and measurement should
involve instant of time and its change in the form of time phase Δt/t1. In accordance with the
model (6), the change of time in relation to the instant may describe the change of a position
and velocity. The change of time phase has no independent existence and its changes in
correlation with the change of space phase. That is why measurement of the space and time
as the independent coordinates leads to the uncertainty. Therefore, the mathematics of the
description of the position and velocity should involve them not as an independent coordinates
but correlated phases.

Therefore, the statement that classic concept does not fit at the quantum level is not true. If
time will involve two parameters as an instant and duration, the ratio of this parameters may
describe any level of an event: at small scale the duration is small and instant has high
frequency while at high scale instant is small duration of an even is long. At “quantum level”,
the high frequency instants are not quantum jumps and they are discrete phases, appearing
in space phase and disappearing in time phases. The alternation of these phases and exchange
of energy between these phases can not be described by probabilistic energy distribution,
because discrete exchange of energy is very causal deterministic process.

Heisenberg uncertainty implies that “any two variables that do not commute can not be
measured simultaneously”. It is possible to give classic explanation to this phenomenon. Two
variables that have no independent existence cannot be measured simultaneously. The
position and velocity have no independent existence similarly as change of energy is not
independent of time. Therefore, uncertainty of quantum mechanics is the non-conservation of
energy in the formulations of classic physics. That is why “uncertainty of non-commuted
variables” is the uncertainty in conservation of energy in the farme of classic physics.

The question is how to describe displacement of space boundary within certain time interval
or displacement of time boundary within certain space boundary. On this basis, the main
concept of quantum mechanics is the “quantization” of space-space period.

In accordance of our concept, quantization of space-time frame is the classic phenomenon and
it is related to the discrete conservation of energy, mapped within two opposite phases.
“Quantization” of space-time frame requires correlation of space-time variables, appearing as
a field, realizing the dynamic state of energy conservation. Model (6) shows that connection
of space and time together in one unit, is the quantization of space-time, which puts limitation
to the boundary of space-time. However, for connection of space and time in space-time unit,
free coordinates cannot present these variables.

The non-independent change of space-time variables leads to the displacement of space and
time phases by the alternation, which generates a wave function carrying the portions of
conserved energy in different phases.

In the case of discrete conservation of energy, the particle-antiparticle annihilation is not a
symmetric event and cannot be described by symmetric model. Therefore, the symmetric
model leads to the continuous energy conservation which results “Ultraviolent Catastrophic”
phenomenon of the background energy. Due to this problem, renormalization is an open
question in the quantum field theory where the total energy becomes infinite.
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By quantum mechanics, the zero point energy is the “lowest” quantized energy level of a
quantum mechanical system. The zero point energy is “the energy which remains when all
the energy is removed from a system”. The common opinion is that the origin of the zero
point energy is the uncertainty principle. By quantum physics a quantum fluctuations is
the temporary change for energy in a point in space, arising from Heisenberg’s uncertain‐
ty principle, “such as temporary change of amount of energy in a point in space without
certain time”. The uncertainty accepts that conservation of energy can be violated but for
small  times.  In  accordance with the energy-time uncertainty,  with the decrease of  time,
violation  of  energy  conservation  increases.  Therefore,  the  uncertainty  principle  allows
existence of a virtual particle with the barrowed energy, but the sources of the borrowed
energy are not clear.

Quantum mechanics suggests that pair production appears as a pop into existence and then
annihilation each other. On this basis there is suggestion that [8] energy in classic physics is
conserved properly but in the quantum micro world energy can appear and disappear in a
spontaneous fashion. The uncertainty principle implies that particles came into existence for
short periods even when there is not enough energy to create them. They borrow energy for
a short time and then they return and disappear again. In vacuum, pair of virtual particles is
constantly being created and destroyed. The energy of matter is positive which appears
spontaneously out of empty space while the energy of anti matter is negative. The matter made
of positive energy and matter particles has attracting gravitational energy, which is negative.
The total energy is zero. By quantum mechanics, fluctuations are random and have no causal
nature.

Quantum theory of the vacuum suggests that the zero state of vacuum energy is negative.
Based on expansion of the space it concludes that vacuum ground state has non-zero energy.
The vacuum energy, described by quantum field theory without renormalization is mathe‐
matically infinite.

It can be thought that discrete energy conservation is obvious concept due to the discrete
dynamics of quantum mechanics and discrete energy radiation. But the question is how to
describe the discrete energy conservation in mathematical formulation. In accordance with
our model (6), without correlation of space-time variables, it is impossible to describe discrete
conservation of energy. With the frame of discrete energy conservation, it is impossible to
describe spatial or temporal inversion without boundary space-time framework. In accordance
with the discrete energy conservation, the space-time dynamics appears as the particle-
antiparticle pair, which carries a conserved quantity of energy within these phases.

Quantum mechanic’s theories suggest that zero point energy has positive sign for bosons and
negative for fermions, which cancel each other for perfect symmetry. The model (6) describes
the energy of bosons and fermions with the similar way but shows that they cancel each other
at Eact=2Es.

For uniform speed of light, the change of space (ΔS) and time (Δt) have to be correlated,
generating invariance of these intervals from the boundary of space-time frame and uniform
change of these variables. The energy of light at uniform speed should follow the Noether’s
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theorem of symmetry. It is known that Maxwell equation is not independent from the property
of distance and the speed of light is a function of properties of space. Model (6) shows that
property of space (ΔS) and time (Δt) intervals changes with the change of boundary of these
variables.

In accordance with the quantum mechanics when matter and antimatter collide, they annihi‐
late in a flash of energy. In accordance with our model, the energy, produced during interaction
of asymmetric space-time phases has to be conserved in space phase to form “particle” which
disappears in the opposite time phase, forming “virtual particles”. The observance of these
particles depends from frequency of the discrete energy conservation.

7. The singularity problem of relativity and uncertainty of the quantum
measurements

Due to the lost of the initial boundary frame, all space-time models break down at the
singularity. To eliminate the singularity, the space-time should have internal constraint
holding the dynamics at boundary, because the initial position is not an independent free
coordinate. The initial state of minimum space-time identity is the internal constraint of the
space-time, which determines how to go from contraction phase to the expansion phase
without singularity. General relativity has fused discrete space-time frame to the continuous
“geometrical manifold” which with the decrease of space has to move to the infinite space-
time curvature. The space-time frame by this concept has no internal constraint therefore has
to move to the singularity and the initial state of universe should start from a single point
having infinite density. This is the unproved conjecture of general relativity.

At continuous energy conservation, an event with any size has a trend to move to the equili‐
brium: to remove a system from the equilibrium one additional parameter is needed which
can be the application of an external energy. With the continuous energy conservation law a
system, consuming any amount of external energy has to move to the equilibrium of “infinite
black hole”.

The asymmetry of space-time boundaries is the fundamental basis for discrete existence of
universe.  In  some theories,  dynamical  space-time has  been discussed but  there  was not
shown that this dynamics is due to the asymmetry of boundaries. The discrete coupling
constant Eact (magnitude is finite) is the boundary constraint of space-time which at Eact=0
is different from Einstein’s Rab=0 constraint of empty space. The discrete conservation of
matter and energy within discrete space-time frame gives a non-geometrical status to the
space –time phenomenon.

In accordance with the model (6), inverse transformation appears when all the energy of space-
time is consumed by space (“black hole phase”) and all the events have the same dynamic
characteristics of “free fall “to the state of energy generation”.
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8. Particle physics based on discrete energy conservation

Presently why the particles acquire the mass is not known. The mass –energy relation which
first time has been introduced by Einstein in the form m=E/c2 does not describe mechanism of
mass generation. The problem of this formulation is invariance of mass-energy relation, fixed
by speed of light.

As follows from the model (6), conservation of mass cannot be separated from the discrete
energy/momentum conservation. Therefore, in discrete conservation of energy there is no
invariant rest mass, mapped within discrete space-time frame. The problem of mass appears
with the Newton’s force. Newtonian law does not explain the origin of force that is why the
nature of mass remains unanswered. Newton’s invariant mass during change of velocity leads
to the approximate energy conservation. If force is needed to change the velocity, then
Newtonian inertia appears to describe the magnitude of change in the form of mass. If the
action of force, as is shown in (6), is needed to hold the initial state of a body then it is needed
to hold the existence of matter in space-time frame in the form of mass. The problem of
Newtonian law is that mass, which is invariant during velocity differentiation but affects to
the acceleration.

In accordance with the model (6), the entity called mass is the resulting quantity, generated
from discrete energy conservation. This feature seems makes it as the “electromagnetic mass”.
With cyclic discrete energy conservation there is no any preferred reference frame, which could
display inertial or relativistic mass. The non-virtual matter particle is created simultaneously
with the generation of non-virtual space-time frame: mass is the part of energy to be conserved
in space phase: the dense space phase, formed through change of frequency of correlation of
space-time variables leads to the generation of different masses responsible for different
particles. The density of space phase is determined by the Eigen value (6), therefore mass is
not constant, it changes with the change of frequency. Due to this phenomenon electron has
no constant mass, it transforms to other families as it moves through space.

Discrete energy conservation mapped within discrete space-time phases has two consecutive
steps: a) re-alignment of minimum space phase, “b) accumulation of mass in space phase.

Discrete energy conservation eliminates the infinity of the energy, produced during contrac‐
tion of space phase to minimum size (6) through re-alignment and coupling with the time
phase. The time reversal asymmetry of space-time boundaries arises from discrete energy
conservation where forward and backward directions have different initial energetic condi‐
tions. Fraction of time is needed to complete a full cycle when the minimum portion of the
space phase passes through inversion frame from negative to the positive direction. The time
reversal transformation of matter/antimatter particles can be described as follows:

+ - -
e eγ/γ= - e /e + ν /ν( ) (9)

Formation of two pairs of particles from one pair (9) is due to the” three body” identity
conservation, described by condition (9).The equation (9) describes total spin symmetry of
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matter-antimatter interactions. The spin of right-handed photons is equal to the sum of the
two half spins of left-handed particles which hold conservation of energy, charge and mo‐
mentum. The super partner of gamma rays is two pair of (four) fermions (9) which generates
re-alignment of the particles in space-time reversal cycles. The ingredients of the equation
(9) form the triplet spectrum generating re-alignment of light and dark photons on intermedi‐
ate e+/e-frame.

As can be seen, without composite photon it is impossible to describe generation of mass. When
neutrinos interact with the charged particles, fermions are generated but when they interact
with each other “gamma ray bosons” are formed. The three families of particles participate in
generations of right side” pseudo-bosons” and left side composite photons.

The mechanism of equation (9) is in agreement with the results of Stefano Profumo[9], who
found that electron, reacting with the surrounding dark matter could fuse into a heavy version
of electron and when it returns to the initial state radiates gamma rays.

It is necessary to note that the quantum mechanics concept of transformation between photons
and e+/e-does not preserve energy conservation due to the non-locality of energy transforma‐
tion. Light quanta do not have independent existence and cannot hold fixed amount of energy
without space-time structure.

In accordance with the scheme (9), discrete inversion between light photons and neutrinos
(dark photons) is to be realized through electron/positron pair playing a role of “intermediate
mixing space-time frame of matter-antimatter pairs” which leads to the generation of charges.
On this basis, it is clear why matter-carrying ingredient of Eigen value is negatively charged.
In accordance with the scheme (9), merging and co-vibration of light and dark (neutrino)
photons in mixed frame produces charges e-/e+. On this basis, photons and e-/e+pair show
behavior in a similar fashion being origin of each other and light photons have no motion
without alignment of electrons with the neutrinos. The inversion model (9) of the matter/
antimatter transformation is different from Dirac vacuum, containing only electron/position
“see”.

The scheme (9) involving inversion operations describe charge and spin conservations. In
accordance with the equation (9), electrons are the light photons, localized in the virtual space-
time frame that is why all electrons have the same charge. When a particle form non-virtual
space-time frame it became a different particle.

In accordance with the condition (9), photon has a virtual leptonic structure and the same time
the pair of leptons e-/ e++ν e / ν e– has a performance of virtual bosons (called Nambu Goldstone
bosons). The sum of e-/ e++ν e / ν e

– (9) in the form of four fermions describes the “fermionic
quanta”. Due to the discrete energy conservation, the amount of “bosons”, distributed in space-
time condensate is not unlimited and the condensate should radiate photons, similar to the
“black hole” radiation of space energy.

When Es increases, it absorbs more gamma rays and leads to the formation of “black hole
structure” which cannot settle to the stationary state. From model (6) follows that at Eact=0
“black hole” has to radiate its energy back to the minimum space state. The radiation of black
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hole energy happens with transformation of e+/ ν e+e-/ ν e– to the longitudinal wave of neutral
ingredients ν e / ν e

-+e+/e-.

From model (6) and scheme (9) follows, that removal of last portion of matter from vacuum
needs more energy than background state. Therefore, the boundary space-time unit partici‐
pates in the coordinate inversion and grows of particles, which leads to the expansion of space.

In discrete energy conservation concept the initial and end states are vector fields. Absorption
of photons by e-/ e++ν e / ν e– pairs leads to the transition of “bosonic” structure to the frame of
e-/ ν e

–+e+/ ν e virtual quarks with transformation of photons to “gluons” existing in the form
of meson field (pions). We suggest that the phenomenon called “spontaneous symmetry
breaking” is the change of space-time structure with transition of energy within asymmetric
space-time boundaries while symmetry is the derivative of energy conservation. The con‐
sumed energy is not equivalent to the scattered energy, which leads to the asymmetric space-
time boundaries. The space phase (virtual fermions) is less symmetric than time phase,
therefore energy conservation has handiness in direction of energy consumption and the
consumption of energy is accelerated.

The interference of space-time phases at background state (9) is not linear and coupling of the
matter-anti matter particles forms intermediate loop boundary of mixed matter-anti matter
frame: electron is produced from neutrino side while positron is generated from photonic side.
Spin of the matter-antimatter loop to the minimum size leads to the re-alignment of the phases
with generation of e-/ ν e–+e+/ ν e quark/antiguark structure. Due to the different spin for bosons
and fermions, the alignment is directed to the matter side with the shift of handiness from the
left to the right (consumption of energy in space phase). This is the origin why matter spin has
to be twice less than bosons. Therefore, the asymmetry in spin and in the boundary of space-
time variables is the origin of the matter of universe. The transformation from spin one to half
spin has to lead to the energy loss but this energy is accumulated in the pion and kaon fields.

Leptons are products of virtual space-time while baryons are location of quarks in the non-
virtual space-time frame, which makes radiation of matter and energy non-invariant. The
quantum theories treat right and left-handed particles symmetrically which leads to the
invariance of Lagrangian action. This is the problem all of physical theories. Background state
(9) connects all conservation laws except asymmetry of space-time boundaries. The general
principle of super symmetry and action invariance can be realized when the change of the
energy of bosons, relative to its initial state, is equal to the change of the energy of under action
fermions relative to the applied energy. In this case, the laws can remain the same for both
systems.

Quantum mechanics considers that empty space is a dynamic medium, which is full of virtual
particles where “lowest energy state of the system is not zero and an isolated particles traveling
in empty space interacts with the vacuum and produces virtual particles/antiparticles pair,
coming from the vacuum itself. The original particle then reappears when the particle and
antiparticle meet and anhillate each other”. Uncertainty principle suggests that particle/
antiparticle pair live on borrowed energy within short time therefore violation of energy
conservation takes place only in a short time. The question, which has to be answered here, is
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the nature and origin of the borrowed energy. The unanswered question of quantum physics
is how to describe energy of empty space if contains any kind of energy.

In accordance with the model (6), the space-time can exist only through interaction with other
space-time field. The baryonic space-time structure of matter exists in interaction with the non-
baryonic matter field forming leptonic matter. Light photons move through sea of e-/v...e+/v
waves with constant speed and expand this boundary through generation of new portions of
dark energy. When it expands the boundary of space, (e-/v…e+/v) it leads to the formation of
red shift.

The existence of neutrinos in three flavors requires the existence of light photons also in three
flavors similar to the equation (9):

G/G= - (μ+ / μ-+ νμ / νμ- ) (10)

Z/Z= - (τ+ / τ- + ντ / ντ-) (11)

The Y, G and Z describe different flavors of photons having different frequency. At this state,
the energy is not dispersive (Eigen value is minus one) and the virtual photon particles are
indistinguishable.

Based on scheme (9-11) we may extend our analysis on the wave –particle duality of the light.
Light is wave, but presently it is not known how it is waving. In accordance with the special
relativity light travels through vacuum with constant speed but this concept does not explain
what medium has a vacuum, which carries the light with the constant speed. Maxwell
equations also do not involve any medium to carry light waves.

Due to the discrete energy conservation, light travels in space-time phases through polariza‐
tion of wave and particle properties. In accordance with the equations (6) and (7), light does
not propagate without momentum which constraints propagation of light wave in space. The
space-time frame and light energy radiation are symmetric in discrete mode. In accordance
with the scheme (7-9), light has virtual quark’s structure and does not travel in empty space.

Connection of discrete energy conservation with the boundary mapped space-time frame
explains the mystery of “increase of mass with the velocity”: increase of mass with the velocity
was suggested by Einstein to hold constant speed of light. Discrete energy conservation and
boundary mapped space-time concept describe this problem differently: light is the discrete
identity, which produces its derivative space-time frame, and any observable identity is the
interaction with this frame. Therefore, light does not exist independent of space-time frame.

In accordance with the discrete energy conservation concept, it is impossible to shift space-
time phases of a particle having the same spin unit of its constituents. Spin is the result of
energy conservation in different phases, which leads to the generation of direction.

At discrete conservation of energy, the background state of annihilation (9) does not lead to
the divergence due to the conservation of finite amount of energy within asymmetric boundary
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of space and time phases. The alignment of the ingredients of the scheme (9) is the polarization
of neutral leptons to fermions. Coupling of γ/γ rays with the e-/ e++νe

 –/ν pairs leads to the
alignment of scalar field to the vector bosons which conjugates left handed neutrino with the
left handed electron and right handed antineutrino with the right handed positron with
formation of e-/ν e

 – and e+/ν quark/anti quark pairs. The alignment of three e-/ν e
 – and e+/ν

quark/anti quark pairs in 2:1 (λ=1) mode leads to the non-integer electric charge carrying
baryon’s space-time structure. The energy of gamma rays in the form of “gluons” connects
quark/anti quark pairs within meson field of pions. The electric charge keeps photon in the
form of gluon, when charge is annihilated gluon also disappears. At decay process (Eact=0), the
energy of gluons is consumed for re-alignment of e-/ν e

 –, that is why electron in the resulting
process appears with less energy The continuous spectrum of beta decay is due to the absence
of correlation which generates left handed helicity of neutrinos. In real world due to the
discrete correlation with the applied energy, the anti neutrino has right handed helicity.

Coupling of ingredients of the equation (9) at boundary loop leads to the formation of dense
space particle-top quark/anti quark pair which in accordance with the model (6) leads to the
energy-matter interaction with generation of virtual ingredients of baryons (tt-+e-/ e++ν e– /ν →
bb-+uu-). This is the reason why top quark’s mass is very close to the energy scale of alignment
(symmetry breaking). Coupling of top quark with up quark takes place at λ=1. In this exchange
interaction, the top quark is conjugated with its weak isospin partner of bottom quark. The
boundary energy of top quark does not limit frequency of decay during its coupling with the
up quark. Due to this function, top quark does not form baryon’s space-time frame. In
accordance with the scheme (9), without boundary space the alignment γ / γ→ W-/W+→ TT-is
not possible. Generation in the mixing loop (9) gives to the electron mass more than neutrino
where the absorbed neutrino became the space locality of the mass-carrying electron e-/ν e–.

Therefore, particles, which exchange energy, are bosons while particles exchanging momen‐
tum are fermions. With other definition particles carrying energy in time phase are bosons but
conserving energy in space phase are fermions. The exchange of energy does not affect the
wave function (Eigen state) while exchange of momentum changes the sign of the wave
function. The phenomenon, which make light to move and generate discrete radiation is the
discrete energy conservation within space and time phases.

9. Generation of quarks — Why the top quark does not form baryon?

The space-time frame (6) at Eact=0 transforms to the virtual space-time frame which by radiation
of matter contracts to the minimum space size :

dSdt =  S1t1(-Es / Es) (12)

At (Eact=0, λ=-1) re-alignment of matter ingredients leads to the radiation of mass, consumed
in the space giving the same “Femi weak coupling constant Gv “of neutron and muon decay.
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The “non-correlated” space matter decay (Kaon and other mesons) generates neutral current
similar to the photons. The model (6) in this case explains why correlated electromagnetic
interaction of proton with electron is stronger than the reverse weak force of neutron decay to
proton and electron. The alignment of the fermionic super partners e+/ ν e+e-/ ν e – to the bosonic
super partners ν e / ν e

-+e+/e-leads to the formation of neutral current of decay

( )* + - – + - -
e e e eγ Gluons +e /ν + e /ν =- ( )γ /γ+ e / e  +ν /ν (13)

which correlates the helicity of elementary particles with the negative Eigen value.

In classic way, a matter is the quadratic product of the two fields and coupling of space and
time phases gives the potential of the observable frame. This principle is similar to the quantum
mechanics concept that the square modulus of wave function is associated with the probability
of observing the object.

In quantum field theory, the energy of vacuum is zero, but formation of mass requires the
positive sign of energy between the vacuum and the next lowest energy state.

The generation of energy as a quadratic product of coupling of opposite space-time vector
fields can be described as follows ( dSS1 )2=(- dtt1 )2 (14)

The quadratic quantity of space phase describes the energy density in space while the quadratic
quantity of time phase describes frequency of the change of this phase. Coupling of opposite
charge carrying space-time vector fields is similar to the coupling of matter-antimatter particles
(6):

¬¾®2 + - - 2 * + - - 2 - -
e e e

)
e( ) [ ( )] (γ/γ = - e /e + ν /ν  γ +e /ν + e /ν « t/t - bb( ) (15)

Coupling of matter-antimatter particles of the equations (9) is similar to the scheme (13). Here
arises very important question why background space-time coupling should leads to the
generation of top-bottom quarks. The top-bottom quarks are similar to other quarks but due
to the high energy, they decay fast and do not form non-virtual space-time structure of baryons.
Therefore, t /t--bb-interactions may exist within high frequency annihilations generating in
time phase t/t-particles and in space phase bb-particles with the realization of t/t--bb-meson
structure. But energy-momentum frame in simple background t/t--bb-transitions is not
invariant, therefore coupling of this pair leads to the formation of another pair of quarks, for
example uu--dd-interactions with exchange of vector bosons. The magnitude of the back‐
ground energy (9) is fixed within boundary of space-time that is why top quark mass does not
move to the infinity.
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In accordance with the energy conservation (9), d-u transformation of quarks cannot be
realized by simple emission of the W – bosons because in this case the energy is not conserved.
Therefore, energy and identity conservations in quarks transformations have to be realized
through coupling of t-b transformations with one side with u-d, from other side with s-c quarks
where the total energy and momentum are discretely conserved:

®- - - -tt + uu  dd + bb (16)

®- - - -ss + bb  tt + cc (17)

®- - - -dd + cc  uu + ss (18)

In accordance with the equation (9), the identity of a particle can be determined with the
charged particles but electromagnetism is carried by neutral photons. On this basis the particle
performance of baryon in space-time frame, is carried by charged particle that is why the
electromagnetic force cannot hold alone the identity conservation of baryons.

During energy transfer (16-18), the bottom quark travels as a part of jet stream but then returns
back to generate cycle as “the Feynman loop”. In accordance with the conditions (16-18),
conservation of causality of action is realized with correlation of end and initial states through
[T-B] bi-mesons [(ss--bb-) – (tt--uu-)] which regulates discrete exchange of energy within
nucleons and background polarization state.

Top meson has to be created from anti top and up quark while anti top meson forms from top
quark and anti up quark. B meson simultaneously is produced from b-anti quark (b-bar) and
d-quark. Its antiparticle B-anti meson is formed from b-quark and anti d-anti quark. These
transformations take place at (Eact-Es)/Es=1. The discrete performance of two nuclear frames is
the requirement of discrete identity conservation of nuclear within uud-udd and ssc-ccs
nucleons coupled with the t-b transformations. The ssc-ccs play a role of isotopic nucleon.

The exchange of the two nucleons generates a field in direction π→ Kaon→ B mesons, which
decays back at Eact=0. This is the inverse spontaneous symmetry breaking. The stability of
nuclear against to the repulsion by electromagnetic force is due to the discrete coupling of the
recycled energy (λ=1). This is the explanation why nuclear force is short ranged. Depending
from Eigen value, meson field can be real or virtual particle. At none zero Eact, pion is a particle,
but at Eact=0 it became field of gamma rays. At this condition, there is no difference between
electromagnetic force and gravitation. The heavier the meson the shorter is time allowed for
the exchange process therefore only asymmetry of space-time boundaries allows existing of
heavy top mesons. The mystery of conventional physics why the pion should have mass is
explained with the discrete energy conservation within matter-antimatter particles, located
within space-time phases.
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The constant coupling with the background energy resources leads to the internal isospin
symmetry SU of baryon quarks existing in three flavor of space-time structure Eact=2 Es. The
baryon alone is not stable therefore cannot be the fundamental matter: two nucleons are
coupled with the background bi-meson field [T-B] to form three flavor of space-time structure
Eact=2 Es. The spin of quarks within baryons is aligned to conserve the condition Eact=2 Es

through quark/ant quark mesons. Separation of quark-anti quark pair is impossible due to the
impossibility of separation of energy, distributed within space and time phases.

It is very interesting that the identical quarks do not obey the normal rules of quantum statistics
as spin ½ particles: quarks should be fermions with anti symmetric wave functions but the
pattern of observed baryons shows that they have symmetric wave function. In accordance
with the quantum principles, quarks would radiate energy of interaction and dissipate their
motion. Model (6) explains this phenomenon: the constant motion of quarks in baryons is in
invariant coupling with the background state: at constant coupling with the background, state
uniform transformation within p-n pairs gives to the quarks identity conservation with the
symmetric wave function. At these conditions, the quarks have the same symmetric perform‐
ance with the particles of background photons.

By quantum physics, it is hard to keep electric charge in a small pack because it repels itself.
The problem of this concept is that electron /positron pair cannot be created from photons by
two body reverse interactions 2Y=e-/e+due to the violation of energy conservation. The three-
body model shows that the mixed “electron /positron bubble” is a composite frame (9) where
the energy, momentum and spin are balanced properly. In the mixed frame the three compo‐
nents form the “bubble space-time” with generation of electron with negative sign while anti
particle gets positive charge. Photon and electron ingredients of the background state (9) are
the dynamic products of the geometric object – space-time vectors where generation of space
S1 transforms antiparticle to particle while generation of time instant t1 transforms particle to
antiparticle. The three body flavor interaction Eact=2 Es with the discrete non-Noether’s
symmetry leads to the generation of ordered structure of baryons.

The momentum of an electron is generated from Eact/Es interactions therefore there is no static
mass and photon alone is not the electrodynamics force mediator.

10. Why the weak force is needed?

In accordance with the model (6), the phenomenon called parity does not describe inversion
of a position of a static body through spatial coordinate but the parity of two dynamical space-
time systems. Violation of parity is the result of non-invariance of the action-response of two
systems, which generates direction of time: without local violation of parity, the global
symmetry is not conserved and there cannot be energy conservation and direction of time.
That is why P violation is associated with the CP violation. When the energy of the initial state
is completely consumed in space phase (Eact=0), parity transformation changes the algebraic
sign of the space coordinate to return the system back to the energy generation state.
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In accordance with the gauge filed theory, the gauge bosons have a parity P=-1, but spin ½
particles have P=+1. The vector bosons and fermions to acquire masses the gauge invariance
Lagrangian and new scalar boson Higgs field is predicted to exist. We suggest that with the
non-invariance Lagrangian the intermediate W bosons participates in decay process and decay
leptonically when λ=-1.

The model (6) connects strong and with weak interactions as the resulting quantity from action
–response parity while Yukawa formula [10] of the strong force does not reveals the resulting
quantity.Yukawa suggested that nuclear force could not be reduced to the electromagnetic
interactions between charged particles. The same conclusion follows from Gell-Mann mech‐
anism of quark interactions locating quarks in baryon octets within certain quantum numbers.
The important conclusion of Gell-Mann [11] is that the strong force between quarks will
degenerate if the strong force is the only force holding the quarks within nucleons.

In accordance with the model (4), one force cannot conserve the strong nuclear force and this
force has to be uniformly coupled with the energy, recycled to the nucleons. In this case, the
coupling constant does not diminish with the change of the space within the meson field.

By quantum field theory “when coupling constant is much smaller than one (g < 1) then the
theory is said is weakly coupled. If the coupling constant is of order of one or larger the theory
is said to be strongly coupled”. The model (4) meets this statement of quantum field theory.
When the Eigen value is equal to one the system is strongly coupled with the action. If Eact is
smaller than Es the system has a trend to undergo to the β-decay. This condition corresponds
to the negative value of Eigen value. When Eigen value is plus one the particle’s momentum,
spin is aligned, and a particle is right handed. If the Eigen value is minus one the spin and
momentum counter aligned, therefore the particle is left handed.

The important question here is why fermions are half integer particles and should obey Pauli
principle. In accordance with the model (6), this question is related to the realization of constant
action in three jet events and formation of space-time frame: Eact=2Es. The three jet events are
the result of space-time frame and one of the three jets has unique property under the strong
interactions to realize coupling with the constant energy. Therefore, coupling holds the
hadronization of quarks and without coupling hadrons’ space-time frame transforms to the
virtual manifold. That is why strangeness is conserved during creation but is not conserved
in decay process. Based on the mathematical structure of the model (6), at constant coupling
the quarks can never be liberated from the hadrons.

As follows from the equation (6), four fermion ingredients at Eact=0 transforms to the neutral
bosonic particle with total spin 2 which in the form of “graviton” leads to the conservation of
the background energy.

11. Strong interactions and behind the standard model

Standard Model describes the origin of forces in term of local symmetries. But energetic field
has to change discretely which leads to the discrete change of local space-time frame where
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the energetic radiation field (Eact /Es-1) is associated with the asymmetric local space-time field.
Model (6) shows that every local space-time frame is commuted with the energetic field, which
constrains each other from the linear displacement. On this basis, the space-time frame and
energy field have no independent existence and their distribution is determined by discrete
energy conservation through background state. This eliminates the linear effect of the New‐
ton’s force and leads to the rotational dynamical motion (spin) of a particle around its gener‐
ation frame. Model (6) shows that radiation field (Eact /Es-1) and particle can be classic
commutative variables which by Dirac were accepted as a commutation of quantum variables.

The space-time model based on discrete energy conservation produces symmetric and anti-
symmetric dynamical functions describing the direction of decay and the nature of produced
particles. In accordance with the model (6), the symmetric and anti-symmetric functions can
be transformed to each other depending from energy and identity conservation laws: when
the Eigen value is positive, the function leads to the hadronic transformations. When the
Eact=0, the function (6) being anti symmetric leads to the leptonic decay.

In accordance with the scheme (9), the alignment of the photons with the ½ spin particles (e+/
e-+ν e / ν e –) moves the resulting energetic field in direction of space expansion with formation
of hadronic ingredients. The resulting hadrons form “jet” along the direction of parent
“electron particles”.

The action-response parity of the model (6) shows that all the interactions (four forces) can be
divided into two groups: two dimensional two body performance (matter –anti matter
annihilation) with SU (2) symmetry group and three body interactions with commutation of
SU (2) symmetry with U(1) group giving three body 2:1 confined resonance particles. The”
two body” performance with λ=-1 describes the interaction of virtual space-time annihilations
(11) where the input function produces the opposite outcome. The total energy, distributed in
2:1 and 1:2 combinations of space-time waves generates 1/3 and 2/3 fractional frequency of
waves which is displayed in the form of charges. Due to the operation of space-time waves
within discrete symmetry, all electric charges have the symmetry in their unit.

Very important question, which may arise from three family 2:1 resonance performance, is
Pauli Exclusion Principle, which states that two fermions such as quarks cannot occupy a
quantum state at a given time. Model (6) shows that the existence of the two quarks with the
symmetric wave function in classic way requires discrete correlation one of the quarks in
proton-neutron baryons with the discrete conservation of the action.

Yukawa showed that [10] for some reason nuclear forces are saturated which lead to the
appearance of different concepts for explanation of this phenomenon. Particularly Yukawa’s
meson theory appeared to explain this problem.

By prediction of the model (6), the symmetry between different spin particles such as bosons
and fermions is possible if to accept that the force-carrying particle is not the single boson but
is a complex “particle” having the sum of two half-order particles. On this basis the SU (2)
discrete symmetry of proton-neutron transition (kaon meson field) is coherent with the SU (2)
symmetry of background transitions. The mechanism of commutation of left handed doublets
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and right handed singlet 2Es=Eact (6) is similar to the SU (2) xU (1) symmetry group of fermions.
At Eigen value, one the strong interaction of the quarks is confined.

The 2:1 flavor interactions (9) show that the kaon field is necessary to realize SU (2) symmetry
and parity conservation within proton-neutron discrete transformations to realize discrete
parity conservation within uud-duu and ssc-ccs nucleons.

Here is necessary to explain why three generation of particles, particularly strange (s) and
charm (c) quarks are needed in particle physics[11]. Before we showed that if, correlation of
different events with the energy resources has the same coupling they are simultaneous in time
having different space phase. The invariance of Eigen value needs simultaneity in different
phases. Therefore, identity conservation of the nuclear requires its discrete invariance within
different space phases, formed by discrete existence of uud-duu and ssc-ccs frames.

Recently was observed that quarks treat the right and left hand differently and pick out a
direction in space while in empty space they treat the left and right hand without any differ‐
ence. On this basis, the strong interaction should violate the parity as well. Model (6) explains
this phenomenon and shows that strong interactions can hold the parity only through discrete
energy conservation while in the absence of constant coupling the strong interaction has to
select one-handed direction.

The discrete energy conservation and action-response parity are the necessary laws of nature
to give different shapes to the different events: without discrete conservation of energy and
non-invariant action all the events and bodies would form non separable mass without any
shape and structure.

The action principle (6) shows that the certain frame to be stable its outcome after the change
should be the same (Eigen value λ=1). Therefore, formation of stable non-virtual matter frame
needs application of additional intermediate force. Due to the conservation of energy in
discrete mode, the intermediate force is necessary to recycle the energy to the nuclear.

It is known that the square of the parity transformation is the identity conservation. Applying
two parity transformations is equivalent to no transformation. Therefore, the condition (6)
meets the requirement of identity conservation generating discrete invariance of action-
response parity. Model (6) involves non-invariance action instead of Yang-Mills gauge
Lagrangian.

Model (6) shows that at constant Eigen value quark cannot radiate energy (Es < Eact). Decay of
proton by radiation of energy can be realized at inversion of the universe back to the initial
state (λ=-1). In accordance with the model (6) proton decay has to be observed globally when
Eact=0. This is the mathematical proof why quarks can never be elaborated from the hadrons.

By conventional particle theory when matter and antimatter collides, they should destroy each
other, leaving behind nothing but only energy. In this concept energy as the resulting quantity
is not localized with the lost of matter carrying momentum. That is why matter/antimatter
annihilation should produce again other matter/antimatter couples to conserve momentum
and space-time frame.
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In accordance with discrete energy conservation, the anti-quark is the discrete partner of the
quark and they exist with asymmetric boundaries. At small scale, the asymmetry is close to
the antimatter structure, while for high space scale it is asymmetric structure of matter. The
top quark’s frame is close to the antimatter and it has no baryon structure. Due to the mecha‐
nism (7-16), during coupling of top-anti top quarks, individual bottom and anti bottom and
vector bosons have not been observed [12]. The excess jet during proton-antiproton annihila‐
tion is due to the exchange of quarks. It is interesting that the possibility of generation of mass
through top quark was suggested also by Liss and Tipton [12].By their opinion Higgs can be
replaced by top-anti top quarks and there may be some heavy particle that decay to top-anti
top pairs and excess jet is caused by collision of small particle with the top quarks.

By our model this heavy particle is not-yet described [T-B] bi-meson which in accordance with
the mechanism (9-11) leads to the realization of 2:1 space-time performance of nucleons.

Model (6) predicts the non-symmetrical decay of top-anti top quarks. During correlation of
top quark with up quark, it prefers to travel in direction of proton while anti top quark moves
backward to the initial background state. One quark of baryonic 2:1 structure has different
position in matrix (Eact/Es-Es/Es) due to the correlation and insertion of energy to the baryonic
structure.

At free state, photons themselves do not carry charge, while coupling with the charges makes
them “color” force mediators (called gluons) which interact among themselves. Gluons carry
the colors of their original photons. The color is the flavor of gluons while leptons carry the
flavor of merged particles. The meson field of baryon having zero spin follows to the condition
Eact=Es which keeps the color force constant as the quarks within baryon are pulled apart.

12. Does weak interaction violate the CP symmetry?

Landau [13] considered that parity violation is impossible because space is mirror symmetric
and homogenous. In accordance with the discrete energy conservation, the spatial coordinate
transformation is associated with the inversion of time and asymmetry of boundaries of space-
time variables leads to the CP violation. The non-invariance of action –response generates
discrete reflection.

W bosons as the intermediate products participate in the exchange of quarks within more
massive top-bottom meson field. Therefore W bosons during coupling carry strong force while
in the absence of Eact undergoes to the left-handed weak decay. When Eact=0, takes place back
re-alignment of e+/ν e+e-/ ν e-to e-/ e++ν e / ν e– where the negative pressure dissolves e-/ e+within
ν e / ν e

-. That is why electron can behave in both left handed and right handed states.

One of the problems of Standard model is the CP invariance of strong interactions while
quantum mechanics Lagrangian involves a term, which should break this symmetry.

Koboyashi and Maskawa’s mechanism of CP violation [14], based on mathematical structure
of quark matrix mixing, does not explain the physical nature of this violation.But quarks matrix
mixing in reality is the change of space-time structure of the quarks in baryons.
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In accordance with the discrete energy conservation concept the CP violation observed first
time in Chui experiments [15] and repeated in beta decay, is due to the non-invariance of the
action correlated with of the non-virtual space-time frame, therefore would result the CP
violation.

As follows from the action-effect non-invariance parity (6), the left-right invariance can be
realized only within discrete dynamics. The interaction described by (V-A)/A coupling is
invariant only at λ=1.Therefore, parity cannot be conserved in the continuous symmetry.

13. Merging of quantum mechanics to the frame of classic physics

In accordance with the discrete energy conservation, model (6) as a quantum wave function
may have a feature of deterministic classic physics and describe present existence of a particle
in space-time frame through wave function connecting discrete squared appearance-disap‐
pearance phases. The probability of existence of a particle in one position is its discrete
appearance in the space phase, while the non-existence describes its appearance within
opposite time phase. Coupling of these phases in the wave function of probability is the
“quantum analog” of the Eigen value. Therefore, with the discrete energy conservation concept
there is no difference in the features of classic physics and quantum mechanics. Problem of
quantum mechanics is that the wave function involves Hamiltonian of a single system having
independent existence. On this basis, position and momentum are related to the system having
an independent existence while in the case of discrete energy conservation concept position
and momentum are derivatives of energetic existence. Description of existence of a single free
particle makes the Hamiltonian linear operator eliminating its feature being the resulting
quantity. Due to the independent existence of a system, Hamiltonian leads to the approximate
solutions.

The non-independent existence differentiates small and high scale systems connecting them
with the discrete energy conservation principle. At Eac t≠ 0 there is an existence of a particle in
space-time frame displayed by its position and momentum while at Eact=0 there is no position
and momentum to be determined. Similar to our model (6), Hamiltonian as the Eigen value of
the energy operator, in relation to the energy resources may present unification of relativity
and quantum mechanics in function of discretely conserved field.

14. What special features has discrete energy conservation concept?

Our concept shows that the mathematical behavior of the non-continuous dynamical systems,
described presently by ordinary differential equations, should be determined by the function
involving commutation of the differential operator with the input function itself to cover the
boundary of the phase of the function and identity conservation. Due to the discrete energy
conservation mapped within discrete space-time boundary, all physical parameters are the
resulting quantities.
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The description of the ” change” phenomenon by independent intervals of classic differentia‐
tion in the form of “continuous move from one point to another “gives only positive sign (such
as Fermi’s golden rule) and leads to the lost of discreteness and reversibility of dynamical
events due to the elimination of the boundary of the initial function from the commutation. In
this case, the identity conservation also is smeared out due to the absence of conjugation of the
“energetic jump” with the dynamic boundary of space-time variables.

With the similar way, the second law of thermodynamics smeared out the discrete energy
conservation by replacing discrete space-time dynamics by the one parametric thermodynamic
arrow.

15. Conclusion

The analysis presented in our chapter shows that the concept of discrete energy/momentum
conservation and their commutation within boundary mapped discrete space-time phases
allow unification of the forces and interactions within unified classic field theory which
completely changes our views on the fundamental interactions and symmetrical laws of
nature.

The space and time are the products of discrete energy/momentum conservation and in reverse
order, energy/momentum identities of antimatter/matter are the inner products of space-time
discrete dynamics [16-18].

Unification of discrete energy conservation and discrete space-time dynamics has the same
basis as electromagnetic unification of light as the coupling product of the space-time phases.

The principles that everything is “relative” or “uncertain “ are getting different look with the
concept that “every space-time identity is the discretely conserved energy/momentum packet
within space and time phases” which became a new fundamental concept for description of
nature and its physical laws regardless of dimensions and scale.

Model (6) shows that the non-conservation of parity is the result of non-arbitrary process of
discrete energy conservation therefore the local CPT non-invariance is to be the fundamental
deterministic law of nature. The discrete energy conservation treats its ordered outcomes-
space and time through correlation of their asymmetric boundaries which allows energy to
perform its discrete conservation within dynamic space-time framework. The non-invariance
of action-response parity is more fundamental concept than unification of forces due to the
generation of all the forces and events from discrete commutation of this relation.

The reality is not created by observation, as quantum mechanics suggests, but as the resulting
quantity, it is created from exchange action-response interactions of space-time frame with the
discrete energetic action.
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Chapter 5

The Measurement Problem in Quantum Mechanics
Revisited

M. E. Burgos

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59209

1. Introduction

In a paper entitled “Against ‘measurement’,” J. Bell points out [1]: “Here are some words
which, however legitimate and necessary in application, have no place in a formulation with
any pretention to physical precision: system, apparatus, environment, microscopic, macroscopic,
reversible, irreversible, observable, information, measurement… On this list of bad words… the
worst of all is measurement.”

To begin with, let us recall that none of the words of the previous list is included in classical
theories. Classical Mechanics, Electromagnetism, Statistical Physics and other classical theories
speak about what happens, not about what is observed or measured; they assume the behavior of
apparatuses or measuring devices ruled by the same laws which govern processes where man-
made objects are absent; they treat on the same footing microscopic and macroscopic objects;
and they offer no room for notions such as environment or information.

The situation is radically different in quantum mechanics. Orthodox Quantum Mechanics, the
theory formulated by J. von Neumann in the late 1920, consists of five axioms, and two of them
refer to measurements. One of them, which is a generalization of Born’s Postulate, refers to the
possible results of a measurement, and their corresponding probabilities. The other one, the
Projection Postulate, refers to the system’s state once the measurement process is completed.
In addition to these issues, present since the quantum mechanical formalism was established,
in the following years other problems were unveiled and the Projection Postulate became the
principal target of criticisms. In particular, it was pointed out that this postulate introduces a
subjective element into the theory; it conflicts with the Schrödïnger equation; and it implies a
kind of action-at-a-distance.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



This chapter critically reviews quantum measurement, starting with contributions by E.
Schrödinger and M. Born dating from 1926. Schrödinger proposed an electromagnetic
interpretation and Born a probabilistic interpretation of the wave function; the latter implies
that quantum mechanics has to be considered a probabilistic theory. In 1927 Einstein objected
the idea that quantum mechanics is a complete theory of individual processes. Several ways
to face the measurement problem are reported and discussed, among them: Dirac’s notion of
observation; Bohr’s point of view; von Neumann’s theory of measurement; Margenau’s
rejection of the Projection Postulate; the Many Worlds Interpretation; and Decoherence. Brief
references are made to Schrödinger cat, EPR paradox, Bell’s inequalities and quantum
teleportation. A comparison between the characteristics of spontaneous processes and those
of measurement processes highlights why so many scientists are disappointed with Orthodox
Quantum Mechanics formalism, and in particular with its Projection Postulate.

In the last sections of the chapter we deal with the following items: (i) Conservation laws are
strictly valid in spontaneous processes and have only a statistical sense in measurement
processes; (ii) Ad-hoc use of the Projection Postulate; (iii) Introduction of the essential concepts
involved in the Spontaneous Projection Approach; and (iv) Formal treatment of the ideal
measurement scheme in the framework of this approach.

2. Born’s probabilistic interpretation of the wave function

The mathematical formalism of quantum mechanics was completed in 1926, the theory already
exhibiting a spectacular success in accounting for nearly every spectroscopic phenomena. E.
Schrödinger largely contributed to the achievement of these goals by showing that his own
formalism and Heisenberg´s matrix calculus are mathematically equivalent. The only major
problem left seemed to be interpreting the function ψ(x, y, z, t) which satisfies a wave equation
(at present called the Schrödinger equation). Then, in view that e.g. the hydrogen atom emits
electromagnetic waves whose frequency and polarization should be related to the initial and
final atom states, Schrödinger thought it necessary to ascribe to the function ψ an electromag‐
netic character. A further elaboration of this idea led him to interpret quantum theory as a
simple classical theory of waves. In his view, physical reality consists of waves and waves only. [2]
This interpretation of quantum theory did not convince many physicists and soon several
objections were raised, among them that ψ undergoes a discontinuous change during a process
of measurement.

M. Born proposed also in 1926 a probabilistic interpretation of the wave function (sometimes called
statistical interpretation of the wave function) and, as a consequence, that quantum mechanics
should be considered a probabilistic theory. Summarizing his interpretation, one could say that
|ψ | 2 dτ measures the probability of finding the particle within the volume dτ, the particle
being as a mass point having at each instant both a definite position and a definite momentum.
In 1954 Born was awarded the Nobel Price “for his fundamental work in quantum mechanics
and especially for his statistical interpretation of the wave function.” When explaining why he
did not follow Schrödinger’s interpretation of the function ψ, he pointed out that “every
experiment by Franck [a physicist working close to Born’s institute] and his assistants on
electron collisions appeared to me as a new proof of the corpuscular nature of the electron.” [3]
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Born’s interpretation was adopted by most leading physicists, included W. Heisenberg. In a
letter sent to Born’s wife on March 3, 1926, A. Einstein said: “The Heisenberg-Born concepts
leave us all breathless, and have made a deep impression on all theoretically oriented people.
Instead of dull resignation, there is now a singular tension in us sluggish people.” [4] Einstein’s
conception of quantum mechanics, expressed in this letter, pleased Heisenberg and Born. A
few months later, however, Einstein wrote to Born: “Quantum mechanics is certainly impos‐
ing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does
not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He
is not playing at dice.” [4] Note that Einstein was not rejecting the probabilistic interpretation of the
wave function ψ; he was expressing dissatisfaction with loss of determinism. In his view, a
probabilistic theory cannot be complete since “the real thing” should be described by a
deterministic theory. His position became more explicit in the Fifth Solvay Congress (October
24 to 29, 1927).

During this congress, Born and Heisenberg presented a paper on matrix mechanics and the
probabilistic interpretation of the wave function ψ. At the end of their lecture they made this
provocative statement: “We maintain that quantum mechanics is a complete theory; its basic
physical and mathematical hypotheses are not further susceptible of modifications.” [2,
emphases added] During the discussion which followed, H. Lorentz objected the rejection of
determinism in atomic physic, as proposed by the majority of speakers. Although admitting
that Heisenberg’s indeterminacy relations impose a limitation on observation, he objected the
notion of probability as an axiom a priori, at the beginning of the interpretation, instead of
putting it at the end, as a conclusion of theoretical considerations. Finally, he declared: “Je
pourrais toujours garder ma foi déterministe pour les phénomènes fondamentaux… Est-ce qu’un esprit
plus profond ne pourrait pas se rendre compte des mouvements de ces électrons? Ne pourrait-on pas
garder le déterminisme en faisant l’objet d’une croyance? Faut-il nécessairement exiger l’indétermi‐
nisme en principe?” [2]

After the intervention of other speakers, A. Einstein intervened to point out that the theory of
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on a diaphragm with slit O so that the ψ-wave associated with the particle is diffracted in O.
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Figure 1. The experiment analyzed by Einstein in the Fifth Solvay Congress
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According to viewpoint I, the… waves do not represent one individual particle but rather an
ensemble of particles distributed in space. Accordingly, the theory provides information not
on an individual process but rather on an ensemble of them. Thus |ψ(r)| 2 expresses the
probability (probability density) that there exists at r some particle of the ensemble [une certain
particule du nuage].

According to viewpoint II quantum mechanics is considered as a complete theory of individual
processes… each particle moving toward the screen in the shape of a hemisphere is described
as a wave packet which, after diffraction at O arrives at a certain point P on the screen, and
|ψ(r)| 2 expresses the probability… that at a given moment one and the same particle shows
its presence at r… If |ψ | 2 is interpreted according to II, then, as long as no localization has
been effected, the particle must be considered as potentially present with almost constant
probability over the whole area of the screen; however, as soon as it is localized, a peculiar
action-at-a-distance must be assumed to take place which prevents the continuously distrib‐
uted wave in space from producing an effect at two places on the screen.

“It  seems to me”-Einstein concluded-“that  this  difficulty cannot be overcome unless  the
description of the process in terms of the Schrödinger wave is supplemented by some detailed
specification of the localization of the particle during its propagation… If one works only
with Schrödinger waves, the interpretation II of|ψ | 2, I think, contradicts the postulate of
relativity.” [2]

Many years after this memorable meeting Born and Einstein continued to discuss about this
subject. Their divergence is illustrated in Einstein’s letter to Born dated September 7, 1944: “We
have become Antipodean in our scientific expectations. You believe in the God who plays dice,
and I in complete law and order in a world which objectively exists, and which I, in a wildly
speculative way, am trying to capture. I firmly believe, but I hope that someone will discover
a more realistic way, or rather a more tangible basis than it has been my lot to find. Even the
great initial success of the quantum theory does not make me believe in the fundamental dice-
game, although I am well aware that our younger colleagues interpret this as a consequence
of senility. No doubt the day will come when we will see whose instinctive attitude was the
correct one.” [4]

Original Born’s probabilistic interpretation of the wave function ψ enjoyed great success in the
analysis of atomic scattering, but soon it was evident that it confronted serious difficulties to
explain other phenomena. [2] In any case, a generalization of Born’s probabilistic interpretation
of the wave function ψ was included by J. von Neumann as the third postulate of his quantum
mechanics formulation; see next section.

3. The formalism of orthodox quantum mechanics

Von Neumann formulated quantum mechanics as an operator calculus in Hilbert space; the
German version of his “Mathematical Foundations of Quantum Mechanics” was published
for the first time in 1932. [5] A couple of years earlier P. A. M. Dirac published his celebrated
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treatise “The Principles of Quantum Mechanics.” [6] The essential of the theory was presented
there and, even though von Neumann admitted that Dirac’s formalism could ‘scarcely be
surpassed in brevity and elegance,’ he criticized it as deficient in mathematical rigor.” [2] Many
other versions of quantum mechanics followed these pioneer works, most of them motivated
by the desire of solving “the measurement problem.” But, in general, von Neumann’s formu‐
lation continued to be preferred to other approaches and, at present, it is frequently the only
one taught at the academy. We shall refer to it as Orthodox Quantum Mechanics (OQM).

The primitive (undefined) notions of OQM are system, physical quantity and state; and the
formalism can be summarized in the following way [2]:

a. To every system corresponds a Hilbert space H whose vectors (state vectors, wave
functions) completely describe the states of the system.

b. To every physical quantity A corresponds uniquely a self-adjoint operator A acting in H.
It has associated the eigenvalue equations

=v v
j j jA a a a (1)

(ν is introduced in order to distinguish between the different eigenvectors that may correspond
to one eigenvalue aj), and the closure relation

n

=å
,j

v v
j j Ia a (2)

is fulfilled (here I is the identity operator). If j or ν is continuous, the respective sum has to be
replaced by an integral.

c. For a system in the state |Φ  the probability that the result of a measurement of A lies
between a’ and a” is given by Ψ 2, where Ψ  is the norm of |Ψ =(Ia”

– Ia’
) |Φ  and Ia is

the resolution of identity belonging to A.

d. The evolution in time of the state vector |Φ  is determined by the Schrödinger equation.

e. Projection Postulate: If a measurement of A yields a result between a’ and a”, then the
state of the system immediately after the measurement is an eigenfunction of (Ia”

– Ia’
).

Many prominent authors of quantum mechanics textbooks adopt the primitive notions system,
physical quantity and state, either in an explicit or implicit way. They also take as valid the first
four postulates of the previous formalism with little or none modification. The exact formula‐
tions of these axioms due to some conspicuous authors can be found in: [7-10].
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4. The measurement problem and the statistical interpretation of quantum
mechanics

The problem pointed out by Einstein at the Fifth Solvay Congress has been considered one of
the most serious flaws that quantum mechanics confronts. Some years later, in 1935, he
published with B. Podolsky and N. Rosen their celebrated paper “Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete?” [11] This article prompted H.
Margenau to consider the Projection Postulate as indicative of a defect in the formalism of
quantum mechanics and to suggest that it should be abandoned [2]; one of the main reasons
to do so being that this postulate contradicts the more fundamental Schrödinger equation of
motion. As an example, Margenau considered the measurement of the coordinate of a particle
which initially has a definite momentum and argued: as the value of the position (and then
the state ψ after the measurement) cannot be predicted, the Hamiltonian of interaction between
the particle and the measuring device cannot be a unique operator as usually encountered in
the formalism.

In the following we reproduce his argument in case the operator A representing the physical
quantity A to be measured has a discrete non-degenerate spectrum, the eigenfunctions of A
being ψj( j =1, 2, ⋯ ). Let t be the time the measurement process starts and t + Δt  the time such
a process is over. We shall call H0 the Hamiltonian of the particle before t, HM the term due to
its interaction with the measuring device and H = H0 + HM  the total Hamiltonian acting on the
particle in the time interval (t , t + Δt). If φ is the state of the particle at t, assuming that during
the time interval (t , t + Δt) the Schrödinger equation rules the process, the state of the particle
at t + Δt  should be ψ =φ + Δφ, where

( )j jD = D h /t H i (3)

and

( ){ }y jé ù= + D +ë ûh01 /Mt H H i (4)

(ℏbeing Planck’s constant). Now, on the one hand the several possible states of the particle
immediately after the measurement has been completed should be one of the ψj; the uncon‐
trollable character of the measurement process implies that it is not possible to predict which
one of them will result. But, on the other hand, ψ given by (4) is just one function, whatever
the specific form of HM may be.

Margenau’s suggestion to abandon the Projection Postulate and the arguments which support
this idea were included in a manuscript he sent to Einstein on November 13, 1935. Einstein,
however, replied: “the formalism of quantum mechanics requires inevitable the following
postulate: ‘If a measurement performed upon a system yields a value m, then the same
measurement performed immediately afterwards yields again the value m with certainty.’ He
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illustrated this postulate by the example of a quantum of light which, if it has passed a polarizer
P1, is known to pass with certainty a second polarizer P2 with orientation parallel to P1.” [2]

According to Einstein a particle should always be considered as possessing a definite though
perhaps unknown position, even when no such definite position is described by the wave
function ψ. [12] In his “Reply to Criticism,” he asserts: “One arrives at very implausible
theoretical conceptions if one attempts to maintain the thesis that the statistical quantum theory
is in principle capable of producing a complete description of an individual physical system.
On the other hand, those difficulties of theoretical interpretation disappear if one views the
quantum-mechanical description as the description of ensembles of systems.” [13] It is not
surprising that Einstein, as Margenau, uphold the Statistical Interpretation of Quantum
Mechanics (SIQM). According to this approach, “a pure state Φ (and hence also a general state)
provides a description of certain statistical properties of an ensemble of similarly prepared
systems, but need not provide a complete description of an individual system.” [14] By
contrast, Postulate A of OQM explicitly establishes that a pure state Φ completely describes
the state of an individual system. We have then two versions of quantum mechanics which do not
deal with the same referent: OQM refers to individual systems and SIQM to ensembles of similarly
prepared systems. In addition: As already mentioned, in classical theories measurement
processes are supposed to be ruled by the same laws which govern spontaneous processes. By
contrast, in OQM spontaneous processes follow Schrödinger evolutions (given by Postulate
D) and measurement processes are ruled by the Projection Postulate (Postulate E). This is a very
important difference between OQM and classical theories. SIQM avoids this difference by adopting
formalism where no mention to measurement is made. In particular, instead of Postulate C
(see Section 3), SIQM states: “The only values which an observable [physical quantity or
dynamical variable represented by a self-adjoint operator] may take on are its eigenvalues…”
[14; emphasis added] So, where OQM talks about the possible results of a measurement, SIQM talks
about the values which an observable may take on. SIQM is a theory which has a referent and
postulates different from OQM; in particular, SIQM and OQM include different generalizations
of Born’s probabilistic interpretation of the wave function. By contrast, Born’s probabilistic interpre‐
tation of the wave function is not a theory. This is a difference between Born’s probabilistic
interpretation of the wave function and SIQM worth to be stressed.

D. Bes points out: “rather than dwell on philosophical interpretations of equations, most
physicists proceed to carry out many exciting applications of quantum mechanics.” [10] On
their side, M. Tegmar and J. A. Wheeler argue: “This approach proved stunningly successful.
Quantum mechanics [we would say OQM or similar versions of quantum mechanics] was
instrumental in predicting antimatter, understanding radioactivity (leading to nuclear power),
accounting for the behavior of materials such as semiconductors, explaining superconductivity
and describing interactions such as those between light and matter (leading to the invention
of the laser) and of radio waves and nuclei (leading to magnetic resonance imaging).” [15] By
contrast, SIQM has not been so successful. This is, we think, the main reason why most physicists
and chemists prefer versions of quantum mechanics which refer to individual systems and, in particular,
OQM.
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5. Von Neumann’s theory of measurement

Von Neumann’s formalism is generally based on the so-called Copenhagen Interpretation
whose founding father was mainly N. Bohr; even if E. Schrödinger, W. Heisenberg, M. Born
and other physicists also made very important contributions to this interpretation. But Bohr
did not care about the absence of quantum mechanics formalism, let alone a theory of meas‐
urement. In his view, any formalism would become meaningful only if it was possible to
interpret it in terms of classical concepts. So he assigned a double nature to the measuring
apparatus: on the one hand it should behave as a classical object; on the other hand, it should
follow quantum mechanical laws. As a result, his position remained a somewhat questionable
or, at least, obscure. [2]

Contrary to Bohr, von Neumann treated the measuring apparatus as a purely quantum system.
His starting point was the assumption that “there are two kinds of changes of quantum
mechanical states: (1) ‘the discontinuous, non-causal and instantaneously acting experiments
or measurements,’ which he called ‘arbitrary changes by measurements’; and (2) ‘continuous
and causal changes in the course of time,’ which evolve in accordance with the equations of
motion and which he called ‘automatic changes.’ The former, or briefly, ‘processes of the first
kind’ are irreversible whereas the latter, the ‘processes of the second kind,’ are reversible.” [2]

In the first place von Neumann showed how the formalism of quantum mechanics is capable
of accounting consistently for the operation of the measuring apparatus. Then he continued
his analysis by regarding the measurement process as consisting of two stages: (I) the inter‐
action between the object and the apparatus, and (II) the act of observation. In the following
we summarize his arguments.

Stage I does not present any conceptual difficulty. Let S be the operator representing the
physical quantity S to be measured. We assume that it has the eigenvalues sj( j =1, 2, ⋯ ) and
the corresponding eigenvectors are σj (for simplicity we refer to the discrete non-degenerate
case). If before the interaction of the system (object) with the apparatus the pure state of the
system is

=å n n
n

σ c σ (5)

during the interaction the object is coupled to the measuring apparatus designed to measure
S and, once the interaction ceased, the system+apparatus is in the state

=å n n n
n

ψ c σ α (6)

where αn would be the apparatus state if the system state before the interaction were σn. Let
us stress that ψ, being causally determined, is a pure state as long as the combined system
+apparatus remains isolated.
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Stage II. The conceptual difficulties concerning the measurement problem become apparent
at this stage. “Von Neumann was fully aware that the knowledge of the state of the combined
system does not suffice to infer the state of the object or the value of S. If it could be ascertained
that after the interaction the apparatus is in the state αj, it would be known that the object is in
the state αj and S has the value sj. But how can we find out whether the apparatus is in the
state αj ? It may be suggested that one couple the apparatus to a second measuring device. This
proposal, however, would lead to an infinite regress… But clearly, von Neumann reasoned, a
measurement must be a finite operation; usually it is completed by an act of observing the
pointer position of [the apparatus]. The process leading to this result, von Neumann conclud‐
ed, can therefore no longer be of the second kind but has to be a discontinuous, non-causal,
and instantaneous act.” [2]

Where and how does this act take place? In our view, von Neumann’s answer to this question
is not satisfactory. In his Mathematical Foundations of Quantum Mechanics he asserts [16]:
“We must always divide the world into two parts, the one being the observed system, the other
the observer. In the former, we can follow up all physical processes (in principle at least)
arbitrarily precisely. In the latter, this is meaningless. The boundary between the two is
arbitrary to a very large extent… That this boundary can be pushed arbitrarily deeply into the
interior of the body of the actual observer is the content of the principle of the psycho-physical
parallelism – but this does not change the fact that in each method of description the boundary
must be put somewhere… Now quantum mechanics describes the events which occur in the
observed portion of the world, so long as they do not interact with the observing portion, with
the aid of the process [of the second kind], but as soon as such interaction occurs, i.e. a
measurement, it requires the application of [a] process [of the first kind].”

M. Jammer points out that “this argument for the indispensability of processes of the first kind
also seems to suggest that these processes do not occur in the observed portions of the world,
however deeply in the observer’s body the boundary is drawn. They can thus occur only in
his consciousness. A complete measurement, according to von Neumann’s theory, involves therefore
the consciousness of the observer.” [2; emphases added]

6. Entangled states: The Schrödinger cat and the EPR paradox

The state ψ given by (6) is an entangled state where each term in the sum is the product of a
possible state σn of a microsystem, the corresponding final state αn of the apparatus, and the
numbercn. So, as long as the total system+apparatus remains isolated, we have a linear
superposition of different states of the apparatus, the coefficients beingcnσn.

Entangled states do not have a classical equivalent and are an unavoidable consequence of the superpo‐
sition principle, considered by some physicists the fundamental principle of quantum mechan‐
ics. Schrödinger showed how strange some entangled states are with his well-known example
of the cat: Imagine that the microsystem is a radioactive element with two possible states: σ1

(atom non-decayed), and σ2 (atom decayed). If the atom decays, a mechanism is activated and
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kills the cat, a macrosystem with the possible states α1 (cat alive, if the atom has not decayed)
and α2 (cat dead, if the atom has decayed). Then, if at a given instant the probability the

radioactive element has of being decayed is ½, the coefficients take on the value c2 = c1 = (½)
and

( ) ( )y += 1 1 2 2 ½ ½σ α σ α (7)

This entangled state is a superposition in which the two states “cat alive” and “cat dead” are
mixed or smeared together by equal amounts. Following von Neumann, one should say that
only through the act of observation, that is, looking at the cat, the system is thrown into a
definite state. On his hand, Schrödinger asserts [2]: “states of a macroscopic system which could be
told apart by a macroscopic observation are distinct from each other whether observed or not.” So, in
his view, “it would be naïve to consider the ψ-function in (7) as depicting the reality.” [2]

In [11] Einstein, Podolsky and Rosen demonstrate that the idea that “the wave function does
contain a complete description of the physical reality of the system in the state to which it
corresponds… together with the criterion of reality [see below] leads to a contradiction.”
Referring to this paper, frequently people speak of EPR paradox, but in fact one should talk
about the EPR theorem. It states: “if the predictions of quantum mechanics are correct (even for
systems made of remote correlated particles) and if physical reality can be described in a local (or
separable) way, then quantum mechanics is necessarily incomplete: some elements of reality exists in
Nature that are ignored by this theory.” [17]

At a first glance the Schrödinger cat and the EPR paradox look very different. Nevertheless,
they share the conceptual problem implied in entangled states and, in this sense, it could be
said that they are variations on the same theme. To pin point what we mean, let us suppose
that instead of having a particle and a measuring apparatus (as in the previous section), or a
radioactive element and a cat (as in the previous example) we have two spin ½ particles which
propagate in opposite directions after leaving the source where they have been emitted in a
singlet spin state

( ) ( )Y = + - +½ 1 : ,  2 : – – ½ 1 : ,  2 : (8)

In this entangled state “spin up” and “spin down” of particle 1 are mixed or smeared together
by equal amounts. The same is valid for particle 2.

Let us suppose that after leaving the source every interaction between both particles ceases.
Then, if one of them is submitted to a measurement of spin in a direction orthogonal to that of
propagation, quantum mechanics tells us that a measurement of spin in the same direction
(orthogonal to the direction of propagation) upon the other particle will yield the opposite
value to that obtained in the first measurement: for instance, if the first result is+ ℏ / 2, the other
will be – ℏ / 2 with certainty, and this must happen independently of the distance between both
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particles. So, by measuring the spin of the particle going to one side, e.g. particle 1, it is possible
to know the spin of the particle going to the other side, i.e. particle 2, without performing any
measurement upon it or disturbing it in any way.

Now, on the one hand the EPR criterion of reality states [11]: “If, without in any way disturbing
a system, we can predict with certainty (i.e., with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding to this
physical quantity.” And, on the other hand, according to the condition of completeness
formulated by EPR [11]: “every element of the physical reality must have a counterpart in the
physical theory.” So, applying the EPR criterion of reality we can conclude that the spin of the
non-disturbed particle (particle 2), which has for instance the value –ℏ / 2, is an element of
reality. But this supposed element of reality is, however, absent from the state (8) where “spin
up” and “spin down” of particle 2 are mixed or smeared together by equal amounts.

Einstein, Podolsky and Rosen end their article with the assertion [11]: “While we have thus
shown that the wave function does not provide a complete description of the physical reality,
we left open the question of whether or not such a description exists. We believe, however,
that such a theory is possible.”

7. Controversies about the projection postulate and the theory of
measurement

Most authors agree on the following point: neither the primitive notions nor the first four
postulates of OQM are controversial. But this is the case neither of the Projection Postulate nor
of the Theory of Measurement. The list of authors who have tried to solve the measurement
problem in quantum mechanics is very long. In the following we shall sum up and comment
the points of view of a few of them.

7.1. Dirac’s notion of observation

Referring to an experiment with a single obliquely polarized photon incident on a crystal of
tourmaline, Dirac says: “When we make the photon meet a tourmaline crystal, we are
subjecting it to an observation. We are observing whether it is polarized parallel or perpen‐
dicular to the optic axis. The effect of making this observation is to force the photon entirely into the
state of parallel or entirely into the state of perpendicular polarization. It has to make a sudden jump
from being partly in each of these two states to being entirely in one or the other of them. Which
of the two states it will jump into cannot be predicted, but is governed only by probability
laws. If it jumps into the parallel state it gets absorbed and if it jumps into the perpendicular
state it passes through the crystal and appears on the other side preserving this state of
polarization.” [6; emphases added]

Our comments: Dirac seems to suggest that these jumps (or projections), even if induced by
observations, happen in the real, material world. We ask: what would happen if a photon
polarized by nature (i.e. without the intervention of humans) meets a tourmaline crystal?
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Would it jump from being partly in each of these two states to being entirely in one or the
other? Or would it remain in an entangled state with the tourmaline crystal like that of the
system+apparatus given by (6)?

7.2. Landau and Lifshitz’ point of view

Following Bohr, L. Landau and E. Lifshitz deal with the measurement problem in the following
terms [18]: “The possibility of a quantitative description of the motion of an electron requires
the presence also of physical objects which obey classical mechanics to a sufficient degree of
accuracy [for brevity the authors speak here of ‘an electron,’ meaning in general any object of
a quantum nature, i.e. a particle or system of particles obeying quantum mechanics and not
classical mechanics]. If an electron interacts with such a ‘classical object’, the state of the latter
is, generally speaking, altered… In this connection the ‘classical object’ is usually called
apparatus, and its interaction with the electron is spoken of as measurement. However, it must
be emphasized that we are not discussing a process of measurement in which the physicist-
observer takes part. By measurement, in quantum mechanics, we understand any process of
interaction between classical and quantum objects, occurring apart from and independently
of any observer.”

They further add [18]: “[Let us] consider a system consisting of two parts: a classical apparatus
and an electron (regarded as a quantum object). The process of measurement consists in these
two parts coming in interaction with each other, as a result of which the apparatus passes from
its initial state into some other; from this change of state we draw conclusions concerning the
state of the electron. The states of the apparatus are distinguished by the values of some
physical quantity (or quantities) characterizing it – the ‘readings of the apparatus’. We
conventionally denote this quantity by g, and its eigenvalues by gn ⋯  [we shall] suppose the
spectrum discrete. The states of the apparatus are described by means of quasi-classical wave
functions which we shall denote byΦn(ξ), where the suffix n corresponds to the ‘reading’ gn of
the apparatus, and ξ denotes the set of its coordinates. The classical nature of the apparatus
appears in the fact that, at any given instant, we can say with certainty that it is in one of the
known states Φn with some definite value of the quantity g; for a quantum system such an
assertion would, of course, be unjustified.”

It follows the description of an analogous process to that mentioned in Stage I of von Neu‐
mann’s theory of measurement: If Φ0(ξ) is the wave function of the initial state of the apparatus
(before the measurement), and Ψ(q) some arbitrary normalized initial wave function of the
electron (q denoting its coordinates), the initial wave function of the whole system is the
product

( ) ( )xY F0 q (9)
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Then, applying the equations of quantum mechanics, we can in principle follow the change of
the total system wave function with time. The measurement process finished, we can expand
this wave function in terms of the Φn and obtain the sum

( ) ( )xFå
n

qn nA (10)

where the An(q) are some functions of q.

At this point Landau and Lifshitz assert [18]: “The classical nature of the apparatus, and the
double role of classical mechanics as both the limiting case and the foundation of quantum
mechanics, now make their appearance. As mentioned above, the classical nature of the
apparatus means that, at any instant, the quantity g (the ‘reading of the apparatus’) has some
definite value. This enables us to say that the state of the system apparatus+electron after the
measurement will in actual fact be described, not by the entire sum (10), but by only the one
term which corresponds to the ‘reading’ gn of the apparatus,

( ) ( )xF qn nA (11)

It follows from this that An(q) is proportional to the wave function of the electron after the
measurement.”

Our comments: We have already pointed out that Stage I of the measurement process does not
involve any conceptual difficulty. In addition, there is no substantial difference between the
analysis due to Landau and Lifshitz, which leads to sum (10), and that due to von Neumann,
which leads to sum (6).The problem arises in Stage II, where the reduction to one and only one
term of sum (6) or of sum (10) must be achieved. This problem is faced in different ways by
different authors: von Neumann, for whom the apparatus is a purely quantum system, makes
appeal to observer’s consciousness; Landau and Lifshitz, for whom quantum measurements
occur apart from and independently of any observer, make appeal to the classical character of
the apparatus.

7.3. Bunge’s epistemological realism

In [19] M. Bunge asserts: “The main epistemological problem about quantum theory is whether
it is compatible with epistemological realism. (The latter is a family of epistemologies which
assume that (a) the world exists independently of the knowing subject, and (b) the task of
science is to produce maximally true conceptual models of reality…)”

On the one hand, in Bunge’s view the question of reality has nothing to do with scientific
problems such as whether all properties have sharp values, and whether all behavior is causal.
On the other hand, he thinks the Schrödinger equation rules every quantum process. Then,
when referring to projections, he says [19]: “we would like to see a rigorous proof that the
projection, or something close to it, occurs partly as a consequence of the Schrödinger equation,
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not as a result of an arbitrary decision of an omnipotent Observer placed above the laws of
nature. More precisely, we should like to derive a projection (or semi-projection) theorem from
physical (quantum and classical) first principles. And we should like to have a proof that the
projection (or semi-projection) is a swift but not instantaneous process caused by certain interac‐
tions, in particular those between quanton and apparatus.” And in [20]: “one should attempt
to deduce the reduction of the state function instead of postulating it.”

Our comments: In [21] and [22] we have asserted that quantum theory is compatible with
realism. And we also think that the question of reality has nothing to do with scientific
problems such as whether all properties have sharp values or not and whether all behavior is
causal or not. We fully agree with Bunge on these points. Nevertheless, we would add to the
list of scientific problems which have nothing to do with the question of reality: the issue of
action-at-a-distance and the validity of conservation laws, in particular conservation of energy.
Concerning this last point, H. Poincaré declares: “[cette loi] ne peut avoir qu’une signification, c’est
qu’il y a une propriété commune à tous les possibles; mais dans l’hypothèse déterministe il n’y a qu’un
seul possible et alors la loi n’a plus de sens. Dans l’hypothèse indéterministe, au contraire, elle en
prendrait un, même si on voulait l’entendre dans un sens absolue… ” [23] This remark seems to us
pertinent for, if there are quantum processes not ruled by deterministic laws, one could suspect
that conservation laws are not valid in these kinds of processes.

Now, concerning Bunge’s suggestion: it would be grateful to see the Projection Postulate
deduced from the Schrödinger equation; the problem is to know whether achieving this task
is possible or not. In 1935 Margenau showed that the Projection Postulate contradicts the more
fundamental Schrödinger equation of motion; see Section 4. And according to Bes, “because
of the linearity of the Schrödinger evolution, there is no mechanism to stop the evolution and
yield a single result for the measurement: the state reduction is beyond the scope of the Schrödinger
evolution.” [10; emphases added] So, as long as these assertions have not proven wrong, we do
not see in which way somebody could be inspired to face the task Bunge proposes us.

7.4. The many worlds interpretation

In [24] H. Everett proposes an alternative to observation-triggered wave. He assumes that the
equations of physics that model the time evolution of systems without observers are sufficient
for modeling systems which do contain observers. As a result, the universe which includes the
system, the measuring apparatus and the observer, always evolves in agreement with the
Schrödinger equation, even when the observer performs a measurement. In this approach the
system+apparatus+observer+environment splits into as many branches as results of the
measurement are possible. All possibilities are realized at the same time and these branches
coexist without interfering, so the component of the observer in one branch is unaware of the
others, and he/she perceives what happens as if the system state has been projected. But this
is a delusion of the mind of the observer for “there does not exist anything like a single state
for one subsystem…” [24]

Everett originally called his approach the “Correlation Interpretation,” where correlation
refers to entanglement, as that obtained at the end of Stage I of von Neumann’s theory of
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measurement; see sum (6) in Section 5 and sum (10) in Section 7.2. The phrase “many-worlds”
is due to B. DeWitt, who was responsible for the wider popularization of Everett's theory. [25]

Our comments: Since each component of the observer is condemned to remain in his/her branch
there is no way he/she could know what is happening in the others. As a consequence, Bunge
says, “this solution to the contradictions generated by the orthodox version of the projection
hypothesis is unscientific because the splitting is unobservable, so the conjecture is untestable.”
[19] We fully share this assertion.

7.5. Decoherence

Decoherence is a process which prevents different elements in the quantum superposition of
the total system's wave function from interfering with each other. So, it has been said, “it looks
and smells as a collapse.” [15]

W. Zurek, one of its conspicuous defenders, introduces the concept of decoherence in the
following way [26-27]: Let | ↑  and | ↓  be the orthonormal states of a particle of spin ½ in
interaction with a detector whose orthonormal states are |d↑  and |d↓ . If the detector begins
in the |d↓  state and “clicks,” | ↑ |d↓ → | ↑ |d↑ when the spins are in the state | ↑  but remains
unchanged otherwise.

If before the interaction the particle is in the pure state|ψS =α | ↑ + β | ↓ , the composite
system SD (system+detector) starts as |Φ i = |ψS |d↓  and the interaction results in the
evolution of |Φ i  into the correlated state |Φ c

( ) ¯ ­ ­= ­ + ¯ ® ­ + ¯ = i cd d dΦ α β α β Φ (12)

The corresponding pure state density matrix is
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As happened in the analyses performed by von Neumann and by Landau and Lifshitz, this
first stage of the detection process is a Schrödinger evolution which does not involve any
conceptual difficulty.

Now, there are two branches of the detector state in this correlated state |Φ c  , but we know
the alternatives are distinct outcomes rather than a mere superposition of states. Nevertheless,
cancelling the off-diagonal terms, which express quantum correlations, the reduced density
matrix results:
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In Zurek’s view, the key advantage of ρ r  over ρ c is that its coefficients |α | 2 and |β | 2 may be
interpreted as classical probabilities. Unitary evolution condemns every closed quantum
system to ‘purity.’ Yet if the outcomes of a measurement are to become independent, with
consequences that can be explored separately, a way must be found to dispose of the excess
of information (contained in the off-diagonal terms). This disposal can be caused by interaction
with the degrees of freedom external to the system, which we shall summarily refer to as the
‘environment’… [26]

Following the first step of the measurement process –establishment of the correlation as shown
in (12)– the environment E initially in the state |ε0, becomes correlated with SD (system
+detector):

( )e a b e
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F = ­ + ¯
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0 0
c d d

d d
(15)

with obvious notation. “This final state extends the correlation beyond the system-detector
pair. When the states of the environment corresponding to spin up and spin down states of
the detector are orthogonal, we can take the trace over the uncontrolled degrees of freedom to
get the same results as the reduced matrix.” [26] The density matrix that describes the detector-
system combination obtained by ignoring (tracing over) the uncontrolled (and unmeasured)
degrees of freedom is

r e e rº F F = F F =å | |
i

r
SD E i iTr (16)

which coincides with the reduced matrix given by (14).

It has been proven that for large classical objects decoherence would be virtually instantaneous
because of the high probability of interaction of such systems with some environmental
quantum. A quantitative model due to Zurek [26] illustrates the gradual cancellation of the
off-diagonal elements with decoherence over time.

Our comments: If we want to describe processes ruled by the Schrödinger equation, disposing
of terms which give an account for something that is happening is not a good idea. When SD
is coupled to the environment E, the Schrödinger evolution leads the total system SDE to the
pure state|Φ , it does not lead the SD system to the mixtureρ r . In addition, the mixture ρr is unique
and completely different from the SD pure states |ψ↑ = | ↑ |d↑  and |ψ↓ = | ↓ |d↓  which are,
according to the Projection Postulate, the only two possible final states of SD. So, in our view
decoherence does not provide a solution to the measurement problem. In [28] we have
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advanced similar arguments to object the contributions of Griffith, Gell-mann, Hartle and
Omnès.

Other authors have criticized the solution to the measurement problem which involves
decoherence. In particular, in [29] it is asserted that to obtain ρ r  “… an appeal has been made
that goes beyond the ordinary Schrödinger equation, to a prior split of [the total] physical
system into microscopic system S, detector D and environment E. But no rules have ever been
given for making such a split, and certainly a physical system does not come with a subsystem
containing a little sign reading, ‘I am the environment: Trace over me.’ Without such rules one
cannot, in the general case, apply the environment-trace prescription…” And in [17] F. Laloë
points out: “Indeed, in common life as well as in laboratories, one never observes superposition
of results; we observe that Nature seems to operate in such a way that a single result always
emerges from a single experiment; this will never be explained by the Schrödinger equation,
since all that it can do is to endlessly extend its ramifications into the environment, without
ever selecting one of them only."

7.6. Complementing Schrödinger dynamics

In order to find a solution to the measurement problem keeping as valid the individual
interpretation of the state vector, other theories close to, but different from, quantum mechan‐
ics have been proposed. In these theories, the Schrödinger equation is complemented in a way
that leads to spontaneous collapses. This is the case of those developed by D. Bohm [30-31], G.
Ghiradi, A. Rimini and T. Weber [32], L. Diosi [33], and E. Joos and H. D. Zeh [34]. Ballentine
[35] has demonstrated that these theories violate energy conservation and are incompatible
with the existence of stationary states. Let us summarize two of these contributions and
reproduce some additional comments on them.

i. In the theory of measurement proposed by Bohm [27-28] the state function |ψ  refers
to an ensemble and every particle of the ensemble has a position x, which is a hidden
variable. In addition to the usual potential V(x), a quantum potential U(x) is intro‐
duced. This allows Bohm to explain in an elegant way the double-slit experiment. In
the EPR experiment disturbances from one particle to the other are transmitted
instantaneously by the potential U(x).

ii. In CSL (Continuous Spontaneous Localization) theory [32], particles can undergo
spontaneous wave-function collapses. For individual particles, these collapses
happen probabilistically and will occur at a given rate with high probability but not
with certainty; groups of particles behave in a statistically regular way, however.
Since experimental physics has not already detected an unexpected spontaneous
collapse, it can be argued that CSL collapses happen extremely rarely. The authors
suggest that the rate of spontaneous collapse for an individual particle is of the order
of once every hundred million years.

In two interesting comments F. Laloë [17] emphasizes that in those theories which modify the
Schrödinger equation (i) “new constants appear which may in a sense look like ad hoc
constants, but actually have an important conceptual role: They define the limit between the
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microscopic and macroscopic world (or between reversible and irreversible evolution); the
corresponding border is no longer ill-defined, as opposed to the situation, for instance, in the
Copenhagen Interpretation.” And (ii) “in the initial Bohm-Bub theory, a complete collapse of
the wave function is never obtained in any finite time. The same feature actually exists in CSL:
There is always what is called a ‘tail’ and even when most of the wave function goes to the component
corresponding to one single outcome of an experiment, there always remains a tiny component on the
others (extremely small and continuously going down in size).” [17, emphases added]

8. Measurement processes versus spontaneous processes

In “Against ‘measurement’,” J. Bell complains about quantum mechanics formulations in the
following terms [1]: “Surely, after 62 years, we should have an exact formulation of some
serious part of quantum mechanics? By ‘exact’ I do not of course mean ‘exactly true’. I mean
only that the theory should be fully formulated in mathematical terms, with nothing left to the
discretion of the theoretical physicist… until workable approximations are needed in appli‐
cations. By ‘serious’ I mean that some substantial fragment of physics should be covered.
Nonrelativistic ‘particle’ quantum mechanics, perhaps with the inclusion of the electromag‐
netic field and a cut-off interaction, is serious enough. For it covers ‘a large part of physics and
the whole of chemistry’; see [36]. I mean too, by ‘serious’, that ‘apparatus’ should not be
separated off from the rest of the world into black boxes, as if it were not made of atoms and
not ruled by quantum mechanics.”

In the following table the most significant differences between measurement processes and
spontaneous processes are reported.

Spontaneous processes Measurement processes

The observer plays no role The observer plays a paramount role

The state vector |ψ(t)  is necessarily continuous In general the state vector |ψ(t)  is projected

The superposition principle is valid: there is interference Superposition breaks down: interference is lost

The process is ruled by deterministic laws The process is ruled by probability laws

Every action is localized There is a kind of action-at-a-distance

Conservation laws are strictly valid They have only a statistical sense

The mere comparison of the characteristics of both kinds of processes facilitates the under‐
standing of why so many scientists are disappointed with quantum mechanics formalism.

At this stage it seems superfluous to comment on the first three lines of the previous table.
Concerning determinism (fourth line of the table), let us recall that during the Fifth Solvay
Congress, i.e. less than a century ago, H. Lorentz expressed his dissatisfaction with the rejection
of determinism in atomic physic. Nowadays the notion of indeterminism is normally accepted,
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cations. By ‘serious’ I mean that some substantial fragment of physics should be covered.
Nonrelativistic ‘particle’ quantum mechanics, perhaps with the inclusion of the electromag‐
netic field and a cut-off interaction, is serious enough. For it covers ‘a large part of physics and
the whole of chemistry’; see [36]. I mean too, by ‘serious’, that ‘apparatus’ should not be
separated off from the rest of the world into black boxes, as if it were not made of atoms and
not ruled by quantum mechanics.”

In the following table the most significant differences between measurement processes and
spontaneous processes are reported.

Spontaneous processes Measurement processes

The observer plays no role The observer plays a paramount role

The state vector |ψ(t)  is necessarily continuous In general the state vector |ψ(t)  is projected

The superposition principle is valid: there is interference Superposition breaks down: interference is lost

The process is ruled by deterministic laws The process is ruled by probability laws

Every action is localized There is a kind of action-at-a-distance

Conservation laws are strictly valid They have only a statistical sense

The mere comparison of the characteristics of both kinds of processes facilitates the under‐
standing of why so many scientists are disappointed with quantum mechanics formalism.

At this stage it seems superfluous to comment on the first three lines of the previous table.
Concerning determinism (fourth line of the table), let us recall that during the Fifth Solvay
Congress, i.e. less than a century ago, H. Lorentz expressed his dissatisfaction with the rejection
of determinism in atomic physic. Nowadays the notion of indeterminism is normally accepted,
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despite many scientists’ aspirations for a version of quantum theory based on deterministic
laws, and the “Old One” not playing at dice.

Something similar happened with the idea of action-at-a-distance (fifth line of the table)
pointed out by Einstein in the Fifth Solvay Congress. First this notion was rejected by the
majority of scientists. Then, in 1964 J. Bell proved a theorem stating that a local hidden variable
theory cannot reproduce all statistical predictions of quantum mechanics [37]: More precisely,
he showed that in the framework of any deterministic and local theory the correlations between
some properties of two particles should satisfy an inequality (Bell’s inequality) and that this
inequality could be violated if the two particles were in an entangled state like that given by
(8). In the following years many experiments yielded results which are compatible with the
predictions of quantum mechanics and violate Bell’s inequality. [38-41]

Now the door was opened to explore an even more strange and fascinating phenomenon:
quantum teleportation. [44] This is a process by which quantum information (e.g. the exact
state of an atom or photon) can be transmitted from one location to another, with the help of
classical communication and previously shared quantum entanglement between the sending
and receiving location. Because it depends on classical communication, which cannot proceed
faster than the speed of light, it cannot be used for superluminal transport or communication.
The seminal paper first expounding the idea was published in 1993. Since then, quantum
teleportation has been realized in various physical systems. At present the record distance for
quantum teleportation is 143 km (89 mi) with photons, and 21 m with material systems. In
August 2013, the achievement of “fully deterministic” quantum teleportation, using a hybrid
technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring
data by quantum teleportation. Quantum teleportation of data had been done earlier but with
highly unreliable methods. The important point in what concerns the measurement problem
is that, thanks to these astonishing results, the idea that projections imply a peculiar action-at-
a-distance is nowadays frequently accepted.

On the last line of the previous table one reads: Conservation laws are strictly valid in
spontaneous processes and have only a statistical sense in measurement processes. We have
dealt with this subject a few years ago, but surely our results are not known by everybody. So
in the next section we shall reproduce the essential of the paper where this problem is
discussed; see [45]

9. Validity of conservation laws in spontaneous processes and in
measurement processes

In the framework of OQM, in general, physical quantities are not sharp. “A popular working
rule of pragmatic quantum mechanics says that a physical quantity has no value before a
measurement.” [46] Now, if the operator AS represents the physical quantity AS referred to the
individual system S, when the system state is |ΦS  the mean value of AS can be defined as
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= F FS S S SA A (17)

see for instance [7]. Hence, even if the physical quantity AS has in general no value, it has a
mean value AS  which is perfectly sharp.

A necessary condition for the physical quantity AS to be conserved is that AS  be a constant.
If HS is the Hamiltonian of S, the validity of conditions

¶ ¶ =/ 0SA t (18)

and

é ùë =û, 0S SA H (19)

ensure that in those processes that are governed by the Schrödinger equation AS  remains a
constant in time for every state|ΦS . As a consequence, according to OQM there is no
inconvenience in saying that if conditions (18) and (19) are fulfilled, AS is conserved in
spontaneous processes.

We shall now address the problem of the validity of conservation laws when a measurement
of AS is performed; for simplicity we shall deal with the discrete case. Let ak (k =1, 2, ⋯ ) be an

eigenvalue of the operator AS, gk its degree of degeneracy and |ak
v (ν =1, 2, ⋯ gk ) an eigenvector

corresponding to the eigenvalue ak. We shall assume that |m0 represents the initial state of a
measuring device M of AS, and |ψk

v  the orthonormal states of S+M when the measurement
process is over. To ensure that measurements of AS can be performed according to the ideal
measurement scheme, we shall suppose that AS commutes with every operator representing
another conserved quantity referred to S+M. [47-51]

According to the ideal scheme the transition

y®0
v v
k ka m (20)

has a probability of one, hence it can be assumed that it is a result of the Schrödinger evolution.

Let A be the operator representing a physical quantity A referred to S+M, and H be its
Hamiltonian. We can then write

= + +S M intH H H H (21)
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where HM refers to M, and Hint is due to the interaction between S and M. We assume that the
conditions

¶ ¶ =/ 0A t (22)

and

é ùë û =, 0A H (23)

are fulfilled. If at t0 (when the interaction between S and M starts) it is possible to write

= +S MA A A (24)

(where AM refers to M), we have

( ) = + = +0 0 0 0 0
v v v

k kS Mk k MA t A A Aa a m m a m m (25)

And, since at tf (when the interaction between S and M is over)

( ) y y=
v v v

kk f kA t A (26)

the validity of (22) and (23) implies that A k
v(tf )= A k

v(t0), and hence

y y = + 0 0
v v
k kk MA Aa m m (27)

for every ν. As ψk
v | A|ψk

v  does not depend on ν, it can be written

( ) ( )= = + 0 0f f k
v

Mk k
A t A t Aa m m (28)

This relation must necessarily be fulfilled in the ideal measurement scheme. As a consequence,
it can be said that in those cases where the initial state of S is an eigenstate of the operator AS

representing the physical quantity AS to be measured, the corresponding conservation law of A is
valid. This result can also be seen as a natural consequence of the hypothesis that the process
described by (20) is governed by the Schrödinger equation.
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(where at least two coefficients cl
μ and cl ’

μ ’ with l ≠ l’ are non-null) and the Schrödinger equation
rules the measurement process, then the Hamiltonian H, referred to S+M, induces the evolution

m m m m

m m

y®å å
, ,

0l l l l
l l

c m ca (30)
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= F F = +å
,

2

0 0 0 0 0 0 0l
l

S S l MA t t A t c Am m a m m (31)
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y y*
æ ö æ ö
ç ÷ ç ÷=
ç ÷ ç ÷
è ø è ø
å å ´ ´

, ´, ´

´ ´l l l l
l l

fA t c A c (32)

the validity of (22) and (23) allow us to ensure that A (t0)= A (tf ) : As long as the Schrödinger

equation rules the process, the mean value of the physical quantity A, referred to the total system S+M,
remains a constant and the state of S+M continues to be the superposition which appears in (30).

But in view of the Projection Postulate such a superposition is broken down. Hence, the change
of S+M is not given by (30) and the transition

m m

m m

m my®å å
,

0l l
l

k kc ca m (33)

has probability ∑
μ

|ck
μ | 2 to happen. In this last case,

( ) = + 0 0f k Mk
A t Aa m m (34)

as stated in (28). As a consequence, it results
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( ) ( )¹ 0fk
A t A t (35)

for every k, even though conditions (22) and (23) are fulfilled.

It is worth noticing that inequalities (35) are obtained under the assumptions that the individ‐
ual interpretation of the state vector and the Projection Postulate are valid. In this case the
condition that A  be a constant, a necessary condition for A to be conserved, is not satisfied.
We are thus forced to conclude that if the initial state of S is not an eigenvector of AS, the physical
quantity A is not conserved in processes of measurement of AS. In [52-55] we give examples of
processes of measurement of the type analyzed in this section; and in [45] we deal with the
continuous case. The same result is obtained.

A similar conclusion resulting from a different analysis has been obtained by P. Pearle. [56]
He says that “it should first be noted that quantum theory itself, with the reduction postulate
indiscriminately applied, does not necessarily satisfy the conservation laws...” In his view,
“this is a serious problem for quantum theory with a reduction postulate.”

Our next step is to calculate the average of A k (tf ) when the process of measurement of AS is
repeated many times. Let fk be the frequency corresponding to the possible results ak (k =1, 2, ⋯ )

and to the mean value A k (tf ). If the process is repeated N times, the resulting average is

( )= = +å å 0 0k f k k Mk
k k

A f A t f Aa m m (36)

where (34) has been taken into account. Now, if N is big enough, we can assert that f k ≈∑
μ

| ck
μ | 2

and, in view of (31) we obtain

( )» 0A A t (37)

To sum up, in individual processes of measurement of AS the conservation law of A is in general not
valid; but this law still has a statistical sense.

10. Ad-hoc use of the projection postulate

We shall start this section with some remarks concerning the concept of probabilities. Follow‐
ing tradition, we are going to adopt the expression subjective probabilities for probabilities
related to the lack of knowledge in processes governed by deterministic laws; and objective
probabilities for probabilities where the process is not ruled by deterministic laws. Accordingly,
there is no room for objective probabilities in classical mechanics, electromagnetism and
relativity. Moreover, as in the framework of OQM every spontaneous process is ruled by the
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Schrödinger equation, which is a deterministic equation, objective probabilities have nothing
to do with these kinds of processes.

Then, we explicitly state that a system cannot be in two different states at the same time. Hence, if
the system is in the state |ψ(t0) at time t0 and the process is ruled by the Schrödinger equation,
there is no more than one possibility: at time t its state must certainly be

( ) ( ) ( )y y= 0 0,t U t t t (38)

where U (t , t0) is the evolution operator. As a consequence, if at time t0 the system is in the state
|ψ(t0)  and the process is spontaneous, the objective probability the system has of being in
|ψ(t) =U (t , t0)|ψ(t0)  at time t is P=1 and the objective probability the system has of being in
another, different state from|ψ(t) =U (t , t0)|ψ(t0) , is P=0.

There is no doubt that quantum mechanics has been extremely successful in explaining
radioactivity, electron-phonon scattering, interactions between light and matter and many
other phenomena which involve, supposedly, only spontaneous processes. So, in principle one
could expect that the analysis of these processes does not involve projections (for they play a
role just in cases measurements are performed). Nevertheless, reading quantum mechanics
textbooks one is forced to conclude the opposite; see for instance any book of the following
list: [6-10, 18, 57].

To deal with spontaneous processes involved in phenomena such as those previously men‐
tioned, in most cases time-dependent perturbation theory is necessary. In Dirac’s view, “[time-
dependent perturbation theory] must be used for solving all problems involving a
consideration of time.” [6] And W. Heitler states: “for all problems of physical interest the
application of [time-dependent] perturbation theory is beyond doubt.” [57] So let us examine
in which way this theory is needed to confront these kinds of problems. According to Dirac,
“with [time-dependent perturbation theory] one takes a stationary state of the unperturbed
system and sees how it varies with time under the influence of the perturbation.” [6] And “the
perturbation causes the state to change.” [6] We are going to analyze this point in detail.

Consider a system with Hamiltonian H0 which does not depend explicitly on time. It is
assumed that the eigenvalues equations of H0 have previously been solved. We shall denote
by εk and |φk (k =1, 2, ⋯ ) its eigenvalues and eigenvectors, respectively; for simplicity we shall
deal with the discrete non-degenerate case. Then, if at t0 a perturbation W(t) depending
explicitly on time is added to H0, the Hamiltonian of the system for t > t0 becomes

( ) ( )= +0H t H W t (39)

and the system evolves according to the Schrödinger equation
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( ) ( ) ( )y yé ùë û= +h 0/d t dt H W t ti (40)

“The solution |ψ(t)  of this first-order differential equation which corresponds to the initial
condition |ψ(t0) = |φi  is unique.” [9] Then it is said that at time tf the probability Pif (tf ) of
finding the system in another eigenstate |φf  of H0 is

( ) ( )j y=
2

if f f ft tP (41)

Taking into account what has been previously said, we shall write|ψ(tf ) =U (tf , t0)|ψ(t0) .
Now, to find a system which at tf certainly is in the state |ψ(tf ) =U (tf , t0)|ψ(t0)  in another,
different state like |φf  is a task impossible to achieve. By contrast, to find such a system
immediately after tf in |φf  is a task possible to achieve but it requires a measurement to be
performed at time tf. And which one should be the physical quantity to be measured? The
answer is not obvious for, in particular, if this physical quantity were the energy, the system
should not be projected to|φf , an eigenstate of the operator H0 which does not represent the
energy of the system at timet > t0. This last remark, however, does not apply in cases where
W(t) is a perturbing interaction limited in time and it can be considered that W(tf)=0. [8]

But let us come back to the declared aim of time-dependent perturbation theory. Conspicuous
authors make statements such as “Our objective is to calculate transition amplitudes between
the relevant unperturbed eigenstates, owing to the presence of the perturbation…” [8]; “we
want to study the transitions which can be induced by the perturbation…” [9]; “the transition
probability between the initial state |φi  and the final state |φf  [is] induced by the perturba‐
tion…” [10] As the perturbation W(t) modifies the Hamiltonian, it is evident that the state
|ψ(tf ) =U (tf , t0)|ψ(t0)  resulting when W(t) is applied will be different from the state |ψ(tf )
resulting when W(t) is absent. But perturbations do not induce transitions. In this sense Messiah
is very clear. Referring to the objective of time-dependent perturbation theory, he asserts:
“Supposons qu’à l’instant initial t0, le système se trouve dans l’un des états propres de H0, l’état a par
exemple. Nous nous proposons de calculer la probabilité de le trouver à l’instant t dans un autre état
propre de H0, l’état b par exemple, dans l’éventualité d’une mesure à cet instant” [7]; we emphasize:
dans l’éventualité d’une mesure à cet instant. On the contrary, other authors seem to have forgotten
that in the framework of OQM measurements are absolutely necessary in order to obtain the
transition probabilityPif (tf ).

11. Who is afraid of the projection postulate?

C. M. Caves asserts [58]: “Mention collapse of the wave function and you are likely to encounter
vague uneasiness or, in extreme cases, real discomfort. This uneasiness can usually be traced
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to a feeling that a wave-function collapse lies ‘outside’ quantum mechanics. The real quantum
mechanics is said to be the unitary Schrödinger evolution; wave-function collapse is regarded
as an ugly duckling of questionable status, dragged in to interrupt the beautiful flow of
Schrödinger evolution.”

Projections are disliked for many reasons; one of them is that they imply discontinuities. But
is there a way of give an account for processes of emission and absorption of light without
invoking discontinuities? We think there is not, as shown in the following.

To start with, let us face this question in an intuitive and nearly classic way. Consider the
absorption of one photon by one atom. We shall assume that (i) initially the atom and the
photon exist as separated things; (ii) the photon can only travel with a speed c and has an
energy ℏω at each instant; and (iii) the energy of the system atom+photon is conserved in the
process of absorption. Note that the photon cannot be absorbed through a swift, not instanta‐
neous change: either it is, travels with speed c and carries the energy ℏω or it is not. This implies that
the photon must be absorbed by the atom at once and that the energy of the atom must be increased in
an instantaneous way. [59] In more elaborated treatments of the subject, probabilities of
projections and hence, indirectly, state function discontinuities are mentioned frequently. For
instance, in the classical textbook of Heitler one reads: “|c⋯nλ

(t)| 2is the probability for finding
n1 photons of type 1, nλ photons of type λ, etc.”; “The probability for finding the system at time
t in the state n when it was in state 0 at t=0 is thus…”; ”We now calculate the probabilities
|bn(t)| 2 for finding the system in a state n at the time t.” [57, emphases added]

On his side, Jammer points out a serious problem which becomes apparent when the notion
of projections is rejected: “As long as a quantum mechanical one-body or many-body system
does not interact with macroscopic objects, as long as its motion is described by the determin‐
istic Schrödinger time-dependent equation, no events could be considered to take place in the
system. Even such elementary process as the scattering of a particle in a definite direction could
not be assumed to occur (since this would require a ‘reduction of the wave packet’ without an
interaction with a macroscopic body). In other words, if the whole physical universe were
composed only of microphysical entities, as it should be according to the atomic theory, it
would be a universe of evolving potentialities (time-dependentψ-functions) but not of real
events.” [2]

A few authors have considered the possibility that projections may happen at the microscopic
level. One of them is H. Primas, for whom “the reality of the breakdown of the superposition
principle of traditional quantum mechanics on the molecular level is dramatically demon‐
strated by the terrible Contergan tragedy which caused many severe birth defects.” [46] And
Bell complains: “during ‘measurement’ the linear Schrödinger evolution is suspended and an
ill-defined ‘wave-function collapse takes over. There is nothing in the mathematics to tell what
is ‘system’ and what is ‘apparatus’ nothing to tell which natural processes have the special
status of ‘measurements’. Discretion and good taste, born from experience, allow us to use
quantum theory with marvelous success, despite the ambiguity of the concepts named above
in quotation marks.” [60] In [28] we have given an answer to the question “which natural
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processes have the special status of measurements?” In the next section we shall summarize
the most important points of our approach.

12. The spontaneous projections approach

In the Spontaneous Projection Approach (SPA) it is assumed that two kinds of processes,
irreducible to one another, occur in nature: (i) the strictly continuous and causal ones, which
are governed by the Schrödinger equation and (ii) those implying discontinuities, which are
ruled by probability laws. A postulate ensuring the statistical sense of conservation laws is
adopted. Taking into account this postulate the concept of preferential states is introduced. If
the system does not have preferential states, the Schrödinger evolution follows. By contrast, if
the system has preferential states projections may happen. Spontaneous and measurement
processes are treated on the same footing.

SPA is compatible with epistemological realism: we assume that the world exists independ‐
ently of the knowing subject and that it is possible to know it, at least in a partial way. So our
discourse will be about what happens, not about what is measured or observed. (This does
not mean, obviously, that it has to be right; it could happen that it be completely wrong.) We
share Bunge’s assertion [19]: “the question of reality has nothing to do with scientific problems
such as whether all properties have sharp values and whether all behavior is causal.” And, as
we have already said, we would add to the list of scientific problems which have nothing to
do with the question of reality the issue of action-at-a-distance and the validity of conservation
laws in individual processes.

The primitive (undefined) notions of SPA are: system, physical quantity, state system and
probability; the term probability will be used as a synonym of objective probability; see Section
10. Nevertheless, we have taken into account Bell’s remark [1]: “The concepts ‘system’,
‘apparatus’ ‘environment’ immediately imply an artificial division of the world, and an
intention to neglect, or take only schematic account of, the interaction across the split.” We do
not make such an artificial division for apparatus and environment are absent of SPA postulates.
And systems mean either objects or collections of objects.

The two first postulates of SPA coincide with those of OQM. They state:

Postulate I: To every system corresponds a Hilbert space H whose vectors (state vectors, wave
functions) completely describe the state of the system.

Postulate II: To every physical quantity A corresponds uniquely a self-adjoint operator A acting
in H. It has associated the eigenvalue equations

=v v
j jjA a a a (42)

(ν is introduced in order to distinguish between the different eigenvectors that may correspond
to one eigenvalue aj), and the closure relation
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n

=å
,j

v v
j ja a I (43)

is fulfilled (here I is the identity operator). If j or ν is continuous, the respective sum has to be
replaced by an integral.

Postulate III: If the conditions

¶ ¶ =/ 0A t (44)

and

é ùë û =,  0H A (45)

are fulfilled (here H is the Hamiltonian of the system), and there is a generic orthonormal set
{|uk }(k =1, 2, ⋯ ) such that the normalized state |Φ  of the system can be written

j =å k k
k

c u (46)

the validity of

F F =å 2
k k k

k
A c u A u (47)

is a necessary condition for projections of the state|Φ , given by (46), to the vectors of the set
{|uk } to happen, i.e. for jumps like|Φ → |u1 , or |Φ → |u2  etc., to occur.

Comments: (i) By definition, A is a constant of the motion if it satisfies conditions (44) and (45).
(ii) Postulate III ensures the statistical sense of the conservation of the physical quantity A. [28]

Hypothesis: A system in the state |Φ  has tendency to jump to the eigenstates of its constants of the
motion.

Comments: (iii) This tendency should not become actualized if the projections it induces results
in a violation of Postulate III or lead the state vector outside the Hilbert space. (iv) Taking into
account this Hypothesis and Postulate III, the concept of preferential states is introduced; see
[28, 61]. For simplicity, instead of dealing with the general case, here we shall refer to the
following one: Let H, A and B be three operators representing respectively the energy, the
physical quantity A and the physical quantity B of the system. It will be assumed that they
have discrete spectra and satisfy (44), and that {H , A, B} is the unique complete set of compatible
operators of the system. The vectors of its common basis will be denoted by| Ep, aq, br , where
Ep, aq and br are respectively the eigenvalues of H, A and B. (v) On the one hand, taking into
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account the previous hypothesis, we can say that the system’s state |Φ has tendency to be
projected to the eigenvectors of H, to the eigenvectors of A and to the eigenvectors of B. On
the other hand, as the relations

F F = å
, ,

2

, , , , , ,
p q r

p q r p q r p q rH c HE a b E a b (48)

F F = å
2

, ,
, ,

, , , ,p q r p q r p q r
p q r

A c AE a b E a b (49)

and

F F = å
2

, ,
, ,

, , , ,p q r p q r p q r
p q r

B c BE a b E a b (50)

are satisfied for the state|Φ = ∑
p,q,r

cp,q,r | Ep, aq, br , Postulate III does not prohibit projections like

|Φ → | Ep, aq, br . Then we state:

Definition: The preferential states of the system are the common eigenstates of H, A and B.

Comment: (vi) The previous definition is valid in cases restrictions established in Comment (iii)
are fulfilled; in this particular case the preferential states do not depend on|Φ . Cases where
A, B ≠0 or where the spectrum of H is partially continuous, have been analyzed in [28, 61].

In these last cases the preferential states depend on|Φ . (vii) As we have assumed that
{H , A, B} is the unique complete set of compatible operators of the system, the set of prefer‐
ential states {| Ep, aq, br } is necessarily unique. The condition of uniqueness of the set of preferential
states remains valid in the general case. [28, 61]

Postulate IV: The system’s state |Φ  can be projected to the state |uj  if and only if |uj  is a
preferential state. If the system in the state |Φ  does not have preferential states, the Schrödinger
evolution must follow.

Postulate V: Let |uk (k =1, 2, ⋯ ) be the preferential states of the system in the state

( ) ( ) ( )F =å k k
k

t c t u t (51)

whereck (t)= uk (t)|Φ(t) . In the small interval (t , t + dt) the system’s state can undergo the
following changes:
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( ) ( ) ( )F ® F + = jt t dt u t (52)

with probability d Pj(t)= | cj(t)| 2(dt / τ) ; or

( ) ( ) ( ) ( )F ® F + = + F,Scht t dt U t dt t t (53)

with probabilityd PSch (t)=1–dt / τ, where U (t + dt , t) is the evolution operator,

tD = h / 2H (54)

and

( ) ( ) ( ) ( )D = F F F F2 2( ) –H t H t t H t (55)

Comments: (viii) The change given by (53) is a Schrödinger evolution and those given by (52)
are projections to the preferential states of the system in the state |Φ(t)  (ix) Since preferential
states are members of an orthonormal set of vectors, a system’s state projected to a preferential
state remains there evolving in agreement with the Schrödinger equation. (x) The state
|ΦSch (t)  may be considered as un unstable state that can decay to one of the preferential states
|uj(t) , the relaxation time being τ. Calling PSch (t) to the probability that the system’s state has
not been projected to any preferential state in the interval (0, t) the well-known exponential
decay law is obtained; see [28, 61].

13. The ideal measurement scheme in the framework of SPA

Let us start this section with the question: “what can be observed?” In his answer Bell quotes
Einstein saying “it is theory which decides what is ‘observable’.” He adds: “I think he was
right – ‘observation’ is a complicated and theory-laden business.” [1] We agree with these
assertions.

Consider, for instance, the determination of the energy levels of the Hg atom in the Franck-
Hertz experiment, where a curve of electrical current versus the applied voltage is obtained;
this curve presents peaks of the current at regular intervals of voltage. [62] Relating the values
of the voltage where the peaks are located to the first excited energy level of the atom requires
a quite elaborate theory of what is happening inside the tube. But once the way the device
works has been understood, the Franck-Hertz experiment provides a direct measurement of
the energy difference between the quantum states of the atom: it appears on the dial of a
voltmeter! It is worth stressing that no entanglement is invoked in the analysis of this experi‐
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ment and the same is true of many others related, e.g., to blackbody radiation, photoelectric
effect and Compton shift. By contrast, in the ideal measurement scheme entanglements are un‐
avoidable. This is for instance the case of the system photon meeting the device tourmaline crystal
mentioned by Dirac; see Section 7.1.

In the following we shall address the conceptual problem of the ideal measurement scheme in
the framework of SPA. We are going to analyze the measurement of the physical quantity
AS pertaining to the system S; for simplicity we shall deal with the discrete non-degenerate
case. Let ak (k =1, 2, ⋯ N ) be an eigenvalue of the operator AS representing AS and |ak  the
corresponding eigenvector. The operator AS acts in the Hilbert space HS of S and its extension
A= AS ⊗ IM  (here IM is the identity operator in the Hilbert space HM of M) acts in the Hilbert
space HS +M  of S+M. The Hamiltonian of the total system S+M will be denoted by H, the operator
B will represent a physical quantity B referred to S+M, the initial state of the measuring device
M of AS will be denoted by|m0 , and the state of the total system S+M at time t by|Φ(t) .

In a first step we shall suppose that at t0, when the interaction between S and M starts, the state
of S is |ak  and that of S+M is

( )F =0 0k kt a m (56)

It is easily verified that the state |Φk (t0)  is an eigenstate of A corresponding to the non-
degenerate eigenvalue ak. In addition, if [A, B]=0 and H, A, and B are constants of the motion,
the state |Φk (t0)  will be a common eigenstate of these three operators. Hence, if {H , A, B} is
the unique complete set of compatible operators of the system, according to SPA the state
|Φk (t0)  will be a preferential state of the system S+M. As we have already pointed out, it must
remain evolving in agreement with the Schrödinger equation (see previous section). So at time
t the state of S+M will be

( ) ( ) ( ) ( )F = F = F0 0,k kt t U t t t (57)

as it happens in the traditional treatment of the ideal measurement scheme.

Note that if H, A, and B are constants of the motion but A, B ≠0, the operators A and B do not
have a common basis. In this case it has been shown that collapses to the basis of the eigen‐
vectors common to H and A violate the statistical sense of the conservation of B, hence Postulate
III of SPA prevents these projections; in the same way it is concluded that collapses to the
eigenvectors common to H and B are forbidden [28]: as stated in the traditional treatment, for
the ideal measurement scheme to be valid, the measured physical quantity must be compatible
with every conserved quantity referred to S+M.
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Now we shall consider the case where the initial state of S is∑
k=1

N
ck |ak . The initial state of S+M

will be

( ) ( )
= =

F = = Få å0 0 0
1 1

N N

k k k k
k k

t c c ta m (58)

Postulate V of SPA tells us that at t > t0 the state of S+M can be

one of its N preferential states|Φk (t) , in case in the interval (t0, t) the state of S+M has been
projected; or
|ΦSch (t) =  U (t , t0)|Φ(t0) , in case in the interval (t0, t) the state of S+M has not been project‐
ed and hence its behavior has been ruled by the Schrödinger equation.

Which one of these (N+1) states will result at time t cannot be predicted, but each one of them
has an associated probability given by Postulate V. In caset ≫τ, the relaxation time given by
(54), the probability the system has to remain in the state |ΦSch (t)  goes to zero and all we can
“observe” is the result corresponding to one of the preferential states onto which the system
can decay.

14. Conclusions

OQM formalism includes two different laws: a strictly continuous and causal Schrödinger
evolution which governs spontaneous processes and the Projection Postulate, a rule implying
discontinuities and changes of the state vector in agreement with probability laws. On the one
hand, the inclusion in the formalism of two laws irreducible to one another has been a source
of dissatisfaction from quantum mechanics birth. On the other hand, OQM (which includes
the Projection Postulate) has been extremely successful in the area of experimental predictions;
and even if the Projection Postulate should be applied only in cases where measurements are performed,
in the present work we have shown that it is also used ad-hoc, when needed to explain processes which
supposedly are spontaneous.

Some authors have suggested that measurement processes could be a particular kind of natural
processes. But, then, we confront the problem pointed out by Bell [60]: there is nothing in OQM
formalism to tell which natural processes have the special status of measurements, i.e. to decide
whether one or the other law rules the process.

Looking for a solution to this problem, we have proposed a Spontaneous Projection Approach
(SPA) to quantum mechanics, a theory where spontaneous and measurement processes are treated
on the same footing and the behavior of macroscopic and microscopic objects are ruled by the
same laws. The first step to achieve this objective is to admit that projections can occur sponta‐
neously in nature, even in closed systems, without being acted by any external perturbation. But, then,
the theory must say in which situations and to which vectors the state vector can collapse, and
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which are the corresponding probabilities. These goals have been achieved in the framework
of SPA.

It is worth stressing that our approach does not modify OQM in a substantial way: it does not
change the Schrödinger equation and it recovers a version of Born postulate where no reference
to measurements is made. So, in general its predictions coincide with those of OQM.

Concerning the treatment of the ideal measurement scheme in the framework of SPA, we are
aware of its limitations derived, among other reasons, from the hypotheses introduced “for
simplicity.” For instance, we have considered that there are only three relevant physical
quantities referred to the total system (which includes the measuring apparatus), that the
operators which represent them are constants of the motion, and that the physical quantity to
be measured is represented by an operator having discrete non-degenerate spectrum. Our
treatment, however, has the merit of predicting results which completely agree with those
obtained in the framework of OQM, without having recourse to the observer consciousness,
to the macroscopic character of the measurement device, or to interactions with the environ‐
ment producing decoherence, something that in the long term looks and smells like a collapse.
We should also stress that in other theories such us that due to Ghirardi, Rimini and Weber,
even when most of the wave function goes to the component corresponding to one single
outcome of an experiment, there always remains a ‘tail’, i.e. a tiny component of the system’s
state on the others. By contrast, in SPA the system’s state either evolves according to the
Schrödinger equation, or is at once entirely projected into one of its preferential states.

To end this chapter let us highlight the most important differences between SPA and OQM:

i. SPA is compatible with epistemological realism.

ii. In SPA projections occurring in spontaneous processes such as those involved in
radioactivity, interactions between light and matter, etc., are not surreptitiously but
explicitly included. In this sense it could be said that SPA enjoys of a coherence which
is absent from OQM.

iii. Differing from OQM, SPA yields an expression for the probability of transitions to
the continuum which is valid for every time and, except for some minimal restrictions,
for every added potential. We have pointed out in [61] that these predictions could
be experimentally tested.

Theories which include only deterministic laws in their formalism can give an account for
nothing but “automatic changes.” On the contrary, by including probabilistic laws in its
formalism, SPA opens the door to novelty.
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The Computational Unified Field Theory (CUFT) –
Revising Quantum & Relativistic Models
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Additional information is available at the end of the chapter
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1. Introduction

1.1. The Computational Unified Field Theory (CUFT)

Over the past three years, a new hypothetical ‘Computational Unified Field Theory’ (CUFT)
has been discovered which sets to unify between Quantum Mechanics and Relativity Theory
(e.g., whose current theoretical contradiction is considered to be most likely the greatest
unresolved enigma in modern Science). Indeed, several previous articles have demonstrated
that this new hypothetical CUFT is capable of resolving the principle quantum-relativistic
theoretical inconsistencies, replicating all of their key empirical phenomena, and was able to
identify (three) “differential-critical” predictions differentiating it from both quantum and
relativistic models of physical reality; Indeed, before proceeding to describe a (recent)
empirical validation of one of these three CUFT ‘differential-critical’ predictions it may be
helpful to delineate the key theoretical postulates underlying the CUFT as well as its associated
“’Cinematic-Film Metaphor”;

1.1.1. The ‘Duality Principle’

The first theoretical postulate underlying the CUFT is the computational ‘Duality Principle’
[4] which identified a basic “computational flaw” associated with both Quantum and Rela‐
tivistic computational systems; The Duality Principle demonstrates that both quantum and
relativistic computational systems comprise a ‘Self-Referential Ontological Computational
System’ (SROCS) which assumes that it is possible to determine the value of any given ‘y’ (e.g.,
subatomic ‘target’ or relativistic ‘space-time’ or ‘energy-mass’ entity) strictly based on its direct
(or indirect) physical interaction with another (exhaustive) ‘x’ factor/s (e.g., subatomic ‘probe’
or relativistic observer). It proves that such SROCS computational structure inevitably leads
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to both “logical inconsistency” and “computational indeterminacy” which are contradicted by
robust empirical evidence indicating the capacity of both quantum and relativistic to determine
the particular value of any given subatomic ‘target’ element or relativistic ‘space-time’ or
‘energy-mass’ phenomenon. Hence, the ‘Duality Principle’ negates the assumed SROCS
computational structure underlying both quantum and relativistic computational systems,
instead pointing at the existence of a (singular) higher-ordered ‘Universal Computational
Principle’ (UCP) which computes the “simultaneous co-occurrence” of all exhaustive subato‐
mic ‘probe-target’ or relativistic ‘observer- (space-time or energy-mass) phenomenon’ physical
interactions (at any given point in time).

Indeed, the identification of such a singular ‘Universal Computational Principle’ (UCP)
responsible for the computation of all quantum and relativistic (exhaustive) physical interac‐
tions which is also postulated to possess three ‘Computational Dimensions’ constitutes the
second theoretical postulate of the CUFT; In order to perhaps better sense these three
‘Computational Dimensions’ of the UCP let us examine a closely related “Cinematic-Film
Metaphor” which may be used to explain these three ‘Computational Dimensions’ (as well as
some other features and aspects of the CUFT):

Imagine yourself sitting in a cinema film presentation (e.g., seeing a film for the first time –
unaware of the ‘mechanics’ of a film being presented to you)... In this case you could measure
(for instance) the “velocity” (or energy) of a jet-plane zooming through the screen, the “time”
it took this jet-plane to get from point ‘A’ to point ’B’ (on the screen), the “spatial” length of
the plane etc. – being unaware that (in truth) all of these ‘spatial’, ‘temporal’, ‘energy’ (and
‘mass’) “physical” features are produced based on the ‘higher-ordered’ computation of the
degree of “displacement” or “lack of displacement” occurring across the series of cinematic-
film frames!? Thus, for instance, the plane’s “energy” (or velocity) is computed based on the
number of ‘pixels’ that plane has been displaced across a given series of frames... Conversely,
the plane’s “spatial” measure is give based on the computation of the number of ‘spatial pixels’
that remain constant across a series of cinematic film frames (e.g., resulting in the fact that the
plane’s length doesn’t “increase” or “decrease” across these frames)... Likewise, the “tempo‐
ral” length of the plane’s flight is computed based on the number of changes that occur in- or
around- the plane (across a given number of film frames): imagine for instance what would
happen to that plane’s flight temporal value if the frames were projected more slowly (e.g., in
“slow-motion” where there is a smaller number of changes taking place in the plane’s flight,
giving rise to a “dilated time” measure) or in a case in which precisely the same frame was
presented over and over again for say one minute – time would “stand-still”... Similarly, we
can devise a special ‘cinematic-film’ operation in which any given object is projected at “below-
threshold” intensity at any given single frame such that only the presentation of the same object
(in the same spatial configuration) across multiple number of frames may produce a visible
object and that its apparent “mass” value will be computed as a function of the number of
frames in which that object appeared ‘spatially-consistent’... So, we can see that at least in the
“cinematic-film metaphor”, ‘energy’, ‘space’; ‘time’ or ‘mass’ – are all produced as secondary
computational measures being computed by a higher-ordered (singular) computation relating
to the degree of ‘changes’- or ‘lack of changes’- of a given object across the frame, or as
measured in the object itself (across a given series of cinematic film-frames)...

Selected Topics in Applications of Quantum Mechanics176



to both “logical inconsistency” and “computational indeterminacy” which are contradicted by
robust empirical evidence indicating the capacity of both quantum and relativistic to determine
the particular value of any given subatomic ‘target’ element or relativistic ‘space-time’ or
‘energy-mass’ phenomenon. Hence, the ‘Duality Principle’ negates the assumed SROCS
computational structure underlying both quantum and relativistic computational systems,
instead pointing at the existence of a (singular) higher-ordered ‘Universal Computational
Principle’ (UCP) which computes the “simultaneous co-occurrence” of all exhaustive subato‐
mic ‘probe-target’ or relativistic ‘observer- (space-time or energy-mass) phenomenon’ physical
interactions (at any given point in time).

Indeed, the identification of such a singular ‘Universal Computational Principle’ (UCP)
responsible for the computation of all quantum and relativistic (exhaustive) physical interac‐
tions which is also postulated to possess three ‘Computational Dimensions’ constitutes the
second theoretical postulate of the CUFT; In order to perhaps better sense these three
‘Computational Dimensions’ of the UCP let us examine a closely related “Cinematic-Film
Metaphor” which may be used to explain these three ‘Computational Dimensions’ (as well as
some other features and aspects of the CUFT):

Imagine yourself sitting in a cinema film presentation (e.g., seeing a film for the first time –
unaware of the ‘mechanics’ of a film being presented to you)... In this case you could measure
(for instance) the “velocity” (or energy) of a jet-plane zooming through the screen, the “time”
it took this jet-plane to get from point ‘A’ to point ’B’ (on the screen), the “spatial” length of
the plane etc. – being unaware that (in truth) all of these ‘spatial’, ‘temporal’, ‘energy’ (and
‘mass’) “physical” features are produced based on the ‘higher-ordered’ computation of the
degree of “displacement” or “lack of displacement” occurring across the series of cinematic-
film frames!? Thus, for instance, the plane’s “energy” (or velocity) is computed based on the
number of ‘pixels’ that plane has been displaced across a given series of frames... Conversely,
the plane’s “spatial” measure is give based on the computation of the number of ‘spatial pixels’
that remain constant across a series of cinematic film frames (e.g., resulting in the fact that the
plane’s length doesn’t “increase” or “decrease” across these frames)... Likewise, the “tempo‐
ral” length of the plane’s flight is computed based on the number of changes that occur in- or
around- the plane (across a given number of film frames): imagine for instance what would
happen to that plane’s flight temporal value if the frames were projected more slowly (e.g., in
“slow-motion” where there is a smaller number of changes taking place in the plane’s flight,
giving rise to a “dilated time” measure) or in a case in which precisely the same frame was
presented over and over again for say one minute – time would “stand-still”... Similarly, we
can devise a special ‘cinematic-film’ operation in which any given object is projected at “below-
threshold” intensity at any given single frame such that only the presentation of the same object
(in the same spatial configuration) across multiple number of frames may produce a visible
object and that its apparent “mass” value will be computed as a function of the number of
frames in which that object appeared ‘spatially-consistent’... So, we can see that at least in the
“cinematic-film metaphor”, ‘energy’, ‘space’; ‘time’ or ‘mass’ – are all produced as secondary
computational measures being computed by a higher-ordered (singular) computation relating
to the degree of ‘changes’- or ‘lack of changes’- of a given object across the frame, or as
measured in the object itself (across a given series of cinematic film-frames)...

Selected Topics in Applications of Quantum Mechanics176

Quite similarly, the CUFT posits that the four basic physical features of ‘space’, ‘time’, ‘energy’
and ‘mass’ are produced through the computation of a singular (higher-ordered) ‘Universal
Computational Principle’ (represented by the Hebrew letter “yud”) – of the degree of ‘consis‐
tency’ or ‘inconsistency’ across a series of extremely rapid (c2/h) ‘Universal Simultaneous
Computational Frames’ (USCF’s): According to the CUFT, this Universal Computational
Principle (UCP) employs two ‘Computational Dimensions’ to compute these four (secondary
computational) physical features of ‘space’, ‘time’, ‘energy’ and ‘mass’ which are: ‘Consistency’
(‘consistent’ vs. ‘inconsistent’) and ‘Framework’ (‘frame’ vs. ‘object’), and an additional
Computational Dimension of ‘Locus’ (‘global’ vs. ‘local’) which accounts for relativistic
phenomena.

1.1.2. The UCP’s computational dimensions

Hence, the CUFT hypothesizes that the above mentioned ‘Universal Computational Principle’
(UCP) possesses three ‘Computational Dimensions’: The ‘Framework’ Dimension relates to
certain ‘computational features’ that are computed at the ‘object’ level, or at the ‘frame’
(USCF’s) level; The ‘Consistency’ Dimension relates to the UCP’s computation of the degree
of ‘consistency’ or ‘inconsistency’ of an object across a series of USCF’s frames (e.g., regarding
its above mentioned ‘object’ or ‘frame’ measures and also relating to the below mentioned
‘Locus’ Dimension computation); and the ‘Locus Dimension’ relates to the UCP’s computation
of any ‘Framework-Consistency’ combination from computational perspective of the ‘frame’
(termed: ‘global’) or from the ‘object’s’ computational perspective (termed: ‘local’); The
fascinating facet of these UCP’s three Computational Dimensions is that they produce the four
physical features of ‘space’, ‘energy’, ‘mass’ and ‘time’ – i.e., as secondary computational
combinations of the ‘Framework’ and ‘Consistency’ Computational Dimensions: The CUFT
posits that ‘space’ and ‘energy’ emerge as a result of the UCP’s computation of the degree of
‘consistent’ or ‘inconsistent’ measure of an ‘object’ (e.g., comprising one of the computational
levels of the ‘Framework’ Dimension) the ‘Framework’ Dimension; Likewise, the basic
physical features of ‘mass’ and ‘time’ arise as secondary computational features associated
with the degree of ‘consistent’ or ‘inconsistent’ measure of an object relative to the ‘frame’ (also
comprising the ‘Framework’ Dimension)!

Hence, the (new) computational definitions of ‘space’, ‘energy’, ‘mass’ and ‘energy’ are given
by:

S:(fi{x,y,z}[USCF(i)]+… fj{x,y,z}[USCF(n)]) / h x n{USCF’s}

such that:

fj{x,y,z}[USCF(i)]) ≤ fi{x+(hxn),y+(hxn),z+(hxn)}[USCF(i…n)]

where the ‘space’ measure of a given object (or event) is computed based on a frame consis‐
tent computation that adds the specific USCF’s (x,y,z) localization across a series of USCF’s
[1...n] – which nevertheless do not exceed the threshold of Planck’s constant per each (‘n’)
number of frames (e.g., thereby providing the CUFT’s definition of “space” as ‘frame-
consistent’ USCF’s measure).

The Computational Unified Field Theory (CUFT) – Revising Quantum & Relativistic Models
http://dx.doi.org/10.5772/59175

177



Conversely, the ‘energy’ of an object (e.g., whether it is the spatial dimensions of an object or
event or whether it relates to the spatial location of an object) is computed based on the frame’s
differences of a given object’s location/s or size/s across a series of USCF’s, divided by the speed
of light 'c' multiplied by the number of USCF's across which the object's energy value has been
measured:

E:(fj{x,y,z}[USCF(n)])–fi{(x+n),(y+n),(z+n)} [USCF(i...n)] ) /c x n{USCF’s}

such that:

fj{x,y,z}[USCF(n)])>fi{x+(hxn),y+(hxn),z+(hxn) [USCF(i…n)])

wherein the energetic value of a given object, event etc. is computed based on the subtraction
of that object’s “universal pixels” location/s across a series of USCF’s, divided by the speed of
light multiplied by the number of USCF's.

In contrast, the of ‘mass’ of an object is computed based on a measure of the number of times
an ‘object’ is presented ‘consistently’ across a series of USCF’s, divided by Planck’s constant
(e.g., representing the minimal degree of inter-frame’s changes):

M: Σ[oj{x,y,z} [USCF(n)] = o(i…j-1) {(x),(y),(z)} {USCF(i...n)} / h x n{USCF’s} {USCF(1...n)} / h
x n{USCF’s}

where the measure of ‘mass’ is computed based on a comparison of the number of instances in which an
object’s (or event’s) ‘universal-pixels’ measures (e.g., along the three axes ‘x’, y’ and ‘z’) is identical
across a series of USCF’s (e.g., Σoi{x,y,z} [USCF(n)] = oj{(x+m),(y+m),(z+m)} [USCF(1...n)]),
divided by Planck’s constant.

Again, the measure of ‘mass’ represents an object-consistent computational measure – e.g.,
regardless of any changes in that object’s spatial (frame) position across these frames.

Finally, the ‘time’ measure is computed based on an ‘object-inconsistent’ computation of the
number of instances in which an ‘object’ (i.e., corresponding to only a particular segment of
the entire USCF) changes across two subsequent USCF’s (e.g., Σ oi{x,y,z} [USCF(n)] ≠ oj{(x+m),
(y+m),(z+m)}[USCF(1...n)]), ivided by ‘c’:

T : Σ oj{x,y,z} [USCF(n)] ≠ o(i…j-1){(x),(y),(z)} [USCF(1...n)] /c x n{USCF’s}

such that:

T:Σoi{x,y,z}[USCF(n)]-j{(x+m),(y+m),(z+m)} [USCF(1...n)] ≤ c x n{USCF’s}

Hence, the measure of ‘time’ represents a computational measure of the number of ‘object-
inconsistent’ presentations any given object (or event) possesses across subsequent USCF’ (e.g.,
once again- regardless of any changes in that object’s ‘frame’s’ spatial position across this series
of USCF’s). Finally, the combination of the ‘Locus’ Dimension together with the ‘Framework-
Consistency’ Dimensions, e.g., producing the four physical features of ‘space’, ‘energy’, ‘mass’,
and ‘time’ – produces all known relativistic effects and phenomenon, e.g., such as ‘time-
dilation’, ‘energy-mass’ equivalence and even the curvature of ‘space-time’!
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1.1.3. The Computational Invariance Principle

Another key theoretical postulate comprising the CUFT is the ‘Computational Invariance
Principle’ which identifies this ‘Universal Computational Principle’ as the sole ‘computation‐
ally invariant’ element which both produces all four ‘computationally variant’ physical
features of ‘space’, ‘time’, ‘energy’ and ‘mass’ and also exists independently of these physical
features “in-between” any two subsequent ‘USCF’s frames; As such, the ‘Computational
Invariance Principle’ recognizes the Universal Computational Principle as the sole (and
singular) ‘invariant’ reality underlying the production of the four secondary computational
‘variant’ physical properties of ‘space’, ‘time’, ‘energy’ and ‘mass’ (based in part on a well-
known scientific principle: “Ockham’s Razor” which prefers the simplest most parsimonious
theoretical account for complex phenomena) [1]...

1.1.4. The Universal Computational Formula

Finally, this recognition of the Universal Computational Principle as the sole and singular
reality producing and sustaining all four (secondary computational) physical properties of
space, time, energy and mass has also lead to the formulation of a singular ‘Universal Com‐
putational Formula’ which completely integrates these four secondary computational physical
properties, as well as all known quantum and relativistic properties (e.g., as embedded within
the higher-ordered Universal Computational Formula):
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2. The CUFT: Quantum-relativistic harmonization- embedding- &
transcendence

Hence, the next necessary step in validating the CUFT as a satisfactory TOE is to demon‐
strate that  it’s  capable of  harmonizing between quantum and relativistic  models,  embed
both models within the CUFT’s Universal Computational Formula, and providing certain
“differential  critical  predictions” which transcend these quantum and relativistic  models
(e.g., and if validated empirically validate the CUFT as an satisfactory TOE!) First, we set
to  demonstrate  that  the  CUFT  is  able  to  bridge  the  (above  mentioned)  key  theoretical
inconsistencies that  seem to exist  between quantum and relativistic  models based on its
reformulation- and embedding- of quantum and relativistic computation within the singular
(higher-ordered)  Universal  Computational  Principle  (e.g.,  due  to  the  Duality  Principle’s
identification of a mutual computational flaw underlying both models, as shown above);
Interestingly, based on the singularity of the Universal Computational Principle’ computa‐
tion of both quantum and relativistic relationships (e.g.,  as embedded within an exhaus‐
tive USCF’s frames’ series) the CUFT is able to embrace both quantum’s probabilistic and
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positivistic relativistic modeling. This is because the Universal Computational Principle’s
(rapid) production of all exhaustive spatial-pixels in the physical universe comprising each
USCF frame – allows it to embed “single spatial-temporal” relativistic objects’ (or subato‐
mic  ‘particles’)  measurements  as  well  as  “multi  spatial-temporal”  subatomic  ‘wave’
measures!  In  fact,  one  of  the  elegant  features  of  the  CUFT  is  precisely  the  fact  that  it
conceptualizes  such  ‘single  spatial-temporal’  relativistic  ‘objects’  or  subatomic  quantum
‘particles’ and ‘multi spatial-temporal’ quantum subatomic ‘wave’ measurements – within
the exhaustive computational framework of the Universal Computational Principle’s rapid
production of the series of USCF’s frames (e.g., comprising all such ‘single spatial-tempo‐
ral’  relativistic  object  or  subatomic  particle  and  ‘multi  spatial-temporal’  quantum  wave
measurements...) Moreover, this exhaustive computational framework of the CUFT allows
it to reconceptualize quantum’s Uncertainty Principle’s ‘complimentary pairs’ of ‘space and
energy’  or  ‘time  and mass’  merely  representing  a  computational  constraint  intrinsically
embedded  within  the  Universal  Computational  Principle’s  computation  of  the  two
‘Framework’  and ‘Consistency’  Computational  Dimensions  –  i.e.,  based on the  fact  that
‘space’ and ‘energy’ exhaustively comprise the Framework’s Dimensions’ ‘frame’ level, and
likewise  ‘mass’  and  ‘time’  exhaustively  comprising  Framework’s  ‘object’  computational
level...  Hence, the CUFT is capable of embedding both ‘single spatial-temporal’ relativis‐
tic objects (and quantum ‘particles’), and (apparently) ‘probabilistic’ ‘multi spatial-tempo‐
ral’  quantum  wave  measures  within  the  broader  and  more  exhaustive  Universal
Computational Principle’s rapid computation of the series of USCF’s frames (e.g., thereby
also resolving the ‘particle-wave duality’ postulate of Quantum Mechanics!)

The CUFT’s resolution of the second key quantum-relativistic theoretical inconsistency
relating to quantum’s instantaneous ‘entanglement’ phenomenon as opposed to Relativity’s
speed of light constraint set on the transmission of any signal across space is also anchored in
the above mentioned Universal Computational Principle’s rapid computation of these USCF’s
frames ; Since the CUFT posits that the Universal Computational Principle’s (rapid) compu‐
tation of each of the Universal Simultaneous Computational Frame (USCF) simultaneously
computes all of the spatial-pixels in the physical universe at a minimal time-point (e.g., c2/h),
then this computation extends the phenomenon of ‘quantum entanglement’ to all exhaustive
spatial points in the universe (e.g., at any such minimal time-point! On the other hand, based
on the above embedding of all ‘single spatial-temporal’ relativistic objects (or subatomic
particles) as well as ‘multi spatial-temporal’ subatomic wave measures within the Universal
Computational Principle’s exhaustive USCF’s computation – it allows for Relativity’s apparent
speed of light constraint imposed on any such ‘single spatial-temporal’ relativistic object (or
subatomic ‘particle’) transmission!

The next step towards the validation of the CUFT as a satisfactory TOE involves an articulation
of the embedding of quantum and relativistic models within the singular higher-ordered
CUFT’s Universal Computational Formula – i.e., which is shown to both maintain- and
transcend- the (currently) known quantum and relativistic relationships! As can be seen from
the two ‘quantum’ and ‘relativistic’ formats of the Universal Computational Principle (below),
the highlighted portions of these formats conforms to the known mathematical relationships
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found in quantum and relativistic models, e.g., Relativity’s energy and mass equivalence, and
Quantum’s ‘complimentary pairs’ of ‘space and energy’, ‘mass and time’ as constrained by the
Uncertainty Principle’s ‘h’ Planck’s constant simultaneous measurement accuracy constraint:

I. Relativistic Format: e ×
s
t =m ×

c2

h

II. Quantum Format: t × m ×
c2

h =s × e

3. The CUFT’s “differential-critical predictions”

However, it also becomes clear that the CUFT’s Universal Computational Principle’s embed‐
ding of those empirically validated quantum and relativistic relationships – also transcends
and critically differs from these relationships! Indeed, these computational differences
between the Universal Computational Formula’s ‘quantum’ and ‘relativistic’ formats and the
‘standard’ relativistic ‘E=Mc2’ and quantum ‘complimentary pairs’ constitutes one (of three)
“differentia-critical predictions” that differentiate the CUFT model from both quantum and
relativistic predictions, e.g., thereby providing an empirically testable means for validating the
CUFT as a satisfactory TOE...

Another key “differential-critical prediction” that differentiates the CUFT from both relativ‐
istic and quantum models’ predictions are: the CUFT’s prediction regarding the more consis‐
tent (spatial) presentation of more massive particles (or elements) – across a given series of
USCF’s frames, relative to less massive particles’ appearance across the same series of USCF’s
frames. In fact, this ‘differential critical prediction’ regarding the more consistent spatial
presentation of more massive particles (or elements) across a series of USCF’s frames, relative
to the spatial presentation of less massive particles (or elements) precisely replicates the
empirical findings of the recently discovered ‘Proton-Radius Puzzle’, thereby providing a first
empirical validation for the CUFT as a satisfactory TOE!

The third ‘differential-critical prediction’ differentiating the CUFT from both quantum and
relativistic models involves a possible “reversal of the space-time spatial-electromagnetic
pixels sequence” across a series of USCF’s frames electromagnetic spatial-pixels’ sequence of
a given object or phenomenon; This may be achieved through a precise recording of that object
(or phenomenon’s) spatial-electromagnetic pixels values (across a given series of USCF’s), and
a manipulation of these electromagnetic-spatial pixels values (through precise electromagnetic
stimulation) so as to produce the reverse sequence of the recorded spatial-electromagnetic
values sequence! Interestingly, due to the fact that quantum theory precludes the possibility
of the “un-collapse” of the probability wave function following a certain interaction between
the any such probe particle and the target particle’s wave function – this ‘differential critical
prediction’ is ruled out as a possible prediction of Quantum Mechanics; Likewise, since
Relativity sets the speed of light as a clear “unsurpassable” limit for the transference of any
signals it also precludes the possibility of “reversing time”; In contrast, since the CUFT defines
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‘time’ (e.g., alongside the other three physical features of ‘space’, ‘energy’ and ‘mass’) merely
as a secondary computational property produced by the Universal Computational Principle’s
three Computational Dimensions’ computation of the degree of an “object’s-inconsistency”
across a series of USCF’s frames – then it should allow for the “reversal” of the ‘space-time’
sequence (e.g., of the particular spatial-electromagnetic pixels’ values) across a series of USCF’s
frames!

4. Empirical validation of the CUFT as satisfactory ‘TOE’: The ‘proton
radius puzzle’

Fortunately, the second (abovementioned) ‘differential-critical prediction’ of the CUFT
regarding the more consistent spatial presentations of a more massive particle (or element),
relative to the spatial-consistency of a less massive particle (or element) across a given series
of USCF’s frames – has now received initial empirical validation through the findings associ‐
ated with the ‘Proton-Radius Puzzle’! This is because the ‘Proton-Radius Puzzle’ empirical
findings indicate that the more massive ‘Moun Hydrogen Proton’ is measured (approximately)
200 times – smaller and more accurate than the standard Hydrogen (e.g., with the 200 times
lighter electron particle instead of the Muon)... In order to fully understand how these ‘Proton-
Radius Puzzle’ findings (Bernauer & Pohl, 2014) empirically confirm the differential-critical
prediction of the CUFT, lets us return to the CUFT’s computational definitions of “mass”; Mass
is defined by the CUFT as a measure of the degree of “spatial-consistency” of a particle across
a given series of USCF’s frames! In mathematical terms, it is measured as the number of times
that this particle was presented across the same spatial pixels (measured from within the
object’s frame of reference) across a series of USCF’s frames... This computational definition
of ‘mass’ implies at least two empirically measurable predictions:

a. That the more massive ‘Muon’ particle should be measured as more accurate- and as
smaller- than the less massive electron particle; this is due to the fact that the more massive
a particle is the greater its spatial-consistency across USCF’s frames! And/or:

b. That more massive particles (e.g., such as the Muon) should be measured across a greater
number of USCF’s frames, relative to less massive particles (such as the electron); In other
words, we could expect to measure the (more massive) Muon across a greater number of
USCF’s frames than the (lighter) electron!

Interestingly, the ‘Proton-Radius Puzzle’ precisely confirms the first of these two CUFT
‘differential critical’ predictions – i.e., indicating that the (200 times) more massive Muon
particle (e.g., when embedded within the Hydrogen Proton) is measured as (200 times)
‘smaller’ and ‘more accurate’ than the (200 times) less massive electron (associated) Hydrogen
Proton! Hence, these findings provide an initial empirical confirmation of the CUFT – as
differing from the predictions of both quantum and relativistic models’ predictions (e.g., which
cannot account for these “Proton-Radius Puzzle” findings)!
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Efforts should be made to empirically validate the second (abovementioned) aspect of the CUFT’s
differential-critical prediction regarding the appearance of ‘more massive’ particles such as the Muon
across a greater number of USCF’s frames than the appearance of less massive particles (such as the
electron)!

5. The CUFT: Challenging quantum & relativistic “materialistic-
reductionistic” assumption

Thus far, we’ve been able to demonstrate that the CUFT may be considered a satisfactory ‘TOE’
capable of resolving all major quantum-relativistic theoretical inconsistencies, replicating their
primary empirical phenomena, identifying and empirically validating one of the CUFT’s
‘differential-critical’ predictions differentiating it from both quantum and relativistic predic‐
tions... The primary aim of the current manuscript is to utilize this recognition of the CUFT as
a satisfactory TOE, e.g., which also embeds both quantum and relativistic models within its
broader more comprehensive (singular) ‘Universal Computational Principle’ theoretical
framework – towards recognizing the need to revise certain key theoretical aspects of both quantum
and relativistic fields, i.e., based on the CUFT’s singularity of the UCP sole production of the (extremely
rapid: c2/h) series of the ‘Universal Simultaneous Computational Frames’ (USCF’s); Specifically, the
CUFT’s emphasis on the singularity of the UCP (rapid) production of the USCF’s series – forces us to
revise both Quantum and Relativistic “materialistic-reductionistic” basic assumption whereby any
(quantum or relativistic) physical relationship (or entities, value/s, phenomenon) can be determined
solely based on an exhaustive probe-target (subatomic) interaction or observer-phenomenon (e.g., space-
time or energy-mass) relationship in such a manner as to point at the sole and singular production of
all such quantum and relativistic entities, phenomena, relationship/s by the UCP’s USCF’s production...

Indeed, if we revert back to the CUFT’s (first) ‘Duality Principle’ theoretical postulate, we can
see that both Quantum and Relativistic computational systems comprise a ‘Self-Referential
Ontological Computational Systems’ (SROCS) structure; this quantum and relativistic SROCS
computational structure is synonymous with a “materialistic-reductionistic” assumption,
wherein it is assumed that the determination of the “existence”/”non-existence” of any given
‘y’ entity (or value) is determined solely based on its direct (or indirect) physical interaction
with another (exhaustive) ‘x’ factor/s... As we’ve seen, the Duality Principle in fact negates the
validity of such assumed (quantum or relativistic) SROCS systems – instead, pointing at the
existence of the singular higher-ordered (D2) ‘Universal Computational Principle’ (UCP)
which alone computes the “simultaneous co-occurrence” of all (exhaustive) quantum and
relativistic ‘probe-target’ and ‘observer-phenomenon’ pairs series (e.g., subsequently shown
by the CUFT to comprise any minimal time-point ‘Universal Simultaneous Computational
Frame’). The CUFT further developed this ‘Duality Principle’ and ‘UCP’ (alongside its three
‘Computational Dimensions’) postulates towards the recognition of the ‘Computational
Invariance Principle’: i.e., recognizing the fact that since only the UCP “exists” both ‘during’
each of the USCF’s frames (in fact producing all of its exhaustive universal spatial pixels
simultaneously at any such minimal time-point) as well as ‘solely existing’ “in-between” any
two subsequent USCF frames (whereas the four secondary computational ‘physical’ features
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of ‘space’, ‘time’, ‘energy’ and ‘mass’ only exist “during” the UCP’s production of the USCF’s
and its computation of these four secondary computational physical features), then we must
conclude that only this singular UCP comprises an invariant “reality” (whereas these four
secondary-computational ‘physical’ features may only be considered ‘phenomenally’ variant)...
Hence, the CUFT’s ‘Computational Invariance Principle’ in fact points at the sole reality of the
UCP (e.g., computationally invariant), as opposed to the “phenomenal” nature of the four
secondary computational ‘physical’ features of ‘space’, ‘time’, ‘energy’ and ‘mass’ (e.g.,
computationally variant).

It is hereby suggested that a deeper analysis of these three particular theoretical postulates of
the CUFT (e.g., the ‘Duality Principle’, ‘Universal Computational Principle’ and ‘Computa‐
tional Invariance Principle’) may negate the current (quantum and relativistic) “materialistic-
reductionistic assumption” (e.g., represented by the SROCS computational structure) based on
the sole and singular reality of the ‘Universal Computational Principle’; This is made partic‐
ularly clear based on (above mentioned) ‘Computational Invariance’ Principle’s proof for the
singular reality of the Universal Computational Principle – which is the only ‘computationally
invariant’ element which “exists” both during its sole production the (rapid series of) USCF’s
frames, and “in-between” any two such (subsequent) USCF’s frames! This is because based on
this ‘Computational Invariance Principle’, the four physical features of ‘space’, ‘time’, ‘energy’
and ‘mass’ constitute computationally ‘variant’ properties and are therefore ‘transient’ (i.e.,
exist only “during” the Universal Computational Principle’s production of the USCF’s frames
but ceases to exist “in-between” any two such USCF’s frames)... Indeed, their “computational
variant” composition makes them possess only “phenomenal” validity as opposed to the
singular reality of the ‘Universal Computational Principle’ which exists permanently (and
solely) – both as producing these ‘phenomenal’ (computationally variant) four ‘physical’
features “during” the USCF’s frames and also “in-between” these USCF’s frames... Therefore,
the sole production- sustenance- and “transference” of any of these four “physical” features –
during or across – any USCF frame/s is only made possible through the singular existence (and
operation) of the ‘Universal Computational Principle’! In other words, since these four
‘phenomenal-physical’ features “exist” only during each USCF frame, e.g., as produced by the
singular ‘Universal Computational Principle’, but not “in-between” any two such subsequent
USCF’s frames – as opposed to the singularity of the UCP which solely produces these four
physical features “during” the USCF’s frames and also exists “in-between” the USCF’s frames;
then, we must conclude that the only means for the “production”- “sustenance”- or “trans‐
ference” of any given ‘physical’ feature across any two (subsequent) USCF’s frames may only
be done based on the UCP!

Hence, we must conclude that the basic assumption of “materialistic-reductionism”, e.g.,
whereby it is possible to determine the “existence” or “non-existence” of any given ‘physical’
‘y’ feature solely based on its direct or indirect physical interaction with another (exhaustive)
‘x’ factor/s – is negated (not only by the above mentioned Duality Principle) but even more
explicitly through the recognition that it is not possible for any of these four (phenomenal)
‘physical’ features to be “transferred” across any two subsequent USCF’s frames – except
through the computation of the Universal Computational Principle, which constitutes the sole
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(computationally invariant) “reality” (which exists both “during” the USCF frames producing
these four phenomena ‘physical’ features and solely exists “in-between” any two USCF’s
frames...) What this means is that the basic “materialistic-reductionistic” assumption under‐
lying both quantum and relativistic SROCS computational systems, i.e., which assumes that
the “existence” (or “non-existence”) of any given subatomic ‘target’ or relativistic (space-time
or energy-mass) -‘phenomenon’ is determined solely based on their direct or indirect physical
interaction/s with another (exhaustive) subatomic ‘probe’ element or relativistic ‘observer’ –
is negated! Instead, the ‘production’- ‘sustenance’- or ‘development’- of any ‘physical’ feature
(relationship or phenomenon) – at the quantum or relativistic frameworks can only be
computed through the singularity of the Universal Computational Principle!

6. Revising physics: UCP a-causal computation

Hence, there seems to arise a necessity to revise both quantum and relativistic computational
systems such that the ‘existence’ of any of the four (computationally variant phenomenal)
physical features (of ‘space’, ‘time’, ‘energy’ or ‘mass’) in either quantum or relativistic
theoretical frameworks be solely produced- sustained- or developed- solely based on the
Universal Computational Principle’s singular production of all spatial pixels in the universe
at any minimal USCF frame/s time-point; Note, however, that this revision does not represent
merely a ‘philosophical’ concept – i.e., in fact, it is suggested that this revision signifies a
fundamental shift in Physics as it relies on the UCP singular (higher-ordered) “A-Causal
Computation”!

In order to fully grasp the potential significance of this (novel) UCP ‘A-Causal Computation’,
it may be helpful to specify the theoretical ramifications of recognizing the fact that in both
Quantum Mechanics and Relativity Theory the sole production- sustenance- and develop‐
ment- of any of the four ‘physical’ (phenomenal) features can only be computed by the UCP;
Given the fact that the UCP is postulated to compute “simultaneous co-occurrence” of all
(exhaustive) quantum ‘probe-target’ and relativistic ‘observer-phenomenon’ relationships,
this means that both within a single USCF frame and across a series of such USCF’s frames –
we cannot (any longer) rely on any ‘materialistic-reductionistic’ (SROCS) subatomic ‘probe-
target’ or relativistic ‘observer-phenomenon’ interactions for determining any of the four
(quantum or relativistic) ‘physical’ features... Instead, we must revise any such quantum or
relativistic ‘physical’ feature based on the UCP computation of the “simultaneous co-occur‐
rence” of all (exhaustive) quantum and relativistic relationships comprising any (single or
multiple) USCF frame/s! Indeed, this fundamental shift from the current “materialistic-
reductionistic” quantum or relativistic (SROCS) assumption towards a recognition of the sole
computation of the UCP of all ‘simultaneously co-occurring’ quantum and relativistic (‘probe-
target’ and ‘observer-phenomenon’) interactions is termed: the ‘UCP A-Causal Computation’
(i.e., of all ‘simultaneously co-occurring quantum and relativistic relationships comprising any
single or multiple USCF’s)...

Now, in order to understand the far reaching theoretical implications of recognizing this UCP
(singular) higher-ordered ‘A-Causal Computation’ let us turn our attention to the two
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(overarching) conceptual models of the “probabilistic interpretation of Quantum Mechanics”
(i.e., represented by the ‘probability wave function’ and its “collapse” following any given
subatomic probe measurement) and Einstein’s (famous) General Relativity Einstein field

equations (EFE): Rμν −
1
2 gμν R + gμν Λ =

8πG
c 4 Tμν (describing the dynamic interaction that exists

between massive object’s curvature of the fabric of ‘space-time’ which in return determines
their travelling pathway, and vice versa...) It is suggested that in both of these cases, their
current theoretical formulation represents the above mentioned “materialistic-reductionistic”
assumption – i.e., whereby it is the direct or indirect physical interaction/s between a given
subatomic ‘probe’ and ‘probability wave function’ target element which determines the
“collapse” of that wave function and hence the value of the measured ‘target particle; or it is
the direct physical interaction of a given (massive) object with the ‘space-time’ which deter‐
mines its curvature – and this curvature of ‘space-time’ (in return) interacts with this given
(massive) object thereby determining its pathway movement...

Indeed, the ‘materialistic-reductionistic’ structure of any such (hypothetical) quantum ‘probe-
target’ or relativistic ‘observer-phenomenon’ relationships was analyzed earlier, and proven
to comprise a SROCS computational structure, e.g., being negated by the CUFT ‘Duality
Principle’ – pointing at the necessity to reformulate both quantum and relativistic computa‐
tional systems based on the singularity of the Universal Computational Principle...

But, what becomes apparent here, e.g., based on the recognition of the UCP “A-Causal
Computation” is that the basic (overarching) theoretical model of both Quantum Mechanics
and (General) Relativity Theory must be revised based on this ‘UCP A-Causal Computation’!
This is because once we accept the CUFT assertion that there exists only one singular (com‐
putationally invariant) UCP “reality” and that this UCP singular ‘reality’ solely computes the
“simultaneous co-occurrence” of all exhaustive (quantum and relativistic) relationships
comprising a (minimal time-point) USCF frame/s (e.g., termed: ‘UCP A-Causal Computation’),
then we cannot (any longer) retain either QM’s current model regarding the ‘materisalistic-
reductionistic collapse of the probability wave function’ or General Relativity’s EFE. This is
because both QM’s assumed (SROCS) collapse of the probability wave function, as well as RT’s
assumed SROCS (massive) object –space-time curvature computational structure – are based
on this “materialistic-reductionistic SROCS’ assumption; In the case of QM this ‘materialistic-
reductionistic’ SROCS computational structure is represented in the assumption wherein the
determination of the values of any subatomic ‘target’ (probability wave function) element is
contingent upon its direct (or indirect) physical interaction with another subatomic ‘probe’
element – i.e., which “causes” the “collapse” of the probability wave function (see earlier
description of the Quantum ‘probe-target’ SROCS structure and its violation of the Duality
Principle); In the case of (General) Relativity Theory, this ‘materialistic-reductionistic SROCS
assumption’ is represented by through Relativity’s EFE which determines the ‘curvature of
space-time’ based on its direct physical interaction with ‘massive objects’ and vice versa
determines the movement of these ‘massive objects’ based on their interaction with the
curvature of ‘space-time’ (also see the earlier Duality Principle’s analysis of relativistic
‘observer-phenomenon’ SROCS computational structure);
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However, based on the above recognition of the singular reality of the UCP which solely
computes the “simultaneous co-occurrence” of all (exhaustive) quantum and relativistic
interactions, i.e., comprising any single or multiple USCF’s frames (e.g., termed: the UCP ‘A-
Causal Computation), we must revise this basic ‘materialistic-reductionistic SROCS assump‐
tion’ based on this higher-ordered singular UCP A Causal Computation! In other words, since
the sole production- sustenance- and development- of any of the four (phenomenal) ‘physical’
features (e.g., say in the quantum domain) is based on the UCP ‘A-Causal Computation’, i.e.,
of all exhaustive ‘probe-probability wave function target’ interactions comprising a single (or
multiple) USCF frame/s, then we must also conclude that the apparent “collapse” of the
probability wave function – cannot be “caused” by the direct interaction between any given
probe element and given probability wave function! This is simply due to the fact that
according to the above ‘UCP A-Causal Computation’ all exhaustive values of all quantum
subatomic ‘probe-probability wave function target’ interactions are computed simultaneously by
the UCP – comprising all spatial pixels comprising any single or multiple USCF frame/s... And since
the only “transference” of any of the four (phenomenal) ‘physical’ features from one USCF
frame to another – can only be carried out through the singular operation of the UCP’s
production- sustenance- and development- of any spatial pixel in te universe (across USCF’s
frames), then we cannot attribute the “collapse of the wave function” to any physical interac‐
tion taking place between any ‘probe’ and ‘probability wave function target’ entities (e.g., at
any particular USCF frame/s)... Hence, the UCP’s A-Causal Computation which produces
simultaneously all exhaustive quantum ‘probe-target’ interactions – at any single or multiple
USCF frame/s negates the validity of the “materialistic-reductionistic SROCS” assumption of
the “collapse of the probability wave function” (target element) as a result of its direct
interaction with another subatomic ‘probe’ element.

Likewise, based on the recognition of the UCP’s singular ‘A-Causal Computation’ which is
solely  responsible  for  the  production-  sustenance-  and  development-  of  all  exhaustive
‘observer – (space-time, energy-mass) phenomenon’ interactions comprising any (single or
multiple)  USCF  frame/s,  we  must  revise  the  current  EFE  representing  a  “materialistic-
reductionistic SROCS assumption”; Once again, this is due to the fact that contrary to this
‘materialistic-reductionistic  SROCS’  assumption  represented  by  Relativity  Theory  EFE
according to the UCP’s singular ‘A-Causal Computation’ the UCP computes the “simulta‐
neous co-occurrence” of all exhaustive relativistic ‘observer – (space-time or energy-mass)
phenomenon’ relationships comprising any (single or multiple) USCF frame/s! Therefore,
contrary  to  (General)  Relativity  Theory’s  currently  assumed  ‘materialistic-reductionistic
SROCS’ assumption, wherein the ‘curvature of space-time’ is determined through its direct
physical interaction with ‘massive objects’ (and  vice versa, the movement of these ‘mas‐
sive objects’ is determined strictly based on the ‘curvature of space-time’) – the UCP’s A-
Causal Computation asserts that it is solely the singularity of the UCP which computes the
“simultaneous  co-occurrences”  of  all  exhaustive  relativistic  ‘observer  –  (space-time  or
energy-mass) phenomenon’ interactions (e.g., comprising any single or multiple USCF/s)...

Hence, the fundamental necessary revision of both (contemporary) probabilistic interpretation
of QM and of (General) Relativity Theory involves a shift from the current ‘materialistic-
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reductionistic SROCS’ assumption underlying both QM and RT – towards the UCP’s singular
‘A-Causal Computation’! Essentially, this revision implies that instead of the currently
assumed (quantum or relativistic) ‘materialistic-reductionistic SROCS’ assumption wherein
the “collapse of the target probability wave function’ is “caused” by its direct physical
interaction with the subatomic ‘probe’ element, and the ‘curvature of space-time’ is “caused”
by its direct physical interaction with ‘massive object/s’ (and vice versa the movement of these
‘massive object/s’ is “caused” by the ‘curvature of ‘space-time’; the UCP ‘A-Causal Computa‐
tion’ negates any such ‘materialistic-reductionistic’ “causal” relationships, instead pointing at
the fact that it is only the singularity of the UCP which computes the “simultaneous co-
occurrence” of all (exhaustive) quantum ‘probe-target’ and relativistic ‘observer-phenomenon’
interactions comprising any (single or multiple) USCF frame/s... Perhaps another (lucid)
manner of demonstrating the UCP’s negation of contemporary Quantum and Relativistic
‘materialistic-reductionistic SROCS’ computational structure can be given through an analysis
of the minimal-temporal, i.e., USCF’s frames dynamics representing Quantum Mechanics’
currently assumed “collapse of the target probability wave function”, as well of the USCF’s
frames’ dynamics representing Relativity’s EFE (e.g., describing the interactive effect of
‘massive objects’ on the ‘curvature of space-time’ and vice versa as explained above); Accord‐
ing to the contemporary ‘probabilistic interpretation of QM’ the target’s probability wave
function “collapses” as a result of its direct physical interaction with another subatomic probe
element: this means that at a particular minimal-time USCF frame there occurs a direct physical
interaction between the ‘target’s probability wave function’ and the ‘probe element’ – and that
based on this direct ‘probe-target probability wave function’ physical interaction this ‘target
probability wave function’ “collapses”; But since each (single) USCF frame comprises the
“minimal time-point” (possible) at which the (singular) UCP produces all exhaustive (quan‐
tum and relativistic) spatial-pixels in the universe, then necessarily the initial direct physical
interaction between the ‘probe’ element and the ‘target’s probability wave function’ – takes
place at a given USCF frame, whereas the (assumed) “resulting collapse” of this ‘target’s
probability wave function’ must occur at a subsequent USCF frame! But, since according to
the above mentioned ‘Computational Invariance Principle’ the sole and singular (computa‐
tionally invariant) principle which exists both “during” and “in-between” any two subsequent
USCF frames is the UCP (whereas the four phenomenal ‘physical’ features of ‘space’, ‘time’,
‘energy’ and ‘mass’ exist only “during” any given USCF frame), then the sole ‘production’-
sustenance- and ‘development’ of any quantum (or relativistic) (phenomenal) ‘physical’
feature may only be carried out by the singularity of the UCP – which indeed computes the
“simultaneous co-occurrence” of all exhaustive quantum (or relativistic) ‘probe-target’
interactions comprising any single or multiple USCF’s... Hence, since it is not possible for any
physical interaction (say) between the ‘subatomic probe’ and (assumed) ‘target’s probability
wave function’ at a given USCF frame (i) to have any effect on their (phenomenal) ‘physical’
features at a subsequent USCF frame (i+1) – but rather it is the sole (and singular) computation
of the UCP of the “simultaneous co-occurrences” of any exhaustive ‘probe-target’ subatomic
interaction/s (at any single or multiple USCF/s frames) which produces- sustains- and
develops- any exhaustive subatomic probe-target relationships! Likewise, we can show that
based on such ‘minimal time-point’ USCF’s frames analysis, that the currently assumed
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‘materialistic-reductionistic SROCS’ General Relativity Theory model’s interactive ‘curvature
of space-time’ based on its direct physical interaction with ‘massive objects’ (and vice versa)
is negated – instead, pointing at the sole production- sustenance- and development- of any of
the four phenomenal ‘physical’ features (of ‘space’, ‘time’, ‘energy’ and ‘mass’) including the
phenomena of the curvature of ‘space-time’ or of the (apparent) movement of massive objects
solely based on the singular UCP ‘A-Causal Computation’; In order to demonstrate the
impossibility of the currently assumed Relativistic ‘materialistic-reductionistic SROCS’
assumption, let us (once again) imagine the ‘minimal time-point dynamics’ of the currently
assumed (General) Relativity ‘materialistic-reductionistic SROCS’ direct physical interaction
between certain massive object/s and the curvature of space time (and vice versa, as outlined
above): According to this ‘materialistic-reductionistic SROCS’ Relativistic assumption, it is the
direct physical interaction that exists between (one or more) ‘massive object/s’ and ‘space-time’
which “causes” this ‘space-time’ (fabric) to curve, and vice versa, this ‘curvature of space-time’
“causes” any given ‘massive object/s’ to travel in a particular (curved) space-time pathway...
But, when analyzed from the perspective of a ‘minimal time-point’ USCF frame/s, then we see
that in the first (hypothetical) USCF frame, there is a direct physical interaction between the
given ‘massive object’ and the (fabric of) ‘space-time’, whereas this ‘curving of space-time’ may
affect the space-time movement pathway of this ‘massive object’ – only in a subsequent USCF
frame/s... However, such ‘materialistic-reductionistic’ (SROCS) relativistic assumption – not
only violates the Duality Principle (as shown earlier and previously), but in the context of this
‘minimal time-point’ USCF’s frames analysis seems to negate the (proven) singularity of the
UCP’s ‘A-Causal Computation’: This is because, according to the above ‘materialistic-
reductionisitc’ relativistic assumption it is the direct physical interaction between the given
‘massive object’ and the (fabric of) ‘space-time’ – in the first USCF frame/s which “causes” this
(fabric of ‘space-time’) to curve in subsequent USCF frame/s, and this ‘curvature of space-time’
in turn “causes” this given “massive object” to travel in a “curved space-time pathway” in still
later USCF frame/s... However, based on the UCP’s ‘A-Causal Computation’, which computes
the “simultaneous co-occurrences” of all exhaustive relativistic ‘observer-phenomenon’
relationships, we have to negate this relativistic ‘materialistic-reductionistic SROCS’ assump‐
tion – since there cannot exist any “cause and effect” relationship between any direct (or
indirect) physical interactions (e.g., such as ‘massive object/s’ which ‘curve the fabric of space-
time’) at an initial USCF frame/s, and its effect on the ‘space-time movement pathway of that
massive object’ at a subsequent USCF/s... Instead, the singularity of UCP’s ‘A-Causal Com‐
putation’ forces us to recognize its computation of the ‘simultaneous co-occurrences’ of all
(four) phenomenal ‘physical’ features – i.e., including the simultaneous computation of any
‘massive object’ and any ‘curvature of space-time’!

Hence, we reach the inevitable conclusion whereby both Quantum and Relativistic models
have to be revised in terms of their basic ‘materialistic-reductionistic SROCS’ assumption, i.e.,
recognizing the fact that either Quantum Mechanics’ assumed ‘collapse of target’s probability
wave function’ as ‘caused’ by its direct physical interaction with another subatomic ‘probe’
element; or Relativity’s assumed ‘curvature of space-time’ as “caused” by its direct physical
interaction with ‘massive objects’ – is negated by the CUFT’s recognition of the singularity of
the Universal Computational Principle’s (UCP) (higher-ordered) ‘A-Causal Computation’,
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which computes the ‘simultaneous co-occurrences’ of all quantum and relativistic (exhaustive)
‘probe-target’ and ‘observer-phenomenon’ interactions. The key revision brought about by the
UCP (higher-ordered) ‘A-Causal Computation’ is that it negates, i.e., in principle, the existence
of any ‘materialistic-reductionistic SROCS “causal” relationships in QM or Relativity Theory;
this is because once we accept the UCP’s (higher-ordered) ‘A-Causal Computation’ as the sole
and singular source for producing- sustaining- and evolving- any of the four phenomenal
‘physical’ features (of ‘space’, ‘time’, ‘energy’ and ‘mass’), e.g., across all exhaustive spatial-
pixels (in the universe) comprising any single or multiple USCF frame/s (at the minimal USCF
time-point), then we must reject any ‘materialistic-reductionistic SROCS’ physical relation‐
ship/s between any hypothetical quantum ‘probe’ and ‘target’ or between any relativistic
‘observer’ and ‘phenomenon’ entities as “causing” any hypothetical change or effect in that
subatomic target (e.g., such as the assumed “collapse of the target’s probability wave function”
as “caused” by its interaction with the subatomic probe element) or as “causing” any effect in
the given relativistic ‘phenomenon’ (e.g., such as in Relativity’s assumed “curvature of space-
time” as “caused” by its interaction with ‘massive objects’). Thus, the necessary revision in
both QM and RT brought about by the UCP’s ‘A-Causal Computation’ is to base all ‘phenom‐
enal’ (quantum or relativistic) physical features of ‘space’, ‘time’, ‘energy’ and ‘mass’ on the
singularity of the UCP which solely produces- sustains- or evolves- all of these physical
features at all spatial-pixels in the universe comprising any (single or multiple) exhaustive
USCF’s frame/s...

7. The CUFT’s embedding & transcendence of QM and RT models

It should, nevertheless, be made clear that this necessary revision of both Quantum Mechanical
and Relativistic Models – does not negate any of the validated empirical phenomena or known
quantum or relativistic laws and relationships, but rather broadens our theoretical under‐
standing of these quantum and relativistic phenomena, as embedded in- and (indeed)
transcended by- the CUFT theoretical framework; This is due to the fact that whereas Relativity
Theory may represent the characterization of single spatial-temporal (relativistic) objects and
phenomena, and Quantum Mechanics represents multi spatial-temporal ‘probability wave
function’ (subatomic) entities (e.g., which also embeds ‘single’ multi spatial-temporal ‘particle’
elements) – the CUFT expands the theoretical framework to include all single- multiple- and
indeed exhaustive- spatial-pixels comprising any minimal time-point USCF frame/s... By doing
so, and based on the CUFT’s identification of this minimal time-point (extremely rapid-series:
‘c2/h’) series of USCF’s produced solely by the singular ‘Universal Computational Principle’,
the CUFT is capable of fully integrating between quantum and relativistic components and
phenomena – which is made most apparent in the CUFT’s Universal Computational Formula
(e.g. that fully integrates between quantum and relativistic relationships, as well as between
the four basic ‘physical’ features of ‘space’, ‘time’, ‘energy’ and ‘mass’):

2c s e` = ×
h t m
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This embedding- and transcendence- of both quantum and relativistic phenomena and
relationships within the broader (higher-ordered) CUFT is made most apparent in the two
(above mentioned) Relativistic and Quantum formats, which include the known relativistic
‘energy and mass equivalence’ (E = Mc2) and the quantum ‘complimentary pairs’;

I. Relativistic Format: e ×
s
t =m ×

c2

h

II. Quantum Format: t × m ×
c2

h =s × e

Note, however, that in both quantum and relativistic formats the Universal Computational
Formula transcends these (known) quantum and relativistic relationships based on the
incorporation of these known relationships within the broader (quantum and relativistic)
formats computational structure: Specifically, it becomes apparent that these known quantum
and relativistic relationships may represent “special cases” – within the broader Relativistic
or Quantum Formats, which in fact represent the complete integration of both “quantum” and
“relativistic” computational components within the singular higher-ordered (fully integrated)
CUFT’s Universal Computational Formula; Indeed, a more comprehensive mathematical (and
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CUFT goes beyond RT’s integration of ‘space-time’ and ‘energy-mass’, and its curvature of
space-time by mass (and vice versa) – by fully integrating ‘space’, ‘time’, ‘energy’ and ‘mass’
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mentary) computational levels of the two UCP’s Computational Dimensions of (Framework
and Consistency) (as explained in [1]. Ultimately, the CUFT completely integrates the appa‐
rently “distinct” aspects of Quantum and Relativistic models as comprising integral compu‐
tational aspects of the same singular higher-ordered UCP ‘A-Causal Computation’ – i.e., such
as the complete integration of Relativity’s ‘c2’ (associated with the speed of light constraint
imposed on the transmission of any signal) with Quantum’s Planck’s constant (‘h’, associated
with subatomic complimentary pairs’ simultaneous measurement accuracy constraint) to
signify the CUFT’s identified rate of UCP rapid production of the series of USCF’s frames.
Finally, as noted above, the CUFT’s unique recognition of the singularity of the UCP’s (e.g.,
computationally invariant) higher-ordered ‘A-Causal Computation’ which solely produces-
sustains- and evolves- all four (e.g., computationally variant) phenomenal ‘physical’ features
of ‘space’, ‘time’, ‘energy’ and ‘mass’ negates the current basic “materialistic-reductionistic”
(SROCS) assumption underlying QM and RT – and forces Physics to recognize this singular
UCP ‘A-Causal Computation’ as the sole reality giving rise to the phenomenology of all
‘physical’ features, including all quantum and relativistic phenomena and relationships.

8. The CUFT revision of ‘dark energy/matter’ & ‘second law of
thermodynamics’

One of the initial theoretical implications of the acceptance of the CUFT as a satisfactory TOE
and the acceptance of its singular (higher-ordered) UCP ‘A-Causal Computation’ as revising
contemporary Physics’ Quantum and Relativistic “materialistic-reductionistic” SROCS
assumption – is its capacity to explain the unresolved “enigma” of ‘Dark Matter’ and ‘Dark
Energy’ and its potential revision of the ‘Second Law of Thermodynamics’ (and its associated
‘Arrow of Time’ enigma); Essentially, the ‘Dark Matter, Dark Energy’ enigma constitutes the
inability of contemporary Physics to account for the acceleration in the rate of expansion of
the physical universe – solely based on the observed (and calculated) total mass and energy
associated with all planetary object comprising this physical universe... According to these
calculations roughly 70-90% of all the mass and energy in the universe is “missing”, i.e., cannot
be observed! Hence, the working assumption (of Contemporary Physics) is that this (70-90%)
of the “missing” mass and energy in the universe is “dark”, i.e., it cannot be observed empir‐
ically (for some unexplained reason)...

Interestingly, this ‘Dark Matter, Dark Energy’ enigma is closely connected with the above
mentioned UCP ‘A-Causal Computation’ constraining Relativity’s SROCS (interactive)
determination of ‘massive objects’ “causing” the ‘curvature of space-time’ and vice versa:
‘curved space-time’ “causing” these ‘massive objects’ to travel along curved space-time
pathways... As delineated above, both the CUFT’s ‘Duality Principle’ theoretical postulate and
the discovery of the UCP’s singular ‘A-Causal Computation’ prove (unequivocally) the
impossibility of any such Relativity’s SROCS “materialistic-reductionistic” assumption: e.g.,
due to such Relativistic SROCS inevitably leading to both ‘logical inconsistency’ and ensuing
‘computational indeterminacy’ which are contradicted by Relativistic Systems empirical
capacity to determine both the curvature of space-time and the movement pathways of massive
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objects; as well as due to the UCP’s ‘A-Causal Computation’ “minimal time-point” USCF’s
analysis which indicates that based on the ‘Computational Invariance Principle’ proof that
only the ‘computationally invariant’ UCP exists constantly both “during” the USCF frames
and also “in-between” USCF frames, whereas the four phenomenal ‘physical’ features of
‘space’, ‘time’, ‘energy’ and ‘mass’ only exist “during” the USCF frames as produced by the
singular UCP but cease to exist “in-between” these USCF frames – we must conclude that it is
not possible for any of these four phenomenal ‘physical’ features to “cause” any change across
USCF’s frames... In other words, the discovery of the UCP singular ‘A-Causal Computation’
(alongside the Duality Principle) negates the basic “materialistic-reductionistic” SROCS
(Relativistic) current assumption, wherein it may be possible for any direct (phenomenal)
‘physical’ interaction, e.g., of any of these four phenomenal ‘physical’ features (of ‘space’,
‘time’, ‘energy’ and ‘mass’) to “cause” any change (or effect) upon another physical attribute
(e.g., such as the abovementioned ‘curvature of space-time by massive objects’ or its vice versa:
‘curved space-time’ “causing” ‘massive object to move along these curved space-time path‐
ways...) Instead, the UCP asserts that the only singular ‘A-Causal Computation’ solely
responsible for the production- sustenance- and development- of any of these four ‘phenom‐
enal physical’ features (e.g., at any hypothetical ‘spatial pixels’ comprising any single or
multiple USCF’s) is singularly conducted by the UCP’s computation of the “simultaneous co-
occurrence” of all spatial pixels comprising any such USCF.

Hence, the UCP’s singular (proven) computation of the ‘simultaneous co-occurrence’ of all
(four) phenomenal ‘physical’ features of ‘space’, ‘time’, ‘energy’ and ‘mass’ comprising all
spatial pixels in the universe at any minimal time-point (single or multiple) USCF’s necessarily
negates the possibility of any ‘materialistic-reductionistic’ relationship existing between any
of these four (secondary computational) phenomenal ‘physical’ features – i.e., including both
the curvature of space time by massive objects (or vice versa) as well as the “expansion of the
physical universe” – as “caused” by the phenomenal features of the amount of “mass” or
“energy” comprising any single or multiple ‘USCF’ frame/s... In other words, based on the
CUFT’s proven singularity of the UCP – in producing- sustaining- and developing- all (four)
phenomenal ‘physical’ features of ‘space’, ‘time’, energy’ and ‘mass’ (across all exhaustive
spatial pixels comprising the totality of the physical universe at any minimal time-point single
or multiple USCF frame/s), the UCP’s ‘A-Causal Computation’ is seen as solely responsible
for all quantum, relativistic and CUFT known (or predicted) phenomena: This includes also
the observed accelerated expansion of the physical universe – i.e., which indeed cannot be
accounted for through any ‘materialistic-reductionistic ‘ interactions between any of these
secondary computational phenomenal ‘physical’ features. Indeed, viewed from this singular
(higher-ordered) perspective of the UCP’S sole production- sustenance- and evolution- of all
spatial pixels in the universe (comprising any minimal time-point single or multiple USCF
frame/s) all quantum and relativistic phenomena, e.g., including the accelerated expansion of
the physical universe must be accounted for solely through the UCP Causal Computation;
Hence, according to the CUFT the relativistic phenomenon of the accelerated expansion of the
physical universe cannot be accounted for by the currently assumed “Dark Energy and Dar
Matter” – which represent a “materialistic-reductionistic” assumption (as explained in detail

The Computational Unified Field Theory (CUFT) – Revising Quantum & Relativistic Models
http://dx.doi.org/10.5772/59175

193



above), but instead must be explained as arising from the sole and singular production-
sustenance- and evolution- of the physical universe by the UCP...

Another interesting potential theoretical ramification of the adoption of the CUFT as a
satisfactory ‘TOE’ – including its discovery of the UCP singular ‘A-Causal Computation’, may
be its potential revision of the ‘Second Law of Thermodynamic’ (and associated ‘Arrow of
Time’ phenomenon). The ‘Arrow of Time’ enigma refers to the observation that the laws of
Physics are “biased” in such a manner that events (and phenomena) always occur in a uni-
directional temporal direction: thus, for instance, a glass may break into a hundred pieces –
but those hundred pieces will not (of themselves) revert back to form a single unitary glass...
Indeed, closely associated with this ‘Arrow of Time’ unidirectional temporal characteristic of
physical phenomena is the (famous) ‘Second Law of Thermodynamics’ which states that in
any given physical system the degree of entropy always increases with time... However, based
on the CUFT’s discovery of the singular UCP ‘A-Causal Computation’ – which was shown
(above) to negate the basic “materialistic-reductionistic” assumption (underlying both
Quantum and Relativistic models of physical reality), and one of the CUFT’s (previous: [2]
‘differential-critical’ predictions regarding the possibility of “reversing the sequence of spatial-
electromagnetic pixels” based on the application of certain electromagnetic effects, we may
need to revise this Second Law of Thermodynamics (and associated ‘Arrow of Time’ enigma);
This is because as explained earlier, none of the quantum or relativistic physical phenomena,
relationships (or even laws) can continue to be based on any “materialistic-reductionistic”
assumption/s. Hence, as shown above, neither the curvature of space-time by massive objects
or (vice versa) the determination of the movement of massive objects based on the curvature
of space-time, nor the observed accelerated expansion of the physical universe – can be
explained by the current ‘materialistic-reductionistic’ relativistic (or quantum) assumption,
but must be based on the singularity of the UCP ‘A-Causal Computation’; Indeed, as we’ve
shown (above), a fine temporal analysis of the dynamics of this singular UCP’s production-
sustenance- and evolution- of every (exhaustive) spatial pixel in the universe (comprising any
single or multiple USCF frame/s) indicates that there cannot exist any ‘materialistic-reduc‐
tionistic’ effect of any of the four phenomenal ‘physical’ features (of ‘space’, ‘time’, ‘energy’ or
‘mass’) between any two (or more) spatial pixels, i.e., either within the same USCF frames or
across different USCF frames. This is due to the UCP’s singular asserted computation of the
“simultaneous co-occurrence” of all spatial pixels in a given USCF frame (which prohibits any
“causal” materialistic-reductionistic” effects existing between any two or more spatial pixels
in the same USCF frame), as well as the UCP ‘s ‘A-Causal Computation’ associated ‘Compu‐
tational Invariance Principle’ which indicates that the sole and singular reality existing
invariantly “during” the USCF’s frame/s (e.g., as producing, sustaining and evolving any of
the four phenomenal ‘physical’ features of all of its spatial pixels) and “in-between” these
USCF’s frames is the UCP. Hence, the only source for producing- sustaining- and evolving-
any spatial pixel in the physical universe (e.g., at any given USCF frame/s) is the singular UCP,
but not any of its (computationally variant) phenomenally produced ‘physical’ features...

Therefore, also the ‘Second Law of Thermodynamics’ which asserts the increase in entropy of
any physical system with the progression of time – must be revised based on this new higher-
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ordered recognition of the singularity of the UCP ‘A-Causal Computation’: Hence, instead of
the currently assumed ‘materialsitic-reductionistic’ basis for this Second Law of Thermody‐
namics, i.e., wherein it is the physical relationships that exist between a given physical system’s
material components which “causes” the degree of entropy in that system to necessarily
increase with time, the UCP’s ‘A-Causal Computation’ points unequivocally at the singularity
of the UCP as producing- sustaining- and evolving- all spatial pixels in the universe and all
associated physical phenomena and laws... Moreover, since all four phenomenal ‘physical’
features of ‘space’, ‘time’, ‘energy’ and ‘mass’ – are shown to comprise only ‘computationally
variant’ features singularly produced by this UCP then we can foresee a condition in which
the spatial-temporal sequence of a given USCF’s frames can be reversed (i.e., at least when it
is limited to a particular physical phenomenon); This was indeed predicted as one of the
CUFT’s ‘differential-critical’ predictions [2] – i.e., regarding the possibility of reversing the
‘spatial-electromgnetic’ sequence of a given phenomenon such as the growth and decay of a
given amoeba. Essentially, this ‘critical-differential’ prediction of the CUFT states that it should
be possible at least in principle) to reverse any given physical phenomenon by recording its
precise USCF’s spatial-electromagnetic values (e.g., of each of its constituting spatial pixels
across a give number of USCF’s frames), and then applying a specific electromagnetic
stimulation (to each of this phenomenon or physical object’s spatial pixels) in such a manner
as to produce the “reversed spatial electromagnetic sequence” across the same number of given
USCF’s frames! Therefore, this CUFT’s ‘differential-critical’ prediction predicted that it should
be possible (at least in principle) to “cause” an ‘amoeba’ to “go back in time” – reversing its
spatial-electromagnetic spatial pixels’ sequence (by applying the particular electromagnetic
stimulation to each of its spatial-pixels across a given number of USCF’s frames... More
generally then, the CUFT asserts the possibility of reversing the sequence of temporal events
comprising any physical phenomenon! Therefore, it should be possible to increase the degree
of entropy in any given physical system – contrary to the (currently accepted) ‘Second Law of
Thermodynamics’!

Although apparently “radical” this ‘differential-critical’ prediction of the CUFT does not aim
to “topple down” the foundations of theoretical Physics, but rather expand our understanding
of the physical reality by incorporating both Quantum Mechanics and Relativity Theory within
a broader (higher-ordered) theoretical framework based on the discovery (and initial empirical
verification) of the CUFT and its associated singularity of the UCP ‘A-Causal Computation’;
This is simply because in light of contemporary Physics basic contradiction between its two
primary theoretical pillars (e.g., Quantum Mechanics and Relativity Theory) which has been
shown to be resolved by the CUFT, the (initial) empirical validation of the CUFT’s ‘differential-
critical’ prediction associated with the ‘Proton-Radius Puzzle’, and its discovery of the
singularity of the UCP’s ‘A-Causal Computation’ – the fundamental concepts of ‘space’, ‘time’,
‘energy’ and ‘mass’ as representing merely secondary (‘computationally variant’) ‘phenom‐
enal’ features produced by the sole reality of the (‘computationally invariant’) UCP have to be
revised: Specifically, since “time” (alongside all three other ‘phenomenal’ physical features) is
conceptualized as being singularly produced by the UCP – e.g., representing the degree of
change of any given object or phenomena across a series of USCF’s frames, then it should be
possible (at least in principle) to reverse the sequence of spatial-change across frames (through
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the application of specific electromagnetic stimulation to the relevant spatial pixels comprising
this physical phenomenon), thereby reversing the temporal events comprising this physical
phenomenon... Hence, it may be said that the Second Law of Thermodynamics accurately
represents the “natural progression” or temporal phenomena – but must be revised to include
the possibility of reversing these ‘natural phenomena’ (thereby increasing their measured
degree of entropy) across a series of USCF’s frames. In a broader theoretical sense, the
discovery of the CUFT’s ‘A-Causal Computation’ necessitates us to revise our basic ‘materi‐
alistic-reductionistic’ assumptions underlying contemporary Physics, in such a manner that
Quantum Mechanics and Relativity Theory will be anchored and based on the singular higher-
ordered operation of the UCP’s A-Causal Computation...

Therefore, we see that there is an urgent need to revise both quantum and relativistic models
(laws and phenomena) based on the CUFT’s discovery of the singularity of the UCP’s pro‐
duction- sustenance- and evolution- of the physical universe; This important task involves
several future steps, including: an empirical and mathematical verification of all of the CUFT’s
“differential-critical” predictions (e.g., beyond the initial empirical validation of one of its
‘differential-critical’ predictions associated with the ‘Proton-Radius Puzzle’ findings, men‐
tioned earlier), a revision of the laws of Physics based on the CUFT’s ‘Universal Computational
Formula’ (which in fact fully embeds and integrates the key quantum and relativistic compo‐
nents) and further explication and exploration of the new theoretical vistas offered by the CUFT
higher-ordered and broader theoretical framework (including the potential connection
between this singular Universal Computational/Consciousness Principle and individual
human Consciousness).
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 5 

 6 

1. Introduction 7 

It’s created a canonical Lie algebra in electrodynamics with all the “nice” algebraic and 8 
geometrical properties of an universal enveloping algebra with the goal of can to obtain 9 
generalizations in electrodynamics theory of the TQFT (Topological Quantum Field Theory) 10 
and the Universe based in lines and twistor bundles to the obtaining of orbital spaces [1] that 11 
will be useful in the study of superconducting phenomena. The obtained object haves the 12 
advantages to be an algebraic or geometrical space at the same time. This same space of 13 
certain L -  modules can explain and model different electromagnetic phenomena as 14 
superconductor and quantum processes where is necessary an organized transformation of 15 
the electromagnetic nature of the space-time and obtain nanotechnology of the space-time 16 
and their elements when this is affected by the superconducting fields created by the 17 
different electrodynamic Majorana states in the matter and space [2]. Then using the second 18 
quantizing formalism to the description of the behavior of the particles of the affected space 19 
for superconducting fields created by the BSC-theory (Bardeen-Cooper-Schrieffer-theory) in 20 
condensation of the matter where is conformed a fermionic space called set of pairs of Cooper, 21 
which are comported as bosons will be the domain of the QED (Quantum Electro-Dynamics) 22 
transformations of the space to different actions as magnetic levitation, electromagnetic 23 
impulse, etc. Then considering the Hilbert space of their multiple fermionic modes we 24 
obtain the fermionic Fock space which describes the quantum organized transformation of the 25 
particles to a Fock space of an arbitrary number of identical fermions explaining the 26 
superconductivity as a Bose-Einstein condensation in this process. The fluidity obtained in 27 
the Bose-Einstein condensation obeys to a Bogoliubov transformation which in this case, is 28 
our organized transformation required to produce the micro-electromagnetic effects from 29 
the actions of the operators of Lie-QED-algebra whose fermionic Fock space is the given for 30 
the affecting of the energy space where exist the fermionic modes as a Plasmon resonances. 31 

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and eproduction in any medium, provided the original work is properly cited.



Book�Title 2 

From this study are mentioned some applications to photonics using the boson link-wave to 1 
hyper-telecommunications and superconducting materials. 2 

2. A Lie-quantum electrodynamical-algebra and their corollaries 3 

2.1. A Lie Algebra in Electro-dynamics 4 

We consider the electromagnetic field or Maxwell field defined as the differential 2   form 5 
of the forms space 42( ) R ; 6 

 ,a b
abF F dx dx   (1) 7 

which can be described in the endomorphism space of ,M by the matrix (where ,a  and ,b8 
are equal to 1,2,3 ): 9 

 

3 1 1

3 1 2

2 1 3

1 2 3

0
0

,
0

0

ab

B B E
B B E

F
B B E
E E E

 
 
 

   
    

 (2) 10 

where E  (respectively B ) the corresponding forms of electric field (respectively magnetic 11 
field). 12 

We want to obtain a useful form to define the actions of the group L , on the space of 13 
electromagnetic fields ,F which is resulted of generalize to the space 2( )M , as an anti-14 
symmetric tensor algebra through from induce to the product in the product , shape that will 15 
be useful to the localizing and description of the irreducible unitary representations of the 16 
groups (4), (1,3),SO O  and representations of spinor fields in the space-time furthermore of 17 
their characterizing as principal G   bundle of M . In the context of the gauge theories (that 18 
is to say, in the context of bundles with connection as the principal G  bundles) we first 19 
observe that ,F  is an exact form and thus there exists a 1 form bA  (electromagnetic potential) 20 
that defines a connection in a (1)U   bundle on M , and such that1 21 

                                                                 
1 The anti-symmetric nature of this form results obvius: 

( ).ab a b b a ba b a a bF A A F A A            
Likewise, the electromagnetic field is the 2-form given by (6) with the property of the transformation 

' ' ' '' ( )
.

ab a b b a ac bd c d d c

ac bd cd

F A A a a A A
a a F
       


 

In 3R , said 2-form match with the 3 3 -  matrix to abB  . Remember that .B  A  
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 ,ab a b b aF A A      (3) 1 

Consider the K  invariant G  structure ( ),GS M  of the differentiable manifold 4M R , 2 
with Lorentzian metric (and thus pseudo-Riemannian) ,g  on 4R , with 3 

( ) (1,1,1, 1),Diag g    in the system of canonical coordinates 4 

  U, x, y, z, t  (4) 5 

and let the spaces , ,E H  two free R  modules (modules belonging to a commutative ring 6 
with unit R ) such that 7 

 4{ ( )  }, 
t

   


X RE bE E F  (5) 8 

and 9 

 4{ ( )  }, 
t

    


X RH bB B F  (6) 10 

where ,b is Euclidean in 3 ,R  and , is Loretzian in 4R . Such R  modules are L –11 
modules where ( ) (1,3),OL M is the orthogonal group of range 4. The two modules in (5) 12 
and (6) intrinsically define all electric and magnetic fields E,  and B , in terms of F . Thus 13 
also their tensor, exterior, and scalar products between elements must be expressed in terms 14 
of F . To it we consider the tensor product of (5) and (6) as free R  modules elements, to 15 
know2, 16 

 1 ,bE F F  bB
c

 (7) 17 

where c , is light speed and F 3, is the dual electromagnetic tensor of F . Then, what must 18 
be E B ? 19 

                                                                 
2This is valid since tensor product of free R  modules is a free R  module[5]. Here 

, .b b
b b

b b
E E dx dt B B dx dt      

3The Levi-Civita tensor can be used to construct the dual electromagnetic tensor in which the electric 
and magnetic components exchange roles (conserving the symmetry, characteristic that can be seen in 
the matrices of the electromagnetic tensor F , and their dual F ): 
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Proposition 2. 1 (F. Bulnes) [3]. Said R modules are invariant under Euclidean 1 
movements of the group (1,3),O and thus are L modules. 2 

Proof. [3]. �  3 

Now we consider electro-strength field algebra given by the (1)U  gauge field coupled to a 4 
charged spin 0 scalar field that takes the place of the Dirac fermions in "ordinary" QED. 5 

Let ( )E , be the tensor algebra generated by the elements 1 2 2 1F F F F   . Let ,J be the 6 
two-seated ideal generated by the elements 1 2 2 1 1 2[ , ].F F F F F F     Let ,e  be the Lie 7 
algebra whose composition rule is [,] . Its wanted to construct an associative algebra with 8 
unity element corresponding to ,e such that 9 

 1 2 1 2 2 1[ , ]F F F F F F     (8) 10 

We want describe energy flux in liquid and elastic media in a completely generalized 11 
diffusion of electromagnetic energy from the source (particles of the space-time “infected” for 12 
this electromagnetic energy), which must be very seemed as a multi-radiative tensor insights 13 
space or a electromagnetic insights tensor space. This will permits us to express and model the 14 
flux of electromagnetic energy through pure tensor product of Maxwell fields F, which will 15 
be useful in the symplectic structure subjacent in the quantum version of this algebra and 16 
their actions of group. After and inside of the demonstration of one result where is related 17 
the structure of this quantum version algebra with the superconducting phenomena , the 18 
quantum macroscopic effects obtained result of this inheritance of structure, having that for 19 
the energy conservation and the use of Lagrangians [4, 5]: 20 

“The rate of energy transfer (per unit volume) from a region of space equals the rate of work done on a 21 
charge distribution plus the energy flux leaved in that region” 22 

Of fact these are elements bE  bB , that are constructed from a power space given in by 23 
,E B  and that conforms the electromagnetic multi-radiative space which will be the region space 24 

with the “transmittance” of the fermions effects obtained one time that let be quantized the space25 
,E H  26 

to obtain our QED-Lie algebra necessary whose operators will act in the wrapped space (of 27 
the electromagnetic type) to get the superconducting effects accord to the Bogoliubob 28 
transformation [6] required to produce the quantum electromagnetic effects (electro-anti-29 
gravitational effects) from the actions of the operators of Lie-QED-algebra whose fermionic 30 

                                                                                                                                                                   
1 ,
2

F
 F  

where  , is the rank-4 Levi-Civita tensor density in Minkowski space. 
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Fock space is the given for the affecting of the energy space where exist the fermionic modes 1 
as a Plasmon resonances. 2 

First we demonstrate the nature of Lie algebra of this space of tensors to electro-physics. 3 

Proposition (F. Bulnes) 3. 1. The electrodynamical space ,E H  is a closed algebra under 4 
the composition law  ,      of the (1)U  connections. 5 

Proof. Let 1 1 1 1
1 ,a b b aF A A    and 2 2 2 2

2 ,a b b aF A A    two elements of ,E H A  an (1)U 6 
connection. Then the composition 1 2[ , ],F F  takes the form in function of the (1)U 7 
connections as 8 

1 1 1 1 2 2 2 2
1 2

2 2 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 2 2 1 1 2 2 1 1

1 1 2 2 2 2 1 1

1 1 2

[ , ] ( ) ( )
( ) ( )

(
)

(

a b b a a b b a

a b b a a b b a

a b a b b a a b a b b a

b a b a a b a b b a a b

b a a b a b b a

a b a b

F F A A A A
A A A A

A A A A A A
A A A A A A
A A A A

A A

      

    

       

       

    

    2 2 2 1 1 2 2 2 2

2 2 1 1 1 1 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 2 2 1 1 2 2 1 1

1 1 2 2 2 2 1 1

1 1

) ( )
{ ( ) ( )}

b a b a a b b a

a b a b b a b a a b b a

a b a b a b b a b a a b

b a b a a b a b b a a b

b a a b a b b a

b a

A A A A
A A A A A A
A A A A A A

A A A A A A
A A A A

A

    

        

       

      

   

  2 2 2 2 1 1 ,a b b a a bA A A  

 9 

Since ,ab baF F   in 4R , then 10 

1 1 2 2 2 2 1 1 1 1

2 2 2 2 1 1 ,
b a a b b a a b a b

a b b a b a

A A A A A
A A A

      

    E H
 11 

Thus 2
1 2 1 2[ , ] , , ( ).F F F F M   E H  12 

Due to that we are using a torsion-free connection (e.g. the Levi Civita connection), then the 13 
partial derivative ,a used to define ,F can be replaced with the covariant derivative a . 14 
The Lie derivative of a tensor is another tensor of the same type, i.e. even though the 15 
individual terms in the expression depend on the choice of coordinate system, the 16 
expression as a whole result in a tensor in 4R . 17 

Proposition (F. Bulnes) 3. 2. The closed algebra ( , [,]),E H  is a Lie algebra. 18 
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Proof. Consider 1 

[ , ] [
] 0,

a b b a b a a b a b

b a b a a b

F F A A A A A
A A A

      
   

 2 

Then the other properties of Lie algebra are trivially satisfied. Thus E H , haves structure 3 
of Lie algebra under the operation [,] .  4 

2.2. Lie-QED-algebra to superconducting phenomena 5 

If first, we consider the Maxwell tensors given by ,a b b aF A A    and thus of the Lie-EM-6 
algebra given in the before section, these comply the following variation principle given by 7 
the Maxwell Lagrangian. 8 

 MAXWELL
1 ,
4

ab
abF F L   (9) 9 

Then the due action to this Maxwell Lagrangian is 10 

 
4 4

4 2

1 1 ( )( )
4 4

1 ( )[ ] ( ),
2

ab a b b a
ab a b b a

ab a b
a b

F F A A A A

d kA k k g k k A k

        

   

 



dx dx
 (10) 11 

where is expected that the inner product ( ), ( ')a aA k A k , must be equivalent to an 12 

expression where the inverse of the differential operator defined by 2[ ]ab a bk g k k  ,4 appears 13 

                                                                 
4The general formula for the Gaussian integral of the last integral of (10) takes the form: 

11 1[ ]exp ( ) ( ) exp( ),
2 detabd k J JK K

K
     

   
 

  

However  in our case the operator ,abK k  comes given by 
2 4( ) [ ] ( ),ab a b

abK k x y k g k k x y       
Has the property of the projection operator, that is to say, 

4 ( ) ( ) ( ),abd yk x y k y z k x y
      

and has not inverse. This means that the Gaussian integral diverges. The reason that the free-field part 
of the action integral given in (10) is singular is due to the gauge invariance which projects out the 
transverse gauge fields. In the path integral for the free-field part given by 

 0
4 4( )exp [ ] ,a

a ad A i d x J A  L  
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in the product given in the covariant rules of Feynman diagrams. The field equation that 1 
must be to solve is 2 

2 2 2[ ] ( ) [ ] 0,ab a b a a
bk g k k k k k k k k        3 

which is particular case of the Bulnes´s equation in the curvature context [4] to (1).G U  Here 4 
,a ak    ,a ak   and k  . 5 

We consider the model that consists of a complex scalar field ( ),x  5minimally coupled to a 6 
gauge field given by 1 forms ( (1)U   gauge field) “coupled to a charged spin 0 scalar 7 
field” and that satisfy: 8 

 1 1( ) * ( * ) ,
2 4

a ab
a abD D U F F     L  (11) 9 

where ,abF  has been defined in the section 2. 1. We define to ( ),a a aD ieA      as the 10 
covariant derivative of the field  , also e , is the electric charge and ( , *)U   , is the 11 
potential for the complex scalar field. This model is invariant under gauge transformations 12 
parametrized by ( ),x  that is to say, are had the following transformations to the fields: 13 

 ( ) ''( ) ( ), ( ) ( ) ( ),ie x
a a ax e x A x A x x        (12) 14 

If the potential is such that their minimum occurs at non-zero value of ,  this model 15 

exhibits the Higgs mechanism. This can be seen studying the fluctuations about the lowest 16 
energy configuration, one sees that gauge field behaves as a massive field with their mass 17 
proportional to the e , times the minimum value of  . As shown by Nielsen and Olesen 18 

[7], this model, in 2 1 , dimensions, admits time-independent finite energy configurations 19 
corresponding to vortices carrying magnetic flux. The magnetic flux carried by these 20 

                                                                                                                                                                   
we have summed over all field configurations including “orbits” that are related by gauge 
transformations. This over counting is the root of the divergent integral. Thus we have to remove this 
“volume” of the orbit in this quantization. In the case where the quantizing is realized by the scalar field 
theory to our superconducting phenomena, the “orbits” are considered as part of the interactions spin-
orbit, and the Lie-QED structure to the orbits will be conserved. 
5In a complex scalar field theory, the scalar field takes values in the complex numbers, rather than the real 
numbers. The action considered normally takes the form 

d-1 d-1 21 [ * ( )],
4

ab
a bxdt xdt V          Ldx d  

This has a (1),U or, equivalently (2),SU symmetry, whose action on the space of fields rotates

,ie   for some real phase angle .
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vortices is quantized (in units of 2
e
 6) and appears as a topological charge associated with 1 

the topological current [8]: 2 

 ,a abc
top bcJ F  (13) 3 

These vortices are similar to the vortices appearing in type-II superconductors. These in the 4 
superconducting theory are acquaintance as fluxoids. There exist some thermo-dynamical 5 
conditions established to the existence the superconductor of type II7. 6 

Theorem. (F. Bulnes) [1, 9, 10] 2. 2. 1. We consider 21( ) / 4 ,
2i k ikF H H H     8and 7 

2 / 8 ,S extF H n  
  with the Hamiltonian foreseen in the Appendix A given by (A. 12), of the 8 

                                                                 
6If   S , is away from of the borders and  rounds to the hollow (see the Figure 1) and suppose that is 
have applied a magnetic field to this superconductor  ,S  then 

,2*
*

*











 ndlA

c
eJ

en
m

s   
But 0,J   (inside the superconductor (or ring in the experimental Figure 1) there not are currents) then 




 ,
*e
cnAdl 

For the Stokes theorem is had that 

 
 

 ,
S

BdSAdl

To it is necessary remember that the superconducting current sJ , haves an unique value in each point, 
which is equivalent to that the density of superconductor electrons is injective in each point. This bring 
as consequence that in a close circuit  , of length 2 , we have  

(2 ) (0) 2 ,n    
For the circulation around a close circuit  , and considering that  

,aA  
we have that on the close circuit  , 

,2


  ndla  

that in our case is  

0 .n    
7Its considered the superconductor of the type I, in the intermediate state (1 ) ,n  c cH H H
(ellipsoidal superconductor) and we calculate the transition to type II, with ( ) ( )[9,10].T T   

8Where the term 21 ,
2 ikH  is the term of the tensor F, corresponding to the free or total energy of the 

magnetic field of the superconductor, which involves the thermodynamic effects foreseen in (9), for 
"compression", to which is subject the surface of the object O (see theAppendix A). 
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Lemma. A. 1., and their proof, where is satisfied the inequality on magnetic energy necessary 1 
to all magnetic process of superconducting 2 

 3 
Figure 1. Ring region where is applied a magnetic field in a superconductor .S  This magnetic field 4 
could realize iso-rotations and levitation force and impulse. The magnetic flow is intense in this region 5 
and the lines of intensity of magnetic field behave like it is pointed out. Inside of hollow the current is 6 
zero. The region of fluxoids will be generated from the inner of the ring where not exists current but yes 7 
magnetic flows doing it in discrete form. 8 

 2 2 2
08 ( (1 )) 8 ,v

O O

nH H h H dV H dV      


   (14) 9 

Then a sensorchip to magnetic flux (pressure on the surface of O ) to super-currents is 10 
defined by the inequality 11 

 0( , ) ( ) ,s
V S

j x y z dV BdS n           (15) 12 

where 0 ,  is a fluxoid ( 7 2/ * 2.07 10c e gauss cm    ), being * 2 ,e e where ,e  is the 13 
charge of electron. 14 

Proof. [9]. �  15 

 16 
Figure 2. One has a view of profile of the magnetic flow of a plate under magnetic field (this simulation 17 
was published in the Proceedings of Fluid Flow, Heat Transfer and Thermal Systems of ASME in the 18 
paper IMECE2010-37107, British Columbia, Canada with all rights reserved ® [9]). 19 

Developing these topological electromagnetic elements using the tensor abc , we have to 20 
two Maxwell tensors: 21 

 1 1 2 2 2 2 1 1
1 2 2 1( ),b c b c c b c bJ A A A A F F F F           (16) 22 

precisely is our tensor algebra given in the proposition 3. 1., with their conserved Lie 23 
structure. 24 
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The essential difference between both versions consists in the coupling to a charged 0,spin1 
scalar field, that in this case is a scalar magnetic field corresponding to a magnetic flow 2 
associated to the supercurrent sJ . 3 

Considering the supercurrent sJ in presence of magnetic field of vector potential, this takes 4 
the form 5 

 
2 2* ( *)( * *) ,

2 * *s
e eJ A
m i m c

        
   (17) 6 

where ,  is a function very general of complex type that are changing spatially and that in 7 
an any point this function depends of the order parameter (as coherent length, penetration 8 
length, etc parameters that are useful to characterize a superconductor [11]) and 2 ,sn  is 9 
the density of the superconducting electrons.  10 

Considering the action (10) and the proper to the Lagrangian (11), the electromagnetic total 11 
action to all electromagnetic phenomena (included the given in ordinary electromagnetism) 12 
using the scalar field theory takes the form: 13 

 
2

2

1 1* [ ] [ (1 ) ]
2

(( *) * ) * ,

a ab a b
a a b

a a a
a a

S m A g A

ieA e A A

  


     

        

    

  (18) 14 

in where and under certain physical conditions of symmetries we can establish the 15 
following relations between the complex functions ,  and *,  and their covariant 16 
derivatives  , *,  and the proper to the scalar fields given by , ( *)a  , *,  and a  17 
obtaining the pure action to superconductors given by the integral: 18 

 2( * *) * ,a
s a aS ieA e A A             (19) 19 

which appears in the superconductor under energy regime given by their corresponding 20 
Hamiltonian defined in (A. 12) of the appendix A. The representation spaces that appear are the 21 
Fock states spaces and are corresponded in the superconductivity with the photon states 22 
spaces where there exist the interaction photon-phonon-photon [12] under frame study of the 23 
microscopic theory of the superconductivity. In a second affirmation, is necessary consider 24 
that electrons in superconductivity are moving in a very special enthrone, that is the crystalline 25 
net formed by ions that constitute the solid which we want that be superconductor under the 26 
application of field actions as given in (19) on the solid of object O . 27 

We consider a particles system, all identical, that is to say, undistinguishable, that is to say, 28 
the interchange of two of them not change the measurable properties of the system. Let 1 ,e  29 
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and 2 ,e  two electrons and we suppose that the electron 1 ,e  is in a state that comes 1 
represented by the function ,n  (wave function), for other side, the electron 2 ,e  comes 2 
represented by the wave function ,m  and we suppose for last that the direct interaction 3 
between these two electrons is quasi-vanishing. Then we can describe the system of these 4 
two electrons by the wave function 1 2( ) ( ).n me e   Remember that the two particles are 5 
identical, thus the interchange of the two let us equal the system. Then also is valid as before 6 
that 2 1( ) ( ).n me e   Then the total wave function with the interchanges realized by the two 7 
electrons takes the form: 8 

 1 2 2 1
1 [ ( ) ( ) ( ) ( )],
2 n m n me e e e        (20) 9 

and their conjugated 10 

 1 2 2 1
1* [ ( ) ( ) ( ) ( )],
2 n m n me e e e       (21) 11 

But if the two states are the same state, then only 0,   since * 0  . Then the system is 12 
anti-symmetric in the interchange of two particles, that is to say, the wave function is anti-13 
symmetric under the interchange of electron coordinates. But by the Pauli Exclusion Principle 14 
the situation described in the total wave function ,  is incorrect, being the correct by * . 15 

But the before help us to establish the anti-symmetric structure of the interaction between 16 
pair of particles in the microscopy superconductivity theory and reflected this anti-17 
symmetry property also in every spin-orbit interaction of every wave function to the two pair 18 
electrons that satisfy the total wave function * . 19 

Considering to an electron field, a representation ,: VE  where ,V , is a Hilbert space 20 
and whose correspondence rule is 21 

 ( ),e e   (22) 22 

and let ,J  9the two-sided ideal in the tensor algebra defined in the section 2. 1, ,( ),E23 
generated by the elements of the form 1 2 2 1e e e e   , where 1 2,e e E . 24 

Proposition 2. 2. 1. There is a natural one-to-one correspondence between the set of all 25 
representations of E , on ,V  and the set of all representations of / J,E E on .V . If ,  is a 26 
representation of E , on ,V  and , ,*  is a representation of / JE E , on ,V  then 27 

 ,  , ( ) * ( *)e e   e E  (23) 28 

                                                                 
9Remember that ,J from a point of view of the superconductors is a topological current associated with 
the topological charge defined related with the magnetic flux carried by the fluxoinds.  
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Proof. Let ,  be a representation of E  , on .V  Then there exists a unique representation ,1 
of ,( ),E  on V  , satisfying that ,  . ( ) ( )e e   e E  Then mapping , , vanishes on the 2 
ideal ,J , became 3 

 1 2 2 1 1 2 1 2 2 1 1 2( [ , ]) ( ) ( ) ( ) ( ) ([ , ]) 0,e e e e e e e e e e e e              (24) 4 

Thus we can define a representation ,* of factor algebra / JE E , on V , by the condition5 
* .    10Then (23) is satisfied and determines ,*  uniquely. Also is unique, indeed 6 

suppose other representation, for example  , / JE E  of on V . If e E , we put 7 
( ) ( *)e e  . Then the mapping ( ),e e  is linear and is a representation of E  on V  , since 8 

1 2 1 2 1 2 2 1

1 2 2 1 1 2 2 1

([ , ]) ([ , ]*) ( ( ))
( ) ( ) ( ) ( ) ( ).

e e e e e e e e
e e e e e e e e

   

       

    

    �
 9 

Considering in particular the representation given for *,  11we have that Lie-QED-algebra 10 
structure to the spin and orbits is conserved. Indeed the spin and orbit parts can be 11 
separated in each wave function as for example, from (24) we have that if 1 1 1( ) ( ) ( ),e r s   n12 
and 2 2 2( ) ( ) ( ),e r s   m  then (24) defines * . Remember that the electron is a fermion and 13 
the electrons are described for the anti-symmetric wave functions. This property will be 14 
fundamental in the section relative to the construction of the fermionic Foch space 15 
corresponding to the Lie-QED-algebra. 16 

Def. 2. 2. 1. [10]. A -E H field is an element of a bi-sided ideal of the Maxwell fields [1, 6]. 17 
Explicitly is the formal space 18 

 1 2 1 2 2 1 1 2,  , with  ,         RF F O O F F F F F  F2 2E H  {( ) ( ) ( )    [ ]    },   (25) 19 

Before of this, we pass to the fundamental lemma to characterize the algebra ,E H  as the 20 
fundamental algebra of all movements and electromagnetic phenomena (for example, 21 
magnetic levitation, electromagnetic matter condensation, Eddy currents, etc) produced to 22 

                                                                 
10 Its realized the following descend map  ,  from : ,    E E E  to *: / .    J E E E  
11It is the Slater determinant (that helps to construct wave functions to start of the expressions  

1 1 2 2( ) ( ) ( ) ( )n mr s r s     where , ( 1,2)i ir s i   are the radius of the orbit and spin respectively) , for 
example: 

1 1 2 2
1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )1 1* [ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2 2

( ) ( ) ( ) ( )]

n n
n m

m m

m n

r s r s
r s r s

r s r s
r s r s

   
   

   
   

   
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quantum level by their electromagnetic fields satisfying the variation principle in their field 1 
actions. 2 

Lemma (F. Bulnes) [10] 2. 2. 1. All electromagnetic actions and their effects (microscopic and 3 
macroscopic) on the superconductor object O , comes from the -E H fields. 4 

Proof. [10].  5 

One important fact inside the demonstration of the lemma 2. 2. 1, was consider the bi-sided 6 
ideal given by the space (25) whose actions are extended to all space from the 7 
superconductor O , until the infinite (ambient of O ) through the gauge transformations 8 
used by the Lie-QED-algebra . Then by the lemma A. 1 (F. Bulnes), given in the appendix A, 9 
of this work [9], the quantum effects underlying in superconducting phenomena satisfies 10 
that 11 

2

2
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M M i k ik
O

M
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L x s d x s H dV

 
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 
      

 
 



 
 12 

where 2 / 8H  , is the free magnetic energy and the integral of the Lagrangian, of the 13 
expulsion by the action , and that is useful to establish the macroscopic wave functions that 14 
give place to a microscopic quantum current Js. By the mathematical electrodynamics [3] we 15 
can define using the structure of ,E H (that is to say, a module of the exterior algebra 16 
which is deduced by the universal map applied to each term of the element 17 

1 2 1 1 2,   2F F F F F  F  [ ] ) that: 18 

 * , * ,
O

dS dS    
 

    
O

J J - J  *( , )  (  )  (26) 19 

where ,J  , and * ( ),conj  , such that 2 , * ,   which is (19) in the 20 
supercurrents modality. As the last integral (18) measures effects due to the macroscopic 21 
actions to level quantum, this proved the affirmation of the lemma 2. 2. 1, in microscopic 22 
theory of superconductivity and also the macroscopic effects due to the Eddy currents must 23 
satisfy the magnetic force equation [9] to magnetic levitation. 24 

2.3. Photon spin algebra from E H  25 

The same Lie structure is conserved to the electromagnetic spin algebra. The Lie structure of 26 
the macroscopic level given and demonstrated to the space E H , in the before subsection 27 
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2.1, and using after through the path integral quantization on Lie bracket 1 2[ , ],e e  given in 1 
the subsection 2. 2 can establish a version of this quantized Lie algebra to quantum spin 2 
number (parts ( )is ) associated to the photons that interact in the superconducting 3 
phenomena on the quantum macroscopic effects generated by the superconducting currents 4 
(for quantized electromagnetic fields). Then the QED- algebra obtained conserves the Lie 5 
structure to spin electromagnetic operators. 6 

The photon can be assigned a triplet spin with spin quantum number 1,s  accord to the 7 
classification of particles and their spin. This is similar to, say, the nuclear spin of the N8 
isotope, but with the important difference that the state with 0,sM   is zero, only the states 9 
with 1,sM    are non-zero. We consider the electro-spin operator as the vector with their 10 
Pauli matrices associated12: 11 

 ,( 1,2,3),
2k ijk kS i k    


  (27) 12 

Then we can define the analogous of E H  to the quantum spin context as the algebra: 13 

  [ , ] ,i j ijkS S i      kSe h   (28) 14 

which is closed under the bracket [,] ,  operation . Indeed, we consider two elements 15 
,,i jS S  e h  given by the relations 16 

 ( ), ( ),i j k k j j k i i kS i S i                   (29) 17 

satisfying the cyclically rule i j k i   . Then their operation under [,],  is 18 

.

2

2

[ , ] ( )( )

( )( ) ( )
i j j k k j k i i k

k i i k j k k j i j j i k

S S

i i i S

       

           

        

               



    e h
  19 

For simple inspection it follows that 20 

 ( ) ( )( ) ,i j j ii              (30) 21 

                                                                 
12In the special case of spin 1 / 2  particles, ,x ,y and ,z are the three Pauli matrices given by: 

0 1 0 1 0
, , .

1 0 0 0 1x y z

i
i

  
     

       
       
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with 1    or 1,  and therefore labels the photon spin, , , ,zS   k k  with 1    or 1 
1.  Then due the vector potential is a transverse field the photon has no forward ( 0  ) 2 

spin component. 3 

3. Fermionic Fock spaces of the superconductivity 4 

By the BSC-theory we have a Cooper pair is a magnitude whose spin is zero. But spin zero 5 
are bosons, then is easy fall in the temptation of treat a Cooper pairs as bosons. Furthermore, 6 
we have indicated that few many more Cooper pairs, better energy will be the process of 7 
superconductivity. However, the Pauli principle remains in force and the state formed, for 8 
example by ( , ),k k    cannot be occupied for more than a pair of electrons at the same time 9 
(see figure 3). 10 

 11 
Figure 3. BSC fundamental state with three Cooper pairs. 12 

Also the Hamiltonian in the BSC-theory is constructed by operators (that is to say, their 13 
formalism with that is calculated the energy of the fundamental superconductor state are anti-14 
commutative) follows anti-commutative rules as was discussed in the introduction of this 15 
paper. But involve a boson that is created an interaction between fermions13. The wave 16 
function such and as is proposed by the BSC-theory to ,  electrons (foreseen in (21) to the case 17 
of only pairs of electrons) is the product of wave functions of pair conveniently anti-18 
symmetrized, that is to say: 19 

 (1,2, , ) (1,2) (2,3) (1 , ),          (31) 20 

If we not write explicitly the part of spin and only we do with the orbital part we have: 21 

 1 1 2 2 /2 1 /2

1 /2
1 2 /2

( )(1,2, , ) ,i k r k r k r k r
k k

k k k
e      




      
    (32) 22 

                                                                 
13To difference of the London superconductivity where a charged gas of bosons produces naturally a 
Meissner effect. 
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where each term of this wave function describes a configuration where the ,  electrons is 1 
grouped in / 2,  pairs that are: 2 

 1 1 / 2 / 2( , ) ( , ),k k k k    (33) 3 

The spin part is immediate, each electron of each pair haves opposite spines. The wave 4 
function is a complicated function that covers all the related pairs between them. This takes 5 
the form from excited states are obtained as linear combinations of the ground state excited 6 

by some creation operators †

1
0 0

k

n

i
k

a


 ,to the wave functions as: 7 

 ,k
k

   (34) 8 

Using the second quantizing formalism to the Fock space in appendix B,, we have that the 9 
potential energy to said pairs is: 10 

 †
, '

, '
,k k k k

k k
V V b b  (35) 11 

The term of kinetic energy of the corresponding Hamiltonian considering the energy in the 12 
Fermi level is: 13 

 † †

, '
2 ,k k k k

k k
E b b b b    (36) 14 

where to the states of exited electrons (super-electrons) appear the trenches (to break the 15 
pairs and get to superconductivity peak state (see the figure 4A) and 4B)). 16 

The fermionic Fock space is (B. 1) where for second approximation we have 17 

 0 1 2 ,  F  H H H  (37) 18 

whose energies of the electron are ,k  and ,k q   with momentums to two electrons in 19 

superconducting states ,hk  and ( )h k q  respectively. This interaction is negative since is 20 
attractive, Then the potential is: 21 

 
2

2 2( , ', ) , ,
( ) ( )

q

k k q q

A
V k k q



  


 




 (38) 22 
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where ,A  is a coupling electron-fonon. Then 1 

 ,k q k q       (39) 2 

Then after of realize some calculations in the fermionic Fock space is had that 3 

 2 2 1/ 2( ) ,k   F  (40) 4 

where ,  is the minimum energy of excitation, that is to say, the value of energy trenches 5 
that appears in the superconductor state (see the Figure 11A, in the last section). These trenches 6 
have a big variation with respect to the absolute temperature of the material. The energy ,k7 
is the quasi-particle energy, that is to say, the energy of the holes of the fermions distribution 8 
when happen the excited states. The trenches energy as the excited states shape the 9 
orthogonal space of infinite dimension separated by the Fermi momentum. 10 

 11 
Figure 4. A) Nano-wire device to break Cooper pairs. The Cooper pairs must be break to obtain the 12 
maximum superconductor state. The super-electrons are transformed in Fermi liquid which established 13 
the required transformation of the immediate region of the space-time where must be executive to 14 
transformation due superconductivity [2, 13, 14, 15]. B). Spectral density of electron-phonon. 15 

Indeed, consider a system of fermions with an one-body Hamiltonian of the form (accord to 16 
(32) and (34)): 17 

 †
0

ˆ ˆ ˆ ,k k k
k

H a a E   (41) 18 

When all particle energies ,k  are positive, the ground state of the system is the vacuum 19 

state vac ,  with all 0.kn   In terms of the creation and annihilation operators said state 20 

vac ,  can be identified as the unique state killed by the the annihilation operators, that is to 21 

say, vacˆ 0, .ka k   The excited states of the Hamiltonian (50) are    particle states which 22 

obtain by applying creation operators to the vacuum, vac
1

† †
1 ˆ ˆ, , ,k kk k a a

    the energy 23 

of such a state is 
10 0 .k kE E E 


      24 
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Now suppose for a moment that all the particle energies ,k  are negative instead of positive. 1 
In this case, adding particles decreases the energy, so the ground state of the system is not 2 
the vacuum but rather the full-to-capacity state 3 

 
all  

full all vac†ˆ1 ,k
k
a  kn  (42) 4 

with energy 5 

 full
full  

0 ,k
k

E   E  (43) 6 

Never mind whether the sum here is convergent; if it is not, we may add an infinite constant 7 
to the 0 ,E  cancel the divergence. What’s important to us here are the energy difference 8 
between this ground and the excited states. 9 

The excited states of the system are not completely full but have a few holes. If we consider10 

1
0,k kn n


    for some   modes 1( , , ),k k  while all the other 1.ln   The energy of 11 

such a state is 12 

 full full
1

0
, , 1

,
il k

l k k i
E E E 





 

     


E  (44) 13 

In other words, an un-filled hole in mode ,k  carries a positive energy k . 14 

In terms of the operator algebra, the full ,  state is the unique killed by all the creation 15 

operators, full†ˆ ,ka k . The holes can be obtained by acting on the full ,  state with the 16 
annihilation operators that remove one particle at a time. Thus, 17 

 hole at  other   1 fullˆ ˆ1 ,  k kk n n a  (45) 18 

and likewise 19 

 1holes at full
12 ˆ ˆ, , ,k kN k k a a

  k  (46) 20 

Altogether, when the ground state is full ,  the creation and annihilation operators 21 

Exchange their roles. Indeed, the ˆ ,ka  make extra holes in the full or almost-full states, while 22 

the †ˆ ,ka  operators annihilate those holes (by filling them up). Also the algebraic definition of 23 

the full ,  and vac , states are related by the exchange: vac vs full†ˆ ˆ0, , , .k ka k a k    24 
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To make this exchange manifest, let us define a new family of fermionic creation and 1 
annihilation operators, to know, 2 

 † †ˆ ˆˆ ˆ, ,k k k kb a b a   (47) 3 

Unlike the bosonic commutation relations, the fermionic anti-commutation are symmetric 4 
between †ˆ ˆ,a a , so the †ˆ ˆ, ,b b  satisfy exactly the same anti-commutation relations as the ˆ ,ka  5 

and †ˆ ,ka  6 

 
† † †

,
ˆ ˆ ˆ ˆ ˆ ˆ{ , } 0,{ , } 0,{ , } ,l k l k l k lb b b b b b   k  (48) 7 

Physically, the †ˆ ,kb  operators create holes while the ˆ ,kb  operators annihilate holes and the holes 8 
obey exactly the same Fermi statistics (as given in the Figure 4B) as the original particles. In 9 
condensed-matter terminology, the holes are quasi-particles, but the only distinction between 10 
the quasi-particles and true particles is that the later may exist outside the condensed 11 
matter. When viewed from the inside of condensed matter, this distinction becomes 12 
irrelevant. 13 

Anyhow, from the hole point of view, the full ,  state is the hole vacuum which is the unique 14 

state with no holes at all, algebraically defined by fullˆ 0,kb k  . The excitations are  15 

hole states obtained by acting with hole-creation operators †ˆ
kb , on the hole-vacuum, 16 

1 holes at full
1

† †
2, , k kk k b b

  k . Then the Hamiltonian operator (32) of the system 17 

becomes14 18 

 full
† †

0
ˆ ˆ ˆ ˆˆ (1 ) ( ) ,k k k k k k

k k
H E b b E b b         (49) 19 

in accordance with individual holes having positive energies 0k  . 20 

The ,k  modes are eigenspaces of some conserved quantum numbers such as momentum or 21 
spin (or rather ˆ

zS ). When one makes a hole by removing a particle from mode ( , ),sp  the net 22 
momentum of the system changes by ,p  while the net ,zS  changes by ,s  so one can say 23 
that the hole in that mode has momentum ,p  and zS s  . Consequently the hole 24 
operators are usually defined as 25 

 ,  - , - ,  - , -
† †ˆ ˆˆ ˆ, ,b a b a s s s sp p p p  (50) 26 

                                                                 
14 † † †ˆ ˆ ˆ ˆˆ ˆ (1 ).k k k k k ka a b b b b    
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which leads to 1 

 Tot full
†

, ,
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ˆ ˆˆ ,s s
s

b b   p p
p

P  P p  (51) 2 

and likewise 3 

 Tot full
†

, ,
,

ˆ ˆˆ ,z z
s s

s
S S s b b   p p

p
 (52) 4 

Finally, consider a system where the energies ,k  take both signs: positive for some modes 5 
,k  but negative for other modes. For example, a free fermion gas with a positive chemical 6 

potential ,  and free-energy operator 7 

 
2

†
, ,

,

ˆ ˆ ˆ( ) ,
2 s s

s
H a a

m
  p p

p

p  (53) 8 

has positive ,  for ,fpp  where ,fp  is the Fermi momentum defined by the threshold 9 

0
2m

 
2
fp

 (see figure 4). For this system the ground state is the Fermi sea where 10 

 ,

for  

for    

1
( ) ,

0
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f
f

p
n p

p

     
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sp

p
p

p
 (54) 11 

In terms of the creation and annihilation operators, the Fermi sea is the state (directly from 12 
†

1
0 0

k

n

i
k

a


 ): 13 

 
 only

 , 
,

Fermi sea vac†ˆ ,
fp

a


  s
s

p

p
p

 (55) 14 

which satisfies 15 

 Fermi sea,ˆ 0,sa p  (56) 16 

for ,fpp  and 17 

  , Fermi sea†ˆ 0,a sp  (57) 18 
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for .fpp  1 

We may treat this state as a quasi-particle vacuum if we re-define all the operators killing 2 
the Fermi sea , as annihilation operators. Thus we define new (59) for .fpp  only. But 3 

keep the original operators ,ˆ sap , and ,
†â sp  acting with momentum outside the Fermi surface. 4 

Despite the partial exchange the complete set or creation and annihilation operators satisfies 5 
the fermionic anticommutation relations having: 6 

 
all

all

all

† † † † † †

† † †

ˆ ˆ ˆˆ ˆ ˆ{ , } { , } { , } 0,
ˆ ˆ ˆˆ ˆ ˆ{ , } { , } { , } 0,

ˆ ˆˆ ˆ{ , } { , } 0,

a a b b a b
a a b b a b
a b b a

  

  

 

 (58) 7 

and also 8 

  ,  , 
† †

, , ' , , '
ˆ ˆˆ ˆ{ , } , { , } ,s s s s s sa a b b    s sp p p, p' p p p, p'  (59) 9 

if we restrict the ,
ˆ

sbp , and ,
†b̂ sp , to ,fpp  only and the ,ˆ ,sap  and ,

†â sp , to .fpp  10 

 11 
Figure 5. A). Fermi surface to the gold (Au). All Au-quasi-particles must shape this surface with the 12 
number of pairs corresponding to the metal to the superconducting state. This surface in the BCS-theory 13 
shapes the quantum nucleus of the interaction electron-fonon-electron corresponding to the fermionic 14 
Fock superconducting space [16, 17].. B). Fermionic Fock superconducting space conformed with for 15 
Cooper pairs: (red particle k  , blue particle k  ). The net is obtained by the adding of quantum 16 
Hilbert spaces respectively. 17 

The Fermi sea Fermi sea , is the quasi-particle vacuum state of these fermionic operators. 18 

The two types of creation operators ,
†â sp , and ,

†b̂ sp , create two distinct types of quasi-19 
particles (respectively the extra fermions above the Fermi surface and the holes below the surface). 20 
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Both types of quasi-particles have positive energies. Then in terms of our new fermionic 1 
operators, the Hamiltonian takes the form: 2 

 
2 2

Fermi Surface 
† †

, , , ,
, ,

ˆ ˆˆ ˆ ˆ( 0) ( 0) ,
2 2s s s s

s s
H E a a b b

m m
          p p p p

p p

p p  (60) 3 

with the domains to every sum ,fpp  only (in the first sum) and ,fpp  only (in the 4 

second sum). 5 

Clearly (60) describes elements of the fermionic Fock space given in (37). 6 

4. Fermionic C*-Lie-QED-algebra 7 

Theorem (F. Bulnes) 5. 1. The electro-anti-gravitational effects produced from 8 
superconductivity have that to be governed by the actions of the superconducting Lie-QED-9 
algebra E H . 10 

To demonstrate the before result is necessary to define the electro-anti-gravity in the 11 
formalism of the Lie-QED-algebra and their C*-algebras associated to her. The electro-anti-12 
gravity is obtained through of experiments where a fast rotating superconductor reduces the 13 
gravitational effect. Of fact the rotation is fundamental and necessary to the complementing 14 
of the anti-gravity effects searched through the magnetic levitation (see the Figure 6. where 15 
were realized many experiments with rotating geometrical pin, using the high intense 16 
magnetic field). 17 

 18 
Figure 6. Magnetic levitation by fast rotating magnet. 19 

The demostration of this theorem has been realized in part, by the lemma 2. 2. 1. However 20 
we require other additional lemmas that have that to see with other aspects, as the iso-21 
rotations (condition established and illustrated in the experiments realized in the Figure 6) 22 
and the condensation effects of the matter required in the transmission process through a 23 
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“bosonic cloud” of the plasmons in the quantum transmission of the electro-anti-gravity 1 
effect. The concluyent aspect in this last digression is that the rotation movement to very fast 2 
velocity and the superconducting phenomena must be togheter and due to the Lie structure 3 
of our QED-algebra, this rotations will be inside the E H - fields as images of orthogonal 4 
transformations of the special orthogonal group (2),SO  15and their topological essency let to 5 
see the inherent geometrical properties to an application of our superconductor electro-6 
fields as was demostrated in the following lemma [9] and mentioned in [18]: 7 

Lemma (F. Bulnes) 5. 1. Let / ( ),G C T CS  be with ( ),C T  a space of orbits (hypersurfaces), 8 
generated by the electro-fields on ,O  by the realization of movements given for (2),SU9 

through of the action of their Maxwell fields ,F  given by 21( ) / 4 ,
2i k ikF H H H     in  10 

the superconductor. Then the orbits engendered by the actions ,M on ,M are magnetic 11 
torus engendered by rotations (2) ( ), ,SO x s x M   generates by fluxoids 0 , in the vortex 12 
zone 8. 13 

Proof. [9].  14 

Then an analogous to QED of the fields ,F  will have that consider in the states generated in 15 
a Fock space ,F  the corresponding transformation of a subgroup of ( ),O n  that is to say, the 16 
automorphism of the group must act on fermionic states of the space, where the electro-anti-17 
gravity comes established to change of spin-orbit from 1,sM    to 1,sM    (or viceversa), 18 
in a bose-Einstein distribution in the matter condensation phenomena to produce an electro-19 
anti-garavity wrapping of the object O . 20 

One important fact is that there exist orthogonal invariance of the CAR-algebra on a Fock 21 
space, that is to say, the Fermionic Fock space is invariant under rotations, that is tosay, 22 

,( ) ,O n    F  where explicitely the orthogonal group is: 23 

 ( , ) ( , ) },T TO n K Q GL n K Q Q QQ I     (61) 24 

If we consider the subgroup (2),SO  of (2, ),O K  we have that the group (1),U  of the 2-forms 25 
abF , satisfy: 26 

 (1) (2) (2),U Spin SO   (62) 27 

                                                                 

15  2

cos sin
(2) , [0,2 ] .

sin cos
SO A GL A

 
 

 
 

     
 
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having the considered in the section 2. 3. Then all particle represented for their energy (by 1 
their wave function  ) can change their behavior using a gauge group as (1),U , or (2).SU2 
This last enclose the all electromagnetic phenomena around of the superconductivity that 3 
we want cover. Remember that we required to obtain anti-gravity from the E H - fields of 4 
our superconducting Lie-QED-algebra. 5 

Then considering two elements of the group (2),SO  , for example 1 2, ,e e  E H  the 6 
representation fulfils (by proposition 2. 2. 1) is 7 

 1 2 2 1 1 2 2 1( ) ( ) ( ) ( ) ( ),e e e e e e e e          (63) 8 

and the field is transformed as 9 

 ',   (64) 10 

where explicitly the image ' ( )J   . From this always is possible construct a second 11 
representation defined by: 12 

 1* ( ) (( ) ),TJ J     (65) 13 

which belongs to the charge-conjugated particle. The anti-particle is obtained of accord to 14 
the contragradient ,  representation, which is: 15 

 1( ) ( ),J J     (66) 16 

There are not charge-conjugated in gravity, since if the gauge group is Lorentz group 17 
(3,1),SO  then elements 1 ,TJ J 

  , which means that the second representation * , is 18 
equivalent to  . 19 

But we need affect the immediate space-time at least locally through of these E H - fields, 20 
such that we will have the anti-particles given in (75). Also we need a mapping that involves 21 
and include in their image the spin connection that is involved in this anti-gravity process 22 
from superconductivity. 23 

We define the field  , as a vector field whose application is as given in (64) 24 

 1' , ' ,       (67) 25 
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under a general diffeomorphism  , that is to say, the mapping belonging to the space 1 
( , *)Diff TM TM , where ,TM  is the dual to *T M . But we required local transformations at 2 

least in the immediate enthrone of object O , such that be anti-gravitational and this local 3 
enthrone acts with the space-time to create levitation in O . 4 

 5 
Figure 7. Rotations and anti-gravitational wrapping energy. An example of this idea is the cloud energy 6 
in the formatting iso-rotations in a galaxy, in condensed matter to sidereal objects with autonomous 7 
energy. 8 

Then the principal equivalence requires that the fields on our manifold locally transform be 9 
as in special relativity, that is to say, if , is an element of the Lorentz group ,16 the fields are 10 
transformed like Lorentz-vectors. Of fact this property is extended to all electro-physical 11 
modules E , and ,H  like L modules17. 12 

However, the generalization to a general diffeomorphism is not unique. We could have 13 
chosen the field  , as a vector field whose applications ( , *)Diff TM TM are 14 

 1' ( ) , ' ,T T        (68) 15 

But as  , is an element of L , that is to say 1 T   , both representations (67) and (68) 16 
agree. For general diffeomorphism that will not be the case, although introducing a new 17 
field that have a modified scaling behavior, this can be possible to affected to the space-time 18 
by E H - fields. Then is considered Isom( , ),TM TM   such that to fields 19 

, ' ' ' ,        one finds the behavior 20 

 1 1' ( ) ,T      (69) 21 

It will be useful to clarify the emerging picture of space-time properties by having a close 22 
look at a contravariant vector field  , as depicted in the wrapping energy around O , (see 23 
                                                                 

16
4 4 { ( ) ( , ) }, ( , ), ,g p q p q      L R RGL g p q  

17Proposition 2.1 (F. Bulnes) [3].E , and ,H like R modules are invariant under Euclidean 
movements of the group (1,3),O and thus are L modules. 

A Lie-QED-Algebra and their Fermionic Fock Space in the Superconducting Phenomena
http://dx.doi.org/10.5772/59078

223



Book�Title 26 

the figure 7). This field in blue is a cut in the tangent bundle, that is the set of tangent spaces 1 
, ,pT M p M 

 
which describes our space-time. The field is mapped to their covariant field 2 

 , which is a cut in the cotangent bundle *,qT M , by the metric tensor [19] 3 

 ,g 
     (70) 4 

Newly introducing the fields   (from here anti-graviting) this is transformed under the 5 
local Lorentz transformations like a Lorentz-vector in special relativity18. Then we can have 6 
(after of involve the relations of Isom( *, *)TM TM ): 7 

 1 1 1ˆ( ) ( ) ,T T         (71) 8 

where 1,   in the space Isom( , )TM TM . Then (1,3)1 ,SO gg  g
  , and g

  , thus 9 

the properties of the vector fields are transformed directly to those of fermionic fields by 10 
using the fermionic representatives and the transformation of, in this case is the mapping 11 

 † 0 , 19 instead of the metric, is used to relate a particle to the particle transforming under 12 

the contravariant or contragradient representation. 13 

Then using the notation  , to covariant derivative we have: 14 

 ,
      (72) 15 

which is a new connection. Then the Maxwell-anti-gravity Lagrangian (that is to say, for anti-16 
gravitational pendants aA , of gauge fields) is introduced via the field tensors: 17 

 ,a a abc b cF A A ef A A
           (73) 18 

                                                                 
18 The underlined indices on these quantities do not refer to the coordinates of the manifols, but to the 
local basis in the tangential. All of these fields still are functions of the space-time coordinates x . As 

diffeomorphism  , maps the basis of one space into the other. We can expand it as dx 
    , or 

dx 
    , respectively, such that (have inverses): 

, ,     
             

Then for completeness, let us also define the combined mappings through the relations:  
, .g g   

         

19 0 , is the canonical Dirac matrix 
0

.
0
I

I
 
 
 
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Staying an Lagrangian of the type 2[ * ( )]ab
a b V       (see the section 2. 2. 1). Here abcf , 1 

are the structure constants of the group and e , is the charge electron coupling with the 2 
Planck scale. Then the corresponding electro-anti-gravitational-Lie-QED-algebra is that with 3 
supercurrents 4 

  , ,a b b a a babJ F F F F F F            (74) 5 

Then the Lagrangian of fermionic fields can now be composed from the new ingredients as 6 
[19]: 7 

 , ELECTRO-ANTI-GRAVITATIONALL L LFF  (75) 8 

where using the fields   ,   ,  , and  , the Lagrangian , ,L LF F  take the form (using of 9 
Feynman symbols): 10 

 ( ) ( ), ( ) ( ),D D D D            L LFF  (76) 11 

where ( , )g g    L L , and ( , )g g
   L L . This prove the theorem 5. 1. 12 

Testing the Lagrangian we can see that there not is direct interaction between gravitational 13 
and anti-gravitational particles. However, both of the particles-species will interact with the 14 
gravitational field, which mediates an interaction between them. But this coupling is 15 
suppressed with the Planck scale. Thus the production of anti-gravitational matter (which is 16 
not observable today) can be is explained as ones condensation matter obtained in the 17 
scattering process when the anti-gravitational wrapping is created. This usually could see as 18 
a cloud or other haze type. 19 

What happen with the energy states Fock space? 20 

States of the Fermionic particles entering go interact through of the corresponding C*-CAR-21 
algebra [20, 21]. Likewise, for example if we consider the anti-symmetric Fock space 22 

a ( ),F H  and let ap , the othogonal projection on to anti-symmetric vectors then C*-CAR-23 
algebra is represented on a ( ),F H  by settings 24 

 1 2 1 2* ( ) ( ) ( ),a n a nb p p                 (77) 25 

This means that the action of orthogonal group (2),O  stay restricted to the Hilbert space 26 
corresponding to the C*-CAR-algebra becoming the immediated finite region of the space-27 
time in a fermionic Fock space that is mixture of particles and anti-particles (at least until that 28 
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is converted all space). We could call to this restrinction of orthogonal group as (2, ),O H1 

where a new operator is obtained by the composition * ( ) aT b p   , acting on a module 2 

Fock space that we can write as ( ),


A H
2

a [22] 20 which represent the new energy space 3 
whose elements are the second side of (77). Using the CAR-algebra of creation and 4 
annhilitation operators and 2

†( ) ( ),D b b   


   H
a

. The canonical anti-commutation 5 

relations are equivalent to the commutator relation: 6 

 [ , ] 2 ( , ),D D D D D D i             (78) 7 

with the anti-symmetrical form of the Weyl relations given by ( , )   . If we extend the 8 
operators before to linear R-operators on Hilbert space 2

H
a

, we obtain the relation 9 

( , ) ( , ),A A       which defines a fermionic orthogonal group 10 

 2
2{ (2, ) ( , ) ( , ), , },A O A A       


    L H HR a

 (79) 11 

where appear the Bogoliubov transformation21. 12 

Finally, the orbital spaces created by the superconductivity in the quantum regime satisfy 13 
the corresponding orbital integrals due F. Bulnes [17] to cuspidal surfaces in the generating 14 
chirality inversion through a Dirac node(with Hamiltonian15 

† † †( ) *H i                  [23]): 16 

 1( ) ( ) ( ( )) ( ) ( ( )) ,
F

t F t t F t t F t t
N

J E a a na m a na m n g k a na dn
 


 

      (80) 17 

where ,E is the total Fermi energy in all Fermi surface including the proper kinetic energies, 18 
the term ( )t tk a na  ,is the momentum created in the chirality inversion through the node of 19 
automorphism Fn N , where the space FN is the normal subgroup defined to the action 20 
created by fermions in the transit electron-phonon-electron, which is normed by the product 21 
of logarithms of the actions of their automorphisms [24]. 22 

                                                                 
20 ( ),



A H
2

a
 is a algebra of operators from H , in the super-algebra 2a .  

21The Bogoliubov transformation is a canonical transformation of these operators. To find the conditions 
on the constants ,s  and ,t  such that the transformation remains canonical, the commutator is 
expanded: 

† †2 2† †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , * * ] ( )[ , ].b b sa ta s a t a s t a a     
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 1 
Figure 8. A). Fermionic distribution of probability density r2|Ψpair(r)|2 of the neutron Cooper pairs as 2 
a function of the neutron Fermi momentum kFn and the relative distance r between the pair partners in 3 
symmetric nuclear matter [22]. This can produces Eddy currents with the property anti-gravitational 4 
current given in (83). B). The part colored in blue determines the absence of magnetic flow, such like is 5 
wanted that it happens for the super-currents existence on the surface of a levitating vehicle, making 6 
that this everything behaves as a diamagnetic, except in the central ring colored in red and yellow 7 
where exists an intense magnetic field (this simulation was published in the Proceedings of Fluid Flow, Heat 8 
Transfer and Thermal Systems of ASME in the paper IMECE2010-37107, British Columbia, Canada with all 9 
rights reserved ® [9]). 10 

One example of this automorphisms t ta na , in action are the quantum operators given by 11 

the product † † ,k q k q k ka a a a        , which acts on pairs and not change the electrons in ,k and 12 

,k  and transits to ,k q  and ,k q   letting equals spins. The energy ,E  is given by 13 
†
k

, '
2 ,k k

k k
E e e  where † † †

k( ) , ( ) , ,k kk k ke f a a e g a a f g        H.  14 

Relating the meaning of these operators with the Debye energy to photons given by ,D , 15 
we can to obtain a complete criteria to the energies given by (40) considering the 16 
Coulumbian repulsion, obtaining a precise wide measure of trenches where to some real 17 
superconductor we consider the term (0) 0.3N V  , is the magnetic momentum developed 18 
by the free electrons in the formatting of the Fermi liquid [25, 26, 27]. The integral ( )tJ E , is 19 
bounded [1, 25]. 20 

5. Applications 21 

Proposition (F. Bulnes) 6. 1. Using organized transformations as given in 22 
( ) ( )  ,    T TM Mn  we can to establish that the state of all particles in set, is their 23 

corresponding Fock image [15, 28]. 24 

Inside of the Fock space begins a realization of the potential of the superconductivity, since 25 
the Fock pure state involves all the states of particles of the space, object of the 26 
transformation [15], that in this case is superconducting state. We want organize the particles 27 
in two the phases that define our Fock space then the proposition is the shape to do it! 28 

A Lie-QED-Algebra and their Fermionic Fock Space in the Superconducting Phenomena
http://dx.doi.org/10.5772/59078

227



Book�Title 30 

Theorem V. 1 (F. Bulnes, R. Goborov). The organized transformation given by [15] 1 

 ( ) ( )  ,    T TM Mn  (81) 2 

to electro-anti-gravitational effect produced from superconductivity must have a fermionic 3 
Fock space [10]22 4 

 1 2
† † † †

,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ { , } 0,{ , } 0,{ , } },k k k l k l k l k le e e e e e e e     H H  (82) 5 

with rule of transformation in an inherent context of the space-time with Hamiltonian 6 
(transforming each particle around of the source that produces this transformation): 7 

 
2 2

Fermi Surface 
† †

, , , ,
, ,

ˆ ˆ ˆ ˆ ˆ( 0) ( 0) ,
* *
F F

s s s s
s s

k kH E e e e e
m m

           
p p p p

p p
 (83) 8 

where Fk , is the Fermi sphere radios (their super-electron momentum) given by 9 

 Fermi Surface
2

1/ 22 ,F
mEk

 
  
 

 (84) 10 

Their demonstration of the theorem needs more studies and experimental results. This 11 
theorem is by way of conjecture. But we think that fermionic Fock space of electromagnetic 12 
nature can be who can express the phase change in all particles beginning from the structure 13 
of metal and transmitting to the immediate ambient space of the metal object (see figure 14 
9B)). 15 

 16 
Figure 9. A) The quasi-particle region: holes. The fermionic Fock superconducting space for one 17 
particle: observe the two phases of fermion spaces, upper surface corresponds to the holes zone. Of fact 18 
this zone is like volcano, since in their interior are holes. The below surface is the free fermions whose 19 
behavior is seemed to the Bose-Einstein distribution. B). Structure of the ship transmitting the change 20 
phase of the particles that come from of the ship reactor [29, 30]. C) Electro-twistor generated by the 21 
magnetic field-superconducting interaction [9]. D) Appearing of the creation operators that shape the 22 
wrapping space over structure of the ship. This is defined by a fermionic Fock space, for example under 23 
the ship as the impeller twistor [23]. 24 
                                                                 
22A electromagnetic case is given bythe  algebra:  ( ) * ( , *) * * [ , ] .          E H   
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 1 

 2 
 3 
Figure 10. Electro-anti-gravitational Fields ,tE  to levitation (see also figure 11 B)) [18]. Disk (thermal 4 
cloud forming the saucer) experiments to magnetic levitation showing the fermionic Fock space in 5 
nano-seconds [31] from the orbit-spin interaction. 6 

6. Conclusions 7 

The sections 4 and 5, establishes the general conditions to construct the fermionic Fock 8 
superconducting space which born from organized transformation of fermions and bosons 9 
from the actions of the Lie-QED-algebra E H , [3, 18, 32] of this way in the next section we 10 
establish this and also their transformation to obtain the two phases signed in the 11 
Hamiltonian (83) (see figure 9 A)). 12 

Important is do note, that the energy of a quasi-particle depends of the distribution of all the 13 
other quasi-particles that haves in the system. Simplified, is can to say, that a free electron, 14 
or “naked electron”, that is to say, (outside of interactions); have as difference with a quasi-15 
particle, or electron with interactions the different masses. The principal effect of the 16 
interaction between electrons in normal state consists in change the effective mass of the 17 
electron; for example, the specific heat of a Fermi liquid have formally the same expression 18 
that the of a ideal Fermi gas changing so only the effective mass, *,m  for the mass of the free 19 
electron .m  20 

The fermionic Fock space is a useful topological space picture to describe the interaction 21 
obtained for electrons and their link-wave as fonon (boson to describe the quasi-particles) 22 
inside the Fermi fluid. In the next work we need to demonstrate this interaction and related 23 
with the proposed Hamiltonian in (83). The following region (figure 9 A)), must be the free 24 
fermions that realize the transformation in the particles of immediate space moving their 25 
spins. Of fact, this change of phase happens inside the superconductor material where the 26 
superconductor phenomena happen. 27 
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One careful analysis establish certain relations between orbit-spin, saying orbit to the two 1 
surfaces that begin in certain step of superconducting process as Rasbha Effect (see figure 4 2 
a)), from the Majorana field produced for this coupling in intermediate state of semi-3 
conductor-superconductor. This can help to design an inter-phase with the reactor of a 4 
vehicle of magnetic levitation [23]. 5 

Appendices 6 

A. Variation principles to EM in superconductors 7 

Lemma. A. 1. (Bulnes, F) [24, 33]. The energy of action given by ,ME  of the ,O  all like a 8 
diamagnetic given by ,M  satisfies to all vector magnetic potential ,A  ( 1 form of the 9 
corresponding Maxwell equations to the levitation:  4 (1 / ), rot  cB j  and , 0B  33), the 10 
following Hamiltonian 11 

  2( , ) / 8 ,M M
O

H A L H dV     (85) 12 

Proof. [33, 34]. 13 

B. Fermionic Fock space 14 

Now suppose there is an infinite but discrete set of fermionic modes ,  corresponding to 15 
some 1particle quantum states ,  with wave functions ( )  . In the vector ,  we 16 

include the spin and other non-spatial quantum numbers into ( , , , , ).x y z spin etc    In this 17 
case, the fermionic Hilbert space is 18 

 mode  spanning  and ( 0 1 ),
a      F H n n  (86) 19 

which has infinite dimension and we may interpret this as a Fock space or arbitrary number 20 
of identical fermions. This is our space of study to organized transformations that we 21 
require [15, 35, 36] ]. 22 
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1. Introduction

Our universe consists of substance. Atoms and molecules are basic components of material.
Each atom contains a nucleus which is spread in a small area of atom, and electrons. Also, a
nucleus contains Neutrons and protons. It is well known today that electrons in atom and
Neutrons and protons in the nucleus are interacting together through different forces. It is clear
today that the source of different interactions are composed of four basic forces of the universe,
namely gravitational, coulomb, strong and weak nuclear interactions.

In quantum mechanics, to study a particle, it is necessary to have knowledge about its
interaction with the surrounding media. The Schrödinger equation is a second-order differ‐
ential equation that is solved to obtain energy spectrum and wave functions of a particle in
quantum mechanics. For a many-body system such as atom or nucleus, it is not possible to
solve a set of Schrödinger equations to obtain energy spectrum and wave functions analyti‐
cally. Therefore in such situations, it is necessary to use an average potential which is a mean
potential of all interacting forces acting upon a single particle. Then the Schrödinger equation
is should be solve for a single particle. This procedure is called the mean field method [1, 2, 3].

To review this method consider a system consisting of N identical interacting particles. The
Hamiltonian of system composed of kinetic energy, T ,  and potential energy ,  V , is defined as
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where mN  is the mass of each particle, and ri denotes the coordinates of particle i. A summed
single particle potential energy, so far undefined, can be added and subtracted of the Hamil‐
tonian to obtain the following relation,
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is the mean field Hamiltonian of the system and
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is the mean residual interaction. It should be noted that the residual interaction is related to
the strength of the actual interaction and can be reduced if the mean field potential is close to
the actual potential of the system.

Actually, the mean field method is an approximation in which each particle of system moves
under an external field generated by the remaining N −1 particles. This mean potential, VMF ,  
can be considered as an average of all possible interactions of nucleons during the short time
interval ΔT ,  between the selected nucleon and its surrenders,
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It is important to know that the time average idea was considered only for clearance of the
subject and not applicable in practice unless one studies the thermo-dynamical behavior of
nucleus.

Therefore the idea of using mean field theory capable of reducing many particles interacting
system in to a system of non-interacting (quasi-particles) considered in an external field ,  VMF
which is the mean potential of possible forces of interaction. The mean field potential is
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considered such that the stationary Schrödinger equation is solved simply to obtain single
particle states and their related energy spectrum. These single-particle states are used to
construct the N  particle wave function as follows.

The corresponding N  -particle Schrödinger equation is used to obtain solutions of the mean-
field Hamiltonian HMF

( ) ( )0 1 2 0 1 2Ψ  , ,.... Ψ  , ,.... . MF N NH r r r E r r r= (6)

The wave function Ψ0(  r1, r2, ....rN ) can be separated by using the ansatz single particle wave
functions
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Substituting this ansatz in to the Schrödinger equation (6) yields N  identical one-particle
Schrödinger equations
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The wave function of the many- body system is thus an anti symmetric product of single-
particle wave functions which are one-particle wave functions of an external potential well. In
summary the mean field theory reduces the complicated many-body problem in to a simple
one-particle system.

The main idea in this approach is to determine the mean field potential or in particular, an
appropriate mean field potential in which the residual interactions between the quasi-particles
should be optimal. To do so, one may seek an optimal set {ϕα (r)} of one-quasi-particle states.
This is a Rayleigh-Ritz variational approximation in which the variation ϕα (r)→ϕα (r) + δϕα (r)
of the single-particle orbital is minimized
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As a starting point, one may construct an ansatz wave function. It is customary to use a product
of single particle wave functions as Eigen function of the system,
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It is an anti-symmetrized product ansatz wave function following the Hartree-Fock method
and is called the Slater determinant of the given single particle states
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Here Ψ0(  r1, r2, ....rN ) is an anti-symmetric wave function. Also C  is the normalization constant.
For instance, consider a three-particles system with its single-particle Eigen states labeled 1, 2,
and 3. Then the normalized anti-symmetric state, or the Slater determinant, is
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The energy E  of the system has to be varied under the constraint that the normalization of Ψ0

is preserved, i.e. Ψ0|Ψ0 =1. This leads to the constrained variational problem,
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which can be transformed in to an unconstrained one by minimizing the energy for normalized
wave function, Ψ0(  r1, r2, ....rN ). After performing the variation, the single-particle energy, εα ,
is can also be obtained.

One powerful method to address such uncertainties is the following Hartree consistent
equation [4,5],
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This equation is like the Schrödinger equation except that the simple potential term, V (r), is
replaced with a function of unknown wave function,
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( ) { }( )( ) ( )H F iV r V rf=

Here, the Hartree mean field potential, V H (F ),  is different from, V HF , Hartree-Fock mean field.

The differential equation (14) is nonlinear and therefore, much more difficult to solve than the
regular Schrödinger equation. The solution can only be carried using consistent iteration
method. In this procedure, one can start using a complete set of guessed single-particle states
{ϕi

0  (r)},  i =1, ....N  to calculate the initial potential term, V H (F )
(0) . In the next step, the equation

for a complete set of new wave functions {ϕα(1)  (r)}  α =1, .....∞ is solved to obtain Eigen energies
εα

(1). The procedure is then repeated with new Eigen function ϕα(1)  (r) to obtain the new potential
,  V H (F )

(1) . This approach can be depicted through the following schematic diagram,
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This procedure is repeated to achieve self-consistency for wave functions (or Eigen energies).
This means that after each loop the resultant wave function or Eigen energies compared with
the starting wave function or Eigen energies and when their difference becomes less than a
given preset limit, i.e.

( 1) ( )  ,n n preset limita af f- - <

the procedure is repeated, otherwise, it will be automatically terminated. Where the ...
denotes the norm.

The results of each run, contain a self-consistent mean field, V H (F )(r), the Eigen state, ϕα (r),
and its associated Eigen energies ,  εα, are all simultaneously generated. We may also note that
for a finite potential-well, there will be, in addition to the bound states, an infinite number of
unbound states.

In our discussions, the generated mean-field potential is a central one, that is only a function
of  r . Central mean field potentials describe only systems with spherical symmetry such as
spherical nuclei or atoms. This is because of natural real forces that are conservative and satisfy
the conservation of energy.

In some convenient way to avoid self-consistency loops, a phenomenological potential like a
simple square well with finite depth, simple harmonic oscillator well and complicated Woods-
Saxon with considerable parameters that can be determined using the fit of potential with
experimental data, is introduced.
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2. Applications of mean-field theory in nuclear physics

Over the years after Rutherford's valuable experiments that suggest nuclei for atom, many
theoretical and experimental attempts have been done to obtain knowledge about the stability
of nuclei. It is clear today that a nucleus of mass number A, Neutron number N  and proton
number (atomic number) Z , consists of A strongly interacting nucleons (protons and neutrons
in the nucleus without considering their different properties called nucleon.). In addition to
the strong nuclear force that is responsible for nuclear stability, the protons also sense the
attractive coulomb potential because of their charge. In regular nuclear physics, the protons
and neutrons are considered the point particles without any internal structure. This is an
excellent approximation when the aim is to study nuclear structure at low energies. In such
approach, the nuclear forces are considered a central attractive force with proper specifications
like independence of charge and low range. Note that in advance models of nuclear physics
such as the Yukawa Meson exchange model, it is believed that nucleons constructed quarks
and interact together through the meson exchange mechanism in the base of the particle
physics lows. The lightest nucleus is Deuterium with one neutron and one proton. The
interaction of nucleons in the nucleus can be studied both theoretically and practically using
simple Deuteron nucleus. This two-nucleon system is described by two-body interaction
matrix elements, without a detailed account of the methods used to obtain them. On the other
hand, the A - nucleons nucleus in quantum mechanics using the Schrödinger equation is not
a solvable problem analytically at least for  A>10. Therefore, one has to look for a reasonable
approximate method to solve this many-body problem consisting of strongly interacting
nucleons. A powerful approximation is to convert such many-body system in to a non-
interacting system of quasi-particles using a suitable external mean field potential. The
remaining interactions, called residual interaction, can be treated as a perturbation potential
in the base of perturbation approximation. As discussed earlier, the transformation of system
of particles in to quasi-particles is not simple, and its success depends on the nuclear system
under consideration.

As mentioned above, a conventional approach is to select a particular type of mean field
potential to avoid the steps leading to self-consistency. The selected mean field potential and
considered remaining residual interactions as approximations produce the preciseness of the
obtained results. The simplest custom potential is the three-dimensional harmonic oscillator
potential well

2 2 2
1 1

1V (r) = -V  + kr  = -V  + 
2HO m rw (16)

where V1 and k  are the parameters to be fitted to the practical data for best result. A common,
more realistic choice is the Woods–Saxon potential [6]
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where V0, R and a are the nuclear potential depth, the nuclear radius, and the surface diffuse‐
ness, respectively. They are parameterized as follows,

1 1
3 3

0 051 33 , 1.27 , 0.67 .N ZV MeV R r A A fm a fm
A

æ ö-
= ± = = =ç ÷
è ø

The + and – signs are considered for protons and neutrons, respectively. In the case when there
is no distinction between protons and neutrons a suitable average value of V0 = 57 MeV  can be
used for nucleons.

The Woods–Saxon potential, vWS , is a suitable choice for the mean field potential however it
is a complicated function of, r ,  and it is not an analytically solvable one. To overcome this
problem, it is possible to select the proper three- dimensional oscillator potential with energy
quantum, ℏω and depth, V1. The energy difference of levels, ℏω, and depth, V1, can be obtained
with a best fit to the Woods–Saxon potential, vWS , as a function of, V0, R and a as the nuclear
potential depth, nuclear radius, and surface diffuseness of the Woods–Saxon potential,
respectively. The wave functions and energy spectrum of equivalent harmonic oscillator
potential agreed well with the Woods–Saxon potential ones especially near the bottom of the
wells in low energies. The difference of these potentials increases when the potential ap‐
proaches zero. Actually the major difference of these potentials is that the harmonic oscillator
potential varies more sharply than the Woods–Saxon one near the surface of the nucleus.

2.1. The spin–orbit interaction

Sometimes in 1949, Meyer and independently, Haxel, Jensen, and Swees showed that if in
addition to mean field central potential, VMF ,   a non-central potential is included in the
Schrödinger equation, all closed shell nucleon numbers can be obtained successfully. These
numbers 2, 8, 20, 28, 50, 82, and 126 are called magic numbers because the origin of these
numbers was not known at that time. The Woods-Saxon or its equivalent harmonic oscillator
central potential is not able to reproduce experimentally observed precise data of the single-
particle structure energies of the nucleus using the mean field approach.

The non-central potential due to the interaction between the spin of nucleons with the angular
momentum of orbital that nucleons located on it, is called spin-orbit interaction. As a result of
spin-orbit interaction [7, 8], the nuclear energy level for a given l  (except for l =0) is split in to
two sublevels. The sublevels are characterized by total angular momentum numbers equal to
(l + 1

2 ) and (l − 1
2 ) corresponding to whether the spin is parallel or anti-parallel to the orbital

angular momentum. Each sublevel with spin j accommodates ( 2 j + 1 ) neutrons or protons.
The same interaction with a different structure is observed in atoms with a different sign as in
the nucleus.

Consider that the harmonic oscillator central potential is produced only for the first three
observed magic numbers 2, 8, and 20. To obtain the remaining numbers 28, 50, 82 and 126, it
is necessary to add a spin-orbit interaction potential to the Schrödinger equation.
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The origin of the spin–orbit interaction is not the same in atoms and nucleus. The atomic spin–
orbit force is due to a well-known electromagnetic interaction, and the scale of energy
separation is in the order of milli-electronvolts, while the energy difference of sublevels
separated because of the nuclear spin-orbit interaction is in the order of million electronvolts
and its origin is not well understood yet. In most cases, this force is considered phenomeno‐
logically. For the spin–orbit term, we use [9]
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The second pair of parentheses guarantees that the derivative does not operate on the wave
function when substituted in the radial Schrödinger equation. The r dependence of this
interaction arises from its central nature.

The derivative part of this potential is often neglected for simplicity and vLS (r) is replaced by
a constant; however, to obtain precise results, the radial part should be considered. We have
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In addition to the mean field plus spin–orbit interaction, protons in nuclei interact together via
the coulomb force, which is defined by the following relation, considering nuclei as a sphere
with a constant charge density [10]
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To obtain the energy spectrum and wave functions for neutrons, one needs to solve the radial
Schrödinger equation for the Woods-Saxon and spin-orbit potentials. Such second-order
differential equation cannot be solved analytically. To solve this complicated differential
equation, it is necessary to introduce some new variables and use reasonable approximations.
By introducing new variable [11] y = 1

1 + exp
(r − R )

a
, the Woods–Saxon potential reduces to its

simple form VWS = V0y while the spin-orbit term changes to V LS =
(y − y 2)

R0 + aln( 1
y − 1) . For orbits with

small l , the Taylor expansion of the 1
r  near r = rm, is reasonable. According to the definition of

variable y we have, f (y) ≡ 1

1 + exp
(r − R )

a
 hence by expanding f (y)  around ym ≡

1

1 + exp
(rm − R0)

a

 with

0< ym <1, since 0< y <1, y 3 and the higher terms are negligible, the radial part of the spin-orbit
term can be approximated using [12],
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where C0, C1, and C2 are dimensionless coefficients and evaluated as
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This type of expansion has been widely used for differential equations resulting from the
Schrödinger equation with different potentials [12].

By means of these expansions, the spin-orbit term transforms into

( )VLS C0  C1y  C2y2 ,= + +

and the centrifugal term is obtained

Vc.f= D0+D1y+D2( y2).

By using these expansions, the spin-orbit term transforms into V LS  ∝ (Co +  C1y +  C2y 2) and
the centrifugal term is changed to the favorable type  VCF  ∝ (Do +  D1y +  D2y 2). The substi‐
tution of V LS   and VCF   as a function of variable y into the Schrödinger equation transforms this
equation in to the following analytically solvable differential equation
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This equation can be transformed into the following simple form,
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Equation (20) can be transformed into the well-known form of hypergeometric differential
equation or, alternatively Nikiforo-Avorono (NU) type [13]. The obtained results using the NU
method are
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where Γ is the well-known gamma function, and C is the normalization constant. λ, μ, and η'

are defined as follows
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Note that λ is valid only for the β 2 >ε 2 + γ 2 condition. In a special case where l=0, the solution
reduces to its simple form. Also, the energy eigenvalues are obtained as a function of z
satisfying the following relation
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and
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Finally,

( )2
0 1E V Z= -

The results obtained in this special case are in agreement with the results obtained using other
methods [14].

3. Conclusions

In this chapter we briefly discussed the idea of mean field theory as an improvable approxi‐
mation method for many-body problems of identical particles like atoms and nucleus that
cannot be solved analytically. We have shown that for a system of A - nucleons nucleus by
considering a suitable potential using this model, one is able to obtain energy spectrum and
wave equations. However, the obtained results cannot reproduce the measured nuclear
spectroscopy, but one may hope to become successful by considering an accurate potential in
the Schrödinger equation.
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1. Introduction

During the last decade, information theory [1] as applied to the basic sciences has taken
two routes in the study of physical and chemical systems, considering both extensivity and
non-extensivity - these concepts are fundamental to the development of new physical theories
that try to describe the behaviour of natural systems. In this sense, non-extensivity is an
important concept that it is necessary to incorporate into the description of atoms, molecules
and chemical processes.

At present, one of the ways to incorporate the concept of non-extensivity is by using
deformed entropies, or Tsallis entropy [2]. This entropy is a generalization of Shannon
entropy and has a dependency of a parameter, usually denoted by “q” and generally
called a ’non-extensivity parameter’, that permits us to perform a modulation between
extensive and non-extensive behaviour. These new kinds of entropies are built using a
new area of mathematics called “q-algebra” , or “deformed algebra” [3–5]. One important
aspect to the use and application of deformed entropy is that the original definition of the
entropy used for building deformed entropy needs to be strictly positive over all space
and dimensionless. As such, in this work we propose a definition that fulfils this. This
entropy uses the electron density obtained by the methods of quantum mechanics - this is
an important point because the electron density is an observable, and so this permits us to
establish a gate between the non-extensivity of classic entropies and the non-extensivity of
quantum entropies. Consequently, this entropy permits us to incorporate the important
concept of non-extensivity in quantum theory. In the same way, it is known that the
chemistry interpretation of the same behaviour of these systems can be enriched by quantum
information theory.

As we will show in this work, it is trivial to obtain some important functionals using
deformed entropies. In this sense, we show how, with simple mathematical manipulations,
it is possible to obtain two of the most important functionals of physics - the kinetic energy

©2012 Author(s), licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and eproduction in any medium, provided the original work is properly cited.
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functional of the Thomas-Fermi [6, 7] model, and the exchange energy functional of Dirac
from deformed entropy. In our opinion, this opens the door to exploring the possibility of
the generation of density functionals based in entropic criteria. Moreover, we will present
a simple chemical process where we show the effect of the non-extensive parameter, and
in the same way we present the general trends of the “q” parameter for the first 54 atoms
of the periodic table. Finally, we might raise a general question that motivates this work,
that is, when does a natural system become extensive or non-extensive? As we mentioned
above, this parameter “q” has a strong relation with deformed algebra - in this algebra, all the
operations have a dependence upon a parameter, “q”, and in general when “q” is different
to that of the unit, this implies that their basic properties are not completely separable and
do not necessary commute. This causes us to raise a general question, namely, can nature be
represented by deformed algebra? In this context, it is necessary to incorporate the concept
of non-extensivity to rewrite many expressions in terms of deformed algebra and investigate
their new properties.

2. Theoretical background

Since the 1980s, when the first applications of Shannon entropy to chemical systems were
made, we might observe two basic definitions of it, namely

S = −

∫

ρ(r) ln ρ(r)dr, (1)

and

S = −

∫

ρ(r)

N
ln

ρ(r)

N
dr, (2)

where ρ(r) is the electron density subject to
∫

ρ(r)dr = N, and N it is the electron number
of the system. However, if we perform a dimensional analysis, we immediately note that
neither definition of Shannon entropy is dimensionless; in addition, and in our opinion, the
more serious deficiency is that neither definition is strictly positive over all space1. Given this
situation, it is evident that we cannot apply these two initial definitions to chemical systems.
Accordingly, we propose a redefinition of Shannon entropy [8], such that

S = −

∫

ρ(r)

N
ln

ρ(r)

ρmax
dr, (3)

where ρmax is the electron density in the nuclei position. In the case of a molecular system
ρmax, it is necessary to take the higher value of the electron density of all the atoms that
constitute the molecule. This definition fulfils the following: it is dimensionless and strictly
positive over all space. In this sense, we suggest the use of the definition (3) for entropy
calculations of chemical systems.

1 A more detailed study of this aspect will be presented elsewhere.
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On the other hand, in general the entropy of a composed system is very often equal to the
sum of all its parts. This is fulfilled only when the energy is the sum of the parts and if the
work performed by all the parts is the sum of the work performed by the system. That is,

S(A, B) = S(A) + S(B), (4)

or in general,

S(A, B, C, · · · ) = S(A) + S(B) + S(C) + · · · , (5)

However, this not quite obvious, and in some cases this may not be fulfilled. For example,
consider a system composed of two different homogeneous substances - in this case, it is
only possible to express the energy as the sum of the individual energies if, and only if, we
neglect the interaction energy of the substances or subsystems. However, this energy plays
an important role in the description of natural systems; unfortunately, the mathematical
development of it is, frequently, complicated. One interesting aspect of entropies involves
entropic balances [9], in which is possible to write the joint entropy in terms of the
subsystems’ entropy and conditional entropy,

Sq(A + B) = Sq(A) + Sq(B|A) + (1 − q)Sq(A)Sq(B|A) (6)

where

Sq(A) = −

��

ρ(a, b)

NAB(q − 1)

�

1 −

�

�

ρ(a, b)

ρA
maxNB

db

�q−1
�

dadb, (7)

Sq(B|A) = −

��

ρ(a, b)

NAB(q − 1)






1 −







��

ρ(a,b)
NA+NB

�

ρ(a,b)
ρA

max NB
db

dadb







q−1





dadb, (8)

where ρA
max and ρB

max are the maximum density values of the fragments2 A and B,
respectively. NAB is the total electron number and NA and NB are the electron numbers
of the fragments A and B respectively. The marginal densities of the probabilities are defined
as

�

ρ(a, b)da = ρ(b), (9)

�

ρ(a, b)db = ρ(a), (10)

and these densities fulfil

2 This implies that it is necessary to select an electron density partition scheme subject to the rules of information
theory. In chemistry, the scheme that fulfils this is the Stock-Holder partition scheme [10, 11].
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��

ρ(a, b)dadb = 1, (11)

�

ρ(a)da = 1, (12)

�

ρ(b)db = 1, (13)

In all cases, Sq satisfies the following properties,

i) Sq ≥ 0;

ii) Sq is a continuous function of ρ(a, b), ρ(a) or ρ(b);

iii) Sq increases monotonically with the particle number;

iv) Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B);

From the last paragraph, it is possible to think in terms of the use of linear description; in
this sense, Tsallis proposes a generalization of Boltzmann-Gibbs entropy, using the so-called
’deformed functions’, and substituting the original definitions by the deformed definitions.
In general, two definitions are used, namely the deformed logarithm (or q-logarithm)

lnq x :=
1 − xq−1

q − 1
, (14)

and the deformed exponential (or q-exponential)

expx
q := [1 + (1 − q)x]

1
1−q , (15)

These definitions can be obtained by solving the differential equation
dy
dx = yq, y(0) = 1; q ∈

ℜ, see [12].

Using the deformed logarithm, we can obtain the deformed entropy, which has the following
explicit form

Sq = −

�

ρ(r)

N
lnq

ρ(r)

ρmax
dr,

= −

�

ρ(r)

N







1 −
�

ρ(r)
ρmax

�q−1

1 − q






dr,

=

1

1 − q
+

1

N(q − 1)ρ
q−1
max

�

ρ(r)qdr, (16)
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where q ∈ ℜ, and for a composed system, this entropy is

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), (17)

This implies that the subsystems are correlated, and immediately we can note that for q �= 1
the entropy of a composed system is non-extensive, though if we select q → 1, then the
definition (16) becomes the definition (3), that is,

lim
q→1

{

1

1 − q
+

1

N(q − 1)ρ
q−1
max

∫

ρ(r)qdr

}

= −

∫

ρ(r)

N
ln

ρ(r)

ρmax
dr, (18)

and recover the extensive behaviour.

Now, using Eq. (16), if we select that q =
4
3 , we obtain

Sq=4/3 = −3 +
3

Nρ
1/3
max

∫

ρ(r)4/3dr, (19)

In this expression, we can note immediately that the integral has the same form as that of
the exchange functional of Dirac, and if we select that q =

5
3 ,

Sq=5/3 = −

3

2
+

3

2Nρ
2/3
max

∫

ρ(r)5/3dr, (20)

this integral corresponds to the Thomas-Fermi kinetic energy functional. Consequently, it is
trivial to obtain any density functional that involves some of the powers of electron density.
Naturally, it is a simple matter to rewrite both functionals in terms of the deformed entropy -
this allows us to hypothesize that the electronic energy of a system can be rewritten as a linear
combination of deformed entropies. This, of course, implies that the local density functionals
are a particular case of the deformed entropy. This allows us to raise the following question:
for any electron density, to what does the value of q correspond?

The definition (16) can be simplified if we perform a series expansion of the term
(

ρ(r)
ρmax

)q−1
,

(

ρ(r)

ρmax

)q−1

=

ρmax

ρ(r)
+

ρmax

ρ(r)
log

(

ρ(r)

ρmax

)

+

ρmax

2ρ(r)
log

(

ρ(r)

ρmax

)2

+

ρmax

6ρ(r)
log

(

ρ(r)

ρmax

)3

+ · · ·+

ρmax

n!ρ(r)
log

(

ρ(r)

ρmax

)n

, (21)
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and if we suppose that only the first term contributes to the general behaviour and that it is
the most important term,

�

ρ(r)

ρmax

�q−1

∼

�

ρmax

ρ(r)

�

, (22)

Replacing this in Eq. (16), namely

S
approx
q = −

�

ρ(r)

N





1 −
�

ρmax

ρ(r)

�

1 − q



 dr,

=

�

1

q − 1
+

ρmax

N(1 − q)

�

�

dr, (23)

this is a good result, because it is possible to perform a simple computational implementation
of S

approx
q and explore the behaviour of those very large systems for which the ab initio

calculations of the electron density are very expensive (for example, for systems constituted
by more than 104 atoms). This definition satisfies the condition of the dimensionless of the
entropy.

3. Characterization of atoms in the basal state

One of the principal questions that emerges in this study is concerned with the parameter
“q”, namely, for an atomic system in a basal state, what is its q value? For this, we calculated
the electron density in the position space using the following functionals, B3LYP, BHandH,
M062x, MP2, MP3 and TPSS, and with the following ab initio methods, CCS, CCSD, CISD,
using a standard quantum chemistry program, Gaussian 09 [13], with the basis set DGDZVP
[14, 15], to obtain the energy value and the corresponding wave function. The electron
density in the position space was calculated with the DGrid program [16] using the wave
function obtained through several methodologies, and for the entropy calculations we used
the integration algorithm designed by Pérez-Jordá et al. [17] with a precision of 1 × 10−5.

In the Figures (1(a) - 1(f)), we show the results of Sq using q = 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, in which
we note that the entropy has no dependence upon the methods, and it is possible to recognize
the periodicity of the elements in the periodic table. Naturally, when the q parameter
changes, the difference is magnified between the different periods of the periodic table;
however, with the atoms that involve d-orbitals, we note a small disruption in this tendency.
In general, we can observe that the Shannon entropy increases with respect to the atomic
number in a natural way, if we appeal to the interpretation of this information measure,
we can specify that the content of the information tends to increase. This assumption is
based on the follow interpretation: if we consider an ideal gas, this system has a uniform
particle distribution; therefore, the entropy is maximum. As such, we expect that the entropy
increases in proportion to the electron number -in principle- and, considering the physics
of the system, when the number of particles increases the Shannon entropy tends to the
Thomas-Fermi limit as a consequence of a decrease in the Wigner-Seitz radii [18]. Thus, the
definition proposed in this work permits us to recover the original idea of the content of
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the information of a system in relation to the physical interactions between the electrons of
systems, such that when the number or particles, N, tends to infinity, q will tend to the unit.

On the other hand, if we consider a system in a basal state and in equilibrium, what is the
value of the parameter q? To address this question, we propose a computational form to find
this value,

qi+1 = qi +
Sqi

Sqi+1

, (24)

This approximation requires that Sqi ≈ Sqi+1 - when this condition occurs, it also satisfies that
(

∂Sqi
∂qi

)

≈

(

Sqi+1

∂qi+1

)

. With this assumption, the slope of Sq tends to zero, and this corresponds

to the zone where q does not change. This will be the q value for the system; moreover, we
can fix the precision with 1 × 103 and the error was calculated as

%Error =

∣

∣

∣

∣

Sqi+1 − Sqi

Sqi+1

∣

∣

∣

∣

, (25)

Given this consideration, we obtain the trends shown in Figure (2), where the general trend
for q was calculated using the functionals B3LYP, TPSS and M062x, and with the wave
function methods CCS, CCSD, MP2, MP3 and CISD with the basis set DGDZVP. In this
figure, we note that only for the block d of the periodic table the tendency of q parameter,
has a breaking of the tendency, this would be attributed to the basis set, but in respect to the
methodologies the general trend of q permanence without considerable changes, this permit
us establish that the q values has not a dependency of the methodologies. It is important
to note that, according to the physics of the system, we expect that when the system sees a
considerable increase in the number of electrons, the general behaviour will be like that of a
Fermi gas, and consequently the system becomes an extensive system. This implies that the
entropy becomes extensive, that is q → 1, and that Eq. (16) becomes as in Eq. (3). From these
results, we also obtain that

lim
q→qop

Sq = 1. (26)

In the Figure (3) we present the general trend of q with CCSD/DGDZVP with dotted-crosses,
and the following polynomial,

f (q) = C1 + C2 exp{−C3Z + C4}+ C5 exp{−C6Z2
+ C7}, (27)

with a continuous line, where the coefficients have the values listed in Table (1).

Z denotes the atomic number, and in Table (2) we show the qopt values for the first 54
atoms of the periodic table. Analysing the values of this table, we note that in all cases the
characteristic value of each atom in the basal state is close to the unit when the electron
number increases.
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Figure 1. Effect of the variation of the parameter q for the trends of entropy, using several methodologies of quantum
chemistry with the DGDZVP basis set.
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C1 = 1.0055300
C2 = 0.0526141
C3 = 0.9959850
C4 = 0.2739020
C5 = 0.0738875
C6 = 0.1080680
C7 = 0.3578360

Table 1. Values of the constants of Eq. (27).

Z qopt Z qopt Z qopt Z qopt

1 1.1597116 15 1.0219020 30 1.0123013 44 0.9981021
2 1.1383104 16 1.0207019 31 1.0120013 45 1.0004019
3 1.0920058 17 1.0198019 32 1.0117012 46 1.0087011
4 1.0698041 18 1.0190017 33 1.0113013 47 1.0085011
5 1.0556034 19 1.0178018 34 1.0110012 48 1.0086010
6 1.0470029 20 1.0178016 35 1.0109012 49 1.0083010
7 1.0409027 21 1.0198014 36 1.0107012 50 1.0081010
8 1.0364026 22 1.0037026 37 1.0107012 51 1.0080010
9 1.0332024 23 1.0106020 38 1.0104011 52 1.0079010

10 1.0306023 24 1.0035025 39 1.0036017 53 1.0077009
11 1.0277023 25 1.0016026 40 1.0144007 54 1.0076009
12 1.0268022 26 1.0095018 41 0.9954024
13 1.0246022 28 1.0132014 42 1.0024017
14 1.0228021 29 1.0105015 43 0.9947024

Table 2. Values of qopt using CCSD(full)/DGDZVP.

4. Characterization of a Simple Chemical process

One of the interests of this work is in the study of the effect of the parameter “q” in a
dissociation process. The idea is to study the effect of small interactions when a homonuclear
system is dissociated.

In this case, we select the dissociation of the H2 molecule,

H2 −→ H + H.

The calculations were performed with Gaussian 03 [19] with CCSD(full) and the basis set
cc-pVTZ [20]. For the entropy calculations, we used the wave function generated by Gaussian
03 to generate the electron density, while ρmax was calculated in the position of the nuclei of
each atom of the molecular system, in this case by the symmetry ρmax(A) = ρmax(B) = ρmax.
The electron density was calculated with DGrid and the algorithm of integration that we
used was designed by Peréz-Jodá et al. with a precision of 1 × 10−5.

In Figure (4), we present the general trend of this simple chemical process, where we can note
that the internuclear equilibrium distance is 0.754 Å, which corresponds to the minimum
electronic energy; the dissociation process was carried out more than two times the van der
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Figure 3. Trends of the parameter q for the atoms 1 < Z < 54, with CCSD(full)/DGDZVP in Gaussian 09.

Waals radii of the hydrogen atom in the basal state (1.2 Å) to ensure that no weak chemical
interactions were present. With this in mind, in this case it is natural to think that, for an
internuclear distance of 3.0 Å, the electronic energy will be twice that of the electronic energy
of the hydrogen atom in the basal state; however, this does not occur, and the value obtained
with CCSD(full)/cc-pVTZ is -1.0007258069 a.u. Consequently, there exists a difference of
0.0007258069 a.u. (1.9056 kJ/mol) - this energy value is closer to that of hydrogen bonding.
In principle, the explanation of this anomaly can be addressed in the following way: by
definition, the wave function is extended over all space, and by construction the wave
function used in a quantum mechanics calculation is a finite superposition of the basis
set functions, ψ = ∑

n
i

χiφi. However, notwithstanding that, in a limit this function will
be exact, the correct description obtained with this wave function will be correct only in
the equilibrium. This condition is not obvious, and how we see is not fulfil, this probable
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0.0007258069 a.u. (1.9056 kJ/mol) - this energy value is closer to that of hydrogen bonding.
In principle, the explanation of this anomaly can be addressed in the following way: by
definition, the wave function is extended over all space, and by construction the wave
function used in a quantum mechanics calculation is a finite superposition of the basis
set functions, ψ = ∑

n
i

χiφi. However, notwithstanding that, in a limit this function will
be exact, the correct description obtained with this wave function will be correct only in
the equilibrium. This condition is not obvious, and how we see is not fulfil, this probable
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permit us talk about of a necessity of a different statistical ensemble for the more adequate
description of the systems, and with this new ensembles possible we can describe of a
more appropriate some phenomena present in the quantum world. The real justification
for proposing (and postulating) the existence of this new set of definitions will reside in their
implications, namely the incompleteness of the descriptions obtained by the actual tools and
theories.

In Table (3), we present the values of the electron energy for the hydrogen molecule at

an internuclear distance of 3.0 Åusing several methodologies of quantum chemistry, and
with the basis sets cc-pvDZ, cc-pvTZ, cc-pvQZ and cc-pv5Z. The basis sets are designed
to converge systematically on the complete basis set, such that this basis set permits us
to analyse the improvement of the electron energy, and we note that the best result that
we can obtain corresponds to CCSD(full)/cc-pvTZ. However, even using this sophisticated
methodology and basis set, there exists an excess energy of 0.0012563951 a.u. (3.2986 kJ/mol).
Here, it is convenient to observe that it is not necessary to make use of a bigger basis set
corresponding to a better description (again, this is in reference to Tables (3) and (4), in
which the best energy value corresponds to CISD/cc-pvTZ and not to cc-pv5Z, which is the
more complete basis set of all those used in this work). In all cases, all the methodologies
and basis sets overestimate the energy over large distances, but in the case of MP2, PBE and
B3LYP, the overestimation it of the order of the energy of a simple covalent bond, such as an
oxygen molecule (145 kJ/mol), or a simple bond of a nitrogen molecule (170 kJ/mol).

On the other side, and continuing our discussion, in Figure (4) we observe that the system
can be additive but not necessarily extensive. To explain this in the Figures (6(a)-6(f)), we
present a comparison of the electron energy and the deformed entropy using several q values,
where we note that for different q values the minimum of the entropy change of the position,

for q = −4.1,−2.8, 0.3, 1.5, 1.8 and a distance greater than of 2.0 Å, the slope of tendency
it is zero, that is, the entropy is constant and consequently it is additive, but not extensive,
because for a this values, Sq is constant, now if we consider that this system its constituted
by identical subsystems we have, Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) and by the

system characteristics Sq(A) = Sq(B) so we have Sq(A, B) = 2Sq(A) + (1 − q)[Sq(A)]
2. This

opens the door to an interesting question: in physical systems, it is the same additive that
extensive? In our opinion, they are different concepts and it is probable that the use of these
concepts as synonyms is a result of the historical background. It is interesting to note that,
for q = −2.8 = −14/5, the minimum of the entropy corresponds to the minimum of the
energy (see Figure (6(b))); consequently, if we find the appropriate q value for the system, it
is possible to reproduce the electron energy behaviour. The interesting aspect of this is that
the deformed entropy, that it is a local functional (because has not dependency of external
potential), that we can found the same tendencies of the energy in which are present the
effects of an external potential. Another notable characteristic of this tendency is presented
in Figure (6(c)), where in the final state of the system the slope again tends to zero but the
total entropy is greater than the initial content. This implies that the term (1 − q)Sq(A)

2

is greater than 2Sq(A), and if we retake the interpretation of the term (1 − q)Sq(A)
2 then,

like the degree of non-separability, we can conclude that the representation of the system
with q = 0.3 is non-extensive over all processes, even if the internuclear distance implies
that the system has no physical interactions. This is consistent with the interpretation that
the wave function is extended over all space - if we accept this, probably we can establish a
link between non-extensivity and quantum entanglement [21]. Consequently, it is possible to
build a bridge between quantum information theory and non-extensive statistical mechanics
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and reclaim the idea that we can improve our understanding of nature by not only analysing
behaviour exclusively in terms of matter and energy (even at the level of elementary
particles), but also that study using the techniques and methods of modern physics and
chemistry integrate concepts and tools that allow us to comprehensively investigate the
behaviour of natural systems in order to deepen our understanding of them to incorporate
information measures that take into account concepts such as entanglement, known since
the early days of Quantum Mechanics, for which, however, there are no measures in many
modern theories, at a more fundamental level, it has become clear that an Information Theory
based on the principles of Quantum Mechanics, expands and complements the Classical
Information Theory [22]. In addition to the quantum generalizations of classical notions
such as sources, channels and codes, this new theory includes two complementary types of
quantifiable data: classical information and quantum entanglement.
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Figure 4. Trends of the electron energy of the dissociation process of H2, with CCSD(full)/cc-pvTZ.
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Basis CCSD CISD MP3
set

cc-pVDZ -0.99955061881 -0.99955059355 -0.98767847037
cc-pVTZ -1.0007258067 -1.0007257401 -0.98174230596
cc-pVQZ -1.0010904704 -1.0010905136 -0.97990255011
cc-pV5Z -1.0012563951 -1.0012563405 -0.97874184183

Basis MP2 PBE B3LYP
set

cc-pVDZ -0.92566086120519 -0.937015225619 -0.933130505886
cc-pVTZ -0.92835582370175 -0.939927619001 -0.936467455835
cc-pVQZ -0.92932919850342 -0.940569300858 -0.937152190049
cc-pV5Z -0.92968788957241 -0.940901783377 -0.937514589740

Table 3. Values of the electron energy for H2 at an internuclear distance of 3Å(in a.u.). The energy calculations were
performed in Gaussian 09.

Basis CCSD CISD MP3
set

cc-pVDZ 1.179850 1.179916 32.350176
cc-pVTZ 1.833750 1.905430 47.935576
cc-pVQZ 2.863030 2.863143 52.765854
cc-pV5Z 3.298665 3.298521 55.813294

Basis MP2 PBE B3LYP
set

cc-pVDZ 195.17740 165.36652 175.56585
cc-pVTZ 188.10178 157.72003 166.80469
cc-pVQZ 185.54618 156.03530 165.00692
cc-pV5Z 184.60444 155.16236 164.05544

Table 4. Absolute difference of values between the electron energy of H2 at 3.0 Å, and 2H with several methodologies
and with the cc-pvTZ basis set. All values are kJ/mol.

In the Figure (5), we show the general trend of qopt compared with the electron energy, in

which the tendency of qopt has a maximum in approximately 0.529 Å, plotted as a vertical
continuous black line, this value correspond at the first Bohr radii for the Hydrogen atom, this
is an interesting point because it is possible talk about a non-extensive radii of the systems,
where the non-extensivity it is maximum and the point of this is that the we can associate the
q parameter at a physical property like the distances between the subsystems, so we suspect
that the non-extensive behaviour is closely related at two characteristics; the distance and the
particle number.

Non-Extensive Entropies on Atoms, Molecules and Chemical Processes 263



14 ime knjige

 0.186

 0.188

 0.19

 0.192

 0.194

 0.196

 0.198

 0.2

 0.202

 0.204

 0.206

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = -4.1 E

(a) Sq , q = −4.1

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = -2.8 E

(b) Sq , q = −2.8

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 0.3 E

(c) Sq , q = 0.3

 14

 15

 16

 17

 18

 19

 20

 21

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1
Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 1.5 E

(d) Sq , q = 1.5

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 1.8 E

(e) Sq , q = 1.8

 0

 1e+16

 2e+16

 3e+16

 4e+16

 5e+16

 6e+16

 7e+16

 8e+16

 9e+16

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 2.2 E

(f) Sq , q = 2.2

Figure 6. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
dissociation process of a H2 molecule.

Selected Topics in Applications of Quantum Mechanics264



14 ime knjige

 0.186

 0.188

 0.19

 0.192

 0.194

 0.196

 0.198

 0.2

 0.202

 0.204

 0.206

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = -4.1 E

(a) Sq , q = −4.1

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = -2.8 E

(b) Sq , q = −2.8

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 0.3 E

(c) Sq , q = 0.3

 14

 15

 16

 17

 18

 19

 20

 21

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 1.5 E

(d) Sq , q = 1.5

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 1.8 E

(e) Sq , q = 1.8

 0

 1e+16

 2e+16

 3e+16

 4e+16

 5e+16

 6e+16

 7e+16

 8e+16

 9e+16

 0  0.5  1  1.5  2  2.5  3
-1.2

-1.18

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Sq

E 
[a

.u
.]

R: H-H [Angstroms]

q = 2.2 E

(f) Sq , q = 2.2

Figure 6. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
dissociation process of a H2 molecule.
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5. Characterization of the Chemical Reaction H2 + H−

In this section, we present the results of the reaction H2 + H−
→ H2 + H−. This

reaction is one of the more studied reactions and it is very well-characterized [23–25].
The IRC calculation was performed with MP2(full)/6-311G, and the singles points with
CISD/6-311++G**, both in Gaussian 03. This reaction is symmetric, has a maximum in
the transition state (which has an energy of -1.6501559031 a.u.) and an internuclear distance
of 0.93236 Åbetween each hydrogen atom. Naturally, the electron energy in the reactants is
the same as in their products (-1.6680093713 a.u). In the Figures (7(a))-(8(f)), we present the
tendency of the deformed entropy using several values of the q parameter, with q = −10.0,
Figure (7(a)). The entropy has a maximum value at RX = 0.0 and a possible local minimum
in RX = −2 and RX = 2. However, is not very clear how to determine whether this q value
is associated with the changes of the entropy for some other parameters related at changes
physical or chemical, when we use the q = −4.6, Figure (7(b)), the entropy tendency has
a maximum value at RX = 0.0 and it is similar at the tendency of the energy. The more
interesting aspects of the changes in the entropy are in the interval −1.1 ≤ q ≤ 1.6, in
Figure (7(c)); with q = −1.1, the entropy has a minimum in RX = −1 and RX = 1, and
these minimums are associated at a zone where the process of the breaking and forming
of the chemical bonds occurs. This zone corresponds to a zone where the normal modes
of vibration have negative frequencies. In Figure (9(a)), we show this comparison, and in
the same way we compare this tendency with the distances of the hydrogen’s involved in
the process, we labeled the atoms like like Hin for the Hydrogen that will be form the new
bond and Hout for the Hydrogen that gonna be break the bond, in this case, the critic region
where the physical changes occurs is −0.5 ≤ RX ≤ 0.5, see the Figure (9(b)), this only can
be observed in the same zone of the entropy where has a small change in their slope, in this
sense, it is possible that changing the value of q or increase the precision we can observe
with more detail the changes that occurs in this zone. Figure (9(c)) presents a comparison
of Sq, q = −0.7 with the Dipolar Moment, how occurs in the case of the frequencies this
parameter has a maximums in RX = −0.85 and RX = 0.85, is it in this zone where the most
important changes of the electron density occurs. In general, we can say that the changes in
the deformed entropy permit us to discover some zones where the most important changes
of the electron density of a system occurs; however, it is not yet known how to select the
appropriate value of q, for example, when we use a value of q = −0.7, the tendency of the
entropy has minimums in RX ∼ −0.9 and RX ∼ 0.9. We can say that this tendency is related
to the change of the electron density, but in the case of Sq, q = −0.1 the entropy behaves like
a specular image of the energy (see Figures (8(a)) and (8(c))). With this evidence, we believe
that it is possible to derive some density functionals in which a combination of different
entropic terms can be expressed, not only the deformed entropy with the form of Eq. (16),
but also a contribution of a deformed Fisher entropy (for this, it will be necessary to write
the gradient of the electron density in terms of deformed algebra). That is,

E[ρ] = ∑
i

xiSq + xi Iq, (28)

where

Iq =

∫

̺(r)|∇ lnq ̺(r)|2dr, (29)
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Figure 7. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
reaction H2 + H− .

and ̺(r) is the shape factor, defined as ̺(r) =
ρ(r)
N

.
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and ̺(r) is the shape factor, defined as ̺(r) =
ρ(r)
N

.
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Figure 8. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
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Figure 9. Comparison between the trends of the Sq entropy using several q values, frequencies, distances and Dipolar
moment for the reaction H2 + H− .
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Figure 9. Comparison between the trends of the Sq entropy using several q values, frequencies, distances and Dipolar
moment for the reaction H2 + H− .
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6. Entropic profiles of atoms

In this section, we present the results of the entropic profiles from hydrogen to neon. The

density was calculated with a precision of 1 × 10−5 with CCSD(full)/DGDZVP obtained in

Gaussian 09. It is our particular interest to characterize the hydrogen atom, because the

simplicity of this system permits us to determine and - as far as possible - try to find some

periodic properties. In this sense, in the Figure (10(a)), we present the entropic profile for

this system, in which we note that the maximum present is in R ≈ 1a.u., that is, the first

Bohr radii. It is possible to speculate that it is at this distance when the system exhibits the

maximum degree of non-extensivity. In the case of He, the maximum value of the entropy is

displaced close to the nucleus, R = 0.545a.u., Figure (10(b)). For the second period (lithium to

neon, Figures (11(a)-12(b))), the maximum of the entropy coincides with the first maximum

of the electron density, and the minimum of the electron density coincides with the inflection

point of the entropy trend; subsequently, in the region of the maximum density the entropy

there is a small change in their slope. Finally, the electron density and the entropy tends

to zero. In general, we also propose verifying the changes of the entropy tendency using

several values of q in the interval 0 ≤ q ≤ 10 with a step size of 0.1, though we cannot observe

significant changes. In this sense, it is possible that the critical points of the deformed entropy

are in relation to the chemical reactivity parameters, such as the Fukui function [26–28],

hardness, softness [29], [30], chemical potential, inter alia, [31]. However, it will be necessary

to perform studies of the relation between the q parameter and these chemical descriptors.

We consider that it will be important to carry this concepts into the field of deformed algebra.
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Figure 10. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for hydrogen and
helium.
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Figure 11. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for lithium to
oxygen.
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Figure 11. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for lithium to
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Figure 12. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for fluorine and
neon.

7. Conclusion

In this work, we applied the fundamental idea of Tsallis of entropy generalization and we
propose a definition of deformed entropy that is applied to the description of the first 54
atoms in the basal state of the periodic table, showing that each chemical system has a
characteristic q value. Furthermore, we show that the characteristic q value can be related
to the first Bohr radii, in which we suppose that there corresponds a distance where the
non-extensive behaviour of the system is dominant. In the same way, we show the numerical
tendencies of the deformed entropy compared to the variation of the electron density for the
first 10 atoms in the basal state and observe that the changes of the deformed entropy are in
relation to the significant changes in the electron density.

This has allowed us to start a new line of investigation, and with some of these results we
continue with the study of the formalisms for the construction of a functional based in a
principles of physics and information theory. In addition, we intend to continue with the
development of models that permit us to find a direct relation between electron energy and
chemical reactivity concepts with deformed entropy.

On the other hand, the application of the concepts of information theory permit us form a
description that is more accurate than that based on energetic criteria alone; we speculate
that it is possible to define or find a form that derives the Density Functional Theory from
some fundamental expression.

Finally, with these examples we have tried to link information from a system that is subjected
to a process with physical and chemical changes. Thus, we have linked the concept of
information, which is an epistemological concept completely with ontological concepts and
the interpretation of the results allows us feedback these concepts in ontological terms,
according to the authors, is probable that today do not exist a orthodoxical definition of what
actually is the information, beyond that presented by Shannon and its guidelines, criteria,
characterization of it, among other things, the interpretation and the relationship with other
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concepts, such as energy, electron density, chemical reactivity parameters and many others
need be discussed to try of establisha formal relation between concepts.

Is it clear that information concept and the model itself is interdisciplinary or
transdisciplinary. The concept of information and -moreover- the model itself promote a
systematic relation with causal analogies and parallelism with scientific knowledge, which
transcends the framework of the source domain and extends in various directions, thus
making the knowledge acquire an unusual resonance. Accordingly, we believe it is feasible
to complement the explanations of natural processes and natural systems.
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Chapter 10

Computation of Materials Properties at the Atomic Scale

Karlheinz  Schwarz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59108

1. Introduction

1.1. Inorganic solids

Many inorganic solid materials are of great interest from a fundamental point of view or for
technologic applications. The challenge to theory and computation is that they are governed
by different length scales, where from meters (m) down to micrometers (μm) classical
mechanics and continuum models provide proper descriptions (for example using finite
element methods). However, if the length scale is down to nanometers (nm) or atomic
dimensions measured in Å, such as for modern devices in the electronic industry (for example
in magnetic recording) or surface science and catalysis, the properties are determined (or
critically influenced) by the electronic structure and thus quantum mechanics. Understanding
the properties at the atomic scale is often essential for improving or designing modern
materials in a systematic way. Computation has become a key element in this process, since it
allows one to analyze and interpret sophisticated measurements or to plan future experiments
in a rational way, replacing the old trial and error scheme. Instead of trying all kinds of elements
to improve a material by preparation, characterization and functional analysis, a simulation
with computers is often much more efficient and allows one to “narrow the design space”.
Why should one prepare or measure a sample that is not promising based on modern
computation? Some facilities (for example those providing synchrotron radiation) have
already adapted this concept, since the beam time for measurements is limited and thus they
should be used for promising investigations only.

There is a classical treatment at the atomic scale that is often based on atomic force fields. In
this case the interactions between the atoms are specified with forces which are parameterized
usually in a way to reproduce a set of experimental data such as equilibrium geometries, bulk
muduli or vibrational (phonon) frequencies. For a class of materials, in which good parameters
are known, this can be a useful approach to answer certain questions, since force-field
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calculations require little computational effort. The main drawback is that no information can
be provided about the electronic structure, since force fields do not explicitly contain electrons.
Therefore these approaches will not be covered here, although they have reached a high level
of sophistication.

Here we focus on the electronic structure of solids (metals, insulators, minerals, etc.) and
surfaces (or interfaces) which require a quantum mechanical treatment. In recent review
articles [1-5] one possible approach has been described, which is based on the WIEN2k
program package [6, 7] that has been developed in my group during the last 35 years (see
www.wien2k.at). Several other computer codes are available which will not be covered here.
Each of them may have a different focus in terms of efficiency, accuracy, sophistication,
capabilities (properties), user friendliness, parallelization, documentation etc. It should be
stressed that the large variety of computer codes is very beneficial for this growing field of
computational material sciences, since these codes all have advantages and disadvantages
compared to others. For obvious reasons we will focus on our own code to illustrate important
aspects of this field.

Some basic concepts will be described below as summarized in Figure 1. As a very first step
one needs to represent the atomic structure of a solid material as is outlined in Section 2.
Idealized assumptions must be made which one should keep in mind when theoretical results
are compared with experiments. In order to describe the electronic structure of a system of
interest by means of quantum mechanics (Section 3) we first briefly mention some fundamental
concepts of solid state physics (like symmetry). Next we sketch how chemists handle quantum
mechanics and then focus on the most important theory for solids, namely density functional
theory. Before we can describe how to solve the corresponding Kohn-Sham equations (Section
4) it is necessary to select which electrons should be included in the calculations: all of them
or only the valence electrons. The form of the potential must also be chosen, where we discuss
such methods as pseudo-potential, muffin-tin or full-potential approximations. This choice is
important for deciding which basis set can best describe the wave functions of the electrons.
A relativistic treatment will be important if the system contains heavier elements. For magnetic
systems spin-polarization is essential and thus must be included. The main ideas of the all-
electron full-potential linearized-augmented-plane-wave (LAPW) with local orbitals method
as implemented in WIEN2k are briefly described. This should be sufficient, since there is a
good documentation of the underling details.

Section 5 lists selected results which can be obtained with WIEN2k. Since about 2500 groups-
both from academic and industrial institutions – are using this code there are many details
available in literature (see the link papers at www.wien2k.at). Based on the experience of
developing WIEN2k, it is appropriate to make some general comments about the computer
code development (Section 6). As more and more experimental scientists in this field rely on
computer simulations, it is useful to raise some critical questions and summarize several
points, which can cause deviations between theoretical results and experiment, a topic covered
in Section 7. In Section 8 concluding remarks are made and then the very appropriate ac‐
knowledgments.
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Figure 1. Possible choices for calculating the electronic structure of a material at the atomic scale (the focus is highlight‐
ed in red).

2. Atomic structure

The properties of materials at the nanometer (nm) scale or of atomic dimensions (measured in
Å) are essentially determined by the electronic structure. In such a case one tries to represent
the material of interest (such as a solid, a surface or a molecule) as a collection of atoms, which
play the role of building blocks. It is important to realize that in practice one is forced to assume
an idealized atomic structure in theoretical work, which deviates from the real structure that
may be studied experimentally.

A few examples will illustrate this important point: Let us first consider a molecule which in
theory is studied in vacuum, whereas in experiment it is often measured on a support (surface)
or in a solution. The latter may be simulated by surrounding the molecule by a few solvent
molecules or by using an embedding scheme with a dielectric constant (simulating the solvent).
Recently the combination of a quantum mechanical (QM) treatment of the molecule with a
cruder mechanical mechanics (MM) representation of the environment is used in QM/MM
schemes. Such treatments will necessarily be approximate.

As a second example we focus on a solid. In early days one modeled a solid as a cluster of
atoms, but due to size limitations this cannot represent bulk properties. With the increase in
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computer power we assume ‒ especially in theory ‒ that a solid is a perfect crystal and can be
characterized by a unit cell that is repeated to infinity in all three dimensions. This means that
one assumes periodic boundary conditions. A real crystal, however, is certainly finite. For
experimental studies a crystalline sample is often available in the form of a powder consisting
of small crystal domains. Even if experiments are carried out on a single crystal, it still has a
surface and imperfections (such as defects or impurities, etc.). In compounds there are
additional uncertainties, such as the stoichiometry, which may not be perfect, or the atomic
arrangement, which may deviate from the underlying idealized order.

The situation of a perfect single crystal is illustrated for TiO2 crystallizing in the rutile structure
(Figure 2). The symmetry belongs to one of the 230 space groups that are tabulated in the
International Tables for Crystallography [8]. Nowadays this information is also available from
the Bilbao Crystallographic Server (www.cryst.ehu.es/cryst/). For a given crystal the unit cell
must be specified with the three lattice parameters (a, b, c) and the corresponding angles (α,
β, γ). For the atomic positions the Wyckoff positions must be defined, where for each type of
atoms only one of the equivalent atoms needs to be specified, while all others are generated
by symmetry. For known structures this type of information is available for example from the
inorganic crystal structure data base [9] or can be taken from standardized CIF files, which are
often available directly from literature.

Figure 2. The crystal structure of TiO2 in the rutile structure: It is characterized by the space group 136 which is speci‐
fied in the International Table of Crystallography [8]. The two types of atoms occupy the Wyckoff positions 2a (Ti) and
4f (O) where for the latter the parameter x is not given by symmetry and thus needs to be specified. The equivalent
positions are defined by symmetry. In this tetragonal structure the angles of the unit cell are all 90 degrees and for the
lattice constants only a and c need to be specified, since a=b.

In Figure 3 the unit cell of a borocarbide is shown, which contains main group elements (B and
C), transition metals (Ni), and rare earth elements (Nd). Often interesting materials have such
complex compositions. In this case the crystal structure is well known but for an understanding
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of the properties of this compound it is essential that all these atom types (from light to heavy)
can be properly treated. Details of this compound can be found in [10].

In modern material science it is often mentioned that “nano materials” have significantly
different properties than their bulk analogs. A simple explanation can be provided by
estimating the ratio of atoms on the surface with respect to those in the bulk of the material.
The atoms on the surface have a different coordination number than the atoms in the bulk and
thus have a different bonding environment. Consequently these atoms may move to a relaxed
atomic position with respect to the ideal bulk crystal structure. In a nano particle a significant
fraction of atoms are on the surface, whereas in a large single crystal this fraction is rather small
and thus can (to a good approximation) be neglected, so that periodic boundary conditions
may be used for calculating many properties.

In all the cases mentioned above the assumed atomic structure is idealized and differs from
the real structure of a material that is investigated experimentally. These aspects should be
kept in mind when theoretical results are compared with experimental data (as will be
discussed in Section 7). This idealization is an advantage for theory with respect to experi‐
ments, since in computations the atomic structure is clearly defined as input. This is in contrast
with experimental studies in which the material is often not so well characterized, in terms of
stoichiometry, defects, impurities, surfaces, disorder etc. When theory simulates a structure,
which is not a good representation of the real system, deviations between theory and experi‐
ment must be expected irrespective of the accuracy of the theoretical method.

With the concept of a supercell one can approximately simulate some aspects of a real system.
For example one can artificially enlarge a unit cell by forming a 2 x 2 x 2 supercell, containing

Figure 3. The unit cell of NdNi2B2C
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eight times as many atoms as the original. Figure 4 shows this case for a simple cubic case. In
such a supercell one can, for example, remove an atom (representing a defect) or substitute
one atom by another one (simulating a substitution) or add vacuum (about 10-15 Å) on one
side of the cell (to represent a surface).

Figure 4. Schematic diagram to generate a 2 x 2 x 2 supercell from a simple cubic structure.

The possibilities of such supercells are schematically shown in Figure 5. A two-dimensional
array of atoms is called slab. In a multi-layer slab the central layer approximately represents
the bulk of a system, whereas the top (and bottom) layer can be used to represent a surface
provided the distance to the next layer is sufficiently far away (due to the periodic boundary).
On such an artificial surface one can place molecules and study for example catalytic reactions.
In all such supercells one still has introduced an artificial order, since for example a defect will
have a periodic image in the neighboring cells. The larger one can make the supercell the less
critical the interaction between each periodic images become but this requires higher compu‐
tational effort. Therefore one must make compromises.

Figure 5. The construction of a supercells is schematically shown, first with three cubic cells (body-centered-cubic) plus
vacuum, second a schematic supercell forming a 3-layer slab; and third a 5-layer slab (formed of metal atoms) with
molecules on top.
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The use of supercells is steadily increasing, since a more realistic modeling of real structures
becomes attractive. In large supercells (with a few hundred atoms) one can even approximately
model disorder as was recently illustrated for so called misfit layer compounds, in which the
layers of PbS and TaS2 can be stabilized by occasionally substituting Pb by Ta [11]. Such aspects
will be mentioned in Section 5.

3. Quantum mechanics

3.1. DFT Fundamentals

3.1.1. Symmetry

As mentioned in the previous section we focus on materials at the atomic scale. Here we use
periodic boundary conditions and start with an ideal crystal structure that is studied at zero
temperature. Our unit cell (or supercell) may contain several atoms. With present computer
technology unit cells with around one thousand atoms can still be simulated within a reason‐
able time.

Quantum mechanics (QM) governs the electronic structure which is responsible for the
properties of the system, such as the relative stability, chemical bonding, relaxation of the
atoms, phase transitions, electrical, mechanical or magnetic behavior, etc. In addition many
quantities related to experimental data (such as spectra) are determined by QM principles.

Several basic concepts from solid state physics and group theory are needed to characterize
the electronic structure of solids as summarized for example in [12]. Here we just briefly
mention some of these concepts such as the Born-Oppenheimer approximation, according to
which the electrons can move independent form the nuclei (which can be assumed to be at
fixed positions), or the direct lattice and the Wigner-Seitz cell. Owing to the translational
symmetry of a crystal, it is convenient to define a reciprocal lattice with the Brillouin zone as
the unit cell. The symmetry is defined by operators for translation, rotation, reflection or
inversion and leads to group theory with the space group and point group. The electronic
structure of an infinite solid looks so complicated that it would seem impossible to calculate
it. Two important steps make the problem feasible. The single particle approach, in which each
electron moves in an average potential V(r) that is translational invariant V(r+T)=V(r) under
the translation T. The second important concept is the Bloch theorem, which defines how the
wave function (which is not translational invariant) changes under T, namely by a phase factor,
called the Bloch factor eikT

( ) ( )  i
ke yY + = kT

k r T r (1)

where k is a vector in reciprocal space that plays the role of a quantum number in solids. The
k vector can be chosen in the first Brillouin zone, because any k’ that differs from k by just a

Computation of Materials Properties at the Atomic Scale
http://dx.doi.org/10.5772/59108

281



lattice vector K of the reciprocal lattice has the same Bloch factor and the corresponding wave
function satisfies the Bloch condition again.

3.1.2. Quantum chemistry and ab initio methods

The quantum mechanical treatment of a system on the atomic scale has been discussed in many
papers (for example in [5, 12]) and thus it is sufficient to summarize a few basic concepts here.
According to the Pauli principle, because electrons are indistinguishable Fermions, their wave
functions must be antisymmetric when two electrons are interchanged leading to the phenom‐
enon of exchange. In a variational wave-function description this can be enforced by forming
one Slater determinant (set up from one-electron wave functions),  representing the well-
known Hartree-Fock (HF) approximation. The HF equations have the computational disadvant‐
age that each electron moves in a different potential (becoming orbital dependent). In HF the
exchange is treated exactly but correlation effects, caused by the specific Coulomb interaction
between the electrons are omitted by definition. Correlation can be included by more sophisti‐
cated approaches such as configuration interaction (CI) in which additional Slater determi‐
nants (including single, double or triple excitations into unoccupied states) are added in order
to increase the variational flexibility of the basis set [13]. Another treatment of correlation effects
is the coupled cluster (CC) scheme that is often used in quantum chemistry [14]. Such schemes
are labeled ab initio (or first principles) methods and are highly accurate refinements that can
reach an almost exact solution. Unfortunately the corresponding computational effort dramat‐
ically increases with N7, where the system size is proportional to N, the number of electrons.
Such nearly exact solutions would be desirable but in practice they can only be obtained for
relatively small systems (atoms or small molecules). When the system size is significantly larger
(as in condensed matter applications) approximations are unavoidable.

In quantum mechanics the term ab inito means that for a simulation of a material it is sufficient
to know its constituent atoms (or isotopes) but the rest is governed by quantum mechanics.
One does not need to know whether a material is insulating, metallic, magnetic, or has any
other specific property. In principle an ab initio calculation should determine these properties
from the atomic structure alone. A different situation occurs for calculations that are based on
parameters that had been fitted to known properties of other systems that are similar to the
material of interest. The latter type of calculations is often less demanding (in terms of
computer resources) but is necessarily biased towards the related class of materials for which
the parameters had been determined. Consequently one cannot find an unconventional
behavior. In practice, however, it helps to know something about the system in order to choose
proper approximations in the complicated quantum mechanical calculations. For example,
why should one perform a spin-polarized calculation knowing that the system is not magnetic.

3.1.3. Density Functional Theory

The well-established scheme to calculate electronic properties of solids is based on density
functional theory (DFT), for which Walter Kohn has received the Nobel Prize in chemistry in
1998. Fifty years ago, in 1964, Hohenberg and Kohn [15] have shown that the total energy E of
an interacting inhomogeneous electron gas (as it appears in atoms, molecules or solids), in the
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an interacting inhomogeneous electron gas (as it appears in atoms, molecules or solids), in the
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presence of an external potential (coming from the nuclei) is a functional of the electron density
ρ which uniquely defines the total energy E of the system, i.e E[ρ].

1 ( ) ( )[ ] ( ) [ ]
2 | |o ext xc

r rE T V r dr drdr E
r r

r rr r r
¢

¢= + + +
¢ -ò ò
r rr r r r
r r (2)

The four terms correspond to the kinetic energy (of non-interacting electrons), the nuclear-
electronic interaction energy Ene, the Coulomb energy (including the self-interaction) and the
exchange correlation energy Exc, which contains all the quantum mechanical contributions.
This theorem is still exact. From a numerical point of view one can stress that the first three
terms are large numbers while the last is essential but small and thus can be approximated.
Thus one does not need to know the many-body electronic wave function. This is an enormous
simplification. To clarify this point, consider the very simple case of a system (atom or
molecule) with 100 electrons but which is still small. Each electron needs to be described by a
wave function which depends on three space coordinates and the spin. Therefore the many-
body wave function would depend on 400 coordinates. According to DFT all that is needed is
the density ρ(r) which only depends on the position r, i.e. on three coordinates. Unfortunately
the exact form of the functional is not known but the conditions it should satisfy have been
formulated, as will be discussed in Section 3.3.

3.2. The Kohn-Sham equations

From a practical point of view it was essential to formulate DFT in such a way that it could be
applied. According to the variational principle a set of effective one-particle Schrödinger
equations, the so-called Kohn-Sham (KS) equations [16], must be solved (Equation 3) as
highlighted in Figure 1 and Figure 6. In this way DFT is a universal approach to the quantum
mechanical many-body problem, where the system of interacting electrons is mapped in a
unique manner onto an effective non-interacting system that has the same total density. The
non-interacting particles of this auxiliary system move in an effective local one-particle
potential, which consists of a classical mean-field (Hartree) part and an exchange-correlation
part Vxc (due to quantum mechanics) that, in principle, incorporates all correlation effects
exactly. Eqn.3 shows its form (written in Rydberg atomic units) for an atom with the obvious
generalization to molecules and solids.
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The four terms represent the kinetic energy operator, the external potential from the nucleus,
the Coulomb-, and exchange-correlation potential VC and Vxc. The KS equations must be solved
iteratively till self-consistency is reached (as illustrated in Figure 6). The iteration cycles are
needed due to the interdependence between orbitals and potential. In the KS scheme the
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electron density is obtained by summing over all occupied states, i.e. by filling the KS orbitals
(with increasing energy) according to the aufbau principle.

2( ) [ ( )]occ
iir rr j=å

r r
(4)

A typical computation is illustrated in Figure 6. For a system of interest the unit cell must be
specified by the lattice constants a, b, c and the corresponding angles (α, β, γ). In addition each
atomic position is defined by the Wyckoff positions (as mentioned in Section 2). For this fixed
atomic structure the self consistent field (SCF) cycle starts. As a first guess for the crystalline
density one can superimpose atomic densities of neutral atoms placed at their proper positions
in the unit cell. With this density one can generate a potential (within DFT). In each iteration
i the DFT Kohn-Sham equations must be solved as illustrated on the right hand side.

Instead of using a uniform mesh of k-points s in the Brillouin zone (BZ) it is sufficient to restrict
the k-points s to the irreducible wedge of the BZ by applying symmetry relations present in
the system. From each star of equivalent k-points s only one must be calculated and its
corresponding density is weighted according to the k-points symmetry (reducing the compu‐
tational effort). For each k-points the Kohn-Sham equations must be solved.

The KS wave functions are expanded in basis sets as will be described in the next section. The
expansion coefficients Ckn are determined by the variational method by minimizing the
expectation value of the total energy with respect to these coefficients. This procedure leads
to the generalized eigenvalue problem, HC=ESC, where H is the Hamiltonian, S the overlap
matrix, C contains the coefficients and E the energies. After diagonalization we obtain for each
energy Enk the KS orbital ψnk and thus can calculate the corresponding electron density, where
n is the band index.

By summing over all occupied states (with Ek smaller than the Fermi energy) the output density
is obtained. This output density can be mixed with the input density of the previous iterations
to obtain a new density for the next iteration. In order to reduce the number of iterations to
reach self consistency, several schemes have been suggested (see section 5 in [4]). A recent
mixing scheme is the multisecant version [17] which includes information from several
previous iterations from the SCF cycle as samples of a higher dimensional space to generate
the new density, from which the VC (solving Poisson’s equation) and Vxc (within DFT)
potentials can be generated for the next SCF iteration. The exact functional form of the potential
Vxc is not known and thus one needs to make approximations. With these potentials the new
KS orbitals can be obtained. This closes the SCF cycle.

The SCF cycles are continued till convergence is reached, for example when the total energy
of two successive iterations deviates from each other by less than a convergence criterion ε
(e.g. 0.001 Ry). At this stage one can look at forces acting on the atoms in the unit cell. If
symmetry allows there can be forces on the atoms which are defined as the negative gradient
of the total energy with respect to the position parameters. Take for example the rutile TiO2

structure (Figure 2), in which oxygen sits on Wyckoff position 4f which has the coordinates (x,
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x, 0) where x is not specified by symmetry. In this case x can be varied to minimize the energy
and thus a force can occur on the oxygen which vanishes at the equilibrium geometry.
However, Ti is located at the Wyckoff position 2a with the fixed coordinates (0, 0, 0) and (½,
½, ½) and thus these positions are fixed and no force will act on Ti. When all atoms are
essentially at their equilibrium positions (with forces around 0) then one can change the
volume of the unit cell and minimize the total energy E. This would correspond to the
equilibrium geometry of the system in the given structure. After this minimization is com‐
pleted one can, as the last step, calculate various properties for this optimized structure.

3.3. DFT-functionals

The treatment of exchange and correlation effects has a long history and is still an active field
of research. Some aspects were summarized in the review articles [1-5] but also in many other
papers in this field. The reader is encouraged to look at recent developments. An excellent
book [18] by Cottenier covers DFT and many aspects around the WIEN2k program package
and thus is highly recommend to the reader for finding further details.

Figure 6. Major steps in DFT electronic structure calculations: self-consistent field (SCF) cycle; Kohn-Sham equations
solved within a k-points loop; for example, a face-centered-cubic structure (space group 225) has a body-centered cubic
reciprocal lattice (space group 229) as Brillouin zone with its irreducible wedge (1/48th of the BZ).
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For the present presentation it is worth mentioning a few historical aspects: in 1951 Slater [19]
proposed the replacement of the non-local Hartree-Fock exchange by the statistical exchange,
called Slater’s exchange. In the 1970ths this was modified by scaling it with the exchange
parameter α (for each atom) called the Xα method [20], which was widely used for solid state
calculations. It was designed to approximate Hartree-Fock, which (by construction) treats
exchange exactly but neglects correlation effects completely. By making a local approximation
for the potential the Xα method indirectly included correlation effects making it better than
Hartree-Fock but also less accurate, since exchange is treated only approximately. This type
of error cancellation is typical for many DFT functionals.

Early applications of DFT were done by using results from quantum Monte Carlo calculations
[21] for the homogeneous electron gas, for which the problem of exchange and correlation can
be solved exactly. Although no real system has a constant electron density, one can at each
point in space use the homogenous electron gas result to treat exchange and correlation,
leading to the original local density approximation (LDA). Surprisingly LDA works reasonably
well but has some shortcomings mostly due to the tendency to overbind atoms, which cause
e.g. too small lattice constants. The next crucial step in DFT was the implementation of the
generalized gradient approximation (GGA), for example the version by Perdew, Burke,
Ernzerhof (PBE) [22] which improved LDA by adding gradient terms of the electron density.
For several cases this GGA gave better results and thus for a long time PBE has been a standard
for many solid state calculations. During recent years, however, several improvements of GGA
were proposed, which fall in two categories, both with good justifications:

• Semi-empirical GGA, which contain parameters that are fitted to accurate (e.g. experimental
or ab initio) data

• ab initio GGA, in which all parameters are determined by satisfying fundamental con‐
straints (mathematical condition) which the exact functional must obey.

One criterion for the quality of a calculation is the equilibrium lattice constant of a solid, which
can be calculated by minimizing the total energy with respect to volume. By studying a large
series of solids (as shown in Figure 7) some general trends can be found ([23]): LDA has the
tendency of overbinding, leading to smaller lattice constants than the experiment. GGA in the
version of PBE [22] always yield larger lattice constants, which sometimes are above the
experimental value. The more recently suggested modifications, as discussed in [23], lead to
a clear improvement at least for the lattice parameters. In addition, there are other observables
(such as cohesive energy or magnetism, to mention just two), which depend on the functional.
The best agreement with experiment may require different functionals for various properties.
So far no functional works equally well for all cases and all systems. Therefore one must
acknowledge that an optimal DFT functional has not yet been found, which is the reason why
this remains an active field of research.

A systematic improvement of the exchange and correlation treatment as in quantum chemistry
(section 2.3) starting from Hartree-Fock to (full) configuration interaction (CI) or coupled
cluster (CC) approaches did not exist for solids and DFT. In 2005 such a scheme was proposed
in [24] and was called Jacob’s ladder for DFT which becomes progressively more demanding
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in terms of computational requirements. In Figure 8 the five rungs of this ladder (“to heaven”)
are briefly mentioned which indicate what is needed at each level of theory. In LDA the
exchange correlation energy εxc is just a function of the density ρ; in the next rung it depends
also on the gradient of the density, in meta-GGA εxc is in addition a function of the Laplacian
of the density and the kinetic energy density t (see e.g. [25]). In rung 4 one goes from the simple

Figure 7. Comparison of several GGA functionals, showing the relative error in the equilibrium lattice constant of
many solids between DFT calculations and experiment (for further details see [23]). The calculations were done with
WIEN2k.
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dependence on the density alone, to an orbital description, which (for occupied orbitals) allows
a correct description of exchange, like in Hartree-Fock. At this level one limits the computation
space to the occupied orbitals but can extend it to the hybrid functions (mixing a fraction of
Hartree-Fock with a part in DFT). In the highest rung also unoccupied orbitals are included,
as for example in the scheme called random phase approximation (RPA).

There are well documented cases for which conventional DFT calculations (LDA or GGA)
disagree even qualitatively with experimental data and lead, for instance, to predict a metal
instead of an insulator. One of the reasons can be the presence of localized states (often f-
electrons or late transition metal d-orbitals) for which correlation is very strong. For these
highly correlated systems one must go beyond simple DFT calculations. One simple form of
improvement is to treat theses local correlations by means of a Hubbard U (see [26]) but use
LDA or GGA for the rest of the electrons. With this parameter U the on-site Coulomb repulsion
between the localized orbitals is included, but by introducing a parameter. This approach is
generally called LDA+U. In a simple picture, U stands for the energy penalty of moving a
localized electron to the neighboring site that is already occupied.

The Kohn-Sham energy eigenvalues εi (in equation 3) should – formally speaking – not be
interpreted as excitation energies (except for the highest one). Nevertheless optical excitations
are commonly described in the independent particle approximations, using these quasi
particle states from DFT in the single-particle picture. One well known case is the energy gap
of insulators, which in this crude single-particle picture is typically underestimated by about
50 per cent. This has been well known for some time (see e.g. section 6.7 of [4]), since even the
exact Kohn-Sham gap misses the integer discontinuity Δxc between occupied and unoccupied
states. It is worth considering that in Hartree Fock the gap found would typically be too large.

Figure 8. Jacob’s ladder according to [24] with 5 rungs, demonstrating how to improve the exchange correlation treat‐
ment.

Selected Topics in Applications of Quantum Mechanics288



dependence on the density alone, to an orbital description, which (for occupied orbitals) allows
a correct description of exchange, like in Hartree-Fock. At this level one limits the computation
space to the occupied orbitals but can extend it to the hybrid functions (mixing a fraction of
Hartree-Fock with a part in DFT). In the highest rung also unoccupied orbitals are included,
as for example in the scheme called random phase approximation (RPA).

There are well documented cases for which conventional DFT calculations (LDA or GGA)
disagree even qualitatively with experimental data and lead, for instance, to predict a metal
instead of an insulator. One of the reasons can be the presence of localized states (often f-
electrons or late transition metal d-orbitals) for which correlation is very strong. For these
highly correlated systems one must go beyond simple DFT calculations. One simple form of
improvement is to treat theses local correlations by means of a Hubbard U (see [26]) but use
LDA or GGA for the rest of the electrons. With this parameter U the on-site Coulomb repulsion
between the localized orbitals is included, but by introducing a parameter. This approach is
generally called LDA+U. In a simple picture, U stands for the energy penalty of moving a
localized electron to the neighboring site that is already occupied.

The Kohn-Sham energy eigenvalues εi (in equation 3) should – formally speaking – not be
interpreted as excitation energies (except for the highest one). Nevertheless optical excitations
are commonly described in the independent particle approximations, using these quasi
particle states from DFT in the single-particle picture. One well known case is the energy gap
of insulators, which in this crude single-particle picture is typically underestimated by about
50 per cent. This has been well known for some time (see e.g. section 6.7 of [4]), since even the
exact Kohn-Sham gap misses the integer discontinuity Δxc between occupied and unoccupied
states. It is worth considering that in Hartree Fock the gap found would typically be too large.

Figure 8. Jacob’s ladder according to [24] with 5 rungs, demonstrating how to improve the exchange correlation treat‐
ment.

Selected Topics in Applications of Quantum Mechanics288

This is one of the reasons, why hybrid functionals were suggested which mix Hartree Fock
with DFT in order to produce the correct gap. Better estimates of the quasi-particle spectrum
can be obtained by GW calculations employing many-body perturbation theory, which is
significantly more computationally expensive. Recently a modified Becke Johnson (mBJ)
potential was proposed [27], which is still a local potential (and thus cheap) but yields energy
gaps close to experiment..

When the Coulomb potential is written in terms of the density (third term in equation 2) it
contains the unphysical self interaction of an electron with itself. In Hartree-Fock this term is
exactly canceled by the exchange term. Due to the approximation in DFT, this cancellation is
not complete and thus in some functionals a self-interaction-correction (SIC) is added [28].

The van der Waals (vdW) interaction is not described in the simple DFT approximations like
LDA or GGA but can be treated with higher order treatments (rung 4 or 5 in Jacob’s ladder)
which become computationally rather expensive. A pragmatic solution is to add a vdW
correction based on adjustable parameters (see for example Grimme’s scheme [29]).

In connection with the term “ab inito” ‒ as the quantum chemists define it ‒ it is appropriate
to consider the situation for large systems: the strategy differs for schemes based on HF (wave
function based) or DFT. In HF based methods (including CI and CC) the Hamiltonian is well
defined and can be solved almost exactly for small systems but for large cases only approxi‐
mately (i.e. due to limited basis sets). In DFT, however, one must first choose the functional
that is used to represent the exchange and correlation effects (or approximations to them) but
then one can solve this effective Hamiltonian almost exactly. Thus in both cases an approxi‐
mation enters either in the first or second step. This perspective illustrates the importance of
improving the functionals in DFT calculations, since they define the quality of the calculation.
The advantage for DFT is that it can treat relatively large systems.

4. Solving the Kohn-Sham equations with WIEN2k

4.1. The all electron case

A schematic summary of the main choices one has to make for computations is shown in Figure
1, where our selections are marked in red. We want to represent a solid with a unit cell (or a
Supercell) as discussed in section 2 and thus invoke periodic boundary conditions. The system
may contain all elements of the periodic table, from light to heavy, main group, transition
metals, or rare earth atoms as for example shown in Figure 3. Let us look at Ti (with the atomic
number Z=22) as an example. Its electronic configuration is 1s22s22p63s23p63d24s2 (Figure 9).

We surround the Ti nucleus by an atomic sphere with a radius of 2 Bohr (about 1Å). With
respect to this sphere, the Ti electronic states can be classified in three categories:

• core states, which are low in energy, have their wave functions (or electron densities) reside
completely inside this sphere.

• valence states, which are high in energy and are delocalized.
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• semi-core states, which are in between (medium energy), have a charge leakage (a few per
cent of the charge density lies outside the sphere) and have a principal quantum number
that is one less than the valence states (i.e. 3s vs. 4s, or 3p vs. 4p).

Traditionally the electronic properties of a material due to the chemical bonding are associated
with only the valence electrons and thus the core electrons are often ignored. A typical scheme
is the so called frozen core approximation, in which the electron density from the core electrons
does not change during the SCF cycle (see Figure 6). This is often justified but there are cases
like hyperfine interactions, where the change of the core electrons can contribute significantly
and even more so the semi-core states. An all-electron treatment has therefore the advantage
of being able to explore the contribution from all electrons to certain experimental data (e.g.
the electric field gradient).

As long as a solid contains only light elements, non-relativistic calculations are well justified,
but as soon as a system of interest contains heavier elements, relativistic effects must be
included. In the medium range of atomic numbers (up to about 54) so called scalar relativistic
schemes [30] are often used, which properly describe the main contraction or expansion of
various orbitals (due to the Darwin s-shift or the mass velocity term) but omit spin-orbit
coupling. Such schemes are computationally relatively simple and thus recommended for a
standard case. The inner electrons can reach a high velocity leading to a mass enhancement.
This causes a stronger screening of the nuclear charge by the relativistic core electrons with

Figure 9. The electronic states of titanium: core-semi-core, and valence states.
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respect to a non-relativistic treatment and affects the valence electrons. The spin-orbit contri‐
bution can be included in a second–variational treatment [31] and is needed for heavier
elements. The core electrons are treated by solving Dirac’s equation, whereas the semi-core
and valence states are described with the scalar relativistic scheme. In the latter spin remains
a good quantum number and thus spin-polarized calculations are valid to treat magnetic
systems.

4.2. The choice of the potential

Figure 1 schematically shows the topics where one needs to make a choice. We want to
represent a solid with a unit cell (or a supercell). Relativistic and spin-polarization effects can
be included as mentioned above. The next crucial point is the choice of the potential that is
closely related to the basis sets. This aspect is extensively explained in [18] discussing the
advantages and problems connected with pseudo potentials. The main idea is to eliminate the
core electrons and replace the real wave functions of the valence states by pseudo wave
functions which are sufficiently smooth so that they can be expanded in a plane wave basis
set. In the outer region of an atom, where the chemical bonding occurs they should agree with
the real wave function. In principle – in mathematical terms – plane waves form a complete
basis set and thus should be able to describe any wave function. However, the nodal structure
(for example of a 4s wave function) close to the nucleus would need to be described by
extremely many plane waves.

For the all-electron case within DFT the potential looks like the one shown in Figure 10. Near
each nucleus it has the form Z/r but between the atoms it is nearly flat. In the muffin-tin
approximation the potential is assumed to be spherically symmetric around the atom but
constant in between. In the full-potential case the potential (without any approximation of its
shape) can be represented as a Fourier series in the interstitial region, but in each atomic sphere
(with a radius RMT) it can be expressed as a radial function VLM(r) multiplied by crystal
harmonics, which are linear combinations of spherical harmonics having the point group
symmetry of the atom α for the proper LM value. In this notation the muffin-tin case is the
first term in both cases, namely the 0 0 component for LM (i.e. only the spherical part inside
each atomic sphere) and a constant for the Fourier series (for the interstitial region). In the
1970ths the muffin-tin approximation was widely used because it made calculations feasible.
For closely packed systems it was acceptable but for more covalently bonded systems like
silicon (or even surfaces) it is a very poor approximation. Another drawback of the muffin-tin
approximation was that the results depended on the choice of sphere radii, whereas in the full-
potential case this dependence is drastically reduced. Due to the muffin-tin approximation
different computer codes obtained results that did not agree with each other. This has changed
with the use of full-potential calculations. Nowadays different codes based on the full potential
yield nearly identical results provided they are carried out to full convergence and use the
same structure and DFT version. This has given theory a much higher credibility and predict‐
ability (see Section 7).
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4.3. The choice of the basis sets

For solving the Kohn Sham equations (see Figure 1) basis sets are needed. A linear combination
of such basis functions shall describe the Kohn-Sham orbitals. One can use analytic functions-
such as Slater type orbitals (STO) or Gaussian type orbitals-or just plane waves (for example
in connection with pseudo potentials). Already in 1937 Slater [32] proposed the augmented
plane wave (APW) method. The development of APW and its linearized version, which led to
the WIEN code [6] and later to its present version WIEN2k [7] was described in detail in recent
reviews [1-5]. An extensive description including many conceptual and mathematical details
is given in [18]. Therefore only the main concepts will be summarized below.

4.4. The APW based method and the WIEN2k code

In the APW method one partition the unit cell into (non-overlapping) atomic spheres (type I)
centered at the atomic sites and the remaining interstitial region (II) (Figure 11). Inside each
atomic sphere (region I) the wave functions have nearly an atomic character and thus (assum‐
ing a muffin-tin potential) can be written as a radial function times spherical harmonics. It should
be stressed that the muffin tin approximation (MTA) is used only for the construction of the
APW basis functions and only for that. The radial Schrödinger equation is solved numerically
(and thus highly accurately), but as input the energy must be provided, which makes the basis
set energy dependent. In region II the potential varies only slowly and thus the wave func‐
tions can be well expressed in a series of plane waves (PW). Each plane wave is augmented by
the atomic partial waves inside each atomic sphere (i.e. the PW is replaced inside the spheres).

Figure 10. The full potential vs. muffin tin approximation is shown for a (110) plane of SrTiO3.
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The corresponding weight Aℓm of each partial wave can be fixed by a matching condition at the
sphere boundary (as indicated in Figure 11 and Figure 13).

Figure 11. The Augmented Plane Wave (APW) method.

Three schemes of augmentation (APW, LAPW, APW+lo) have been suggested over the years
and illustrate the progress in this development of APW-type calculations that was discussed
in [18, 4, 5]. Here only a brief summary will be given. The energy dependence of the atomic
radial functions uℓ(r,E) can be treated in different ways. In Slater’s APW [32] this was done by
choosing a fixed energy E, which leads to a non-linear eigenvalue problem, since the basis
functions become energy dependent.

In the linearized APW, called LAPW, O. K. Andersen [33], suggested to linearize (that is treat
to linear order) this energy dependence as illustrated in Figure 12. The radial Schrödinger
equation is solved for a fixed linearization energy Eℓ (taken at the center of the corresponding
energy bands) leading to uℓ(r, Eℓ) but adding an energy derivative of this function (taken at
the same energy) in order to retain the variational flexibility. This linearization is a good
approximation in a sufficiently small energy range around Eℓ. In LAPW the atomic function
inside the sphere α is given by a sum of partial waves, namely radial functions times spherical
harmonics labeled with the quantum numbers (ℓ, m).
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Figure 12. The energy variation of the radial wave function uℓ(Eℓ,r) according to LAPW [33] is schematically shown: i)
for the center of the band (taken from a sketched density of states shown on the right), ii) for the energy Ebottom at the
bottom of the band (bonding case where the radial wave function has zero slop at the sphere boundary RMT as shown
in Figure 13), and iii) for the energy Etop at the top of this band (antibonding case, where the wave function has a node
at RMT). In LAPW this energy dependence is linearized and expressed as the radial function and its energy derivative
both taken at Eℓ, where the relative weights are determined by matching (in value and slope) to plane waves at RMT (as
shown in Figure 13).

The two coefficients Aℓm and Bℓm (weight for function and derivative) – as given in Figure 12-
can be chosen so as to match each plane wave (characterized by K) continuously (in value and
slope) to the one-center solution inside the atomic sphere at the sphere boundary (for details
see e.g. [18]). The main advantage of the LAPW basis set is that it allows finding all needed
eigenvalues with a single diagonalization, in contrast to APW, which has the non-linear
eigenvalue problem. Historically, the more strict constrain (a matching of both value and slope)
had the disadvantage that in LAPW more PWs were needed to reach convergence than in
APW. The LAPW basis functions u and it derivative are recalculated in each iteration cycle
(see Figure 6) and thus can adjust to the chemical changes (for example due to charge transfer)
requiring an expansion or contraction of the radial function. The LAPW method made it
computationally attractive to go beyond the muffin-tin approximation and to treat both the
crystal potential and the charge density without any shape approximation (called full-
potential) as pioneered by the Freeman group [34].

In section 4.1 the partition of electronic states in core, semi-core and valence states was
described and illustrated for Ti in Figure 9. Let us focus on the p-type orbitals. The 2p core
state is treated fully relativistic as an atomic core state while the valence 4p state is computed
within LAPW using a linearization energy at the corresponding high energy. The 3p semi-core
states reside mostly inside the Ti sphere but have a “core-leakage” of a few per cent. The 3p
states are separated in energy from the 4p states and thus the linearization (with the lineari‐
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zation energy of the 4p state) would not work here. For such a case Singh [35] proposed adding
local orbitals (LO) to the LAPW basis set in order to accurately treat states with different
principal quantum numbers (e.g. 3p and 4p) while retaining orthogonality. In this example
the 3p LOs look very similar to the 3p radial function but are constrained to have zero value
and slope at the sphere radius RMT.

The concept of LO fostered another idea, namely the APW plus local orbitals (APW+lo) method
by Sjöstedt et al [36]. These local orbitals are labeled in lower case to distinguish them from
the semi-core LO. In APW+lo, one returns to the APW basis but with the crucial difference that
each radial function is expanded at a fixed energy. The matching is again (as in APW) only
made between values (Figure 13). This new scheme is significantly faster while maintaining
the convergence of LAPW [37].

Figure 13. The (linearized) augmented plane wave method as implemented in WIEN2k [7] defining i) the different
atomic partial waves in LAPW and APW+lo used inside the atomic sphere, ii) the plane waves used in the interstitial
region, iii) the matching at the sphere boundary, and iv) illustrating for an Fe-4p orbital how the different matching
looks at the sphere boundary for APW and LAPW.

The APW+lo scheme therefore combines the best features of all APW-based methods. It was
known that LAPW converges somewhat slower than APW due to the constraint of having
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differential basis functions and thus it is an improvement to return to APW but only for the
orbitals involved in chemical bonding. The energy-independent basis introduced in LAPW is
crucial for avoiding the general eigenvalue problem of APW and thus is also used for all higher
ℓ components. The local orbitals provide the necessary variational flexibility to make this new
scheme efficient but they are added only where needed (to avoid any further increase in basis
set). The crystalline wave functions (of Bloch type) are expanded in these APWs leading to a
general eigenvalue problem. The size of the matrix is mainly given by the number of plane
waves (PWs) but is increased slightly by the additional local orbitals that are used. As a rule
one can say that about 50-100 PWs are needed for every atom in the unit cell in order to achieve
good convergence.

5. Results with WIEN2k

The WIEN2k code is widely used and thus there is an enormous literature with many inter‐
esting results which cannot all be covered here. Many of the publications with WIEN2k can
be found on the web page www.wien2k.at under the heading papers. A selected list of results,
that can be obtained with WIEN2k, is provided below, where references are specified either
to the original literature or in some cases to review articles [4, 5].

• After the SCF cycle has been completed one can look at various standard results: the Kohn-
Sham eigenvalues Enk can be shown along symmetry lines in the Brillouin zone giving the
energy band structure. A symmetry analysis can determine the corresponding irreducible
representation (see Fig.1 of [4]). For each of these states with Enk the wave function (a
complex function in three dimensions) contains information about how much the various
regions of the unit cell contribute. In the APW framework this can be done by using the
partial charges qtℓm which define the fraction of the total charge density of this state
(normalized in the unit cell) that resides in the atomic sphere t and comes from the orbital
characterized by the quantum numbers ℓm. The fraction of the charge that resides in the
interstitial region is contained in qout. These numbers, which depend on the choice of sphere
radii, help to interpret each state in terms of chemical bonding. This is an advantages of this
type of basis set. There is a useful option to show the character of bands. As one example,
three options of presenting the band structure are illustrated for the refractory metal
titanium carbide TiC shown in Fig.1 of reference [2] showing the Ti-d (eg symmetry) and C-
p character bands, which dominate the bonding in this case. The crystal field of TiC splits
the fivefold degenerate Ti-d orbitals into t2g and eg states (with a degeneracy of 3 and 2
respectively). Another example is the band structure of Cu shown in Fig. 2.2.16.1 of [12].

• The Fermi surface in a metal is often crucial for an understanding of properties (for example
superconductivity). It can be calculated on a fine k-mesh and plotted (for example with
XCrysDen [38]).

• With a calculation for a (sufficiently fine) uniform mesh of k-points s in the irreducible
Brillouin zone as discussed in connection with Figure 6 one can determine the density of
states (DOS), which gives a good description of the electronic structure. The total DOS can
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be decomposed into its components by means of the qtℓm values mention above. This
decomposition becomes even more important in complicated cases, for example if one wants
to find which state originates from an impurity atom in a supercell.

• The electron density is the key quantity in DFT and thus contains the crucial information
for chemical bonding but the latter causes only small changes. Therefore it is often useful
to look at difference densities, computed as difference between the SCF density of the crystal
minus the superposed atomic densities (of neutral atoms), because in this presentation the
changes due to bonding become more apparent. Sometimes it is useful to look at the
densities corresponding to states in a selected energy window using various graphical tools
(2-or 3-dimensional plots). Another possibility is a topological analysis according to Bader’s
theory of atoms in molecules [40]. It allows among other details, one to uniquely define
atomic charges within atomic basins, a relevant quantity for charge transfer. See also chapter
6.3 of [4].

• The typical chemical bonds, like covalent, ionic or metallic bonds, can well be described
within DFT. For their analysis the APW type basis is very useful because it can provide
chemical interpretations in term of orbitals. Van der Waals (vdW) interactions, however,
are not properly represented in conventional DFT: They can approximately be included by
adding a Grimme correction, for example [29].

• The total energy of a system is the main quantity within DFT. Especially for large systems
this can be a rather large number, but nowadays it can be calculated with high precision.
The interest is often in total energy differences for example to find out which of two
structures is more stable. In such cases the two calculations need to be done in a very similar
fashion (same functional, comparable k-mesh and basis set, same sphere sizes, etc.). It is also
possible to compare cohesive or atomization energies, where the atoms must be modeled
in the same fashion as the crystal (that is in a large supercell containing just the isolated
atom).

• The derivative of the total energy with respect to the nuclear coordinates yield the force
acting on the atom, which is needed for structure optimization. See also chapter 6.5 of [4],
in which such an optimization is discussed in connection with the bonding of hexagonal
boron nitride on a Rh (111) metal substrate, where the two systems have a lattice mismatch
of about 8 per cent (Figure 14). This mismatch in lattice spacing requires that 13 x 13 unit
cells of h-BN are needed to match 12 x 12 unit cells of the underlying Rh (111) lattice to make
it commensurate (with periodic boundary conditions). This special surface arrangement was
called “nanomesh” with spacing of about 3.2 nm. In order to simulate this system with a
supercell, the face-centered-cubic (fcc) metal layer is represented with three layers (with a
12 x 12 Rh lattice) which are covered (on both sides on the metal slabs) with a single layer
of BN (with a 13 x 13 BN lattice) and then an empty region is added to simulate the surface.
Although this is still a crude model of the real situation, it illustrates which kind of large
systems can be studied nowadays. This model system contained 1108 atoms per unit cell
but could be computed with WIEN2k. The corresponding calculations have shown that BN
is no longer flat but becomes corrugated due to the different binding situations between BN
and the metal substrate, which depends on the local geometry that is favorable (“pores” in
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some regions but unfavorable “wires” in others. This corrugated BN surface was found to
agree with experimental data (for further details see [41-43]). Another example is the
investigation of so called misfit layer compounds [11], in which the bonding between the
layers of TaS2 and PbS required that some Pb atoms are replaced by Ta in an disordered
fashion. Relatively large supercells were needed in order to represent this cross substitution.
After relaxing the atomic positions the more likely arrangements have been determined on
the basis of total energy differences.

Figure 14. A hexagonal boron nitride (13 x13) is bonded to a Rh(111) surface (12 x 12) forming (a) a nanomesh; (b)N
sits on an unfavorable hollow position (between three Rh) and thus BN is far away from Rh called “wire” ; (c) N is on
the favorable position on top of Rh called “pores”; (d): B is on top of Rh, called “pores” (see [43]).

• In the case of magnetic systems spin-polarized calculations can provide the magnetic
moments. In addition to collinear magnetic systems also non collinear magnetism can be
handled, which was for example used in a study of UO2 (see [44]. Another example is the
Verwey transition that was investigated for double perovskite BaFe2O5. At low temperature
this system has a charged-ordered state (with Fe2+and Fe3+at different sites) but above the
Verwey transition temperature at about 309 K a valence mixed state with the formal
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oxidation state Fe2.5+appears. DFT calculations made it possible to interpret this complicated
situation, see [45] and section 7.4.1 of [5]. In the latter it was mentioned that it is now possible
to use such calculations to look for fine details such as the magneto-crystalline anisotropy.
This is defined as the total energy difference between a case, where the magnetic moment
is in the y direction (with the lowest energy) or the x direction. In this case the difference in
energy is found to be about 0.4 mRy but the total energy is-115,578.24065 Ry. Therefore the
quantity of interest is in the tenth decimal illustrating the numerical precision that is needed
for such a quantity. Needless to say that extremely well converged calculations were
required, in which both cases are treated practically the same. This is necessary to have a
cancellation of errors.

• The electric field gradient (EFG) is a ground state property that is sensitive to the asymmetric
charge distribution around a given nucleus. By measuring the nuclear quadrupole interac‐
tion (e.g. by NMR) the EFG can be determined experimentally provided the nuclear
quadrupole moment is known. This is a local probe which often helps to clarify the local
atomic arrangement. See also chapter 6.4 of [4]. The EFG is a case where the semi-core states
can significantly contribute as was shown for TiO2 in the rutile structure [46]. Another
important result was the nuclear quadrupole moment of 57Fe, the most important Mössbauer
isotope. On the basis of DFT calculations for the EFG of several iron compounds this quantity
had to be adjusted by about a factor of two [47].

• Recently also the NMR shielding (chemical shifts) can be obtained [48], where the all-
electron treatment opens the possibility of analyzing the dominant contributions that
determine the chemical shifts as has been illustrated for fluorides [49].

• The calculation of various spectra (X-ray emission or absorption), optical spectra or energy
loss near edge structure (ELNES) spectra can be performed within the independent particle
model. Some structures in the excitation spectra of interacting electrons, called quasi-particle
peaks, can be directly related to the excitation of independent electrons as they are treated
within DFT. However, others (for example satellite structures) cannot be understood in such
a simple way and require more sophisticated approaches. For example, including the
electron core-hole interactions require the solution of the Bethe-Salpeter equation (BSE) as
was illustrated for x-ray spectra [50]. Often such schemes are based on many-body pertur‐
bation theory. One of such approaches is the GW approximation [51]. This scheme allows
calculating accurate band gaps or ionization potentials, which are not well determined by
DFT eigenvalues. The GW approach is also available in connection with WIEN2k [52].

• The interpretation of scanning tunneling spectroscopy (STM) data often require a simulation
by theory, which can distinguish between proposed surface structures. It is based on the
Tersoff-Hamann [53] approximation, in which the images can be obtained from the charge
density originating form a set of eigenstates within a certain energy window around the
Fermi energy consistent with the applied voltage used in the STM measurements (see e.g.
Fig. 6 in [42]).

• Phonons can be calculated based on the dynamical matrix, which is obtained by displacing
one atom in a large unit cell (or supercell) in a certain direction and determining the forces
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on all the other atoms. The necessary independent displacements are determined by the
symmetry of the cell. By diagonalizing the dynamical matrix the phonon frequencies can be
determined. Such information is also useful for example in connection with ferroelectrics,
structural stability, thermodynamics or phase transitions.

• For the analysis of phase transitions a fundamental understanding requires a combination
of concepts, namely group theory, DFT calculations, frozen phonons, soft modes or bilinear
couplings, and Landau theory. This was illustrated, for example for an Aurivillius com‐
pound [54], which shows multiple instabilities and has a phase transition to a ferroelectric
state. For high pressure phase transitions a modified Landau theory was proposed and
applied [55].

• Maximally localized Wannier functions can be calculated with wien2wannier [56] and
provide a good starting point for more sophisticated many body theory. Dynamical mean
field theory (DMFT) is one such example as is illustrated in [57]. Another extension of
WIEN2k is the calculation of Berry phases with wien2kPI as modern theory of polarization
in a solid (for details see ref [58]).

• Computer graphics and visualization (see [38]] can help to analyze the many intermediate
results (atomic structure, character of energy bands, Fermi surfaces, electron densities,
partial density of states, etc.). The more complex a case is the more support from computer
graphics is needed. For an element one can plot all the energy bands, but for systems with
over 1000 atoms one would be lost interpreting the band structure without the help of
visualization.

6. Computer code development

From the experience of developing the WIEN2k code some general conclusions can be drawn.
Some of the historical perspectives have been summarized in section 7 of [4]. During the last
three to four decades it was often necessary to port the code to new architectures starting from
main-frame computers, vector processors, PCs, PC-clusters, shared-memory machines, to
multi-core parallel supercomputers. The power of computers has increased in several areas by
many orders of magnitude such as the available memory (from kB to TB), the speed of
communication (e.g. infiniband) all the way to the processors (CPU). An efficient implemen‐
tation of a code made it necessary to closely collaborate with mathematicians and computer
scientists in order to find the optimal algorithms, which perform well on the available
hardware. One example is the idea of using the scheme of iterative diagonalization [59]. A
significant portion of the computational effort in the WIEN2k calculations is the solution of
the general eigenvalue problem (see Figure 6) which must be solved repeatedly within the SCF
cycle. Changes from iteration to iteration are often small and thus one can use the information
from the previous iteration to define a preconditioner for the next iteration and thus simplify
the diagonalization and speed up the calculation.

Another aspect is the implementation of linear algebra libraries (e.g. SCALAPACK, MKL),
which were highly optimized by other groups, who spend a lot of effort on these tasks, and
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main-frame computers, vector processors, PCs, PC-clusters, shared-memory machines, to
multi-core parallel supercomputers. The power of computers has increased in several areas by
many orders of magnitude such as the available memory (from kB to TB), the speed of
communication (e.g. infiniband) all the way to the processors (CPU). An efficient implemen‐
tation of a code made it necessary to closely collaborate with mathematicians and computer
scientists in order to find the optimal algorithms, which perform well on the available
hardware. One example is the idea of using the scheme of iterative diagonalization [59]. A
significant portion of the computational effort in the WIEN2k calculations is the solution of
the general eigenvalue problem (see Figure 6) which must be solved repeatedly within the SCF
cycle. Changes from iteration to iteration are often small and thus one can use the information
from the previous iteration to define a preconditioner for the next iteration and thus simplify
the diagonalization and speed up the calculation.

Another aspect is the implementation of linear algebra libraries (e.g. SCALAPACK, MKL),
which were highly optimized by other groups, who spend a lot of effort on these tasks, and
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helped us significantly to speed up our code. Simultaneously, increased computer power made
it possible to treat much larger systems, especially using massive parallelization. The matrix
size that we could handle on the available hardware has increased by about a factor 1000 over
the last several decades. Since solving the general eigenvalue problem scales as N3, the
computer power needed to solve a 1000 times bigger system must be about a factor 109 higher,
which is available now.

Often our computational strategy had to be changed or extended. For example, to compute a
metallic crystal with a small unit cell many k-points s in the Brillouin zone were needed to
reach a good convergence. In this case k-points parallelization was optimal. Nowadays we can
treat large unit cells (containing about 1000 atoms). In such a case, the reciprocal space is small
and thus only few k-points s are needed for a good calculation. This requires new paralleli‐
zation strategies, in which the large matrices must be distributed to many processors, where
data locality and reduced communication is essential for achieving good parallel performance.
Another aspect is the complexity of the code with the many tasks that need to be solved (see
Figure 6). If only a small fraction is not parallelized, it may keep many processors waiting for
the result that is calculated on only a single processor. This has often led to new bottle necks,
which did not occur for smaller systems and thus were ignored but load balancing is important.
Better computer power requires a continuous improvement of the code.

There are completely different ways of distributing a code (giving representative examples):

• open source with a free download

• use for registered user (with or without license fee), source code made available

• limited access for registered users (with a yearly license)

• software companies that distribute only executables

From a commercial point to view it is understandable that a company wants to have strict rules
and do not make the source code available. From a scientific perspective, the WIEN2k group
favors, the source code is made available to the registered users, who pay a small license fee
once. This policy has helped to generate a “WIEN2k community”, from which many research‐
ers around the world have contributed to the development of the code and can contribute to
do so in the future. It has helped in many aspects, such as to find and fix bugs, but also to add
new features which are made available to all the WIEN2k users. In addition, several valuable
suggestions were made, which allowed improving the documentation as well as implementing
requested new features. We have organized more than 20 WIEN2k workshops worldwide, in
which users are introduced to important concepts and learn how to run calculations and use
kinds of associated tools. It has become a standard to help each other and thus contribute to
the development of computations of solids and surfaces. In total this policy has had very
positive impacts for WIEN2k and the field.

The user friendliness of WIEN2k has been improved over the years. A graphical user interface
w2web was mainly developed by Luitz (see [7]) and is especially useful for novice users or in
cases which are not done routinely. Later many default options were implemented, which
were based on the experience of many previous calculations. This has made it much simpler
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to set up a calculation. For novice users or experimentalists this helps one to get started without
being an expert. However, there is also a drawback, namely the danger that the code will be
more used like a black box: “push a button and receive the result”. In the old version the users
were forced to think about how to run the calculation and thus had to look at details. This is
a common problem, which all codes face.

With all the possibilities mentioned in the previous section it is often useful to combine
different theories according to their advantages but keeping in mind their disadvantages.
About 20 years ago the fields of quantum chemistry, DFT and many-body theory were
completely separated and there was hardly any cooperation between them: this has fortunately
changed. The strength and weaknesses of the different approaches are recognized and
mutually appreciated. The solution of complex problems can only be found in close collabo‐
ration of the corresponding experts.

7. Theory and simulations

7.1. Theory compared to experiment

Independent of which computer code is used for computations some general questions should
be asked, when theory and experiment do not agree. Some possible reasons for a disagreement
are listed below (Figure 15):

• Is the atomic structure model that was chosen for the computation adequate for the
experimental situation, as already discussed in Section 2. An advantage of theory is that the
structure is well defined, because it is taken as input. Experiments may have uncertainties
(stoichiometry, defects, impurities, disorder). It can also be that the theory is based on an
idealized structure such as infinite crystal, whereas in the experiment surface effects cannot
be neglected. If the latter are included in a supercell calculation, one has periodic boundary
conditions and thus still assumes an ordered structure, while in the experiment the sample
is disordered or contains some defects or impurities. A delicate question for the experimen‐
talist is whether the sample that has been measured is (at least) close to the system that was
assumed for the simulation.

• Is the chosen quantum mechanical treatment appropriate for the given system? Is a mean
field DFT approach adequate? Are more sophisticated treatments (especially for correlation)
needed or can the self-interaction within DFT cause the problem? Is there a significant
dependence on the functional chosen within DFT?

• Is the performed calculation fully converged to the required accuracy, for example in terms
of the basis set (for example in the number of plane waves or in other cases the choice of
pseudo potential) or the underlying k-points mesh? In this context an evaluation of the
chosen computer code can be important. Recently error estimates of solid state DFT
calculations have been derived [60] in which the WIEN2k code plays the role of providing
the standard (i.e. the most accurate calculation). The idea is that different implementations
of the same first principles formalism (the same DFT functional) should lead to the same
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results or predictions. Would a different code yield other results (within a small error bar)?
These tests showed that significant improvements of standard pseudo potentials were
necessary, in order to reach the required accuracy. It was shown in [60] that the typical
deviation (e.g. in total energy) between codes of different accuracy is an order of magnitude
smaller than the typical difference with experiment.

• Is the property of interest a ground state property or are excited states involved? For example
the electron core-hole interaction requires at least a treatment based on the Bethe-Salpeter
equation (BSE) (see [50]).

• How about temperature and pressure? Often the calculated results corresponds to T=0 K
but the experiment is carried out at room temperature. Can this difference be ignored? If
phonons are included in the calculations, then at least thermodynamic estimates for a system
at a higher temperature can be included. Varying the temperature is easy for experiments
but difficult for theory. For pressure it is the other way around. Pressure is easy for theory
but extremely difficult for experiments.

Figure 15. Key aspects of modeling materials and the idealizations or approximations that must be made.

When a computation agrees with the experimental observations one should be careful because
this is not a proof that the issues mentioned above are non-existent. It can be the case that there
is a cancellation of errors: something like a crude model that is poorly converged. For a theorist
there is always the temptation to stop improving a calculation when it already agrees with the
experiments. Sometimes a deviation helps to find a better treatment in terms of atomic models,
quantum mechanics (DFT functional), basis sets, temperature or some other factor that may
be important in the specific case.

7.2. Results that can be provided by computations

It is appropriate to list aspects, where theory has advantages over experimental work:

• On can carry out computer experiments irrespective of the abundance, environmental
effects or cost of materials. Even unstable or artificial systems (which cannot be measured)
can be computed. One might wish to understand why they cannot be prepared. Sometimes
several proposals (based on experiments or intuition) are under discussion: as long as they
are not too many in number, theory can explore all of them and hopefully find the one which
agrees with what is known about the system.
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• In surface science and catalysis the calculation of observable properties are often needed,
such as STM images, X-ray spectra, vibrational frequencies, electric field gradients, etc.. In
addition, comparing total energies of proposed atomic structure (after a structure optimi‐
zation) are often essential determining which atomic structure is likely to be correct. For an
understanding of such material problems (for example at a surface) a combination of theory
and experiment is essential.

• With a good calculation and by using all available tools one can gain insight and a funda‐
mental understanding, especially in terms of trends, for which perfect agreement with
experiment is not necessary. On such a basis systematic predictions can be made which can
replace the trial and error scheme that is often used in materials optimization.

• One often wants to know the driving force for a certain change in properties. Is it coming
from a substitution, the difference in chemical bonding, or from the related relaxation of the
lattice around the impurity? Sometimes it is possible to set up artificially intermediate
models which vary only one of these parameters at a time. Then an analysis can provide the
answer.

• For materials with a clear structure and moderate correlation effects theory can predict
experimental results. However, there are many interesting cases in material science, where
the details matter. Often the interest comes, because the system is close to a transition (e.g.
becoming magnetic, ferroelectric, or close to a metal-insulator transition). In such cases the
two phases of the system can be rather close (e.g. in energy) and thus need special attention.
Take the perovskite SrTiO3 as an example. In this well known structure Ti is surrounded by
six oxygen atoms forming an octahedron. Under pressure (or with temperature) these
octahedra tilt in a certain fashion leading to a structural phase transition. If DFT theory yields
a lattice constant that deviates by about 1 per cent from experiment, one could call this good
agreement. In this case, however, this small deviation causes a difference of about 3 percent
in the unit cell volume, which is sufficiently large to determine whether or not the tilt occurs
(and thus such a detail matters). In such a case, one can choose another functional (for better
agreement in volume) or one can carry out the calculation for the experimental volume,
which can be obtained experimentally with high precision. With this choice a calculation
can describe the phase transition properly.

8. Conclusion

In this chapter a selection of aspects, which play a role in modern computational theory of
solids, has been given. From the atomic structure to the properties of inorganic materials a
wide field of disciplines had to be included which are listed below:

• chemistry: intuition, interpretation, chemical bonding, stability

• physics: fundamentals and concepts, quantum mechanics, relativity

• crystallography: space groups, symmetry relations, group subgroup relations
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• material science: understanding of trends, application, availability, environment

• mathematics: formalism, algorithms, numerics, accuracy

• computer science: data management, data bases, memory, communication, parallelization,
load balancing, efficiency

It is clear that many details had to be skipped and only a few references could be given to guide
the reader to the corresponding literature. Details of using the computer codes often change
and thus it is highly recommended to look at the updated versions on the web
(www.wien2k.at) or at the newest literature in this field. Selected results that can be obtained
with WIEN2k had been summarized in this chapter. For a given atomic structure the electronic
structure (band structure, density of states, and electron density) provides the basis for
understanding chemical bonding. The corresponding total energy allows to judge relative
stabilities of various phases or modifications. The effects of surfaces or even disordered
structures can be simulated with sufficiently large supercells. Properties of insulators, metals,
superconductors, or magnets etc. can be explained. Several quantities (such as spectra) can be
computed which allow a direct comparison with experimental data. In some cases it is
necessary to go beyond conventional DFT in order to reach agreement with experiment but
DFT results are often an important and useful starting point.

It shall be stressed again that it is very useful to have a large variety of computer codes in
this field. Different codes each have their emphasis on various aspects, such as accuracy,
efficiency,  user  friendliness,  robustness,  portability  with  respect  to  hard-ware,  features,
properties and more. Some codes are more specialized for certain cases (e.g. treating only
insulators)  but  do  not  work  for  other  systems.  This  variety  has  helped  to  increase  the
importance  of  simulations  in  this  field.  For  the  comparison  between  theories  (simula‐
tions)  and  experimental  data  several  general  considerations  are  summarized  which  are
important for all kinds of computer codes.
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1. Introduction

Complex systems are a large multidisciplinary research theme that has been studied using a
combination of fundamental theory, derived especially from physics and computational
modeling. This kind of systems is composed of a large number of elemental units that interact
with each other, being called “agents” [1, 2, 62]. Examples of complex systems can be found
in human societies, the brain, internet, ecosystems, biological evolution, stock markets,
economies and many others.

The manner in which such a system manifests can't be predicted only by the behavior of
individual elements or by adding their behavior, but is determined by the way the elements
interact in order to influence global behavior. Very important properties of complex systems
are those of emergence, self-organization, adaptability etc. [3, 4, 62].

An example of a complex system is represented by polymers. [Their structures present a
multitude of organized networks starting from simple, linear chains of identical structural
units to very complex sequences of amino acids that are chained together, thus forming the
fundamental units of living fields. Probably one of the most interesting biological complex
system is DNA that generates cells by employing a simple but very efficient code. It is the
striking way in which individual cells organize into complex systems, such as organs and,
subsequently, organisms. Research in the field of complex systems could provide new
information on the realistic dynamics of polymers, solving troublesome problems such as
protein folding. We note that the dynamics of such complex systems implies the quantum
formalism] [1-4, 62].

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



Correspondingly, the theoretical models that describe the complex systems dynamics become
more and more advanced [1-4]. For all that, this problem can be solved by taking into account
that the complexity of the interaction process implies various temporal resolution scales, and
the pattern evolution implies different degrees of freedom [5].

[In order to develop new theoretical models we must state the fact that the complex systems
displaying chaotic behavior are recognized to acquire self-similarity (space-time structures can
appear) in association with strong fluctuations at all possible space-time scales [1-4]. After‐
wards, for temporal scales that are large with respect to the inverse of the highest Lyapunov
exponent, the deterministic trajectories are replaced by a set of potential trajectories and the
concept of definite positions by that of probability density] [62]. An interesting example is the
collisions processes in complex systems, where the dynamics of the particles can be described
by non-differentiable curves.

Since non-differentiability can be considered a universal property of complex systems, it is
mandatory to develop a non-differentiable physics. In this way, by considering that the
complexity of the interaction processes is replaced by non-differentiability, using the entire
range of quantities from the standard physics (differentiable physics) is no longer required [19].

This topic was developed in the Scale Relativity Theory (SRT) [6, 7] and in the non-standard
Scale Relativity Theory (NSSRT) [8-22]. [In the framework of SRT or NSSRT we assume that
the movements of complex system entities take place on continuous but non-differentiable
curves (fractal curves) so that all physical phenomena involved in the dynamics depend not
only on the space-time coordinates but also on the space-time scales resolution. In this
conjecture, the physical quantities that describe the dynamics of complex systems can be
considered as fractal functions. In addition, the entities of the complex system may be reduced
to and identified with their own trajectories. In this way, the complex system’s behavior will
be identical to the one of a special interaction-less “fluid” by means of its geodesics in a non-
differentiable (fractal) space] [6, 7, 62].

In such context notions as informational entropy, Onicescu informational energy etc become
important in the Nature description. These notions will be correlated with the fractal part of
the physical quantities that describe the dynamics of complex systems.

2. Informational entropy and energy

Independently of scale resolution, the motion, either on infragalactic scale (for instance, the
planetary motion), or on atomic scale (for instance, the motion of the electron around its
nucleus) takes place on conics (ellipses). Such motion in invariant with respect to the SL(2R)
group. In what follows, we shall consider this invariance only with respect to the motion on
atomic scale.

2.1. SL(2R) invariance and canonic formalism

SL(2R) group is the group of transformations [23-26]
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' ,    ' ,    1x x y y x y= a + b = g + d ad -bg = (1)

which makes invariant the areas in the phase space (x, y).

Choosing

2 1 3 2
1 11 ,    ,     ,    1 ,
2 2

a a a aa = + b = g = - d = - (2)

the infinitesimal transformations of the group have the expressions

1 2 2 3
1' ,   '

2 2
px x ya a y y ya xa= + + = - - (3)

Then the Lie algebra associated to the group becomes

1 2 1 2 3 3 3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ;    [ , ] ;    [ , ] 2L L L L L L L L L= = = - (4)

where

1 2 3
ˆ ˆ ˆ,   ,   L y L x y L x

x x y y
æ ö¶ ¶ ¶ ¶

= = - = -ç ÷
¶ ¶ ¶ ¶è ø

(5)

are the vectors of the Lie base.

The general vector of the algebra (4) is given by the linear combination

1 2 3
ˆ ˆ ˆ ˆ2 ,    , , const. L cL bL aL a b c= + + = (6)

The hamiltonian H results as an invariant function along the tangent trajectories to the vector
(6). Precisely, it is a solution of the equation

ˆ 0LH = (7)

According to (5), relation (7) becomes

( ) ( ) 0H Hbx cy ax by
x y

¶ ¶
+ - + =

¶ ¶
(8)
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whence the characteristic differential system

( )
dydx dt

bx cy ax by
= - =

+ +
(9)

admits the integral

( ) ( )2 21, 2
2

H x y ax bxy cy= + + (10)

We notice that the differential system (9) is Hamilton's system of equations [25]

,   H Hx y
y x

¶ ¶
= = -
¶ ¶

& & (11)

associated to the hamiltonian (1), where the symbol “ ⋅  ” refers to the derivative with respect
to the time.

Among the solutions of the equation (1), we have also the Gaussian

( , ) exp[ ( , )],     const.x y A H x y Ar = - = (12)

In consequence, all invariant functions on the group (7) will be functions of the hamiltonian
(10) and particularly, of the Gaussian (12).

If the quadratic form (10) is positive definite, that is, the condition

20,   0a ac b> W = - > (13)

is fulfiled, then, by deriving the relations

( )
bx cy

y ax
x

by
= +
= - +&

&
(14)

with respect to the time and eliminating ṗ and q̇, based on the relations (14), we obtain the
symmetric equations

0
0

x x
y y
+ W =
+W =

&&
&& (15)
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These equations are formally equivalent to the equations of two linear oscillators of coordinates
x, y.

Then the 2-form

dx dyw = L (16)

has the meaning of the elementary surface in phase space (x, y) and the transformations (1)
are canonic because they maintain the 2-form (16) (Liouville's theorem [25]). Simultaneously,
the Gaussian (12) can be considered as a probabilistic density in phase space (x, y). In this
situation, the parameters (a, b, c) can get statistical significance (see also [71]).

2.2. Shannon's informational entropy and transitivity manifolds

[In standard quantum mechanics, the impossibility of determining the variances of the position
coordinate Δyi and of the conjugate momentum component Δxi (xi = − iℏ∇i ) with arbitrary
accuracy is widely accepted as being caused by the unavailable perturbation exerted on the
particle by the measuring process. Because the measuring apparatus is most often not defined
quantitatively and its perturbation can be very large, the uncertainty relation is formulated as
a larger-than-or equal to equation

1
2i ix yD D ³ h

Relating to this, it is unusual that the definitive nonzero variances Δxi and Δpi can be obtained
for quantum system which are not exposed to a measuring device. This has been shown using
the so called negative-result experiments. Furthermore, it can be noticed that we could
theoretically obtain the nonzero variance Δxi and Δyi of quantum systems without including
in the analysis perturbations from or in presence of a measuring device at all] [65].

In such a conjecture the uncertainty relations result in a quite natural way from the momentum
perturbations associated with the fractal potential, i.e. with the Shannon’s information.

Indeed, let be the probability density in the phase space, ρ(x, y) with the constraints [27-32, 62]

2

2

( , )

( , )

( ) ( , ) ( )

( ) ( , ) ( )

( )( ) ( , ) ( , )

y x y dxdy y

x x y dxdy x

y y x y dxdy y

x x x y dxdy x

y y x x x y dxdy cov x y

r = á ñ

r = á ñ

- á ñ r = d

- á ñ r = d

- á ñ - á ñ r =

òò
òò
òò
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òò

(17)
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where y  is the mean value of the position, x  is the mean value of the momentum, δy is the
position standard deviation, δx is the momentum standard deviation and cov(x, y) is the
covariance of the random variables (x, y)] [62].

Now, we introduce Shannon's informational entropy [27]:

( , )ln[ ( , )] .H x y x y dxdy= r ròò (18)

Through Shannon's maximum informational entropy principle

0Hd = (19)

with constraints (17), we get the normalized Gaussian distribution:

( ) ( )
2

, exp[ , ]
2

ac bx x y y H x x y y-
r - á ñ - á ñ = - - á ñ - á ñ

p
(20)

with

( ) 2

2

2 2

2 2 2

1, [ ( )
2

      2 ( )( ) ( ) ]
( ) ( , ) ( ),   ,   

( ) ( ) ( , )

H x x y y a x x

b x x y y c y y
y cov x y xa b c
D D D

D x y cov x y

- á ñ - á ñ = - á ñ +

+ - á ñ - á ñ + - á ñ

d d
= = - =

= d d -

(21)

[We must note that the set of parameters (ā, b̄, c̄) has statistical significance given by relations
(21).

In such context, the statistical hypothesis are specified through a particular choice of the set of
parameters (ā, b̄, c̄) of the quadratic form the first Eq (21). Their class is given by the restriction
[70]:

( ', ') ( ' , ' ) ( , )H x y H x x y y H x x y y= - á ñ - á ñ = - á ñ - á ñ (22)

where

' 2 ' 2

( ' , ' )
1     ( ' ) 2 ( ' )( ' ) ( ' )
2

H x x y y

a x x b x x y y c y y¢

- á ñ - á ñ =

é ù= - á ñ + - á ñ - á ñ + - á ñë û
(23)
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If (x '− x , y '− y ) and (x − x , y − y ) are dependent through the unimodular transformations
(1), we get that (22) imposes through (ā, b̄, c̄), the group of three parameters] (see [71] for details)

2 2

2 2

2
( )

2

a a b c
b a b c
c a b c

¢

¢

¢

= d - gd + g

= -bd - bg + ad - ag

= b - ab + a

(24)

If for the group (24) we choose the same parameterization as the one given by relations (2),
then the corresponding infinitesimal transformations

2 3

1 3

1 2

2

2

a a aa ba
b b aa ca
c c ba ca

¢

¢

¢

= - +

= - +

= - +

(25)

can be considered as an incompatible algebraic system in the unknowns a1, a2, a3. In conse‐
quence, there cannot exist a transformation able to ensure the correspondence

( ) ( ), , , ,a b c a b c¢ ¢ ¢ ® (26)

Thus, the action of the group (24) in the space of variables (ā, b̄, c̄) is intransitive and, therefore,
there exists a relation among the parameters (ā, b̄, c̄), which remains invariant to the action of
the group (24). This relation is called transitivity manifold [26] (see also [71]).

The Lie algebra associated to the group (24) is

1 2 1 2 3 3 3 1 1
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are the vectors of the base Lie. By the conditions
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1 2 3
ˆ ˆ ˆ0,    0,    0A F A F A F= = = (29)

[where F is an arbitrary function, we can obtain the transitivity manifolds of the group in the
form

2 const. a c b- = (30)

If H has energy significance, then condition (30) shows that a representative point from space
(x, y) (which is in motion on a surface of constant energy (22)), can be also found on a surface
of constant probabilistic density (ergodic condition) in Stoler's sense [33]:

2 2
( , ) ( , ) 

2 2
H x y H x ya c b a c be e

¢ ¢
¢ ¢ ¢

- -- -
=

p p
(31)

Therefore, the “class” of statistical hypothesis associated to the Gaussians having the same
mean, is given by the ergodic condition. This highlights the strong relationship existing among
the energetic issues and the probabilistic ones] (see [71]).

2.3. Informational energy in the sense of Onicescu and uncertainty relations

For the informational energy we shall use Onicescu's relation [34, 62, 71]:

2( , )E x y dxdy
¥

-¥

= rò ò (32)

Thus, the informational energy corresponding to the normed Gaussians (20), which is subject
to conditions (22), becomes

( ) 2, , ( , )E a b c x y dxdy
¥

-¥

= rò ò (33)

where H (x, y)>0 is a condition imposed by the existence of the integral (33).

Thus we get

( )
2 , ,

2
a c bE a b c -

=
p

(34)

and therefore, if H has energetic significance, it results (see [62] and [71] for details):
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where H (x, y)>0 is a condition imposed by the existence of the integral (33).

Thus we get

( )
2 , ,

2
a c bE a b c -

=
p

(34)

and therefore, if H has energetic significance, it results (see [62] and [71] for details):
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i. The informational energy indicates the dispersion distribution (20) because the
quantity

2

2
 

A
a c b

p
=

-
(35)

is a measure of the ellipses' areas of equal probability H (p, q)=  const., in the manner that the
normed Gaussians are even more clustered the more their informational energy is higher;

ii. The class of statistical hypothesis which are specific to the Gaussians having the same
mean is given by the constant value of the informational energy;

iii. The constant informational energy is equivalent to the ergodic condition;

iv. If the informational energy is constant, then the relations (21) and (34) give the
egalitarian uncertainty relation

( ) ( ) ( ) ( )2 2 2
2 2

1 ,
4 , ,

x y cov x y
E a b c

d d = +
p (36)

or the non-egalitarian one

( )
1 .

2 , ,
x y

E a b c
d d ³

p (37)

In such context we can show that the constant value of the Onicescu informational energy
implies, in the case of a linear oscillator, the Planck's quantification condition.

2.4. Quantum mechanics and informational energy — Generalized uncertainty relations

[The original theory of de Broglie on the wave-corpuscle duality was developed using a
theorem found in Lorentz's transformation [35]. This theorem interlinks the local horologes
cyclic frequency (in each point of a spatial domain) with a progressive wave frequency in phase
with the horologes. This wave gives determines the distribution of the oscillators' phases on
the respective spatial domain. We desire to show that a distribution of this kind, in a true sense,
can be determined without resorting to Lorentz's transformation [67].

The concept imagined by de Broglie, of equal pulsation horologes, can be evidenced by a
periodic field, which is described by the local oscillators of equation

2 0Q Q
××

+ W = (38)
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where Q = y + ix / mΩ is the relevant complex coordinate of the field and Ω is its pulsation. The
general solution of (38) can be written as [23]:

( ) ( )( ) i t i tQ t ze zeW +j - W +j= + (39)

where z is a complex amplitude, z̄ its complex conjugate and φ is a specific phase. The quantities
z and z̄ give the initial conditions, which are not the same for any point from the space.
Precisely, at a time, the various oscillators corresponding to the points of the space are in
different states and have different phases. A problem arises: can we apriori indicate a rela‐
tionship among the parameters z, z̄ and e i(Ωt+φ) of the various oscillators at a given momentum?
Because (39) is a solution of the equation (38) gives us an affirmative answer to this problem
because (38) possesses a “hidden” symmetry that can be expressed by the homographic group:
the ratio τ(t) of two solutions of the equation (38) is a solution of Schwartz's equation] [71] (see
also [36, 67]).

2
21 2

2

¢¢¢ ¢¢

¢ ¢

æ ö æ öt t
- = Wç ÷ ç ÷ç ÷ ç ÷t tè ø è ø

(40)

[This equation is invariant to the homographic transformation of τ(t) : any homographic
function of τ is itself a solution of (40). Since projections on the line can be characterized by the
homography, we can assert that the ratio of two solutions of the equation (38) is a projective
parameter for the class of the oscillators of the same pulsation from a given spatial region.
Thus, one can define with ease a convenient, suitable projective parameter that should be in
bi-univocal correspondence with the oscillator] [69, 71]. First, we observe a “universal”
projective parameter: the ratio of the fundamental solutions of (38):

2 ( )i tk e W +j= (41)

Any homographic function of this ratio will be again a projective parameter [67]. Among all
other, the function

( )
1
z zkt

k
+

t =
+

(42)

has primarily the advantage of being specific to each oscillator. But not only that: let be another
function

( )
1

z z kt
k

¢ ¢ ¢
¢

¢

+
t =

+
(43)
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which is specific to another oscillator. Since (42) and (43) are solutions of the equation (40),
there exists a homographic relation between them:

a b
c d

¢ ¢
¢

¢ ¢

t +
t =

t +
(44)

which, made explicit, leads to the Barbilian group equations [37]:

1 1

1 1

1 1

1 1

a z bz
c z d
c z dk k
c z d

¢

¢

+
=

+
=

+
+

(45)

[The group may be considered as a 'synchronization' group among various oscillators, a
process in which the values of each take part, meaning that not only their phases, but also their
amplitudes are correlated. The usual synchronization, manifested through the difference
among the oscillators' phases as a whole, represents here just a particular case. Indeed, the
group is involved for z, z̄ and k, and also for (45), which indicates the fact that, indeed, the
phase of k is only shifted with a value depending on the oscillator's amplitude, during passage
between various members of the assembly and, moreover, the oscillator's amplitude is
homographically affected.

When taking into consideration, for the group (45), the parameterization from [23], the
following infinitesimal generators of the above-mentioned group will be obtained] [63]:

1

2

2 2
2

ˆ

ˆ

ˆ ( )

B
z z

B z z
z z

B z z z z k
z z k

=

¶ ¶
= +

¶ ¶
¶ ¶
+

¶ ¶
¶ ¶ ¶

= + + -
¶ ¶ ¶

(46)

the following commutation relations

   1 2 1 2 3 3 3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ;    [ , ] ; [ , ] 2B B B B B B B B B= = = - (47)

being involved. [Thus, a structure near-identical to group SL(2R)'s Lie algebra is shown. In
consequence, the Lie algebra of the group (45) is, again, a result of group SL(2R)'s Lie algebra.
Actually, as can be easily observed, the group (45) represents only another action of the group
SL(2R), performed in variables z, z̄, k] [63].
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Once we fulfill the conditions of the theorem [38], the invariant functions can be found,
simultaneously to the actions of the groups (5) and (46) as solutions of the equation

ˆ ˆ( , , , , ) ( , , , , ) 0,     1,2,3i iL F x y z z k B F x y z z k i+ = = (48)

Explaining this equation by means of Equations (5) and (46) leads to their simple solution, by
successive reduction, while simultaneously obtaining the invariant functions in the form

( , ) .f v constm = (49)

where μ and ν are expressed as (see [63]):

( )
( )( )

i z z
x zy x zy
x zyk
x zy

=

- -
m =

- -
-

n
-

(50)

ν being a unimodular complex and μ a real one. A particular class of such invariant functions
is represented by linear combinations of the type

1 2p m næ ö
m = n + +ç ÷nè ø

(51)

where m,n and p̄ represent three arbitrary real constants.

If considering Eq (50), then Eq (51) takes the form

1 2 22mk z nzz mkz p- + + º (52)

where the following notation has been used:

( )
x zyz
i z z
-

=
- -

(53)

We also noticed that

( ) 0i z z- - > (54)
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Eq (52) represents a family of conical shapes from the phase space (x, y). They represent ellipses
if

2 2 0m n- > (55)

a condition also fulfilled if

sinh(2 )
cosh(2 )n

m Q r
Q r=

=
(56)

where Q̄ is a real constant and r is a real variable.

Quite an interesting case appears when z is completely imaginary, with no restriction con‐
cerning the generality value z = i. Thus, the quadratic form (52) may be identified with H (p, q)
from (10), resulting

[cosh(2 ) sinh(2 )cos ]
sinh(2 )sin

[cosh(2 ) sinh(2 )cos ]

a Q r r
b Q r
c Q r r

= + j
= - j
= - j

(57)

where φ is the value of k, assumed fixed. The square value of Q̄ represents the value of the
constant from (30), which determines the transitivity manifolds of the group (1) (see [63]).

The Gaussian distribution value obtained in such a manner represents only a particular case
of the distribution that may occur, assuming in addition the obligation of satisfying the
maximum principle of informational entropy under quadratic restrictions. The solutions of
Eq (48) could be, however, much more general, being possibly selected from criteria involving
group theory. In this context, the informational energy becomes

( , , ) .
4
QE a b c const= =
p

(58)

while the uncertainty relation (36) is

2 2 2 2
2

1( ) ( ) (1 sinh (2 )sin )x y r
Q

d d = + j (59)

resulting that the concept of uncertainty is minimum only for φ =0,  i.e., all the oscillators of
the assembly possess the same initial phase of zero. Based on this simplified hypothesis, at any
moment of time subsequent to the initial one, the uncertainty relation (59) gives up its condition
of minimum, along with the assembly's covariance which differs from zero] [63].
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When the creation and annihilation operators refer to a harmonic oscillator, the uncertainty
relations have the form from [33, 63] with Q̄ =2 /ℏ and ℏ the reduced Planck constant. In this
situation, the “synchronization” is achieved through Stoler’s group [33] (the parameter r is
exactly equal to the frequency ratio).

Onicescu informational energy can be correlated with the standard quantum mechanics and
the second quantification (which indicates its utility, for instance in NDA-NRA dynamics) [39].

2.5. Gravity and information

The structure of the group (45) is given by the equations (46) in the manner that the only non-
zero structure constants are [26]:

1 3 2
12 23 311, 2C C C= = - = - (60)

Therefore, the invariant quadratic form is given by the “quadratic” tensor of the group,

C C Cm n
ab an bm= (61)

or, more explicit, by (60),

0 0 4
0 2 0
4 0 0

Cab

æ ö-
ç ÷

= ç ÷
ç ÷-è ø

(62)

This yields that the invariant metric of the group is given by the relation [50]

2
2
0 1 22

0

4ds
k

= w - w w (63)

where k0 is an arbitrary factor and ωα,  three differential 1-forms, which are absolutely invariant
through the group.

These 1-forms have the expressions:

0

1 2 ( )

dk dz dzi
k z z

dz
k z z

æ ö+
w = -ç ÷-è ø

w = w =
-

(64)
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in which case the metric (63) becomes

22

2 2
0

4
( )

ds dk dz dz dzdz
k z zk z z

æ ö+
= - - +ç ÷- -è ø

(65)

It should be mentioned here a property related to integral geometry: the group (45) is meas‐
urable. Indeed, it is simply transitive and, since his structure vector Cα =Cνα

ν  is identically zero,
which can be seen from (60), it means that he possesses the invariant function

2
1( , , )

( )
F z z k

k z z
= -

-
(66)

that is, the inverse of the module of the linear system's determinant obtained through the
infinitesimal transformations of the group (45). Therefore, in the field variables space
(z, z̄, k ), one can build an a priori probabilities theory [40], based on the elementary probability

2( , , )
( )

dz dz dkdP z z k
z z k
L L

= -
-

(67)

where Λ defines the external product of the 1-forms (64).

We now analyze the metric (65): it reduces to the metric of the Lobacevski's plan in Poincaré
representation [26]:

2

2 2
0

4
( )

ds dzdz
k z z

=
-

(68)

for ω0 =0. Specifying ω0 from (64) by the aid of the usual relations

,   iz u iv k e j= + = (69)

it results

0
dud
v

æ ö
w = - j +ç ÷

è ø
(70)

and so, the condition ω0 =0 becomes

Implications of Quantum Informational Entropy in Some Fundamental Physical and Biophysical Models
http://dx.doi.org/10.5772/59203

325



dud
v

j = - (71)

Since by this restriction, the metric (68) in the variables (69) reduces to the Lobacevski's one in
Beltrami's representation:

2 2 2

2 2
0

ds du dv
k v

+
= - (72)

the condition (71) defines a parallel transport of vectors in a Levi-Civita meaning: the appli‐
cation point of the vector moves on the geodesic, the vector always making a constant angle
with the tangent to the geodesic in the current point. Truly, using the fact that the plan's metric
is conformal Euclidean, the angle between the initial vector and the vector transported through
parallelism can be calculated as the integral of the equation (see [36, 68, 71] for details):

1 ln ln
2

E Ed du dv
v u

æ ö¶ ¶
j = -ç ÷¶ ¶è ø

(73)

along the transport curve. E (u, v) denotes here the conformity factor of the respective metric,
in our case E (u, v)=1 / v 2. Substituting it in (73), we get (71).

Now the variables (z, z̄, k ) can be considered as amplitudes of a gravitational field Thus, let
us admit that we describe the gravitational field through the variables yi for which we
“discovered”' the metric

ji
ijh dy dy (74)

in an ambient space of the metric

dx dxa b
abg (75)

Then the field equations derive from the variational principle [41]

1
32 0L d xd g =ò (76)

Selected Topics in Applications of Quantum Mechanics326



dud
v

j = - (71)

Since by this restriction, the metric (68) in the variables (69) reduces to the Lobacevski's one in
Beltrami's representation:

2 2 2

2 2
0

ds du dv
k v

+
= - (72)

the condition (71) defines a parallel transport of vectors in a Levi-Civita meaning: the appli‐
cation point of the vector moves on the geodesic, the vector always making a constant angle
with the tangent to the geodesic in the current point. Truly, using the fact that the plan's metric
is conformal Euclidean, the angle between the initial vector and the vector transported through
parallelism can be calculated as the integral of the equation (see [36, 68, 71] for details):

1 ln ln
2

E Ed du dv
v u

æ ö¶ ¶
j = -ç ÷¶ ¶è ø

(73)

along the transport curve. E (u, v) denotes here the conformity factor of the respective metric,
in our case E (u, v)=1 / v 2. Substituting it in (73), we get (71).

Now the variables (z, z̄, k ) can be considered as amplitudes of a gravitational field Thus, let
us admit that we describe the gravitational field through the variables yi for which we
“discovered”' the metric

ji
ijh dy dy (74)

in an ambient space of the metric

dx dxa b
abg (75)

Then the field equations derive from the variational principle [41]

1
32 0L d xd g =ò (76)

Selected Topics in Applications of Quantum Mechanics326

relative to the Lagrange function

2 2( ) ( )

ji

ij

z z
y y z zx xL h
x x z z z z

a b
ab ab

a b

¶ ¶
×¶ ¶ ¶ ¶= g = g =

¶ ¶ - -
" " (77)

In such a context, Einstein's equations with z = iε become Ernst's ones for the gravitational field
of vacuum [42, 43]

2

2

1 ( )
2
( ) ( )Rab a b b a

- e + e e = e e

- e + e g = ¶ e¶ e + ¶ e¶ e

" " "
(78)

(Rαβ is here the Ricci tensor of the three-dimensional metric γαβ).

Thus, adopting as a starting point the variational principle (76), the essential goal of the analysis
in the gravitational field domain is to produce metrics of Lobacevski's plan or metrics related
to them. All these can be directly related to Einstein's equations (78). Moreover, by substituting
the principle of independence of the simultaneous actions, in the form of linear composition
in a point of various fields intensities (through the apriori invariance of fields' action with
respect to a certain group), we may conceive a gravity theory that has none of the contradictions
inherently and commonly present in the current theory [44]. We observe that the SL(2R) group
parameters can be interpreted as field amplitudes in a supergravitation model [23] (see also
[71] for details).

2.6. Extracellular vesicles convection in haptotaxis with hydrodynamical dissipation, a
novel mechanism for vesicle migration

2.6.1. On the vesicle role

In the field of cell's biology, we call vesicles those small bags wrapped in a membrane forming
part of eukaryotic cell organelles. They are involved in proteins or enzymes transport and
absorption, or meet other needs of the cell. Inside the membrane bag of a vesicle, there are
macromolecules which require the ability to move outside the cell walls. The membrane
encircling the bag merges with the outer wall of the cell to allow such macromolecules to
penetrate the wall. The vesicles are important parts of the human cells, although they are also
found in other multicellular organisms [66].

Cells found in humans, plants and animals use a variety of types of vesicles, depending on the
type of cell and its specific intended function. For example, one type of vesicles, lysosomes,
are necessary for the process of digestion. Lysosomes contain enzymes that breakdown food
cells. With food absorption, a lysosome vesicle bonds to the food holding cell and releases
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enzymes by a process called phagocytosis. These enzymes break down food cells into smaller
parts that can be better absorbed by other cells.

Secretory vesicles are frequently associated with nerve cells in humans or animals. Their
membranes sacs contain neurotransmitters. Nervous system through hormonal signals
activates these components. Through the process of exocytosis, the secretory vesicle's outer
membrane adheres to the nerve terminal and releases neurotransmitters in the area of the nerve
endings, named the synaptic cleft. Neurotransmitters transport information from one nerve
terminal to the next, across the entire central nervous system, way up to the brain [66].

Vesicles, in their role as cellular mechanism are internally appointed for transport, uptake and
storage of numerous imperative bodily functions. Without these tiny bags wrapped in
membranes, cells could not make the exchange of materials necessary to maintain their healthy
development and other crucial processes. As a conclusion, with no vesicles, humans and other
pluricellular organisms could not have existed, because the essential cellular chemical
processes would have no other method to pass onto another key materials [66].

Since there is increasing support that vesicle trafficking, including the release of EVs, is a highly
important process in tumorigenesis, embryogenesis and tissue remodeling, in this paragraph
we present an extensive discussion on the EVs convection in haptotaxis with hydrodynamical
dissipation (i.e., a novel mechanism for vesicle migration).

2.6.2. Mathematical model

Vesicles are closed membranes floating in an aqueous solution (see Fig. 1). These membranes
act as a barrier that efficiently controls permeability. The vesicles mimic maybe the most
primitive and mechanically flexible dividing interfaces between the inside and the outside of
a cell. Generally, the fluid enclosed by the membrane is incompressible in order that the vesicle
evolves at a constant volume. Moreover, the membrane exchanges no phospholipid molecules
with the solution, its area remaining constant as time passes [64]. Helfrich [45] described very
well the vesicle's bending energy in its equilibrium state, which is compatible with the
constraints above, i.e. constant volume and area. Even if the model is relatively simple it
generates various equilibrium profiles, such as, discocytes (resembling red blood cells),
stomatocytes, as well as forms presenting higher topologies (such as n-genus torus) that have
been also observed experimentally [46]. We identify works studying alignments of vesicle in
shear flows [47], fluctuations out of equilibrium [48], lift forces [49, 50], migration of vesicle in
the proximity of a substrate [51, 52] or in gravity fields [53] and also vesicle tumbling [54]. One
may note several recent experiments dealing with vesicle migration [55-58].

Considering the vesicle migration, we acknowledge that hydrodynamical dissipation in the
neighboring fluid as well as inside the vesicle is present, and, in principle, between the two
mono-layers which may glide with respect to each other. Furthermore, during motion on the
substrate the dynamics of a vesicle may be restricted not only by the hydrodynamical flow but
also by bonds breaking and restoring mechanisms that occur on the substrate (see [64]). It is
obvious that the slowest mechanism limits the motion. Here we focus on a situation where
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substrate the dynamics of a vesicle may be restricted not only by the hydrodynamical flow but
also by bonds breaking and restoring mechanisms that occur on the substrate (see [64]). It is
obvious that the slowest mechanism limits the motion. Here we focus on a situation where
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hydrodynamics are the limiting factors and we give out dissipation associated with bonds on
the substrate.

Let us imagine a vesicle that initially adheres on a flat surface. We then consider an adhesion
gradient along the substrate. The vesicle then moves in the direction of increasing adhesion
energy (see Fig. 2) - it is named haptotaxis (a motion induced by an adhesion gradient).

A highly permeable vesicle can be pulled into a fluid without opposing any resistance (and
without modifying the inner area), whereas an impermeable one would be subjected to a drag
force [64]. The assumption of local impermeability is legitimate. This entails that the fluid
velocity at the membrane is equal that of the membrane itself [59].

On a vesicle's scale (R ~10μm) and for the expected velocities (V ~1μm / s), the dissipative
processes fully dominate the dynamics. The energy added instantly dissipates in various
degrees of freedom. Local dissipation caused by molecular reorganization, characterized by
Leslie's coefficient, is negligible with respect to the hydrodynamics modes [60].

If dissipation is dominated by bulk effects, as shown in [59], we are in the position to write
down the basic governing equations for convective vesicles in a geometry depicted in Fig. 3,
since we also know and it was proved the velocity field obeys Stokes equations [59].

In an original atmospheric system, the non-even distribution of ascending water droplets is
determined by the interplay between solar energy-induced thermal gradients, thermal
diffusivity, friction, and gravity. Ultimately, the mathematics of this model shapes the
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umbrella-like or budding appearance of structures like cumulonimbus clouds. This model can
better or uniquely describe those types of structural dynamics not explained under fractal,
simple/linear and several other types of models.

Fig. 2: Stationary vesicle profiles are depicted. The vesicle is moving from the left (smaller adhesion) to the right 
(stronger adhesion); a few discretization points are represented and the arrow allows following one of these at three 

successive times. One can observe here the rolling and sliding components of the vesicle’s motion. 

On a vesicle's scale ( ~ 10 )R m  and for the expected velocities ( ~ 1 / )V m s ,  the 
dissipative processes fully dominate the dynamics. The energy added instantly dissipates in 
various degrees of freedom. Local dissipation caused by molecular reorganization, 
characterized by Leslie's coefficient, is negligible with respect to the hydrodynamics modes 
[60].

If dissipation is dominated by bulk effects, as shown in [59], we are in the position to 
write down the basic governing equations for convective vesicles in a geometry depicted in Fig. 
3, since we also know and it was proved the velocity field obeys Stokes equations [59]. 
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If dissipation is dominated by bulk effects, as shown in [59], we are in the position to 
write down the basic governing equations for convective vesicles in a geometry depicted in Fig. 
3, since we also know and it was proved the velocity field obeys Stokes equations [59]. 

Figure 3. Convective extracellular vesicles (EVs) geometry. A fluid layer of thickness d of EVs, adherent on an extracel‐
lular matrix (ECM), is subjected to a gradient of concentration, where ΔC =C1 −C0 >0 is the difference of concentra‐
tion between the front and back boundaries of the fluid layer.
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Acknowledging that similar patterns occur in various biological spaces, we think that the same
mathematical determinism can be ascribed. Thus, some histoarchitectural prototypic struc‐
tures, like the capillary sprouting, embryologic organ, or even tumor buds of some types of
cancer lesions might be in fact sculpted in that shape because gradients of molecular cues called
morphogens can be deployed within the same manner water droplets can organize within
nascent clouds.

Assuming that this organization also applies in biological systems, and that the EVs release
can be considered among various processes organizing the budding tissue pattern, we think
that the Lorenz model can govern their dynamics too. EVs would be particularly interesting
as controllers of the tissue shape specification because they can include enzymatically active
components (not found in conventional molecular morphogens), and thus might actively
interact with the ECM fibers within their migration. Deployment of certain matrix degrading
enzymes (MDEs) by EVs can modify this space while diffusing (event not produced by simple
morphogens, attractive chemokines or repulsive semaphorins). This activity changes the
topography of the ECM and creates spatial gradients directing the migration of subsequent
EVs by haptotaxis - a mechanism better described for cell migration.

Let us consider the following thought biological experiment, equivalent to the B\'{enard
experiment: a fluid layer of extracellular vesicles adherent on an ECM, in a haptotactic
gradient. The fluid layer presents an unstable stratification of the potential density in a field
of forces: the dense fluid is placed in front of the less dense one. We assume that in the basic
state the layer of fluid of thickness d is subjected to a gradient of concentration

1 0 0
C C

d
-

b = > (79)

ΔC =C1 −C0 >0 is the difference of concentration between the front and back boundaries of the
fluid layer. The regime with the fluid at rest and a non-perturbed distribution of concentration,
belongs to the thermodynamic branch, which is continuously linking the non-equilibrium
stationary state (ΔC ≠0) with the equilibrium state (ΔC =0) (see Fig. 3).

We examine the evolution of a concentration fluctuation θ around the non-perturbed concen‐
tration profile C0(z).

Two dissipative processes tend to maintain the fluid at rest:

• friction (motion amortization through viscosity);

• ECM degradation subsequent to MDE's activity allowing vesicle trespassing - which lowers
the concentration of the ECM, thus diminishing the forward, or advancing force.

The instability cannot be developed unless the EV is accelerated enough to overcome the effect
of these dissipative processes. The gradient of concentration β which is the control parameter
of this instability has to surpass a critical value βC . Over this critical value, an organized
structure of convection cells may appear.
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For a one component fluid, the mass, momentum and internal energy equations are the
expressions (see the fractal - nonfractal transition method [8-22]):

( ) 0

( ) ( )

( ) ( ) ( )d

t

t

t

«

«

¶r
+Ñ × r =

¶
¶ r

+Ñ × P+ r = r
¶

¶ re
+ Ñ × re + = -PÄ Ñ

¶

v

v vv g

v j v

(80)

where ρ represents the mass density of the fluid, v its speed, g acceleration of a field of forces,
ε the internal energy of the unit volume, and jd  the flux of ECM degraded by signals received
from EVs. Here Π

↔
 is the stress tensor and ⊗  denotes the product of two tensors,

ij jiA B A B
« «

Ä =

and we use Einstein's summation convention (implicit sum over repeating indices). The stress
tensor can be written

e v« « «

P = P +P (81)

Π
↔ e is the equilibrium part and depends on the state of the system. Π

↔ v represents the non-
equilibrium part and is named, viscous stress tensor. At equilibrium, this part vanishes. For
an isotropic medium at rest,

0 0
0 0
0 0

e p
p p I

p

« «
æ ö
ç ÷

P = =ç ÷
ç ÷
è ø

(82)

where p is the hydrostatic pressure. For viscous systems at non-equilibrium, the viscous stress
tensor is not null. According to Eq. (81) and Eq. (82), the stress tensor will be, for homogeneous
and isotropic viscous systems, at non-equilibrium

v

p I
« « «

P = +P (83)

We start with the following assumptions:

a. the fluid is Newtonian; as a result the stress tensor is given by Eq. (83), where the viscous
stress tensor is [8-22]
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with coefficients η and ζ independent of velocity, the tangential (shear) and bulk viscosity,
respectively;

b. ECM degrading by MDEs from EVs is described by the Fourier equation

d C= -lÑj (84)

where λ is the haptotactic coefficient;

c. haptotactic energy expansion is linear

0 0 0 0 0 0( ) ( )hk C C C Cdr = r - r = -r ae = -r a - = -r c - (85)

where we used the expression of the haptotactic energy

0( )hk C Ce = -

kh  being the haptotactic energy constant. In Eq. (85) α is the haptotactic energy expansion
constant and χ =αkh  is the haptotactic expansion constant;

d. the fluid satisfies a state equation: consequently, its internal energy is (up to a constant
factor)

bk Ce = (86)

where kb is the state constant;

e. in most liquids, thermal expansion is small. We choose everywhere a constant density,
denoted by ρ0, except the momentum equation.

With these approximations, the system of Eqs. (80) leads to the Boussinesq type system of
equations

( ) ( ) 2
0 0

2

0

0

( )
b

p
t

C C C
t k

Ñ × =

é ù¶
r + ×Ñ +Ñ = r + dr + hÑê ú¶ë û
¶ l

+ ×Ñ = Ñ
¶ r

v
v v v g v

v

(87)
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where ρ is the perturbed density

0r = r + dr (88)

The first equation (87) represents the incompressibility condition for the fluid.

Convection occurs in the fluid layer when the forward, or advancing force, resulted from
energy expansion, surpasses the viscous forces. We may define now a Rayleigh type number
identical with the Eqs associated to fractal - nonfractal transition [61]

0
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(89)

The density perturbation satisfies, according to Eq. (85)

0

Cdr
» cD

r
(90)

On the other side, from the internal energy equation Eq. (79), it results

0

1

b

v
k d
l

»
r

(91)

Replacing Eqs. (90) and (91) in Eq. (89), and taking into account Eq. (79), we get a biological
Rayleigh number

40 bk gR dcbr
=

nl
(92)

where ν =η /ρ0 is the cinematic viscosity. For the Bénard convection, the biological Rayleigh
number plays the part of a control parameter. The convection occurs for

criticalR R>

Most of the time, R is controlled by β, the gradient of concentration.
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Within a biological context, g can be specified by polar/linear topography of semaphorins or/
and chemokines, signals typically creating stable gradients to which EVs can respond.

We choose as reference state the rest stationary state (vS =0), for which the last two equations
in the system of Eqs. (87) reduce to

0 0
2

ˆ ˆ[1 ( )]
0

S S S

S

p gz C C gz
C

Ñ = -r = -r - c -

Ñ =
(93)

where ẑ is the versor of the vertical direction. We assume pressure and concentration varies
only along the vertical direction, due to the geometry of the experiment. For concentration, the
boundary conditions read

0 1( , ,0) ; ( , , )C x y C C x y d C= =

Integrating the second Eq. (93) with these boundary conditions, it results that, in the stationary
reference state, the profile of the concentration in the vertical direction is linear

0SC C z= -b (94)

with β, the gradient of concentration. Replacing Eq. (94) in first Eq. (93) and integrating, we
get

0 0( ) 1
2S

zp z p g zæ öcb
= - r +ç ÷

è ø
(95)

The characteristics of the system in this state are independent of the kinetic coefficients η and
λ which appear in Eqs. (87). We study the stability of the reference state using the small
perturbations method. The perturbed state is characterized by
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(96)

As can be seen from Eqs. (96), the perturbations are functions of coordinate and time. Replacing
Eqs. (96) in the evolution equations of the Boussinesq approximation Eqs. (87) and taking into
account Eq. (94) and Eq. (95), we get, in the linear approximation, the following equations for
the perturbations
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where K = λ
ρ0kb

 is a coefficient. We pass to non-dimensional variables in Eqs. (97), using the

transformations: r′= r
d  ; t ′= t

d 2 / K  ; θ ′= θ

( νK

gχd 3 )  ; δv′= δv
K / d  and δp ′= δp

( ρ0νK

d 2 ) .

Using the standard method from [8-22], it results the biological Lorentz system.

2.6.3. Validity of theoretical model

Some results are evident:

• we build the first Lorenz model for extracellular vesicles migration;

• in [50], and similar other references ([64] etc.), the EVs behavior, under shear flow close to
a substrate, was proved to be quite similar to the one encountered in two dimensional
simulations, so we are confident that the 2D assumptions captures the essential features of
the 3D EVs;

• different control parameter values for the Lorenz system can create shape distributions
similar to the cordonal appearance of fingerprints (see Fig. 4, A), or complex skin tissue tiles
like scale appendages in the amphibian covering (see Fig. 4, B);

• the biological thought experiment equivalent to Bénard's experiment, involving a fluid layer
of extracellular vesicles adherent to an extracellular matrix, in a haptotactic gradient can be
checked experimentally today to a high degree of accuracy. We think that suitable test systems
would be the embryological ones (i.e., the development of branched vessels in membranes -
avian eggshell membranes, serous membranes of the peritoneal cavity; or the budding
development of lung alveoli, or of fingerprints), and, similar, inflammatory ones (i.e., the
emergence of neoangionetic vessels driven by inflammatory proximities) - all of which
apparently start as point like spots displayed in a comb-like appearance along a rectilinear
or arched origin;

• we analyze the problem of EVs migration in haptotaxis, though most of the reasoning
applies to chemotaxis (migration of cells biased towards a gradient of diffusible MDEs) as
well as to a variety of driving forces - all of which include the possibility to specify an active
parameter value within the model;

• the resulted system of equations exhibits complex behavior, hard to control, the two
occurring convective rolls: either going in one direction, or in the opposite one - means
patterning the EVs spreading.
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Fig. 4: Bénard-Rayleigh model patterns representative for biological instances: A) for fingerprint like distribution 
of skin cells, B) for fish or amphibian scales. 

Conclusions

Considering the above, we can write the following conclusions: 
i) We establish a relationship between the SL(2R) group and the canonic formalism. It 

particularly results that all invariant functions on the SL(2R) group will be functions on the 
hamiltonian and on the Gausssian; 

ii) We establish the statistical significations for coefficients of the hamiltonian by using 
Shannon's maximum informational entropy principle. Any statistical assumption is specified by 
particularly selecting the hamiltonian coefficients and the class of all these hypothesis by the 
transitivity manifolds of the group. In this manner, if the hamiltonian has energy significance, 
then through the transitivity manifolds, the motions of a representative point from the phase 
space on a surface of constant energy are in the same time on a surface of constant probability 
density (the ergodic hypothesis). Therefore, the class of the statistic hypothesis (which are 
characteristic to the Gaussians of the same average) is given by the ergodic hypothesis. In this 
way, we establish a fundamental relationship between energy and probability; 

iii) We prove that informational energy (in the sense of Onicescu) is a measure of the 
dispersion of a distribution. The class of the statistic hypothesis that are characteristic to the 
Gaussians of the same average is characterized by the constant value of the informational 
energy. In addition, it is equivalent to the ergodic hypothesis. For a constant value of the 
informational energy, we obtain uncertainty egalitarian relationships and, particularly, for the 
linear harmonic oscillator, we show that the informational energy is quantified; 

iv) Assuming that de Broglie's theory is materialized through a periodic field in a 
complex coordinate, we prove that it has a “hidden symmetry”, which is expressed by the 
homographical transformations group in three parameters. This group (also an achievement of 
SL(2R)) functions as a synchronization group both in phase and in amplitude, among the 
oscillators of the same ensemble. The simultaneous invariance related to two different 

Figure 4. Bénard-Rayleigh model patterns representative for biological instances: A) for fingerprint like distribution of
skin cells, B) for fish or amphibian scales.

3. Conclusions

Considering the above, we can write the following conclusions :

i. We establish a relationship between the SL(2R) group and the canonic formalism. It
particularly results that all invariant functions on the SL(2R) group will be functions
on the hamiltonian and on the Gausssian;

ii. We establish the statistical significations for coefficients of the hamiltonian by using
Shannon's maximum informational entropy principle. Any statistical assumption is
specified by particularly selecting the hamiltonian coefficients and the class of all
these hypothesis by the transitivity manifolds of the group. In this manner, if the
hamiltonian has energy significance, then through the transitivity manifolds, the
motions of a representative point from the phase space on a surface of constant energy
are in the same time on a surface of constant probability density (the ergodic hy‐
pothesis). Therefore, the class of the statistic hypothesis (which are characteristic to
the Gaussians of the same average) is given by the ergodic hypothesis. In this way,
we establish a fundamental relationship between energy and probability;
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iii. We prove that informational energy (in the sense of Onicescu) is a measure of the
dispersion of a distribution. The class of the statistic hypothesis that are characteristic
to the Gaussians of the same average is characterized by the constant value of the
informational energy. In addition, it is equivalent to the ergodic hypothesis. For a
constant value of the informational energy, we obtain uncertainty egalitarian
relationships and, particularly, for the linear harmonic oscillator, we show that the
informational energy is quantified;

iv. Assuming that de Broglie's theory is materialized through a periodic field in a
complex coordinate, we prove that it has a “hidden symmetry”, which is expressed
by the homographical transformations group in three parameters. This group (also
an achievement of SL(2R)) functions as a synchronization group both in phase and
in amplitude, among the oscillators of the same ensemble. The simultaneous invari‐
ance related to two different achievements of SL(2R) implies (integrally through the
invariant functions on the groups) an uncertainty relation in egalitarian form and the
Stoler group of synchronization among oscillators from different ensembles (i.e., the
second quantification when the creation and annihilation operators refer to a
harmonic oscillator);

v. The synchronization group among the oscillators of the same ensemble admits three
differentiable 1-forms and one differentiable 2-form which is absolutely invariant on
the group. The existence of a parallel transport in Levi-Civita's sense, in which case
the 2-form in Lobacevski's metric form in Poincare representation, implies through a
variation principle, equations of Ernst type for the gravitational field of vacuum;

vi. Complex measures in the study of certain physical systems dynamics need the use
of a space-time endowed with a special topology, namely, the fractal space-time [6,
7] (see also [71] for details).
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Chapter 12

Physical Vacuum is a Special Superfluid Medium

V.I. Sbitnev

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59040

1. Introduction

A dramatic situation in physical understanding of the nature emerged in the late of 19th
century. Observed phenomena on micro scales came into contradiction with the general
positions of classical physics. It was a time of the origination of new physical ideas explaining
these phenomena. Actually, in a very short period, postulates of the new science, quantum
mechanics were formulated. The Copenhagen interpretation was first who proposed an
ontological basis of quantum mechanics [1]. These positions can be stated in the following
points: (a) the description of nature is essentially probabilistic; (b) a quantum system is
completely described by a wave function; (c) the system manifests wave–particle duality; (d)
it is not possible to measure all variables of the system at the same time; (e) each measurement
of the quantum system entails the collapse of the wave function.

Can one imagine a passage of a quantum particle (the heavy fullerene molecule [2], for
example) through all slits, in once, at the interference experiment? Following the Copenhagen
interpretation, the particle does not exists until it is registered. Instead, the wave function
represents it existence within an experimental scene [3].

Another interpretation was proposed by Louis de Broglie [4], which permits to explain such
an experiment. In de Broglie's wave mechanics and the double solution theory there are two
waves. There is the wave function that is a mathematical construct. It does not physically exist
and is used to determine the probabilistic results of experiments. There is also a physical wave
guiding the particle from its creation to detection. As the particle moves from a source to a
detector, the particle perturbs the wave field and gets a reverse effect from it. As a result, the
physical wave guides the particle along some optimal trajectory up to its detection.

A question arises, what is the de Broglie physical wave? Recently, Couder and Fort [5] has
executed the experiment with the classical oil droplets bouncing on the oil surface. A remark‐
able observation is that an ensemble of the droplets passing through the barrier having two

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



gates shows the interference fringes typical for the two slit experiment. Their explanation is
that the droplet while moving on the surface induces on this surface the weak Faraday waves.
The latter provide the guidance conditions for the droplets. In this perspective, we can draw
conclusion that the de Broglie physical wave can be represented by perturbations of the ether
when the particle moves through it. In order to describe behavior of such an unusual medium
we shall use the Navier-Stokes equation with slightly modified some terms. As the final result
we shall get the Schrödinger equation.

In physical science of the New time the assumption for the existence of the ether medium was
originally used to explain propagation of light and the long-range interactions. As for the
propagation of light, the wave ideas of Huygens and Fresnel require the existence of a
continuous intermediate environment between a source and a receiver of the light - the light-
bearing ether. It is instructive to compare here the two opposite doctrines about the nature of
light belonging to Sir Isaac Newton and Christian Huygens. Newton maintained the theory
that the light was made up of tiny particles, corpuscles. They spread through an empty space
in accordance with the law of the classical mechanics. Christian Huygens (a contemporary of
Newton), believed that the light was made up of waves vibrating up and down perpendicu‐
larly to the direction of its propagation, as waves on a water surface. One can imagine all space
populated everywhere densely by Huygens's vibrators. All vibrators are silent until a wave
reaches them. As soon as a wave front reaches them, the vibrators begin to radiate waves on
the frequency of the incident wave. So, the infinitesimal volume δV  is populated by infinite
amount of the vibrators with frequencies of visible light. These vibrators populate the ether
facilitating propagation of the light waves through the space.

In order to come to idea about existence of the intermediate medium (ether) that penetrates
overall material world, we begin from the fundamental laws of classical physics. Three
Newton's laws first published in Mathematical Principles of Natural Philosophy in 1687 [6]
we recognize as basic laws of physics. Namely: (a) the first law postulates existence of inertial
reference frames: an object that is at rest will stay at rest unless an external force acts upon it;
an object that is in motion will not change its velocity unless an external force acts upon it. The
inertia is a property of the bodies to resist to changing their velocity; (b) the second law states:
the net force applied to a body with a mass M is equal to the rate of change of its linear
momentum in an inertial reference frame

;= =
rr r dF Ma M v

dt (1)

(c) the third law states: for every action there is an equal and opposite reaction.

Leonard Euler had generalized the second Newton's laws on motion of deformable bodies [7].
We rewrite this law for such media. Let the deformable body be in volume ΔV  and has the
mass M. We divide Eq. (1) by ΔV  and determine the time-dependent mass density ρM =MΔV
[8]. In this case, we shall understand F

→
 as force per volume. Then the second law takes a form:
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The total derivatives in the right side can be written through partial derivatives:
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Eq. (3) equated to zero is seen to be the continuity equation. As for Eq. (4) we may rewrite the
rightmost term in detail
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As follows from this formula, the first term, multiplied by the mass, is gradient of the kinetic
energy. It represents a force applied to the fluid element for its shifting on the unit of length,
δS . The second term gives acceleration of the fluid element directed perpendicularly to the
velocity v→ . Let the fluid element move along some curve in 3D space. Tangent to the curve in
each point points to orientation of the body motion. In turn, the vector ω→ = ∇ ×v→  is perpen‐
dicular to the plane, within which an arbitrarily small segment of the curve is situated. This
vector characterizes a quantitative measure of the vortex motion. It is called vorticity. The vector
product v→ ×ω→  is perpendicular to the both vectors v→  and ω→ . It shows the acceleration of the
fluid element

The term (5) entering in the Navier-Stokes equation [9, 10] is responsible for emergence of
vortex structures. The Navier-Stokes equation stems from Eq. (2) if we omit the rightmost term,
representing the continuity equation, and specify forces in this equation in detail:
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This equation contains two modifications represented in the two last terms from the right side:
the dynamic viscosity μ depends on time and the rightmost term has a slightly modified view,
namely ρM ∇ (P /ρM )=∇ P − P ∇ ln(ρM ). This modification will be important for us when we
shall begin to derive the Schrödinger equation. However first we shall examine the Helmholtz
vortices with time dependent dynamical viscosity.
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2. Vortex dynamics

The second term from the right in Eq. (6) represents the viscosity of the fluid (μ is the dynamic
viscosity, its units are N⋅s/m2=kg/(m⋅s)). Let us suppose that the fluid is ideal, barotropic, and
the mass forces are conservative [10]. At assuming that the external force is conservative, we
apply to this equation the operator curl. We get right away the equation for the vorticity:

2( ) ( ) .w w n w¶
+ ×Ñ Ñ

¶

r r r rt
t

v = (7)

Here ν (t)=μ(t) /ρM  is the kinematic viscosity. Its dimensionality is m2/s what corresponds to
dimensionality of the diffusion coefficient. The rightmost term describes dissipation of the
energy stored in the vortex. As a result, the vortex with the lapse of time will disappear.

With omitted the term from the right (i.e., ν =0) the Helmholtz theorem reads: (i) if fluid
particles form, in any moment of the time, a vortex line, then the same particles support the
vortex line both in the past and in the future; (ii) ensemble of the vortex lines traced through
a closed contour forms a vortex tube. Intensity of the vortex tube is constant along its length
and does not change in time. The vortex tube (a) either goes to infinity by both endings; (b) or
these endings lean on walls of bath containing the fluid; (c) or these endings are locked to each
on other forming a vortex ring.

Assuming that the fluid is a physical vacuum, which meets the requirements specified earlier,
we must say that the viscosity vanishes. In that case, the vorticity ω→  is concentrated in the center
of the vortex, i.e., in the point. Mathematical representation of the vorticity is δ- function. Such
singularity can be a source of possible divergences of computations in further.

We shall not remove the viscosity. Instead of that, we hypothesize that even if there is an
arbitrary small viscosity, because of the zero-point oscillations in the vacuum, the vortex does
not disappear completely. The vortex can be a long-lived object. The foundation for that
hypothesis is the observation (performed by French scientific team [5, 11, 12]) of behavior of
the droplets moving on the oil surface, on which the waves Faraday exist. Here an important
moment is that the Faraday waves are supported slightly below the super-critical threshold.
Due to this trick the droplets can live on the oil surface arbitrary long, before they disappear
in the oil. The Faraday waves that are supported near the super-critical threshold may play a
role analogous to the zero-point oscillations of the vacuum.

Observe that the bouncing droplet simulates some aspects of quantum mechanics, stimulating
theoretical investigations in this area [13-20]. It is interesting to note in this place that Grössing
considers a quantum particle as a dissipative phase-locked steady state, where an amount of
zero-point energy of the wave-like environment is absorbed by the particle, and then during
a characteristic relaxation time is dissipated into the environment again [14].

Here we shall give a simple model of such a picture. Let us look on the vortex tube in its cross-
section which is oriented along the axis z and its center is placed in the coordinate origin of
the plane (x, y). Eq. (7), written down in the cross-section of the vortex, is as follows
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We do not write a sign of vector on top of ω since ω is oriented strictly along the axis z. We
introduce time-dependent the kinematic viscosity. For the sake of simplicity, let it be looked
as
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where Ω is an oscillation frequency and ϕ is the uncertain phase.

Figure 1. Vorticity ω(r , t) and velocity v(r,t) as functions of r and t for Γ =1, ν =1, Ω =π,  and n=16. These parame‐
ters are conditional in order to show clearly oscillations of the vortex in time. The solution does not decay with time.

Solution of the equation (8) in this case is as follows
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Here Γ is the integration constant having dimension m2/s. An extra number n > 1. It prevents
appearance of singularity in the cases when sin(Ωt + ϕ) tends to-1. This function at choosing
the parameters Γ =1, ν =1, Ω =π,  and n=16 is shown in Fig. 1(a).

The velocity of the fluid matter around the vortex results from the integration of the vorticity
function
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Fig. 1(b) shows behavior of this function at the same input parameters.

In particular, for n=0 and Ω t < <1 this solution is close to the Lamb–Oseen vortex solution [21]
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As seen from here, the Lamb–Oseen solution decays with time since the viscosity ν >0.

One can see from the solutions (10) and (11), depending on the distance to the center the
functions ω(r , t) and v(r,t) show typical behavior for the vortices. The both functions do not
decay with time, however. Instead of that, they demonstrate pulsations on the frequency Ω.
Amplitude of the pulsations is the smaller, the larger value of the parameter n. At n tending
to infinity the amplitude of the pulsations tends to zero. At the same time the vortex disappears
entirely.

Figure 2. Periodic energy exchange between the vortex and vacuum fluctuations

The undamped solution was obtained thanks to assumption, that the kinematic viscosity is a
periodic function of time, namely, ν g(t)=νcos(Ω t + ϕ). The viscosity in the quantum realm is
not a good concept, however. Most likely, it manifests itself through interaction of the quantum
object with vacuum fluctuations. According to Eq. (9), there are half-periods when the energy
of the vortex is lost at scattering on the vacuum fluctuations, and there are other half-periods
when the vacuum returns this energy to the vortex, Fig. 2. On the whole, the viscosity of the
fluid medium, within which the vortex tube evolves, in the average remains at zero. It can
mean that this medium is superfluid. Such a scenario is not unusual. For example, at transition
of helium to the superfluid phase [22] coherent Cooper pairs of electrons arise through the
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when the vacuum returns this energy to the vortex, Fig. 2. On the whole, the viscosity of the
fluid medium, within which the vortex tube evolves, in the average remains at zero. It can
mean that this medium is superfluid. Such a scenario is not unusual. For example, at transition
of helium to the superfluid phase [22] coherent Cooper pairs of electrons arise through the
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exchange by phonons. This attraction is due to the electron–phonon interaction. The phonons
are thermal excitations of a lattice. In that case, they play a role of the background medium.

Qualitative view of the vortex tube in its cross-section is shown in Fig. 3. Values of the velocity
v are shown by grey color ranging from light grey (minimal velocities) to dark grey (maximal
ones). A visual image of this picture can be a hurricane (tropical cyclone [23]) shown from the
top. In the center of the vortex, a so-called eye of the hurricane (the vortex core) is well viewed.
Here it looks as a small light grey disk, where the velocities have small values. In the very
center of the disk, in particular, the velocity vanishes. Observe that in the region of the
hurricane eye a wind is really very weak, especially near the center. This is in stark contrast to
conditions in the region of the eyewall, where the strongest winds exist (in Fig. 3 it looks as a
dark grey annular region enclosing the light grey inner area). The eyewall of the vortex tube
(a zone where the velocity reaches maximal values) has the nonzero radius.

Figure 3. Cross-section of the vortex tube in the plane (x, y). Values of the velocity v are shown in grey ranging from
light grey (min v) to dark grey (max v). Density of the pixels represents magnitude of the vorticity ω. Core of the vor‐
tex is well visible in the center.

Let us find the radius of the vortex core. In order to evaluate this radius we equate to zero the
first derivative by r of equation (11)
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The radius is a root of this equation

0v 2 ( sin( )) .nf= + W + ×
W

r a n t (15)

Here a0≈1.2564312 is a root of the equation ln(2a0 + 1)−a0 =0. One can see, that rv is an oscillating
function. The larger Ω, the more quickly the vortex trembles. As Ω increases, the vortex radius
decreases. However it grows with increasing the number n. Let us evaluate the radius rv at
choosing the viscosity ν equal to ν̄ =ℏ / 2m. Here ν̄ is the diffusion coefficient of the Brownian
sub-quantum particles wandering in the Nelson’s aether [24], see Appendix A. In the case of
electron ν̄ =ℏ / 2m≈ 5.79∙10-5 m2/s. As for Ω, let it be equal to 2mc2/ℏ, or approximately 1.6∙1021

radians per second for electron. Here c is the speed of light and m is the electron mass. Then
we have (ν/Ω)1/2 ≈ 1.93∙10-13 m. This length is seen to be smaller then the Compton wavelength,
λC = 2.426∙10-12 m, in about 12 times. So, for choosing n ≈ 31 we find from Eq. (15) that the
radius of the vortex is about the Compton wavelength. From the above one can see that, on a
distance about the Compton wavelength, virtual particles can be involved into a vorticity
dancing around the electron core, by polarizing the electron charge. This dancing happens at
trembling motion of the electron with the frequency Ω = 2mc2/ℏ. That oscillating motion has
a deep relation to the so-called “Zitterbewengung” [25].

One can give a general solution of Eq. (8) which has the following presentation
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The viscosity function ν (t) is a quasi-periodic function or even is represented by a color noise.
The integral of the viscosity function memorizes integrally character of the viscosity of the
medium. Due to this memory effect, the vortex may live a long enough. As for interpretation
of these solutions with the quantum-mechanical point of view, we may say that there exists a
regular exchange by quanta with the vacuum fluctuations, Fig. 2. The integral accumulates all
cases of the exchange with the vacuum. The constant σ having dimension of length, prevents
appearance of singularities. One can see that even at ν ≡0, but σ >0, abundance of long-lived
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vortices can exist in the vacuum. Such vortices are “ghosts” in the superfluid being invisible
without interaction.

2.1. Vortex rings and vortex balls

If we roll up the vortex tube in a ring and glue together its opposite ends we obtain a vortex
ring. A result of such an operation put into the (x, y) plane is shown in Fig 4. Position of points
on the helicoidal vortex ring in the Cartesian coordinate system is given by

1 0 2 2 1 1

1 0 2 2 1 1

0 2 2

( cos( ))cos( ),

( cos( ))sin( ),

sin( ).

w f w f

w f w f

w f

ì
ïï
í
ï
ïî

= + + +

= + + +

= +

x r r t t

y r r t t

z r t
(18)

Here r0 is the radius of the tube. And r1 represents the distance from the center of the tube
(pointed in the figure by arrow c) to the center of the torus located in the origin of coordinates
(x,y,z). A body of the tube, for the sake of visualization is colored in cyan. Eq. (18) parametrized
by t gives a helicoidal vortex ring shown in this figure. Parameters ω1 and ω2 are frequencies
of rotation along the arrow a about the center of the torus (about the axis z) and rotation along
the arrow b about the center of the tube (about the axis pointed by arrow c), respectively. Phases
ϕ 1 and ϕ 2 have uncertain quantities ranging from 0 to 2π. By choosing the phases within this
interval with a small increment, we may fill the torus by the helicoidal vortices everywhere
densely. The vorticity is maximal along the center of the tube. Whereas the velocity of rotation
about this center in the vicinity of it is minimal. However, the velocity grows as a distance
from the center increases. After reaching of some maximal value the velocity further begins to
decrease.

Let the radius r1 in Eq. (18) tends to zero. The helicoidal vortex ring in this case will transform
into a vortex ring enveloping a spherical ball. The vortex ring for the case r 0=4, r 1 ≈ 0, ω2 =3ω1,
and ϕ 2 =ϕ 1 =0 drawn by thick curve colored in deep green is shown in Fig. 5(a). Motion of an
elementary vortex clot along the vortex ring (along the thick curve colored in deep green) takes
place with a velocity
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The velocity of the clot at the initial time is vR ,x =0,  vR ,y = r0ω1,  vR ,z = r0ω2 =3r0ω1 (the initial point
(x, y, z)=(4, 0, 0) is on the top of the ball). We designate this velocity as v→ +. Through the time
t =πω 1 the elementary vortex clot returns to the top position. The velocity in this case is equal
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to vR ,x =0,  vR ,y = r0ω1,  vR ,z = − r0ω2 = −3r0ω1. We designate this velocity as v→ −. Sum of the two
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and in backward directions, respectively. In the vicinity of these points the velocities v→ + and v→ −
yield the resulting velocity v→ 0 directed along the circle lying in the plane (x, y).

Figure 5. (a) Helicoidal vortex ring (colored in deep green) convoluted into the vortex ball. The input parameters of the
ball are as follows r0=4, r1=0.01 ≪ 1, ω2 =3ω1,  ϕ 2 =ϕ 1 =0. The radius r0 represents a mean radius of the ball, where

the velocity v0 reaches a maximal value. The ratio ω2 /ω1 =3 was chosen with the aim not to overload the picture by
superfluous curves. (b) The vortex ball rotating about axis z with the maximal velocity v0 that is reached on the surface
of the ball.

Figure 4. Helicoidal vortex ring: r0=2, r1=3, ω2 =12ω1, ϕ2 =ϕ1 =0.

Selected Topics in Applications of Quantum Mechanics354



to vR ,x =0,  vR ,y = r0ω1,  vR ,z = − r0ω2 = −3r0ω1. We designate this velocity as v→ −. Sum of the two

opposite velocities, v→ + and v→ −, gives the velocity v→ 0 = (0, 2r0ω1, 0). During t =(1 + 3k )π / 3ω1 and

t =(2 + 3k )π / 3ω1 (k=1, 2, ⋯) the clot travels through the positions 1 and 2 both in the forward

and in backward directions, respectively. In the vicinity of these points the velocities v→ + and v→ −
yield the resulting velocity v→ 0 directed along the circle lying in the plane (x, y).

Figure 5. (a) Helicoidal vortex ring (colored in deep green) convoluted into the vortex ball. The input parameters of the
ball are as follows r0=4, r1=0.01 ≪ 1, ω2 =3ω1,  ϕ 2 =ϕ 1 =0. The radius r0 represents a mean radius of the ball, where

the velocity v0 reaches a maximal value. The ratio ω2 /ω1 =3 was chosen with the aim not to overload the picture by
superfluous curves. (b) The vortex ball rotating about axis z with the maximal velocity v0 that is reached on the surface
of the ball.

Figure 4. Helicoidal vortex ring: r0=2, r1=3, ω2 =12ω1, ϕ2 =ϕ1 =0.

Selected Topics in Applications of Quantum Mechanics354

The ball can be filled everywhere densely by other rings at adding them with other phases ϕ 1

and ϕ 2 ranging from 0 to 2π. The velocity v→ 0 for any ring will lie on the same circles centered
on the axis z. We see a dense ball that rolls along the axis y, Fig. 5(b). Observe that the ball
pulsates on the frequency Ω as it rolls along its path, as it follows from the above computations.
Perfect modes describing the rolling ball are spherical harmonics [26].

3.3. Derivation of the Schrödinger equation

The third term in the right side of Eq. (6) deals with the pressure gradient. One can see,
however, it is slightly differ from the pressure gradient presented in the customary Navier-
Stokes equation [9, 10]. One can rewrite this term in detail
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M M
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The first term, ∇P, is the customary pressure gradient represented in the Navier-Stokes
equation. Whereas, the second term, P∇ ln(ρM ), is an extra term describing changing the
logarithm of the density along increment of length (the entropy increment) multiplied by P. It
may mean that change of the pressure is induced by change of the entropy per length, or else
by change of the information flow [27, 28] per length. This term has signs typical of the osmotic
pressure, mentioned by Nelson [24].

Let us consider in this respect the pressure P in more detail. We shall represent the pressure
consisting of two parts, P1 and P2. We begin from the Fick’s law [14]. The law says that the
diffusion flux, J, is proportional to the negative value of the density gradient J=−D∇ρM . Here
D is the diffusion coefficient v̄ =ℏ / 2m [24], see Nelson’s definition in Appendix A. Since the
term v̄∇ J  has dimension of the pressure, we define P1 as the pressure having diffusion nature
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Observe that the kinetic energy of the diffusion flux is (m / 2)(J /ρM )2. It means that there exists
one more pressure as the average momentum transfer per unit area per unit time:
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Now we can see that sum of the two pressures, P1+P2, divided by ρM  gives a term

Physical Vacuum is a Special Superfluid Medium
http://dx.doi.org/10.5772/59040

355



2 22 2

2 2 .
8 4

r r
r r

æ öÑ Ñ
= -ç ÷

è ø

h hM M
M

M M
Q

m m
(23)

One can see that accurate to the divisor m this term represents the quantum potential.

To bring the expression (23) to a form of the quantum potential, we need to introduce instead
of the mass density ρM  the probability density ρ according to the following presentation

.r r= = =
D DM
M mN m
V V

(24)

Here the mass M is a product of an elementary mass m by the number of these masses, N, filling
the volume ΔV . Then the mass density ρM  is defined as a product of the elementary mass m
by the density of quasi-particles ρ = N /ΔV . We can imagine the quasi-particle as a long-lived
local heterogeneity, which moves with the current velocity v→  and probably has the vorticity.
Let us divide the Navier-Stokes equation Eq. (6) by the probability density ρ. We obtain
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Here F
→

/ N  is the force per one the quasi-particle. The kinetic viscosity ν (t)=μ(t) /ρM  is
represented through the diffusion coefficient v̄ =ℏ / 2m [24], ν(t)=2v̄ g(t)=ν g(t), ν =ℏ / m,  where
g (t) is the dimensionless time dependent function. The function Q here is the real quantum
potential
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Grössing noticed that the term ∇Q, the gradient of the quantum potential, describes a
completely thermalized fluctuating force field [13, 14]. Here the fluctuating force is expressed
via the gradient of the pressure divided by the density distribution of sub-quantum particles
chaotically moving in the environment. Perhaps, they are virtual particle-antiparticle pairs.

Since the pressure provides a basis of the quantum potential, as was shown above, it would
be interesting to interpret an osmotic nature of the pressure [24]. The interpretation can be the
following (see Appendix A): a semipermeable membrane where the osmotic pressure mani‐
fests itself is an instant, which divides the past and the future (that is, the 3D brane of our being
represents the semipermeable membrane in the 4D world). In other words, the thermalized
fluctuating force field described by Grössing [13, 14] is asymmetric with respect to the time
arrow.
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3.1. Transition to the Schrödinger equation

The current velocity v contains two component – irrotational and solenoidal [10] that relate to
vortex-free and vortex motions of the medium, respectively. The basis for the latter is the
Kelvin-Stokes theorem. Scalar and vector fields underlie of manifestation of the irrotational
and solenoidal velocities

1 .+ = Ñ +
r r r rS

mR RSv = v v v (27)

Here subscripts S and R hint to scalar and vector (rotational) potentials underlying emergence
of these two components of the velocity. These velocities are submitted by the following
equations
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The scalar field is represented by the scalar function S – action in classical mechanics. Both
velocities are perpendicular to each other. We may define the momentum and the kinetic
energy
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Now we may rewrite the Navier-Stokes equation (25) in the more detailed form
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Note that the term embraced by the curly bracket (a) stems from (v→ ∇ )v→ =∇v 2 / 2 + ω→ ×v→ , see
Eq. (5). Here we take into account that the external force is conservative, i.e., F

→
/ N = −∇U ,

where U is the potential energy relating to the single quasi-particle. The term embraced by the
curly bracket (b) describes the viscosity of the medium. As was said above the viscosity
coefficient in the average is equal to zero.

Let us rewrite Eq. (30) by regrouping the terms
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We assume that fluctuations of the viscosity about zero occur much more frequent, than
characteristic time of displacements of the quasi-particles. For that reason, we omit the term
ν(t)∇2 S  by supposing in the first approximation, that the medium is absolutely superfluid-
there are no energy sources and sinks. By multiplying this equation from the left by v→ S  we find
that the right part of this equation vanishes since (v→ S ⋅v→ R)= (v→ S ⋅ω

→)=0. The left part vanishes if
the expression under the brackets is constant. As a result, we come to the following modified
Hamilton-Jacobi equation
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The modification is due to adding the quantum potential (26). In this equation, C is an
integration constant. We see that the third term in this equation represents energy of the vortex.
On the other hand, we can see that the vortex given by Eq. (7) is replenished by the kinetic
energy coming from the scalar field S, namely via the term (ω→ ⋅∇ )v→ . Solutions of these two
equations, Eq. (7) and Eq. (32), describing dynamics of the vortex and scalar fields, depend on
each other.

Both the continuity equation

( ) 0,r r¶
+ ×Ñ =

¶
r

t
v (33)

which stems from Eq. (3), and the quantum Hamilton-Jacobi equation (32) can be extracted
from the following Schrödinger equation
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The kinetic momentum operator (− iℏ∇ + mv→ R) contains the term mv→ R describing a contribution
of the vortex motion. This term is analogous to the vector potential multiplied by the ratio of
the charge to the light speed, which appears in quantum electrodynamics [29]. Appearance of
this term in this equation is conditioned by the Helmholtz theorem.

By substituting into Eq. (34) the wave function Ψ represented in a polar form

{ }exp iY r= × hS (35)
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and separating on real and imaginary parts we come to Eqs. (32) and (33). So, the Navier-Stokes
equation (6) with the slightly expanded the pressure gradient term can be reduced to the
Schrödinger equation if we take into consideration also the continuity equation.

Figure 6. Probability density distribution from scattering the fullerene molecules on the grating containing 9 slits: de
Broglie wavelength is 5 pm and the distance between slits is 250 nm.

There are confirmations that the Schrödinger equation is deduced from the Feynman path
integral [30, 31]. Therefore, for searching solutions of the Schrödinger equation we may apply
the path integral. The solution of the Schrödinger equation (34) with the potential that
simulates a grating with N slits has the following view [32]
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Here λ is the de Broglie wavelength, d is the distance between slits, b is the slit width, and i=√-1.
In this calculation we have used λ =5 pm, b =5⋅103λ ,  and d =5⋅104λ =10b =250 nm . By choosing
N=9 slits, for example, we find the interference pattern shown in Fig. 6 as the density distri‐
bution function [32]. This function is a scalar product of the wave function |Ψ(y, z) , namely:

(( , ) ., ) ( , )Y Y=p y z y z y z (37)

A useful unit of length at observation of the interference patterns is the Talbot length:

T

2
2 .
l

=
dy (38)

This length bears name of Henry Fox Talbot who discovered in 1836 [33] a beautiful interfer‐
ence pattern, named further the Talbot carpet [34, 35].

The particles,  incident  on the  slit  grating,  come from a distant  coherent  source.  The de
Broglie wavelength of the particle, λ =h / p  (h is the Planck constant, and p is the particle
momentum) is a main characteristics binding the corpuscular Newtonian physics with the
wave Huygens’ physics. It is that we call now the wave-particle dualism. The de Broglie
pilot wave being represented by the complex-valued wave function |Ψ  fills all ambient
space,  except  of  opaque objects,  which determine the boundary conditions.  The particle
passes  from  the  source  to  a  place  of  detection  along  the  optimal  trajectory,  Bohmian
trajectory [27]. The equation describing motion of the Bohmian particle can be found, for
example, in [36]. There is the unique trajectory for each the particle, the vortex ball in our
case. However, an attempt to measure exact position of the ball along the trajectory together
with its velocity fails. Namely, there is no way to measure simultaneously the complemen‐
tary  parameters,  such  as  coordinate  and  velocity,  what  follows  from  the  uncertainly
principle [37].

Fig. 7 shows in lilac color Bohmian trajectories divergent from the slit grating. The probability
density distribution is shown here in grey color ranging from white for p=0 to light grey for
max p. Bundle of the Bohmian trajectories imitates a fluid flow through the obstacle, containing
slits, relatively well. One can see that characteristic streamlets are formed in the flow, along
which particles move. Such a vision of hydrodynamical behaviors of quantum systems is
typical for many scientists since the formation of the quantum mechanics up to our days
[38-42]. Principal moment is that the Schrödinger equation describes the expiration of the
superfluid medium, which depend on the boundary conditions and other devices perturbing
it (as, for example, the slit gratings, collimators and others). The vortex balls move along
optimal directions of the flows – along the Bohmian paths.
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Figure 7. Interference pattern of the coherent flow of the fullerene molecules with the de Broglie wavelength λ =5 pm
within a zone y ≤6yT  from the grating containing 9 slits. Lilac curves against the grey background represent the Boh‐
mian trajectories.

4. Physical vacuum as a superfluid medium

The Schrödinger equation (34) describes a flow of the peculiar fluid that is the physical vacuum.
The vacuum contains pairs of particle-antiparticles. The pair, in itself, is the Bose particle that
stays at a temperature close to zero. In aggregate, the pairs make up Bose-Einstein condensate.
It means that the vacuum represents a superfluid medium [43]. A 'fluidic' nature of the space
itself is exhibited through this medium. Another name of such an 'ideal fluid' is the ether [29].

The physical vacuum is a strongly correlated system with dominating collective effects [44]
and the viscosity equal to zero. Nearest analogue of such a medium is the superfluid helium
[22], which will serve us as an example for further consideration of this medium. The vacuum
is defined as a state with the lowest possible energy. We shall consider a simple vacuum
consisting of electron-positron pairs. The pairs fluctuate within the first Bohr orbit having
energy about 13.6⋅2 eV≈27 eV. Bohr radius of this orbit is r 1 ≈5.29⋅10−11 m. These fluctuations
occur about the center of their masses. The total mass of the pair, mp, is equal to doubled mass
of the electron, m. The charge of the pair is zero. The total spin of the pair is equal to 0. The
angular momentum, L, is nonzero, however. For the first Bohr orbit L =ℏ. The velocity of
rotating about this orbit is L / (r1m)≈2.192⋅10 6 m/s. It means that there exist an elementary
vortex. Ensemble of such vortices forms a vortex line.

Physical Vacuum is a Special Superfluid Medium
http://dx.doi.org/10.5772/59040

361



Figure 8. The dispersion relation ε vs. p. The dotted curve shows the non-relativistic square dispersion relation

ε ∼ p 2. The hump on the curve is a contribution of the roton component pR f (p − pR), pR /ℏ≈1.89⋅10 10 m-1,

and σ =0.5pR.

We may evaluate the dispersion relation between the energy, ε(p)=ℏω, and wave number,
p =ℏk , as it done in [45]. As follows from the Schrödinger equation (34) we have:
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e = + -R R
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p p p f p p
m (39)

Here pR = L / r 1 =mpvR is the momentum of the rotation. The function f(p-p R) is a form-factor
relating to the electron-positron pairs rotating about the center of their mass mp. The form-
factor describes dispersion of the momentum p around p R conditioned by fluctuations about
the ground state with the lowest energy. The form-factor is similar to the Gaussian curve
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Here σ is the variance of this form-factor. It is smaller or close to p R. The dispersion relation
(39) is shown in Fig. 8. The hump on the curve is due to the contribution of the rotating electron-
positron pair about the center of their masses. These rotating objects are named rotons [45].

Rotons are ubiquitous in vacuum because of a huge availability of pairs of particle-antiparticle.
The movement of the roton in the free space is described by the Schrödinger equation
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Rotons are ubiquitous in vacuum because of a huge availability of pairs of particle-antiparticle.
The movement of the roton in the free space is described by the Schrödinger equation
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The constant C determines an uncertain phase shift of the wave function, and most possible
this phase relates to the chemical potential of a boson (the electron-positron pair) [45]. We shall
not take into account contribution of this term in the dispersion diagram because of its
smallness. As follows from the above consideration of the Navier-Stokes equation, Eq. (41) can
be reduced to the Euler equation

[ ] ,w
r

¶ Ñ
+ ´ = -

¶

r r rR
R

p

P
m

v v
t (42)

that describes a flow of the inviscid incompressible fluid under the pressure field P. One can
see from here that the Coriolis force appears as a restoring force, forcing the displaced fluid
particles to move in circles. The Coriolis force is the generating force of waves called inertial
waves [45]. The Euler equation admits a stationary solution for uniform swirling flow under
the pressure gradient along z.

Figure 9. The formation of twisted vortex state [46]. The vortices have their propagating ends bent to the side wall of
the rotating cylinder. As they expand upwards into the vortex-free state, the ends of the vortex lines rotate around the
cylinder axis. The twist is nonuniform because boundary conditions allow it to unwind at the bottom solid wall. The
figure gives a snapshot (at time t =25Ω −1, where Ω is the angular velocity.) of a numerical simulation of 23 vortices
initially generated near the bottom end (t=0). Courtesy kindly by Erkki Thuneberg.

Physical Vacuum is a Special Superfluid Medium
http://dx.doi.org/10.5772/59040

363



Formation of the swirling flow, the twisted vortex state, has been studied in the superfluid
3He-B [46]. These observations give us a possibility to suppose the existence of such phenomena
in the physical vacuum. The twisted vortex states observed in the superfluid 3He-B are closely
related to the inertial waves in rotating classical fluids. The superfluid initially is at rest [46].
The vortices are nucleated at a bottom disk platform rotating with the angular velocity Ω about
axis z. As the platform rotates they propagate upward by creating the twisted vortex state
spontaneously, Fig. 9. The Coriolis forces take part in this twisting. The twisted vortices grow
upward along the cylinder axis [47].

Analogous experiment with nucleating vortices can be realized when the lower disk A rotates
in the vacuum, Fig. 10. In this case, the vortices are viewed as the dancing electron-positron
pairs on the first Bohr orbit. As the vortices grow upward the spontaneous twisted vortex states
arise. The latter by reaching upper fixed disk B can capture it into rotation.

Figure 10. Rotation of the superfluid fluid is not uniform but takes place via a lattice of quantized vortices, whose cores
(colored in yellow) are parallel to the axis of rotation [46, 47]. Green arrows are the vorticity ω. Small black arrows
indicate the circulation of the velocity vR around the cores. The vacuum is supported between two non-ferromagnetic
disks, A and B, fixed on center shafts, 1 and 2, of electric motors [48], see Fig. 11. Radiuses of the both disks are R=82.5
mm and distance between them can vary from 1 to 3 mm and more. The vortex bundle rotates rigidly with the disk A.
As soon as the vortex bundle reaches the top disk B it begins rotation as well.

Pr. V. Samohvalov has shown through the experiment [48], that the vortex bundle induced by
rotating the bottom non-ferromagnetic disk A leads to rotation of the upper fixed initially non-
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ferromagnetic disk B, Fig. 11. Both disks at room temperature have been placed in the container
with technical vacuum at 0.02 Torr, The utmost number of the vortices that may be placed on
the square of the disk A is Nmax = (2πR 2) / (2πr1

2)=2∙1018, where R=82.5 mm is the radius of the
disk and r 1 ≈5.29⋅10−11 m is the radius of the first Bohr orbit. Really, the number of the vortices
situated on the square, N, is considerably smaller. It can be evaluated by multiplying Nmax by
a factor δ. This factor is equal to the ratio of the geometric mean of the velocities
vR =ℏ / (r1 m)≈2.192⋅10 6 m/s and VD = RΩ to their arithmetic mean. Here Ω is an angular rate
of the disk A. So, we have

15
max max 6 10

×
= = » ×

+
R D D

R D R

V VN N N
V

v
v v

(43)

at the angular rate Ω=160 1/s [48] the disk velocity VD=13.2 m/s. Now we can evaluate the kinetic
energy of the vortex bundle induced by the rotating disk A. This kinetic energy is
E = N ⋅mpvR

2 / 2≈  0.026 J. This energy is sufficient for transfer of the moment of force to the disk
B. Measured in the experiment [48] the torque is about 0.01 N∙m. So, the disk B can be captured
by the twisted vortex.

Figure 11. Basic diagram (a) and general view of the device (b) for researching mass dynamics effects [48]: 1 and 2 are
shafts with mounted on them electric motors; 3 and 4 are steel plates with mounted on them electromagnetic brakes; 5
and 6 (the disks A and B, see Fig. 10) are disks rigidly fixed on flanges of the rotors of the electric motors. Courtesy
kindly by Vladimir Samokhvalov.

The formation of the growing twisted vortices can be confirmed with attraction of mod‐
ern methods of interference of light rays passing through the gap between the disks. Light
traveling along two paths through the space between the disks undergoes a phase shift
manifested in the interference pattern [29] as it  was shown in the famous experiment of
Aharonov and Bohm [49].
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5. Conclusion

The Schrödinger equation is deduced from two equations, the continuity equation and the
Navier-Stokes equation. At that, the latter contains slightly modified the gradient pressure
term, namely, ∇ P →ρM ∇ (P /ρM )=∇ P + P ∇ ln(ρM ). The extra term P ∇ ln(ρM ) describes
change of the pressure induced by change of the entropy ln(ρM ) per length. In this case, the
modified gradient pressure term can be reduced to the quantum potential through using the
Fick’s law. In the law we replace also the diffusion coefficient by the factor ℏ / 2m, where ℏ is
the reduced Planck constant and m is mass of the particle.

We have shown that a vortex arising in a fluid can exist infinitely long if the viscosity undergoes
periodic oscillations between positive and negative values. At that, the viscosity, in average
on time, stays equal to zero. It can mean that the fluid is superfluid. In our case, the superfluid
consists of pairs of particle-antiparticle representing the Bose-Einstein condensate.

As for the quantum reality, such a periodic regime can be interpreted as exchange of the energy
quanta of the vortex with the vacuum through the zero-point vacuum fluctuations. In reality,
these fluctuations are random, covering a wide range of frequencies from zero to infinity. Based
on this observation we have assumed that the fluctuations of the vacuum ground state can
support long-lived existence of vortex quantum objects. The core of such a vortex has nonzero
radius inside of which the velocity tends to zero. In the center of the vortex, the velocity
vanishes. The velocity reaches maximal values on boundary of the core, and then it decreases
to zero as the distance to the vortex goes to infinity.

The experimental observations of the Couder’s team [5, 11, 12] can have far-reaching ontolog‐
ical perspectives in regard of studying our universe. Really, we can imagine that our world is
represented by myriad of baryonic and lepton “droplets” bouncing on a super-surface of some
unknown dark matter. A layer that divides these “droplets”, i.e., particles, and the dark matter
is the superfluid vacuum medium. This medium, called also the ether [24], is populated by the
particles of matter (“droplets”), which exist in it and move through it [29, 50, 51]. The particle
traveling through this medium perturbs virtual particle-antiparticle pairs, which, in turn,
create both constructive and destructive interference at the forefront of the particle [30]. Thus,
the virtual pairs interfering each other provide an optimal, Bohmian, path for the particle.

Assume next, that the baryonic matter is similar, say, on “hydrophobic” fluid, whereas the
dark matter, say, is similar to “hydrophilic” fluid. Then the baryonic matter will diverge each
from other on cosmological scale owing to repulsive properties of the dark matter, like soap
spots diverge on the water surface. Observe that this phenomenon exhibits itself through
existence of the short-range repulsive gravitational force that maintains the incompatibility
between the dark matter and the baryonic matter [52, 53]. At that, the dark matter stays
invisible. One can imagine that the zero-point vacuum fluctuations are nothing as weak ripples
on a surface of the dark matter.

Selected Topics in Applications of Quantum Mechanics366



5. Conclusion

The Schrödinger equation is deduced from two equations, the continuity equation and the
Navier-Stokes equation. At that, the latter contains slightly modified the gradient pressure
term, namely, ∇ P →ρM ∇ (P /ρM )=∇ P + P ∇ ln(ρM ). The extra term P ∇ ln(ρM ) describes
change of the pressure induced by change of the entropy ln(ρM ) per length. In this case, the
modified gradient pressure term can be reduced to the quantum potential through using the
Fick’s law. In the law we replace also the diffusion coefficient by the factor ℏ / 2m, where ℏ is
the reduced Planck constant and m is mass of the particle.

We have shown that a vortex arising in a fluid can exist infinitely long if the viscosity undergoes
periodic oscillations between positive and negative values. At that, the viscosity, in average
on time, stays equal to zero. It can mean that the fluid is superfluid. In our case, the superfluid
consists of pairs of particle-antiparticle representing the Bose-Einstein condensate.

As for the quantum reality, such a periodic regime can be interpreted as exchange of the energy
quanta of the vortex with the vacuum through the zero-point vacuum fluctuations. In reality,
these fluctuations are random, covering a wide range of frequencies from zero to infinity. Based
on this observation we have assumed that the fluctuations of the vacuum ground state can
support long-lived existence of vortex quantum objects. The core of such a vortex has nonzero
radius inside of which the velocity tends to zero. In the center of the vortex, the velocity
vanishes. The velocity reaches maximal values on boundary of the core, and then it decreases
to zero as the distance to the vortex goes to infinity.

The experimental observations of the Couder’s team [5, 11, 12] can have far-reaching ontolog‐
ical perspectives in regard of studying our universe. Really, we can imagine that our world is
represented by myriad of baryonic and lepton “droplets” bouncing on a super-surface of some
unknown dark matter. A layer that divides these “droplets”, i.e., particles, and the dark matter
is the superfluid vacuum medium. This medium, called also the ether [24], is populated by the
particles of matter (“droplets”), which exist in it and move through it [29, 50, 51]. The particle
traveling through this medium perturbs virtual particle-antiparticle pairs, which, in turn,
create both constructive and destructive interference at the forefront of the particle [30]. Thus,
the virtual pairs interfering each other provide an optimal, Bohmian, path for the particle.

Assume next, that the baryonic matter is similar, say, on “hydrophobic” fluid, whereas the
dark matter, say, is similar to “hydrophilic” fluid. Then the baryonic matter will diverge each
from other on cosmological scale owing to repulsive properties of the dark matter, like soap
spots diverge on the water surface. Observe that this phenomenon exhibits itself through
existence of the short-range repulsive gravitational force that maintains the incompatibility
between the dark matter and the baryonic matter [52, 53]. At that, the dark matter stays
invisible. One can imagine that the zero-point vacuum fluctuations are nothing as weak ripples
on a surface of the dark matter.

Selected Topics in Applications of Quantum Mechanics366

Appendix A: Nelson’s derivation of the Schrödinger equation

Nelson proclaim that the medium through which a particle moves contains myriad sub-
particles that accomplish Brownian motions by colliding with each other chaotically. The
Brownian motions is described by the Wiener process with the diffusion coefficient

.
2

n =
h
m

(44)

Here m is mass of the particle and ℏ=h / 2π is the reduced Planck constant. Here we use ν with
the upper bar in order to avoid confusion with the kinematic viscosity adopted in hydrody‐
namics. As seen this motion has a quantum nature [24] in contrast to the macroscopic Brownian
motions where the diffusion coefficient has a view v̄ =kT / mβ −1; here k is Boltzmann constant,
T is a temperature, and β −1 is the relaxation time.

Two equations are main in the article [24]. The position x (t) of the Brownian particle, being
subjected either by external forces or by currents in the medium, can be written by two
equivalent equations:

( ) ( ( ), ) ( ),= +d t t t dt d tx b x w (45)

* *( ) ( ( ), ) ( )= +d t t t dt d tx b x w (46)

Here w(t) and w*(t) are the Wiener processes, both have equivalent properties. Variables b and
b* are vector-valued forward and backward functions on space-time, respectively. In fact, they
are the mean forward and mean backward measured quantities
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Here Et denotes the conditional expectation (average) given the state of the system at time t,
and 0+means that Δt  tends to 0 through positive values. Thus b(x(t), t) and b*(x(t), t) are again
stochastic variables [54, 55]. It is instructive to compare calculus (46) and (47) with classical
calculations of infinitesimal small increments
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One can see that these calculations are symmetrical with respect to the time arrow, whereas
the calculations (46) and (47) are not, in general (see below).

It should be noted that b(x(t), t) and b*(x(t), t) are not real velocities. The real current velocity
of the particle is calculated as

( )*
1( ) ( ( ), ) ( ( ), ) .
2

= +
r t t t t tb x b xv (50)

There is a one more velocity, which is represented via difference of b(x(t), t) and b*(x(t), t) :

( )*
1( ) ( ( ), ) ( ( ), ) .
2

= -
ru t t t t tb x b x (51)

According to Einstein's theory of Brownian motion, u→ (t) is the velocity acquired by a Brownian
particle, in equilibrium with respect to an external force, to balance the osmotic force [19]. For
this reason, this velocity is named the osmotic velocity. It can be expressed in the following
form

( ) ( )( ) ln( ( )) ,
( )

n r Ñ
= Ñ =

hr R tu t t
m R t (52)

where ρ(t) is the probability density of x(t) and R(t)=ρ(t)1/2 is the probability density amplitude.
The current velocity, in turn, is expressed through gradient of a scalar field S called the action

( ) = ( ).- Ñ
r ht S t

m
v (53)

The both equations, (44) and (45), introduced above are important for derivation of the
Schrödinger equation. The derivation of the equation is provided by the use of the wave
function presented in the polar form

{ }exp i ,Y = hR S (54)

by replacing the velocities v→ (t) and u→ (t) in the initial equations. It should be noted that Nelson
departs from two equations describing directed the forward and backward Brownian motions
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which are written down for real-valued functions. In order to come to the Schrödinger equation
he has used a complex-valued wave function exp{R+iS} instead of the generally accepted
Rexp{iS /ℏ}. Obviously, this discrepancy are eliminated by replacing exp{R}→R .

Observe that the wave function represented in the polar form (53) is used for getting equations
underlying the Bohmian mechanics [27]. These two equations are the continuity equation and
the Hamilton-Jacobi equation containing an extra term known as the Bohmian quantum
potential. The quantum potential has the following view:

( ) ( )
2 2

2 .
2 2 2 2
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= - = - = - - Ñ

r
h h h rRuR mQ u u
m R R

(55)

One can see that the quantum potential depends only on the osmotic velocity, which is
expressed through difference of the forward and backward averaged quantities (46) and (47).
These forward and backward quantities can be interpreted as uncompensated flows through
a “semipermeable membrane” which represents an instant dividing the past and the future.
Following to Licata and Fiscaletti, who have shown that the quantum potential has relation to
the Bell length indicating a non-local correlation [28], one can add that the non-local correlation
exists also between the past and the future. E. Nelson as one can see has considered a particle
motion through the ether populated by sub-particles experiencing accidental collisions with
each other. The Brownian motions of the sub-particles submits to the Wiener process with the
diffusion coefficient ν proportional to the Plank constant as shown in Eq. (43). The ether
behaves itself as a free-friction fluid.
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1. Introduction
In this chapter we review some aspects of the concept of the Fisher information measure in phase
space for two specific systems: the Landau Diamagnetism and the Rigid rotator. The indispensable
tool in this proposal is a quasi probability called Husimi distribution [1], which is frequently
employed to characterize the quantum and classical behavior [2] of systems. Also, it possesses
interesting applications in several areas of physics such as Quantum Mechanics, Quantum Optics,
Information Theory and Nanotechnology [3–10]. Its main properties are: 1) it is definite positive in
all phase space, 2) it possesses no correct marginal properties, 3) it permits to calculate the expectation
values of observables in quantum mechanics similarly to the classical case [11], and 4) it is a special
type of probability that simultaneously approximate location of position and momentum in phase space.
It is important to note that this quasi probability is constructed by definition as the expectation value
of the density operator in a basis of coherent states [12]. Details about the formulation of coherent
states and the obtaining of Husimi distribution from these can be found on our chapter that it can be
read in Ref. [13]. The main propose of this chapter is to present to the reader interesting problems in
physics, such as, the harmonics oscillator [5], the Landau diamagnetism model [8, 14] and, the rigid
rotator [7, 15], analyzed from a point of view of the information measures. In particular, we will put
emphasis in the Fisher Information measure and its construction starting from a well-defined set of
coherent states.

In our previous contribution published in Ref. [13] we research about a special semi-classical measure,
the Wehrl entropy, as an important application of the Husimi distribution. In the present study we
analyze some consequences of obtaining the Husimi distribution; for instance, the Fisher information
for fundamental problems in physics for which the coherent states formulation is well defined.

In physics, great attention has been paid to the Landau diamagnetism which consists in a particle
charged in a uniform magnetic field. For our purpose we will use a complete description of the Husimi
Distributionin three dimensions in order to study such system, so as it was shown in our previous
contributions (see Ref. [13], where we have discussed some limiting cases as high and low temperatures.
From the present analysis, when three dimensions are considered, naturally arises a lower temperature

©2012 Author(s), licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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bound, whereby it is not possible to work in all finite temperatures. Such discussion is explained with
details in Ref. [13].

The other system, that we take into account here, is the linear rigid rotator and its corresponding 3D
anisotropic version. We analyze phase space delocalization and obtain the concomitant semiclassical
Fisher information measure constructed by using Husimi Distributionconstructed from suitable basis of
coherent states.

In order to facilitate the understanding of this chapter to the reader, we give the following organization:
in section 2 we begin introducing the concepts and methodology that will employ in the rest of the
chapters. In section 3 we focus our attention on the Husimi distribution and the Fisher measure
for the Landau diamagnetism. In section 4 we study the delocalization into phase space, within a
semiclassical context by recourse to the Husimi distribution, for both cases of rigid rotators: linear and
3D−anisotropic instances. Finally, some conclusions and open problems are commented in section 5.

2. Previous concepts
This section provides reference material that we consider relevant to conveniently understand the
development of this chapter. These are i) the Husimi distribution, ii) Wehrl entropy, and iii) Fisher
information measure. In all cases, we refer to the model of the harmonic oscillator in a thermal state.

2.1. Husimi distribution and Wehrl entropy

From the standard statistical mechanics, the thermal density matrix can be represented by

ρ̂ = Z−1e−βĤ , (1)

where β = 1/kBT the inverse temperature T , and kB the Boltzmann constant [16], Ĥ is the Hamiltonian
of the system and Z = Tr(e−βĤ ) is the partition function.

In the current strategy, the expectation value of the density operator in a basis of coherent states is
related to the Husimi distribution as [1]

µ(z) = 〈z|ρ̂|z〉, (2)

where the set {|z〉} denotes the eigenstates of the annihilation operator â, i.e., â|z〉 = z|z〉 defined for
all z ∈ C [12] and they are the coherent states for the system. Therefore, the normalization of the
distribution is given by

∫ d2z
π

µ(z) = 1, (3)

where the integration is over the complex plane z and the element of integration is an area proportional
to phase space element given by d2z = dxdp/2h̄.

The set {En} stands for the spectrum of an arbitrary Hamiltonian Ĥ, where n is a positive integer. With
these elements the Husimi distribution takes the form
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µ(z) =
1
Z ∑

n
e−βEn |〈z|n〉|2, (4)

where the set {|n〉|} represents energy eigenstates with eigenvalues En [4, 5].

A direct application that is additionally a useful measure of localization in phase-space [17, 18] is the
Wehrl entropy, which is suitably defined as

W = −
∫ d2z

π
µ(z) lnµ(z). (5)

As a consequence of the uncertainty principle, Lieb [4] proved the inequality W ≥ 1 which was
previously conjectured by Wehrl [17].

For the Hamiltonian Ĥ = h̄ω[â†â+ 1/2] of the harmonic oscillator, it is obtained a basis {|n〉} and the
spectrum En = h̄ω(n+ 1/2), with n = 0,1, . . . from the complete orthonormal set of eigenstates and
eigenvectors, respectively. The algebra allows us to define the following elementary properties:

1. A set of Glauber coherent states is given by [19]

|z〉= e−|z|2/2
∞

∑
n=0

zn
√

n!
|n〉. (6)

2. The normalization,

〈n|n′〉= δn,n′ (7)

where δn,n′ is the Kronecker delta function.

3. The completeness property is contained in the relation

∞

∑
n=0

|n′〉〈n|= 1̂, (8)

where 1̂ represents the identity operator in the defined space of eigenvectors.

Now, a suitable application of the present theoretical characterization [4] comes from certain
calculations of the harmonic oscillator as the Husimi distribution

µHO(z) = (1− e−βh̄ω)e−(1−e−βh̄ω)|z|2 , (9)

and the Wehrl entropy

WHO = 1− ln(1− e−βh̄ω), (10)

which are respectively known and useful analytical expressions [4].
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2.2. Fisher information measure

A pertinent quantifier of information, which possess innumerable applications in several fields of
Physics, is the Fisher information measure [20]. The last years have witnessed a great deal of activity
revolving around physical applications of Fisher information measure [20, 21] providing tools to yield
most of the canonical Lagrangians of theoretical physics [20, 21] related properly to the Boltzmann
entropy [22, 23]. The Fisher information connected with translations of an observable x with the
consistent probability density ρ(x) is given by [24]

F =
∫

dxρ(x)
[

∂ lnρ(x)
∂x

]2
, (11)

and the Cramer–Rao inequality is given by [24]

∆x ≥ F −1 (12)

where ∆x is the variance for the stochastic variable x which is of the form [24]

∆x2 = 〈x2〉−〈x〉2 =
∫

dxρ(x)x2 −
(∫

dxρ(x)x
)2

. (13)

In particular, it is interesting to study its representation appealing to the semiclassical approach (see, for
example, Ref. [25] and references therein), whose main tool is a distribution function in phase space in
the basis of coherent states. Specially, in this proposal, we pay attention to a particular distribution, the
well-known Q−function or Husimi distribution.

An original, compact expression in phase space is advanced for the “semiclassical" Fisher information
measure, that can be easily derived from the Wehrl-methodology described in Refs. [5] and [6]. The
appearance for this measures reads

F =
1
4

∫ d2z
π

µ(z)
{

∂ lnµ(z)
∂|z|

}2
, (14)

which will be used in the following sections.

Inserting the µ−expression for the harmonic oscillator into Eq. (14) we find its anlytical form

FHO = 1− e−βh̄ω, (15)

leading to the following limits:

for T → 0 one has FHO = 1
for T → ∞ one has FHO = 0, (16)

as it should be expected.
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3. Landau Diamagnetism: Charged particle in a uniform magnetic field
Diamagnetism is a problem firstly appointed by Landau who showed the discreteness of energy levels
for a charged particle in a magnetic field [26]. By the observation of the diverse scenarios in the
framework provided by the Landau diamagnetism we can study some relevant physical properties [27–
29] as the role of the size of systems or the influence of boundaries, also the thermodynamic limit or
quasi-stationary states. The primary motivation even today for several specialists is to find a useful
measure to characterize theoretically every practical consequence of the system and its behavior.

In the past, Feldman and Kahn calculated the proper partition function for this system by appealing to
the concept of Glauber coherent states from a set of basis states [30]. This formulation uses classical
concepts as electron orbits, even though it contains all quantum effects [30]. This approach was
previously used to obtain measures as the Wehrl entropy [17, 18] and Fisher information [31] with
the purpose of studying the thermodynamics of the free spinless charged particle in a uniform magnetic
field [32], this is the Landau diamagnetism problem. As observed, in such contribution the formulation
is not completely consistent because it was necessary to normalize the Husimi distribution in order to
arrive to reliable expressions for semiclassical measures [9, 32, 33].

Certainly, because the relevant effects seem to come only from the transverse motion, several efforts
are made to describe this problem in two dimensions [9, 28, 29, 32–35]. Furthermore, the discovery of
the quantum Hall effect has aroused much interest in understanding the behavior of electrons moving in
a plane perpendicular to the magnetic field [35]. The confinement is possible at the interface typically
between a semiconductor and an insulator, where a quantum well that traps the particles is formed,
allowing their motion just in the direction of the interface plane at low energies, forbidding the motion
in any other directions.

Conversely, we discuss here this problem in three dimensions, the most complete formulation. However,
if the length of the cylindrical geometry of the system is large enough the results are close to those in two
dimensions. Despite this latter, it is suggested that the formulation in two dimensions is not sufficient
to explain the whole problem. As suggested before, electronic devices are based in interfaces. As a
consequence of this line of reasoning, a natural lower temperature bound is theoretically imposed, that
appears from the analysis in three dimensions.

3.1. The model of one charged particle in a magnetic field

We introduce the present application giving the essential ingredients of the well-known Landau model
for diamagnetism: a spinless charged particle in a magnetic field B. Consider the kinetic momentum

−→π = −→p +
q
c
−→
A , (17)

where mq is the mass of a particle of charge q, the vector −→p is the linear momentum subject to the
action of

−→
A , the vector potential.

If we follow the presentation of Feldman et al. [30]), the Hamiltonian reads [30]

H =
−→π ·−→π
2mq

, (18)
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and the magnetic field is
−→
B =

−→
∇ ×−→

A . The vector potential is chosen in the symmetric gauge as
−→
A = (−By/2,Bx/2,0), which corresponds to a uniform magnetic field along the z−direction.

By using the formulation of the step-ladder operators [30], one needs to define the step operators as
follows [30]

π̂± = p̂x ± ip̂y ±
ih̄

2�2
B

(x̂± iŷ), (19)

where the length

�B = (h̄c/qB)1/2 (20)

is the classical radius of the ground-state Landau orbit [30]. Motion along the z−axis is free [30]. For
the transverse motion, the Hamiltonian specializes to [30]

Ĥt =
π̂+π̂−
2mq

+
1
2

h̄Ω1̂, (21)

where an important quantity characterizes the problem, namely,

Ω = qB/mqc, (22)

the cyclotron frequency [36]. The set of eigenstates {|N,m〉} is characterized by two quantum numbers:
N related to the energy and m wuth the z− projection of the angular momentum. They are consequentely
eigenstates of both Ĥt , the Hamilronian, and L̂z, the angular momentum operator [30], thus

Ĥt |N,m〉=
(

N +
1
2

)

h̄Ω |N,m〉= EN |N,m〉 (23)

and

L̂z|N,m〉= mh̄|N,m〉. (24)

The eigenvalues of L̂z are not bounded by below, because m takes the values −∞, . . . ,−1,0,1, . . . ,N [30].
This fact agrees with the energies (N + 1/2)h̄Ω that are infinitely degenerate [36]. As seen below, for
estimation purposes, the physical relevance of phase-space localization is diminished by this fact. In
addition, Lz is not an independent constant of the motion [36].
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There exists a analogous formulation of an charged particle in a magnetic field by Kowalski that takes
into account the geometry of a circle [33] (and for a comparison with the Feldman formulation see
Ref. [9]), but at this point, we choose the Feldman formulation to work because the measure is easily
defined and the normalization condition and other semiclassical measures are well described.

3.2. Husimi distribution and Wehrl entropy

We will start our present endeavor defining the Hamiltonian Ĥ = Ĥt + Ĥl where Ĥt = h̄Ω(N̂ + 1/2)
to describe the transverse motion, being Ω the cyclotron frequency as defined by the Eq. (22) and N̂
the number operator; the Hamiltonian Ĥl = p̂2

z /2mq to represent the longitudinal one-dimensional free
motion, for a particle of mass mq and charge q in a magnetic field B. A possible way to define the
Husimi function η is given by

η(x, px;y, py; pz) = 〈α,ξ,kz|ρ̂|α,ξ,kz〉, (25)

where ρ̂ is the thermal density operator and the set {|α,ξ,kz〉} stands for the coherent states for
the description in three dimensions. By the direct product |α,ξ,kz〉 ≡ |α,ξ〉

⊗
|kz〉, the set {|α,ξ〉}

corresponds to the coherent states of the transverse motion and {|kz〉} to the longitudinal motion.
Therefore, the thermal density operator is given by

ρ̂ =
1
Z

e−β(Ĥl+Ĥt ), (26)

where β = 1/kBT , T is the temperature and kB the Boltzmann constant. In addition, Z is the partition
function for motion in three dimensions of the particle. Now, if Z can be separated by using Zt (the
contribution for the transverse motion) and Zl (the contribution for the one-dimensional free motion),
then the partition function could be written as Z = ZlZt . Thus, the Husimi function [1] is expressed as

η =
e−βp2

z /2mq

ZlZt
∑
n,m

e−βh̄Ω(n+1/2)|〈n,m|α,ξ〉|2. (27)

where

Zl = (L/h)(2πmqkBT )1/2 and (28)

Zt = AmqΩ/(4πh̄sinh(βh̄Ω/2)), (29)

being L the length of the cylinder, A = πR2 the area for cylindrical geometry [30]. In addition, the
matrix element |〈n,m|α,ξ〉|2 describes the probability of finding the particle in the coherent state |α,ξ〉.
Its expression was defined previously [37].

The distribution η is written as:

η = ηl(pz)ηt(x, px;y, py), (30)
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where η has been separated as a function of two distributions, namely, ηl = ηl(pz) and ηt =
ηt(x, px;y, py). The explicit form of the Hamiltonian Ĥl makes to miss the dependence on the variable
z. Therefore, summing in Eq. (27) we solve

ηl =
e−βp2

z /2mq

Zl
, (31)

ηt =
2πh̄

AmqΩ
(1− e−βh̄Ω)e−(1−e−βh̄Ω)|α|2/2�2

B , (32)

where the length �B is defined by the Eq. (20). From expressions (31) and (32), we emphasize again
that ηl(pz) describes the free motion of the particle in the magnetic field direction and ηt(x, px;y, py)
the Landau levels due to the circular motion in a transverse plane to the magnetic field, similar to the
harmonic oscillator of Eq. (9) since |z|2 → |α|2/2�2

B. Consequently Eqs. (30), (31) and (32) together
contain the complete description of the system. We noticed both distributions are naturally normalized
in a standard form, i.e.,

∫ dzdpz

h
ηl(pz) = 1, (33)

and
∫ d2αd2ξ

4π2�4
B

ηt(x, px;y, py) = 1. (34)

In consequence, both Eqs. (31) and (32), under conditions (33) and (34), allow us to get a close form
for the Wehrl entropy. Furthermore, using one of the most basic property of the entropy, the additivity,
we can state Wtotal =Wl +Wt . Hence,

Wl = −
∫ dzdpz

h
ηl(pz) lnηl(pz), (35)

Wt = −
∫ d2αd2ξ

4π2�4
B

ηt(x,px;y,py) lnηt(x,px;y,py), (36)

again, the subindexes t and l represent respectively the transverse and longitudinal motions.

As a consequence of solving the integrals (35) and (36) we can identify the two entropies, they are

Wl =
1
2
+ ln

(

L
λ

)

, (37)

Wt = 1− ln
(

1− e−βh̄Ω

)

+ ln (g) , (38)

where λ = h/(2πmqkBT )1/2 represents the mean thermal length of the particle and g = A/2π�2
B the

degeneracy of a Landau level [38].
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3.3. Semiclassical behavior

In fact, the classical entropy for a free particle in one dimension and Eq. (37) are coincident.
Furthermore, the Eq. (38) is the Wehrl entropy for the transverse motion and possesses a form close to
the harmonic oscillator entropy given by the Eq. (10), with the exception of a term associated with the
degeneracy. Some properties of entropies that can be directly derived from Eqs. (37) and (38) are:

1. As commented before, Wl and the classical entropy for the free motion in one dimension coincide
between them. Furthermore, this part of the entropy has to be nonnegative at all temperatures, this
is Wl ≥ 0. This condition imposes a minimum to the temperature, given by

T0 =
h2

2πmqekBL2 , (39)

where e = 2.718281828. Due to this basic property of Wl , the system is forced to take high values of
temperature, being T > T0, where the behavior of the system is classical. Equivalently, it is possible
to assure that, if T /T0 ≥ 1, the length of a thermal wave λ lower than the average of the spacing
among particles and quantum considerations are not relevant [39]. In addition, T0 does not depend
on external or internal physical parameters related to the system, as the transverse area, external
magnetic field, charge of the particle, etc, practically depends only on the size of the system. If
the system is large enough, the minimum temperature is low. However, modern electronic systems
possess junctions where L can be considered almost zero. Thus, minimum temperature required to
make applicable the present description is enough high [40].

2. The Wehrl entropy that is associated with transverse motion satisfies Wt ≥ 1 + ln(g) for all
temperatures of the system, which is very nearly the Lieb condition in one dimension [41] with an
additional term given by the logarithm of g, the degeneracy. The transverse motion is approximately
bi-dimensional, but the Landau approach reduces the quantum motion of the particle in a magnetic
field to a degenerate spectrum in one dimension essentially recovering the physics of the missing
dimension. Therefore, the discussion about the behavior of the Wehrl entropy in light of the Lieb
condition does not increase any applicability of the present treatment because the latter is always
satisfied. The main problem that appears from the emphasis on the transverse motion is the restricted
vision that is obtained of the behavior of the system. [9, 30, 32, 33], which represents the main
difference with other contributions that discuss this topic. The combination of reasoning including
both motions has sense when the imposition over the temperature is satisfied. For values of the
temperature lower than T0, the behavior is essentially anomalous, thus this proposal is not applicable.

Additionally, the total entropy is expressed simply as follows

Wtotal =
3
2
− ln(1− e−βh̄Ω)+ ln (g)+ ln

(

L
λ

)

. (40)

Now, we can discuss some approximate and limiting cases.

In first order of approximation, for kBT � h̄Ω, we have ln(g/(1− e−βh̄Ω)) ≈ ln(AT /T0L2). If we
write the thermal wave length in terms of the temperature T0, as λ = L(eT0/T )1/2 and considering that
V = AL , the entropy (40) is rephrased as follows
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W (1)
total =

3
2
+ ln

(

V
λ3

)

. (41)

This is a particular expression for the entropy of a free particle in three dimensions related to the motion
of a charged particle into a region of the magnetic field making mention of some geometrical properties
of the system.

In second order of approximation, considering the special condition A ∼L2, Wehrl entropy is expressed
as follows

W (2)
total ≈W (1)

total +
T0

T
g. (42)

As explained before, the Wehrl entropy takes values that are permitted by the Lieb condition, namely,
W ≥ 1. According to Eq. (42) the slope decreases as temperature increases. This fact also illustrates
why the disorder increases as the magnetic field increases too.

The lower bound of temperature is related to values of T greater than T0, because this approach does
not consider any temperature less than T0. In addition to this, the behavior of the total Wehrl entropy is
reduced to the logarithm of the magnetic field. In order to see what occurs in the limiting case of the
lowest temperature, according to Eq. (39), we take systems with L → ∞; thus the transverse entropy of
Eq. (38) is rewritten as follows

W T→0+
t = 1+ ln (g) . (43)

As aforementioned, the Wehrl entropy is similar to the entropy of the harmonic oscillator and the lowest
temperature comes being greater than the bound temperature, thus W ≥ 1 [41] as it was conjectured
by Wehrl and shown by Lieb. From this condition, it must arrive to the following inequality for the
magnetic field

g ≥ 1, (44)

where g = qAB/hc also accounts for the ratio between the flux of the magnetic field AB and the
quantum of the magnetic flux given by hc/q = 4.14×10−7[gauss cm2] [14]. Then the inequality (44)
adopts the form

B ≥ 1
A

hc
q

= B0. (45)

Moreover, the magnetic field B0 = hc/Aq becomes to take a bound limiting value representing a
minimum value for the external magnetic field. If A → ∞, we can study what occurs to the system
when the magnetic field close to zero.

Now, we add two comments about the quantum description of particles in magnetic field close to
limiting values of temperatures and magnetic fields, respectively:
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1. The quantum Hall effect is observed in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields and emerges from the Landau quantization [42, 43] which
corresponds to a quantum version of the Hall effect [35]. The degeneracy is given by [14]

φ = νφ0, (46)

where φ0 = hc/q is the minimum quantity (or quantum) of the magnetic flux. The factor ν takes
integer values as ν = 1, 2, 3, . . . and it is related to the “filling factor" and simply with the conductivity
quantization as σ = νq2/h. The subsequent discovery of the fractional quantum Hall effect [34]
expand the values ν to rational fractions as ν = 1/3, 1/5, 5/2, 12/5, . . . . Thus the fractional quantum
Hall effect relies on other phenomena associated with interactions. In any case, the degeneracy is ν
greater than 1 due to the inequality (44), as before, the transverse entropy always satisfies the Lieb
bound for all temperatures and large enough systems, obtaining an infinite family of Wehrl entropies

Wt = 1− ln(1− eβh̄Ω)+ lnν. (47)

The limiting value of ν provides a good descriptor for the integer quantum Hall effect. Conversely,
for the fractional values of ν less than 1 are left out the present approach.

2. The Haas-van Alphen effect is other phenomenon that we can discuss. It is observed at low enough
values of temperatures, describing oscillations in the magnetization, because the particles tend to
occupy the lowest energy states. In the present description it is manifest for finite values of A and B
lower than B0. Whereas if the value of the magnetic field decreases a less number of particles can be
in the lowest state due to degeneracy is directly proportional to B [38]. Then, the transverse Wehrl
entropy Wt is well defined for values of the magnetic field over B0, this is B/B0 ≥ 1 and/or g → 1+.

3.4. Fisher Information Measure versus degeneracy

In the present subsection we propose a compact expression for the transverse Fisher information
measure, taking into account a special way formerly developed in Ref. [6], which is given by

Ft =
∫ d2αd2ξ

4π2�4
H

ηt(α)
(

∂ lnηt(α)
∂α

)2
. (48)

After introducing the known expression for ηt , we arrive to

Ft =
2
�2

H

(1− e−βh̄Ω). (49)

Fisher measure Ft has space dimension (L)−2 and quantifies the ability for estimating the parameter α
[44]. This parameter corresponds to the radio of a circular orbit of coherent states. By combining Eqs.
(49) and (46) with the definition of �H we obtain

Ft =
4πν
A

(1− e−βh̄Ω), (50)
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which represents the linear dependence of the measure Ft with the magnetic field through the constant
�2

H at low temperature.

The inverse exponential dependence on the temperature, of the Fisher information, is clear from Eq.
(50). Further, the initial value directly depends on the factor ν.

Now, to complete the description of the movement, we consider the Fisher information measure for the
longitudinal motion, this is

Fl =
∫ dzd pz

h
ηl(pz)

(

∂ lnηl(pz)

∂pz

)2
, (51)

where pz is the variable that we contain in the present discussion, which was previously ignored [32],
making a great difference when the results are compared. The function ηl is included into the above
equation to get

Fl =
β
m

. (52)

As seen before, the Fisher measure in one dimension coincides with the classical one for the free
particle [45]. As expected, the total Fisher measure is constructed multiplying Eqs. (50) and (52).

3.5. Additional appointments and consequences

The Wehrl entropy, which we obtain here, depends on multiple parameters, for instance, the degeneracy
g, and the ratio between the cylinder and thermal lengths, i.e., L and λ. The combination of these
parameters can effectively give some interesting results. Therefore, in a especial perspective we can see
that the harmonic oscillator is behaved as a particular case of the charged particle in a magnetic field.
Thus, we can consider, for example, the following relation among parameters:

g =
λ
L

exp
(

1
2

)

, (53)

which leads the Wehrl entropy from the Landau diamagnetism to the one-dimensional harmonic
oscillator (15). This is a nontrivial approach because the nature of problems are radically different.
For instance, the harmonic oscillator, that we use here, is a one-dimensional system, but the Landau
diamagnetism is three-dimensional. Consequently, phase spaces are not coincident and measures are
not the same.

Besides, we know g ≥ 1. But, if we consider the minimum value g = 1, we can obtain the bound value
of the temperature T0, given by Eq. (39), above this value, the present approach is valid. Afterward,
we obtain a relationship between both lengths involved into the problem, this is a bound value for the
length of the cylinder, L ≥ λ/e. Thus, for values where this condition is violated, this approach is not
valid.

The comparison between the Fisher information measures, for both cited problems, is also possible.
Hence, in the same previous line we can propose a comparison of the Fisher information measures,
considering measures dimensionally compatible. Originally, the classical Fisher information (11)
accounts the localization of the corresponding probability density ρ(x), which is approached by
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Cramer-Rao inequality (12), where ∆x is the variance for the stochastic variable x. However, the
variation of the definition (11) takes into account the localization, not in the variable x or any other
coordinate, but the localization into phase space. This is well defined for the transverse motion.
Moreover, the longitudinal motion is classical, not quantized, and any coherent state formulation is
proposed. The quantum counterpart can be defined as a problem of continuous spectrum [46], and
a suitable formulation of coherent states is still unknown; for the time, this continues being an open
problem. Thus, the classical formulation is used and we have decided to advance evaluating the classical
distribution for the longitudinal motion.

In addition, with the purpose of describing the complete motion, we consider now the Fisher information
measure for the movement, this is

F ′ =
λ2

�2
H

(1− e−βh̄Ω). (54)

where F ′ is defined as F ′ = h2It Il/4π in order to compare the trend of this Fisher measure with
corresponding one of the harmonic oscillator. These cases are comparable with the harmonic oscillator
only if λ2 = �2

H and are depicted with red-solid-line in Fig. 1.

4. Description of the molecular rotation: Rigid rotator
There are few physical systems whose spectrum is analytically known, aside from the previous one
we have the anisotropic rigid rotator, which is a system of a single particle that can rotate in several
ways. Thermodynamic properties can be analytically described [47]. It is expected that this treatment
can characterize important features of molecular systems [48] to apply such concepts to several aspects
related to materials [49].

4.1. Linear rigid rotator

We begin exploring the linear rigid rotator based on the excellent discussion made in Ref. [50] about
the coherent states for angular momenta. The Hamiltonian of this simple system is [16]

Ĥ =
L̂2

2Ixy
, (55)

where the operator L̂2 is associated with the angular momentum and the parameter Ixy is the
corresponding inertia momentum. The set {|IK〉} is the set of eigenstates of the Hamiltonian, where we
can verify the following relations

L̂2|IK〉 = I(I + 1)h̄2|IK〉
L̂z|IK〉 = Kh̄|IK〉, (56)

with I = 0,1,2 . . . , for −I ≤ K ≤ I. Additionally, the energy spectrum is given by eigenstates of the
operator H

εI =
I(I + 1)h̄2

2Ixy
. (57)
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A suitable construction of coherent states is found in Ref. [51, 52] for the lineal rigid rotator, using
Schwinger oscillator model of angular momentum, in the fashion

|IK〉=
(â†

+)
I+K(â†

−)
I−K

√

(I +K)!(I −K)!
|0〉, (58)

where â+, â− are the corresponding creation and annihilation operators, respectively, and they show
the following basic properties

1. The vacuum state

|0〉 ≡ |0,0〉

.

2. Orthogonality is satisfied by

〈I
′
K

′
|IK〉= δI′ ,IδK′ ,K ,

3. The completeness property is contained in the relation

∞

∑
I=0

I

∑
K=−I

|IK〉〈IK|= 1̂.

Due to we are interested in two degrees of freedom, the resulting coherent states come from the tensor
product of |z1〉 and |z2〉 [50, 53], where

|z1z2〉= |z1〉⊗ |z2〉, (59)

and

â+|z1z2〉= z1|z1z2〉, (60)

â−|z1z2〉= z2|z1z2〉. (61)

Therefore, |z1z2〉 is the coherent state written [50] as

|z1z2〉= e−
|z|2

2 ez1â†
+ez2â†

− |0〉, (62)

with

|z1〉 = e−
|z1 |2

2 ez1â†
+ |0〉, (63)

|z2〉 = e−
|z2 |2

2 ez2â†
− |0〉. (64)
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We need to introduce the suitable notation

|z|2 = |z1|2 + |z2|2. (65)

Using Eqs. (58) and (62) we easily calculate |z1z2〉 and, after a bit of algebra, find

|z1z2〉= e−
|z|2

2 ∑
n+ ,n−

zn+
1√
n+!

zn−
2√
n−!

|IK〉, (66)

where n+ = I +K and n− = I −K. Thus, the probability of obtaining the state |IK〉 in the coherent
state |z1z2〉 is of the form

|〈IK|z1z2〉|2 = e−|z|2 |z1|2n+

n+!
|z2|2n−

n−!
. (67)

The present coherent states satisfy resolution of unity

∫ d2z1

π
d2z2

π
|z1z2〉〈z1z2|= 1. (68)

Furthermore, z1 and z2 are continuous variables.

The procedure developed by Anderson et al. [4] is easily followed and used to assess the Husimi
distribution [1]. In our approach this is defined, from Eq. (4), as

µ(z1,z2) = 〈z1,z2|ρ̂|z1,z2〉, (69)

where the density operator is

ρ̂ = Z−1
2D exp (−βĤ). (70)

The concomitant rotational partition function Z2D is given in Ref. [16]

Z2D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T , (71)

with Θ = h̄2/(2IxykB). We emphasize that in the present context the performing of the sum Tr ≡
∑∞

I=0 ∑I
K=−I corresponds to the “operation trace" . Using now the completeness property into Eq. (69)

and theEq. (67), we fobtain the Husimi distribution in the form

µ(z1,z2) = e−|z|2 ∑∞
I=0

|z|4I

(2I)! e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)e−I(I+1) Θ

T

. (72)
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It is easy to show that this distribution is normalized to unity

∫ d2z1

π
d2z2

π
µ(z1,z2) = 1, (73)

where z1 and z2 are given by Eqs. (60), (61), and (65). We must employ the binomial expression
(|z1|2 + |z2|2)4I and then integrate over the whole complex plane in two dimensions to verify the
normalization condition. The differential element of area in the z1(z2) plane is d2z1 = dxdpx/2h̄
(d2z2 = dydpy/2h̄) [19]. Moreover, we have the phase-space relationships

|z1|2 =
1
4

(

x2

σ2
x
+

p2
x

σ2
px

)

, (74)

|z2|2 =
1
4

(

y2

σ2
y
+

p2
y

σ2
py

)

, (75)

where σx ≡ σy =
√

h̄/2mω and σpx ≡ σpy =
√

mωh̄/2.

The profile of the Husimi function is similar to that of a Gaussian distribution.

As before, a semiclassical measure of localization is the Wehrl entropy [17], and the Fisher [5] as well.
For the present model in two dimensions, the Wehrl entropy reads

W = −
∫ d2z1

π
d2z2

π
µ(z1,z2) lnµ(z1,z2), (76)

where µ(z1,z2) is given by Eq. (72).

4.1.1. Fisher information measure

The Fisher measure [5, 20, 21] regards as a semiclassical counterpart of Wehrl entropy [5]. Now,
extending the ideas developed in Ref. [5] for the case of the harmonic oscillator in one dimension to the
present case in two dimensions, we can define the shift invariant Fisher measure in the fashion

F2D =
1
4

∫ d2z1

π
d2z2

π
µ(z1,z2)

(

∂ lnµ(z1,z2)

∂|z|

)2
. (77)

From Eq. (72) it is easy to prove that

η(z1,z2) =
1
2

∂ lnµ(z1,z2)

∂|z|
=

∑∞
I=0

[

|z|4I−1

(2I−1)! −
|z|4I+1

(2I)!

]

e−I(I+1)Θ/T

∑∞
I=0

|z|4I

(2I)! e−I(I+1)Θ/T
. (78)
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Therefore, the corresponding Fisher measure acquires the simpler appearance

F2D =
∫ d2z1

π
d2z2

π
µ(z1,z2) η(z1,z2)

2, (79)

i.e.,

F2D ≡ 〈η(z1,z2)
2〉, (80)

where with the notation

〈G〉=
∫ d2z1

π
d2z2

π
µ(z)G , (81)

we refer to the semi-classical expectation value of G . In Fig. 1 we plot the Fisher information and the
Wehrl entropy as a function of the temperature (black-dashed-line), which we compare with the same
measures for the transverse Landau diamagnetism (blue-solid-line). At low temperatures, the Fisher
information measure describes the inverse-delocalization and takes its maximum value when the Wehrl
entropy is minimum. This behavior is reversed for high temperatures. Every curve can be compared
with the respective counterpart shown for the harmonic oscillator in one dimension (red-solid-line).
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Figure 1. Trends of Fisher Information and Wehrl entropy for the rotator (black-dashed-line) in two dimensions is compared
with the transverse Landau diamagnetism (blue-solid-line), the horizontal axis is the normalized temperature τ = kT (2Ixy)/h̄2

and τ = kT /h̄Ω, respectively. Additionally, we show a case where the Landau diamagnetism dimensionally coincides with the
one-dimensional harmonic oscillator (red-solid-line). The Wehrl entropy starts in W=1. If the normalized temperature increases, the
Fisher information decreases while Wehrl entropy increases.

4.2. Rigid rotator in three dimensions

In the present section we consider a more general problem, the model of the rigid rotator in three
dimensions, whose Hamiltonian writes [54]

Ĥ =
L̂2

x
2Ix

+
L̂2

y

2Iy
+

L̂2
z

2Iz
, (82)
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where the parameters Ix, Iy, and Iz are the inertia momenta. The set {|IMK〉} corresponds to a complete
set of eigenvectors of the operator Ĥ. The following relations are additionally applied

L̂2|IMK〉 = I(I + 1)h̄2|IMK〉
L̂z|IMK〉 = Kh̄|IMK〉 (83)

Ĵz|IMK〉 = Mh̄|IMK〉,

with −I ≤ K ≤ I and −I ≤ M ≤ I, where I = 0, . . . ,∞,. The elements of set {|IMK〉} satisfy
orthogonality and completeness property [54]

〈I
′
M

′
K

′
|IMK〉= δI′ ,IδM′ ,MδK′ ,K (84)

∞

∑
I=0

I

∑
M=−I

I

∑
K=−I

|IMK〉〈IMK|= 1̂. (85)

If we take L̂2 = L̂2
x + L̂2

y + L̂2
z and assume axial symmetry, i.e., Ixy ≡ Ix = Iy, we can recast the

Hamiltonian as

Ĥ =
1

2Ixy

[

L̂2 +

(

Ixy

Iz
−1

)

L̂2
z

]

, (86)

where the operator L̂z represents the projection on the rotation axis z of the L̂2, which is the angular
momentum operator. The concomitant spectrum of energy becomes

εI,K =
h̄2

2Ixy

[

I(I + 1)+
(

Ixy

Iz
−1

)

K2
]

, (87)

where the number I is integer and non-negative and it stands for the eigenvalue of the operator L̂2, the
angular momentum. The range of the other quantum number −I ≤ m ≤ I represents the projections on
the intrinsic rotation axis of the rotator. Every state has a degeneracy (2I+1). The inertia momenta are
quantified by the parameters Ix = Iy ≡ Ixy and Iz. The ratio Ixy/Iz characterizes different “geometrical"
issues. For instance, some typical values of Ixy/Iz are 1, 1/2 and ∞, which correspond to the spherical,
the extremely oblate and prolate cases, respectively.

4.2.1. Construction of coherent states

Again, we cite the work of Morales et al. where they construct a suitable set of coherent states for the
rigid rotator in Ref. [54] and kindly discuss their mathematical foundations. First, they start introducing
the auxiliary quantity

XI,M,K =
√

I!(I +M)!(I −M)!(I +K)!(I −K)! (88)
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to obtain [54]

|z1z2z3〉= e−
|u|2

2 ∑
IMK

[(2I)!]2z(I+M)
1 zI

2z(I+K)
3

XI,M,K
|IMK〉, (89)

where Morales et al. introduced the following supplementary variable

|u|2 = |z2|2(1+ |z1|2)2(1+ |z3|2)2. (90)

These coherent states comply at least two requirements: continuity of labeling and resolution of unity.
In relation to this latter property, we add

∫
dΓ|z1z2z3〉〈z1z2z3|= 1, (91)

where the measure of integration dΓ is given by [54]

dΓ = dτ
{

4[(1+ |z1|2)(1+ |z3|2)]4|z2|4 −8[(1+ |z1|2)(1+ |z3|2)]2|z2|2 + 1
}

(92)

with

dτ =
d2z1

π
d2z2

π
d2z3

π
. (93)

In accordance with this requirement on coherent states, we can assert that the present formulation satisfy
the weaker version, because the measure is non-positive definite [54].

4.2.2. Husimi function, Wehrl entropy

In order to get a valid expression for the Husimi distribution and the Wehrl entropy, a proper formulation
of coherent states is essential. Using now Eq. (89) we find

|〈IMK|z1z2z3〉|2 =
e−|u|2

X2
I,M,K

[(2I)!]2|z1|2(I+M)|z2|2I |z3|2(I+K). (94)

Therefore, the rotational partition function is given by

Z3D =
∞

∑
I=0

I

∑
K=−I

I

∑
M=−I

e−βεI,K , (95)
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i.e.,

Z3D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T

I

∑
K=−I

e
−
(

Ixy
Iz
−1

)

K2 Θ

T . (96)

We see that Z2D is recovered from Z3D for the limiting case defined as the extremely prolate. The
Husimi distribution yields

µ(z1,z2,z3) =
e−|u|2

Z3D

∞

∑
I=0

(2I)!
I!

|v|2I e−I(I+1) Θ

T ×g(I), (97)

where

g(I) =
I

∑
K=−I

|z3|2(I+K)

(I +K)!(I −K)!
e
−
(

Ixy
Iz
−1

)

K2 Θ

T , (98)

with

|v|2 = (1+ |z1|2)2|z2|2, (99)

|u|2 = |v|2(1+ |z3|2)2. (100)

Other relevant property that it is easily verified for µ(z1,z2,z3) is normalization in the fashion

∫
dΓµ(z1,z2,z3) = 1. (101)

Now, we obtain the Wehrl entropy in the form

W =
∫

dΓµ(z1,z2,z3) lnµ(z1,z2,z3). (102)

The spherical rotator, that corresponds to another special case, we explicitly obtain

µ(z1,z2,z3) = e−|u|2 ∑∞
I=0

|u|2I

I! e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)2 e−I(I+1) Θ

T

. (103)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.

In order to emphasize some special cases associated to possible applications we consider several
possibilities.

1. The spherical rotator Ixy = Ix = Iy = Iz, which corresponds to Ixy/Iz = 1 (e.g. CH4).

2. The oblate rotator Ixy = Ix = Iy < Iz, being 1/2 ≤ Ixy/Iz < 1 (e.g. C6H6).

3. The prolate rotator Ixy = Ix = Iy > Iz, thus Ixy/Iz > 1 (e.g. PCl5).

4. The extremely prolate rotator is equivalent to the linear case (all diatomic molecules, Iz = 0, this is
Ixy/Iz → ∞ (e.g. CO2, C2H2).

Selected Topics in Applications of Quantum Mechanics394



20 ime knjige

i.e.,

Z3D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T

I

∑
K=−I

e
−
(

Ixy
Iz
−1

)

K2 Θ

T . (96)

We see that Z2D is recovered from Z3D for the limiting case defined as the extremely prolate. The
Husimi distribution yields

µ(z1,z2,z3) =
e−|u|2

Z3D

∞

∑
I=0

(2I)!
I!

|v|2I e−I(I+1) Θ

T ×g(I), (97)

where

g(I) =
I

∑
K=−I

|z3|2(I+K)

(I +K)!(I −K)!
e
−
(

Ixy
Iz
−1

)

K2 Θ

T , (98)

with

|v|2 = (1+ |z1|2)2|z2|2, (99)

|u|2 = |v|2(1+ |z3|2)2. (100)

Other relevant property that it is easily verified for µ(z1,z2,z3) is normalization in the fashion

∫
dΓµ(z1,z2,z3) = 1. (101)

Now, we obtain the Wehrl entropy in the form

W =
∫

dΓµ(z1,z2,z3) lnµ(z1,z2,z3). (102)

The spherical rotator, that corresponds to another special case, we explicitly obtain

µ(z1,z2,z3) = e−|u|2 ∑∞
I=0

|u|2I

I! e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)2 e−I(I+1) Θ

T

. (103)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.

In order to emphasize some special cases associated to possible applications we consider several
possibilities.

1. The spherical rotator Ixy = Ix = Iy = Iz, which corresponds to Ixy/Iz = 1 (e.g. CH4).

2. The oblate rotator Ixy = Ix = Iy < Iz, being 1/2 ≤ Ixy/Iz < 1 (e.g. C6H6).

3. The prolate rotator Ixy = Ix = Iy > Iz, thus Ixy/Iz > 1 (e.g. PCl5).

4. The extremely prolate rotator is equivalent to the linear case (all diatomic molecules, Iz = 0, this is
Ixy/Iz → ∞ (e.g. CO2, C2H2).

Selected Topics in Applications of Quantum Mechanics394 Husimi Distribution and the Fisher Information 21
10.5772/59126

4.2.3. Fisher information measure

In this circumstance we define the shift invariant Fisher measure in 3D−dimensions as

F3D =
1
4

∫
dΓµ(z1,z2,z3)

(

∂ lnµ(z1,z2,z3)

∂|u|

)2
. (104)

Thus, from Eq. (97) we get

ϕ(z1,z2) =
1
2

∂ lnµ(z1,z2)

∂|u|
=

∑∞
I=0

[

|u|2I−1

(I−1)! −
|u|2I+1

(I)!

]

e−I(I+1)Θ/T

∑∞
I=0

|u|2I

(I)! e−I(I+1)Θ/T
, (105)

and, the corresponding Fisher measure can be expressed as

F3D =
∫

dΓµ(z1,z2) ϕ(z1,z2,z3)
2 = 〈ϕ(z1,z2,z3)

2〉. (106)

5. Final remarks
In this chapter, we have described some elements to motivate possible and future applications in
condensed matter and information theory. Our fundamental discussion is devoted to two interesting
systems, those are: the Landau diamagnetism and the rigid rotator in three dimensions. We choose
these systems because the quantum mechanics is analytically solved. Specifically, the spectrum and a
suitable formulation of coherent states are known without approximations.

In general, quantum distributions as the Husimi distribution, have long been seen as powerful tools
for studying the quantum-classical correspondence and semi-classical aspects of quantum mechanics.
Then, a crucial starting point in the present strategy, to evaluate some theoretical measures, is to get
the Husimi distribution. This is made evoking a convenient set of coherent states in every system.
As introduced by Gazeau and Klauder in the context of the harmonic oscillator, we use the same
formal perspective of general requirements for formulations of coherent states that we use in the current
contribution. Additionally, we have included some mathematical and practical details of the the present
formalisms in order to make it instructive in courses of quantum mechanics (for graduates) and easy to
apply to specific calculations of theoretical measures.

The present derivation of Husimi distributions is based on the evaluation of the mean value of the density
operator in the basis of a single-particle coherent state. Then, after defining the Husimi distribution we
are ready to make a possible semiclassical description evaluating (i) the semiclassical Wehrl entropy
and (ii) the phase-space location via measures as Fisher information.

Furthermore, we evaluate the probability of observing a quantum state in a coherent state, by projecting
the quantum states over the coherent states, as a function of a variable related to the coherent states. We
see that the localization of probability and correspondingly the Husimi distribution in the phase space
decreases as temperature increases.

As known, while the coherent states are independent-particle states, the Husimi function
takes into account collective and environmental effects being necessary many wave packets of
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independent-particle states to represent them. Furthermore, the thermodynamics of particles in systems
does not depend on any coherent states formulation.

Finally, we remark, all results presented here were kindly obtained in an analytical fashion. We show
some instances where the Landau diamagnetism is equivalent to the harmonic oscillator and, in the other
example, where the linear rigid rotator is reobtained as a particular instance of the formulation in three
dimensions. Some indications given in the present work lead to the conclusion that Fisher measure is a
better indicator of the delocalization than Wehrl entropy.

We acknowledge partial financial support by FONDECYT 1110827 and CONICYT PSD065.
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does not depend on any coherent states formulation.

Finally, we remark, all results presented here were kindly obtained in an analytical fashion. We show
some instances where the Landau diamagnetism is equivalent to the harmonic oscillator and, in the other
example, where the linear rigid rotator is reobtained as a particular instance of the formulation in three
dimensions. Some indications given in the present work lead to the conclusion that Fisher measure is a
better indicator of the delocalization than Wehrl entropy.
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Implications of the “Subquantum Level” in
Carcinogenesis and Tumor Progression via Scale
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Additional information is available at the end of the chapter
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1. Introduction

The last 25 years witnessed tremendous achievements in cancer diagnose and treatment.
Technology currently permits small size tumors (like breast cancers) diagnosis and treatment,
ductal cancer in situ currently including 25...30% of all freshly diagnosed breast cancers at the
majority of medical centers [1]. Thus, early detection now allows the understanding of growth
patterns. Surgeons are in the front line of technological and basic scientific medical advances.
Current ideas, such as the physiological characteristics of shock, organ transplantation,
antisepsis, wound healing, or sequence medical care, are cast by surgical investigators.

The field of mathematics suffered an identical evolution. Revolutionary mathematical
branches such as topology, fractals, chaos theory, and development of nonlinear descriptive
strategies have provided mathematicians new inventive tools to create growth models and to
behaviors at the small environmental level [2, 3]. Growth, angiogenesis [4], cell-to-cell adhesion
[5], hydrogen ion concentration regulation and drug delivery [6] can now systematically be
described using specific formulas. From a clinical viewpoint several of these formulas could
seem simple, however they put together a very important foundation for descriptive insight.

What is currently lacking is a connection between these two naturally and mutual analysis
endeavors. For oncology surgeons, the ability to mathematically analyze and predict patterns
of growth provides precise techniques that are beneficent for both current and future therapies.
For mathematicians, defining the clinical factors essential for growth development and
metastasis can provide realistic insight into these biological processes, successively allowing
the event of correct, clinically relevant mathematical formulas. In almost every dedicated

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



medical institutions, the teams that have comprehensive cancer are being led by surgeons.
Mathematics that can be applied in the oncology field provide a chance to expand the leader‐
ship role of the surgeons and to raise awareness about the significance of understanding
growth behavior and, also improve cancer treatments.

The present study aims at defining a new concept of carcinogenesis and tumor progression.
Consequently, we use the natural ‘environment’ where malignant tumors grow, space(-time)
with non-integer fractal dimension, questing for further applications of the newly discovered
and intriguing phenomenon of tumor self-seeding by circulating cancer cells (CTC). More
precisely, we assume that the metastatic tumor cells move (through the systemic circulation,
yet not necessarily only there) as a coherent wave, or even more precisely, a chemically
pumped travelling laser wave with oxygen. The extracellular matrix (ECM) and in particular,
the tumor microenvironment (TME) are assumed as non-differential media endowed with
holographic properties and may be good candidates for “recording” materials. As a result, the
tumor self-seeding by CTC may be proved mathematically, the fact that the CTC returning to
the initial tumor site and fueling the primary tumor growth or even grow a new tumor is a
particular case of complete holography (i.e. a hologram which does not represent only the
virtual object’s image, but it becomes the very object - which we believe, is a characteristic of
the living organisms). We believe our findings may provide new opportunities to set up new
targeted therapies that may slow down or even prevent tumor progression.

According to the Pribram-Bohm’s holographic theory (http://en.wikipedia.org/wiki/Holo‐
nomic_brain_theory) of the brain, the intercellular and intracellular communication implies
the existence of a fractal medium equivalent to the vacuum between the elementary particles.
Since vacuum dynamics is studied using quantum mechanics, it is only natural that the status
of the fractal medium implies the use of a quantum type mathematical formalism (i.e. Scale
Relativity theory either in its Schrödinger type representation or the fractal hydrodynamic one)
applicable to different resolution scales (mesoscopic for intercellular communications or
nanoscopic for intracellular ones). In Nottale’s interpretation, each resolution scale is charac‐
terized by a Planck type constant h̄

( )2 1FDdth
-

æ ö
= ç ÷tè ø
h

where ħ is the standard Planck’s constant, dt is time’s resolution scale, τ the time’s reference
scale and DF is the fractal dimension of the motion curve.

2. The biology of cancer

2.1. Cancer, what should be noticed

Cancer or malignant neoplasm is a class of diseases that rises from the anomalous behavior of
normal tissue. Cancer cells are aberrant cells which have acquired malignant traits such as
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uncontrolled growth (cells continuously proliferate), tissue invasion (they intrude into normal
tissue and destroy it) and metastasis (they spread outside the location of the body where they
were originally generated). Additionally, the term tumor or neoplasm is used to indicate an
abnormal swelling of tissue caused by an excessive cell proliferation.

A tumor can be of benign or malignant nature, while benign tumors are self-limiting, do not
express patterns of invasion, and they do not metastasize, malignant tumors do possess all
these characteristics. The term malignant tumor is also used as synonym for cancer, although
some cancers, such as leukemia, do not form tumors.

Cancer cells develop these malignant features because of genetic mutations, accumulated
during the organism lifetime. Cancer is in fact a multi-step chance process that transforms a
normal cell into a tumor cell, after having collected a set of 5...8 crucial genetic alterations [7-9]
as schematically shown in Fig. 1.

A newborn malignant cell, expressing aberrant traits, can lead to the formation of cancer and,
in most of the cases, of a tumor. Without treatment, the destructive behavior of such colony of
cells is usually lethal for the patient. The probabilistic nature of this disease and the increase
in life expectancy had made cancer the second cause of death in the industrialized countries
(see any cancer statistics). Nevertheless, cancer it is not a modern disease and it was known
since the antiquity: Egyptians of the New Kingdom [10], Greeks [11] and Romans [12]
accurately described medical treatments for tumor removal. It is only within the last two
centuries however, that due to the higher standards of living, cancer has become one of the
main life-threatening diseases.
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Figure 1. Acquisition of the tumorigenic phenotype by a population of normal cells through multiple genetic mutations.

2.2. Distinguishing traits of cancer

The tumorigenic properties, generically discussed in the previous section, have shown to be
common to almost all cancers. They have been studied since the dawn of cancer research and
they can be enumerated and defined with a relatively high accuracy. These hallmarks are a set
of characteristic traits typical of cancer cells that are essential for the formation of a macroscopic
malignant neoplasm [13]:
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Self-Sufficiency in Growth Signals. All cells communicate through signals. A biological signal is,
in most of the cases, a protein able to deliver a particular piece of information by binding
uniquely to specific receptors on the cell surface. Normal cells need mitogenic growth signals
to proliferate (signals that allow and stimulate cell proliferation). Those signals are regulated
by the homeostasis of the tissue and they guarantee a correct balance between cell proliferation
and death, according to the needs of the organism. In order to lead to cancer, tumor cells may
develop the ability of self-generating such signals in one way or another. One possible way is
a genetic aberration in one of the fundamental genes responsible for the building of the
signaling pathway, for instance the RAS oncogene [9,14]. As consequence, the associated
component of the signaling system would become constitutively active and hence, independ‐
ent by the signal molecule. A second option is the self-production of growth factors that would
stimulate growth by paracrine signaling, where a cells stimulates the neighbors and vice-versa
or even autocrine signaling, when the cell stimulates its own receptors as shown in Fig. 2.
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Insensitivity to Antigrowth Signals. As counterparts of growth factors, homeostasis employs
growth inhibiting signals as well. These signals act similarly to their antagonists but they
promote cell cycle arrest or cell quiescence, rather than proliferation. An example of a crucial
gene involved in anti-growth pathways is the retinoblastoma protein (pRb). The retinoblas‐
toma protein is capable of altering the function of the E2F transcription factors and control the
expression of the bank of genes essential for the transition from GAP-1 phase to DNA Synthesis
phase of the cell cycle [15]. The disruption of such pathway results in the insensitivity of the
cell to anti-growth signals.

Evading Apoptosis. Apoptosis is a mechanism of controlled cell death. Through special signals,
a cell has the capacity of terminating itself in a highly regulated way. A normal cell dying by
apoptosis undergoes a sequence of events such as condensation, fragmentation and phagocy‐
tosis. This avoids the cell to free potentially dangerous enzymes and proteins stored inside its
cytoplasm and its nucleus. During apoptosis the cell membrane is kept intact while, in 30...120
minutes the cell is fragmented in small parts or apoptotic bodies, still protected by pieces of
membrane. Those cell leftovers are successively phagocytated by macrophages within the next
24 hours [16]. Apoptosis is a common mechanism of cell death and takes part in the homeostasis
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cancer statistics). Nevertheless, cancer it is not a modern disease and it was known since the antiquity: Egyptians of the New 
Kingdom [10], Greeks [11] and Romans [12] accurately described medical treatments for tumor removal. It is only within the last
two centuries however, that due to the higher standards of living, cancer has become one of the main life-threatening diseases.

Fig. 1  Acquisition of the tumorigenic phenotype by a population of normal cells through multiple genetic mutations. 

2.2. Distinguishing Traits of Cancer 
The tumorigenic properties, generically discussed in the previous section, have shown to be common to almost all cancers. 

They have been studied since the dawn of cancer research and they can be enumerated and defined with a relatively high accuracy.
These hallmarks are a set of characteristic traits typical of cancer cells that are essential for the formation of a macroscopic malignant 
neoplasm [13]: 

Self-Sufficiency in Growth Signals. All cells communicate through signals. A biological signal is, in most of the cases, a 
protein able to deliver a particular piece of information by binding uniquely to specific receptors on the cell surface. Normal cells 
need mitogenic growth signals to proliferate (signals that allow and stimulate cell proliferation). Those signals are regulated by the 
homeostasis of the tissue and they guarantee a correct balance between cell proliferation and death, according to the needs of the 
organism. In order to lead to cancer, tumor cells may develop the ability of self-generating such signals in one way or another. One 
possible way is a genetic aberration in one of the fundamental genes responsible for the building of the signaling pathway, for
instance the RAS oncogene [9,14]. As consequence, the associated component of the signaling system would become constitutively 
active and hence, independent by the signal molecule. A second option is the self-production of growth factors that would stimulate 
growth by paracrine signaling, where a cells stimulates the neighbors and vice-versa or even autocrine signaling, when the cell
stimulates its own receptors as shown in Fig. 2. 

Fig. 2  Example of self-signaling (autocrine): the cell produces its own growth factors which stimulate the growth receptors on the 
surface (Dr. W.H. Moolenaar, Netherlands Cancer Institute). 

Figure 2. Example of self-signaling (autocrine): the cell produces its own growth factors which stimulate the growth
receptors on the surface (Dr. W.H. Moolenaar, Netherlands Cancer Institute).

Insensitivity to Antigrowth Signals. As counterparts of growth factors, homeostasis employs
growth inhibiting signals as well. These signals act similarly to their antagonists but they
promote cell cycle arrest or cell quiescence, rather than proliferation. An example of a crucial
gene involved in anti-growth pathways is the retinoblastoma protein (pRb). The retinoblas‐
toma protein is capable of altering the function of the E2F transcription factors and control the
expression of the bank of genes essential for the transition from GAP-1 phase to DNA Synthesis
phase of the cell cycle [15]. The disruption of such pathway results in the insensitivity of the
cell to anti-growth signals.

Evading Apoptosis. Apoptosis is a mechanism of controlled cell death. Through special signals,
a cell has the capacity of terminating itself in a highly regulated way. A normal cell dying by
apoptosis undergoes a sequence of events such as condensation, fragmentation and phagocy‐
tosis. This avoids the cell to free potentially dangerous enzymes and proteins stored inside its
cytoplasm and its nucleus. During apoptosis the cell membrane is kept intact while, in 30...120
minutes the cell is fragmented in small parts or apoptotic bodies, still protected by pieces of
membrane. Those cell leftovers are successively phagocytated by macrophages within the next
24 hours [16]. Apoptosis is a common mechanism of cell death and takes part in the homeostasis
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of a healthy organism as well as in its embryogenesis and in its morphogenesis. When any cell
violates such homeostasis, an apoptotic signal is delivered to it. Therefore, in order for cancer
cells to develop into a malignant lesion, it is necessary to deactivate apoptotic signal pathways.
A mutation in the p53 tumor suppressor gene (TSG) is one of the most common ways to acquire
resistance to apoptosis because p53 regulates the whole signaling process of programmed cell
death. Indeed, more than 50% of human cancers carry a mutation in the p53 tumor suppressor
gene [17].

Limitless Replicative Potential. Even with all the anti-growth and anti-apoptosis pathways
triggered off, a cell could not generate a vast population able to form a tumor. That is because
of the intrinsic proliferation limit of all mammalian cells. All chromosomes have an ending
cap called telomere, a T-loop non-coding DNA sequence (2...50 Kb) that prevents the end of
the chromosomes from attaching to other genetic material. At every mitosis the cell loses a
small part of its telomeres because of the impossibility for DNA duplication enzymes, for
instance DNA-polymerase, to continue working until the very end of the genome (Fig. 3). This
limitation is due to the fact that enzymes like DNA-polymerase always move in the 5’...3’
direction of the DNA sequence, so when the side of the replication is opposite, a small part of
the genome is lost. The shortening of the telomeres induces cell senescence, a state of cellular
elderly where division no longer occurs. This avoids genetically unstable cells to replicate.
Senescence starts after the so called Hayflick limit [18] of about 50 cell divisions. In cancer cells
instead, the disabling of the pRb and the p53 pathways allows unlimited replication, until the
point when the telomeres are completely absent. Once having entirely consumed the telo‐
meres, the cell population is believed to undergo a phase of massive genomic instability,
causing extended cell death. The high selective pressure induced by this crisis may permit
specific resistant clones to emerge (Fig. 4). Those survivor cells would be immortalized
(unlimited proliferative potential) by finding ways to maintain their telomeres long enough.
A possible way is the over expression of the telomerase gene [19] which appears to take place
in 85...90 % of cancers. Telomerase is a telomere-rebuilding enzyme normally expressed in
germ line cells and stem cells, in which immortalization is an essential feature. Once immor‐
talized, malignant cells have made a further step towards the formation of cancer.
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Sustained Angiogenesis. In order for a cell to survive normally, it must rely within 100 m from a capillary blood vessel [13]. 
For this reason, the initial exponential growth of a newborn malignant neoplasm causes a shortage of nutrients among cancer cells. 
Local pre-existent vascularisation is never enough to sustain growth for more than 108 cells. The colony must therefore develop 
angiogenesis-triggering capabilities [20, 21]. Angiogenesis is the process of formation of new blood vessels in response to a stimulus 
secreted by poor vascularised tissues. Angiogenesis is important for the organism morphogenesis and even later maintains the correct
supply of nutrients for all tissues. Fast growing cells, such as cancer cells, start soon to starve, and have the need of additional blood 
supply in order to keep expanding. A possible solution is the production by cancer cells of vascular endothelial growth factors
(VEGF) and fibroblast growth factors (FGF1/2) which bind to the transmembrane receptors of endothelial cells (cells covering the
interior surface of blood vessels) stimulating their growth towards the signal concentration gradient [22]. Angiogenesis is the
principal mechanism that transforms a microscopic malignancy into a macroscopic tumor and, also in the later stages, it is necessary 
for a lesion to grow and sustain itself. This implies that angiogenesis is an important target for anti-cancer drugs like 
thrombospondin-1 [23] and bevacizumab [24], also known as avastin. 

Figure 3. Illustration of the end replication problem: at both sides of the copying, the leading DNA strand has lost part
of the telomeric sequence, which stops at the 5’ end of the parental strand, whereas the lagging strand results complet‐
ed until the very end (Dr. R. Beijersbergen, Netherlands Cancer Institute).
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Sustained Angiogenesis. In order for a cell to survive normally, it must rely within 100 μm from
a capillary blood vessel [13]. For this reason, the initial exponential growth of a newborn
malignant neoplasm causes a shortage of nutrients among cancer cells. Local pre-existent
vascularisation is never enough to sustain growth for more than 108 cells. The colony must
therefore develop angiogenesis-triggering capabilities [20, 21]. Angiogenesis is the process of
formation of new blood vessels in response to a stimulus secreted by poor vascularised tissues.
Angiogenesis is important for the organism morphogenesis and even later maintains the
correct supply of nutrients for all tissues. Fast growing cells, such as cancer cells, start soon to
starve, and have the need of additional blood supply in order to keep expanding. A possible
solution is the production by cancer cells of vascular endothelial growth factors (VEGF) and
fibroblast growth factors (FGF1/2) which bind to the transmembrane receptors of endothelial
cells (cells covering the interior surface of blood vessels) stimulating their growth towards the
signal concentration gradient [22]. Angiogenesis is the principal mechanism that transforms a
microscopic malignancy into a macroscopic tumor and, also in the later stages, it is necessary
for a lesion to grow and sustain itself. This implies that angiogenesis is an important target for
anti-cancer drugs like thrombospondin-1 [23] and bevacizumab [24], also known as avastin.
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Fig. 4 The progressive shortening of the telomeres leads to a massive cell death due to the induced genomic instability (death by 
genomic catastrophe while duplicating). From such process of intense genetic mutation and selection an immortalized clone could
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Tissue Invasion and Metastasis. The most dangerous and destructive features of cancer are tissue invasion and the consequent 

metastasis. Its ability of forming distant colonies or metastases all over the body represents the cause of 90% of all cancer related 
deaths [25]. Normal cells are usually unable to travel outside their own tissue due to their necessity to be anchored and reside among 
similar cells. An eventual detachment from the extracellular matrix or ECM (a complex structure of proteins and specific cells 
forming the tissue scaffold and microenvironment – see Sec. 6.1) would occur in a form of apoptosis called anoikis [26]. Contrary to 
their normal counterparts, cancer cells are able to survive the loss of anchorage, to travel through the vascular system and form
distant tumors elsewhere (Fig. 5). The traits expressed by invasive and metastatic cancer cells are principally loss of cell-to-cell 
adhesion, anchorage-independence, chemotaxis (migration towards a diffusible substance gradient), haptotaxis (migration towards a 
non-diffusible substance gradient) and production of matrix degrading enzymes (e.g. Matrix metalloproteinase) which cleave the 
extracellular matrix [27-29] making space for invasion and freeing growth and angiogenic factors trapped inside. 

Fig. 5  Tissue invasion is a multi-step process that requires the cancer cell to have developed many malignant traits, necessary for 
the formation of new distant colonies called metastases [27]. 

3. Mathematics of Cancer 
In comparison to biology, cell biology, and drug delivery analysis, mathematics has, to date, made comparatively very few 

contributions to this field of research. A statistical analysis of the PubMed platform list information (http://www.ncbi.nlm. 
nih.gov/PubMed/) showed that out of 1.5 million works that deal with cancer analysis, only 5% are associated with mathematical 
modeling. However, it is clear that mathematics could contribute significantly to areas of experimental cancer analysis since there is 
currently a wealth of experimental information which needs a systematic analysis. 

Even in these conditions, in the last decade, mathematical modeling and machine simulation of cancer has multiplied 
dramatically (e.g., reviews like [30-35]. A broad range of strategies were developed, specializing in one or additional aspects of 
cancer. For example, genetic instability, natural selection or interactions of individual cell with each other or the environment have 
been modeled using methods of cellular automata and agent-based modeling. These discrete methods have the disadvantage of  being
difficult to use when we deal with  tumors of significant size. (see [36-38] for samples of cellular automata modeling and [39,40] for 

Figure 4. The progressive shortening of the telomeres leads to a massive cell death due to the induced genomic insta‐
bility (death by genomic catastrophe while duplicating). From such process of intense genetic mutation and selection
an immortalized clone could emerge (Dr. R. Beijersbergen, Netherlands Cancer Institute).

Tissue Invasion and Metastasis. The most dangerous and destructive features of cancer are tissue
invasion and the consequent metastasis. Its ability of forming distant colonies or metastases
all over the body represents the cause of 90% of all cancer related deaths [25]. Normal cells are
usually unable to travel outside their own tissue due to their necessity to be anchored and
reside among similar cells. An eventual detachment from the extracellular matrix or ECM (a
complex structure of proteins and specific cells forming the tissue scaffold and microenviron‐
ment – see Sec. 6.1) would occur in a form of apoptosis called anoikis [26]. Contrary to their
normal counterparts, cancer cells are able to survive the loss of anchorage, to travel through
the vascular system and form distant tumors elsewhere (Fig. 5). The traits expressed by
invasive and metastatic cancer cells are principally loss of cell-to-cell adhesion, anchorage-
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independence, chemotaxis (migration towards a diffusible substance gradient), haptotaxis
(migration towards a non-diffusible substance gradient) and production of matrix degrading
enzymes (e.g. Matrix metalloproteinase) which cleave the extracellular matrix [27-29] making
space for invasion and freeing growth and angiogenic factors trapped inside.
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Figure 5. Tissue invasion is a multi-step process that requires the cancer cell to have developed many malignant traits,
necessary for the formation of new distant colonies called metastases [27].

3. Mathematics of cancer

In comparison to biology, cell biology, and drug delivery analysis, mathematics has, to date,
made comparatively very few contributions to this field of research. A statistical analysis of
the PubMed platform list information (http://www.ncbi.nlm. nih.gov/PubMed/) showed that
out of 1.5 million works that deal with cancer analysis, only 5% are associated with mathe‐
matical modeling. However, it is clear that mathematics could contribute significantly to areas
of experimental cancer analysis since there is currently a wealth of experimental information
which needs a systematic analysis.

Even in these conditions, in the last decade, mathematical modeling and machine simulation
of cancer has multiplied dramatically (e.g., reviews like [30-35]. A broad range of strategies
were developed, specializing in one or additional aspects of cancer. For example, genetic
instability, natural selection or interactions of individual cell with each other or the environ‐
ment have been modeled using methods of cellular automata and agent-based modeling.
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These discrete methods have the disadvantage of being difficult to use when we deal with
tumors of significant size. (see [36-38] for samples of cellular automata modeling and [39,40]
for samples of agent-based modeling). In systems at larger scales, the neoplasic cell population
is of the order of 106 or more, making these discrete methods unfitted. For these situations, the
continuum methods provide the best approach. Early work, as well as [41-43], used ODE to
model cancer as a uniform population and partial differential equation models restricted to
spherical geometries. To assess the stability of spherical tumors to asymmetric perturbations
and to characterize the degree of aggression [31, 44-48] use linear and weakly nonlinear
analysis. The interactions of a growth with the microenvironment, like stress-induced limita‐
tions to growth, are studied in [30,49-54]. For the sake of simplicity, most of the modeling has
considered single-phase (e.g., single cell species) tumors. To provide an elaborate account of
growth non-uniformity, [50, 55, 56] have been developed a mixture of models.

The results of morphology instabilities on each avascular and vascular solid neoplasm growth
have been recently studied using non-linear modeling. With the help of boundary integral
methods, Cristini et al [47] performed the first absolutely nonlinear simulations of a time model
of neoplasm growth within the avascular and vascular growth stages with arbitrary bounda‐
ries. The model from [47] has been extended in 3D by Li et al. [48] via adaptive boundary
integral technique. The inclusion of angiogenesis and extratumoral environment has been
performed by Zheng et al., [57]. By developing and coupling a level set implementation with
a hybrid continuum-discrete growing model originally developed by Anderson & Chaplain
[58]they found that low-nutrient (e.g., hypoxic) conditions could lead to morphological
instability. Their work served as a building block for recent studies of the impact of therapy
on neoplasm growth [59] and for studies of morphological instability and invasion [60-62].
Macklin & Lowengrub used a ghost cell/level set technique for evolving interfaces to check
neoplasm growth in heterogeneous tissue and additional studied neoplasm growth as a
function of the microenvironment [63]. Wise et al. [64] and Frieboes et al. [65] have developed
a diffuse interface implementation of solid neoplasm growth for the study of the evolution of
multiple neoplasm cell species, that was used in [65] to model the 3-D vascularised growth of
malignant gliomas (brain tumors).

In biological systems, the fractal structure of area in which cells act and differentiate is
important for their organization and emergence of the hierarchical network of multiple cross-
interacting cells, sensitive to external and internal conditions. The biological phenomena occur
within the area whose dimensions aren't represented solely by integers (1, 2, 3, etc.) of
Euclidean space. Particularly, malignant tumors [53-56] grow in a space with non-integer
dimension, i.e. fractal dimension. The analytical formulae describing the time-dependence of
the temporal fractal dimension and scaling reproduce the expansion of the Flexner–Jobling
rat’s neoplasm in particular and growth of different rat’s tumors generally. The results of some
calculations indicated that the formula derived for the time-dependent temporal fractal
dimension and the scaling factor describe the experimental data obtained by Schrek for the
Brown-Pearce rabbit’s neoplasm growth within the fractal time-space [3, 66-68].

In our assertion, fractal space(-time) consists in developing the consequences of the withdrawal
of space(-time) differentiability’s hypothesis and acquiring a fractal geometry, namely space(-
time) becomes explicitly dependent on the observation scale [69].
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Euclidean space. Particularly, malignant tumors [53-56] grow in a space with non-integer
dimension, i.e. fractal dimension. The analytical formulae describing the time-dependence of
the temporal fractal dimension and scaling reproduce the expansion of the Flexner–Jobling
rat’s neoplasm in particular and growth of different rat’s tumors generally. The results of some
calculations indicated that the formula derived for the time-dependent temporal fractal
dimension and the scaling factor describe the experimental data obtained by Schrek for the
Brown-Pearce rabbit’s neoplasm growth within the fractal time-space [3, 66-68].

In our assertion, fractal space(-time) consists in developing the consequences of the withdrawal
of space(-time) differentiability’s hypothesis and acquiring a fractal geometry, namely space(-
time) becomes explicitly dependent on the observation scale [69].
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On the other hand, of great use in our further reasonings will be the fact that in many biological
systems it is possible to empirically demonstrate the presence of attractors that operate starting
from different initial conditions (Ivancevic). Some of these attractors are points, some are
closed curves, while the others have non–integer, fractal dimension and are termed “strange
attractors” [70]. It has been proposed that a prerequisite for proper simulating tumor growth
by computer is to establish whether typical tumor growth patterns are fractal. The fractal
dimension of tumor outlines was empirically determined using the box-counting method [71].
In particular, fractal analysis of a breast carcinoma was performed using a morphometric
method, which is the box-counting method applied to the mammogram as well as to the
histological section of a breast carcinoma [72].

If tumor growth is chaotic, this could explain the unreliability of treatment and prediction of
tumor evolution. More importantly, if chaos is established, this could be used to adjust
strategies for fighting cancer. Treatment could include some form of chaos control and/or anti-
control.

4. A few words about holography

“Although it generates a three-dimensional image, a hologram is most often recorded on a
photographic plate or a flat piece of film. Moreover, producing a hologram does not imply, in
the conventional sense, the recording of an image. To better understand this apparent paradox
and, as a result, the way holography works, we have to begin with the main principles.

In conventional imaging techniques, e.g. photography, what is being recorded is merely the
intensity distribution in the original scene. Thus, all information about the optical paths to
different parts of the scene is lost.

The unique property of holography is the method of recording both the phase and the
amplitude of the light waves from an object. Since all recording materials respond only to the
intensity in the image, it is mandatory to convert the phase information into intensity varia‐
tions. Holography accomplishes this by using coherent illumination and introducing, as shown
in Fig. 6, a reference beam derived from the same source. The photographic film records the
interference pattern produced by this beam and the light waves scattered by the object in cause.

Since the intensity at any given point in this pattern of interference also depends on the phase
of the object wave, the resulting recording (the hologram) contains information on the phase
as well as the amplitude of the object wave. If the hologram is illuminated once again with the
original reference wave, as shown in Fig. 7, it reconstructs the original object wave.

An observer looking through the hologram sees a perfect three-dimensional image. This image
exhibits all the effects of perspective, and depth of focus when photographed, that character‐
ized the original object.
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4.1. Early development

Gabor’s historical experiment of holographic imaging [73] consisted in a transparency formed
of opaque lines on a clear background which was illuminated with a collimated beam of
monochromatic light, the interference pattern produced by the directly transmitted beam (the
reference wave) and the light scattered by the lines on the transparency being recorded on a
photographic plate. When the hologram (i.e. a positive transparency made from this photo‐
graphic negative) was illuminated with the original collimated beam, it produced two
diffracted waves, one which reconstructed an image of the object in its original location, and
the other, with identical amplitude but an opposite phase, which formed a second, conjugate
image.
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Fig. 6  Hologram recording: the interference pattern produced by the reference wave and the object wave is recorded. 
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An important flaw of this method of image reconstruction was the poor quality of the resulting image, due to the fact that it 
was degraded by the conjugate image that was superimposing on it as well as by the scattered light from the directly transmitted
beam. 

Leith and Upatnieks [74-76] found a solution to the above-mentioned problem developing a off-axis reference beam 
technique presented schematically in Figs. 6 and 7. They used a separate reference wave incident on the photographic plate at an
appreciable angle to the object wave. As a result, when the hologram was illuminated with the original reference beam, the two 
images were separated by large enough angles from the directly transmitted beam, and from each other, thus ensuring that the images 
not overlap. 

The improvement of the off-axis technique, and, in equal measure, the invention of the laser, which provided a powerful 
source of coherent light, resulted in a surge of activity in holography that led to several crucial applications. 

4.2. The In-line Hologram 
Let us now look upon the optical system presented in Fig. 8 in which the object (a transparency containing small opaque 

details on a clear background) is illuminated by a collimated beam of monochromatic light along an axis normal to the photographic
plate. 
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separate reference wave incident on the photographic plate at an appreciable angle to the object
wave. As a result, when the hologram was illuminated with the original reference beam, the
two images were separated by large enough angles from the directly transmitted beam, and
from each other, thus ensuring that the images not overlap.

The improvement of the off-axis technique, and, in equal measure, the invention of the laser,
which provided a powerful source of coherent light, resulted in a surge of activity in holog‐
raphy that led to several crucial applications.

4.2. The in-line hologram

Let us now look upon the optical system presented in Fig. 8 in which the object (a transparency
containing small opaque details on a clear background) is illuminated by a collimated beam
of monochromatic light along an axis normal to the photographic plate.

7

Fig. 8  Optical system used to record an in-line hologram. 

We can observe two components of the incident light. The first is the directly transmitted wave, which is a plane wave whose 
amplitude and phase do not vary across the photographic plate. Thus, its complex amplitude can be noted as a real constant r. The 
second one is a weak scattered wave whose complex amplitude at any point (x, y) on the photographic plate can be noted as o(x, y), 
where |o(x, y)| << r.

From these it can be shown that the resulting complex amplitude is the sum of these two complex amplitudes, and because of 
that the intensity at this point is 
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where o*(x, y) is the complex conjugate of o(x, y).

A ‘positive’ transparency (the hologram) is then made by contact printing from this recording. Therefore it can be assumed 
that this transparency is processed so that its amplitude transmittance (the ratio of the transmitted amplitude to that incident on it) can 
be written as 
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where t0 is a constant background transmittance, T is the exposure time and � is a parameter determined by the photographic material 
used and the processing conditions, the amplitude transmittance of the hologram is 
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Then, the hologram is illuminated, as shown in Fig. 9, with the same collimated beam of monochromatic light employed to 
produce the original recording. Since the complex amplitude at any point in this beam is, aside from a constant factor, the same as 
that in the original reference beam, the complex amplitude transmitted by the hologram can be written as 
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The right-hand side of (4) contains four terms. The first, r(t0+�Tr2), which represents a uniformly attenuated plane wave, 
corresponds to the directly transmitted beam. 

The second, �Tr |o(x, y)|2, can be neglected, because is extremely small, compared to the other terms. 
The third term, �Tr2o(x, y), is, except for a constant factor, identical with the complex amplitude of the scattered wave from 

the object and has the property of reconstructing an image of the object in its original position. Due to the fact that this image forms 
behind the hologram, and the reconstructed wave appears to diverge from it, it is a virtual image. 

The fourth term, �Tr2o*(x, y), represents a wave similar to the object wave, but having an opposite curvature. This wave 
converges to form a real image (the conjugate image) at the same distance in front of the hologram. 

With an in-line hologram, an observer viewing one image sees it superimposed on the out-of-focus twin image as well as a 
strong coherent background. Another problem is that the object must have a high average transmittance in order for the second term 
on the right-hand side of (4) to be negligible. Thus, it is possible to form images of fine opaque lines on a transparent background, 
but not vice versa. Finally, the hologram must be a ‘positive’ transparency. If the initial recording is used directly, � in (2) is 
negative, and the reconstructed image can be considered a photographic negative of the object. 

Figure 8. Optical system used to record an in-line hologram.

We can observe two components of the incident light. The first is the directly transmitted wave,
which is a plane wave whose amplitude and phase do not vary across the photographic plate.
Thus, its complex amplitude can be noted as a real constant r. The second one is a weak
scattered wave whose complex amplitude at any point (x, y) on the photographic plate can be
noted as o(x, y), where |o(x, y)| << r.

From these it can be shown that the resulting complex amplitude is the sum of these two
complex amplitudes, and because of that the intensity at this point is
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where o*(x, y) is the complex conjugate of o(x, y).
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A ‘positive’ transparency (the hologram) is then made by contact printing from this recording.
Therefore it can be assumed that this transparency is processed so that its amplitude trans‐
mittance (the ratio of the transmitted amplitude to that incident on it) can be written as

0t t TI= + b (2)

where t0 is a constant background transmittance, T is the exposure time and β is a parameter
determined by the photographic material used and the processing conditions, the amplitude
transmittance of the hologram is

22
0( , ) [ ( , ) ( , ) ( , )]t x y t T r o x y ro x y ro x y*= + b + + + (3)

Then, the hologram is illuminated, as shown in Fig. 9, with the same collimated beam of
monochromatic light employed to produce the original recording. Since the complex ampli‐
tude at any point in this beam is, aside from a constant factor, the same as that in the original
reference beam, the complex amplitude transmitted by the hologram can be written as

22 2 2
0( , ) ( , ) ( ) ( , ) ( , ) ( , )u x y rt x y r t Tr Tr o x y Tr o x y Tr o x y*= = + b + b + b + b (4)

The right-hand side of (4) contains four terms. The first, r(t0+βTr2), which represents a uniformly
attenuated plane wave, corresponds to the directly transmitted beam.

The second, βTr |o(x, y)|2, can be neglected, because is extremely small, compared to the other
terms.

The third term, βTr2o(x, y), is, except for a constant factor, identical with the complex amplitude
of the scattered wave from the object and has the property of reconstructing an image of the
object in its original position. Due to the fact that this image forms behind the hologram, and
the reconstructed wave appears to diverge from it, it is a virtual image.

The fourth term, βTr2o*(x, y), represents a wave similar to the object wave, but having an
opposite curvature. This wave converges to form a real image (the conjugate image) at the
same distance in front of the hologram.

With an in-line hologram, an observer viewing one image sees it superimposed on the out-of-
focus twin image as well as a strong coherent background. Another problem is that the object
must have a high average transmittance in order for the second term on the right-hand side of
(4) to be negligible. Thus, it is possible to form images of fine opaque lines on a transparent
background, but not vice versa. Finally, the hologram must be a ‘positive’ transparency. If the
initial recording is used directly, β in (2) is negative, and the reconstructed image can be
considered a photographic negative of the object.
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Fig. 9  Optical system used to reconstruct the image with an in-line hologram, showing the formation of the twin images. 

4.3. Off-axis Holograms
In order to understand the formation of an image by an off-axis hologram, we must consider the recording arrangement shown 

in Fig. 10, in which (for simplicity) the reference beam is a collimated beam of uniform intensity, derived from the same source as 
the one used to illuminate the object. 

Fig. 10  The off-axis hologram: `recording. 

The complex amplitude at any point (x, y) on the photographic plate due to the reference beam can then be written as 
)2exp(),( xiryxr px=

      (5)
where x=(sin�)/�. Since only the phase of the reference beam varies across the photographic plat and because of the object beam, for 
which both the amplitude and phase vary, we can write the following: 
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The amplitude and phase of the object wave are encoded as amplitude and phase modulation, respectively, of a set of 

interference fringes equivalent to a carrier with a spatial frequency of x.
If, as in (2), we assume that the amplitude transmittance of the processed photographic plate is a linear function of the 

intensity, the resultant amplitude transmittance of the hologram is 
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where t`0 = t0 +�Tr2 is a constant background transmittance. 

When the hologram is illuminated for a second time with the original reference beam, as shown in Fig. 11, the complex 
amplitude of the transmitted wave can be written as 
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  (9) 
The first term on the right-hand side of (9) corresponds to the directly transmitted beam, while the second term generates a 

halo surrounding it, with approximately twice the angular spread of the object. The third term is identical to the original object wave, 
except for a constant factor �Tr2, and produces a virtual image of the object in its original position. The fourth term corresponds to 

Figure 9. Optical system used to reconstruct the image with an in-line hologram, showing the formation of the twin
images.

4.3. Off-axis holograms

In order to understand the formation of an image by an off-axis hologram, we must consider
the recording arrangement shown in Fig. 10, in which (for simplicity) the reference beam is a
collimated beam of uniform intensity, derived from the same source as the one used to
illuminate the object.
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The complex amplitude at any point (x, y) on the photographic plate due to the reference beam
can then be written as

( , ) exp( 2 )r x y r i x= px (5)

where ξ=(sinθ)/λ. Since only the phase of the reference beam varies across the photographic
plat and because of the object beam, for which both the amplitude and phase vary, we can
write the following:
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( , ) ( , )exp ( , )o x y o x y i x yé ù= - fë û (6)

The resultant intensity is, therefore,
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The amplitude and phase of the object wave are encoded as amplitude and phase modulation,
respectively, of a set of interference fringes equivalent to a carrier with a spatial frequency of
ξ.

If, as in (2), we assume that the amplitude transmittance of the processed photographic plate
is a linear function of the intensity, the resultant amplitude transmittance of the hologram is

2
0( , ) ( , ) ( , ) exp[ ( , )]exp[ 2 ]

( , ) exp[ ( , )]exp[ 2 ]
t x y t T o x y Tr o x y i x y i x

Tr o x y i x y i x

¢= + b + b - f - px +

+b f px
(8)

where t0
' = t0 +βTr2 is a constant background transmittance.

When the hologram is illuminated for a second time with the original reference beam, as shown
in Fig. 11, the complex amplitude of the transmitted wave can be written as

2
0

2 2

( , ) ( , ) ( , ) exp( 2 ) ( , ) exp( 2 )

( , ) ( , )exp( 4 )

u x y r x y t x y t r i x Tr o x y i x

Tr o x y Tr o x y i x*

¢= = px + b px +

+b + b px
(9)

The first term on the right-hand side of (9) corresponds to the directly transmitted beam, while
the second term generates a halo surrounding it, with approximately twice the angular spread
of the object. The third term is identical to the original object wave, except for a constant factor
βTr2, and produces a virtual image of the object in its original position. The fourth term
corresponds to the conjugate image which, in this case, is a real image. If the offset angle of
the reference beam is taken large enough, the virtual image can be separated from the directly
transmitted beam and the conjugate image.

In this setup, corresponding points on the real and virtual images are located at equal distances
from the hologram, but on opposite sides of it. Because the depth of the real image is inverted,
it is called a pseudoscopic image, as opposed to the normal, or orthoscopic, virtual image. It
should also be mentioned that the phase of the reconstructed image is influenced only by the
sign of β, always resulting in a “positive” image, even in the case of the hologram recording
being a photographic negative.
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4.4. Recording materials

Several recording materials have been used for holography [77]. Table 1 lists the principal
characteristics of those that have been found most useful.

Material
Exposure
J/m2

Resolution
mm-1

Processing Type
ηmax
(diffraction
efficiency)

Photographic ≈1.5 ≈ 5000 Normal Amplitude 0.06

Bleach Phase 0.60

DCG
(dichromated gelatin)

102 10000 Wet Phase 0.90

Photoresists 102 3000 Wet Phase 0.30

Photopolymers 10-104 5000 Dry Phase 0.90

PTP
(photothermoplastics)

10-1 500-1200 Dry Phase 0.30

BSO
( Bi12SiO20 photorefractive
crystals)

10 10000 None Phase 0.20

Table 1. Recording materials for holography

High-resolution photographic plates and films were the first materials used to record holo‐
grams. These are used widely even now, due to the fact that they exhibit relatively high
sensitivity when compared to other hologram recording materials [78]. Moreover, they can be
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dye sensitized so that their spectral sensitivity matches the most commonly used laser
wavelengths.

Combining the high sensitivity of photographic materials with the high diffraction efficiency,
low scattering and high light-stability of DCG (dichromated gelatin) [79] was made possible
by the silver-halide sensitized gelatin technique.

In positive photoresists, such as Shipley AZ-1350, the areas exposed to light become soluble
and are washed away during development to produce a relief image [80].

Several organic materials can be activated by a photosensitizer to produce refractive index
changes, because they suffer photopolymerization, when exposed to light [81]. A commercial
photopolymer, coated on a polyester film base (DuPont OmniDex) that can be used to produce
volume phase holograms with high diffraction efficiency is being currently produced [82].

Photothermoplastics (PTP) - a hologram can be recorded in a multilayer structure consisting
of a glass or Mylar substrate coated with a thin, transparent, conducting layer of indium oxide,
a photoconductor, and a thermoplastic [83,84].

When a photorefractive crystal is exposed to a spatially varying light pattern, electrons are
liberated in the illuminated areas. These electrons migrate to adjacent dark regions, being
trapped there. The spatially varying electric field produced by this space-charge pattern
modulates the refractive index through the electro-optic effect, producing the equivalent of a
phase grating. The space charge pattern can be removed by uniformly illuminating the crystal,
after which another recording can take place [85,86].

It is essential to use coherent illumination for maximizing the visibility of the interference
fringes formed by the object and reference beams, in the process of recording a hologram. In
addition to being spatially coherent, the coherence length of the light must be much greater
than the maximum value of the optical path difference between the object and the reference
beams in the recording system. Lasers are, as a result, employed almost universally as light
sources for recording holograms.” (The text in quotation marks was reproduced from Hari‐
haran P. [165]).

Consequently, to get a hologram, one needs a laser, which provides a powerful source of
coherent light, and a ‘recording material’ which records the interference pattern produced by
a reference beam and the light waves scattered by the object.

5. Tumor-associated ECM or tumor microenvironment, nonlinear medium
with holographic properties

5.1. Extracellular matrix and tumor microenvironment

Within tissue, cells are surrounded by a meshwork of proteins and proteoglycans collectively
called the extracellular matrix (ECM), which compartmentalizes tissues. The ECM is divided
into two distinct layers:
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i. the basement membrane, which is composed of sheet-like layers of ECM and lies
under epithelial cells segregating tissues into functionally distinct regions;

ii. the interstitial matrix, which exists within intercellular space. The ECM serves
multiple functions that are critical for embryonic development and wound repair.
These functions include providing tissues with shape and flexibility and acting as a
cushion to absorb external pressure. The ECM also serves as a base for cell anchorage,
which mediates cell polarity, intercellular signaling, and assists in migration. The key
to the ECM function lies in its unique composition and structure. The ECM is
constructed in a specific pattern that is critical to its ability to carry out these functions
and alterations in the expression level or arrangement of proteins within the ECM
can be used to manipulate its function.

The most obvious function of the ECM is to provide structural support, shape, and stability
for tissues. It does this by functioning as a base for cell anchorage. This base consists of three
main structural components collagen, fibronectin, and elastic fibers, which bind to one another
building a protein lattice upon which cells adhere.

Cell adherence to the ECM lattice provides cells support needed for cell migration. This is
particularly important during embryonic development when cells are required to migrate into
surrounding regions and differentiate into specific tissues [87]. A less obvious yet possibly
more important function of the ECM in regards to tissue homeostasis and disease is its ability
to mediate intracellular signaling. The ECM affects signaling through three main mechanisms:

i. cell – ECM interaction;

ii. regulation of the bioavailability of growth factors;

iii. the function of matricellular proteins. Cell attachment to the ECM via integrins
induces signaling cascades that promote survival. Loss of cell-ECM contact can result
in a form of apoptosis termed anoikis [88]. Anchorage-dependent survival is observed
in most cells with the exception of red blood cells and inflammatory cells. However,
tumor cells are often resistant to anoikis and can survive without a physical attach‐
ment to the ECM allowing them to successfully metastasize to distant tissues [89].

The ECM also affects cellular activity by serving as a reservoir for proteins required for proper
tissue function and repair. This includes a plethora of growth factors and proteases. These
pleiotropic molecules have been shown to robustly affect proliferation, survival and migration
in numerous cell types. Once growth factors are secreted from cells, they often become
embedded within the ECM and require ECM degradation by proteases such as elastase to
release the active protein allowing it to interact with surrounding and transduce downstream
signaling. The ability of the ECM to control the bioavailability of growth factors provides
another means of regulating cellular activities and further explains how alterations in the
makeup of the ECM as observed in diseases such as cancer affect cell response.

Matricellular proteins also reside in the ECM. They are a unique family of proteins that do not
function as structural proteins but rather orchestrate the deposition of the ECM and mediate
cell-cell and cell-ECM interactions. To do this, matricellular proteins interact directly with cell
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surface receptors, structural proteins, growth factors and proteases found within the ECM [90].
Their expression is found in every tissue begins early in development, persists throughout
adulthood and is increased during tissue remodeling events. Matricellular proteins are critical
regulators of many aspects of cell function including differentiation, survival, proliferation
and migration making them necessary for proper tissue function. Not surprisingly, given their
affect on cell-ECM mediated signaling pathways, matricellular proteins have been shown to
strongly influence tumor growth.

For tumor cells to metastasize, the local ECM must be remodeled to create an environment
conducive to tumor survival and progression. This includes altering the architecture and
composition of the tumor-associated ECM or tumor microenvironment (TME) to facilitate
tumor cell dissemination [91]. Changes in ECM architecture are primarily carried out by
enzymes such as MMPs which assist in remodeling of the TME by degrading structural
proteins such as collagen and fibronectin allowing tumor cells to freely navigate through the
surrounding ECM. MMPs and other proteases assist in destruction of the first barrier tumor
cells face to successful metastasis, the basement membrane. They degrade the underlying
basement membrane allowing tumor cells to escape the primary tumor and invade into
surrounding non-neoplasic tissues. MMPs continue to breakdown barriers in the surrounding
ECM clearing a path to blood vessels where tumor cells will intravasate into the circulatory
system and seed secondary tumors [92]. Destruction of the ECM by proteases also promotes
tumor progression by facilitating the release of angiogenic and mitogenic factors bound within
the ECM [93]. In a surprising unexpected twist, studies revealed that the breakdown of ECM
proteins by MMPs was more complex than anticipated. In fact it is a highly organized process
which results in the generation of both protumor and antitumor cleavage products [94].

Presence of the ECM is required for cellular survival therefore increased degradation of the
ECM within the TME must be balanced by an increase in ECM synthesis. The development of
a tumor, much like a wound, provokes a robust inflammatory response causing an influx of
mast cells, macrophages and neutrophiles into the TME [95].

We may summarize that the extracellular matrix generates signaling cues that regulate cell
behavior and orchestrate functions of cells in tissue formation and homeostasis. Microenvir‐
onmental signaling, a process that determines cell shape, motility, growth, survival and
differentiation is highly influenced by the ECM properties: composition, three-dimensional
organization and proteolytic remodeling. Recent studies have shown that misregulation of
cell–ECM interactions can contribute to many diseases, including developmental, immune,
haemostasis, degenerative and malignant disorders.

Consequently,  the structure and the behavior of the tumor-associated ECM allows us to
think of it  as a non-differential medium, and as will  be shown below, a medium which
holds the properties of a hologram (capacity to memorize, interference abilities) and may
become a source of forces. In other words, ECM and TME are very suitable candidates for
a ‘recording material’.
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5.2. Tumor-associated ECM as a non-differential fractal medium

We can simplify the dynamics of a biological system supposing that the motions on ECM take
place on continuous but non-differentiable curves, i.e. fractal curves (for example, the Peano
curve, the Koch curve or the Weierstrass curve [69,96,97].

Once this hypothesis has been accepted, some consequences of non-differentiability by SRT
are evident [69,96]: i) the physical quantities that are used in describing the biological system
dynamics are fractal functions, i.e. functions dependent both on spatial coordinates and time
as well as on the scale resolution, δt/τ (identified here with dt/τ by means of the substitution
principle [69,96]. We mention that in the standard biophysics, the physical quantities describ‐
ing the dynamics of a biological system are continuous, but differentiable functions depending
only on spatial coordinates and time; ii) the dynamics of the biological systems are given by
the fractal operator d̂  /dt [98]:

2 12ˆ ˆ FDd dtV i
dt t

æ ö
-ç ÷ç ÷

è øæ ö¶ l
= + ×Ñ - Dç ÷¶ t tè ø
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where

ˆ
D Fi= -V V V (11)

is the complex velocity, VD is the differentiable and resolution scale independent velocity, VF

is the non-differentiable and resolution scale dependent velocity, V̂  ∇ is the convective term,
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is the dissipative term, DF is the fractal dimension of the movement curve, λ is the space scale,
τ is the time scale and λ2/τ is a coefficient specific to the fractal – non - fractal transition. For
DF any definition can be used (the Hausdorff – Besikovici fractal dimension, the Kolmogorov
fractal dimension, etc. [97], but once such definition is accepted for DF, it has to remain constant
over the entire analysis of the complex fluid dynamics. In a particular case, for motions on
Peano curves, DF = 2 [97] of the complex fluid entities, the fractal operator (1) is reduced to
Nottale’s operator (d̂  /dt)Ν

ˆ ˆ
N

d iD
dt t

¶
= + ×Ñ - D
¶

V

where DN = λ2/τ is the Nottale’s coefficient associated to the fractal-non-fractal transition.

Applying the fractal operator (10) to the complex velocity (11) and accepting the principle of
scale covariance [69,96] in the form:
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we obtain the motion equation:
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where U is an external scalar potential. Equation (14) is a Navier – Stokes type equation. It
means that at any point of a fractal path, the local acceleration term, ∂tV̂ , the non-linearly

(convective) term, (V̂  ∇) V̂ , the dissipative term, (λ 2 / τ)(dt / τ)
( 2

DF
)−1
ΔV̂ , and the external free

term ∇U make their balance. Therefore, the biological fluid is assimilated to a “rheological”
fractal fluid, whose dynamics are described by the complex velocities field, V̂ , and by the

imaginary viscosity type coefficient, i(λ 2 / τ)(dt / τ)
( 2

DF
)−1. The “rheology” of the fractal fluid can

provide hysteretic properties to the biological fluid (the fractal fluid has a hysteresis cycle,
memory, etc. [98-100].

For irrotational motions of the biological system entities
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we can choose V̂  of the form
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ˆ lnFDdti
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where ϕ ≡ lnψ is the velocity scalar potential. By substituting (16) in (14) and using the method
described in [98-100], it results
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This equation can be integrated in a universal way and yields
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where ϕ ≡ lnψ is the velocity scalar potential. By substituting (16) in (14) and using the method
described in [98-100], it results
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This equation can be integrated in a universal way and yields
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up to an arbitrary phase factor which may be set to zero by an appropriate selection of the
phase of ψ. Relation (18) is a Schrödinger type equation. For motions on Peano curves, DF = 2
[97] at Compton scale, which implies λ2 /τ = ħ /2m0 [69,96], with ħ the reduced Plank constant
and m0 the rest mass of the biological entities, the relation (18) becomes the standard Schrö‐
dinger equation:
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By substituting (19a-c) in (14) and separating the real and the imaginary parts, up to an
arbitrary phase factor which may be set to zero by appropriate selection of the phase of ψ, we
obtain:
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with Q the specific fractal potential
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Equation (20) represents the specific momentum conservation law, while equation (21)
represents the states density conservation law. By means of the fractal velocity, VF, the specific
fractal potential Q is a measure of non-differentiability of the biological entities trajectories, i.e.
of their chaoticity. The equations (20)-(22) define the fractal hydrodynamics model (FHM). In
such a context, the biological system can be considered a fractal fluid.

Thus,  it  can be  concluded that:  i)Any entity  of  the  biological  system is  in  a  permanent
interaction with the fractal medium by means of the specific fractal potential; ii) The fractal
medium is identified with a non-relativistic fractal fluid described by equations (20)-(22);
iii) For motions on Peano curves at Compton scale [69,96,97], the FHM reduces to a quantum
hydrodynamic  model  (QHM).  Indeed,  according  to  our  previous  considerations  the
relations (19a-c) become
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in order that the momentum and density conservation laws are given by (20) and (21),
respectively, with VD and VF previously defined, and the specific fractal potential by the
expression
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Moreover the fractal medium is assimilated to Bohm subquantum level [96]; iv) The fractal
velocity VF cannot be regarded as actual mechanical motion; it contributes to the transfer of
the specific momentum and the concentration of energy. This fact can easily be deduced from
the absence of VF in the states density conservation law, and from its role in the variational
principle. Any interpretation of Q should take into account the “self” or internal nature of the
specific momentum transfer. While the energy is stored in the form of mass motion and
potential energy (as it is classically), a part of it is available elsewhere and only the total is
conserved. Reversibility and the existence of eigenstates is ensured by the conservation of
energy and specific momentum, but this also means that a Brownian motion [97] form of
interaction with an external medium is denied; v) For Peano curves motions [96,97], at spatial
scales higher than the dimension of the boundary layer and at temporal scales higher than the
oscillation periods of the pulsating velocities which overlaps the average velocity of the
biological fluid motions (for details see [101-103], the FHM reduces to the standard hydrody‐
namical model [104]; vi) Since the position vector of the biological system entity is assimilated
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with a stochastic Wiener type process [96,97], ψ is not only the scalar potential of a complex
velocity (through ϕ ≡ lnψ) in the frame of FHM, but represents also the states density (through
ψ2) in the frame of a Schrödinger type model. Thus it can be seen that the formalism of the
FHM and the one of Schrödinger type are equivalent. In addition, the chaoticity, either by
means of turbulence in the fractal hydrodynamics approach, or by means of stochasticization
in the Schrödinger type approach, is generated only by the non-differentiability of the
movement trajectories in a fractal space; vii) In the standard model (Landau’s scenario [104])
the Fourier spectrum is always discrete and cannot approximate a continuum spectrum that
in case of a large number of frequencies will generate an unlimited number of spectral
components as a result of their beats which appear due to the presence of nonlinearities in the
biological fluid. Still, taking into account the standard model, the flow can never be exactly
chaotic because, in case of multiple periodic functions, correlations tend to be null, although
having an oscillating character. As a result, the transition towards chaotic behavior can be
described by Landau’s scenario only in a biological system with an infinite number of degrees
of freedom. In our case, when δ t/τ →  0 for DF ≠ 2 the physical quantities that describe the
dynamics of the biological system are no longer defined. So, in this approximation, a simulation
of a system with an infinite number of degrees of freedom is used. Moreover, the possibility
of the dynamic states generation should be noted, which is characterized by windows of
regular oscillations interrupted by chaotic bursts, the transition between the two states being
spontaneous, unpredictable and independent of any of the control parameters variation
(turbulence through intermittency); viii) The fractal medium and in particular the subquantum
level has some computational properties: viii1) bistability, which implies the existence of its
fractality and in particular, for motions on Peano curves at Compton scales, of the quantum
bit. And from here, the entire fractal logics and in particular the quantum one; viii2) the self-
replication, which implies the existence of some specific self-copying mechanisms; viii3)
memory, which implies hysteresis type mechanisms; viii4) self-similarity, which implies the
holographic type behavior; viii5) polarization, which implies mechanisms of changing the
“computational state” from a given to a desired one; viii6) depositing and transmitting the
information etc. For details see [105].

6. Tumor self-seeding by CTC and hypoxia support the idea of complete
holography

6.1. The self-seeding hypothesis of tumor growth

The unfolding of cancer cells from their original sites to different ones within the body, i.e
metastasis, has, for many years, been regarded as a unidirectional journey. However some
researchers conjointly consider that metastatic cancer cells can increase primary tumor growth,
this fact being crucial for the planning and type of the cancer treatment.

The concept of growing self-metastasis, or tumor “self-seeding,” was first introduced at
Memorial Sloan-Kettering Cancer Center, in a range of studies conducted by Drs. Joan
Massagué, head of the Metastasis research facility, and Larry Norton, deputy physician-in-
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chief of the center’s breast cancer programs. In the studies conducted on mice, Dr. Massagué
discovered that breast tumors express genes related to metastasis were growing quicker than
tumors that didn't express these genes, even if the genes had no apparent role in increased
cellular division or decreased cell death (Fig. 12). These results did not fit within the standard
tumor growth theories. In 2006, the researchers theorized that cells that become independent
from a tumor and colonize distant tissues may also return home to the microenvironment
within which they initial developed via the cardiovascular system [106]. They tested their
hypothesis in a mouse model of cancer and revealed their findings in 2009 in Cell [107].

In one particular experiment, they selected a non-metastatic breast cancer cell line and an
isolated set of daughter cells from that line that had gained the ability over time to metastasize
to the lungs. Consequently, they implanted the parent cells in one mammary gland and the
metastatic daughter cells in the opposite gland to serve as “donor tumors”. They noticed that
the daughter cells migrated to the lungs and to the tumors that were being formed by the
parent cells in the opposite organ, accounting for 5 to 30% of the size of the parent tumors.
Also, it was obvious that parent tumors seeded by daughter cells grew quicker than parent
tumors that were implanted without daughter cells within the opposite gland.

This specific seeding behavior with daughter cells that spread to the bones and brain was
noticed in the studies of colon cancer and skin cancer cell lines, but not when non-metastatic
daughter cells were transplanted.

Furthermore, in various related follow-up laboratory experiments, the researchers demon‐
strated that cells from primary tumors can attract circulating metastatic tumor cells, and found
several proteins that probably encourage this migration. They also found that the “come-back”
metastatic cells mainly influenced primary tumor growth through the release of proteins that
modify the tumor microenvironment, as well as blood vessels and immune cells.

Their hypothesis started to obtain support from different researchers at the United Nations
agency. In 2009, Dr. Philip Hahnfeldt and his colleagues published the results of computer
modeling studies conceived to search at the intersection of two biological phenomena found
in tumors [108]. One of these phenomena consists in a small population of cancer cells acting
like stem cells; thus, they could possess the ability to reproduce an infinite number of times,
and also to generate secondary cancer cells that, with time, lose the ability to divide. The second
phenomena is that tumor growth is restricted by the available space for growing. Normally,
healthy cells are spatially separated by a space that is not available in the tumor, due to the
fact that cancer cells grow tightly in a dense mass till all the available has been occupied and
the cellular division stops. At the periphery of the tumor, where the normal tissues density
decreases, cancer cells continue to multiply and expand, increasing the size of the tumor.

Their models showed a crucial relation between cell migration, cell death, and tumor growth.
When the offspring of a cancer stem cell within the model did not migrate or die spontaneously,
tumor growth remained constant at around 110 cells. On the other hand, a high death rate
among the non-stem cell progeny combined with a high cell migration rate produced the
biggest tumors within the shortest amount of your time, to virtually 100,000 cells in over three
years.
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This theoretical phenomena − accelerated growth jump-started by a high rate of growth death
− has potential implications for the clinical treatment of cancer. Traditional cytotoxic therapy
medicine kill massive numbers of speedily dividing cancer cells, however might not have an
effect on cancer stem cells in each tumor type.

In the light of the above, we think of the CTC returning to the initial tumor site and fueling the
primary tumor growth or even grow a new tumor as a particular case of complete holography
(i.e. a hologram which does not represent only the virtual object’s image, but becomes the very
object - which we believe, is a characteristic of the living organisms).

6.2. Hypoxia and cancer

Vascularized tissues is the trigger factor for a large number of cellular processes, combined
with an adaptive response. [109,110]. Following the drop in oxygen supplies, cells start to adapt
to the less favorable environment and to initiate a vascularization| process in order for them
to raise the local oxygen supply. In the center of the hypoxic response is the angiogenic shift,
with production of potent angiogenic factors such as vascular endothelial growth factor
(VEGF). Hypoxia, which is present in many solid malignancies, means that oxygen level in
tumors corresponds to around 1.5% [109]. This is caused on one hand by the result of the
abnormal vascularisation in tumors, that is short in supply oxygen to the sometimes rapidly
expanding malignant lesion and on the other hand, the existence of areas with acute lack of

14

Fig. 12  In the self-seeding concept of cancer growth and metastasis, a mobile tumor cell can take one of five different pathways in 
the body. A – evade and return to the primary tumor, using only the close ECM and not the systemic circulation; B – escape into the 
systemic circulation and then return to the original tumor; C – migrate through the systemic circulation and grow a metastatic tumor 
elsewhere in the organism; D – evade and return to the metastatic tumor, not using the systemic circulation; E –escape and return to 
the metastatic tumor through the systemic circulation. 
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oxygen, resulting in necroses and cell death on a large scale. In breast cancer these forms are
usually related to clinically aggressive behavior. Markers for hypoxia like HIF-1a have been
connected to extremely malignant features and could be relevant prognostic markers for
distinguishing subgroups of breast cancer with certain malignant properties [111,112]. There
is a current discussion whether or not hypoxia contributes to increase the aggressiveness of
tumors or if aggressive tumors have more widespread hypoxia, but, apparently, one explan‐
ation doesn't essentially exclude the opposite. Recent analysis has shown that ‘the hypoxia
response’ in tumors may be used to conceive new treatment methods [113]. Emerging cancer
therapies will most definitely put more focus on specific targeting of hypoxic processes.

Human cancers are characterized by intratumoral hypoxia that results from the proliferation
of deregulated cell and the physiological responses that is triggered by it have impact on all
aspects of cancer progression, together with im mortalization, transformation, differentiation,
genetic instability, ontogeny, metabolic adaptation, autocrine protein communication,
invasion, metastasis, and resistance to therapy.

We assume the relationship between hypoxia and aggressive tumors may be due to the
presence of the coherent wave laser with oxygen of metastatic tumor cells in the area, where
the produced oxygen gradients lead to oxygen consumption. It has been already shown that
laser photocoagulation is effective in the treatment of diabetic retinopathy, in a series of major
studies [114-117]. The oxygen-consumption may be based on a multilayer solution to Fick’s
law of diffusion, yet the essence is that the oxygen consumption is greatest where the oxygen
gradient changes most rapidly [118-120].

All the above considerations and hypoxia’s impact on all critical aspects of cancer progression
support the idea that, the metastatic tumor cells moving through the systemic circulation (and
not necessarily in there), may be considered a travelling wave chemically pumped type laser
with oxygen.

7. Basic model

7.1. The PDE cancer-invasion model

We consider and present in what follows in extenso, the basic mathematical model of growth
of a generic solid tumor, which is assumed just been vascularised, i.e. a blood supply has been
established. Let us focus on four key variables involved in tumor cell invasion, in order to
produce a minimal model, namely tumor cell density (denoted by n), matrix-degradative
enzymes (MDE) concentration (denoted by m), the complex mixture of macromolecules from
the extracellular material’s (MM) concentration (denoted by f) and the oxygen concentration
(denoted by c). Each of the four variables (n, m, f, c) is a function of the spatial variable x and
time t. Firstly, we have to define a system of coupled non-linear partial differential equations
to model tumor invasion of surrounding tissue.

We make the assumption that the ECM is a mixture of MM (e.g. collagen, fibronectin, laminin
and vitronectin) only and not any other cells. Most of the MM of the ECM which are important
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for cell adhesion, spreading and motility are fixed or bound to the surrounding tissue. MDEs
are important at many stages of tumor growth, invasion and metastasis, and they interact with
inhibitors, growth factors and tumor cells in a very complex way. Yet it is widely accepted that
tumor cells produce MDEs which locally degrade the ECM. As well as creating space into
which tumor cells may be transported by simple diffusion (random motility), we can assume
that this also results in a gradient of these bound cell-adhesion molecules, such as fibronectin.
As a result, while the ECM may be a barrier to normal cell movement, it also represents a
substrate to which cells may adhere and move upon. The presence of a minimum of ECM
elements is a requirement for the growth and survival of most mammalian cells, and indeed
these cell will migrate up a gradient of bound (i.e. non-diffusible) cell-adhesion molecules in
the in vitro cultures [121-126].

We can define haptotaxis as a directed migratory response of the cells to gradients of fixed or
bound chemicals (i.e. non-diffusible chemicals). While studies have not yet clearly shown
haptotaxis occurs in an in vivo situation, given the structure of human tissue, it is not without
reason to assume that haptotaxis is a major component of directed movement in tumor cell
invasion. Indeed, there has been much recent effort to characterize such directed movement
[125-127]. We therefore will treat this directed movement of tumor cells in this model as
haptotaxis, i.e. a response to gradients of bound MM such as fibronectin. To incorporate this
response in the mathematical model, we take the haptotactic flux to be Jhapto = χ n ∇ f, where
χ > 0 is the (constant) haptotactic coefficient.

As we stated early, the only other contribution to tumor cell motility in this model is the random
motion. To describe the random motility of the tumor cells, we assume a flux of the form Jrand

= −Dn∇n, where Dn is the constant random motility coefficient.

We only model the tumor cell migration at this level, as all other tumour cell processes, such
as proliferation, adhesion and death will be treated at a single cell level within the hybrid
discrete-continuum model. The conservation equation for the tumour cell density n can
therefore be written as

( ) 0rand hapto
n
t

¶
+ Ñ + =

¶
J J

and hence the partial differential equation governing tumor cell motion (in the absence of cell
proliferation) is

( )2
n

n D n n f
t

¶
= Ñ - cÑ Ñ

¶
(23)

The ECM is known to contain many MM, including fibronectin, laminin and collagen, which
can be degraded by MDEs [128,129]. We assume that the MDEs degrade ECM upon contact
and hence the degradation process is modeled by the following simple equation
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f mf
t
¶

= -d
¶

(24)

where δ is a positive constant.

Active MDEs are produced (or activated) by the tumor cells, diffuse throughout the tissue and
undergo some form of decay (either passive or active). The equation governing the evolution
of MDE concentration is therefore given by

2 ( , ) ( , , )m
m D m g n m h n m f
t

¶
= Ñ + -

¶
(25)

where Dm is a positive constant, the MDE diffusion coefficient, g is a function modeling the
production of active MDEs by the tumor cells and h is a function modeling the MDE decay.
For simplicity we assume that there is a linear relationship between the density of tumor cells
and the level of active MDEs in the surrounding tissues (not taking into consideration the
amount of enzyme precursors secreted and the presence of endogenous inhibitors) and so these
functions will be g = μ n (MDE production by the tumor cells) and h = λ m (natural decay),
respectively.

The fact solid tumors need oxygen to grow and invade is a well-known one. Oxygen is assumed
to diffuse into the MM, decay naturally and be consumed by the tumor. We assume that oxygen
production is proportional to the MM density. This is a crude way of modeling an angiogenic
oxygen supply for a more appropriate way of modeling the angiogenic network. The oxygen
equation then has the form,

2
c

c D c f n c
t
¶

= Ñ + b - g - a
¶

(26)

where Dc, β, γ, α are positive constants representing the oxygen diffusion coefficient, produc‐
tion, uptake and natural decay rates, respectively.

The complete system of equations describing the interactions of the tumor cells, MM, MDEs
and oxygen as detailed above, is

( )
}

} }

} } }
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2
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2

a

b

c

d

n

m

c
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t

f mf
t

m D m n m
t

c D c f n c
t

¶
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¶

¶
= -

¶

¶
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¶

¶
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¶
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where Dn, Dm and Dc are the tumor cell, MDE and oxygen diffusion coefficients, respectively,
χ is the haptotaxis coefficient and δ, μ, λ, β, γ and α are positive constants. We should also note
that cell–matrix adhesion is modeled here by the use of haptotaxis in the cell equation, i.e.
directed movement up gradients of MM. Therefore, χ maybe considered as relating to the
strength of the cell–matrix adhesion.

7.2. The PDE cancer-invasion model via scale relativity theory

The presence of the fractal medium implies the substitution of the standard derivative d/dt
with the fractal operator (10). Then the system (27a-d) becomes

( )
( )

( )

( )
( )
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( )
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2 12
2
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df f dtf i f mf
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-
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-

-

æ ö¶
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¶ æ ö
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l c
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l d
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l m l
t t

l b g a
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(28)

or more explicitly, by separating the scales of interaction, for the differentiable scale

( ) ( )
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and for the fractal scale
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Thus, the transport equations (27a-d) are generalized by involving the convective terms
(V̂ F ⋅∇ )n, (V̂ F ⋅∇ ) f , (V̂ F ⋅∇ )m, (V̂ F ⋅∇ )c at differentiable scale. Moreover, at the fractal
level one specifies new transport mechanisms where the convective effects are balanced by
dissipative ones.

Now, the transport equations for the fractal to non-fractal transition are obtained by substract‐
ing the relations (29a) and (30a), (29b) and (30b), (29c) and (30c), (29d) and (30d) and using the
substitution V=VD-VF. One gets
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(31)

Assuming now both the coherence fractal to non-fractal and harmonic type behavior for the f
field the system of equations (31a-d) becomes

( )
( )

( )

( )
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a

b

c

d
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D

n

D

m

D

c
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t
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t
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t
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-

-
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t t

d

l m l
t t

l b g a
t t

(32)

7.3. Non-dimensionalization and parameterization

For us to utilize realistic parameter values, we must first non-dimensionalize the equations in
the standard formalism. We therefore rescale the distance with an appropriate length scale L
(e.g. the maximum invasion distance of the cancer cells at the first stage of invasion, approxi‐
mately 1 cm), time with τ (e.g. the average time taken for mitosis to occur, approximately 8...24
h [130], tumor cell density with n0, ECM density with f0, MDE concentration with m0 and oxygen
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7.3. Non-dimensionalization and parameterization

For us to utilize realistic parameter values, we must first non-dimensionalize the equations in
the standard formalism. We therefore rescale the distance with an appropriate length scale L
(e.g. the maximum invasion distance of the cancer cells at the first stage of invasion, approxi‐
mately 1 cm), time with τ (e.g. the average time taken for mitosis to occur, approximately 8...24
h [130], tumor cell density with n0, ECM density with f0, MDE concentration with m0 and oxygen
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concentration with c0 (where n0, f0, m0 and c0 are appropriate reference variables). Therefore,
setting

0 0 0 0 0

,    f ,    m ,    c ,    ,       fn m c tn t
n f m c L t

= = = = = =
xx% %% % % %

in (27) and dropping the tildes for notational convenience, we obtain the scaled system of
equations
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where dn= τ Dn −
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, ρ=τχ f0/L2, η=τm0δ, dm=τ Dm −
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, κ=τμn0/m0,

σ=τλ, dc =τ Dc −
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, ν=τ f0β/c0, ω=τn0γ/c0, ϕ=τα.

The cell cycle time can be highly variable (particularly the G1 phase) and in fact depends on
the specific tumor taken under consideration. As an approximate reference time we take τ =
16 h, halfway between 8...24 h [130]. The cell motility parameter Dn ~ 10−9 cm2 s−1 was estimated
from available experimental evidence [131]. Tumor cell diameters again will vary depending
on the type of tumor being considered but are in the range 10...100 μm [132] with an approx‐
imate volume of 10−9 to 3 × 10−8 cm3 [133,134]. We will assume that a tumor cell has the volume
1.5 × 10−8 cm3 and therefore take n0 = 6.7 × 107 cells cm−3. The haptotactic parameter χ ~ 2600
cm2 s−1 M−1 was estimated to be in line with that calculated in [135] and the parameter f0 ~ 10−8

to 10−11 M was taken from the experiments of [136]. We took Dm to be 10−9 cm2 s−1, which is
perchance small for a diffusing chemical, but current studies imply that it is in fact a combi‐
nation of the MDE and MM, and, as a result, the MM degrades and diffuses very little [137].
An in vivo estimate for the MDE concentration m0 is rather difficult to obtain since no value
(that we are aware of) has been currently determined and we also know that certain inhibitors
(e.g. tissue inhibiting metalloproteases) are produced within the ECM which affects the MDE
concentration. Plasma levels of specific MDEs have been measured (e.g. MMP-2 [138]) and are
approximately 130 ng ml−1 with further increases observed in patients with cancer [139]. How
is this related to the MDE concentration within the ECM is not clear and we have therefore left
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this parameter undefined. Estimates for the kinetic parameters μ, λ and δ were not available
since these are rather hard to obtain experimentally – and thus we use the values of [135]. The
diffusion rate of oxygen through water is Dc = 10−5 cm2 s−1 and also, the oxygen consume rate
of the cells is 6.25 × 10−17 M cells−1 s−1 [134]. The background oxygen concentration estimation
within the tissue was somehow difficult to be done as it depends on the tissue vascularization.
If we set the value of the oxygen concentration in the blood supplying the tumor/tissue to be
0.15 ml O2 per ml of blood, since we know that 1 M of oxygen occupies 22400 ml then there is
0.15/22400 M O2 ml−1 = 6.7 x 10−6 M O2 ml−1, and since 1 ml = 1 cm3 then we calculate c0 = 6.7 x
10−6 M O2 cm−3 [140]. Obviously this would be an overestimate, due to the fact that not all of
the domain will be fully vascularised but at least we have obtained a reference value. The
values of the non-dimensional parameters were given as
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7.4. Laser beam in a multiscale diffusion cancer-invasion model

7.4.1. Laser as a lorenz system

A laser system is the result of an interaction between the electromagnetic field and the
substance, under certain circumstances. The Lorenz form of laser equations may be obtained
using a semi-classical reasoning where the environment is analyzed quantically using the
formalism of density matrix, and the electromagnetic field is treated classically, by means of
Maxwell’s equations [141,142]. Here we consider only two energy levels of the involved
microscopic systems (atoms, molecules, ions).

The first treatment of a two levels system was made by Bloch who analyzed the interaction of
electrons with an oscillatory magnetic field superposed over a static magnetic field, in the
framework of a magnetic resonance phenomenon. Due to the similarity of treatments and form
of the obtained equations for the laser system, one can say that it forms the Maxwell-Bloch
system.

Note that the density matrix method is applied in the treatment of laser systems, no matter
how many energy levels, or number of oscillating modes are considered, as well as, in the
consequent quantum treatment, where the electromagnetic field is quantized [143,144].
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We start by discussing the effect of the electromagnetic field on the atoms of the environment.
In the simplest situation, the electric field will induce in each atom an electric dipole whose
moment is proportional to the field and is oriented along its direction. Neglecting the vectorial
character, we have

Em = a (35)

where α is a constant characteristic to the type of the atom considered. If the concentration of
(identical) atoms in the considered environment is Na, then the polarization vector of the
environment, equals the vectorial sum of all the dipole moments from the unit volume, and
will be given by

0aP N E= m = e c (36)

where ε0 is the empty space permittivity and χ represents the electric susceptibility of the
environment.

The problem of the induced dipole moment must be solved quantically using Schrödinger’s
equation (see paragraph 5.2)

ˆi H
t

¶y
= y

¶
h (37)

where Ĥ  is the Hamiltonian operator and ψ the wave function of the atom.

Since a monochromatic field of frequency ω0, not very intense, interacts with the atom inducing
transitions between two of its energetic levels, E1 and E2 i.e. E2 - E1 = ħω0, it is usual to neglect
the other levels and to approximate the atom as a system with two energy levels. If the wave
functions of the atom in the two states are ψ1 and ψ2, respectively, then we have

1 1 2 2C Cy = y + y (38)

where C1, C2 are the time dependent complex amplitude probabilities for the atom to find itself
on the energy levels E1 and E2, respectively. In other words ρ11 =C1

∗C1 ≡ |C1 | 2 represents the
probability of the atom to find itself in the state ψ1, and ρ22 =C2

∗C2 ≡ |C2 | 2 the probability of the
atom to find itself in the state ψ2. The combinations ρ12 =C1C2

∗ and ρ21 =C2C1
∗ are transition

probabilities between the two states. The four numbers ρij (i, j = 1, 2) forms the so called density
matrix for the 2-levels system. The asterisk attached to a parameter means the complex
conjugate of the respective parameter. Obviously, ρ21 = ρ*

12.
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The Hamiltonian operator of the system will consist of a sum between the Hamiltonian of the
nonperturbed atom Ĥ 0 and a term which describes the interaction of the atom with the field,
Ĥ ′,

0
ˆ ˆ ˆH H H¢= + (39)

The functions ψ1 and ψ2 are eigenfunctions of the nonperturbed Hamiltonian, i.e.

0 1 1 1 0 2 2 2
ˆ ˆ, ,H E H Ey = y y = y (40)

Replacing (38), (39) and (40) into the Schrödinger equation, and after some standard calculus,
we get the equations

1 1 1 12 2

2 2 2 21 1

, a
 , b
i C E C H C
i C E C H C

¢= +

¢= +

&h
&h

(41)

where we introduced the notations

12 1 2

21 2 1

ˆ ,a
ˆ , b

H H dV

H H dV

*

*

¢ ¢=

¢ ¢=

ò
ò
y y

y y
(42)

It has been taken into account the orthonormal property of the wave functions ψ1 and ψ2

( )    , 1,2i j ijdV i j*y y = d =ò (43)

where δij is Kroeneker’s symbol, and the fact that the interaction matrix Hij
'  has no diagonal

elements.

It is common to introduce the following simplification: if one chooses the zero energy value at
the center of the interval between the two energies, then they become

( )
( )

2 0

1 0

1 2 , a
1 2 , b

E
E

=

= -

h

h

w

w
(44)

and Eqs. (41) rewrite
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It is common to introduce the following simplification: if one chooses the zero energy value at
the center of the interval between the two energies, then they become

( )
( )

2 0

1 0

1 2 , a
1 2 , b

E
E

=

= -

h

h

w

w
(44)

and Eqs. (41) rewrite
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0 1
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0 2
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, a
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, b
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C
i C H C

C
i C H C

¢= - +

¢= +

h&h

h&h

w

w (45)

In quantum mechanics, the electric dipole momentum is calculated as the expectation value
of the classical electric dipole momentum μ = ex, where e is the electron charge and x is its
displacement along the direction of the electric field.

For an atom in the state ψ this is given by

( )1 2 1 2 1 2ex dV C C C C ex dV* * * *m = y y = + y yò ò (46)

The integral μ12 = ∫ψ1
∗exψ2dV  represents the electric dipole momentum of the interaction. In the

considered approximation, the interaction Hamiltonian is identical to the classical expression
of the interaction energy between an electric field and the induced electric dipole: U = -μE, but
with μ →  μ12 (the dipole momentum of the interaction), i.e.

12 12H E¢ = -m (47)

By choosing a convenient phase relation between the wave functions, we can make μ12 real so
H12

' ,H21
'  to be also real.

Eq. (46) suggests considering the expression

1 2 1 2 12 21X C C C C* *= + º r + r (48)

We remark that the polarization (36) is expressed as a function of X through the equation

12 12 12 . .a aP N X N c c= m = m r + (49)

where by c.c. we denote the complex conjugate of the previous expression.

We further consider the combinations

( ) ( )1 2 1 2 12 21Y i C C C C i* *= - º - r - r (50)
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2 2
2 1 22 11Z C C= - º r - r (51)

For Z we also have a simple interpretation. If we multiply (51) by Na we get the expressions
Naρ22 and Naρ11, which represents the populations from the unit volume of the two levels, in
other words, Na Z ≡ N represents the difference of population between the levels (inversion of
population) from the unit volume.

All the three expressions X, Y, Z are functions depending only on time. Their time derivatives
are easily calculated using Eqs. (45) and their complex conjugates. The following relations
result:

( )0 12 21 0
iX Y H H Z Y¢ ¢= -w - - = -w&
h

(52)

12
0

2Y X EZm
= w +&

h
(53)

122Z EYm
= -&

h
(54)

where in Eq. (52) the second form was obtained taking into account H12
'  = H21

' .

By multiplication of Eq. (52) with Naμ12, it transforms into an equation for Ṗ , namely

( )12 12 12 21 12 12 . .a a aP N X N N c c= = + = +& & & & &m m r r m r (55)

The equation for ρ̇12 is obtained from Eqs. (52) and (53), taking into account Eqs. (48) and (50).
It results

12
12 0 12i i EZ= +&

h
m

r w r (56)

Another equation for polarization is obtained by deriving Eq. (52) once again and using (53).
It results

2 20
0 12

2P P EN+ = -&&
h
w

w m (57)

Selected Topics in Applications of Quantum Mechanics434



2 2
2 1 22 11Z C C= - º r - r (51)

For Z we also have a simple interpretation. If we multiply (51) by Na we get the expressions
Naρ22 and Naρ11, which represents the populations from the unit volume of the two levels, in
other words, Na Z ≡ N represents the difference of population between the levels (inversion of
population) from the unit volume.

All the three expressions X, Y, Z are functions depending only on time. Their time derivatives
are easily calculated using Eqs. (45) and their complex conjugates. The following relations
result:

( )0 12 21 0
iX Y H H Z Y¢ ¢= -w - - = -w&
h

(52)

12
0

2Y X EZm
= w +&

h
(53)

122Z EYm
= -&

h
(54)

where in Eq. (52) the second form was obtained taking into account H12
'  = H21

' .

By multiplication of Eq. (52) with Naμ12, it transforms into an equation for Ṗ , namely
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It is interesting to note that, in the absence of the electromagnetic field, i.e. for E = 0, Eq. (57)
describes a harmonic oscillator. This is unacceptable, since polarization is induced by the field,
so it must attenuate after the field cancels. Physically, it occurs both because of the internal
dynamics of the atomic (molecular) systems and of the dephasing between the oscillations of
different dipoles by means of their self-interaction or their interaction with the crystal lattice
(for a solid environment). This phenomenon is taken into consideration through phenomeno‐
logical reasonings by introducing an amortization term of the form Ṗ / T2 in the equation. Eq.
(57) transforms into the equation of a forced dumped oscillator:

2 20
0 12

2

2PP P EN
T

w
+ + w = - m
&&&

h (58)

Usually, the time T2 is named transversal relaxation time. It is characteristic to the non-diagonal
elements of the density matrix, so Eq. (56) must be rewritten

12
12 12 0 12( )i i EZm
r + g - w r =&

h
(59)

where γ12 =1/T2.

By multiplication of Eq. (54) with Na the left side becomes Ṅ . Replacing Y from (52) in (54),
we get

0

2N EP
t

¶
=

¶ w
&

h (60)

Eq. (60) shows that, at the disappearance of the electromagnetic field, the inversion of popu‐
lation must remain constant. However, an electromagnetic field resonant with the considered
transition (ω ≈ ω0) is composed of quanta which can be absorbed by atoms, so may have the
effect of a transfer of population between the two levels. It is obvious that, at the canceling of
the field, the inversion of population must evolve towards an equilibrium value Ne which is
obtained by a process of pumping and by spontaneous relaxation processes. They imply the
presence of other energetic levels besides those already considered. We proceed again by
phenomenological reasonings. We suppose that this evolution is again exponentially, thus we
add a term of the form (N − N e) / T1 ≡γ11(N − N e), where T1 is named longitudinal relaxation
time (it is characteristic to the diagonal elements of the density matrix). The equation for the
inversion of population becomes

11
0

2( )eN N N EP
t

¶
+ g - =

¶ w
&

h (61)
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Eq. (61), together with (55) coupled with (59), or with (58) represents the substance equations.
They must be associated with the electromagnetic field equation which we transcribe here

2 2 2
2

02 2 2c t t
h ¶ ¶

Ñ - = m
¶ ¶

E PE (62)

where c2 = 1/ε0μ0, η =√ε/ε0 is the refraction index of the environment (without the contribution
of the transition between the two levels), P is the resonant part of the induced polarization and
two non-conductive and non-magnetic laser environments were considered. In this case also,
the energy losses produced by different mechanisms will be considered phenomenologically
by means of an attenuation term introduced in the final form of the equation.

If we have a laser oscillator, the laser medium is placed between two mirrors which form an
open cavity, and the oscillations may be triggered only by modes of oscillation characteristic
to the cavity. They must satisfy the Helmholtz equation

2 2 0U k UÑ + = (63)

where k = ηωc/c, ωc being the frequency of the considered mode (index c from cavity). For
simplification, in what follows, we consider η=1 (gaseous environment).

We suppose the oscillation is produced on a single mode described by a spatial dependence
of the form W(x, y, z). This dependence will characterize both the field and polarization, so we
can write

( ) ( , , )exp( ) . .ct W x y z i t c c= w +E E% (64)

and

( ) ( , , )exp( ) . .ct W x y z i t c c= w +P P% (65)

respectively, where Ẽ (t) and P̃(t) are slowly time-varying (complex) amplitudes.

Since the vectors E and P have the same directions, we can neglect the vectorial aspect.
Introducing (64) and (66) in (62), applying the slowly varying amplitude approximation, i.e.
taking d 2Ẽ / dt 2 ≈0, d 2P̃ / dt 2 ≈ −ωcP and having in view that W(x, y, z) satisfies Eq. (63), we get

02
cidE P

dt
w

=
e

% % (66)

It is necessary to include the loss by radiation which are due to, in the first place, mirrors
imperfections. We do that by introducing a term κẼ  in the left hand side, so the field equation
becomes
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02
cidE E P

dt
w

+ k =
e

% % % (67)

The equation for polarization is obtained comparing Eqs. (49) and (65). It results

12
12

12
12

exp( )
, a

1 ( ) exp( ) b

c

a

c c
a

PW i t
N

dP i P W i t
N dt

=

= +

%

% %&

w
r

m

r w w
m

(68)

which introduced in Eq. (59), and after multiplying both sides with W*exp(-iωct) and integrat‐
ing over the entire volume (mode) of the cavity, leads to

2
12

12 0( ( ))c
idP i P EN

dt
m

+ g + w -w =
% % %

h
(69)

where, in the left hand side, we introduced the first term from (64) and where N represents the
inversion of population from the volume occupied by the cavity mode, defined by the relation

22 11( )aN W WdV
N

W WdV

*

*

r - r
= ò

ò
(70)

We then introduce the relations for the field and polarization (64) and (65) into the equation
for the inversion (61). Using the approximation Ṗ = iωcP, neglecting the rapidly varying terms
(which contain exp (±2iωct)), multiplying by WW* and integrating over the volume of the cavity,
we get

0
11

2
( ) ( )e iAN N N E P EP

t
* *¶

+ - = -
¶

% % % %
h

g (71)

where N is given by Eq. (70). We consider ωc/ω0 = 1, and note

2

0

( )aN W W dV
A

W WdV

*

*
= ò

ò
(72)

Eqs. (67), (69) and (71) form the Bloch-Maxwell system and describe a unimodal laser oscillator.
If we make the change of variables
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the Bloch-Maxwell equations gets the form of the Lorenz system. They become

a

(1 ) b

1 ( ) c
2

dA A R
dt
dR rA R i An
dt
dn bn AR A R
dt

* *

= - +
¢

= - + W -
¢

= - + +
¢

s s

(74)

where the following notations were used
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0 12
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-
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ks
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e kg

(75)

In the form (74) the equations make up a complex Lorenz system. This was discussed in detail
in the paper [145]. The complex Lorenz system transforms into the well known real Lorenz
system if the resonance is exact (ωc = ω0 ⇒ Ω = 0) and the phases of the amplitudes Ẽ  and P̃  are
chosen so the functions A and R to be real

( ) a

( ) b

c

dA R A
dt
dR A r n R
dt
dn AR bn
dt

= -
¢

= - -
¢

= -
¢

s

(76)
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The fact that a unimodal laser oscillator is described by the Lorenz system was remarked for
the first time by Haken (Haken, 1975). Therefore, it was demonstrated that the immense variety
of dynamical behaviors, including the chaotic ones, presented by a Lorenz system, must be
expected to occur in a laser. Among the first who reported Lorenz type chaotic behaviors in a
laser, were Weiss and Brock [147].

Equations of the same form are obtained also when one considers a travelling wave laser, such
as laser amplificators where the wave passes only one time the environment, or a circular
unidirectional laser [148,149].

7.5. A chaotic multi-scale cancer-invasion model

From the non–dimensional space-time model (33), discretization was performed by neglecting
all the spatial derivatives resulting in the following simple 4D temporal dynamical system

0 a

b

c

d

dn
dt
df mf
dt
dm n m
dt
dc f n c
dt

=

= -

= -

= - -

h

k s

n w j

(77)

When simulated, the temporal system (77) with the set of parameters (34) exhibits a virtually
linear temporal behavior with almost no coupling between the four concentrations that have
very different quantitative values (all phase plots between the four concentrations, not shown
here, are virtually one-dimensional). To see if a modified version of the system (77) could lead
to a chaotic description of tumor growth, and following the method in [150], four new
parameters, a1, a2, a3, and a4 are introduced. The resulting model is

( )

1

3 2

4

0 a

( ) b

c

d

dn
dt
df a m f
dt
dm f a c m a n
dt
dc fm a c n
dt

=

= -

= - - +

= - -

h

k

n j w

(78)

The introduction of the parameters (a1, a2, a3, a4) was motivated by the fact that tumor cell shape
represents a visual manifestation of an underlying balance of forces and chemical reactions
[151]. Specifically, the parameters represent the following quantities: a1 = tumor cell volume
(proliferation/non-proliferation fraction), a2 = glucose level, a3 = number of tumor cells, a4 =
diffusion from the surface (saturation level).

Implications of the “Subquantum Level” in Carcinogenesis and Tumor Progression via Scale Relativity Theory
http://dx.doi.org/10.5772/59233

439



A tumor is composed of proliferating (P) and quiescent (or non-proliferating) (Q) cells. Tumor
cells shift from class P to class Q as the tumor grows in size [152]. Model dependence on the
ratio of proliferation to non-proliferation is introduced via the first parameter, a1. The discre‐
tization of Eq. (33a) leads to cell density being modeled as a constant in Eq. (78a). Accordingly,
cell density does not play a role in the dynamics. In (78) the cell density is re-introduced into
the dynamics via the cell number, a3. The importance of introducing a3 also appears in
connection with the cyclin-dependent kinase (Cdk) inhibitor p27, the level and activity of
which increase in response to cell density. Levels and activity of Cdk inhibitor p27 also increase
with differentiation following loss of adhesion to the ECM [153].

The ability to estimate the growth pattern of an individual tumor cell type on the basis of
morphological measurements should have general applicability in cellular investigations, cell–
growth kinetics, cell transformation and morphogenesis [154].

Cell spreading alone is conducive to proliferation and increases in DNA synthesis, indicating
that cell morphology is a critical determinant of cell function, at least in the presence of optimal
growth factors and extracellular matrix (ECM) binding [155]. The varying morphology of most
cells can stimulate cell proliferation through integrin-mediated signaling indicating that cell
shape may govern how individual cells will respond to chemical signals [156].

Parameters (a1, a2, a3, a4), introduced in connection with cancer cells morphology and dynamics
could also influence the very important factor chromatin associated with aggressive tumor
phenotype and shorter patient survival time.

For computations, the parameters were set to a1=0.06, a2=0.05, a3=26.5 and a4=40. Small variation
of these chosen values would not affect the qualitative behavior of the new temporal model
(78). Simulations of (78), using the same initial conditions and the same non-dimensional
parameters as before, show chaotic behavior in the form of Lorenz-like strange attractor in the
3D (f−m−c) subspace of the full 4D (n−f−m−c) phase-space (Figs. 13-Figs. 16).
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Figure 13. A 3D Lorenz-like chaotic attractor from the modified tumor growth model (78 b-d). The attractor effectively
couples the MM–concentration f, the MDE–concentration m, and the oxygen concentration c in a mask–like fashion.
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loss of adhesion to the ECM [153]. 
 The ability to estimate the growth pattern of an individual tumor cell type on the basis of morphological measurements 
should have general applicability in cellular investigations, cell–growth kinetics, cell transformation and morphogenesis [154].
 Cell spreading alone is conducive to proliferation and increases in DNA synthesis, indicating that cell morphology is a 
critical determinant of cell function, at least in the presence of optimal growth factors and extracellular matrix (ECM) binding [155]. 
The varying morphology of most cells can stimulate cell proliferation through integrin-mediated signaling indicating that cell shape
may govern how individual cells will respond to chemical signals [156].
 Parameters (a1, a2, a3, a4), introduced in connection with cancer cells morphology and dynamics could also influence the 
very important factor chromatin associated with aggressive tumor phenotype and shorter patient survival time. 
 For computations, the parameters were set to a1=0.06, a2=0.05, a3=26.5 and a4=40. Small variation of these chosen values 
would not affect the qualitative behavior of the new temporal model (78). Simulations of (78), using the same initial conditions and 
the same non-dimensional parameters as before, show chaotic behavior in the form of Lorenz-like strange attractor in the 3D (f m c)
subspace of the full 4D (n f m c) phase-space (Figs. 13-16). 

Figure 13. A 3D Lorenz-like chaotic attractor from the modified tumor growth model (78 b-d). The attractor effectively
couples the MM–concentration f, the MDE–concentration m, and the oxygen concentration c in a mask–like fashion.
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Fig. 14  The m  f phase plot of the 3D attractor. 

Fig. 15 The m  c phase plot of the 3D attractor. 

Fig. 16 The f c phase plot of the 3D attractor. 

Figure 14. The m − f phase plot of the 3D attractor.
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Figure 16. The f − c phase plot of the 3D attractor.
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The space-time system of rate PDEs corresponding to the system in (33) provides the following
multi-scale cancer invasion model
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The new tumor–growth model (79) retains all the qualities of the original model (33) plus
includes the temporal chaotic ‘butterfly’–attractor. This chaotic behavior may be a more
realistic view on the tumor growth, including stochastic–like long–term unpredictability and
uncontrollability, as well as sensitive dependence of a tumor growth on its initial conditions.

Now, if we compare (78) with (76) and make a one-to-one correspondence between these two
systems of equations, we see that A which is the electric field amplitude corresponds to f, the
MM concentration, R which is the polarization amplitude corresponds to m, the MDE concen‐
tration and n the inversion of population corresponds to c, the oxygen concentration. Since
both systems, the laser and the tumor invasion can be written in the form of a Lorenz system,
we can suppose that the metastatic cancer cells moving through the systemic circulation form
a coherent wave, i.e. a particular type of chemically pumped (since it may obtain its energy
from chemical reactions) laser with oxygen. In the following section we show moreover, that
this coherent wave can be identified with a travelling wave laser with oxygen.

7.6. Travelling waves in the multiscale diffusion cancer-invasion model

Let us write the system (28) again. We assume the model refers to the the averaged behavior
of the tumor cells in the direction of invasion only and ignores variations in a plane normal to
the direction of invasion.

Invasive cells. Since in their experiments Aznavoorian et al. [157] reported minimal chemoki‐
netic movement, a key feature of the following model is the absence of the term for random
cell motility. Also, we introduce a term of increased proliferation of malignant cells relative to
normal cells, F(n), which will be initially modeled as a logistic type growth of the form k1 n (k2

− n) which has been shown [158], in order for us to describe adequately the growth of human
tumors grown [159].

Extracellular matrix. The motility of extracellular matrix elements, unlike the one of malignant
cells and oxygen, is negligible due to the fact that these elements are much longer than cells.
The dynamics of connective tissue can therefore be modeled as a simple passive degradation
by the activity of the tissue proteases; this proteolysis can now be described by −G(f, m), since
it depends on the amount of collagen f still present as well as on the protease m.
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Invasive cells. Since in their experiments Aznavoorian et al. [157] reported minimal chemoki‐
netic movement, a key feature of the following model is the absence of the term for random
cell motility. Also, we introduce a term of increased proliferation of malignant cells relative to
normal cells, F(n), which will be initially modeled as a logistic type growth of the form k1 n (k2

− n) which has been shown [158], in order for us to describe adequately the growth of human
tumors grown [159].

Extracellular matrix. The motility of extracellular matrix elements, unlike the one of malignant
cells and oxygen, is negligible due to the fact that these elements are much longer than cells.
The dynamics of connective tissue can therefore be modeled as a simple passive degradation
by the activity of the tissue proteases; this proteolysis can now be described by −G(f, m), since
it depends on the amount of collagen f still present as well as on the protease m.
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Proteases. Proteases generation is narrowly confined to the interface invading tumor and
receding connective tissue interface. In some cases it is possible to localize the interstitial
collagenase production to the stromal fibroblasts immediately adjacent to the site of tumor
invasion, possibly leading to the fact that invasive cells release a stimulus for induction of
interstitial collagenase by fibroblasts. Nabeshima et al. [160] managed to sequence a tumor cell
derived collagenase stimulatory factor. Protease generation located only at the invading front
can be explained however in other ways. In their work, Xie et al. [161] have revealed that the
induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid
carcinoma cells is density dependent. They showed that only dividing cells stained positive
when treated with anti-MMP antibodies and as a consequence only noncontact-inhibited
tumor cells produce protease. Many proteases are predominantly membrane bound (e.g.
uroplasminogen activator), but even when the protease is secreted into the extracellular space,
activation occurs only on the cell surface, so as a result the behavior closely resembles that for
membrane bound proteases [162]. Therefore protease diffusion in the model is not included.
We must then define the function H(n, f) to represent the dependence of this tightly regulated
protease production on the local concentrations of the melanoma cells and collagen. In addition
we assume that the protease decays linearly, with half-life K.

Oxygen. As in the original model, we presuppose it diffuses into the MM, decays naturally, is
consumed by the tumor and for simplicity, oxygen production is proportional to the MM
density. Therefore, we introduce the function I(n, f) and c decays linearly, with half-life Λ. The
parameter c does not appear anywhere else in the system, so this equation will be easily
separated.

Combining all of the above, we are now ready to write the model as
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where F, G, H and I are functions of n, f and m. Compared to previous work on the modeling
of cell movement, this model is unusual in that there is no cellular diffusion. This case has been
considered previously [163] in the very different context of cellular aggregation, where they
obtained conditions for blow-up in the absence of cell kinetics.

Before proceeding further, we must eliminate m from the equations as follows. The time scales
associated with protease production and protease decay are much shorter than a typical
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timescale for the invading cells. Hence writing H (n, f )= K H̄ (n, f ), where we assume K>>1,
and multiplying through Eq. (80c) by the small parameter K−1, we deduce that to leading order
m = H̄ (n, f ). Henceforth no reference to m is needed: this expression may be used to eliminate
m from Eqs. (80a) and (80b). In the same way, writing I ( f , n)=Λ Ī ( f , n), assuming Λ >> 1 and
multiplying through Eq. (80d) by the small parameter Λ−1, we deduce that to leading order
c = Ī ( f , n). This type of quasi-steady state assumption is a common one in enzyme kinetics
[164], and numerical simulations of the four equations (80a-d) are in good accordance with the
simplified system of two equations; a strong point of the two equation case is that it is amenable
to detailed mathematical analysis.

We examine the model using the simple functional forms
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7.7. Nondimensionalization

After making the substitutions for F, G, H and I from (81) into equations (80a-d) and eliminating
m using m = H(n, f) and c using c = I(f, n) we nondimensionalize the resulting equations using

1 2

3 1
2

2 4 5 1 2 4 5

1,    f ,    t ,    x ,    ,    ,    ,    k kfn t xn L T n k f
T L k k k k k k kn f

* *
* *

é ù
= = = = = = = =ê ú

ë û
% %% %

Dropping tildes for notational convenience then gives rise to the system

2

(1 ) a

b

fn n n n
t x x
f nf
t

é ù¶¶ ¶
= - - ê ú¶ ¶ ¶ë û

¶
= -

¶

(82)

7.8. Spatially homogeneous system

Setting ∂/∂x = 0 in (82a) we note that the spatially homogeneous system has two steady states:

i. n = 0, f arbitrary − this is a continuum of (unstable) steady states parameterized by
the (variable) amount of connective tissue in different tissues;

ii. n = 1, f = 0 − this (stable) steady state corresponds to complete replacement of the
normal tissue by invading malignant cells.

With ∂/∂x = 0, (82a) and (82b) can be solved explicitly giving
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where c1 and c2 are arbitrary constants. The behavior as t →  ∞ shows that n →  1 and f →  0,
hence justifying our classification of the steady state (n, f) = (1, 0) as stable.

7.9. Travelling wave analysis

The invasion process should normally correspond to the travelling wave solutions of the model
(82a) and (82b) with the normal tissue steady state n = 0 ahead of the wave and the fully
malignant state n = 1, f = 0 behind the wave. This fact is verified by numerical solutions of (82a)
and (82b), which are not detailed here. These travelling wave solutions can be studied
analytically using the travelling wave differential equations. We look for constant shape
travelling wave front solutions of (82a) and (82b) by setting
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where ξ is the positive wave speed which has to be determined. When solutions of the type
(84) exist, they represent travelling waves moving in the positive x - direction. Substitution of
(84) into (82a) and (82b) followed by simple algebraic manipulation gives
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The analysis of (85a,b) involves the study of the (N, F) phase plane. Since we are looking for
travelling waves connecting (1, 0) and (0, F̂ ) in the (N, F) phase plane we look for solutions of
(85a,b) with boundary conditions
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which requires (1, 0) to have an unstable manifold while (0, F̂ ) must have a stable manifold.
In order to study this we look at the stability of the system (85a,b).
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7.10. Stability analysis

The steady states (N0, F0) of (85a) and (85b) are (0, F̂ ) and (1, 0), where F̂  represents a steady
states continuum. We study their stability by analyzing the eigenvalues of the stability matrix
linearized about the steady states. The eigenvalues about (0, F̂ ) are −1/ξ and 0. The corre‐
sponding eigenvectors are (1, − F̂ ) and (0, 1). The negative eigenvalue shows that there is a
stable manifold along (1, − F̂ ). The zero eigenvalue represents translations along the steady
states continuum.

The eigenvalues about (1, 0) are 1/ξ and 0. The eigenvector corresponding to 1/ξ is (1, 0)
and represents  movement  along  the  N  axis.  The  eigenvector  corresponding  to  the  zero
eigenvalue is (0, 1) which is in the direction normal to the N  axis. The trajectory leaving
this steady state leaves along the eigenvector corresponding to the zero eigenvalue of the
linearized system, as shown by the numerical solutions of (85a,b). This zero eigenvalue is
a result of (85b). In order to get a more detailed and clear image of the behavior close to
(1,  0)  we  must  look  at  the  nonlinear  terms  in  (85b).  One  way  to  do  this  is  to  use  the
techniques of the centre manifold theory which shows that as z →  - ∞, N(z) approaches 1
exponentially while F(z) tends zero as z−1.

The existence of an unstable manifold about (0, F̂ ) as z →  ∞ and a stable centre manifold about
(1, 0) as z →  −∞ is consistent with the existence of a travelling wave orbit connecting the two
steady states.

8. Conclusions

1. Cancer cannot be reduced to simple mathematical principles. Its irregular mode of
carcinogenesis, erratic tumor growth, variable response to tumoricidal agents, and less-
known metastatic patterns constitute highly variable clinical behavior. Characterizing this
process requires an accurate understanding of tumor cells and host tissues interactions
and ultimately determines prognosis. Applying time-tested and evolving mathematical
methods to oncology may provide new methods, with inherent advantages, for the
description of tumor behavior, selection of therapeutic modes, prediction of metastatic
patterns, and the defining of an inclusive basis for prognostication. Mathematicians
describe equations that define tumor growth and behavior, whereas surgeons actively
deal with biological processes. Mathematics in oncology applies these principles to clinical
settings.

2. The main conclusions of this work are as follows:

i. mathematics of cancer proves to be chaotic and highly non-linear, justifying the
use of space(-time) non-differentiability as a starting base model;

ii. a chaotic multi-scale cancer-invasion model is manufactured, which embeds a
Lorenz attractor in its solutions;
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iii. since laser can be expressed as a Lorenz system, we may assume some corre‐
spondences between the laser and the above mentioned chaotic multi-scale
cancer-invasion model;

iv. the basic model for solid tumor growth admits a travelling wave solution;

v. we suggest that metastatic tumor cells which move through the systemic
circulation are similar to a coherent wave, i.e. a travelling wave chemically
pumped type laser with oxygen;

vi. we assume the extracellular matrix and in particular, the tumor microenviron‐
ment are non-differential media endowed with holographic properties (capacity
to memorize, interference abilities and source of forces);

vii. the two well-known phenomena: tumor self-seeding by CTC and hypoxia, in our
opinion, both support the idea of complete holography (a hologram which
becomes the very object in the particular case of living organisms).

3. Experimentally testable, mathematics applied in oncology may provide a framework to
determine clinical outcome on a patient-specific basis and increase the growing awareness
that mathematical models help simplify seemingly complex and random tumor behavior.
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