⑥ Flow Measurements
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
Maintenance Engineering
Introduction
• The same holds true for industrial equipment/system.
• Maintenance is one of the most indispensable job in any industrial organization.
Maintenance Engineering
Introduction
• The same holds true for industrial equipment/system.
• Maintenance is one of the most indispensable job in any industrial organization.
Engineering Aspects of Reverse Osmosis Module Design
Abstract:
During the half century of development from a laboratory discovery to plants capable of producing up to half a million tons of desalinated seawater per day, Reverse Osmosis (RO) technology has undergone rapid transition. This transition process has caused signification transformation and consolidation in membrane chemistry, module design, and RO plant configuration and operation. From the early days, when cellulose acetate membranes were used in hollow fiber module configuration, technology has transitioned to thin film composite polyamide flat-sheet membranes in a spiral wound configuration. Early elements – about 4-inches in diameter during the early 70s – displayed flow rates approaching 250 L/h and sodium chloride rejection of about 98.5 percent. One of today’s 16-inch diameter elements is capable of delivering 15-30 times more permeate (4000-8000 L/h) with 5 to 8 times less salt passage (hence a rejection rate of 99.7 percent or higher).
This paper focuses on the transition process in RO module configuration, and how it helped to achieve these performance improvements. An introduction is provided to the two main module configurations present in the early days, hollow fiber and spiral wound and the convergence to spiral wound designs is described as well. The development and current state of the art of the spiral wound element is then reviewed in more detail, focusing on membrane properties (briefly), membrane sheet placement (sheet length and quantity), the changes in materials used (e.g. feed and permeate spacers), element size (most notably diameter), element connection systems (interconnectors versus interlocking systems). The paper concludes with some future perspectives, describing areas for further improvement.
Engineering Aspects of Reverse Osmosis Module Design
Abstract:
During the half century of development from a laboratory discovery to plants capable of producing up to half a million tons of desalinated seawater per day, Reverse Osmosis (RO) technology has undergone rapid transition. This transition process has caused signification transformation and consolidation in membrane chemistry, module design, and RO plant configuration and operation. From the early days, when cellulose acetate membranes were used in hollow fiber module configuration, technology has transitioned to thin film composite polyamide flat-sheet membranes in a spiral wound configuration. Early elements – about 4-inches in diameter during the early 70s – displayed flow rates approaching 250 L/h and sodium chloride rejection of about 98.5 percent. One of today’s 16-inch diameter elements is capable of delivering 15-30 times more permeate (4000-8000 L/h) with 5 to 8 times less salt passage (hence a rejection rate of 99.7 percent or higher).
This paper focuses on the transition process in RO module configuration, and how it helped to achieve these performance improvements. An introduction is provided to the two main module configurations present in the early days, hollow fiber and spiral wound and the convergence to spiral wound designs is described as well. The development and current state of the art of the spiral wound element is then reviewed in more detail, focusing on membrane properties (briefly), membrane sheet placement (sheet length and quantity), the changes in materials used (e.g. feed and permeate spacers), element size (most notably diameter), element connection systems (interconnectors versus interlocking systems). The paper concludes with some future perspectives, describing areas for further improvement.
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
Engineering Bulletin
Introduction:
Founded in 1981, Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. Responding to the needs of our customers, Purolite has built the largest technical sales force in the industry, the widest variety of products and five strategically located Research and Development groups. Our ISO 9001 certified manufacturing facilities in the U.S.A, Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage.
Engineering Bulletin
Introduction:
Founded in 1981, Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. Responding to the needs of our customers, Purolite has built the largest technical sales force in the industry, the widest variety of products and five strategically located Research and Development groups. Our ISO 9001 certified manufacturing facilities in the U.S.A, Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage.
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
Reviews
There are no reviews yet.