Abrasion Resistant Ultrafiltration Membrane Enables Refinery Wastewater Reuse
Abrasion Resistant Ultrafiltration Membrane Enables Refinery Wastewater Reuse
Source : https://www.siemens-energy.com/global/en.html
Authors : Chad Felch, Andrea Larson
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Water Resources & Reuse
Only logged in customers who have purchased this product may leave a review.
Related products
Guidelines for Water Reuse and Recycling in Victorian Health Care Facilities
Security and quality of water supply is vital for a number of key processes within health care facilities (HCF), such as hospitals, aged care facilities, medical centres and mental health facilities. Many HCF however consume large volumes of potable water and as the population of Victoria continues to grow and climate change reduces inflows to traditional water storages increased pressure is placed on potable water supplies. As such there is a need for HCF to consider ways to reduce their reliance on reticulated potable water through conservation or augmentation with alternative water supplies for non-drinking applications. Augmentation can be achieved through either alternative water supplies such as rainwater, onsite reuse (direct use of water for the same or
another function without the need for treatment) or recycling (treatment of water) of water sources. Community benefits to such an approach include both reduced potable water consumption and reduced trade waste discharge.
Guidelines for Water Reuse and Recycling in Victorian Health Care Facilities
Security and quality of water supply is vital for a number of key processes within health care facilities (HCF), such as hospitals, aged care facilities, medical centres and mental health facilities. Many HCF however consume large volumes of potable water and as the population of Victoria continues to grow and climate change reduces inflows to traditional water storages increased pressure is placed on potable water supplies. As such there is a need for HCF to consider ways to reduce their reliance on reticulated potable water through conservation or augmentation with alternative water supplies for non-drinking applications. Augmentation can be achieved through either alternative water supplies such as rainwater, onsite reuse (direct use of water for the same or
another function without the need for treatment) or recycling (treatment of water) of water sources. Community benefits to such an approach include both reduced potable water consumption and reduced trade waste discharge.
Decentralized Solutions for Non Potable water Reuse
• Decentralized alternatives
• Resources for Decentralized Non-Resources Guidelines
• Case studies
• Future possibilities
Decentralized Solutions for Non Potable water Reuse
• Decentralized alternatives
• Resources for Decentralized Non-Resources Guidelines
• Case studies
• Future possibilities
Nanofiltration and Reverse Osmosis Applied to Gold Mining Effluent Treatment and Reuse
Abstract:
Gold mining and ore processing are activities of great economic importance. However, they are related to generation of extremely polluted effluents containing high concentrations of heavy metals and low pH. This study aims to evaluate the optimal conditions for gold mining effluent treatment by crossflow membrane filtration regarding the following variables: nanofiltration (NF) and reverse osmosis (RO) membrane types, feed pH and permeate recovery rate. It was observed that retention efficiencies of NF90 were similar to those of RO membranes though permeate fluxes obtained were 7-fold higher. The optimum pH value was found to be 5.0, which resulted in higher permeate flux and lower fouling formation. At a recovery rate above 40% there was a significant decrease in permeate quality, so this was chosen as the maximum recovery rate for the proposed system. We conclude that NF is a suitable treatment for gold mining effluent at an estimated cost of US$ 0.83/m³.
Keywords: Gold mining effluent treatment; Nanofiltration (NF); Reverse Osmosis (RO); Feed pH; Permeate recovery rate.
Nanofiltration and Reverse Osmosis Applied to Gold Mining Effluent Treatment and Reuse
Abstract:
Gold mining and ore processing are activities of great economic importance. However, they are related to generation of extremely polluted effluents containing high concentrations of heavy metals and low pH. This study aims to evaluate the optimal conditions for gold mining effluent treatment by crossflow membrane filtration regarding the following variables: nanofiltration (NF) and reverse osmosis (RO) membrane types, feed pH and permeate recovery rate. It was observed that retention efficiencies of NF90 were similar to those of RO membranes though permeate fluxes obtained were 7-fold higher. The optimum pH value was found to be 5.0, which resulted in higher permeate flux and lower fouling formation. At a recovery rate above 40% there was a significant decrease in permeate quality, so this was chosen as the maximum recovery rate for the proposed system. We conclude that NF is a suitable treatment for gold mining effluent at an estimated cost of US$ 0.83/m³.
Keywords: Gold mining effluent treatment; Nanofiltration (NF); Reverse Osmosis (RO); Feed pH; Permeate recovery rate.
Challenges of Treatment & Reuse of Industrial Wastewater in Developing Countries – Case of Kuwait
This presentation is about the management of industrial wastewater in one of the Gulf countries, Kuwait where some of the drawbacks for proper management of industrial wastewaters exist.
Challenges of Treatment & Reuse of Industrial Wastewater in Developing Countries – Case of Kuwait
This presentation is about the management of industrial wastewater in one of the Gulf countries, Kuwait where some of the drawbacks for proper management of industrial wastewaters exist.
Reviews
There are no reviews yet.