Biogas Production from Anaerobic Co-Digestion of Waste Activated Sludge Co-Substrates and Influencing Parameters
Source: https://www.springer.com/gp
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Anaerobic digestion is a versatile biotechnology to treat waste activated sludge (WAS), the main by-products of biological wastewater treatment, because it can achieve simultaneously energy recovery (biogas) and pollutant reduction (organic matter, pathogens). However, the potential of biogas production from mono-digestion of WAS is usually limited by the imbalance carbon to nitrogen (C/N) ratio of WAS and ammonia accumulation. Anaerobic co-digestion, simultaneous digestion of two or more substrates, should be a feasible option to resolve these disadvantages.
Only logged in customers who have purchased this product may leave a review.
Related products
Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge
. Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors.
.Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014).
.Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels.
Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge
. Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors.
.Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014).
.Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels.
Study of Biogas Production by Anaerobic Digestion of Sewage Treatment Plant Sludge
Abstract
In this study, a characterization protocol of sewage sludge in Algeria was carried out. Their objective was to study the process of anaerobic digestion for the production of biogas by analogy to experiments which have already been made in the literature on sludge have the same characteristic as our own product. Five models have been proposed to simulate the anaerobic digestion process; three for the production of biogas and two models for the degradation of organic matter. The performance of the proposed models have been validated with experimental data from the literature. The modeling of the volume of biogas produced was carried out by that of Gompertz and models proposed for different products. We observed a good agreement of the models proposed with the experimental data with a maximum value in r 2 = 0.9996 and minimum in ESM = 6.34 10 -4 . The modeling of the degradation of organic matter was carried out by the first order model (eq IV.19), and dimensionless models proposed. The latter gave a good agreement with the experimental data better than the model of the literature with a maximum value in r 2 = 0.9985 and minimum in ESM = 8.91 10 -4 .
Study of Biogas Production by Anaerobic Digestion of Sewage Treatment Plant Sludge
Abstract
In this study, a characterization protocol of sewage sludge in Algeria was carried out. Their objective was to study the process of anaerobic digestion for the production of biogas by analogy to experiments which have already been made in the literature on sludge have the same characteristic as our own product. Five models have been proposed to simulate the anaerobic digestion process; three for the production of biogas and two models for the degradation of organic matter. The performance of the proposed models have been validated with experimental data from the literature. The modeling of the volume of biogas produced was carried out by that of Gompertz and models proposed for different products. We observed a good agreement of the models proposed with the experimental data with a maximum value in r 2 = 0.9996 and minimum in ESM = 6.34 10 -4 . The modeling of the degradation of organic matter was carried out by the first order model (eq IV.19), and dimensionless models proposed. The latter gave a good agreement with the experimental data better than the model of the literature with a maximum value in r 2 = 0.9985 and minimum in ESM = 8.91 10 -4 .
10 Acceptability aspects: Taste, odour and appearance
Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection. The importance of water, sanitation and hygiene for health and development has been reflected in the outcomes of a series of international policy forums. These have included health-oriented conferences such as the International Conference on Primary Health Care, held in Alma-Ata, Kazakhstan (former Soviet Union), in 1978. Access to safe drinking-water is important as a health and development issue at national, regional and local levels. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, as the reductions in adverse health effects and health-care costs outweigh the costs of undertaking the interventions. Experience has also shown that interventions in improving access to safe water favour the poor in particular, whether in rural or urban areas, and can be an effective part of poverty alleviation strategies. The World Health Organization (WHO) published three editions of the Guide-lines for drinking-water quality in 1983–1984, 1993–1997 and 2004, as successors to previous WHO International standards for drinking water, published in 1958, 1963 and 1971. From 1995, the Guidelines have been kept up to date through a process of rolling revision, which leads to the regular publication of addenda that may add to or supersede information in previous volumes as well as expert reviews on key issues preparatory to the development of the Guidelines.
10 Acceptability aspects: Taste, odour and appearance
Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection. The importance of water, sanitation and hygiene for health and development has been reflected in the outcomes of a series of international policy forums. These have included health-oriented conferences such as the International Conference on Primary Health Care, held in Alma-Ata, Kazakhstan (former Soviet Union), in 1978. Access to safe drinking-water is important as a health and development issue at national, regional and local levels. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, as the reductions in adverse health effects and health-care costs outweigh the costs of undertaking the interventions. Experience has also shown that interventions in improving access to safe water favour the poor in particular, whether in rural or urban areas, and can be an effective part of poverty alleviation strategies. The World Health Organization (WHO) published three editions of the Guide-lines for drinking-water quality in 1983–1984, 1993–1997 and 2004, as successors to previous WHO International standards for drinking water, published in 1958, 1963 and 1971. From 1995, the Guidelines have been kept up to date through a process of rolling revision, which leads to the regular publication of addenda that may add to or supersede information in previous volumes as well as expert reviews on key issues preparatory to the development of the Guidelines.
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Reviews
There are no reviews yet.