Biosolid Treatment Processes
Source: https://link.springer.com/
Author by: Lawrence K. Wang , Nazih K. Shammas , Yung-Tse Hung
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Only logged in customers who have purchased this product may leave a review.
Related products
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Drinking Water Treatment Plant Residuals Management Technical Report
INTRODUCTION
The U.S. Environmental Protection Agency (EPA) completed a review of discharges from water treatment plants (WTPs). The purpose of this report is to summarize the data collected during this review (principally covered in Sections 2, 3, 9, 10, and 11) and to serve as a technical resource to permit writers (primarily covered in Sections 4 through 8 and Sections 12 and 13). EPA selected the drinking water treatment (DWT) industry for a rulemaking as part of its 2004 Biennial Effluent Limitations and Guidelines Program planning process. EPA is not at this time continuing its effluent guidelines rulemaking for the DWT industry. In the 2004 Plan, EPA announced that it would begin development of a regulation to control the pollutants discharged from medium and large DWT plants. See 69 FR 53720 (September 2, 2004). Based on a preliminary study and on public comments, EPA was interested in the potential volume of discharges associated with drinking water facilities. The preliminary data were not conclusive, and the Agency proceeded with additional study and analysis of treatability, including an industry survey. After considering extensive information about the industry, its treatment residuals, wastewater treatment options, and discharge characteristics, and after considering other priorities, EPA has suspended work on this rulemaking.
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management
It is crystal clear that, in addition to clean air, the well-being of our planet also requires that water, wastewater and the resulting biosolids (sludge) need to be managed more seriously, and in a focused, coordinated and cooperative manner. The idea for the creation of this Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management originated at the IWA Biosolids Conference, “Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy” held in Moncton, New Brunswick, Canada in June 2007. At this conference representatives of the International Water Association (IWA), Water Environmental Federation (WEF) and European Water Association (EWA) agreed that it would be very useful to produce a current edition of the “Global Atlas of Wastewater Sludge and Biosolids Use and Disposal” which had been published in 1996, with Peter Matthews being
the original editor.
Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management
It is crystal clear that, in addition to clean air, the well-being of our planet also requires that water, wastewater and the resulting biosolids (sludge) need to be managed more seriously, and in a focused, coordinated and cooperative manner. The idea for the creation of this Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management originated at the IWA Biosolids Conference, “Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy” held in Moncton, New Brunswick, Canada in June 2007. At this conference representatives of the International Water Association (IWA), Water Environmental Federation (WEF) and European Water Association (EWA) agreed that it would be very useful to produce a current edition of the “Global Atlas of Wastewater Sludge and Biosolids Use and Disposal” which had been published in 1996, with Peter Matthews being
the original editor.
Sludge Dehydration Technologies
INTRODUCTION
Dewatering is a physical process integrated in the sludge line of treatment plant. It is aimed at reducing the water content and therefore the sludge volume. In this way, its transportation costs to the final destination point is reduced. On the other hand, the dewatered sludge is easier to handle and the transport process is more convenient than in the case of a sludge with higher water content.
The dewatering technique chosen must be consistent with the amount and characteristics of sludges generated and with the biosolid final destination.
Water present in the sludge exists in four forms (see figure): free, colloidal, intercellular and capillary. Free water can be separated from sludge by gravity as it is not associated with solids. Chemical conditioning prior to the use of mechanical tools is required in order to remove colloidal and capillary water. For intercellular water removal, the structure containing it must be broken and this can be done through heat treatment.
Sludge Dehydration Technologies
INTRODUCTION
Dewatering is a physical process integrated in the sludge line of treatment plant. It is aimed at reducing the water content and therefore the sludge volume. In this way, its transportation costs to the final destination point is reduced. On the other hand, the dewatered sludge is easier to handle and the transport process is more convenient than in the case of a sludge with higher water content.
The dewatering technique chosen must be consistent with the amount and characteristics of sludges generated and with the biosolid final destination.
Water present in the sludge exists in four forms (see figure): free, colloidal, intercellular and capillary. Free water can be separated from sludge by gravity as it is not associated with solids. Chemical conditioning prior to the use of mechanical tools is required in order to remove colloidal and capillary water. For intercellular water removal, the structure containing it must be broken and this can be done through heat treatment.
Reviews
There are no reviews yet.