Chapter 44: Centrifugal Pumps
Prepared By: Eng. Hussain Sharahil
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Pumps & Mechanical
Only logged in customers who have purchased this product may leave a review.
Related products
Chapter10. Compressors
Main Types of Compressors
The compressor is the heart of a mechanical refrigeration system.
There is the need for many types of compressors because of the variety of refrigerants and the capacity, location and application of the systems.
Generally, the compressor can be classified into two basic types: positive displacement and roto-dynamic.
Chapter10. Compressors
Main Types of Compressors
The compressor is the heart of a mechanical refrigeration system.
There is the need for many types of compressors because of the variety of refrigerants and the capacity, location and application of the systems.
Generally, the compressor can be classified into two basic types: positive displacement and roto-dynamic.
Chapter Two Reciprocating Compressors Construction Details
Reciprocating Compressors Construction Details
In general, materials for the construction of the compressor and auxiliaries are normally the manufacturer's standard for the specified operating conditions except as required by the datasheet or certain specifications.
Chapter Two Reciprocating Compressors Construction Details
Reciprocating Compressors Construction Details
In general, materials for the construction of the compressor and auxiliaries are normally the manufacturer's standard for the specified operating conditions except as required by the datasheet or certain specifications.
Guide To The Selection Of Rotodynamic Pumps
Purpose of this Guide to pump procurement
This Guide provides an introduction to the very complex subject of the selection of pumps. It is aimed at anyone who wishes to purchase or select a pump and, at the same time, wishes to save money on their energy bill. Almost invariably, this saving will be far more than the first cost of the pump. The reader may be the end user, a contractor, or a consultant. This Guide provides the reader with the basic principles of pump procurement, giving pointers to the pump type and performance they should consider. Pumps are divided into their main types, then their basic construction and performance are considered, their principal applications are described, the basic principles of pump selection are explained and, last but not least, target efficiencies are set to help minimize energy usage. The hope is that both pump users and the environment will benefit.
Guide To The Selection Of Rotodynamic Pumps
Purpose of this Guide to pump procurement
This Guide provides an introduction to the very complex subject of the selection of pumps. It is aimed at anyone who wishes to purchase or select a pump and, at the same time, wishes to save money on their energy bill. Almost invariably, this saving will be far more than the first cost of the pump. The reader may be the end user, a contractor, or a consultant. This Guide provides the reader with the basic principles of pump procurement, giving pointers to the pump type and performance they should consider. Pumps are divided into their main types, then their basic construction and performance are considered, their principal applications are described, the basic principles of pump selection are explained and, last but not least, target efficiencies are set to help minimize energy usage. The hope is that both pump users and the environment will benefit.
Centrifugal Pump Application and Optimization
Summary
Centrifugal pumps perform many important functions to control the built environment. The physics and basic mechanics of pumps have not changed substantially in the last century. However, the state of the art in the application of pumps has improved dramatically in recent years. Even so, pumps are still often not well applied, and become common targets in retrocommissioning projects where field assessment and testing can reveal significant energy savings potential from optimizing pump performance. Typically, retrocommissioning finds that pump flow rates do not match their design intent and that reducing flow rates to match load requirements or eliminating unnecessary pressure drops can save energy. As the example below illustrates, decisions made during the design phase have implications throughout the operating life of the building. Although fully optimizing any design will require some effort after installation, the prevalence and magnitude of the savings that are commonly found in retrocommissioning and ongoing commissioning begs the larger question: How much greater would the savings be if pumps were selected and applied optimally during the design phase?
Centrifugal Pump Application and Optimization
Summary
Centrifugal pumps perform many important functions to control the built environment. The physics and basic mechanics of pumps have not changed substantially in the last century. However, the state of the art in the application of pumps has improved dramatically in recent years. Even so, pumps are still often not well applied, and become common targets in retrocommissioning projects where field assessment and testing can reveal significant energy savings potential from optimizing pump performance. Typically, retrocommissioning finds that pump flow rates do not match their design intent and that reducing flow rates to match load requirements or eliminating unnecessary pressure drops can save energy. As the example below illustrates, decisions made during the design phase have implications throughout the operating life of the building. Although fully optimizing any design will require some effort after installation, the prevalence and magnitude of the savings that are commonly found in retrocommissioning and ongoing commissioning begs the larger question: How much greater would the savings be if pumps were selected and applied optimally during the design phase?
Pumps, Compressors and Seals
The most numerous types of fluid machineries are of the pump family (machines which add energy to the fluid), other important types are turbines (which extract energy from fluid). Both types are usually connected to a rotating shaft, hence also called turbomachineries. The prefix turbo- is a Latin word meaning ―spin’’ or ―whirl,’’ appropriate for rotating devices. The pump is the oldest fluid-energy-transfer device known. At least two designs date before Christ: (i) the undershot-bucket waterwheels, or norias, used in Asia and Africa (1000 B.C.) and (ii) Archimedes’ screw pump (250 B.C.), still being manufactured today to handle solid-liquid mixtures or to raise water from the hold of a ship. Paddlewheel turbines were used by the Romans in 70 B.C., and Babylonian windmills date back to 700 B.C. Since that time, many variations and applications of pumps have been developed. The power generating turbomachines (turbines) decrease the head or energy level of the working fluids passing through them and they are coupled to machines, such as electric generators, pumps, compressors etc.
Pumps, Compressors and Seals
The most numerous types of fluid machineries are of the pump family (machines which add energy to the fluid), other important types are turbines (which extract energy from fluid). Both types are usually connected to a rotating shaft, hence also called turbomachineries. The prefix turbo- is a Latin word meaning ―spin’’ or ―whirl,’’ appropriate for rotating devices. The pump is the oldest fluid-energy-transfer device known. At least two designs date before Christ: (i) the undershot-bucket waterwheels, or norias, used in Asia and Africa (1000 B.C.) and (ii) Archimedes’ screw pump (250 B.C.), still being manufactured today to handle solid-liquid mixtures or to raise water from the hold of a ship. Paddlewheel turbines were used by the Romans in 70 B.C., and Babylonian windmills date back to 700 B.C. Since that time, many variations and applications of pumps have been developed. The power generating turbomachines (turbines) decrease the head or energy level of the working fluids passing through them and they are coupled to machines, such as electric generators, pumps, compressors etc.
Centrifugal Pump Training
Objectives
Understand pump fundamentals
Understand the probable root causes of degradation or failure associated with various pump problems
Understand the state-of-the-art technologies to upgrade existing designs to achieve improved operation and life
Learn how to determine where a pump is operating and how to modify its performance to achieve optimum performance
Centrifugal Pump Training
Objectives
Understand pump fundamentals
Understand the probable root causes of degradation or failure associated with various pump problems
Understand the state-of-the-art technologies to upgrade existing designs to achieve improved operation and life
Learn how to determine where a pump is operating and how to modify its performance to achieve optimum performance
Reviews
There are no reviews yet.